WO2008056726A1 - Glp-1 derivative and use thereof - Google Patents

Glp-1 derivative and use thereof Download PDF

Info

Publication number
WO2008056726A1
WO2008056726A1 PCT/JP2007/071687 JP2007071687W WO2008056726A1 WO 2008056726 A1 WO2008056726 A1 WO 2008056726A1 JP 2007071687 W JP2007071687 W JP 2007071687W WO 2008056726 A1 WO2008056726 A1 WO 2008056726A1
Authority
WO
WIPO (PCT)
Prior art keywords
glp
derivative
lys
amino acid
peptide
Prior art date
Application number
PCT/JP2007/071687
Other languages
French (fr)
Japanese (ja)
Inventor
Takahito Jomori
Yuji Hayashi
Mitsuhiro Makino
Original Assignee
Sanwa Kagaku Kenkyusho Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwa Kagaku Kenkyusho Co., Ltd. filed Critical Sanwa Kagaku Kenkyusho Co., Ltd.
Publication of WO2008056726A1 publication Critical patent/WO2008056726A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/605Glucagons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a human glucagon-like peptide-1 (GL P-1; Glucagon like peptide-1) known as an incretin hormone. Specifically, the present invention has a high absorbability from mucous membranes. It is an invention of a novel derivative of GLP-1.
  • GLP-1 is known as an incretin hormone that is secreted from the gastrointestinal tract by food intake and works on the viscera to stimulate insulin secretion.
  • GIP Gas trie lnhioitory polypeptide or 7 lucose-depenaent insulinotropic polypeptide
  • GIP has the same effect: Does the type 2 diabetes patient lack this incretin effect compared to healthy individuals? It is also suggested that the disorder is one of the causes of hyperglycemia, for example, blood GLP-1 levels are decreased in patients with type 2 diabetes and GIP is different from that of healthy individuals.
  • Incretin hormone administration test for type 2 diabetic patients showed that GLP-1 administration did not show any difference in insulin secretion promoting response compared to healthy subjects, but GIP administration As a result, it has been reported that the response to GLP-1 is maintained in diabetic patients.
  • the insulin secretion action of GLP-1 is characterized by glucose level dependency that insulin secretion is not stimulated when blood glucose level is 110 mg / dl or less, and insulin is secreted only when blood glucose level is higher than that. Is to represent. That is, administration of GLP-1 promotes insulin secretion according to blood glucose level, and insulin secretion does not occur when blood glucose level is below normal. Therefore, when GLP-1 is used, there are no significant concerns about hypoglycemia, and the great clinical merit is not to exhaust the viscera due to excessive insulin secretion.
  • sulfonylurea which has been used mainly for the treatment of type 2 diabetes, continuously closes ATP-sensitive K + channels and promotes insulin secretion.
  • GLP-1 the active body of GLP-1 is a polypeptide of GLP-1 (7-36) amide or GLP_1 (7_37).
  • GLP-1 is taken orally, it is digested and degraded by digestive enzymes in the digestive tract. Is not absorbed. Therefore, in clinical practice, intravenous injection or subcutaneous injection by infusion is being attempted.
  • GLP-1 is also degraded by dipeptidyl peptidase IV (DPPIV) present in blood and tissues, and the in vivo half-life is known to be very short; 2 to 2 minutes. These are the bottlenecks for clinical application.
  • DPPIV dipeptidyl peptidase IV
  • Dipeptidyl peptidase IV known as an enzyme that degrades GLP-1, is widely distributed in the kidney, liver, small intestine, salivary gland, various connective tissues, and other body fluids such as blood, urine, saliva, and nasal passages. It is becoming clear that it also exists in the mucosa.
  • Type GLP-1 injection (development name Liraglutide), or GLP-1 derivative with long-lived half-life that binds albumin in vivo (development number CJC-1131; Diabetes 52 (3) : 751_759 (2003))
  • development number CJC-1131 development number CJC-1131; Diabetes 52 (3) : 751_759 (2003)
  • synthetic exendin-4 injection product name
  • GLP-1 is widely used as a treatment for diabetes.
  • administration routes other than injection are desirable.
  • WO2004 / 037859 the present inventors increase GLP-1 mucosal absorption including nasal mucosa by directly adding several arginine or lysine to the C-terminus of GLP-1. I found out.
  • WO2001 / 004156 discloses [Gly 8 ] -GLP-1 (7_36)-(Lys) -NH.
  • Patent Literature l WO2004 / 037859
  • Patent Document 2 WO2001 / 004156
  • Non-patent literature l Diabetologia 41: 271-278 (1998)
  • Non-Patent Document 2 Biochem 40: 2860-2869 (2001)
  • Non-Patent Document 3 Diabetes 52 (3): 751_759 (2003)
  • GLP-1 Absorption of GLP-1 from the mucosa is much less efficient than injection due to low membrane permeability and degradation at the site of absorption.
  • the present inventors increased mucosal absorption of GLP-1 derivatives by directly adding several arginine (A rg) or lysine (Lys) to the C-terminus of GLP-1. I found out.
  • the sequence added to the C-terminal side is a structure in which lysine is continuous.
  • (Lys) n-Arg (n is an integer of 4 to 8, Arg is a carboxylic acid form) is added to the C-terminus of a peptide having a GLP-1 activity.
  • the present invention comprises GLP-7-35) or GLP-7-36) amino acid sequences, or a sequence having 85% or more homology with those amino acid sequences, and A peptide in which (Lys) n-Arg (n is an integer of 4 to 8, Arg is a carboxylic acid form) is added to the C-terminus of the peptide having GLP-1 activity.
  • alanine (Ala) at position 8 of natural GLP-1 is converted to serine (Ser) or glycine (G1 y ) Is preferred.
  • trypsin resistance can be achieved by substituting lysine at position 26 with glutamine (Gin) and lysine at position 34 with asparagine (Asn) or aspartate (Asp).
  • the number n of lysine residues added to the C-terminal is preferably 4 to 6, and most preferably 5.
  • the most preferred GLP-1 derivative of the present invention is represented by [Ser 8 ] -GLP-l (7-35)-(Lys) -Arg (Arg is a carboxylic acid form).
  • the present invention also relates to a pharmaceutical composition comprising the GLP-1 derivative of the present invention as an active ingredient.
  • the pharmaceutical composition of the present invention is suitable for transmucosal administration, particularly nasal administration.
  • the pharmaceutical composition of the present invention can be used for the treatment of diabetes, the treatment of obesity, the suppression of appetite, or the suppression of heart disease.
  • the peptide of the present invention can be used for producing a therapeutic agent for diabetes, obesity or eating disorders.
  • the GLP-1 derivative of the present invention has a continuous structure of lysine and / or arginine on the C-terminal side described in WO2004 / 037859, which is not limited to natural GLP-1. It has a much higher mucosal absorption rate than some GLP-1 derivatives. Therefore, the GLP-1 derivative of the present invention greatly enhances the possibility of clinical application of a mucosal absorption type GLP-1 preparation that is easy to administer and is not painful in place of conventional injections. It is considered to be very useful for improving the quality of life of patients, obese patients, and patients with heart disease.
  • the GLP-1 derivative of the present invention has an added lysine moiety that is readily cleaved in blood immediately after being decomposed by a protease and is present in a form close to that of natural GLP-1.
  • the sex is also considered extremely low.
  • GLP-1 (7-36) is His-Ala-Glu-Gly-Thr-Phe_Thr_Ser_Asp_Val_Ser_Ser_Tyr_Leu_Glu_Gly_Gln_Ala_Ala_Lys_Glu_Phe_Ile_Ala-Trp-Leu-Va ⁇ Lys-Gly-Aly Lys-Gly-Aly [Ser 8 ] indicates that the second, that is, 8-position alanine in the sequence is converted to serine, and is synonymous with 8S.
  • the GLP-1 derivative it is possible to take the form of either an amide form in which the C-terminus of the amino acid is amidated, an amidated form! /, Na! /, Or a carboxylic acid form! / is there.
  • the power of natural GLP-1 is an amide.
  • the GLP-1 derivative of the present invention is a carboxylic acid.
  • -NH represents an amide form
  • -COOH represents a carboxylic acid form.
  • the present invention is the first example showing that the effect of transmucosal administration is higher when the carboxylate of the amino acid of the GLP-1 derivative is carboxylic acid than when it is amide.
  • the GLP-1 derivative of the present invention lacks GLP-K7-35) or GLP-K7-36) amino acid sequence, or one or several amino acids thereof.
  • (Lys) n — Arg (n is an integer from 4 to 8, Arg is a carboxylic acid form) is added to the C-terminus of a peptide having a lost, substituted and / or added sequence and having GLP-1 activity.
  • Peptide is an integer from 4 to 8
  • GLP-1 mutants are not lost even if some amino acids of the native GLP-1 peptide are deleted, substituted and / or added. is there.
  • Such a GLP-1 variant can be expressed in another way! /, From a sequence having 85% or more homology with the amino acid sequence of GLP-K7-35) or GLP-K7-36). And can be expressed as a peptide having GLP-1 activity.
  • Many of these natural GLP-1 peptide variants are It is technical common sense that there are numbers. Specifically, alanine at position 8 may be substituted with serine or glycine, which adds resistance to dipeptidyl peptidase IV.
  • lysine at position 26 may be substituted with glutamine, and lysine at position 34 may be substituted with asparagine or aspartic acid.
  • parin at position 16, serine at position 17, serine at position 18, glycine at position 22, glutamic acid at position 27, lysine at position 34, arginine at position 36 can each be substituted with alanine, and at the same time at least two can be substituted with alanine. It has been.
  • GLP-1 mutants can be exemplified as follows based on the sequence of GLP-K7-35) or GLP-K7-36).
  • GLP-K7-35) or GLP-K7-36) substitute for serine or glycine at position 8, substitute for glutamine at position 26, substitute for asparagine or aspartate at position 34, and these 8 A combination of two or more of the substitutions at positions 26, 34, and further, a substitute for alanine at position 16, a substitute for alanine at position 17, a substitute for alanine at position 18 , Substitution to alanine at position 22, substitution to alanine at position 27, substitution to alanine at position 34, substitution to alanine at position 36, and substitution from alanine at positions 16 to 36 A combination of two replacements.
  • the GLP-1 derivative of the present invention can be produced in the same manner as in WO2004 / 037859 by chemical synthesis or gene recombination techniques.
  • the principles of chemical synthesis of polypeptides are well known in the art, and general texts in this area can be consulted as follows: Dugas ⁇ ⁇ and Penney C, Bioorganic (chemistry (1981) springer- Verlag, New York, 54-92 shells, f row ;, m odd 430A heptad synthesizer (Applied Biosystems Inc, 850 Lincoln Center Drive, Foster City CA 94404) and a solid phase using a synthesis cycle supplied by PE-Applied Biosystems.
  • the peptides of the present invention can be synthesized by methods Boc amino acids and other reagents can be purchased from Applied Biosystems and other drug suppliers.
  • a method for producing the peptide of the present invention by a gene recombination technique is as follows.
  • GLP-1 DNA can be obtained by total synthesis or by modification of DNA encoded by a larger natural glucagon.
  • the DNA sequence encoding the prebloglucagon is shown in Lund et al. [Proc Natl Acad Sci USA 79: 345-349 (1982)]. And can be used for the production of the compounds of the present invention.
