WO2008059920A1 - Système de mesure de matériau - Google Patents

Système de mesure de matériau Download PDF

Info

Publication number
WO2008059920A1
WO2008059920A1 PCT/JP2007/072175 JP2007072175W WO2008059920A1 WO 2008059920 A1 WO2008059920 A1 WO 2008059920A1 JP 2007072175 W JP2007072175 W JP 2007072175W WO 2008059920 A1 WO2008059920 A1 WO 2008059920A1
Authority
WO
WIPO (PCT)
Prior art keywords
weighing
time
stage
correction
value
Prior art date
Application number
PCT/JP2007/072175
Other languages
English (en)
French (fr)
Inventor
Hiroshi Hara
Atsushi Houri
Toru Ueda
Original Assignee
Kabushikikaisha Matsui Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushikikaisha Matsui Seisakusho filed Critical Kabushikikaisha Matsui Seisakusho
Priority to CN2007800426197A priority Critical patent/CN101606046B/zh
Priority to US12/312,557 priority patent/US8356729B2/en
Publication of WO2008059920A1 publication Critical patent/WO2008059920A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G13/00Weighing apparatus with automatic feed or discharge for weighing-out batches of material
    • G01G13/02Means for automatically loading weigh pans or other receptacles, e.g. disposable containers, under control of the weighing mechanism
    • G01G13/04Means for automatically loading weigh pans or other receptacles, e.g. disposable containers, under control of the weighing mechanism involving dribble-feed means controlled by the weighing mechanism to top up the receptacle to the target weight
    • G01G13/06Means for automatically loading weigh pans or other receptacles, e.g. disposable containers, under control of the weighing mechanism involving dribble-feed means controlled by the weighing mechanism to top up the receptacle to the target weight wherein the main feed is effected by gravity from a hopper or chute