  • Methods for constructing synthetic genes are well known in the art, see Brown et al., Methods in Enzymology, Academic Press, NY Volume 68, pages 109-151.
  • a DNA sequence encoding the peptide of the present invention is designed based on the amino acid sequence, and Model 3400 DNA synthesizer or ABI3900 high throughput nucleus' acid synthesizer (Applied Biosystems Inc, 850 Lincoln Center Drive, Foster City CA 94 404)
  • a DNA having the sequence itself can be produced using a normal DNA synthesizer such as.
  • the DNA used for the production of the GLP-1 derivative of the present invention has a device that increases the expression level and stably accumulates the product in the host, a device that facilitates purification after production, or a fusion tank. It can be produced as ⁇ and can be devised to easily cut out the GLP-1 derivative.
  • the target GLP-1 derivative can be obtained by performing purification using a fused protein and then cleaving with a specific protease.
  • the GLP-1 derivative gene prepared as described above is inserted into an appropriate recombinant DNA expression vector using an appropriate restriction endonuclease according to a common sense technique in this field.
  • an appropriate restriction endonuclease for the effective expression method of GLP-1 derivative peptides at that time and various expression vectors that can be used for transformation in prokaryotic cells and eukaryotic cells, general methods in this region can be referred to. (Maniatis et al. (1989) Molecular Cloning; A Laboratory Manual, Cold Springs Harbor Laboratory Press, NY Volumes 1-3 and The Promega Biological Research Products Catalog and The Stratagene Cloning Systems Catalog).
  • Host cells can be either eukaryotic cells or prokaryotic cells! /. Techniques for transforming cells are well known in the art and can be found in general citations such as Maniatis et al. Prokaryotic host cells are generally more Produces protein at a high rate and is easier to culture. Proteins expressed in high level bacterial expression systems characteristically aggregate into particles or inclusion bodies that contain high levels of overexpressed protein. Such typically aggregated proteins are solubilized, denatured and refolded using techniques well known in the art. See Protein Folding, Kreuger et al. (1990) pages 136-142, edited by Gierasch and King, American Association for Advancement of science Publication.
  • the compound of the present invention can be formulated into a pharmaceutical composition by combining with a pharmaceutically acceptable carrier, diluent, excipient or absorption enhancer.
  • Absorption enhancers include, for example, chelating agents (eg, EDTA, citrate, salicylate), surfactants (eg, sodium dodecyl sulfate (SDS)), non-surfactants (eg, unsaturated cyclic urea), And bile acid salts (for example, sodium deoxycholate, sodium taurocholate).
  • chelating agents eg, EDTA, citrate, salicylate
  • surfactants eg, sodium dodecyl sulfate (SDS)
  • non-surfactants eg, unsaturated cyclic urea
  • bile acid salts for example, sodium deoxycholate, sodium taurocholate.
  • Such a pharmaceutical composition can be produced by a well-known method in the pharmaceutical field.
  • these pharmaceutical compositions are suitable
  • compositions of the invention can be formulated using methods well known in the art to provide the patient with a rapid, sustained or delayed release of the active ingredient after administration.
  • suitable macromolecules eg, polyesters, polyamino acids, polybutyrolipidone, ethylene vinyl acetate, methylcellulose, carboxymethylcellulose and protamine sulfate
  • polyesters polyamino acids, hydrated gels, polylactic acid, polydaricholic acid, lactic acid
  • the peptide of the present invention is complexed or adsorbed with the peptide of the present invention to produce a controlled release formulation be able to.
  • microcapsules manufactured by coacervation technology or interfacial polymerization
  • microcapsules made of hydroxymethylcellulose or gelatin colloidal drug delivery systems (for example, Ribosome, albumin microsphere, microemulsion, nanoparticle and nanocapsule) or the microemulsion can encapsulate the peptide of the present invention.
  • the GLP-1 derivative of the present invention is effective for various diseases for which a GLP-1 preparation is effective. That is
  • the GLP-1 derivative of the present invention can be used, for example, for the treatment of non-insulin dependent diabetes, the treatment of insulin dependent diabetes, the treatment of obesity, the suppression of appetite, or the suppression of heart disease. .
  • the dosage of the GLP-1 derivative of the present invention is desirably determined by those skilled in the art for individual patients with various diseases. In general, however, the dosage will be in the range of 1 ⁇ g to 1 mg per kg of body weight, preferably in the range of 10 ⁇ g to 100 ⁇ g per kg of body weight. It can be used immediately before meals and administered once to three or more times a day.
  • the GLP-1 derivative was synthesized by solid phase synthesis using a Model 433A peptide synthesizer (Applied Biosystems, Foster City, Calif.), Purified by HPLC, and the synthesized product was confirmed by mass spectrum. Purity was over 95% for the majority, and was tested in vitro and in vivo. The synthesized compounds and their abbreviations are shown below.
  • GLP-1 derivative of the present invention the peptides of Production Examples 1 and 2 were synthesized.
  • the GLP-1 derivative of the present invention can be synthesized based on the GLP-1 mutant described in paragraphs 18 and 19.
  • Comparative Production Examples 3 to 6 are peptides and their substitutes described in WO2004 / 037859, and Comparative Production Examples 7 to 10 are described in WO2001 / 004156. Peptides and their substitutes
  • Test Examples 1 In 1 to 16, various GLP-1 derivatives were administered nasally to mice, and oral glucose tolerance test (OGTT) was conducted to investigate changes in blood glucose levels after oral loading with Darcos. The efficacy was compared.
  • OGTT oral glucose tolerance test
  • GLP-1 derivatives were prepared in ImM with distilled water and stocked at _80 ° C. At the time of the test, it was diluted to a predetermined concentration with physiological saline and used. Using a micropipette, 20 ⁇ 1 GLP-1 derivative solution is slowly released directly from the tip of the tip directly into the mouse's nose using a micropipette. It was aspirated from the nose. Five minutes after the nasal administration of the GLP-1 derivative, a 10% glucose solution was orally administered with a sonde at a rate of 10 ml / kg.
  • blood sample 1 was squeezed from the wound where the tip of the tail was excised over time immediately after the test and after glucose administration, using a small blood glucose meter (Daltest Neo, Sanwa Chemical Laboratory Co., Ltd.). Measured. The area under the curve (AUC 0-20 minutes or 0-120 minutes) from the blood glucose level before administration in each GLP-1 derivative administration group was calculated.
  • GLP-1 derivative 8S-GLP-l (7_35) + 5KR-COOH from Production Example 1 and GLP-1 derivative 8S-GLP-1 (7_35) + 5KR-NH from Comparative Production Example 3 were each 1 nmol / Administration by mouse and comparison of efficacy.
  • As a control group 1 and 10 nmol / mouse of GLP-K7-3 6) -NH, which is a natural GLP-1 of Comparative Production Example 1, were set.
  • the GLP-1 derivative of Comparative Production Example 3 is one of the most active GLP-1 derivatives in W 02004/037859.
  • GLP-1 derivative 8S-GLP-l (7_36) + 4R-COOH from Comparative Production Example 5 and GLP-1 derivative 8S-GLP-1 (7_36) + 4R-NH from Comparative Production Example 6 are each 1 nmol. Administered with / mouse and compared efficacy. As a control group, 1 and 10 nmol / mouse of GLP-1 (7-36) _NH of Comparative Production Example 1 were set.
  • the GLP-1 derivative of Comparative Production Example 6 is one of the most active GLP-1 derivatives in WO2004 / 037859, and Comparative Production Example 5 is its C-terminal carboxylic acid form.
  • Test Example 1 3 Here, 8S-GLP-l (7-35) + 5KR-COOH and 8S-GLP-l (7-36) + 4R-COOH, which were highly active in Test Example 1 1 and Test Example 1 2, respectively Administration was performed at 0 ⁇ 3, 1 and 3 nmol / mouse to compare the efficacy. As a control group, 10 nmol / mouse of GLP-1 (7-36) _NH was set.
  • the GLP-1 derivative of Comparative Production Example 8 is the 8-position serine of the GLP-1 derivative described in WO2001 / 004156, and Comparative Production Example 7 is its C-terminal carboxylic acid form.
  • GLP-1 derivative 8S-GLP-l (7_35) + 5KR-COOH from Production Example 1 and GLP-1 derivative 8G-GLP-1 (7_36) + 6K-NH from Comparative Production Example 10 are 0.3 and 1 respectively. And 3 nmol / mouse to compare the efficacy.
  • OOH was 1.6 nmol / mouse, 8G-GLP-1 (7_36) + 6K-NH power 9 nmol / mouse, and the ratio was 3.1 times.
  • GLP-1 derivatives were administered intranasally to mice, and their blood kinetics and absorption rate were examined.
  • the administered GLP-1 derivative was 8S-GLP-l (7_35) + 5KR-COOH of Production Example 1, and was administered at 30 and lOOnmol / kg.
  • natural GLP_1 (7_36) -NH from Comparative Production Example 1 and GLP-1 derivative 8S-GLP-1 (7-36) _NH from Comparative Production Example 2 were administered at 100 and 300 ⁇ mol / kg, respectively. .
  • mice were ddY mice (7 weeks, male), and 100 1 was collected from the orbital venous plexus using a heparin-treated glass capillary immediately before nasal administration of the GLP-1 derivative.
  • the blood GLP-1 concentration was defined as the value at 0 minutes after administration.
  • the mice were lightly anesthetized with ether, and 20 1 GLP-1 derivative solution was slowly released from the tip of the pipette tip directly into the nose of the mouse using a micropipette. Thereafter, 100 blood samples were collected from the orbital venous plexus over time, and plasma was obtained by centrifuge separation. Plasma GLP-1 concentration was measured using the GLP-l (total) RIA kit (LINCO, Ca t No. GLP1T-36HK) to determine the absorption rate.
  • the absorption rate indicates the absorption rate by nasal administration of each GLP-1 derivative when the absorption when each GLP-1 derivative was intravenously administered was taken as 100%.
  • Table 1 shows the absorption rate of GLP-1 derivatives.
  • 8S-GLP-K7-35) + 5KR-COOH which is a GLP-1 derivative of the present invention, is a natural GLP-1 (7_36) -NH or 8S ⁇ It was found that the same blood concentration could be achieved with almost 1/3 dose of GLP-l (7-36) -NH. Comparing the absorption rate at the same dose of 100 nmol / kg, 8S-GLP-1 (7_35) + 5K R-COOH is the natural GLP-1 (7-36) _NH and 8S-GLP-1 (7_36) The absorption rate was almost 6 times higher than that of -NH.
  • FIG.1 Comparison of the blood glucose lowering effects of 8S-GLP-l (7_35) + 5KR-COOH and 8S-GLP-1 (7_35) + 5KR-NH by nasal administration in Test Example 1 1! It is a figure which shows the result. In the figure, the number in brackets after the compound abbreviation name indicates the dose (nmol / mouse).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Diabetes (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Endocrinology (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Biochemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Child & Adolescent Psychology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Emergency Medicine (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

[PROBLEMS] To provide a novel GLP-1 derivative having a largely improved capability of being absorbed through a mucous membrane. [MEANS FOR SOLVING PROBLEMS] Disclosed is a peptide which has (Lys)n-Arg [wherein n represents an integer of 4 to 8, and Arg is in the form of a carboxylic acid] added to the C-terminus of a peptide comprising an amino acid sequence corresponding to GLP-1 (7-35) or GLP-1 (7-36) or an amino acid sequence having the deletion, substitution and/or addition of one or several amino acid residues in the aforementioned amino acid sequence, having at least 85% homology to the aforementioned amino acid sequence and having a GLP-1 activity. The amino acid residue at position-8 in the amino acid sequence for GLP-1 is preferably serine or glycine, and the integer “n” is preferably 5.

Description

明 細 書  Specification
GLP-1誘導体とその用途  GLP-1 derivatives and their uses
技術分野  Technical field
[0001] 本発明は、インクレチンホルモンとして知られているヒトグル力ゴン様ペプチド- 1 (GL P-1 ; Glucagon like peptide- 1)に関するもので、具体的には、粘膜からの吸収性の高 い、 GLP-1の新規誘導体の発明である。  [0001] The present invention relates to a human glucagon-like peptide-1 (GL P-1; Glucagon like peptide-1) known as an incretin hormone. Specifically, the present invention has a high absorbability from mucous membranes. It is an invention of a novel derivative of GLP-1.
背景技術  Background art
[0002] GLP-1は、食物摂取により消化管より分泌され、勝臓に働いてインスリン分泌を刺激 するインクレチンホルモンとして知られている。同様の作用を示すものには、 GIP (Gas trie lnhioitory polypeptideま 7こ (ま lucose—depenaent insulinotropic polypeptide)力、 ある。 2型糖尿病患者では、健常人に比べ、このインクレチン効果が欠如しているか 若しくは障害されていることが示唆されていて、これが高血糖の成因の一つと考えら れている。例えば、 2型糖尿病患者では血中 GLP-1濃度が低下し、 GIPは健常人と変 わらないことが報告されている。また、 2型糖尿病患者へのインクレチンホルモン投与 試験の結果、インスリン分泌促進反応が健常人に比べて、 GLP-1投与では差違は認 めないが、 GIP投与で顕著に低下していることが報告されている。このため、糖尿病 患者では GLP-1に対する応答性は維持されているので、不足を補う GLP-1製剤は、 インスリン分泌促進剤として、糖尿病治療薬への応用に期待が持たれて!/、る。  [0002] GLP-1 is known as an incretin hormone that is secreted from the gastrointestinal tract by food intake and works on the viscera to stimulate insulin secretion. GIP (Gas trie lnhioitory polypeptide or 7 lucose-depenaent insulinotropic polypeptide) has the same effect: Does the type 2 diabetes patient lack this incretin effect compared to healthy individuals? It is also suggested that the disorder is one of the causes of hyperglycemia, for example, blood GLP-1 levels are decreased in patients with type 2 diabetes and GIP is different from that of healthy individuals. Incretin hormone administration test for type 2 diabetic patients showed that GLP-1 administration did not show any difference in insulin secretion promoting response compared to healthy subjects, but GIP administration As a result, it has been reported that the response to GLP-1 is maintained in diabetic patients. Application Expected to be have! /, Ru.
[0003] GLP-1のインスリン分泌作用の特徴は、血糖値が 110 mg/dl以下ではインスリン分 泌を刺激せず、それ以上の血糖値になってはじめてインスリンを分泌させるという血 糖値依存性を表すことである。すなわち、 GLP-1の投与により、血糖値に応じてインス リン分泌が促進され、血糖値が正常以下になるとインスリン分泌は起こらない。したが つて GLP-1を使用した場合、低血糖の心配がないこと、またインスリンの過剰な分泌 がなぐ勝臓を疲弊させないことが大きな臨床上のメリットである。一方、 2型糖尿病の 治療にぉレ、て中心的に使用されて!/、るスルフォニル尿素剤は、持続的に ATP感受性 K+チャネルを閉鎖しインスリン分泌を促進させる。即ち、血糖値とは無関係に勝臓の インスリン分泌細胞に働くため、低血糖、 β細胞への過剰な刺激による勝臓の疲弊、 長期投与による 2次無効が報告されている。したがって、 GLP-1の薬理学的特性は、 従来の糖尿病薬とは異なる有用なものである。 [0003] The insulin secretion action of GLP-1 is characterized by glucose level dependency that insulin secretion is not stimulated when blood glucose level is 110 mg / dl or less, and insulin is secreted only when blood glucose level is higher than that. Is to represent. That is, administration of GLP-1 promotes insulin secretion according to blood glucose level, and insulin secretion does not occur when blood glucose level is below normal. Therefore, when GLP-1 is used, there are no significant concerns about hypoglycemia, and the great clinical merit is not to exhaust the viscera due to excessive insulin secretion. On the other hand, sulfonylurea, which has been used mainly for the treatment of type 2 diabetes, continuously closes ATP-sensitive K + channels and promotes insulin secretion. In other words, since it works on the presumptive insulin-secreting cells regardless of the blood sugar level, hypoglycemia, exhaustion of premature vigor due to excessive stimulation of β cells, Secondary ineffectiveness has been reported with long-term administration. Therefore, the pharmacological properties of GLP-1 are useful, different from conventional diabetes drugs.
[0004] しかしながら、 GLP-1の活性本体は GLP-1 (7-36) amideあるいは GLP_1(7_37)のポ リペプチドであり、 GLP-1の経口摂取では、消化管内で消化酵素により消化 ·分解さ れ、吸収されない。このため臨床では、点滴による静脈内注射や皮下注射が試みら れているのが現状である。しカゝも、血中や組織に存在するジぺプチジルぺプチダー ゼ IV (DPPIV)によって GLP-1は分解を受け、生体内半減期は;!〜 2分と非常に短い ことが知られており、これらが臨床応用へのネックになっている。尚、 GLP-1を分解す る酵素として知られるジぺプチジルぺプチダーゼ IVは、腎臓、肝臓、小腸、唾液腺、 各種結合組織など広く組織に分布する他、血液、尿、唾液などの体液や鼻腔粘膜に も存在することが明らかになつている。  [0004] However, the active body of GLP-1 is a polypeptide of GLP-1 (7-36) amide or GLP_1 (7_37). When GLP-1 is taken orally, it is digested and degraded by digestive enzymes in the digestive tract. Is not absorbed. Therefore, in clinical practice, intravenous injection or subcutaneous injection by infusion is being attempted. GLP-1 is also degraded by dipeptidyl peptidase IV (DPPIV) present in blood and tissues, and the in vivo half-life is known to be very short; 2 to 2 minutes. These are the bottlenecks for clinical application. Dipeptidyl peptidase IV, known as an enzyme that degrades GLP-1, is widely distributed in the kidney, liver, small intestine, salivary gland, various connective tissues, and other body fluids such as blood, urine, saliva, and nasal passages. It is becoming clear that it also exists in the mucosa.
[0005] この問題点を解決するために、いくつかの研究開発が行われている。例えば、分解 されにくく半減期の長い 8位アミノ酸置換誘導体の報告 (Diabetologia 41: 271-278(19 98), Biochem 40: 2860-2869(2001》がある。また、皮下からの吸収が遅い徐放型 GLP -1注射剤の開発(開発名 Liraglutide)、あるいは、生体内でアルブミンと結合し血中 半減期の長い GLP-1誘導体による注射剤の開発(開発番号 CJC-1131; Diabetes 52( 3):751_759(2003))が行われている。他にも、 GLP- 義ァゴ二スト活性をもち、血中半 減期の長いトカゲ由来の合成 Exendin-4での注射剤の開発(商品名 Byetta及び開発 番号 ZP10A)が行われている。しかしながら、これらはいずれも注射剤であり、毎日注 射しなければならない患者の負担を考えると、 GLP-1が糖尿病治療薬として広く用い られるためには、注射以外の投与経路が望ましい。  [0005] In order to solve this problem, some research and development have been conducted. For example, there are reports of 8-position amino acid-substituted derivatives that are difficult to degrade and have a long half-life (Diabetologia 41: 271-278 (1998), Biochem 40: 2860-2869 (2001). Type GLP-1 injection (development name Liraglutide), or GLP-1 derivative with long-lived half-life that binds albumin in vivo (development number CJC-1131; Diabetes 52 (3) : 751_759 (2003)) In addition, the development of a synthetic exendin-4 injection (product name) derived from a lizard with GLP-ligand activity and long half-life in blood However, these are all injections, and given the burden of patients who have to be injected every day, GLP-1 is widely used as a treatment for diabetes. For administration, administration routes other than injection are desirable.
[0006] 注射剤や経口投与剤に代わる、侵襲性を伴わない投与方法として、肺、口腔、鼻 腔、膣、眼、直腸などの粘膜吸収による投与が考えられる。しかし、一般に GLP-1の ようなペプチドは高分子であるため、単独での粘膜からの吸収率は低い。このため、 一般的には、ペプチドのような高分子は、吸収促進剤等の賦形剤とともに処方される 。例えば、 GLP-1を含むバッカル錠が検討され、また、多価金属化合物キャリアーを 用いた製剤技術による GLP-1の経鼻製剤が開発中である力 S、満足のいくバイオアベ イラビリティ(生物学的利用率)は得られて!/、な!/、。 [0007] そこで、本発明者らは、 WO2004/037859において、 GLP-1の C末端に数個のアル ギニンまたはリジンを直接付加することによって、 GLP-1の鼻粘膜を含む粘膜吸収が 増大することを見出した。尚、 WO2004/037859の GLP-1誘導体と類似した GLP-1誘 導体として、 WO2001/004156には、 [Gly8]-GLP-1(7_36)- (Lys) -NHが開示されて [0006] As a non-invasive administration method that replaces injections and oral administration agents, administration by mucosal absorption such as in the lung, oral cavity, nasal cavity, vagina, eyes, and rectum is conceivable. However, since peptides such as GLP-1 are generally macromolecules, the absorption rate from the mucosa alone is low. For this reason, in general, a polymer such as a peptide is formulated together with an excipient such as an absorption enhancer. For example, a buccal tablet containing GLP-1 has been studied, and nasal formulation of GLP-1 by formulation technology using a polyvalent metal compound carrier is under development S, satisfactory bioavailability (biological (Utilization rate) is obtained! / ,! [0007] Thus, in WO2004 / 037859, the present inventors increase GLP-1 mucosal absorption including nasal mucosa by directly adding several arginine or lysine to the C-terminus of GLP-1. I found out. As a GLP-1 derivative similar to the GLP-1 derivative of WO2004 / 037859, WO2001 / 004156 discloses [Gly 8 ] -GLP-1 (7_36)-(Lys) -NH.
6 2  6 2
いる。ここでは、 GLP-1誘導体に安定性及び親水性を付与することで、経口投与可 能とすることが開示されている力 粘膜吸収については、記載されていない。  Yes. Here, there is no description of force mucosal absorption, which discloses that oral administration is possible by imparting stability and hydrophilicity to the GLP-1 derivative.
[0008] 特許文献 l : WO2004/037859 [0008] Patent Literature l: WO2004 / 037859
特許文献 2: WO2001 /004156  Patent Document 2: WO2001 / 004156
非特許文献 l : Diabetologia 41 : 271-278(1998)  Non-patent literature l: Diabetologia 41: 271-278 (1998)
非特許文献 2 : Biochem 40: 2860-2869(2001)  Non-Patent Document 2: Biochem 40: 2860-2869 (2001)
非特許文献 3: Diabetes 52(3):751_759(2003)  Non-Patent Document 3: Diabetes 52 (3): 751_759 (2003)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] GLP-1の粘膜からの吸収は、膜透過性の低さや吸収部位での分解により、注射に 比べ非常に非効率的である。例えば、 GLP-1を経鼻投与することは可能である力 吸 収率が低いため、十分な薬理効果を得るためには、非常に高用量を必要とする。し たがって、ペプチドの原体生産コストの面から、天然型 GLP-1を経鼻剤として医薬品 開発することは非現実的である。 GLP-1を臨床応用するためには、粘膜からの吸収 率が注射剤に匹敵する GLP-1誘導体の開発が必要である。即ち、本発明の課題は、 粘膜力もの吸収性がより改善された GLP-1新規誘導体を考案し、注射に代わる粘膜 投与剤を提供することである。  [0009] Absorption of GLP-1 from the mucosa is much less efficient than injection due to low membrane permeability and degradation at the site of absorption. For example, it is possible to administer GLP-1 intranasally, and the absorption yield is low, so a very high dose is required to obtain a sufficient pharmacological effect. Therefore, it is unrealistic to develop a pharmaceutical product using natural GLP-1 as a nasal agent in terms of the cost of producing the active ingredient of the peptide. In order to apply GLP-1 clinically, it is necessary to develop a GLP-1 derivative whose absorption rate from mucous membranes is comparable to that of injections. That is, an object of the present invention is to devise a novel GLP-1 derivative with improved absorption of mucosal force and to provide a mucosal administration agent in place of injection.
課題を解決するための手段  Means for solving the problem