Definitions

  • the present invention relates to an improvement of a material measuring system for measuring a material by a certain amount by supplying a material such as a granular material from a hot rod to a measuring device.
  • This multi-stage weighing is based on the mass measured in real time in the load cell by supplying a large amount of material by increasing the degree of opening of the material outlet at the initial stage of supply! The degree of opening is reduced, and the degree of opening is small immediately before the supply is stopped, so there is not much error due to the head value. Therefore, with this weighing method, quick weighing and weighing can be realized by the initial large weighing, and V and weighing can be realized with high accuracy by the final small weighing.
  • the target supply mass switching value is set as a set value in each stage. At each stage, whether or not the supply amount has reached this set value is measured and reached. Control to switch to the next stage is performed.
  • Patent Document 1 Japanese Patent Publication No. 6-12288
  • the present invention has been proposed in view of such circumstances, and an object of the present invention is to provide a material weighing system capable of performing multistage weighing accurately and quickly.
  • optimization The purpose is to enable safe and reliable measurement without failure even when measuring to the fullest extent possible.
  • the material weighing system according to claim 1 is a material weighing system for weighing a material by a certain amount by supplying the material to a measuring device from a material discharge port of Hotsuba.
  • a supply mass switching value is set, and each time the mass measured by a measuring instrument equipped with a mass measuring means reaches the supply mass switching value, the process proceeds to the next stage, and the amount of material fall per unit time is set in stages.
  • the weighing system for each material, except for the first stage includes the unstable time when the amount of fall per unit time after the transition from the previous stage is not stable. That anxiety
  • the target weighing time for each stage with the time value as the target lower limit value is prepared in the storage unit, the weighing time measuring means for measuring the actual weighing time in each stage weighing, and after one batch weighing is completed
  • a set value correcting means for correcting the supply mass switching value for each stage except for the first stage by a predetermined algorithm based on the target weighing time and the actual weighing time.
  • the amount of material falling per unit time is reduced by controlling the opening degree of the material discharge port of the hot bar storing the material. It is characterized by that.
  • the material weighing system according to claim 3 is characterized in that the set value correction means optimizes the supply mass switching value at each stage by a plurality of corrections.
  • the set value correction means includes a standard correction based on a difference between the actual measurement time and the target measurement time, and the actual measurement time with the target measurement time and a predetermined threshold value.
  • the special feature is that any one of the corrections that are larger than the standard correction in the event of a deviation may be executed!
  • the set value correction means includes the target weighing time and the actual weighing. Based on the time and the supply mass switching value, the supply mass switching value at each stage except the first stage is corrected by a predetermined algorithm, so the supply mass switching value at each stage is set to the target weighing time. It can be corrected so that the supply mass switching value at each stage can be optimized for quick and accurate weighing.
  • FIG. 1 Schematic diagram showing the flow of multi-stage weighing.
  • A is large weighing
  • (b) is medium weighing
  • (c) is small weighing
  • (d) is small weighing stopped It shows the state of the hour.
  • FIG. 2 A diagram for explaining the switching point, (a) graphing the relationship between the weight of the load cell and time, and (b) a diagram for explaining the unstable time zone at the time of switching. is there.
  • FIG. 3 is a block diagram of the main part of the system of the present invention.
  • FIG. 4 is a flowchart showing a schematic flow of the system of the present invention.
  • FIG. 5 is a flowchart showing the operation of the small measurement setting correction of the system of the present invention.
  • FIG. 6 is a flowchart showing the operation of medium weighing setting correction of the system of the present invention. Explanation of symbols
  • FIG. 1 is a conceptual diagram showing multi-stage weighing employed in the material weighing system of the present invention.
  • the hopper 10 which is a feeder, shows a material discharge port provided with a slide shutter! /, And may have a structure provided with a flap damper! /.
  • 10 is a hono that stores material P
  • 11 is a slide shutter provided at the material discharge port of the hopper
  • 12 is a servo cylinder for controlling the opening of the material discharge port
  • 1 is a mass measuring means.
  • (Load cell) 2 is a measuring instrument.
  • the mass measuring means is not limited to the load cell 2, and a differential transformer or a frequency system may be used.
  • Figure 1 is a schematic diagram showing the flow of multi-stage weighing.
  • (A), (b), and (c) show the material supply at each stage of large weighing, medium weighing, and small weighing, respectively.
  • (D) shows when the measurement is stopped.
  • the target set value for stopping the supply of the small measurement needs to use a value that takes into consideration the head amount generated at the end of the small measurement from the final target value (measurement value).
  • the amount of this drop has been empirically obtained, although there is an error if the material and equipment are the same and the degree of opening of the material outlet at the time of small weighing is the same.
  • Measured value In this specification, accurate multi-stage weighing can be carried out using the set value of the final stage considering the difference between the head value and the head amount).
  • FIG. 2 is a diagram for explaining the switching points of each stage of multi-stage weighing.
  • (A) is a graph showing the relationship between the measured mass of the load cell and the elapsed time
  • (b) is a graph.
  • FIG. 6 is a diagram schematically showing the relationship between the degree of opening of the material discharge port and the measured mass in order to explain the unstable time zone at the time of switching.
  • WO is the final target value
  • W1 is the switching target value from the large weighing stage to the medium weighing stage
  • W2 is the switching target value from the medium weighing stage to the small weighing stage
  • W3 is the head. This is the final target value considering the value.
  • W12 is the supply weight switching value at the intermediate weighing stage calculated by W2—W1 (measuring target value at medium weighing)
  • W23 is the supply weight switching value at the small weighing stage calculated at W3—W2 (weighing at the small weighing stage) Target value).
  • Fig. 2 (a) for the sake of illustration, the force representing the measurement of each stage in a straight line, and in each stage except the first stage, it is unstable that is affected by the previous stage as described above.
  • the weighing at each stage except for the first stage included the mass values Wdl and Wd2 in the unstable time zone. It will be a thing.
  • Wd3 is the head drop.
  • the purpose of the present invention is to enable accurate and rapid multi-stage weighing, in which a large part of the material can be weighed by the first stage of large scale and It is necessary to enable accurate head compensation by small weighing. For this reason, in the system of the present invention, every time one batch weighing is completed, the supply mass switching values W12 and W23 corresponding to each stage except the first stage are set. By making corrections, the optimum supply mass switching values W12 and W23 can be reached step by step so that the optimum measurement for the above purpose can be achieved.
  • FIG. 3 is a block diagram of the main part of the system of the present invention
  • Fig. 4 is a schematic flowchart of the system of the present invention.
  • Figures 5 and 6 show the flow chart of the set value correction logic for small weighing and medium weighing.
  • the system of the present invention performs a batch of multi-stage weighing control step S1 and a set value correction step S2 for correcting the supply mass switching value at each subsequent stage (see FIG. 4).