[0010] 本発明者らは、 WO2004/037859において、 GLP-1の C末端に数個のアルギニン(A rg)またはリジン (Lys)を直接付加することによって、 GLP-1誘導体の粘膜吸収が増大 することを見出した。そこから更に粘膜吸収性の改善について検討した結果、 C末端 側に付加する配列は、リジンが連続する構造で、その C末端のみをアルギニンの力ノレ ボン酸体とすることで、 GLP-1誘導体の粘膜吸収性が更に大きく改善されることを見 し/ [0011] 即ち、本発明は、 GLP- 7-35)又は GLP- 7-36)のアミノ酸配歹 IJ、或いはそれらの アミノ酸配列の 1もしくは数個のアミノ酸が欠失、置換及び/又は付加された配列か らなり、かつ GLP-1活性を有するペプチドの C末端に(Lys) n— Arg (nは 4〜8の整数 で、 Argはカルボン酸体)が付加されたペプチドである。さらに別の言い方をすると、 本発明は、 GLP- 7-35)又は GLP- 7-36)のアミノ酸酉己列、或いはそれらのアミノ酸 配列と 85%以上の相同性を有する配列からなり、かつ、 GLP-1活性を有するぺプチ ドの C末端に(Lys) n— Arg (nは 4〜8の整数で、 Argはカルボン酸体)が付加されたぺ プチドである。 [0010] In WO2004 / 037859, the present inventors increased mucosal absorption of GLP-1 derivatives by directly adding several arginine (A rg) or lysine (Lys) to the C-terminus of GLP-1. I found out. As a result of further investigations on the improvement of mucosal absorbability, the sequence added to the C-terminal side is a structure in which lysine is continuous. The mucosal absorbability of [0011] That is, in the present invention, GLP-7-35) or GLP-7-36) amino acid sequence IJ, or one or several amino acids in the amino acid sequence thereof is deleted, substituted and / or added. (Lys) n-Arg (n is an integer of 4 to 8, Arg is a carboxylic acid form) is added to the C-terminus of a peptide having a GLP-1 activity. In other words, the present invention comprises GLP-7-35) or GLP-7-36) amino acid sequences, or a sequence having 85% or more homology with those amino acid sequences, and A peptide in which (Lys) n-Arg (n is an integer of 4 to 8, Arg is a carboxylic acid form) is added to the C-terminus of the peptide having GLP-1 activity.
[0012] 本発明の GLP-1誘導体においては、ジぺプチジルぺプチダーゼ IVに対する耐性を 付加するために、天然型 GLP-1の 8位のァラニン (Ala)をセリン(Ser)又はグリシン(G1 y)に置換するのが好ましい。同様に、 26位のリジンをグルタミン(Gin)に、 34位のリジ ンをァスパラギン (Asn)又はァスパラギン酸 (Asp)に置換することによって、トリプシン 耐性を持たせることもできる。また、 C末端に付加するリジン残基の数 nは、好ましくは 、 4〜6であり、 5が最も好ましい。本発明の GLP-1誘導体の最も好ましいものは、 [Ser8 ] -GLP-l(7-35)-(Lys)—Arg (Argはカルボン酸体)で表される。 In the GLP-1 derivative of the present invention, in order to add resistance to dipeptidyl peptidase IV, alanine (Ala) at position 8 of natural GLP-1 is converted to serine (Ser) or glycine (G1 y ) Is preferred. Similarly, trypsin resistance can be achieved by substituting lysine at position 26 with glutamine (Gin) and lysine at position 34 with asparagine (Asn) or aspartate (Asp). Further, the number n of lysine residues added to the C-terminal is preferably 4 to 6, and most preferably 5. The most preferred GLP-1 derivative of the present invention is represented by [Ser 8 ] -GLP-l (7-35)-(Lys) -Arg (Arg is a carboxylic acid form).
5  Five
[0013] 本発明は、本発明の GLP-1誘導体を有効成分として含む医薬組成物にも係る。本 発明の医薬組成物は、経粘膜投与、特に経鼻投与で用いるのに適している。また、 本発明の医薬組成物は、糖尿病の処置、肥満の処置、食欲抑制、又は、心疾患抑 制のために用いることができる。言い換えれば、本発明のペプチドは、糖尿病、肥満 又は摂食障害の治療剤を製造するために使用できる。  [0013] The present invention also relates to a pharmaceutical composition comprising the GLP-1 derivative of the present invention as an active ingredient. The pharmaceutical composition of the present invention is suitable for transmucosal administration, particularly nasal administration. In addition, the pharmaceutical composition of the present invention can be used for the treatment of diabetes, the treatment of obesity, the suppression of appetite, or the suppression of heart disease. In other words, the peptide of the present invention can be used for producing a therapeutic agent for diabetes, obesity or eating disorders.
発明の効果  The invention's effect
[0014] 本発明の GLP-1誘導体は、天然型 GLP-1だけでなぐ WO2004/037859に記載され た、 C末端側にリジン及び/又はアルギニンの連続構造をもち、その C末端がアミド体 である GLP-1誘導体よりも、極めて高い粘膜吸収率を有する。そのため、本発明の G LP-1誘導体は、従来の注射剤に代わる、投与が容易で苦痛を伴わない粘膜吸収型 GLP-1製剤の臨床応用の可能性をより格段に高めるものであり、糖尿病患者、肥満 患者、及び心疾患患者の QOLの改善に大いに役立つものと考えられる。  [0014] The GLP-1 derivative of the present invention has a continuous structure of lysine and / or arginine on the C-terminal side described in WO2004 / 037859, which is not limited to natural GLP-1. It has a much higher mucosal absorption rate than some GLP-1 derivatives. Therefore, the GLP-1 derivative of the present invention greatly enhances the possibility of clinical application of a mucosal absorption type GLP-1 preparation that is easy to administer and is not painful in place of conventional injections. It is considered to be very useful for improving the quality of life of patients, obese patients, and patients with heart disease.
[0015] また、本発明の GLP-1誘導体は、 C末端のアルギニンがカルボン酸体であるため、 製造する上で、他の GLP-1誘導体のようなアミド化する工程を実施しなくてもよぐ特 に工業的生産にお!/、てそのメリットが大きレ、。 [0015] Further, in the GLP-1 derivative of the present invention, since C-terminal arginine is a carboxylic acid form, When manufacturing, it is not necessary to carry out the amidation process like other GLP-1 derivatives, especially for industrial production!
[0016] 尚、本発明の GLP-1誘導体は、付加されたリジン部分はプロテアーゼの分解を受け やすぐ血液中ですぐに切断され、天然の GLP-1に近い形で存在することから、抗原 性についても、極めて低いものと考えられる。 [0016] It should be noted that the GLP-1 derivative of the present invention has an added lysine moiety that is readily cleaved in blood immediately after being decomposed by a protease and is present in a form close to that of natural GLP-1. The sex is also considered extremely low.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下に、本発明を更に詳細に説明する。 GLP-1 (7-36)は、 His-Ala-Glu-Gly-Thr- Phe_Thr_Ser_Asp_Val_Ser_Ser_Tyr_Leu_Glu_Gly_Gln_Ala_Ala_Lys_Glu_Phe_Ile_ Ala-Trp-Leu-Va卜 Lys-Gly-Arg (配列番号 1)で示される配列を持つペプチドである 。 [Ser8]は、前記配列の 2番目、即ち 8位のァラニンがセリンに変換されていることを示 し、 8Sと同義である。 GLP-1誘導体においては、アミノ酸の C末端がアミド化されてい るアミド体力、、アミド化されて!/、な!/、カルボン酸体の!/、ずれか一方の形態をとることが 可能である。天然型の GLP-1はアミド体である力 本発明の GLP-1誘導体はカルボン 酸体である。本願明細書においては、 -NHはアミド体を、 -COOHはカルボン酸体を 示す。尚、本発明は、 GLP-1誘導体のアミノ酸の C末端がアミド体のものよりもカルボ ン酸体のものの方が、経粘膜投与による効果が高!、ことを示した初めての事例である[0017] Hereinafter, the present invention will be described in more detail. GLP-1 (7-36) is His-Ala-Glu-Gly-Thr-Phe_Thr_Ser_Asp_Val_Ser_Ser_Tyr_Leu_Glu_Gly_Gln_Ala_Ala_Lys_Glu_Phe_Ile_Ala-Trp-Leu-Va 卜 Lys-Gly-Aly Lys-Gly-Aly [Ser 8 ] indicates that the second, that is, 8-position alanine in the sequence is converted to serine, and is synonymous with 8S. In the GLP-1 derivative, it is possible to take the form of either an amide form in which the C-terminus of the amino acid is amidated, an amidated form! /, Na! /, Or a carboxylic acid form! / is there. The power of natural GLP-1 is an amide. The GLP-1 derivative of the present invention is a carboxylic acid. In the present specification, -NH represents an amide form, and -COOH represents a carboxylic acid form. In addition, the present invention is the first example showing that the effect of transmucosal administration is higher when the carboxylate of the amino acid of the GLP-1 derivative is carboxylic acid than when it is amide.
Yes
[0018] 本発明の GLP-1誘導体は、既述のように、 GLP-K7-35)又は GLP-K7-36)のァミノ 酸配列、或いはそれらのアミノ酸配列の 1もしくは数個のアミノ酸が欠失、置換及び/ 又は付加された配列からなり、かつ GLP-1活性を有するペプチドの C末端に(Lys) n — Arg (nは 4〜8の整数で、 Argはカルボン酸体)が付加されたペプチドである。ここで 、 GLP-K7-35)又は GLP-K7-36)のアミノ酸配列の 1もしくは数個のアミノ酸が欠失、 置換及び/又は付加された配列からなり、かつ GLP-1活性を有するペプチドとは、天 然型 GLP-1ペプチドの一部のアミノ酸が欠失、置換及び/又は付加されても、 GLP- 1活性は失われないため、そのような GLP-1変異体を意味するものである。そのような GLP-1変異体を更に別の言!/、方で表現すると、 GLP-K7-35)又は GLP-K7-36)のァ ミノ酸配列と 85%以上の相同性を有する配列からなり、かつ、 GLP-1活性を有するぺ プチドと表現することができる。このような天然型 GLP-1ペプチドの一部改変体が多 数存在することは、技術常識である。具体的には、 8位のァラニンはセリン又はグリシ ンに置換されてレ、てもよく、この置換はジぺプチジルぺプチダーゼ IVに対する耐性を 付加する。また、 WO2004/037859又は WO2004/087910によれば、 26位のリジンはグ ルタミンに、 34位のリジンはァスパラギン又はァスパラギン酸に置換されていてもよぐ これら 2力所の置換により、トリプシン耐性が付加される。その他、 16位のパリン、 17位 セリン、 18位セリン、 22位グリシン、 27位グルタミン酸、 34位リジン、 36位アルギニンは 、各々ァラニンに置換でき、また同時に少なくとも 2個をァラニンで置換できることが知 られている。 [0018] As described above, the GLP-1 derivative of the present invention lacks GLP-K7-35) or GLP-K7-36) amino acid sequence, or one or several amino acids thereof. (Lys) n — Arg (n is an integer from 4 to 8, Arg is a carboxylic acid form) is added to the C-terminus of a peptide having a lost, substituted and / or added sequence and having GLP-1 activity. Peptide. Here, GLP-K7-35) or GLP-K7-36) and a peptide having a GLP-1 activity consisting of a sequence in which one or several amino acids are deleted, substituted and / or added. Means that GLP-1 mutants are not lost even if some amino acids of the native GLP-1 peptide are deleted, substituted and / or added. is there. Such a GLP-1 variant can be expressed in another way! /, From a sequence having 85% or more homology with the amino acid sequence of GLP-K7-35) or GLP-K7-36). And can be expressed as a peptide having GLP-1 activity. Many of these natural GLP-1 peptide variants are It is technical common sense that there are numbers. Specifically, alanine at position 8 may be substituted with serine or glycine, which adds resistance to dipeptidyl peptidase IV. According to WO2004 / 037859 or WO2004 / 087910, lysine at position 26 may be substituted with glutamine, and lysine at position 34 may be substituted with asparagine or aspartic acid. Added. In addition, parin at position 16, serine at position 17, serine at position 18, glycine at position 22, glutamic acid at position 27, lysine at position 34, arginine at position 36 can each be substituted with alanine, and at the same time at least two can be substituted with alanine. It has been.
[0019] GLP-1変異体は、いずれも GLP-K7-35)又は GLP-K7-36)の配列をもとにして、つ ぎのように例示すること力 Sできる。 GLP-K7-35)又は GLP-K7-36)の 8位のセリン又は グリシンへの置換体、 26位のグルタミンへの置換体、 34位のァスパラギン又はァスパ ラギン酸への置換体、及びこれら 8位、 26位、及び 34位の置換のうち 2個所以上の置 換の組み合わせ体、更に、 16位のァラニンへの置換体、 17位のァラニンへの置換体 、 18位のァラニンへの置換体、 22位のァラニンへの置換体、 27位のァラニンへの置 換体、 34位のァラニンへの置換体、 36位のァラニンへの置換体、及びこれら 16位から 36位までのァラニンへの置換のうち 2個所の置換の組み合わせ体。  [0019] All of the GLP-1 mutants can be exemplified as follows based on the sequence of GLP-K7-35) or GLP-K7-36). GLP-K7-35) or GLP-K7-36) substitute for serine or glycine at position 8, substitute for glutamine at position 26, substitute for asparagine or aspartate at position 34, and these 8 A combination of two or more of the substitutions at positions 26, 34, and further, a substitute for alanine at position 16, a substitute for alanine at position 17, a substitute for alanine at position 18 , Substitution to alanine at position 22, substitution to alanine at position 27, substitution to alanine at position 34, substitution to alanine at position 36, and substitution from alanine at positions 16 to 36 A combination of two replacements.
[0020] 本発明の GLP-1誘導体は、化学合成あるいは遺伝子組換え技術により、 WO2004/ 037859と同様に製造することができる。ポリペプチドの化学合成の原理は本分野にて 周知であり、以下の様な本領域の一般のテキストを参考にできる; Dugas Η·及び Penn ey C, Bioorganic (chemistry (1981) springer- Verlag, New York, 54— 92貝。 f列; 、 m odd 430Aヘプナド合成機 (Applied Biosystems Inc, 850 Lincoln Center Drive, Fost er City CA 94404)及び PE-Applied Biosystemsにより供給された合成サイクルを用い て、固相方法により本発明のペプチドを合成できる。 Bocアミノ酸及びその他の試薬 は、 Applied Biosystems及び他の薬品供給業者から購入可能である。  [0020] The GLP-1 derivative of the present invention can be produced in the same manner as in WO2004 / 037859 by chemical synthesis or gene recombination techniques. The principles of chemical synthesis of polypeptides are well known in the art, and general texts in this area can be consulted as follows: Dugas Η · and Penney C, Bioorganic (chemistry (1981) springer- Verlag, New York, 54-92 shells, f row ;, m odd 430A heptad synthesizer (Applied Biosystems Inc, 850 Lincoln Center Drive, Foster City CA 94404) and a solid phase using a synthesis cycle supplied by PE-Applied Biosystems. The peptides of the present invention can be synthesized by methods Boc amino acids and other reagents can be purchased from Applied Biosystems and other drug suppliers.
[0021] 本発明のペプチドを遺伝子組換え技術により生産する方法は以下のようである。 G LP-1の DNAは、全合成、又はより大きな天然のグルカゴンがコードしている DNAの修 飾により得られる。プレブログルカゴンをコードしている DNA配列は Lundら [Proc Natl Acad Sci USA 79:345-349(1982)]において示されており、この天然の配列を変えるこ とにより、本発明化合物の生産に使用することができる。合成遺伝子の構築方法は本 分野では周知であり、 Brownらの Methods in Enzymology, Academic Press, NY第 68 巻、 109— 151頁を参照できる。本発明のペプチドをコードする DNA配列をそのアミノ 酸配列に基づいてデザインし、 Model 3400DNA合成機又は ABI3900ハイスループッ ト核'酸合成機 (Applied Biosystems Inc,850 Lincoln Center Drive, Foster City CA 94 404)などの通常の DNA合成機を用いてその配列自身をもつ DNAを製造できる。 [0021] A method for producing the peptide of the present invention by a gene recombination technique is as follows. GLP-1 DNA can be obtained by total synthesis or by modification of DNA encoded by a larger natural glucagon. The DNA sequence encoding the prebloglucagon is shown in Lund et al. [Proc Natl Acad Sci USA 79: 345-349 (1982)]. And can be used for the production of the compounds of the present invention. Methods for constructing synthetic genes are well known in the art, see Brown et al., Methods in Enzymology, Academic Press, NY Volume 68, pages 109-151. A DNA sequence encoding the peptide of the present invention is designed based on the amino acid sequence, and Model 3400 DNA synthesizer or ABI3900 high throughput nucleus' acid synthesizer (Applied Biosystems Inc, 850 Lincoln Center Drive, Foster City CA 94 404) A DNA having the sequence itself can be produced using a normal DNA synthesizer such as.
[0022] また、本発明の GLP-1誘導体の産生に用いる DNAには、発現量を高め産物を宿主 内に安定的に蓄積させる工夫、生産後の精製を容易にする工夫、あるいは融合タン ノ^として生産させ容易に GLP-1誘導体を切り出す工夫等を施すことができる。例え ば、本発明の GLP-1誘導体遺伝子をタンデムに繋ぎ、発現量を高めるといった手法 、または、 β -ガラタトシダーゼ、 β -ラクタマーゼ、プロテイン A、 TrpE、ュビキチン、連 続したヒスチジン残基などの精製に有利なタンパクの遺伝子に繋ぎ、さらには特異的 プロテアーゼ処理による GLP-1誘導体の切り出しに有利なアミノ酸配列を導入して融 合タンパクとして産生させるといった手法を取ることができる。これらの場合、例えば、 産生後 GLP-1誘導体を単体として得るには、融合させた蛋白を利用した精製を行い 、その後特異的なプロテアーゼによる切断により目的の GLP-1誘導体を得ることがで きる。 [0022] In addition, the DNA used for the production of the GLP-1 derivative of the present invention has a device that increases the expression level and stably accumulates the product in the host, a device that facilitates purification after production, or a fusion tank. It can be produced as ^ and can be devised to easily cut out the GLP-1 derivative. For example, the method of ligating the GLP-1 derivative gene of the present invention in tandem to increase the expression level, or purification of β-galatatosidase, β-lactamase, protein A, TrpE, ubiquitin, continuous histidine residues, etc. It is possible to adopt a technique in which an amino acid sequence that is advantageous for excision of a GLP-1 derivative by treatment with a specific protease is linked to an advantageous protein gene and produced as a fusion protein. In these cases, for example, in order to obtain a GLP-1 derivative as a simple substance after production, the target GLP-1 derivative can be obtained by performing purification using a fused protein and then cleaving with a specific protease. .
[0023] 次に、以上のように作製された GLP-1誘導体遺伝子は、本分野で常識的な技術に 従って、適切な制限エンドヌクレアーゼを用いて、適切な組換え DNA発現ベクターに 揷入する。その際の GLP-1誘導体ペプチドの効果的な発現方法や、原核細胞及び 真核細胞での形質転換に使用できる種々の発現ベクターは本領域の一般的な方法 を参考にできる。 (Maniatisら、(1989) Molecular Cloning; A Laboratory Manual, Cold Springs Harbor Laboratory Press, NY第 1-3巻および The Promega Biological Resea rch Products Catalogue及び The Stratagene Cloning Systems Catalogue)。  [0023] Next, the GLP-1 derivative gene prepared as described above is inserted into an appropriate recombinant DNA expression vector using an appropriate restriction endonuclease according to a common sense technique in this field. . For the effective expression method of GLP-1 derivative peptides at that time and various expression vectors that can be used for transformation in prokaryotic cells and eukaryotic cells, general methods in this region can be referred to. (Maniatis et al. (1989) Molecular Cloning; A Laboratory Manual, Cold Springs Harbor Laboratory Press, NY Volumes 1-3 and The Promega Biological Research Products Catalog and The Stratagene Cloning Systems Catalog).
[0024] さらに、構築された GLP-1誘導体ペプチド発現ベクターを用いて適切な宿主細胞を 形質転換させる。宿主細胞には真核性細胞又は原核性細胞の!/、ずれかを使用でき る。細胞を形質転換するための技術は本分野において周知であり、上記の Maniatis らの様な一般の引用文献に見出すことができる。原核性宿主細胞は、一般にはより 高い割合でタンパク質を生産し、より培養し易い。高レベルの細菌発現系において発 現されるタンパク質は、特徴的に凝集して高レベルの過剰に発現されたタンパク質を 含有する粒子又は封入体となる。この様な典型的に凝集しているタンパク質を本分 野にて周知の技術を用いて可溶化し、変性し、さらに再度折り畳む。これについては 、 Protein Folding, Kreugerり (1990) 136—142頁、 Gierasch及び King編、 American Ass ociation for Advancement of science Publication力、参照 きな。 [0024] Furthermore, an appropriate host cell is transformed with the constructed GLP-1 derivative peptide expression vector. Host cells can be either eukaryotic cells or prokaryotic cells! /. Techniques for transforming cells are well known in the art and can be found in general citations such as Maniatis et al. Prokaryotic host cells are generally more Produces protein at a high rate and is easier to culture. Proteins expressed in high level bacterial expression systems characteristically aggregate into particles or inclusion bodies that contain high levels of overexpressed protein. Such typically aggregated proteins are solubilized, denatured and refolded using techniques well known in the art. See Protein Folding, Kreuger et al. (1990) pages 136-142, edited by Gierasch and King, American Association for Advancement of science Publication.
[0025] 本発明化合物は、製剤的に許容される担体、希釈剤、賦形剤または吸収促進剤と 組み合わせて製剤化し、医薬組成物とすることもできる。吸収促進剤には、例えば、 キレート剤(例えば、 EDTA、クェン酸、サリチル酸塩)、界面活性剤(例えば、ドデシ ル硫酸ナトリウム(SDS) )、非界面活性剤(例えば、不飽和環状尿素)、および胆汁酸 塩(例えば、デォキシコール酸ナトリウム、タウロコール酸ナトリウム)が上げられる。こ の様な医薬組成物は、製薬分野における周知の方法で製造することができる。また、 これらの医薬組成物は、鼻腔等の粘膜投与に適しており、個々に又は他の治療薬と 組み合わせて投与することができる。  [0025] The compound of the present invention can be formulated into a pharmaceutical composition by combining with a pharmaceutically acceptable carrier, diluent, excipient or absorption enhancer. Absorption enhancers include, for example, chelating agents (eg, EDTA, citrate, salicylate), surfactants (eg, sodium dodecyl sulfate (SDS)), non-surfactants (eg, unsaturated cyclic urea), And bile acid salts (for example, sodium deoxycholate, sodium taurocholate). Such a pharmaceutical composition can be produced by a well-known method in the pharmaceutical field. In addition, these pharmaceutical compositions are suitable for mucosal administration such as nasal cavity and can be administered individually or in combination with other therapeutic agents.
[0026] 本発明組成物は、本分野にて周知の方法を用いて、患者に投与後迅速かつ持続 的又は遅延した活性成分の放出を提供する様に製剤化できる。例えば、適切なマク 口分子(例えば、ポリエステル、ポリアミノ酸、ポリビュルピロ口リドン、酢酸エチレンビ ニル、メチルセルロース、カルボキシメチルセルロース及び硫酸プロタミン)、あるいは ポリエステル、ポリアミノ酸、ハイド口ゲル、ポリ乳酸、ポリダリコール酸、乳酸 ·ダルコ一 ル共重合体、又は酢酸ェチルビニルコポリマーなどのポリマー物質などを用いて、本 発明ペプチドを複合体とするか又は本発明ペプチドを吸着させることにより、放出が コントロールされた製剤を製造することができる。また、これらのポリマー粒子にぺプ チドを混合する代わりに、例えば、コアセルべーシヨン技術又は界面重合によって製 造されたマイクロカプセル、ヒドロキシメチルセルロース又はゼラチンからなるマイクロ カプセル、コロイド状薬物デリバリーシステム(例えば、リボソーム、アルブミンマイクロ スフエアー、マイクロエマルジヨン、ナノ粒子及びナノカプセル)、もしくは、マイクロエ マルジヨン中に、本発明ペプチドを封入することが可能である。  [0026] The compositions of the invention can be formulated using methods well known in the art to provide the patient with a rapid, sustained or delayed release of the active ingredient after administration. For example, suitable macromolecules (eg, polyesters, polyamino acids, polybutyrolipidone, ethylene vinyl acetate, methylcellulose, carboxymethylcellulose and protamine sulfate), or polyesters, polyamino acids, hydrated gels, polylactic acid, polydaricholic acid, lactic acid Using a dalcol copolymer or a polymer substance such as an ethyl acetate vinyl copolymer, the peptide of the present invention is complexed or adsorbed with the peptide of the present invention to produce a controlled release formulation be able to. Instead of mixing peptides with these polymer particles, for example, microcapsules manufactured by coacervation technology or interfacial polymerization, microcapsules made of hydroxymethylcellulose or gelatin, colloidal drug delivery systems (for example, Ribosome, albumin microsphere, microemulsion, nanoparticle and nanocapsule) or the microemulsion can encapsulate the peptide of the present invention.
[0027] 本発明の GLP-1誘導体は、 GLP-1製剤が有効である各種疾患に有効である。即ち 、本発明の GLP-1誘導体は、例えば、インスリン非依存性糖尿病の処置、インスリン 依存性糖尿病の処置、肥満の処置、食欲抑制、または心疾患の抑制のために、使用 すること力 Sでさる。 [0027] The GLP-1 derivative of the present invention is effective for various diseases for which a GLP-1 preparation is effective. That is The GLP-1 derivative of the present invention can be used, for example, for the treatment of non-insulin dependent diabetes, the treatment of insulin dependent diabetes, the treatment of obesity, the suppression of appetite, or the suppression of heart disease. .
[0028] 本発明の GLP-1誘導体の投与量は、各種疾患の個々の患者に対して当業者によ つて決定されることが望ましい。しかし、一般的にはその投与量は、 1回体重 kgあたり 1 μ gから lmgまでの範囲内、好ましくは 1回体重 kgあたり 10 μ gから 100 μ gの範囲内と 考えられる。食時直前に使用し、 1日 1回から 3回以上投与することも可能である。  [0028] The dosage of the GLP-1 derivative of the present invention is desirably determined by those skilled in the art for individual patients with various diseases. In general, however, the dosage will be in the range of 1 μg to 1 mg per kg of body weight, preferably in the range of 10 μg to 100 μg per kg of body weight. It can be used immediately before meals and administered once to three or more times a day.
[0029] 以下に実施例、試験例でもって、更に本発明の説明を行う。尚、これらの実施例は 本発明の技術的範囲を限定するものではない。  [0029] Hereinafter, the present invention will be further described with reference to Examples and Test Examples. These examples do not limit the technical scope of the present invention.
実施例  Example
[0030] m GLP- 本の 成  [0030] m GLP- book composition
GLP-1誘導体の合成は、 Model 433Aペプチド合成機(Applied Biosystems, Foster City, CA)による固相合成によって行い、 HPLCにより精製後、マススペクトルにより合 成品を確認した。純度は大部分のものについて 95%以上のものを使用し、インビト口お よびインビボでの試験を行った。以下に合成した化合物とその略称を示す。  The GLP-1 derivative was synthesized by solid phase synthesis using a Model 433A peptide synthesizer (Applied Biosystems, Foster City, Calif.), Purified by HPLC, and the synthesized product was confirmed by mass spectrum. Purity was over 95% for the majority, and was tested in vitro and in vivo. The synthesized compounds and their abbreviations are shown below.
[0031] 製造例 1. [Ser8]_GLP- l(7-35)-Lys-Lys-Lys-Lys-Lys-Arg-COOH (配列番号 2)[0031] Production Example 1. [Ser 8 ] _GLP-l (7-35) -Lys-Lys-Lys-Lys-Lys-Arg-COOH (SEQ ID NO: 2)
• · -8S-GLP-l(7-35)+5 R-COOH • · -8S-GLP-l (7-35) +5 R-COOH