  • This system is equipped with a weighing processor 20 for execution.
  • the weighing processing device 20 reads the weighing mass from the load cell 2 associated with the multi-stage weighing, and the opening degree control means 21 for controlling the opening degree of the slide shirt 11 and the weighing for measuring the actual weighing time at each stage. Based on the time measurement means 22 and the target weighing time, measured actual weighing time and various threshold values described later, a new supply for the next batch weighing is performed by correcting the supply mass switching value used most recently. And a set value correction means 23 for calculating the mass switching value.
  • the storage unit 24 switches the target measurement time, which is defined as the target lower limit value by the unstable time value at each stage obtained by experiments, and the supply mass at each stage.
  • the initial value, correction value for each batch, drop value, and other threshold values are stored.
  • the initial value of the supply mass switching value at each stage may be input by setting operation means (not shown).
  • the weighing processor 20 performs processing such as control of the degree of opening! / Of the slide shutter 11 and correction of set values by a CPU (not shown) and various programs.
  • the processing may be executed by individual devices each having a CPU.
  • the correction is based on the target weighing time stored in the storage unit for each stage of small weighing and medium weighing, the actual weighing time measured in multi-stage weighing, and the supply mass switching value used in the most recent weighing. And based on the following conditions: In the following, explanation will be given by exemplifying the predetermined values for the target weighing time and threshold.
  • the medium weighing target weighing time is 3 seconds and the small weighing target weighing time is 4 seconds. If both the actual weighing time for weighing is 0, even if the actual weighing time for small weighing is 4 seconds or more, if it is less than 10 seconds, the total weighing time is less than 10 seconds, so the supply weight for small weighing is switched. No correction is made to reduce the value to the target weighing time. If the actual weighing time for large weighing is 0 and the actual weighing time for small weighing has reached the target weighing time, the actual weighing time for medium weighing will be less than 6 seconds even if it is 3 seconds or longer. If there is, the total will be less than 10 seconds, so do not make a correction to reduce the supply weight switching value for medium weighing to the target weighing time! /.
  • the correction amount (mass value to be reduced with respect to the latest supply mass switching value) is intended to bring the actual weighing time closer to the target weighing time. In principle, it is calculated, but if the difference is larger than a predetermined threshold, a correction amount larger than the standard correction amount is adopted. In other words, when making corrections, use either the standard correction or a larger correction. In this case, the upper limit for standard correction can be the same as the threshold used in (2), and other values can be used. It ’s easy to select.
  • correction amount is exemplified as follows. In the following, as correction for small weighing, standard correction is corrected as 1, correction with large correction amount is corrected as 2, correction for increasing is described as correction 3, standard correction is corrected as medium measurement, and large correction is as 4 Is described as correction 5, and the correction to be increased is described as correction 6. In this example, the amount of corrections 3 and 6 to be increased is calculated using the same calculation formula as the standard correction, but other formulas may be used.
  • Correction amount of Correction 1 (Actual weighing time Target weighing time) * Correction coefficient a ' ⁇ ⁇ (Equation 1)
  • Correction amount of Correction 3 (Actual weighing time Target weighing time) * Correction factor a, ⁇ (Equation 3)
  • Correction amount of Correction 4 (Actual weighing time Target weighing time) * Correction factor b ⁇ ⁇ ⁇ (Equation 4)
  • Correction amount of Correction 5 Actual weighing time * Correction factor b, ⁇ (Formula 5)
  • Correction amount of Correction 6 (Actual measurement time Target measurement time) * Correction coefficient b, ⁇ (Equation 6)
  • correction coefficients a and b may be determined in advance based on the supply capacity per unit time. If the supply capacity for small weighing is 100 g / sec and the feeding capacity for medium weighing is 500 g / sec, and if the correction is performed n times in consideration of the condition (1), then small, medium
  • the correction factors a and b for weighing can be defined as 100 / n and 500 / n.
  • n is a value of 2 or more, preferably 5-30.
  • the basis for performing multiple corrections is due to variations in measurement accuracy of the system and hunting (disturbance due to disturbance). Variations due to weighing accuracy are due to variations in the actual weighing time due to measurement accuracy of the weighing time (data acquisition cycle, etc.) and due to variations in machine accuracy of the hopper 10 and slide shutter 11, etc. Experiments have confirmed that weighing errors of up to several times occur. In other words, for example, when weighing control is performed by reducing the supply mass switching value from 200 g to 190 g by 190 g, the actual weighing result is 180 There is a risk of becoming g. In addition, it is desirable to make multiple corrections in order to perform safer weighing in consideration of unpredictable situations such as hunting.
  • the correction amount of correction 2 (correction 5) above is applied when the actual measurement time is significantly different from the target measurement time. As can be seen from the calculation formula, As does not include the target weighing time. This is to allow a correction amount larger than the correction 1 (correction 4) that is performed when the actual weighing time approaches the target weighing time. Since the correction factor is determined on the assumption that correction is performed multiple times, even if the target weighing time is not included in the factor for calculating the correction amount, it can be adjusted to a safe correction amount.
  • the calculation formula is not limited to the above formula (correction amount of correction 2)> (correction amount of correction 1),
  • Correction amount of correction 1 (actual weighing time target weighing time) * correction coefficient al
  • Correction amount of correction 2 (actual weighing time target weighing time) * correction coefficient a2
  • Correction amount of correction 4 (actual weighing time target weighing time) * correction coefficient bl
  • Correction amount of correction 5 (actual weighing time target weighing time) * correction coefficient b2
  • FIG. 5 and FIG. 6 are flowcharts showing processing operations for correcting each set value of small weighing and medium weighing in the system of the present invention. These processing operations are performed by determining and selecting correction 1 to 3 (correction 4 to 6 for medium weighing) or no correction by checking the actual weighing time threshold. Hereinafter, description will be made sequentially.
  • the correction amount is obtained from the calculation formula for correction 1 (Equation 1) and the supply mass switching value is corrected.
  • the correction amount is obtained from the calculation formula for correction 3 (Equation 3) and the supply mass switching value is corrected.
  • the correction amount is obtained from the calculation formula for correction 4 (Equation 4) and the supply mass switching value is corrected.
  • the correction amount is obtained from the calculation formula for correction 6 (Equation 6) and the supply mass switching value is corrected.
  • the set value correction means 23 executes the algorithm for correcting the set value in a plurality of times so that the supply mass switching value at each stage approaches the target weighing time. Accurate and quick multi-step weighing can be performed safely and reliably.
  • the standard correction based on the difference between the actual weighing time and the target weighing time (correction 1, correction 3), and the standard correction when the actual weighing time deviates from the target weighing time by a predetermined threshold or more. Therefore, it is possible to execute either! / Or the difference between the correction (correction 2, correction 5) and so on, so that even if there is a large deviation, the optimization can be achieved at an early stage.