製造例 2· [Gly8]- GLP- 1(7- 35)- Lys- Lys- Lys- Lys- Lys- Arg- COOH (配列番号 3)Production Example 2 [Gly 8 ] -GLP-1 (7-35)-Lys- Lys- Lys- Lys- Lys- Arg- COOH (SEQ ID NO: 3)
• · -8G-GLP-l(7-35)+5 R-COOH • -8G-GLP-l (7-35) +5 R-COOH
比較製造例 1. GLP-1(7-36)_NH2 (天然型:配列番号 1。但し、 C末端はアミド化され ている。) · · · GLP-l(7-36)-NH Comparative production example 1. GLP-1 (7-36) _NH 2 (Natural type: SEQ ID NO: 1, provided that the C-terminus is amidated) GLP-l (7-36) -NH
比較製造例 2· [Ser8]-GLP-l(7-36)-NH (配列番号 4。但し、 C末端はアミド化されて いる。) · · -8S-GLP-l(7-36)-NH Comparative Production Example 2 [Ser 8 ] -GLP-l (7-36) -NH (SEQ ID NO: 4, where the C-terminus is amidated) · -8S-GLP-l (7-36) -NH
比較製造例 3· [Ser8]-GLP-l(7-35)-Lys-Lys-Lys-Lys-Lys-Arg-NH (配列番号 2。 但し、 C末端はアミド化されている。 ) · · -8S-GLP-l(7-35)+5 R-NH Comparative Production Example 3 [Ser 8 ] -GLP-l (7-35) -Lys-Lys-Lys-Lys-Lys-Arg-NH (SEQ ID NO: 2, provided that the C-terminus is amidated) -8S-GLP-l (7-35) +5 R-NH
比較製造例 4· [Gly8]-GLP-l(7-35)-Lys-Lys-Lys-Lys-Lys-Arg-NH (配列番号 3。 但し、 C末端はアミド化されている。 ) · · -8G-GLP-l(7-35)+5 R-NH Comparative Production Example 4 [Gly 8 ] -GLP-l (7-35) -Lys-Lys-Lys-Lys-Lys-Arg-NH (SEQ ID NO: 3. However, the C-terminal is amidated.) -8G-GLP-l (7-35) +5 R-NH
比較製造例 5· [Ser8]-GLP-l(7-36)-Arg-Arg-Arg-Arg-COOH (配列番号 5) • · -8S-GLP-l(7-36)+4R-COOH Comparative Production Example 5 [Ser 8 ] -GLP-l (7-36) -Arg-Arg-Arg-Arg-COOH (SEQ ID NO: 5) • -8S-GLP-l (7-36) + 4R-COOH
比較製造例 6· [Ser8]-GLP-l(7-36)-Arg-Arg-Arg-Arg-NH (配列番号 5。但し、 C末 端はアミド化されている。 ) · · -8S-GLP-l(7-36)+4R-NH Comparative Production Example 6 [Ser 8 ] -GLP-l (7-36) -Arg-Arg-Arg-Arg-NH (SEQ ID NO: 5, provided that the C-terminal is amidated) -8S -GLP-l (7-36) + 4R-NH
比較製造例 7· [Ser8]- GLP- 1(7- 36)- Lys- Lys- Lys- Lys- Lys- Lys- COOH (配列番号Comparative Production Example 7 · [Ser 8 ] -GLP-1 (7-36)-Lys- Lys- Lys- Lys- Lys- Lys- COOH (SEQ ID NO:
6) - - -8S-GLP-l(7-36)+6 -COOH 6)---8S-GLP-l (7-36) +6 -COOH
比較製造例 8· [Ser8]- GLP- 1(7- 36)- Lys- Lys- Lys- Lys- Lys- Lys- ΝΗ (配列番号 6。 但し、 C末端はアミド化されている。 ) · · -8S-GLP-l(7-36)+6 -NH Comparative Production Example 8 [Ser 8 ] -GLP-1 (7-36)-Lys- Lys- Lys- Lys- Lys- Lys- ΝΗ (SEQ ID NO: 6, provided that the C-terminus is amidated) -8S-GLP-l (7-36) +6 -NH
比較製造例 9· [Gly8]- GLP- 1(7- 36)- Lys- Lys- Lys- Lys- Lys- Lys- COOH (配列番号Comparative Preparation Example 9 [Gly 8 ] -GLP-1 (7-36)-Lys- Lys- Lys- Lys- Lys- Lys- COOH (SEQ ID NO:
7) - - -8G-GLP-l(7-36)+6 -COOH 7)---8G-GLP-l (7-36) +6 -COOH
比較製造例 10. [Gly8]- GLP- 1(7- 36)- Lys- Lys- Lys- Lys- Lys- Lys- NH (配列番号 7 。但し、 C末端はアミド化されている。 ) . . -8G-GLP-l(7-36)+6 -NH Comparative Production Example 10. [Gly 8 ] -GLP-1 (7-36) -Lys-Lys-Lys-Lys-Lys-Lys-NH (SEQ ID NO: 7, provided that the C-terminus is amidated). -8G-GLP-l (7-36) +6 -NH
[0032] 本発明の GLP-1誘導体として、上記製造例 1 , 2のペプチドを合成した。他にも、 W 02004/087910に基づいて、トリプシン耐性を付加した [Gln26,Asn34]-GLP-l(7-35)-Ly s- Lys- Lys- Lys- Lys- Arg- COOH (配列番号 8)、 [Ser8,Gln26,Asn34]- GLP- 1(7- 35)- Ly s-Lys-Lys-Lys-Lys-Arg-COOH (配列番号 9)等を本発明の GLP-1誘導体として合 成すること力 Sできる。また、段落 18, 19に記載された GLP-1変異体をもとに、本発明 の GLP-1誘導体を合成することもできる。一方、比較対照として合成した GLP-1誘導 体のうち、比較製造例 3〜6は、 WO2004/037859に記載されたペプチドとその置換体 、比較製造例 7〜10は、 WO2001/004156に記載されたペプチドとその置換体である[0032] As the GLP-1 derivative of the present invention, the peptides of Production Examples 1 and 2 were synthesized. In addition, [Gln 26 , Asn 34 ] -GLP-l (7-35) -Ly s- Lys- Lys- Lys- Lys- Arg- COOH (sequence) added with trypsin resistance based on W 02004/087910 No. 8), [Ser 8 , Gln 26 , Asn 34 ] -GLP-1 (7-35) -Lys-Lys-Lys-Lys-Lys-Arg-COOH (SEQ ID NO: 9) etc. It can be synthesized as one derivative. Further, the GLP-1 derivative of the present invention can be synthesized based on the GLP-1 mutant described in paragraphs 18 and 19. On the other hand, among the GLP-1 derivatives synthesized as a comparative control, Comparative Production Examples 3 to 6 are peptides and their substitutes described in WO2004 / 037859, and Comparative Production Examples 7 to 10 are described in WO2001 / 004156. Peptides and their substitutes
Yes
[0033] この先、本発明の GLP-1誘導体と、これらの比較対照の GLP-1誘導体との比較試 験でもって、本発明の GLP-1誘導体の優れた効果を示す。  [0033] The excellent effect of the GLP-1 derivative of the present invention will be shown in a comparative test between the GLP-1 derivative of the present invention and the comparative GLP-1 derivative.
[0034] 試験例 1 GLP-1誘導体の経鼻投与における血糖値低下効果 Test Example 1 Effect of GLP-1 Derivative on Lowering Blood Glucose Level by Nasal Administration
試験例 1 1〜1 6において、マウスに各種 GLP-1誘導体を経鼻投与し、ダルコ一 ス経口負荷後の血糖値の変動を調べる経口耐糖能試験(OGTT)により、 GLP-1誘 導体の薬効比較を行った。  Test Examples 1 In 1 to 16, various GLP-1 derivatives were administered nasally to mice, and oral glucose tolerance test (OGTT) was conducted to investigate changes in blood glucose levels after oral loading with Darcos. The efficacy was compared.
GLP-1誘導体は蒸留水で ImMに調製し、 _80°Cにストックした。試験時に生理食塩 水で所定の濃度に希釈して使用した。 エーテルで軽麻酔した ddYマウス(7週例、ォス)に、マイクロピペットを用いて 20〃 1 の GLP-1誘導体溶液を、チップの先から直接マウスの鼻にゆっくり放出し、呼吸ととも に鼻から吸引させた。 GLP-1誘導体を経鼻投与して 5分後、 10%グルコース溶液を 10 ml/kgの割合でゾンデにより経口投与した。 GLP-1 derivatives were prepared in ImM with distilled water and stocked at _80 ° C. At the time of the test, it was diluted to a predetermined concentration with physiological saline and used. Using a micropipette, 20〃 1 GLP-1 derivative solution is slowly released directly from the tip of the tip directly into the mouse's nose using a micropipette. It was aspirated from the nose. Five minutes after the nasal administration of the GLP-1 derivative, a 10% glucose solution was orally administered with a sonde at a rate of 10 ml / kg.
血糖値は、試験直前とグルコース投与後に、経時的に尾先端部を切除した傷口か ら血液数 1を揉み出し、小型血糖値測定機(ダルテスト Neo、(株)三和化学研究所) を用いて測定した。各 GLP-1誘導体投与群の投与前の血糖値からの上昇分の曲線 下面積(AUC 0-20分あるいは 0-120分)を算出した。  For blood glucose level, blood sample 1 was squeezed from the wound where the tip of the tail was excised over time immediately after the test and after glucose administration, using a small blood glucose meter (Daltest Neo, Sanwa Chemical Laboratory Co., Ltd.). Measured. The area under the curve (AUC 0-20 minutes or 0-120 minutes) from the blood glucose level before administration in each GLP-1 derivative administration group was calculated.
[0035] 試験例 1 1 [0035] Test Example 1 1
ここでは、製造例 1の GLP-1誘導体 8S-GLP-l(7_35)+5KR-COOHと比較製造例 3の GLP-1誘導体 8S-GLP-1(7_35)+5KR-NHをそれぞれ 1 nmol/mouseで投与し、薬効 比較を行った。コントロール群として、比較製造例 1の天然型 GLP-1である GLP-K7-3 6)-NHの 1及び 10 nmol/mouseを設定した。尚、比較製造例 3の GLP-1誘導体は、 W 02004/037859で最も活性の高かった GLP-1誘導体の 1つである。  Here, GLP-1 derivative 8S-GLP-l (7_35) + 5KR-COOH from Production Example 1 and GLP-1 derivative 8S-GLP-1 (7_35) + 5KR-NH from Comparative Production Example 3 were each 1 nmol / Administration by mouse and comparison of efficacy. As a control group, 1 and 10 nmol / mouse of GLP-K7-3 6) -NH, which is a natural GLP-1 of Comparative Production Example 1, were set. The GLP-1 derivative of Comparative Production Example 3 is one of the most active GLP-1 derivatives in W 02004/037859.
結果は図 1に示す。 8S-GLP-l(7_35)+5KR-COOHと 8S-GLP-1(7_35)+5KR-NHは 、経鼻投与においては、どちらも天然型 GLP-はり高活性であった力 C末端の Arg はアミド体よりカルボン酸体の方が高活性であることがわかった。  The results are shown in Figure 1. 8S-GLP-l (7_35) + 5KR-COOH and 8S-GLP-1 (7_35) + 5KR-NH are both naturally-occurring GLP-beam highly active C-terminal Arg Was found to be more active in the carboxylic acid form than in the amide form.
[0036] 試験例 1 2 [0036] Test Example 1 2
ここでは、比較製造例 5の GLP-1誘導体 8S-GLP-l(7_36)+4R-COOHと比較製造例 6の GLP-1誘導体 8S-GLP-1(7_36)+4R-NHをそれぞれ 1 nmol/mouseで投与し、薬 効比較を行った。コントロール群として、比較製造例 1の GLP-1(7-36)_NHの 1及び 10 nmol/mouseを設定した。尚、比較製造例 6の GLP-1誘導体は、 WO2004/037859で 最も活性の高力、つた GLP-1誘導体の 1つであり、比較製造例 5はその C末端カルボン 酸体である。  Here, GLP-1 derivative 8S-GLP-l (7_36) + 4R-COOH from Comparative Production Example 5 and GLP-1 derivative 8S-GLP-1 (7_36) + 4R-NH from Comparative Production Example 6 are each 1 nmol. Administered with / mouse and compared efficacy. As a control group, 1 and 10 nmol / mouse of GLP-1 (7-36) _NH of Comparative Production Example 1 were set. The GLP-1 derivative of Comparative Production Example 6 is one of the most active GLP-1 derivatives in WO2004 / 037859, and Comparative Production Example 5 is its C-terminal carboxylic acid form.
結果は図 2に示す。 8S-GLP-l(7_36)+4R-COOHと 8S-GLP-1(7_36)+4R-NHは、 経鼻投与においては、どちらも天然型 GLP-はり高活性であった力 C末端の Argは 、やはりアミド体よりカルボン酸体の方が高活性であることがわかった。  The results are shown in Figure 2. 8S-GLP-l (7_36) + 4R-COOH and 8S-GLP-1 (7_36) + 4R-NH were both active in nasal administration. It was also found that the carboxylic acid form is more active than the amide form.
[0037] 試験例 1 3 ここでは、試験例 1 1及び試験例 1 2で高活性でぁった8S-GLP-l(7-35)+5KR- COOHと8S-GLP-l(7-36)+4R-COOHをそれぞれ0·3, 1及び 3 nmol/mouseで投与し 、薬効比較を行った。コントロール群として、 GLP-1(7-36)_NHの 10 nmol/mouseを設 定した。 [0037] Test Example 1 3 Here, 8S-GLP-l (7-35) + 5KR-COOH and 8S-GLP-l (7-36) + 4R-COOH, which were highly active in Test Example 1 1 and Test Example 1 2, respectively Administration was performed at 0 · 3, 1 and 3 nmol / mouse to compare the efficacy. As a control group, 10 nmol / mouse of GLP-1 (7-36) _NH was set.
尚、この 2つの GLP-1誘導体の C末端側塩基性アミノ酸数は、 GLP-1の 36位がアル ギニンであるため 1残基の違いがあることになる力 これは、 WO2004/037859におい て、 C末端が 5Rよりも 4Rの方が経鼻投与では高活性であることが示されて!/、るからで ある。  Note that the number of basic amino acids on the C-terminal side of these two GLP-1 derivatives has a difference of one residue because position 36 of GLP-1 is arginine. This is described in WO2004 / 037859 This is because 4R is more active in nasal administration than 5R at the C-terminal! /.
結果は図 3に示す。 8S-GLP-l(7_35)+5KR-COOHは、経鼻投与においては、明ら 力、に 8S-GLP-l(7-36)+4R_COOHより高活性であることがわかった。前者の 1 nmol/m ouseが後者の 3 nmol/mouseよりも高活性であるため、活性の差は 3倍以上と考えられ  The results are shown in Figure 3. It was found that 8S-GLP-l (7_35) + 5KR-COOH was more active than nasal administration than 8S-GLP-l (7-36) + 4R_COOH. Since the former 1 nmol / mouse is more active than the latter 3 nmol / mouse, the difference in activity is thought to be more than 3 times.
[0038] 試験例 1 4 [0038] Test Example 1 4
ここでは、製造例 1の GLP-1誘導体 8S-GLP-l(7_35)+5KR-COOH、比較製造例 3の GLP-1誘導体 8S-GLP-1(7_35)+5KR-NH、比較製造例 7の GLP-1誘導体 8S_GLP_1( 7_36)+6K-COOH、及び比較製造例 8の GLP-1誘導体 8S-GLP-1(7_36)+6K-NHを それぞれ 1 nmol/mouseで投与し、薬効比較を行った。尚、比較製造例 8の GLP-1誘 導体は、 WO2001/004156に記載されている GLP-1誘導体の 8位セリン体であり、比 較製造例 7はその C末端カルボン酸体である。  Here, GLP-1 derivative 8S-GLP-l (7_35) + 5KR-COOH of Production Example 1 and GLP-1 derivative 8S-GLP-1 (7_35) + 5KR-NH of Comparative Production Example 3, Comparative Production Example 7 GLP-1 derivative 8S_GLP_1 (7_36) + 6K-COOH and GLP-1 derivative 8S-GLP-1 (7_36) + 6K-NH of Comparative Production Example 8 were each administered at 1 nmol / mouse to compare the efficacy. It was. The GLP-1 derivative of Comparative Production Example 8 is the 8-position serine of the GLP-1 derivative described in WO2001 / 004156, and Comparative Production Example 7 is its C-terminal carboxylic acid form.