Description

明 細 書
材料計量システム
技術分野
[0001] 本発明は、ホツバより粉粒体等の材料を計量器に供給することによって、材料を一 定量ずつ計量する材料計量システムの改良に関するものである。
背景技術
[0002] 従来から、ホツバに貯留した材料を、ホッパ下部に設けたフラップダンパーまたはス ライドシャッターなどを開いて材料排出口から落下させ、ロードセルや差動トランス、 振動数方式による質量計測手段を設けた計量器で受け止めて、リアルタイムに質量 を計測しながら一定量に到達したときに材料排出を停止制御する 1バッチ計量方法 が知られている。
[0003] この質量計量による計量制御方法では、材料排出口と計量器との間に落差がある ため、質量計測手段で計量した質量が一定量に到達して材料排出口を閉じた後に も、計量器には、落下中の材料がさらに供給される。そのため、開口度合いや材料種 類などに応じた落差分の質量をあらかじめ計測しておき、その落差値を差し引いた 質量を目標値として計量制御する方法がとられて!/、る。
[0004] ところ力 実測の落差量は計量ごとに変動し、特に大きい開口のときに排出ロを閉 じると予測した落差値との誤差も大きくなる傾向にあるため、材料排出停止直前での 開口度合レ、をより小さくするようにした多段階計量が提案されて!/、る。
[0005] この多段階計量は、供給初期の段階では材料排出口の開口度合いを大きくして大 量の材料を供給し、ロードセルでリアルタイムに計量した質量にもとづ!/、て段階的に 開口度合いを小さくしてゆくもので、供給停止直前では開口度合いが小さいため落 差値による誤差はあまりない。したがって、この計量方法では、初期の大計量により 速レ、計量が実現でき、かつ最終の小計量により精度のよ V、計量を実現することがで きる。
[0006] この多段階計量を実施するシステムでは、各段階で目標である供給質量切替値を 設定値とし、各段階では供給量がこの設定値に到達したかどうかを計測し、到達した ら次段階に切り替える制御が行われている。
[0007] 次の特許文献には、供給量を大、中、小と段階的にした計量方法が開示されてい 特許文献 1:特公平 6— 12288号公報
発明の開示
発明が解決しょうとする課題
[0008] しかしながら、この種の多段階計量方法では、段階ごとに切替制御を行うことによる 次のような問題が生じるおそれがある。
[0009] 最後に落差量が発生するのと同様に、開口度合いを次段階へ切り替えたときにも、 前段階で供給した落差分の材料が浮遊しているが、切り替えた後の当該段階での計 量には、切替前の開口度合いによる落差分の材料と切替後の開口度合いによる材 料とが混在しながら落下する不安定な時間帯が表れる。ようするに、最初の段階を除 く各段階での計量は、切替初期の時間帯では前段階の影響を受けるため、当該段 階での単位時間あたりの落下量が一定になるまでに所定の時間を要する。
[0010] このような前段階からの影響を受ける不安定時間帯の途中で、さらに次の段階に切 り替えるような制御をすると、時間と計量との相関関係が予測できず計量の精度が悪 くなるおそれがある。特に、最終段階の不安定時間帯で供給を停止すると、落差によ つて生じる質量が予定して!/、た落差値と乖離してしまう。
[0011] したがって、正確に計量するためには最初の段階を除く各段階の計量時間は少な くとも、その不安定時間よりも大きな値に設定しておく必要がある一方で、より速く計 量するためには最初の段階の大計量を十分に長くする必要もあるため、正確かつ迅 速に計量するための各段階間の供給時間の配分調整が必要とされていた。
[0012] ところ力 S、このような各段階の計量時間はロードセルの計量による制御の結果得ら れるものであるため、各段階の割合 (配分)を、それらの計量時間で調整することはき わめて困難であり、全体の計量時間を短くしかつ正確に計量するための適切な段階 間の調整方法が望まれて!/、た。
[0013] 本発明は、このような事情を考慮して提案されたもので、その目的は、正確かつ迅 速に多段階計量が行える材料計量システムを提供することにある。また、適正化がで きるまでの計量においても、失敗のない安全確実な計量が行えるようにすることも目 的とする。
課題を解決するための手段
[0014] 上記目的を達成するために、請求項 1に記載の材料計量システムは、ホツバの材 料排出口より材料を計量器に供給することによって、材料を一定量ずつ計量する材 料計量システムにおいて、段階ごとに供給質量切替値を設け、質量計測手段を設け た計量器で計量した質量が供給質量切替値に到達するごとに次段階に移行して、 単位時間あたりの材料落下量を段階的に減少させながら 1バッチの材料を計量する 多段階計量を実施し、その 1バッチ計量の終了後に、各供給質量切替値を補正する ことによって、次に計量する 1バッチの全体計量時間を短縮するようにした材料の計 量システムであって、最初の段階を除く各段階の計量時間には、前段階からの移行 後の単位時間あたりの落下量が安定していない不安定時間を含み、その不安定時 間の時間値を目標下限値とした各段階の目標計量時間が記憶部に準備されており 、各段階の計量における実計量時間を計測する計量時間計測手段と、 1バッチ計量 が終了した後に、 目標計量時間と実計量時間とをもとに、所定のアルゴリズムによつ て、最初の段階を除く段階ごとの供給質量切替値を補正する設定値補正手段とを備 えている。
[0015] 請求項 2に記載の材料計量システムは、多段階計量は、材料を貯留したホツバの 材料排出口の開口度合いを絞り制御することによって、単位時間当たりの材料落下 量を減少させてレ、ることを特徴とする。
[0016] 請求項 3に記載の材料計量システムは、設定値補正手段は、複数回の補正により 各段階の供給質量切替値を最適化することを特徴とする。
[0017] 請求項 4に記載の材料計量システムは、設定値補正手段は、実計量時間と目標計 量時間との差を基準とした標準補正と、実計量時間が目標計量時間と所定の閾値以 上に乖離した場合における標準補正よりも大きい補正とのうちいずれかを実行できる ようにして!/、ることを特 ί毁とする。
発明の効果
[0018] 本発明の材料計量システムによれば、設定値補正手段が、 目標計量時間と実計量 時間と供給質量切替値とをもとに、所定のアルゴリズムによって、最初の段階を除く 段階ごとの供給質量切替値を補正するようにしているため、各段階の供給質量切替 値を目標計量時間に近づける補正ができ、迅速かつ正確に計量するための各段階 の供給質量切替値の適正化が図れる。
[0019] また、 目標計量時間に向けて複数回で補正する本発明によれば、段階的に少しず つ補正するので、適正化ができるまでの計量においても、失敗のない安全確実な計 が?丁える。
[0020] さらに、実計量時間と目標計量時間との差を基準とした標準補正と、実計量時間が 目標計量時間と所定の閾値以上に乖離した場合における、標準補正よりも大きい補 正とのうちいずれかを実行できるようにしたものでは、状況に応じた補正が行えるため 、適正化までの時間が短縮できる。
図面の簡単な説明
[0021] [図 1]多段階計量の流れを示す装置模式図で、(a)は大計量、(b)は中計量、(c)は 小計量の各段階、 (d)は小計量停止時の状態を示している。
[図 2]切替ポイントを説明する図で、 (a)はロードセルの計量質量と時間との関係をグ ラフ化したもの、(b)は切替時の不安定時間帯を説明するための図である。
[図 3]本発明システムの要部構成図である。
[図 4]本発明システムの概略の流れを示すフローチャートである。
[図 5]本発明システムの小計量設定 補正の動作を示すフローチャートである。
[図 6]本発明システムの中計量設定 補正の動作を示すフローチャートである。 符号の説明
[0022] 1 計量器
2 ロードセノレ
10 ホッパ
11 スライドシャッター(材料排出口)
20 計量処理装置
21 開口度合い制御手段
22 計量時間計測手段 23 設定値補正手段
24 記憶部
発明を実施するための最良の形態
[0023] 以下に、本発明の実施形態について、添付図面を参照しながら説明する。
実施例 1
[0024] 図 1は、本発明の材料計量システムに採用される多段階計量を示す概念図である 。ここに、供給機であるホッパ 10は、材料排出口にスライドシャッターを設けたものを 示して!/、る力 フラップダンパーを設けた構成であってもよ!/、。
[0025] 図 1において、 10は材料 Pを貯留したホッノ 、 11はホッパ 10の材料排出口に設け たスライドシャッター、 12は材料排出口の開口を制御するためのサーボシリンダー、 1 は質量計測手段(ロードセル) 2を備えた計量器である。なお、質量計測手段はロード セル 2に限られず、差動トランス、振動数方式によるものを用いてもよい。
[0026] 図 1は多段階計量の流れを模式的に示した図で、(a)、 (b)、 (c)はそれぞれ大計 量、中計量、小計量の各段階での材料供給の状態を示し、(d)は計量の停止時を示 している。
[0027] まず、材料供給の最初の段階では、スライドシャッター 11の開口度合!/、を大きくし て大容量で材料を投入し、その後は、予め設定された段階ごとの供給質量切替値に 到達するごとに開口度合いを小さくするようスライドシャッター 11を絞り制御して、供 給量 (単位時間あたりの材料落下量)を段階的に減じてゆく(図 1 (a)〜 (c) )。
[0028] 最終段階の小計量において目標値に到達すると、材料排出口を閉じる力 スライド シャッター 11と計量器 1との間には一定の落差があるため、図 1 (d)に示すように、ス ライドシャッター 11を閉じた直後には、空中には計量されていない材料が浮遊してお り、スライドシャッター 11を閉じた後でもロードセル 2による質量がカウントされる。この カウントされな V、浮遊材料の質量を落差量と!/、う。
[0029] したがって、小計量の供給を停止するための目標設定値は、最終的な目標値 (計 量値)より小計量終了時に生じる落差量を考慮した値を使用する必要がある。この落 差量は、材料、設備が同一でかつ小計量時の材料排出口の開口度合いが同じであ れば、誤差はあるがほぼ一定であることが経験的に得られているため、その実測値( 本明細書ではこの値を落差値と呼び落差量と区別する)を考慮した最終段階の設定 値を使用して正確な多段階計量を実施することができる。
[0030] 図 2は、多段階計量の各段階の切替ポイントを説明するための図で、(a)はロードセ ルの計量した質量と経過時間との関係をグラフ化したもの、(b)は切替時の不安定時 間帯を説明するために材料排出口の開口度合いと計量質量との関係を模式的に示 した図である。
[0031] 図 2 (a)において、 WOは最終の目標値、 W1は大計量段階から中計量段階への切 替目標値、 W2は中計量段階から小計量段階 の切替目標値、 W3は落差値を考 慮した最終目標値である。また、 W12は W2—W1で算出される中計量段階の供給 質量切替値(中計量における計量目標値)、 W23は W3— W2で算出される小計量 段階の供給質量切替値 (小計量における計量目標値)である。
[0032] 図 2 (a)においては図示の都合上、各段階の計量を直線的に表している力、最初の 段階を除く各段階では、上述したような前段階からの影響を受ける不安定時間帯を 含んでおり、実際には、図 2 (b)に示すように、最初の段階を除く各段階での計量に は、不安定時間帯での計量質量値 Wdl、 Wd2が含まれたものとなる。なお、 Wd3は 落差量である。
[0033] 本発明の目的は、正確かつ迅速に多段階計量が行えるようにすることであり、その ためには、最初の段階の大計量により材料の大部分を計量でき、かつ後続の中、小 計量により正確な落差補正ができるようにしなければならないが、そのために本発明 システムでは、 1バッチ計量が完了するごとに、最初の段階を除く各段階に対応した 供給質量切替値 W12、 W23の補正をすることによって、上記目的にそった最適な計 量ができるように、最適な供給質量切替値 W12、 W23に、段階的に到達できるように している。
[0034] 図 3は本発明システムの要部構成図で、図 4は本発明システムの概略フローチヤ一 トである。また、図 5、図 6には、小計量、中計量の設定値補正のロジックをフローチヤ ートに示している。
[0035] 本発明システムは、 1バッチの多段階計量制御ステップ S1と、その後の各段階の供 給質量切替値を補正する設定値補正ステップ S2とを行うもので(図 4参照)、これらを 実行するために本システムでは計量処理装置 20を備えて V、る。その計量処理装置 2 0は、多段階計量にともなうロードセル 2から計量質量を読み込んで、スライドシャツタ 一 11の開口度合いを制御する開口度合い制御手段 21と、各段階の実計量時間を 計測する計量時間計測手段 22と、後述する目標計量時間、計測された実計量時間 および種々の閾値などにもとづいて、直近に使用された供給質量切替値を補正する ことによって次バッチ計量のための新たな供給質量切替値を算出する設定値補正手 段 23とを備えている。
[0036] また、記憶部 24には、設定値補正をするために、実験等によって得られた各段階 での不安定時間値を目標下限値として規定した目標計量時間、各段階の供給質量 切替値の初期値、バッチごとの補正値、落差値およびその他の閾値などが保存され ている。各段階の供給質量切替値の初期値は、不図示の設定操作手段などによつ て入力できるようにすればよい。
[0037] なお、計量処理装置 20は、不図示の CPUや種々のプログラムによって、スライドシ ャッター 11の開口度合!/、の制御および設定値補正などの処理を行うものであるが、 制御と補正処理とを、それぞれに CPUを有した個別の装置で実行するようにしてもよ い。
[0038] ついで、供給質量切替値の補正の処理内容について説明する。
[0039] ここでは、大、中、小の 3段階計量を例示し、そのうちの中計量の供給質量切替値( 図 2 (a)の W23)と小計量の供給質量切替値(図 2 (a)の W12)を補正する処理につ いて説明する。また、大計量の供給質量切替値は、最終目標値 W3より中計量、小 計量の両供給質量切替値 W12、W23を差し引くことによって算出されるものである ため、これにつ!/、ては直接的な補正は行わな!/、。
[0040] 補正は、小計量、中計量の段階ごとに記憶部に保存された目標計量時間と、多段 階計量で計測された実計量時間と、その直近の計量で使用された供給質量切替値 とを使用して、次の条件にもとづいて行う。なお以下には、 目標計量時間、閾値に所 定の数値を例示して説明する。
[0041] (1)中計量、小計量の供給質量切替値に大きめの初期値を与えておき、補正処理ご とに、実計量時間を限りなく目標計量時間に近づけるように中計量、小計量の供給 質量切替値を減少補正する。
ただし、適正化が完了するまでの過程においても、安全で正確な計量が行えるよう に、 1回の補正で目標に到達させるのではなく複数回に分けて補正を行う。つまり、 目標計量時間に近づけるための供給質量切替値の補正をしても、実際の計量では 予測がはずれて実計量時間がずれてしまうことがある力 そのずれによって不安定な 切替が起こると、予定していた落差値とは異なる落差量が発生することにもなり、よつ て計量は失敗してしまう。特に、材料排出口 11の開口度合いの調整による場合、排 出能力や落差量が変動することが多レ、。
このような適正化までの過程における計量失敗を避けるため、計量ごとの補正処理 で供給質量切替値を大きく変動させるような補正は行わず、安全を考慮した段階的 な補正を行う。
[0042] (2)実計量時間が目標計量時間を超える場合であっても、供給質量切替値を目標 計量時間まで縮める必要のない場合、つまり(1)の例外がある。その例外処理の要 否は、各段階の実計量時間と閾値との比較にて判別する。
例えば、全体の計量時間を 10秒程度で完了できれば能力的に十分であるとすれ ば、中計量の目標計量時間を 3秒、小計量の目標計量時間を 4秒としたときに、大、 中計量の実計量時間がともに 0の場合は、小計量の実計量時間がたとえ 4秒以上で あっても、 10秒未満であれば、全体で 10秒未満となるため、小計量の供給質量切替 値を目標計量時間まで縮める補正はしない。また、大計量の実計量時間が 0で、小 計量の実計量時間が目標計量時間に到達している場合は、中計量の実計量時間が たとえ 3秒以上であっても、 6秒未満であれば、全体で 10秒未満となるため、中計量 の供給質量切替値を目標計量時間まで縮める補正はしな!/、。