結果は図 4に示す。 8S-GLP-l(7_35)+5KR-COOHは、経鼻投与においては、他の V、ずれの GLP-1誘導体よりも高活性であった。 C末端側の 5KR-COOHと 6K-COOH の比較から、 C末端のアミノ酸は、リジンよりもアルギニンの方力 経鼻投与における 効果が高いことがわかる。尚、 C末端側に 6Kが付加された GLP-1誘導体においては 、 5KRの場合とは異なって、カルボン酸体よりアミド体の効果が高いことが明らかとな つた。  The results are shown in Figure 4. 8S-GLP-l (7_35) + 5KR-COOH was more active in nasal administration than other V and misaligned GLP-1 derivatives. From the comparison of 5KR-COOH and 6K-COOH on the C-terminal side, it can be seen that the amino acid at the C-terminal is more effective in nasal administration of arginine than lysine. In addition, in the GLP-1 derivative with 6K added to the C-terminal side, unlike the case of 5KR, it has been clarified that the effect of the amide form is higher than that of the carboxylic acid form.
[0039] 試験例 1 5  [0039] Test Example 1 5
ここでは、試験例 1—4と同様の試験を 8位グリシン体で行った。即ち、製造例 2の G LP-1誘導体 8G-GLP-l(7_35)+5KR-COOH、比較製造例 4の GLP-1誘導体 8G-GLP -l(7-35)+5 R-NH、比較製造例 9の GLP-1誘導体 8G-GLP-l(7_36)+6K-COOH、 及び比較製造例 10の GLP-1誘導体 8G-GLP-1(7_36)+6K-NHをそれぞれ 1 nmol/m ouseで投与し、薬効比較を行った。コントロール群として、 GLP-1(7-36)_NHの 10 nm ol/mouseを設定した。尚、比較製造例 10の GLP-1誘導体は WO2001/004156に記載 の GLP-1誘導体であり、比較製造例 9はその C末端カルボン酸体である。 Here, the same test as in Test Example 1-4 was performed on the 8-position glycine body. That is, GLP-1 derivative 8G-GLP-l (7_35) + 5KR-COOH of Production Example 2 and GLP-1 derivative 8G-GLP of Comparative Production Example 4 -l (7-35) +5 R-NH, GLP-1 derivative 8G-GLP-1 in Comparative Preparation Example 8G-GLP-l (7_36) + 6K-COOH, and GLP-1 derivative 8G-GLP-1 in Comparative Preparation 10 (7_36) + 6K-NH was administered at 1 nmol / mouse, and the efficacy was compared. As a control group, 10 nmol / mouse of GLP-1 (7-36) _NH was set. The GLP-1 derivative of Comparative Production Example 10 is the GLP-1 derivative described in WO2001 / 004156, and Comparative Production Example 9 is its C-terminal carboxylic acid form.
結果は図 5に示す。 8位グリシン体においても、 8位セリン体と同様の結果が得られ た。尚、本発明の GLP-1誘導体においても、 WO2001/004156に記載の GLP-1誘導 体においても、 8位グリシン体と 8位セリン体は、ほぼ同等の活性を示している。  The results are shown in FIG. The same results as in the 8-position serine were obtained in the 8-position glycine form. In the GLP-1 derivative of the present invention and the GLP-1 derivative described in WO2001 / 004156, the 8-position glycine body and the 8-position serine body show substantially the same activity.
[0040] 試験例 1 6 [0040] Test Example 1 6
ここでは、製造例 1の GLP-1誘導体 8S-GLP-l(7_35)+5KR-COOHと比較製造例 10 の GLP-1誘導体 8G-GLP-1(7_36)+6K-NHをそれぞれ 0.3, 1及び 3 nmol/mouseで投 与し、薬効比較を行った。  Here, GLP-1 derivative 8S-GLP-l (7_35) + 5KR-COOH from Production Example 1 and GLP-1 derivative 8G-GLP-1 (7_36) + 6K-NH from Comparative Production Example 10 are 0.3 and 1 respectively. And 3 nmol / mouse to compare the efficacy.
結果は図 6に示す。 8位セリン体と 8位グリシン体の比較にはなる力 8S-GLP-K7-3 5)+5KR-COOHの方が高活性であった。 IC 値を求めると、 8S-GLP-1(7_35)+5KR-C The results are shown in FIG. The force 8S-GLP-K7-3 5) + 5KR-COOH, which is comparable to the 8-position serine and the 8-position glycine, was more active. IC value is 8S-GLP-1 (7_35) + 5KR-C
OOHは 1.6 nmol/mouse、 8G- GLP-1(7_36)+6K- NH力 ·9 nmol/mouseで、その比は 3.1倍であった。 OOH was 1.6 nmol / mouse, 8G-GLP-1 (7_36) + 6K-NH power 9 nmol / mouse, and the ratio was 3.1 times.
[0041] 試,験 2 GLP- ί本の fl草 [0041] Trial, Trial 2 GLP- ί 本 FL grass
ここでは、マウスに GLP-1誘導体を経鼻投与し、その血中動態および吸収率を調べ た。投与した GLP-1誘導体は、製造例 1の 8S-GLP-l(7_35)+5KR-COOHで、 30及び lOOnmol/kgで投与した。対照薬物として、比較製造例 1の天然型の GLP_1(7_36)-N H及び比較製造例 2の GLP-1誘導体 8S-GLP-1(7-36)_NHをそれぞれ 100及び 300η mol/kgで投与した。  Here, GLP-1 derivatives were administered intranasally to mice, and their blood kinetics and absorption rate were examined. The administered GLP-1 derivative was 8S-GLP-l (7_35) + 5KR-COOH of Production Example 1, and was administered at 30 and lOOnmol / kg. As control drugs, natural GLP_1 (7_36) -NH from Comparative Production Example 1 and GLP-1 derivative 8S-GLP-1 (7-36) _NH from Comparative Production Example 2 were administered at 100 and 300 ηmol / kg, respectively. .
マウスは ddYマウス(7週例、ォス)を使用、 GLP-1誘導体の経鼻投与直前に、へパリ ン処理したガラスキヤピラリーを用いて眼窩静脈叢より 100 1を採血し、これから得ら れる血中 GLP-1濃度を投与 0分での値とした。次に、マウスをエーテルで軽麻酔し、 マイクロピペットを用いて 20 1の GLP-1誘導体溶液を、ピペットチップの先から直接 マウスの鼻にゆっくりと放出した。その後経時的に眼窩静脈叢より 100 採血し、遠 心分離により血漿を得た。血漿中 GLP-1濃度は、 GLP-l(total)RIAキット(LINCO, Ca t No. GLP1T-36HK)により測定し、吸収率を求めた。尚、吸収率は、各 GLP-1誘導 体を静脈内投与したときの吸収を 100%としたときの各 GLP-1誘導体の経鼻投与によ る吸収率を示す。 Mice were ddY mice (7 weeks, male), and 100 1 was collected from the orbital venous plexus using a heparin-treated glass capillary immediately before nasal administration of the GLP-1 derivative. The blood GLP-1 concentration was defined as the value at 0 minutes after administration. Next, the mice were lightly anesthetized with ether, and 20 1 GLP-1 derivative solution was slowly released from the tip of the pipette tip directly into the nose of the mouse using a micropipette. Thereafter, 100 blood samples were collected from the orbital venous plexus over time, and plasma was obtained by centrifuge separation. Plasma GLP-1 concentration was measured using the GLP-l (total) RIA kit (LINCO, Ca t No. GLP1T-36HK) to determine the absorption rate. The absorption rate indicates the absorption rate by nasal administration of each GLP-1 derivative when the absorption when each GLP-1 derivative was intravenously administered was taken as 100%.
結果は、図 7に GLP-1誘導体の血中濃度推移を、表 1に GLP-1誘導体の吸収率を 示す。本発明品の GLP-1誘導体である 8S-GLP-l(7_35)+5KR-COOHの 30 nmol/kg 投与群は、対照投与群である天然型の GLP-1(7-36)_NHの 100 nmol/kg投与群、及 び 8S-GLP-1(7-36)_NHの 100 nmol/kg投与群とほぼ同一の血中濃度推移を示し、 同様に、本発明品の 100 nmol/kg投与群は、対照薬の 300 nmol/kg投与群とほぼ同 一の血中濃度推移を示した。このように、本発明の GLP-1誘導体である 8S-GLP-K7- 35)+5KR-COOHは、 C末端に 5KR-COOHのない、天然型の GLP-1(7_36)-NHや 8S -GLP-l(7-36)-NHのほぼ 1/3の投与量で、同一の血中濃度を達成できることがわ かった。同一投与量 100 nmol/kgにおける吸収率を比較すると、 8S-GLP-1(7_35)+5K R-COOHは、天然型の GLP-1(7-36)_NHや 8S-GLP-1(7_36)-NHのほぼ 6倍の高い 吸収率を示した。  The results are shown in Fig. 7 and the changes in blood concentration of GLP-1 derivatives. Table 1 shows the absorption rate of GLP-1 derivatives. The 30 nmol / kg group of 8S-GLP-l (7_35) + 5KR-COOH, which is the GLP-1 derivative of the present invention, is the control group of natural GLP-1 (7-36) _NH. It showed almost the same blood concentration transition of the nmol / kg administration group and the 100 nmol / kg administration group of 8S-GLP-1 (7-36) _NH. Similarly, the 100 nmol / kg administration group of the product of the present invention The blood concentration was almost the same as that of the 300 nmol / kg group of the control drug. Thus, 8S-GLP-K7-35) + 5KR-COOH, which is a GLP-1 derivative of the present invention, is a natural GLP-1 (7_36) -NH or 8S − It was found that the same blood concentration could be achieved with almost 1/3 dose of GLP-l (7-36) -NH. Comparing the absorption rate at the same dose of 100 nmol / kg, 8S-GLP-1 (7_35) + 5K R-COOH is the natural GLP-1 (7-36) _NH and 8S-GLP-1 (7_36) The absorption rate was almost 6 times higher than that of -NH.
本試験の結果は、試験例 1の経鼻投与の評価系で本発明品の GLP-1誘導体が高 活性を示した理由力 S、その高い粘膜吸収性にあることを示している。  The results of this test indicate that the GLP-1 derivative of the present invention showed high activity in the nasal administration evaluation system of Test Example 1, and that it has high mucosal absorbability.
[表 1] マウスへの経鼻投与による G L P - 1誘導体の吸収率[Table 1] Absorption rate of GL P-1 derivative by nasal administration to mice
Figure imgf000015_0001
Figure imgf000015_0001
図面の簡単な説明 Brief Description of Drawings
[図 1]試験例 1 1にお!/、て、 8S-GLP-l(7_35)+5KR-COOHと 8S-GLP-1(7_35)+5KR -NHの血糖低下効果を経鼻投与で比較した結果を示す図である。図中において、 化合物略称名の後ろのカツコ内の数字は、投与量(nmol/mouse)を示す。  [Fig.1] Comparison of the blood glucose lowering effects of 8S-GLP-l (7_35) + 5KR-COOH and 8S-GLP-1 (7_35) + 5KR-NH by nasal administration in Test Example 1 1! It is a figure which shows the result. In the figure, the number in brackets after the compound abbreviation name indicates the dose (nmol / mouse).
[図 2]試験例 1—2において、 8S-GLP-l(7_36)+4R-COOHと 8S-GLP-1(7_36)+4R-N の血糖低下効果を経鼻投与で比較した結果を示す図である。図中において、化 合物略称名の後ろのカツコ内の数字は、投与量(nmol/mouse)を示す。 [Figure 2] In Test Example 1-2, 8S-GLP-1 (7_36) + 4R-COOH and 8S-GLP-1 (7_36) + 4R-N It is a figure which shows the result of having compared the blood glucose lowering effect of nasal administration. In the figure, the number in brackets after the compound abbreviation name indicates the dose (nmol / mouse).
[図 3]試験例 1—3において、 8S-GLP-l(7_35)+5KR-COOHと 8S-GLP-1(7_36)+4R- [Figure 3] In Test Example 1-3, 8S-GLP-l (7_35) + 5KR-COOH and 8S-GLP-1 (7_36) + 4R-
COOHの血糖低下効果を経鼻投与で比較した結果を示す図である。図中においてIt is a figure which shows the result which compared the blood glucose lowering effect of COOH by nasal administration. In the figure
、化合物略称名の後ろのカツコ内の数字は、投与量(nmol/mouse)を示す。 The number in brackets after the compound abbreviation name indicates the dose (nmol / mouse).
[図 4]試験例 1—4において、 8位セリン体である 8S-GLP-l(7_35)+5KR-COOH、 8S- [Fig. 4] In Test Example 1-4, 8S-GLP-l (7_35) + 5KR-COOH, 8S-
GLP-l(7-35)+5 R-NH、 8S-GLP-l(7_36)+6K-COOH、及び 8S-GLP-1(7_36)+6K-GLP-l (7-35) +5 R-NH, 8S-GLP-l (7_36) + 6K-COOH, and 8S-GLP-1 (7_36) + 6K-
NHの血糖低下効果を経鼻投与で比較した結果を示す図である。図中において、化 合物略称名の後ろのカツコ内の数字は、投与量(nmol/mouse)を示す。 It is a figure which shows the result of having compared the blood glucose lowering effect of NH by nasal administration. In the figure, the number in brackets after the compound abbreviation name indicates the dose (nmol / mouse).
[図 5]試験例 1—5において、 8位グリシン体である 8G-GLP-l(7_35)+5KR-COOH、 8 [Fig. 5] In Test Example 1-5, 8G-GLP-l (7_35) + 5KR-COOH, which is 8-position glycine, 8
G-GLP-l(7-35)+5 R-NH、 8G-GLP-l(7_36)+6K-COOH、及び 8G-GLP-l(7_36)+6 -NHの血糖低下効果を経鼻投与で比較した結果を示す図である。図中において、 化合物略称名の後ろのカツコ内の数字は、投与量(nmol/mouse)を示す。 G-GLP-l (7-35) +5 R-NH, 8G-GLP-l (7_36) + 6K-COOH, and 8G-GLP-l (7_36) + 6-NH It is a figure which shows the result compared by. In the figure, the number in brackets after the compound abbreviation name indicates the dose (nmol / mouse).
[図 6]試験例 1—6において、 8S-GLP-l(7_35)+5KR-COOHと 8G-GLP-1(7_36)+6K- [Figure 6] In Test Example 1-6, 8S-GLP-l (7_35) + 5KR-COOH and 8G-GLP-1 (7_36) + 6K-
NHの血糖低下効果を経鼻投与で比較した結果を示す図である。図中において、化 合物略称名の後ろのカツコ内の数字は、投与量(nmol/mouse)を示す。 It is a figure which shows the result of having compared the blood glucose lowering effect of NH by nasal administration. In the figure, the number in brackets after the compound abbreviation name indicates the dose (nmol / mouse).
[図 7]試験例 2において、 8S-GLP-l(7_35)+5KR-COOH、 GLP-1(7_36)-NH、及び 8S [Fig. 7] In Test Example 2, 8S-GLP-l (7_35) + 5KR-COOH, GLP-1 (7_36) -NH, and 8S
-GLP-l(7-36)-NHを経鼻投与した時の血中濃度推移を示す図である。図中におい て、化合物略称名の後ろのカツコ内の数字は、投与量 (nmol/kg)を示す。 It is a figure which shows the blood concentration transition when nasally administering -GLP-l (7-36) -NH. In the figure, the number in parentheses after the compound abbreviation name indicates the dose (nmol / kg).