[0043] (3)補正量 (直近の供給質量切替値に対して減じる質量値)は、実計量時間を目標 計量時間に近づけることを目的とするため、その差を基準とした標準補正量を算出す ることを原則とするが、その差が所定の閾値よりも大きい場合は、上記の標準補正量 よりも大きい補正量を採用する。つまり、補正をする場合には、標準補正とそれよりも 大きい補正の 2種類のいずれかによつて行う。なお、この場合の標準補正を行うため の上限値は、(2)で使用した閾値をそのまま使用することができるし、その他の値を 選定することあでさる。
[0044] (4)複数回の補正において、実計量時間が目標計量時間よりも下回ったときには 増加補正を行う。この補正は供給質量切替値を増加させる補正であるため、その補 正量は負の値となる。
[0045] (5)誤差を考慮して、 目標計量時間の上下限値を設けて、実計量時間がその上下 限値範囲内になれば、補正を停止する。
[0046] 補正量の算出式を次式に例示する。なお、以下には小計量の補正として、標準補 正を補正 1、補正量の大きい補正を補正 2、増加させる補正を補正 3と記述し、中計 量については標準補正を補正 4、大きい補正を補正 5、増加させる補正を補正 6と記 述する。なお、本例では増加させる補正 3、補正 6の補正量は、標準補正と同一の算 出式で算出しているが、他の式を採用してもよい。
[0047] 補正 1の補正量 = (実計量時間 目標計量時間) *補正係数 a ' · · (式 1)
補正 2の補正量 =実計量時間 *補正係数 & · · · (式 2)
補正 3の補正量 = (実計量時間 目標計量時間) *補正係数 a, · ·(式 3) 補正 4の補正量 = (実計量時間 目標計量時間) *補正係数 b, · ·(式 4) 補正 5の補正量 =実計量時間 *補正係数 b, · ·(式 5)
補正 6の補正量 = (実計量時間 目標計量時間) *補正係数 b, · ·(式 6) ここで補正係数 a、 bは、単位時間あたりの供給能力を基準としてあらかじめ定めれ ばよい。力、りに小計量での供給能力が 100g/sec、中計量での供給能力が 500g/ secとして、さらに(1)の条件を考慮して n回で補正を行うとすれば、小、中計量の各 補正係数 a、 bを 100/n、 500/nと定義することができる。ここで、 nには 2以上、好 ましくは 5〜30の値が採用される。
[0048] 複数回の補正を行う根拠は、システムの計量精度のバラツキとハンチング (外乱に よる乱調)とによる。計量精度によるバラツキは、計量時間の計測精度(データの取り 込みサイクルなど)による実計量時間のバラツキや、ホッパ 10やスライドシャッター 11 など供給機の機械精度によるバラツキによるもので、全体的に最大 2〜数倍の計量 誤差が発生することが実験にて確認されている。つまり例えば、供給質量切替値を 2 00gから 10g減じて 190gとして計量制御した場合、その計量の結果、実計量が 180 gとなってしまうおそれがある。さらに、ハンチングなど予測のつかない状況を考慮し て、より安全な計量を行うために、複数回の補正をすることが望ましい。
[0049] 上記の補正 2 (補正 5)の補正量は、実計量時間が目標計量時間と大きく乖離して いる場合に適用されるもので、その算出式からわかるように、算出式には要素として 目標計量時間を含んでいない。これは、補正量が実計量時間が目標計量時間に近 づいてきたときに行う補正 1 (補正 4)よりも大きい補正量を許容するためである。複数 回で補正をすることを前提として補正係数を定めているため、このように目標計量時 間を補正量算出の因子に含めないようにしても、安全な補正量に調整することができ
[0050] したがって、上記の算出式に限定されず、(補正 2の補正量) > (補正 1の補正量)、
(補正 5の補正量) > (補正 4の補正量)を満足させるために、次式のようにしてもよい
補正 1の補正量 = (実計量時間 目標計量時間) *補正係数 al
補正 2の補正量 = (実計量時間 目標計量時間) *補正係数 a2
(ここで、補正係数 al <補正係数 a2とする)
補正 4の補正量 = (実計量時間 目標計量時間) *補正係数 bl
補正 5の補正量 = (実計量時間 目標計量時間) *補正係数 b2
(ここで、補正係数 bl <補正係数 b2とする)
[0051] 図 5、図 6は、本発明システムの小計量、中計量の各設定値補正の処理動作を示 すフローチャートである。これらの処理動作は、実計量時間の閾値チェックなどにより 、補正 1〜3 (中計量の場合は補正 4〜6)または補正なしを判断、選択するものであ る。以下、順次説明する。
[0052] 小計量の設定値補正では、上記(2)の条件を考慮して、次の(a)、 (b)の 2つに場 合分けして補正を行う。なおここでは、補正 1、 2を判別するための実計量時間の閾 値として 10秒を採用する。また補正の要否を判別するための閾値としては、上記(5) の条件を考慮して、上下限値(目標計量時間土 を採用することが望ましい。つまり 、実計量時間が上下限値範囲内であれば、補正不要とすればよい。
[0053] (a)大計量、中計量の実計量時間がともに 0の場合(図 5中のステップ 101〜; 105) 小計量の実計量時間 < 10のときは、供給質量切替値を補正しない。 小計量の実計量時間≥ 10のときは、補正量を補正 2の算出式 (式 2)より求めて供 給質量切替値を補正する。
[0054] (b) (a)以外の場合(図 5中のステップ 101、 102、 106— 1 12)
小計量の実計量時間≥ 10のときは、補正量を補正 2の算出式 (式 2)より求めて供 給質量切替値を補正する。
目標計量時間上限値 <小計量の実計量時間 < 10のときは、補正量を補正 1の算 出式 (式 1)より求めて供給質量切替値を補正する。
小計量の実計量時間が目標計量時間上下限値範囲内のときは、供給質量切替値 を補正しない。
小計量の実計量時間 <目標計量時間下限値のときは、補正量を補正 3の算出式( 式 3)より求めて供給質量切替値を補正する。
[0055] また、中計量の設定 補正では、上記(2)の条件を考慮して、次の(c)、 (d)の 2つ に場合分けして補正を行う。なおここでは、補正 3、 4を判別するための実計量時間 の閾値として 6秒を採用する。また、補正の要否を判別するための閾値としては、上 記(5)の条件を考慮して、上下限値(目標計量時間 ± /3 )を採用することが望ましい 。つまり、実計量時間が上下限値範囲内であれば、補正不要とすればよい。
[0056] (c)大計量の実計量時間 = 0、かつ小計量の実計量時間≤目標計量時間の場合( 図 6中のステップ 20;!〜 205)
中計量の実計量時間 < 6のときは、供給質量切替値を補正しない。
中計量の実計量時間≥ 6のときは、補正量を補正 5の算出式 (式 5)より求めて供給 質量切替値を補正する。
[0057] (d) (c)以外の場合(図 6中のステップ 201、 202、 206— 212)
中計量の実計量時間≥ 6のときは、補正量を補正 5の算出式 (式 5)より求めて供給 質量切替値を補正する。
目標計量時間上限値 <中計量の実計量時間 < 6のときは、補正量を補正 4の算出 式 (式 4)より求めて供給質量切替値を補正する。
中計量の実計量時間が目標計量時間上下限値範囲内のときは、供給質量切替値 を補正しない。
中計量の実計量時間 <目標計量時間下限値のときは、補正量を補正 6の算出式( 式 6)より求めて供給質量切替値を補正する。
[0058] 小計量、中計量の上記処理において、ともに補正なしとなつた場合、供給質量切替 値の適正化が図れたものと判断して、その供給質量切替値でもって以降の多段階計 量を実施する。なお、適正化が完了すれば設定値補正を実行する必要はないが、計 量時間の計測誤差がない限り上記処理を行っても供給質量切替値は一定するため
、実 fiするようにしてあよレヽ。
[0059] 以上のように、設定値補正手段 23は、各段階の供給質量切替値を目標計量時間 に近づけるように、複数回に分けて設定値補正をするアルゴリズムを実行しているの で、正確かつ迅速な多段階計量が安全で確実に行える。
[0060] また、実計量時間と目標計量時間との差を基準とした標準補正 (補正 1、補正 3)と、 実計量時間が目標計量時間と所定の閾値以上に乖離した場合における、標準補正 よりも大き!/、補正(補正 2、補正 5)とのうち!/、ずれかを実行できるようにして!/、るので、 大きく乖離している場合でも早期に適正化が図れる。

Claims

請求の範囲
[1] ホツバの材料排出口より材料を計量器に供給することによって、材料を一定量ずつ 計量する材料計量システムにおいて、段階ごとに供給質量切替値を設け、質量計測 手段を設けた計量器で計量した質量が該供給質量切替値に到達するごとに次段階 に移行して、単位時間あたりの材料落下量を段階的に減少させながら 1バッチの材 料を計量する多段階計量を実施し、その 1バッチ計量の終了後に、上記各供給質量 切替値を補正することによって、次に計量する 1バッチの全体計量時間を短縮するよ うにした材料の計量システムであって、
最初の段階を除く上記各段階の計量時間には、前段階からの移行後の単位間あ たりの落下量が安定していない不安定時間を含み、その不安定時間の時間値を目 標下限値とした各段階の目標計量時間が記憶部に準備されており、
上記各段階の計量における実計量時間を計測する計量時間計測手段と、
1バッチ計量が終了した後に、上記目標計量時間と上記実計量時間とをもとに、所 定のアルゴリズムによって、最初の段階を除く上記段階ごとの供給質量切替値を補 正する設定値補正手段とを備えていることを特徴とする材料計量システム。
[2] 請求項 1において、
上記多段階計量は、材料を貯留したホツバの材料排出口の開口度合 V、を絞り制御 することによって、単位時間当たりの材料落下量を減少させていることを特徴とする材 料計量システム。
[3] 請求項 1または 2において、
上記設定値補正手段は、複数回の補正により上記各段階の供給質量切替値を最 適化することを特徴とする材料計量システム。
[4] 請求項;!〜 3のいずれかにおいて、
上記設定値補正手段は、上記実計量時間と上記目標計量時間との差を基準とした 標準補正と、上記実計量時間が上記目標計量時間と所定の閾値以上に乖離した場 合における上記標準補正よりも大きい補正とのうちいずれかを実行できるようにして V、ることを特徴とする材料計量システム。
PCT/JP2007/072175 2006-11-17 2007-11-15 Système de mesure de matériau WO2008059920A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800426197A CN101606046B (zh) 2006-11-17 2007-11-15 材料计量系统
US12/312,557 US8356729B2 (en) 2006-11-17 2007-11-15 Material metering system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006310961A JP5124126B2 (ja) 2006-11-17 2006-11-17 材料計量システム
JP2006-310961 2006-11-17

Publications (1)

Publication Number Publication Date
WO2008059920A1 true WO2008059920A1 (fr) 2008-05-22

Family

ID=39401724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072175 WO2008059920A1 (fr) 2006-11-17 2007-11-15 Système de mesure de matériau

Country Status (4)

Country Link
US (1) US8356729B2 (ja)
JP (1) JP5124126B2 (ja)
CN (1) CN101606046B (ja)
WO (1) WO2008059920A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063643A (ja) * 2008-09-11 2010-03-25 Konica Minolta Technoproducts Co Ltd 洗米装置
JP4860777B1 (ja) * 2011-04-28 2012-01-25 三興コンピューターソフトウェア株式会社 粉体質量計量装置の計量制御方法
CN107444892B (zh) * 2016-05-31 2022-04-26 藤原酿造机械株式会社 酱油原料的计量供给装置及酱油原料的计量供给方法
JP2019006438A (ja) * 2017-06-22 2019-01-17 株式会社高垣製作所 バタフライバルブ制御システム及びバタフライバルブ制御方法
CN108955850B (zh) * 2018-07-06 2019-08-27 川田机械制造(上海)有限公司 用于计量机的自动获取计量预设值的方法
US10948336B2 (en) * 2018-08-30 2021-03-16 A. J. Antunes & Co. Automated condiment dispensing system with precisely controlled dispensed quantities

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082818A (ja) * 1983-10-13 1985-05-11 Mitsubishi Chem Ind Ltd 粉粒体の自動計量方法
JPS63279120A (ja) * 1987-05-11 1988-11-16 Kamachiyou Seiko Kk 計量機の供給量制御装置
JPH03248024A (ja) * 1990-02-26 1991-11-06 Yamato Scale Co Ltd 定量秤の計量制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2147111B (en) * 1983-09-28 1987-08-05 Yamato Scale Co Ltd Combination weighing with volumetric metering
CN1028182C (zh) * 1992-04-04 1995-04-12 中国石油化工总公司 一种料斗秤称量的控制方法及其设备
JPH0612288A (ja) 1992-06-29 1994-01-21 Hitachi Ltd 情報処理システム及びその監視方法
JP3248024B2 (ja) * 1993-04-20 2002-01-21 トキコ株式会社 渦流量計
US5423455A (en) * 1993-06-25 1995-06-13 Acrison, Inc. Materials feeding system with level sensing probe and method for automatic bulk density determination
EP1217343A1 (en) * 1994-08-26 2002-06-26 Anritsu Corporation Combination weighing apparatus
US6161733A (en) * 1998-03-30 2000-12-19 King; Kenyon M. Shutter valve dispenser
JP3706331B2 (ja) * 2001-11-06 2005-10-12 大和製衡株式会社 粉粒体用の容積式フィーダ及び粉粒体組合せ秤
DE10222167A1 (de) * 2002-05-20 2003-12-04 Generis Gmbh Vorrichtung zum Zuführen von Fluiden

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082818A (ja) * 1983-10-13 1985-05-11 Mitsubishi Chem Ind Ltd 粉粒体の自動計量方法
JPS63279120A (ja) * 1987-05-11 1988-11-16 Kamachiyou Seiko Kk 計量機の供給量制御装置
JPH03248024A (ja) * 1990-02-26 1991-11-06 Yamato Scale Co Ltd 定量秤の計量制御装置

Also Published As

Publication number Publication date
CN101606046A (zh) 2009-12-16
CN101606046B (zh) 2013-11-27
US20100051643A1 (en) 2010-03-04
US8356729B2 (en) 2013-01-22
JP5124126B2 (ja) 2013-01-23
JP2008128685A (ja) 2008-06-05

Similar Documents

Publication Publication Date Title
WO2008059920A1 (fr) Système de mesure de matériau
US10317269B2 (en) Flow rate verification unit
US20120116596A1 (en) Mass flow controller
KR100513949B1 (ko) 물질 전달 동안 송출되는 물질의 양을 제어하는 방법
JP2006264755A (ja) 流量計式液体充填装置
KR102126880B1 (ko) 실압 제어 시스템 및 방법
US9671120B2 (en) Thermal source instrument controlling device and air-conditioning system
IL149417A (en) Method for controlling an amount of material delivered during a material transfer
CN110949706B (zh) 自动定量包装秤的工作参数自动整定优化方法
JP2007047000A (ja) 粉粒体材料の計量方法
CN113181799A (zh) 一种石灰石浆液制备系统和控制方法
US20200198954A1 (en) Method for filling containers with a filling product
JP2007047120A (ja) 重量式充填装置
CN105836421A (zh) 一种多级固体输送设备联动控制方法
JP4613437B2 (ja) ベルレス高炉用並列バンカの測定重量補正に適用する影響係数の補正方法
JP4628573B2 (ja) 粉粒体の計量装置
US8424572B2 (en) Method for controlling the transfer of materials
CN108507353B (zh) 带式球团焙烧机的料厚调节方法
JP2012219343A (ja) 秤量値補正方法、微粉炭吹込量推定方法、及び微粉炭吹込量推定装置
US8735746B2 (en) Weighing apparatus and method
JP2011051624A (ja) 液体の定量充填方法および装置
CN114018382B (zh) 一种提高配料用失重秤称量精度的控制方法
JPS6082818A (ja) 粉粒体の自動計量方法
CN114082325A (zh) 一种石灰石浆液制备系统和控制方法
JPH03248024A (ja) 定量秤の計量制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780042619.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831905

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12312557

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07831905

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)