Claims

請求の範囲 The scope of the claims
[I] GLP- 7-35)又は GLP- 7-36)のアミノ酸酉己列、或いはそれらのアミノ酸配列の 1もし くは数個のアミノ酸が欠失、置換及び/又は付加された配列からなり、かつ GLP-1活 性を有するペプチドの C末端に(Lys) n— Arg(nは 4〜8の整数で、 Argはカルボン酸 体)が付加されたペプチド。  [I] The amino acid sequence of GLP-7-35) or GLP-7-36), or a sequence in which one or several amino acids in the amino acid sequence are deleted, substituted and / or added. A peptide in which (Lys) n-Arg (n is an integer of 4 to 8, Arg is a carboxylic acid) is added to the C-terminus of a peptide having GLP-1 activity.
[2] GLP- 7-35)又は GLP- 7-36)のアミノ酸酉己列、或いはそれらのアミノ酸配列と 85% 以上の相同性を有する配列からなり、かつ、 GLP-1活性を有するペプチドの C末端に (1^¾) 11ー八 (11は4〜8の整数で、 Argはカルボン酸体)が付加されたペプチド。 [2] An amino acid sequence of GLP-7-35) or GLP-7-36), or a peptide having a GLP-1 activity consisting of a sequence having 85% or more homology with those amino acid sequences Peptides with (1 ^ ¾) 11-8 ( 1 1 is an integer of 4-8, Arg is a carboxylic acid) added to the C-terminus.
[3] GLP-1アミノ酸配列の 8位が Ser又は Glyである、請求項 1又は 2に記載のペプチド。 [3] The peptide according to claim 1 or 2, wherein position 8 of the GLP-1 amino acid sequence is Ser or Gly.
[4] GLP-1アミノ酸配列の 26位が Gln、 34位力 SAsnである、請求項 1又は 2に記載のぺプ チド。 [4] The peptide according to claim 1 or 2, wherein position 26 of the GLP-1 amino acid sequence is Gln and position 34 is SAsn.
[5] nが 5である、請求項 1又は 2に記載のペプチド。  [5] The peptide according to claim 1 or 2, wherein n is 5.
[6] [Ser8]-GLP-l(7-35)- (Lys) —Argで表される、請求項 1又は 2に記載のペプチド。 [6] The peptide according to claim 1 or 2, represented by [Ser 8 ] -GLP-l (7-35)-(Lys) —Arg.
5  Five
[7] 天然型 GLP-はりも高い粘膜吸収率を有することを特徴とする、請求項 1又は 2のい ずれかに記載のペプチド。  [7] The peptide according to any one of claims 1 and 2, wherein the natural GLP-beam also has a high mucosal absorption rate.
[8] 請求項 1又は 2のいずれかに記載のペプチドを有効成分として含む医薬組成物。 [8] A pharmaceutical composition comprising the peptide according to claim 1 or 2 as an active ingredient.
[9] 経粘膜投与で用いることを特徴とする、請求項 8に記載の医薬組成物。 9. The pharmaceutical composition according to claim 8, which is used for transmucosal administration.
[10] 経粘膜投与が、経鼻投与である、請求項 9に記載の医薬組成物。 10. The pharmaceutical composition according to claim 9, wherein the transmucosal administration is nasal administration.
[I I] 糖尿病の処置、肥満の処置、又は食欲抑制のために用いる、請求項 8に記載の医薬 組成物。  [I I] The pharmaceutical composition according to claim 8, which is used for treating diabetes, treating obesity, or suppressing appetite.
[12] 糖尿病、肥満又は摂食障害の治療剤を製造するための請求項 1又は 2に記載のぺ プチドの使用。  [12] Use of the peptide according to claim 1 or 2 for producing a therapeutic agent for diabetes, obesity or eating disorders.
PCT/JP2007/071687 2006-11-09 2007-11-08 Glp-1 derivative and use thereof WO2008056726A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006304380A JP2010043001A (en) 2006-11-09 2006-11-09 Glp-1 derivative and use thereof
JP2006-304380 2006-11-09

Publications (1)

Publication Number Publication Date
WO2008056726A1 true WO2008056726A1 (en) 2008-05-15

Family

ID=39364537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071687 WO2008056726A1 (en) 2006-11-09 2007-11-08 Glp-1 derivative and use thereof

Country Status (2)

Country Link
JP (1) JP2010043001A (en)
WO (1) WO2008056726A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009021740A2 (en) 2007-08-15 2009-02-19 Sanofis-Aventis Substituted tetrahydronaphthalenes, process for the preparation thereof and the use thereof as medicaments
WO2011107494A1 (en) 2010-03-03 2011-09-09 Sanofi Novel aromatic glycoside derivatives, medicaments containing said compounds, and the use thereof
DE102010015123A1 (en) 2010-04-16 2011-10-20 Sanofi-Aventis Deutschland Gmbh New benzylamidic diphenylazetidinone compounds, useful for treating lipid disorders, hyperlipidemia, atherosclerotic manifestations or insulin resistance, and for reducing serum cholesterol levels
WO2011157827A1 (en) 2010-06-18 2011-12-22 Sanofi Azolopyridin-3-one derivatives as inhibitors of lipases and phospholipases
WO2011161030A1 (en) 2010-06-21 2011-12-29 Sanofi Heterocyclic substituted methoxyphenyl derivatives having an oxo group, method for producing same, and use thereof as gpr40 receptor modulators
WO2012004269A1 (en) 2010-07-05 2012-01-12 Sanofi (2-aryloxy-acetylamino)-phenyl-propionic acid derivatives, method for producing same and use thereof as pharmaceuticals
WO2012004270A1 (en) 2010-07-05 2012-01-12 Sanofi Spirocyclically substituted 1,3-propane dioxide derivatives, methods for the production thereof and use of the same as medicament
WO2012010413A1 (en) 2010-07-05 2012-01-26 Sanofi Aryloxy-alkylene substituted hydroxyphenyl hexynoic acids, methods for the production thereof and use of the same as medicament
EP2567959A1 (en) 2011-09-12 2013-03-13 Sanofi 6-(4-Hydroxy-phenyl)-3-styryl-1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid amide derivatives as kinase inhibitors
WO2013037390A1 (en) 2011-09-12 2013-03-21 Sanofi 6-(4-hydroxy-phenyl)-3-styryl-1h-pyrazolo[3,4-b]pyridine-4-carboxylic acid amide derivatives as kinase inhibitors
WO2013045413A1 (en) 2011-09-27 2013-04-04 Sanofi 6-(4-hydroxy-phenyl)-3-alkyl-1h-pyrazolo[3,4-b]pyridine-4-carboxylic acid amide derivatives as kinase inhibitors
CN103087174A (en) * 2011-11-03 2013-05-08 华东师范大学 GLP-1 derivative DLG3312 and solid-phase chemical synthesis method thereof
WO2014064215A1 (en) 2012-10-24 2014-05-01 INSERM (Institut National de la Santé et de la Recherche Médicale) TPL2 KINASE INHIBITORS FOR PREVENTING OR TREATING DIABETES AND FOR PROMOTING β-CELL SURVIVAL
WO2016151018A1 (en) 2015-03-24 2016-09-29 INSERM (Institut National de la Santé et de la Recherche Médicale) Method and pharmaceutical composition for use in the treatment of diabetes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016035820A1 (en) * 2014-09-02 2017-06-22 学校法人東京理科大学 Centrally acting peptide derivatives and pharmaceutical compositions

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545618A (en) * 1990-01-24 1996-08-13 Buckley; Douglas I. GLP-1 analogs useful for diabetes treatment
WO2001004156A1 (en) * 1999-07-12 2001-01-18 Zealand Pharmaceuticals A/S Peptides that lower blood glucose levels
JP2001516765A (en) * 1997-09-12 2001-10-02 ヴォルフ ゲオルグ フォースマン Compositions for the treatment of diabetes mellitus and obesity
JP2002508162A (en) * 1998-02-27 2002-03-19 ノボ ノルディスク アクティーゼルスカブ GLP-1 derivative with shortened N-terminus
WO2004003759A1 (en) * 2002-06-27 2004-01-08 Nazomi Communicatons, Inc. Application processors and memory architecture for wireless applications
WO2005028516A2 (en) * 2003-09-19 2005-03-31 Novo Nordisk A/S Albumin-binding derivatives of therapeutic peptides
WO2005027978A2 (en) * 2003-09-19 2005-03-31 Novo Nordisk A/S Albumin-binding derivatives of therapeutic peptides
WO2005065714A1 (en) * 2003-12-26 2005-07-21 Nastech Pharmaceutical Company Inc. Intranasal administration of glucose-regulating peptides
JP2005523877A (en) * 2001-10-01 2005-08-11 イーライ・リリー・アンド・カンパニー Method for reducing mortality and morbidity associated with serious illness
WO2005085458A2 (en) * 2004-02-27 2005-09-15 Nitto Denko Corporation Polyacetal-peptide mediated transfection

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545618A (en) * 1990-01-24 1996-08-13 Buckley; Douglas I. GLP-1 analogs useful for diabetes treatment
JP2001516765A (en) * 1997-09-12 2001-10-02 ヴォルフ ゲオルグ フォースマン Compositions for the treatment of diabetes mellitus and obesity
JP2002508162A (en) * 1998-02-27 2002-03-19 ノボ ノルディスク アクティーゼルスカブ GLP-1 derivative with shortened N-terminus
WO2001004156A1 (en) * 1999-07-12 2001-01-18 Zealand Pharmaceuticals A/S Peptides that lower blood glucose levels
JP2005523877A (en) * 2001-10-01 2005-08-11 イーライ・リリー・アンド・カンパニー Method for reducing mortality and morbidity associated with serious illness
WO2004003759A1 (en) * 2002-06-27 2004-01-08 Nazomi Communicatons, Inc. Application processors and memory architecture for wireless applications
WO2005028516A2 (en) * 2003-09-19 2005-03-31 Novo Nordisk A/S Albumin-binding derivatives of therapeutic peptides
WO2005027978A2 (en) * 2003-09-19 2005-03-31 Novo Nordisk A/S Albumin-binding derivatives of therapeutic peptides
WO2005065714A1 (en) * 2003-12-26 2005-07-21 Nastech Pharmaceutical Company Inc. Intranasal administration of glucose-regulating peptides
WO2005085458A2 (en) * 2004-02-27 2005-09-15 Nitto Denko Corporation Polyacetal-peptide mediated transfection

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009021740A2 (en) 2007-08-15 2009-02-19 Sanofis-Aventis Substituted tetrahydronaphthalenes, process for the preparation thereof and the use thereof as medicaments
WO2011107494A1 (en) 2010-03-03 2011-09-09 Sanofi Novel aromatic glycoside derivatives, medicaments containing said compounds, and the use thereof
DE102010015123A1 (en) 2010-04-16 2011-10-20 Sanofi-Aventis Deutschland Gmbh New benzylamidic diphenylazetidinone compounds, useful for treating lipid disorders, hyperlipidemia, atherosclerotic manifestations or insulin resistance, and for reducing serum cholesterol levels
WO2011157827A1 (en) 2010-06-18 2011-12-22 Sanofi Azolopyridin-3-one derivatives as inhibitors of lipases and phospholipases
WO2011161030A1 (en) 2010-06-21 2011-12-29 Sanofi Heterocyclic substituted methoxyphenyl derivatives having an oxo group, method for producing same, and use thereof as gpr40 receptor modulators
WO2012004270A1 (en) 2010-07-05 2012-01-12 Sanofi Spirocyclically substituted 1,3-propane dioxide derivatives, methods for the production thereof and use of the same as medicament
WO2012004269A1 (en) 2010-07-05 2012-01-12 Sanofi (2-aryloxy-acetylamino)-phenyl-propionic acid derivatives, method for producing same and use thereof as pharmaceuticals
WO2012010413A1 (en) 2010-07-05 2012-01-26 Sanofi Aryloxy-alkylene substituted hydroxyphenyl hexynoic acids, methods for the production thereof and use of the same as medicament
EP2567959A1 (en) 2011-09-12 2013-03-13 Sanofi 6-(4-Hydroxy-phenyl)-3-styryl-1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid amide derivatives as kinase inhibitors
WO2013037390A1 (en) 2011-09-12 2013-03-21 Sanofi 6-(4-hydroxy-phenyl)-3-styryl-1h-pyrazolo[3,4-b]pyridine-4-carboxylic acid amide derivatives as kinase inhibitors
WO2013045413A1 (en) 2011-09-27 2013-04-04 Sanofi 6-(4-hydroxy-phenyl)-3-alkyl-1h-pyrazolo[3,4-b]pyridine-4-carboxylic acid amide derivatives as kinase inhibitors
CN103087174A (en) * 2011-11-03 2013-05-08 华东师范大学 GLP-1 derivative DLG3312 and solid-phase chemical synthesis method thereof
CN103087174B (en) * 2011-11-03 2015-11-18 华东师范大学 A kind of GLP-1 derivative DLG3312 and solid-state chemical reaction method method thereof
WO2014064215A1 (en) 2012-10-24 2014-05-01 INSERM (Institut National de la Santé et de la Recherche Médicale) TPL2 KINASE INHIBITORS FOR PREVENTING OR TREATING DIABETES AND FOR PROMOTING β-CELL SURVIVAL
WO2016151018A1 (en) 2015-03-24 2016-09-29 INSERM (Institut National de la Santé et de la Recherche Médicale) Method and pharmaceutical composition for use in the treatment of diabetes

Also Published As

Publication number Publication date
JP2010043001A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
WO2008056726A1 (en) Glp-1 derivative and use thereof
JP6229038B2 (en) Modified vasoactive intestinal peptide
AU2003272970B2 (en) GLP-1 derivatives and transmicosal absorption preparations thereof
TWI547499B (en) Glucagon/glp-1 receptor co-agonists
JP5657230B2 (en) Administration method of GLP-1 molecule
EP0964873B1 (en) Use of glucagon-like peptide-1 (glp-1) or analogs to abolish catabolic changes after surgery
JP7461997B2 (en) ELP Fusion Proteins for Controlled and Sustained Release
TWI353250B (en) Glp-1 pharmaceutical compositions
JP2002509078A (en) Inotropic and diuretic effects of exendin and GLP-1
CN103596595A (en) Composition for treating diabetes comprising long-acting insulin conjugate and long-acting insulinotropic peptide conjugate
WO2011109787A1 (en) Methods of administering insulinotropic peptides
US20100298213A1 (en) Pharmaceutically Active Insulin Receptor-Modulating Molecules
CZ165199A3 (en) Medicament for reducing body weight or obesity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP