WO2008050531A1 - Dispositif de sortie de puissance, dispositif de moteur à combustion interne et leur procédé de commande - Google Patents

Dispositif de sortie de puissance, dispositif de moteur à combustion interne et leur procédé de commande Download PDF

Info

Publication number
WO2008050531A1
WO2008050531A1 PCT/JP2007/066410 JP2007066410W WO2008050531A1 WO 2008050531 A1 WO2008050531 A1 WO 2008050531A1 JP 2007066410 W JP2007066410 W JP 2007066410W WO 2008050531 A1 WO2008050531 A1 WO 2008050531A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
fuel injection
engine
power
Prior art date
Application number
PCT/JP2007/066410
Other languages
English (en)
French (fr)
Inventor
Ikuo Ando
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP07806028.2A priority Critical patent/EP2078651A4/en
Priority to US12/444,422 priority patent/US8032289B2/en
Publication of WO2008050531A1 publication Critical patent/WO2008050531A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0005Controlling intake air during deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/52Clutch motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/463Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/24Driver interactions by lever actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/12Catalyst or filter state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/501Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a power output device, an internal combustion engine device, and control methods thereof, and more specifically, a power output device that outputs power to a drive shaft, and a purification device that purifies exhaust gas using a catalyst having a high oxygen storage capacity.
  • the present invention relates to an internal combustion engine device including the internal combustion engine having the above-mentioned and a control method for such a power output device and the internal combustion engine device.
  • the deterioration of the catalyst is suppressed by making the intake air amount of the engine smaller than that during idling, and when the vehicle speed is lower than the first vehicle speed, the intake air amount of the engine is idling.
  • the catalyst odor is suppressed by making it more than the time.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2006-29323
  • the ratio of the fuel to the stoichiometric air-fuel ratio is set to improve the engine startability. This is done by increasing the amount of fuel so as to increase. As described above, if fuel injection is performed by increasing the amount of fuel from the stoichiometric air-fuel ratio while increasing the amount of intake air in order to suppress the catalyst odor, a sufficient amount of air is also present in the exhaust pipe. In some cases, so-called afterfire phenomenon occurs in the exhaust pipe.
  • the power output apparatus, internal combustion engine apparatus, and control methods thereof according to the present invention suppress the catalyst odor caused by the catalyst for purifying the exhaust gas of the internal combustion engine when the fuel is cut, and cut the fuel.
  • the purpose is to prevent afterfire from occurring when the engine is restored (when fuel injection is resumed).
  • the power output apparatus, internal combustion engine apparatus, and control method thereof according to the present invention employ the following means in order to achieve the above-described object.
  • the first power output device of the present invention is a power output device that outputs power to the drive shaft, and can rotate independently of the drive shaft and can output a part of the power to the drive shaft.
  • An internal combustion engine having a purification device that is connected to the drive shaft and purifies exhaust gas using a catalyst having a high oxygen storage capacity, a rotation speed adjustment means that can adjust the rotation speed of the output shaft of the internal combustion engine, and an accelerator off
  • the internal combustion engine is controlled so that the fuel injection to the internal combustion engine is stopped and the air supplied to the internal combustion engine is increased, and then the internal combustion engine What When restarting the fuel injection, the fuel injection amount at the time of return fuel injection is increased with respect to the amount of air sucked into the internal combustion engine from the fuel injection amount when the internal combustion engine is in steady operation.
  • the internal combustion engine is controlled so that fuel injection to the internal combustion engine is resumed.
  • the negative rotational speed reduction control is executed to control the internal combustion engine and the rotational speed adjusting means so as to decrease the rotational speed of the output shaft of the internal combustion engine without any adjustment, the internal combustion engine
  • the internal combustion engine When the internal combustion engine is controlled so that the amount of air supplied to the internal combustion engine is increased and then the fuel injection to the internal combustion engine is restarted, the return fuel injection amount is And a control means for controlling the internal combustion engine so as to restart the fuel injection to the internal combustion engine by performing a fuel injection with a small fuel injection amount.
  • active rotational speed reduction control is performed to control the internal combustion engine and the rotational speed adjusting means so that the rotational speed of the output shaft of the internal combustion engine is reduced when the accelerator is off.
  • the fuel injection to the internal combustion engine is stopped and the internal combustion engine is controlled so that the amount of air supplied to the internal combustion engine is increased. This suppresses the catalyst odor That power S.
  • the internal combustion engine is controlled so that the fuel injection of the return fuel injection amount is performed and the fuel injection to the internal combustion engine is resumed.
  • the rotational speed of the internal combustion engine is rapidly reduced by the rotational speed adjustment adjusting means, it is possible to suppress the amount of air in the exhaust pipe as compared with the case where the rotational speed is not adjusted. For this reason, in order to improve the startability of the internal combustion engine, afterfire is hardly generated even when fuel injection is performed at the return fuel injection amount increased from the fuel injection amount when the internal combustion engine is in steady operation.
  • the internal combustion engine and the rotational speed adjusting means are controlled so that the rotational speed of the output shaft of the internal combustion engine is reduced without adjusting the rotational speed of the output shaft of the internal combustion engine by the rotational speed adjusting means.
  • the passive rotation speed reduction control When the passive rotation speed reduction control is being executed, the fuel injection to the internal combustion engine is stopped and the internal combustion engine is controlled so that the amount of air supplied to the internal combustion engine is increased. As a result, the catalyst odor can be suppressed in the same manner as when the active rotational speed reduction control is executed.
  • the internal combustion engine When the fuel injection to the internal combustion engine is resumed thereafter, the internal combustion engine is controlled so that the fuel injection amount smaller than the return fuel injection amount is performed and the fuel injection to the internal combustion engine is resumed.
  • the rotational speed of the output shaft of the internal combustion engine is not reduced by the rotational speed adjusting means, it is considered that excessive air exists in the exhaust pipe. Therefore, the internal combustion engine is injected with a fuel injection amount smaller than the fuel injection amount at the time of return. By restarting the fuel injection to the engine, it is possible to suppress the occurrence of afterfire that tends to occur.
  • Such a first power output apparatus of the present invention includes a rotation speed reflecting physical quantity detection means for detecting a rotation speed reflecting physical quantity that is a physical quantity reflecting the rotation speed of the drive shaft, and the control means is configured to detect the detected speed.
  • the rotational speed reflecting physical quantity is greater than or equal to a predetermined physical quantity, even when the passive rotational speed reduction control is being executed, when the fuel injection to the internal combustion engine is resumed, the fuel injection amount of the return fuel injection quantity is It is also possible to control the internal combustion engine so that the fuel injection to the internal combustion engine is resumed.
  • the rotational speed reflecting physical quantity is greater than or equal to the specified physical quantity, it corresponds to the case where the rotational speed of the drive shaft is relatively high.
  • the passive rotational speed reduction control is executed. Even so, the fuel injection amount at the time of return is injected and the internal combustion Since the fuel injection to the engine is resumed, the internal combustion engine can be started quickly and power can be output to the drive shaft using the power from the internal combustion engine.
  • the control means when the control means restarts the fuel injection to the internal combustion engine, the air supplied to the internal combustion engine before the fuel injection is performed. It may be a means for controlling the internal combustion engine so as to reduce the number. In this way, the air in the exhaust pipe can be reduced, and the power S can be used to make afterfire more effective.
  • a motor that inputs and outputs power to the drive shaft, a braking force applying means that can apply a braking force to the drive shaft, and a request for the drive shaft.
  • Required driving force setting means for setting the required driving force to be set, wherein the control means is configured to output the driving force based on the set required driving force to the driving shaft and the braking force. It can also be a means for controlling the providing means. In this way, a driving force based on the required driving force can be output to the drive shaft.
  • the rotation speed adjusting means is connected to the drive shaft and is connected to the output shaft of the internal combustion engine so as to be rotatable independently of the drive shaft. Further, it can be a means for adjusting the rotational speed of the output shaft of the internal combustion engine by outputting torque with the output shaft of the internal combustion engine with the output of torque as a reaction force to the drive shaft. .
  • the rotation speed adjusting means is connected to three axes of the drive shaft, the output shaft of the internal combustion engine, and a third shaft, and based on the power of any one of the three shafts and the power input / output to / from the two shafts.
  • the rotation speed adjusting means includes a first rotor connected to the output shaft of the internal combustion engine and a second rotor connected to the drive shaft, and the first rotor and the It can also be a counter-rotor motor that rotates by relative rotation with the second rotor.
  • An internal combustion engine device is an internal combustion engine device including an internal combustion engine having a purification device that purifies exhaust gas using a catalyst having a high oxygen storage capacity, and includes an accelerator off detection unit that detects accelerator off.
  • the accelerator off detection is detected by the accelerator off detecting means, the fuel injection to the internal combustion engine is stopped and supplied to the internal combustion engine.
  • the internal combustion engine is controlled so as to increase the amount of air to be injected and then the fuel injection to the internal combustion engine is resumed, the fuel injection to the internal combustion engine is resumed after reducing the air supplied to the internal combustion engine.
  • a control means for controlling the internal combustion engine for controlling the internal combustion engine.
  • this internal combustion engine device of the present invention when the accelerator is off, the fuel injection to the internal combustion engine is stopped and the internal combustion engine is controlled so that the amount of air supplied to the internal combustion engine is increased. Thereby, the catalyst odor can be suppressed. Then, when the fuel injection to the internal combustion engine is resumed thereafter, the internal combustion engine is controlled so that the fuel injection to the internal combustion engine is resumed after reducing the air supplied to the internal combustion engine. As a result, it is possible to reduce the air in the exhaust pipe when resuming fuel injection to the internal combustion engine, and to reduce the afterfire power more effectively.
  • a second power output device of the present invention is a power output device that outputs power to a drive shaft, the internal combustion engine having a purification device that purifies exhaust gas using a catalyst having a high oxygen storage capacity, Rotational speed adjusting means capable of adjusting the rotational speed of the output shaft of the internal combustion engine with output of torque as a reaction force to the drive shaft, an accelerator off detection means for detecting accelerator off, and the accelerator off detection
  • the accelerator-off is detected by the means, the fuel injection to the internal combustion engine is stopped and the air supplied to the internal combustion engine is controlled so that the fuel injection to the internal combustion engine is thereafter performed.
  • the fuel injection to the internal combustion engine is stopped and the internal combustion engine is controlled so that the amount of air supplied to the internal combustion engine is increased. Thereby, a catalyst odor can be suppressed.
  • the internal combustion engine is controlled so that the fuel injection to the internal combustion engine is resumed after reducing the air supplied to the internal combustion engine.
  • the air in the exhaust pipe when the fuel injection to the internal combustion engine is resumed can be reduced, and the afterfire can be more effectively suppressed.
  • the second power output apparatus of the present invention power is input to and output from the drive shaft.
  • the rotation speed adjusting means is connected to the drive shaft and is connected to the output shaft of the internal combustion engine so as to be rotatable independently of the drive shaft. Further, it may be a means for adjusting the rotational speed of the output shaft of the internal combustion engine by outputting torque with the output shaft of the internal combustion engine with the output of torque as a reaction force to the drive shaft. .
  • the rotation speed adjusting means is connected to the three axes of the drive shaft, the output shaft of the internal combustion engine, and the third shaft, and based on the force of any of the three shafts, the power input / output to / from the two shafts.
  • the rotation speed adjusting means includes a first rotor connected to the output shaft of the internal combustion engine and a second rotor connected to the drive shaft, and the first rotor and the It can also be a counter-rotor motor that rotates by rotation relative to the second rotor.
  • the first power output device of the present invention and the second power output device of the present invention according to any one of the above aspects can be mounted on a vehicle.
  • the axle is connected to the drive shaft.
  • the method for controlling the power output apparatus of the present invention uses a catalyst having a high oxygen storage capacity that is connected to the drive shaft so as to be able to rotate independently of the drive shaft and to output a part of the power to the drive shaft. And an internal combustion engine having a purification device for purifying exhaust gas, and a rotation speed adjusting means capable of adjusting the rotation speed of the output shaft of the internal combustion engine, and a method for controlling a power output device that outputs power to the drive shaft When the active engine speed reduction control for controlling the engine and the engine speed adjusting means is executed so that the engine speed of the output shaft of the engine decreases when the accelerator is off.
  • the internal combustion engine When stopping the fuel injection to the internal combustion engine and controlling the internal combustion engine to increase the amount of air supplied to the internal combustion engine, and then restarting the fuel injection to the internal combustion engine, the internal combustion engine For the amount of air
  • the internal combustion engine is controlled to perform fuel injection at a return fuel injection amount increased from the fuel injection amount during steady operation of the internal combustion engine so that fuel injection to the internal combustion engine is resumed.
  • the internal combustion engine and the rotational speed adjusting means are controlled so that the rotational speed of the output shaft of the internal combustion engine is reduced without adjusting the rotational speed of the output shaft of the internal combustion engine by the rotational speed adjusting means when the engine is off.
  • the internal combustion engine is controlled such that the fuel injection to the internal combustion engine is stopped and the air supplied to the internal combustion engine is increased, and then the internal combustion engine is controlled.
  • the internal combustion engine is controlled so that the fuel injection amount smaller than the return fuel injection amount is performed and the fuel injection to the internal combustion engine is resumed.
  • the active engine speed reduction control is executed to control the engine and the engine speed adjusting means so that the engine speed of the output shaft of the engine is decreased when the accelerator is off.
  • the fuel injection to the internal combustion engine is stopped and the internal combustion engine is controlled so that the amount of air supplied to the internal combustion engine is increased.
  • the return fuel injection is increased from the amount of air sucked into the internal combustion engine from the amount of fuel injected when the internal combustion engine is in steady operation.
  • the internal combustion engine is controlled so that the fuel injection to the internal combustion engine is resumed by injecting the amount of fuel.
  • the rotational speed of the internal combustion engine is rapidly reduced by the rotational speed adjustment adjusting means, the amount of air in the exhaust pipe can be suppressed as compared with the case where the rotational speed is not adjusted. For this reason, in order to improve the startability of the internal combustion engine, afterfire is unlikely to occur even if fuel injection is performed at the return fuel injection amount increased from the fuel injection amount when the internal combustion engine is in steady operation. .
  • the negative speed is controlled to control the internal combustion engine and the rotational speed adjusting means so that the rotational speed of the output shaft of the internal combustion engine is decreased without adjusting the rotational speed of the output shaft of the internal combustion engine by the rotational speed adjusting means.
  • the fuel injection to the internal combustion engine is stopped and the internal combustion engine is controlled so that the amount of air supplied to the internal combustion engine is increased.
  • the catalyst odor can be suppressed in the same manner as when the active rotational speed reduction control is executed.
  • the fuel injection amount smaller than the return fuel injection amount The internal combustion engine is controlled so as to restart the fuel injection to the internal combustion engine.
  • the rotational speed of the output shaft of the internal combustion engine is not reduced by the rotational speed adjusting means, it is considered that excessive air is present in the exhaust pipe. Therefore, fuel injection with a fuel injection amount smaller than the fuel injection amount at the time of return is performed to perform internal combustion. By restarting fuel injection to the engine, it is possible to suppress the occurrence of afterfire that tends to occur.
  • a method for controlling an internal combustion engine device is a method for controlling an internal combustion engine device including an internal combustion engine having a purification device that purifies exhaust gas using a catalyst having a high oxygen storage capacity, and when the accelerator is off, When the fuel injection to the internal combustion engine is stopped and the internal combustion engine is controlled to increase the amount of air supplied to the internal combustion engine, and then the fuel injection to the internal combustion engine is resumed, the air supplied to the internal combustion engine The internal combustion engine is controlled so that the fuel injection to the internal combustion engine is resumed after the amount is reduced.
  • the fuel injection to the internal combustion engine is stopped and the internal combustion engine is controlled so that the amount of air supplied to the internal combustion engine is increased. Thereby, a catalyst odor can be suppressed.
  • the internal combustion engine is controlled so that the fuel injection to the internal combustion engine is resumed after reducing the air supplied to the internal combustion engine.
  • the air in the exhaust pipe when the fuel injection to the internal combustion engine is resumed can be reduced, and afterfire can be more effectively suppressed.
  • FIG. 1 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 20 that is an embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing a schematic configuration of an engine 22.
  • FIG. 3 is a flowchart showing an example of a drive control routine executed by the hybrid electronic control unit 70 of the embodiment when the accelerator is off.
  • FIG. 4 is a flowchart showing an example of an engine control routine executed by the engine ECU 24 of the embodiment when the accelerator is off.
  • FIG. 5 is an explanatory diagram showing an example of a required braking torque setting map.
  • FIG. 6 is an explanatory diagram showing an example of a collinear diagram for dynamically explaining the rotating elements of the power distribution and integration mechanism 30.
  • FIG. 7 is a flowchart showing an example of a modified engine control routine.
  • FIG. 8 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 120 of a modified example.
  • FIG. 9 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 220 of a modified example.
  • FIG. 1 is a configuration diagram showing an outline of the configuration of a hybrid vehicle 20 as an embodiment of the present invention.
  • the hybrid vehicle 20 of the embodiment includes an engine 22, a three-shaft power distribution and integration mechanism 30 connected to a crankshaft 26 as an output shaft of the engine 22 via a damper 28, Motor MG1 capable of generating electricity connected to distribution integration mechanism 30; reduction gear 35 attached to ring gear shaft 32a as drive shaft connected to power distribution integration mechanism 30; and motor connected to reduction gear 35 MG2, a brake actuator 92 for controlling the brakes of drive wheels 39a, 39b and driven wheels (not shown), and a hybrid electronic control unit 70 for controlling the entire drive system of the vehicle.
  • the engine 22 is configured as an internal combustion engine capable of outputting power using a hydrocarbon fuel such as gasoline or light oil, and as shown in FIG.
  • a hydrocarbon fuel such as gasoline or light oil
  • the fuel is injected via the fuel injection valve 126 and gasoline is injected from the fuel injection valve 126 to mix the intake air with the gasoline.
  • the mixture is sucked into the fuel chamber via the intake valve 128,
  • the reciprocating motion of the piston 132 which is explosively burned by the spark and pushed down by the energy, is converted into the rotational motion of the crankshaft 26.
  • Exhaust gas from the engine 22 is discharged to the outside air through a purifier 134 filled with a catalyst that purifies harmful components such as carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx).
  • the catalyst of the purifier 134 has a high oxygen storage capacity V and a three-way catalyst is used! /.
  • the engine 22 is controlled by an engine electronic control unit (hereinafter referred to as engine ECU) 24.
  • the engine ECU 24 is configured as a microprocessor centered on the CPU 24a.
  • a ROM 24b that stores a processing program and a data RAM 24c for temporarily storing data, an input / output port and a communication port (not shown).
  • the engine ECU 24 has signals from various sensors that detect the state of the engine 22, a crank position sensor 140 that detects the rotational position of the crankshaft 26, and a water temperature sensor that detects the coolant temperature of the engine 22 and the coolant temperature of the engine 22.
  • the engine ECU 24 provides various control signals for driving the engine 22, such as a drive signal to the fuel injection valve 126, a drive signal to the throttle motor 136 that adjusts the position of the throttle valve 124, an igniter A control signal to the integrated ignition coil 138, a control signal to the variable valve timing mechanism 150 capable of changing the opening / closing timing of the intake valve 128, and the like are output via the output port.
  • the engine ECU 24 communicates with the hybrid electronic control unit 70, controls the operation of the engine 22 by the control signal from the hybrid electronic control unit 70, and outputs data related to the operation state of the engine 22 as necessary. To do.
  • the engine ECU 24 also calculates the engine speed, that is, the engine speed Ne.
  • the power distribution and integration mechanism 30 includes an external gear sun gear 31, an internal gear ring gear 32 disposed concentrically with the sun gear 31, and a plurality of pinion gears 33 meshed with the sun gear 31 and meshed with the ring gear 3 2.
  • a planetary gear mechanism is provided that includes a carrier 34 that holds a plurality of pinion gears 33 so as to rotate and revolve, and that performs differential action using the sun gear 31, the ring gear 32, and the carrier 34 as rotational elements.
  • the carrier 34 is connected to the crankshaft 26 force of the engine 22, the sun gear 31 is connected to the motor MG 1, and the ring gear 32 is connected to the reduction gear 35 via the ring gear shaft 32 a.
  • motor MG1 When motor MG1 functions as a generator, power from engine 22 input from carrier 34 is distributed to sun gear 31 and ring gear 32 according to the gear ratio, and motor MG1 functions as a motor. Sometimes the power from the engine 22 input from the carrier 34 and the power from the motor MG1 input from the sun gear 31 are integrated and output to the ring gear 32 side. The power output to the ring gear 32 is finally output from the ring gear shaft 32a to the drive wheels 39a and 39b of the vehicle via the gear mechanism 37 and the differential gear 38.
  • the motor MG1 and the motor MG2 are each configured as a well-known synchronous generator motor that can be driven as a generator as well as being driven as a generator. Fi exchanges.
  • the power line 54 connecting the inverters 41 and 42 and the notch 50 is configured as a positive and negative bus shared by the inverters 41 and 42, and is generated by either the motor MG1 or MG2. Can be consumed by other motors. Therefore, the notch 50 is charged / discharged by electric power generated from the power of the motors M Gl and MG2 or insufficient power. If the balance of electric power is balanced by the motors MG1 and MG2, the battery 50 is not charged / discharged.
  • the motors MG1 and MG2 are both driven and controlled by a motor electronic control unit (hereinafter referred to as motor ECU) 40.
  • the motor ECU 40 includes signals necessary for driving and controlling the motors M Gl and MG2, such as signals from rotational position detection sensors 43 and 44 that detect the rotational positions of the rotors of the motors MG1 and MG2, and current sensors (not shown).
  • the phase current applied to the motors MG1 and MG2 detected by the above is input, and the switching control signal to the inverters 41 and 42 is output from the motor ECU 40.
  • the motor ECU 40 communicates with the hybrid electronic control unit 70, and controls the drive of the motors MG1 and MG2 by the control signal from the hybrid electronic control unit 70 and relates to the operation state of the motors MG1 and MG2 as necessary.
  • the data is output to the hybrid electronic control unit 70.
  • the battery 50 is managed by a battery electronic control unit (hereinafter referred to as a battery ECU) 52.
  • the battery ECU 52 has a signal necessary for managing the battery 50, for example, a terminal voltage from a voltage sensor (not shown) installed between the terminals of the battery 50, Charge / discharge current from a current sensor (not shown) attached to the power line 54 connected to the output terminal of the battery 50, battery temperature Tb from the temperature sensor 51 attached to the battery 50, etc. are input and necessary. Accordingly, data relating to the state of the battery 50 is output to the hybrid electronic control unit 70 by communication.
  • the battery ECU 52 also calculates the remaining capacity (SOC) based on the integrated value of the charge / discharge current detected by the current sensor in order to manage the battery 50! /.
  • SOC remaining capacity
  • the brake actuator 92 responds to the share of the brake in the braking force applied to the vehicle by the pressure (brake pressure) of the brake master cylinder 90 generated when the brake pedal 85 is depressed and the vehicle speed V. Regardless of adjusting the hydraulic pressures of the brake wheel cylinders 96a to 96d so that the braking torque acts on the drive wheels 39a, 39b and the driven wheels (not shown), or on the brake pedal 85, the braking torque on the drive wheels 39a, 39b and the driven wheels The hydraulic pressure of the brake wheel cylinders 96a to 96d can be adjusted so that the pressure acts.
  • a brake actuator 92 is controlled by a brake electronic control unit (hereinafter referred to as a brake ECU) 94.
  • the brake ECU 94 inputs signals such as a wheel speed from a wheel speed sensor and a steering angle from a steering angle sensor (not shown) attached to the driving wheels 39a, 39b and the driven wheel via a signal line (not shown).
  • the anti-lock brake system function (ABS) that prevents any of the driving wheels 39a, 39b or the driven wheel from slipping due to the lock, or the driver
  • TRC traction control
  • VSC attitude maintenance control
  • the brake ECU 94 communicates with the hybrid electronic control unit 70.
  • the brake ECU 92 is driven and controlled by a control signal from the hybrid electronic control unit 70, and the brake actuator 92 is controlled as necessary. Data on the state is output to the electronic control unit 70 for the noise bullet.
  • the hybrid electronic control unit 70 is configured as a microprocessor centered on a CPU 72. In addition to the CPU 72, a ROM 74 for storing a processing program and data are stored. A RAM 76 for temporarily storing, an input / output port and a communication port (not shown) are provided.
  • the hybrid electronic control unit 70 includes an acceleration signal from the detection switch 80, a shift position SP from the shift position sensor 82 that detects the operation position of the shift lever 81, and an accelerator that detects the amount of depression of the accelerator pedal 83.
  • Pedal position sensor 84 Accelerator opening Acc, Brake pedal position sensor 86 detects brake pedal position BP, Brake pedal position BP from 86, Vehicle speed sensor 88 Inputs vehicle speed V, etc.
  • the hybrid electronic control unit 70 is connected to the engine ECU 24, the motor ECU 40, and the battery ECU 52 via the communication port, and the engine ECU 24, the motor ECU 40, the battery ECU 52, the brake ECU 94, and various control signals. And exchanging data.
  • the hybrid vehicle 20 of the embodiment configured as described above is a request to be output to the ring gear shaft 32a as the drive shaft based on the accelerator opening Acc and the vehicle speed V corresponding to the depression amount of the accelerator pedal 83 by the driver.
  • Torque is calculated, and the engine 22, the motor MG1, and the motor MG2 are controlled so that the required power corresponding to the required torque is output to the ring gear shaft 32a.
  • Operation control of the engine 22 and motor MG1 and motor MG2 includes controlling the operation of the engine 22 so that the power corresponding to the required power is output from the engine 22, and all the power output from the engine 22 is a power distribution integrated mechanism.
  • 30 and motor MG1 and motor MG2 are converted to torque and output to ring gear shaft 32a.
  • Torque conversion operation mode for driving and controlling motor MG1 and motor MG2 and required power and power required for charging / discharging battery 50
  • the engine 22 is operated and controlled so that the power corresponding to the sum is output from the engine 22, and all or a part of the power output from the engine 22 when the battery 50 is charged and discharged is a power distribution and integration mechanism 30.
  • the motor MG1 and motor MG2 are driven and controlled so that the required power is output to the S-ring gear shaft 32a with torque conversion between the motor MG1 and motor MG2.
  • Charge-discharge drive mode, there is a motor operation mode to stop the operation of the engine 22 is by the Hare operation control to output to the ring gear shaft 32a power commensurate with the required power from the motor MG2.
  • FIG. 3 is a flowchart showing an example of a drive control routine executed by the hybrid electronic control unit 70 when the accelerator is off
  • FIG. 4 is a flowchart showing an example of an engine control routine executed by the engine ECU 24 when the accelerator is off.
  • This drive control routine and engine control are repeatedly executed every predetermined time (for example, every several msec). For ease of explanation, first, drive control when the accelerator is off will be described using the drive control routine of FIG. 3, and then engine control when the accelerator is off will be described using the engine control routine of FIG.
  • the CPU 72 of the hybrid electronic control unit 70 first starts the brake pedal position BP from the brake pedal position sensor 86 and the vehicle speed V and motor from the vehicle speed sensor 88.
  • MG1 and MG2 rotation speeds Nml and Nm2 engine 22 rotation speed Ne, battery 50 input / output limit
  • the process of inputting data necessary for control such as Win and Wout is executed (step S100).
  • the rotational speed Ne of the engine 22 is calculated based on a signal from a crank position sensor (not shown) attached to the crankshaft 26 and is input from the engine ECU 24 by communication.
  • the rotational speeds Nml and Nm2 of the motors MG1 and MG2 are input from the motor ECU 40 via communication, calculated based on the rotational positions of the rotors of the motors MG1 and MG2 detected by the rotational position detection sensors 43 and 44. To do.
  • the input / output limit of the battery 50, Win, Wout communicates from the battery ECU 52 what is set based on the battery temperature Tb of the battery 50 detected by the temperature sensor 51 and the remaining capacity (SOC) of the battery 50. It was assumed that the input was made.
  • the braking torque required for the vehicle is output to the ring gear shaft 32a as the driving shaft connected to the driving wheels 39a, 39b based on the input brake pedal position BP and the vehicle speed V.
  • the required braking torque Tr * to be set is set (step S110).
  • the required braking torque Tr * is determined in advance by storing the relationship between the brake pedal position BP, the vehicle speed V, and the required braking torque Tr * in the ROM 74 as a required braking torque setting map.
  • the stored map force and the corresponding required braking torque Tr * are derived and set.
  • Figure 5 shows an example of the required braking torque setting map.
  • step S120 it is determined whether or not a predetermined condition for reducing the rotational speed Ne of the engine 22 by the motor MG1 is satisfied. This determination is performed using, for example, a condition in which the brake pedal position BP is depressed, or a condition in which the remaining capacity (SOC) of the battery 50 can be sufficiently charged with less than a predetermined value.
  • the torque limits Tmin and Tmax as the upper and lower limits of the torque that may be output from motor MG2 are expressed by the following equations (2) and Calculated according to equation (3) (step S 170), and using the required braking torque Tr *, torque command Tml *, and the gear ratio p of the power distribution integration mechanism 30, the temporary motor torque Tm2tmp as the torque to be output from the motor MG2 Is calculated by equation (4) (step S180), and the torque command Tm2 * of the motor MG2 is set as a value obtained by limiting the temporary motor torque Tm2tmp with the calculated torque limits Tmin and Tmax (step S190).
  • Equation (4) can be derived from a dynamic relational expression for the rotating element of the power distribution and integration mechanism 30.
  • a collinear diagram showing the dynamic relationship between the rotational speed and torque of the rotating elements of the power distribution and integration mechanism 30 is shown in FIG.
  • the left S-axis is the motor MG1
  • the rotation speed of the sun gear 31 is Nml
  • the C axis is the rotation speed of the carrier 34, which is the rotation speed Ne of the engine 22
  • the R axis is the rotation speed Nm2 of the motor MG2
  • the gear ratio of the reduction gear 35 The rotation speed Nr of the ring gear 32 divided by Gr is shown.
  • the two thick arrows on the R axis indicate that the torque Tml output from the motor MG1 acts on the ring gear shaft 32a and the torque Tm2 output from the motor MG 2 acts on the ring gear shaft 32a via the reduction gear 35. Torque to be used.
  • Tmin (Win-Tml> K ⁇ Nml) / Nm2 (2)
  • Tm2tmp (Tr * + Tm 1 * / p) / Gr (4)
  • the brake torque Tb * converted to the ring gear shaft 32a of the torque to be applied by the hydraulic brake is set by subtracting the motor torque command Tm2 * of the motor MG2 from the temporary motor torque Tm2tmp (step S200),
  • the set torque commands Tml * and Tm2 * of the motors MG1 and MG2 are transmitted to the motor ECU 40, the set brake torque Tb * is transmitted to the brake ECU 94 (step S210), and the drive control routine is terminated.
  • the temporary motor torque Tm2tmp is set as it is as the motor torque command Tm2 * of the motor MG2, the value 0 is set for the brake torque Tb *.
  • the motor ECU 40 that has received the torque commands Tml * and Tm2 * controls the switching elements of the inverters 41 and 42 so that the motor MG1 is driven by the torque command Tml * and the motor MG2 is driven by the torque command Tm2 *.
  • the brake ECU 94 that receives the brake torque Tb * causes the brake wheel cylinders 9 6a to 96d to act on the brake torque Tb * force S ring gear shaft 32a when converted to the ring gear shaft 32a by the brake actuator 92. Adjust hydraulic pressure. By such control, the required braking torque Tr * can be applied to the ring gear shaft 32a, that is, the vehicle.
  • the engine control routine executed by the engine ECU 24 while such a drive control routine is executed by the hybrid electronic control unit 70 will be described.
  • the engine ECU2 First, the CPU 24a of 4 executes processing for inputting data necessary for engine control, such as the rotation speed adjustment flag F set by drive control, the rotation speed Ne of the engine 22 and the vehicle speed V (step S300).
  • the rotation speed adjustment flag F is inputted from the hybrid electronic control unit 70 by communication.
  • the rotational speed Ne of the engine 22 a value calculated based on the crank position from the crank position sensor 140 is input.
  • the vehicle speed V detected by the vehicle speed sensor 88 is input from the hybrid electronic control unit 70 via communication.
  • the input rotational speed Ne of the engine 22 is compared with a threshold value Nref l (step S310).
  • the threshold value Nrefl is set as a rotational speed slightly larger than the threshold value Nref2 set as the rotational speed of the engine 22 that resumes fuel injection into the engine 22 that is fuel cut.
  • 1500 rpm can be used as the threshold value Nref2
  • 1600 rpm can be used as the threshold value Nrefl.
  • the throttle motor 136 is driven so that the opening is larger than the throttle opening (for example, 30%) (step S330).
  • the opening is larger than the throttle opening (for example, 30%) (step S330).
  • the throttle opening when the throttle valve 124 is independently operated at the threshold value N ref 2 or an opening slightly larger than this is obtained.
  • the throttle motor 136 is driven so as to reduce the value (step S340), and the rotational speed Ne of the engine 22 is compared with the threshold value Nref2 (step S350). In this way, by reducing the throttle opening, the exhaust pipe air can be reduced, and afterfire Can be more effectively suppressed.
  • the threshold value Nrefl it is determined that the rotational speed Ne of the engine 22 is equal to or higher than the threshold value Nref2, and thus the engine control routine is terminated.
  • the basic fuel injection amount TO is calculated from the intake air amount so as to be the stoichiometric air-fuel ratio (step S360), and the value of the engine speed adjustment flag F is calculated. And determine whether or not the vehicle speed V is equal to or higher than the threshold value Vref (steps S370 and S380).
  • the basic fuel injection amount TO is calculated so as to be the stoichiometric air-fuel ratio with respect to the throttle opening when the engine 22 is operated autonomously at the rotation speed of the threshold Nref2, so that the engine 22 is in steady operation. For example, the idling operation is performed at the rotation speed of the threshold value Nref2.
  • the threshold value Vref is a threshold value for determining whether or not the engine 22 needs to be started quickly because a relatively large output is required from the engine 22 immediately after the fuel injection to the engine 22 is resumed. Therefore, relatively low vehicle speeds such as 20 km / h and 30 km / h can be used.
  • the motor M G1 controls the reduction of the rotation speed Ne of the engine 22 and the vehicle speed V is relatively large.
  • the fuel injection amount is the sum of the basic fuel injection amount TO and the increase correction amount Ta.
  • T is set (step S410), the fuel injection valve 126 is opened for the valve opening time corresponding to the set fuel injection amount T (step S420), and the engine control routine is terminated. As a result, the engine 22 can be started quickly.
  • the throttle opening is larger than the throttle opening when the engine 22 is idling at the rotation speed of the threshold Nref2.
  • the throttle opening By setting the throttle opening, a large amount of air is sent to the exhaust pipe, and when the amount of air is insufficient, the sulfur oxide held in the catalyst filled in the purification device 134 is released to the outside as hydrogen sulfide. Suppressing the catalyst odor caused by Also, when resuming fuel injection to the engine 22, the throttle opening is reduced so that the throttle opening is the same as when the engine 22 is idling at the rotation speed of the threshold Nref2 before resuming fuel injection.
  • the air in the exhaust pipe can be reduced, and afterfire can be more effectively suppressed. Furthermore, when resuming the fuel injection to the engine 22 at a low vehicle speed even when the engine MG1 is not reducing the engine speed or when the motor MG1 is reducing the engine 22 speed Since the fuel injection to the engine 22 is resumed using the small correction amount T2 as the increase correction amount Ta, the after-fire that can occur when the fuel injection of the engine 22 is resumed can be suppressed. In addition, when the number of rotations of the engine 22 is reduced by the motor MG1, and when fuel injection to the engine 22 is resumed at medium and high vehicle speeds, the large correction amount T1 is used as the increase correction amount Ta. Thus, since the fuel injection to the engine 22 is resumed, the engine 22 can be started quickly so that the power from the engine 22 can be quickly used as power for traveling.
  • the throttle opening when the engine 22 is idling at the rotation speed of the threshold Nref2 before the fuel injection is resumed.
  • force S with a reduced throttle opening S, or a throttle opening that must be reduced before resuming fuel injection is resumed.
  • the small correction amount T2 is used as the increase correction amount Ta to restart the fuel injection to the engine 22, but the motor MG1 reduces the engine 22 speed. Even when the fuel injection to the engine 22 is restarted, the small correction amount T2 is increased. It may be used as Ta to resume fuel injection to the engine 22, and even when resuming fuel injection to the engine 22 at medium and high vehicle speeds, the small correction amount T2 is used as the increase correction amount Ta.
  • the throttle opening is set so that the throttle opening becomes the throttle opening when the engine 22 is idling at the rotation speed of the threshold value Nref2.
  • the small correction amount T2 is increased.
  • the force used to restart the fuel injection to the engine 22 using the correction amount Ta, and before the fuel injection is restarted, the throttle opening is set so that the throttle opening is the same as when the engine 22 is idling at the speed of the threshold Nref2.
  • FIG. 7 shows the engine control routine in this case.
  • the engine control routine of FIG. 7 only the engine speed Ne is input (step S300B), and when the engine Ne speed becomes less than the threshold Nrefl, the engine 22 is set to the threshold Nref2.
  • the throttle opening is made small so that it becomes the throttle opening for idling (step S340), and when the engine speed Ne is less than the threshold Nref2, the basic air-fuel ratio is obtained from the intake air amount.
  • the fuel injection amount TO is calculated (step S360), and a correction amount T1 that is relatively large for the fuel increase correction is set as the increase correction amount Ta (step S390), and the sum of the basic fuel injection amount TO and the increase correction amount Ta is set.
  • the fuel injection amount T is set (step S400), the fuel injection valve 126 is opened for the valve opening time corresponding to the set fuel injection amount T (step S410), and the engine control routine is terminated.
  • the throttle opening is reduced so that the throttle opening becomes the throttle opening when the engine 22 is idling at the rotation speed of the threshold Nref 2 before the fuel injection is restarted.
  • the power that the power of the motor MG2 is shifted by the reduction gear 35 and is output to the ring gear shaft 32a as illustrated in the hybrid vehicle 120 of the modification of FIG.
  • the power of motor MG2 may be connected to an axle (an axle connected to wheels 64a and 64b in FIG. 8) different from an axle to which ring gear shaft 32a is connected (an axle to which driving wheels 63a and 63b are connected).
  • the power of the engine 22 is output to the ring gear shaft 32a as the drive shaft connected to the drive wheels 63a and 63b via the power distribution and integration mechanism 30.
  • an inner rotor 232 connected to the crankshaft 26 of the engine 22 and an outer rotor 234 connected to a drive shaft that outputs power to the drive wheels 63a and 63b are provided.
  • the motor 22 may be provided with a counter-rotor motor 230 that transmits a part of the power of the engine 22 to the drive shaft and converts the remaining power into electric power.
  • a power output device including the force internal combustion engine described as the hybrid vehicle 20, 120, 220 and an electric motor for adjusting the rotation speed of the internal combustion engine, or the internal combustion engine.
  • An internal combustion engine device that does not include an electric motor or a generator may be provided. Further, it may be in the form of a control method for the power output device or a control method for the internal combustion engine device.
  • an engine 22 having a purifier 134 filled with a catalyst having a high oxygen storage capacity to purify harmful components such as carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx) is “
  • the power distribution integration mechanism 30 and the motor MG1 correspond to the “rotation speed adjusting means”
  • the accelerator pedal position sensor 84 corresponds to the “accelerator off detection means”.
  • the electronic control unit 70 for hybrid and the electronic for the hybrid that execute the processing of steps S120 to S160 in the drive control routine of FIG.
  • the motor ECU 40 controls the drive of the engine 1 and when the fuel cut of the engine 22 is performed while the accelerator is off, the engine 22 is set to a throttle opening larger than the throttle opening when idling at the rotation speed of the threshold Nref2, and the engine 22 Before restarting the fuel injection of the engine, the throttle opening is reduced so that it becomes the throttle opening when idling the engine 22 at the speed of the threshold Nref2, and the speed of the engine 22 is reduced by the motor MG1.
  • the large correction amount T1 is used as the increase correction amount Ta, and the fuel injection to the engine 22 is resumed. Even if the engine 22 is not being reduced or the engine 22 is being reduced by the motor MG1, the engine 22 When the fuel injection is restarted, the engine control routine of FIG. 4 is executed to restart the fuel injection to the engine 22 using the correction amount T2 smaller than the correction amount T1 as the increase correction amount Ta. It corresponds to.
  • the vehicle speed sensor 88 for detecting the vehicle speed V corresponds to “rotational speed reflecting physical quantity detection means”
  • the motor MG2 corresponds to “electric motor”
  • the device that generates the hydraulic brake is equivalent to the ⁇ braking force applying means '' and sets the required braking torque Tr * based on the brake pedal position BP and the vehicle speed V!
  • the hybrid electronic control unit 70 that executes the processing of S 110 corresponds to “required driving force setting means”
  • the power distribution integration mechanism 30 corresponds to “three-axis power input / output device”
  • the motor MG1 It corresponds to "machine”.
  • the engine 22 having the purifier 134 filled with is equivalent to the “internal combustion engine”, and the accelerator pedal position sensor 84 is equivalent to the “accelerator detection means”.
  • the engine 22 is set to a throttle opening larger than the throttle opening when idling at the speed of the threshold Nref2, and when the fuel injection to the engine 22 is restarted, the engine 22 is set to the threshold before restarting the fuel injection.
  • the engine ECU 24 that executes the engine control routine corresponds to the control means. It should be noted that the correspondence between the main elements of the embodiment and the main elements of the invention described in the disclosure of the invention is the best mode for carrying out the invention described in the disclosure of the invention. Since this is an example for concrete explanation, the elements of the invention described in the disclosure section of the invention are not limited. That is, the invention described in the column of the disclosure of the invention should be interpreted based on the description of that column, and the examples are only specific examples of the invention described in the column of disclosure of the invention. Is.
  • the present invention can be used in the power output device manufacturing industry and the like.

Description

明 細 書
動力出力装置,内燃機関装置及びこれらの制御方法
技術分野
[0001] 本発明は、動力出力装置,内燃機関装置及びこれらの制御方法に関し、詳しくは、 駆動軸に動力を出力する動力出力装置,酸素吸蔵能力が高い触媒を用いて排気を 浄化する浄化装置を有する内燃機関を備える内燃機関装置及びこうした動力出力 装置や内燃機関装置の制御方法に関する。
背景技術
[0002] 従来、この種の動力出力装置を搭載する車両としては、減速中にエンジンへの燃 料をカットしているときには触媒臭を抑制するために吸入空気量を多くするものが提 案されている(例えば、特許文献 1参照)。触媒臭は、排気を浄化するための触媒に 保持されている硫黄酸化物が酸素の供給がないために硫化水素となって外部に放 出されることによって生じる。一方、こうした触媒は高温時に大量の空気が導入される と劣化するものが多い。上述の車両では、車速が第 1の車速以上のときにはエンジン の吸入空気量をアイドリング時より少なくすることにより触媒の劣化を抑制し、車速が 第 1の車速未満のときにはエンジンの吸入空気量をアイドリング時より多くすることに より触媒臭を抑制している。
特許文献 1 :特開 2006— 29323号公報
発明の開示
[0003] 減速中にエンジンへの燃料をカットした場合に、その後にエンジンへの燃料の供給 を再開するときには、エンジンの始動性を良好なものとするために理論空燃比より燃 料の比率が多くなるよう燃料を増量して行なわれる。上述のように、触媒臭を抑制す るために吸入空気量を多くした状態で理論空燃比より燃料を増量して燃料噴射を行 なうと、十分な空気量が排気管内にも存在することから、排気管内で爆発燃焼するい わゆるアフターファイアの現象が生じる場合がある。
[0004] 本発明の動力出力装置,内燃機関装置及びこれらの制御方法は、燃料カット時に 内燃機関の排気を浄化するための触媒による触媒臭を抑制すると共に燃料カットか らの復帰時 (燃料噴射の再開時)にアフターファイアが生じるのを抑制することを目的 とする。
[0005] 本発明の動力出力装置,内燃機関装置及びこれらの制御方法は、上述の目的を 達成するために以下の手段を採った。
[0006] 本発明の第 1の動力出力装置は、駆動軸に動力を出力する動力出力装置であつ て、前記駆動軸とは独立に回転可能に且つ該駆動軸に動力の一部を出力可能に該 駆動軸に接続され、酸素吸蔵能力が高い触媒を用いて排気を浄化する浄化装置を 有する内燃機関と、前記内燃機関の出力軸の回転数を調整可能な回転数調整手段 と、アクセルオフを検出するアクセルオフ検出手段と、前記アクセルオフ検出手段に よりアクセルオフが検出されているときに前記内燃機関の出力軸の回転数が低下す るよう前記内燃機関と前記回転数調整手段とを制御する積極的回転数低下制御を 実行しているときには、前記内燃機関への燃料噴射を停止すると共に前記内燃機関 へ供給される空気が多くなるよう前記内燃機関を制御し、その後に前記内燃機関へ の燃料噴射を再開する際には該内燃機関に吸入されている空気量に対して前記内 燃機関を定常運転しているときの燃料噴射量より増量した復帰時燃料噴射量の燃料 噴射を行なって前記内燃機関への燃料噴射が再開されるよう前記内燃機関を制御 し、前記アクセルオフ検出手段によりアクセルオフが検出されているときに前記回転 数調整手段による前記内燃機関の出力軸の回転数の調整を伴わずに前記内燃機 関の出力軸の回転数が低下するよう前記内燃機関と前記回転数調整手段とを制御 する消極的回転数低下制御を実行して!/、るときには、前記内燃機関への燃料噴射を 停止すると共に前記内燃機関へ供給される空気が多くなるよう前記内燃機関を制御 し、その後に前記内燃機関への燃料噴射を再開する際には前記復帰時燃料噴射量 より少ない燃料噴射量の燃料噴射を行なって前記内燃機関への燃料噴射が再開さ れるよう前記内燃機関を制御する制御手段と、を備えることを要旨とする。
[0007] この本発明の第 1の動力出力装置では、アクセルオフのときに内燃機関の出力軸 の回転数が低下するよう内燃機関と回転数調整手段とを制御する積極的回転数低 下制御を実行しているときには、内燃機関への燃料噴射を停止すると共に内燃機関 へ供給される空気が多くなるよう内燃機関を制御する。これにより、触媒臭を抑制する こと力 Sできる。そして、その後に内燃機関への燃料噴射を再開する際には内燃機関 に吸入されて!/、る空気量に対して内燃機関を定常運転して!/、るときの燃料噴射量よ り増量した復帰時燃料噴射量の燃料噴射を行なって内燃機関への燃料噴射が再開 されるよう内燃機関を制御する。回転数調整調整手段により内燃機関の回転数は迅 速に低下するから、こうした回転数を調整しない場合に比して排気管の空気量を抑 制すること力 Sできる。このため、内燃機関の始動性を良好なものとするために内燃機 関を定常運転しているときの燃料噴射量より増量した復帰時燃料噴射量の燃料噴射 を行なってもアフターファイアは生じ難い。一方、アクセルオフのときに回転数調整手 段による内燃機関の出力軸の回転数の調整を伴わずに内燃機関の出力軸の回転 数が低下するよう内燃機関と回転数調整手段とを制御する消極的回転数低下制御 を実行しているときには、内燃機関への燃料噴射を停止すると共に内燃機関へ供給 される空気が多くなるよう内燃機関を制御する。これにより、積極的回転数低下制御 を実行しているときと同様に触媒臭を抑制することができる。そして、その後に内燃機 関への燃料噴射を再開する際には復帰時燃料噴射量より少ない燃料噴射量の燃料 噴射を行なって内燃機関への燃料噴射が再開されるよう内燃機関を制御する。回転 数調整手段による内燃機関の出力軸の回転数の低下を行なわないときには排気管 に過剰な空気が存在すると考えられるから、復帰時燃料噴射量より少ない燃料噴射 量の燃料噴射を行なって内燃機関への燃料噴射を再開することにより、生じやすい アフターファイアの発生を抑制することができる。
こうした本発明の第 1の動力出力装置において、前記駆動軸の回転数を反映する 物理量である回転数反映物理量を検出する回転数反映物理量検出手段を備え、前 記制御手段は、前記検出された回転数反映物理量が所定物理量以上のときには、 前記消極的回転数低下制御を実行しているときであっても前記内燃機関への燃料 噴射を再開する際には前記復帰時燃料噴射量の燃料噴射を行なって前記内燃機 関への燃料噴射が再開されるよう前記内燃機関を制御する手段であるものとすること もできる。回転数反映物理量が所定物理量以上のときは駆動軸の回転数が比較的 高いときに相当するから、駆動軸の回転数が比較的高いときには、消極的回転数低 下制御を実行しているときであっても復帰時燃料噴射量の燃料噴射を行なって内燃 機関への燃料噴射を再開するから、迅速に内燃機関を始動して内燃機関からの動 力を用いて駆動軸に動力を出力できるようにすることができる。
[0009] また、本発明の第 1の動力出力装置において、前記制御手段は、前記内燃機関へ の燃料噴射を再開する際には前記燃料噴射を行なう前に前記内燃機関へ供給され る空気が少なくなるよう前記内燃機関を制御する手段であるものとすることもできる。 こうすれば、排気管の空気を減少させることができ、アフターファイアをより効果的に 才卬制すること力 Sでさる。
[0010] さらに、本発明の第 1の動力出力装置において、前記駆動軸に動力を入出力する 電動機と、前記駆動軸に制動力を付与可能な制動力付与手段と、前記駆動軸に要 求される要求駆動力を設定する要求駆動力設定手段と、を備え、前記制御手段は、 前記設定された要求駆動力に基づく駆動力が前記駆動軸に出力されるよう前記電 動機と前記制動力付与手段とを制御する手段である、ものとすることもできる。こうす れば、要求駆動力に基づく駆動力を駆動軸に出力することができる。
[0011] あるいは、本発明の第 1の動力出力装置において、前記回転数調整手段は、前記 駆動軸に接続されると共に該駆動軸とは独立に回転可能に前記内燃機関の出力軸 に接続され、前記駆動軸への反力としてのトルクの出力を伴って前記内燃機関の出 力軸とトルクを出力して該内燃機関の出力軸の回転数を調整する手段であるものと することもできる。この場合、前記回転数調整手段は、前記駆動軸と前記内燃機関の 出力軸と第 3の軸の 3軸に接続され該 3軸のうちのいずれ力、 2軸に入出力される動力 に基づいて残余の軸に動力を入出力する 3軸式動力入出力手段と、前記第 3の軸に 動力を入出力する発電機と、を備える手段であるものとすることもできる。また、前記 回転数調整手段は、前記内燃機関の出力軸に接続された第 1の回転子と前記駆動 軸に接続された第 2の回転子とを有し、該第 1の回転子と該第 2の回転子との相対的 な回転により回転する対回転子電動機であるものとすることもできる。
[0012] 本発明の内燃機関装置は、酸素吸蔵能力が高い触媒を用いて排気を浄化する浄 化装置を有する内燃機関を備える内燃機関装置であって、アクセルオフを検出する アクセルオフ検出手段と、前記アクセルオフ検出手段によりアクセルオフが検出され ているときには前記内燃機関への燃料噴射を停止すると共に前記内燃機関へ供給 される空気が多くなるよう前記内燃機関を制御し、その後に前記内燃機関への燃料 噴射を再開するときには前記内燃機関へ供給される空気を少なくした後で前記内燃 機関への燃料噴射が再開されるよう前記内燃機関を制御する制御手段と、を備える ことを要旨とする。
[0013] この本発明の内燃機関装置では、アクセルオフのときには内燃機関への燃料噴射 を停止すると共に内燃機関へ供給される空気が多くなるよう内燃機関を制御する。こ れにより、触媒臭を抑制することができる。そして、その後に内燃機関への燃料噴射 を再開するときには内燃機関へ供給される空気を少なくした後で内燃機関への燃料 噴射が再開されるよう内燃機関を制御する。これにより内燃機関への燃料噴射を再 開するときの排気管の空気を減少させることができ、アフターファイアをより効果的に 才卬制すること力 Sでさる。
[0014] 本発明の第 2の動力出力装置は、駆動軸に動力を出力する動力出力装置であつ て、酸素吸蔵能力が高い触媒を用いて排気を浄化する浄化装置を有する内燃機関 と、前記駆動軸への反力としてのトルクの出力を伴って前記内燃機関の出力軸の回 転数を調整可能な回転数調整手段と、アクセルオフを検出するアクセルオフ検出手 段と、前記アクセルオフ検出手段によりアクセルオフが検出されているときには前記 内燃機関への燃料噴射を停止すると共に前記内燃機関へ供給される空気が多くな るよう前記内燃機関を制御し、その後に前記内燃機関への燃料噴射を再開するとき には前記内燃機関へ供給される空気を少なくした後で前記内燃機関への燃料噴射 が再開されるよう前記内燃機関を制御する制御手段と、を備えることを要旨とする。
[0015] この本発明の第 2の動力出力装置では、アクセルオフのときには内燃機関への燃 料噴射を停止すると共に内燃機関へ供給される空気が多くなるよう内燃機関を制御 する。これにより、触媒臭を抑制することができる。そして、その後に内燃機関への燃 料噴射を再開するときには内燃機関へ供給される空気を少なくした後で内燃機関へ の燃料噴射が再開されるよう内燃機関を制御する。これにより内燃機関への燃料噴 射を再開するときの排気管の空気を減少させることができ、アフターファイアをより効 果的に抑制することができる。
[0016] こうした本発明の第 2の動力出力装置において、前記駆動軸に動力を入出力する 電動機と、前記駆動軸に制動力を付与可能な制動力付与手段と、前記駆動軸に要 求される要求駆動力を設定する要求駆動力設定手段と、を備え、前記制御手段は、 前記設定された要求駆動力に基づく駆動力が前記駆動軸に出力されるよう前記電 動機と前記制動力付与手段とを制御する手段である、ものとすることもできる。こうす れば、要求駆動力に基づく駆動力を駆動軸に出力することができる。
[0017] また、本発明の第 2の動力出力装置において、前記回転数調整手段は、前記駆動 軸に接続されると共に該駆動軸とは独立に回転可能に前記内燃機関の出力軸に接 続され、前記駆動軸への反力としてのトルクの出力を伴って前記内燃機関の出力軸 とトルクを出力して該内燃機関の出力軸の回転数を調整する手段であるものとするこ ともできる。この場合、前記回転数調整手段は、前記駆動軸と前記内燃機関の出力 軸と第 3の軸の 3軸に接続され該 3軸のうちのいずれ力、 2軸に入出力される動力に基 づいて残余の軸に動力を入出力する 3軸式動力入出力手段と、前記第 3の軸に動力 を入出力する発電機と、を備える手段であるものとすることもできる。また、前記回転 数調整手段は、前記内燃機関の出力軸に接続された第 1の回転子と前記駆動軸に 接続された第 2の回転子とを有し、該第 1の回転子と該第 2の回転子との相対的な回 転により回転する対回転子電動機であるものとすることもできる。
[0018] 上述のいずれかの態様の本発明の第 1の動力出力装置や本発明のだい 2の動力 出力装置は、車両に搭載することができる。この場合、車軸が前記駆動軸に連結さ れてなるものとすればょレ、。
[0019] 本発明の動力出力装置の制御方法は、駆動軸とは独立に回転可能に且つ該駆動 軸に動力の一部を出力可能に該駆動軸に接続され酸素吸蔵能力が高い触媒を用 いて排気を浄化する浄化装置を有する内燃機関と、前記内燃機関の出力軸の回転 数を調整可能な回転数調整手段と、を備え、前記駆動軸に動力を出力する動力出 力装置の制御方法であって、アクセルオフのときに前記内燃機関の出力軸の回転数 が低下するよう前記内燃機関と前記回転数調整手段とを制御する積極的回転数低 下制御を実行しているときには、前記内燃機関への燃料噴射を停止すると共に前記 内燃機関へ供給される空気が多くなるよう前記内燃機関を制御し、その後に前記内 燃機関への燃料噴射を再開する際には該内燃機関に吸入されている空気量に対し て前記内燃機関を定常運転しているときの燃料噴射量より増量した復帰時燃料噴射 量の燃料噴射を行なって前記内燃機関への燃料噴射が再開されるよう前記内燃機 関を制御し、前記アクセルオフのときに前記回転数調整手段による前記内燃機関の 出力軸の回転数の調整を伴わずに前記内燃機関の出力軸の回転数が低下するよう 前記内燃機関と前記回転数調整手段とを制御する消極的回転数低下制御を実行し ているときには、前記内燃機関への燃料噴射を停止すると共に前記内燃機関へ供 給される空気が多くなるよう前記内燃機関を制御し、その後に前記内燃機関への燃 料噴射を再開する際には前記復帰時燃料噴射量より少ない燃料噴射量の燃料噴射 を行なって前記内燃機関への燃料噴射が再開されるよう前記内燃機関を制御する、 ことを特徴とする。
この本発明の動力出力装置の制御方法では、アクセルオフのときに内燃機関の出 力軸の回転数が低下するよう内燃機関と回転数調整手段とを制御する積極的回転 数低下制御を実行しているときには、内燃機関への燃料噴射を停止すると共に内燃 機関へ供給される空気が多くなるよう内燃機関を制御する。これにより、触媒臭を抑 制すること力 Sできる。そして、その後に内燃機関への燃料噴射を再開する際には内 燃機関に吸入されている空気量に対して内燃機関を定常運転しているときの燃料噴 射量より増量した復帰時燃料噴射量の燃料噴射を行なって内燃機関への燃料噴射 が再開されるよう内燃機関を制御する。回転数調整調整手段により内燃機関の回転 数は迅速に低下するから、こうした回転数を調整しない場合に比して排気管の空気 量を抑制することができる。このため、内燃機関の始動性を良好なものとするために 内燃機関を定常運転しているときの燃料噴射量より増量した復帰時燃料噴射量の燃 料噴射を行なってもアフターファイアは生じ難い。一方、アクセルオフのときに回転数 調整手段による内燃機関の出力軸の回転数の調整を伴わずに内燃機関の出力軸 の回転数が低下するよう内燃機関と回転数調整手段とを制御する消極的回転数低 下制御を実行しているときには、内燃機関への燃料噴射を停止すると共に内燃機関 へ供給される空気が多くなるよう内燃機関を制御する。これにより、積極的回転数低 下制御を実行しているときと同様に触媒臭を抑制することができる。そして、その後に 内燃機関への燃料噴射を再開する際には復帰時燃料噴射量より少ない燃料噴射量 の燃料噴射を行なって内燃機関への燃料噴射が再開されるよう内燃機関を制御する 。回転数調整手段による内燃機関の出力軸の回転数の低下を行なわないときには 排気管に過剰な空気が存在すると考えられるから、復帰時燃料噴射量より少ない燃 料噴射量の燃料噴射を行なって内燃機関への燃料噴射を再開することにより、生じ やすいアフターファイアの発生を抑制することができる。
[0021] 本発明の内燃機関装置の制御方法は、酸素吸蔵能力が高い触媒を用いて排気を 浄化する浄化装置を有する内燃機関を備える内燃機関装置の制御方法であって、 アクセルオフのときには前記内燃機関への燃料噴射を停止すると共に前記内燃機関 へ供給される空気が多くなるよう前記内燃機関を制御し、その後に前記内燃機関へ の燃料噴射を再開するときには前記内燃機関へ供給される空気を少なくした後で前 記内燃機関への燃料噴射が再開されるよう前記内燃機関を制御する、ことを特徴と する。
[0022] この本発明の内燃機関装置の制御方法では、アクセルオフのときには内燃機関へ の燃料噴射を停止すると共に内燃機関へ供給される空気が多くなるよう内燃機関を 制御する。これにより、触媒臭を抑制することができる。そして、その後に内燃機関へ の燃料噴射を再開するときには内燃機関へ供給される空気を少なくした後で内燃機 関への燃料噴射が再開されるよう内燃機関を制御する。これにより内燃機関への燃 料噴射を再開するときの排気管の空気を減少させることができ、アフターファイアをよ り効果的に抑制することができる。
図面の簡単な説明
[0023] [図 1]本発明の一実施例であるハイブリッド自動車 20の構成の概略を示す構成図で ある。
[図 2]エンジン 22の構成の概略を示す構成図である。
[図 3]アクセルオフ時に実施例のハイブリッド用電子制御ユニット 70により実行される 駆動制御ルーチンの一例を示すフローチャートである。
[図 4]アクセルオフ時に実施例のエンジン ECU24により実行されるエンジン制御ル 一チンの一例を示すフローチャートである。
[図 5]要求制動トルク設定用マップの一例を示す説明図である。 [図 6]動力分配統合機構 30の回転要素を力学的に説明するための共線図の一例を 示す説明図である。
[図 7]変形例のエンジン制御ルーチンの一例を示すフローチャートである。
[図 8]変形例のハイブリッド自動車 120の構成の概略を示す構成図である。
[図 9]変形例のハイブリッド自動車 220の構成の概略を示す構成図である。
発明を実施するための最良の形態
[0024] 次に、本発明を実施するための最良の形態を実施例を用いて説明する。図 1は、本 発明の一実施例としてのハイブリッド自動車 20の構成の概略を示す構成図である。 実施例のハイブリッド自動車 20は、図示するように、エンジン 22と、エンジン 22の出 力軸としてのクランクシャフト 26にダンバ 28を介して接続された 3軸式の動力分配統 合機構 30と、動力分配統合機構 30に接続された発電可能なモータ MG1と、動力分 配統合機構 30に接続された駆動軸としてのリングギヤ軸 32aに取り付けられた減速 ギヤ 35と、この減速ギヤ 35に接続されたモータ MG2と、駆動輪 39a, 39bや図示し ない従動輪のブレーキを制御するためのブレーキアクチユエータ 92と、車両の駆動 系全体をコントロールするハイブリッド用電子制御ユニット 70とを備える。
[0025] エンジン 22は、例えばガソリンまたは軽油などの炭化水素系の燃料により動力を出 力可能な内燃機関として構成されており、図 2に示すように、エアクリーナ 122により 清浄された空気をスロットルバルブ 124を介して吸入すると共に燃料噴射弁 126から ガソリンを噴射して吸入された空気とガソリンとを混合し、この混合気を吸気バルブ 12 8を介して燃料室に吸入し、点火プラグ 130による電気火花によって爆発燃焼させて 、そのエネルギにより押し下げられるピストン 132の往復運動をクランクシャフト 26の 回転運動に変換する。エンジン 22からの排気は、一酸化炭素(CO)や炭化水素 (H C) ,窒素酸化物(NOx)の有害成分を浄化する触媒が充填された浄化装置 134を 介して外気へ排出される。浄化装置 134の触媒は、実施例では、酸素吸蔵能力が高 V、三元触媒が用いられて!/、る。
[0026] エンジン 22は、エンジン用電子制御ユニット(以下、エンジン ECUという) 24により 制御されている。エンジン ECU24は、 CPU24aを中心とするマイクロプロセッサとし て構成されており、 CPU24aの他に処理プログラムを記憶する ROM24bと、データ を一時的に記憶する RAM24cと、図示しない入出力ポートおよび通信ポートとを備 える。エンジン ECU24には、エンジン 22の状態を検出する種々のセンサからの信号 、クランクシャフト 26の回転位置を検出するクランクポジションセンサ 140からのクラン クポジションやエンジン 22の冷却水の温度を検出する水温センサ 142からの冷却水 温,燃焼室内に取り付けられた圧力センサ 143からの筒内圧力 Pin,燃焼室へ吸排 気を行なう吸気バルブ 128や排気バルブを開閉するカムシャフトの回転位置を検出 ンを検出するスロットルバルブポジションセンサ 146からのスロットルポジション,吸気 管に取り付けられたエアフローメータ 148からのエアフローメータ信号 AF,同じく吸 気管に取り付けられた温度センサ 149からの吸気温,空燃比センサ 135aからの空燃 比 AF,酸素センサ 135bからの酸素信号などが入力ポートを介して入力されている。 また、エンジン ECU24からは、エンジン 22を駆動するための種々の制御信号、例え ば、燃料噴射弁 126への駆動信号や、スロットルバルブ 124のポジションを調節する スロットルモータ 136への駆動信号、ィグナイタと一体化されたィグニッシヨンコイル 1 38への制御信号、吸気バルブ 128の開閉タイミングの変更可能な可変バルブタイミ ング機構 150への制御信号などが出力ポートを介して出力されている。なお、ェンジ ン ECU24は、ハイブリッド用電子制御ユニット 70と通信しており、ハイブリッド用電子 制御ユニット 70からの制御信号によりエンジン 22を運転制御すると共に必要に応じ てエンジン 22の運転状態に関するデータを出力する。なお、エンジン ECU24は、ク 回転数、即ち、エンジン 22の回転数 Neも計算している。
動力分配統合機構 30は、外歯歯車のサンギヤ 31と、このサンギヤ 31と同心円上 に配置された内歯歯車のリングギヤ 32と、サンギヤ 31に嚙合すると共にリングギヤ 3 2に嚙合する複数のピニオンギヤ 33と、複数のピニオンギヤ 33を自転かつ公転自在 に保持するキャリア 34とを備え、サンギヤ 31とリングギヤ 32とキャリア 34とを回転要 素として差動作用を行なう遊星歯車機構として構成されている。動力分配統合機構 3 0は、キャリア 34にはエンジン 22のクランクシャフト 26力 サンギヤ 31にはモータ MG 1が、リングギヤ 32にはリングギヤ軸 32aを介して減速ギヤ 35がそれぞれ連結されて おり、モータ MG1が発電機として機能するときにはキャリア 34から入力されるェンジ ン 22からの動力をサンギヤ 31側とリングギヤ 32側にそのギヤ比に応じて分配し、モ ータ MG1が電動機として機能するときにはキャリア 34から入力されるエンジン 22から の動力とサンギヤ 31から入力されるモータ MG1からの動力を統合してリングギヤ 32 側に出力する。リングギヤ 32に出力された動力は、リングギヤ軸 32aからギヤ機構 37 およびデフアレンシャルギヤ 38を介して、最終的には車両の駆動輪 39a, 39bに出 力される。
[0028] モータ MG1およびモータ MG2は、いずれも発電機として駆動することができると共 に電動機として駆動できる周知の同期発電電動機として構成されており、インバータ 41 , 42を介してノ ッテリ 50と電力のやりとりを fiなう。インノ ータ 41 , 42とノ ッテリ 50 とを接続する電力ライン 54は、各インバータ 41 , 42が共用する正極母線および負極 母線として構成されており、モータ MG1 , MG2のいずれかで発電される電力を他の モータで消費することができるようになつている。したがって、ノ ッテリ 50は、モータ M Gl , MG2のいずれ力、から生じた電力や不足する電力により充放電されることになる 。なお、モータ MG1 , MG2により電力収支のバランスをとるものとすれば、バッテリ 5 0は充放電されない。モータ MG1 , MG2は、いずれもモータ用電子制御ユニット(以 下、モータ ECUという) 40により駆動制御されている。モータ ECU40には、モータ M Gl , MG2を駆動制御するために必要な信号、例えばモータ MG1 , MG2の回転子 の回転位置を検出する回転位置検出センサ 43, 44からの信号や図示しない電流セ ンサにより検出されるモータ MG1 , MG2に印加される相電流などが入力されており 、モータ ECU40からは、インバータ 41 , 42へのスイッチング制御信号が出力されて いる。モータ ECU40は、ハイブリッド用電子制御ユニット 70と通信しており、ハイブリ ッド用電子制御ユニット 70からの制御信号によってモータ MG1 , MG2を駆動制御 すると共に必要に応じてモータ MG1 , MG2の運転状態に関するデータをハイブリツ ド用電子制御ユニット 70に出力する。
[0029] ノ ッテリ 50は、バッテリ用電子制御ユニット(以下、バッテリ ECUという) 52によって 管理されている。バッテリ ECU52には、バッテリ 50を管理するのに必要な信号、例え ば、ノ ッテリ 50の端子間に設置された図示しない電圧センサからの端子間電圧,ノ ッテリ 50の出力端子に接続された電力ライン 54に取り付けられた図示しない電流セ ンサからの充放電電流,ノ ッテリ 50に取り付けられた温度センサ 51からの電池温度 Tbなどが入力されており、必要に応じてバッテリ 50の状態に関するデータを通信に よりハイブリッド用電子制御ユニット 70に出力する。なお、バッテリ ECU52では、バッ テリ 50を管理するために電流センサにより検出された充放電電流の積算値に基づい て残容量(SOC)も演算して!/、る。
[0030] ブレーキアクチユエータ 92は、ブレーキペダル 85の踏み込みに応じて生じるブレ ーキマスターシリンダ 90の圧力(ブレーキ圧)と車速 Vとにより車両に作用させる制動 力におけるブレーキの分担分に応じた制動トルクが駆動輪 39a, 39bや図示しない 従動輪に作用するようブレーキホイールシリンダ 96a〜96dの油圧を調整したり、ブレ ーキペダル 85の踏み込みに無関係に、駆動輪 39a, 39bや従動輪に制動トルクが 作用するようブレーキホイールシリンダ 96a〜96dの油圧を調整したりすることができ るように構成されている。以下、ブレーキアクチユエータ 92の作動により駆動輪 39a, 39bや図示しない従動輪に制動力を作用させる場合を油圧ブレーキと称する。ブレ 一キアクチユエータ 92は、ブレーキ用電子制御ユニット(以下、ブレーキ ECUという) 94により制御されている。ブレーキ ECU94は、図示しない信号ラインにより、駆動輪 39a, 39bや従動輪に取り付けられた図示しなレ、車輪速センサからの車輪速や図示 しない操舵角センサからの操舵角などの信号を入力して、運転者がブレーキペダル 85を踏み込んだときに駆動輪 39a, 39bや従動輪のいずれかがロックによりスリップ するのを防止するアンチロックブレーキシステム機能(ABS)や運転者がアクセルぺ ダル 83を踏み込んだときに駆動輪 39a, 39bのいずれかが空転によりスリップするの を防止するトラクシヨンコントロール (TRC) ,車両が旋回走行しているときに姿勢を保 持する姿勢保持制御 (VSC)なども行なう。ブレーキ ECU94は、ハイブリッド用電子 制御ユニット 70と通信しており、ノ、イブリツド用電子制御ユニット 70からの制御信号に よってブレーキアクチユエータ 92を駆動制御したり、必要に応じてブレーキアクチュ エータ 92の状態に関するデータをノヽイブリツド用電子制御ユニット 70に出力する。
[0031] ハイブリッド用電子制御ユニット 70は、 CPU72を中心とするマイクロプロセッサとし て構成されており、 CPU72の他に処理プログラムを記憶する ROM74と、データを 一時的に記憶する RAM76と、図示しない入出力ポートおよび通信ポートとを備える 。ハイブリッド用電子制御ユニット 70には、イダニッシヨンスィッチ 80からのイダニッシ ヨン信号,シフトレバー 81の操作位置を検出するシフトポジションセンサ 82からのシ フトポジション SP,アクセルペダル 83の踏み込み量を検出するアクセルペダルポジ シヨンセンサ 84からのアクセル開度 Acc,ブレーキペダル 85の踏み込み量を検出す るブレーキペダルポジションセンサ 86からのブレーキペダルポジション BP,車速セン サ 88からの車速 Vなどが入力ポートを介して入力されている。ハイブリッド用電子制 御ユニット 70は、前述したように、エンジン ECU24やモータ ECU40,バッテリ ECU 52と通信ポートを介して接続されており、エンジン ECU24やモータ ECU40,バッテ リ ECU52,ブレーキ ECU94と各種制御信号やデータのやりとりを行なっている。
[0032] こうして構成された実施例のハイブリッド自動車 20は、運転者によるアクセルペダル 83の踏み込み量に対応するアクセル開度 Accと車速 Vとに基づいて駆動軸としての リングギヤ軸 32aに出力すべき要求トルクを計算し、この要求トルクに対応する要求 動力がリングギヤ軸 32aに出力されるように、エンジン 22とモータ MG1とモータ MG2 とが運転制御される。エンジン 22とモータ MG1とモータ MG2の運転制御としては、 要求動力に見合う動力がエンジン 22から出力されるようにエンジン 22を運転制御す ると共にエンジン 22から出力される動力のすべてが動力分配統合機構 30とモータ MG1とモータ MG2とによってトルク変換されてリングギヤ軸 32aに出力されるようモ ータ MG1およびモータ MG2を駆動制御するトルク変換運転モードや要求動力とバ ッテリ 50の充放電に必要な電力との和に見合う動力がエンジン 22から出力されるよう にエンジン 22を運転制御すると共にバッテリ 50の充放電を伴ってエンジン 22から出 力される動力の全部またはその一部が動力分配統合機構 30とモータ MG1とモータ MG2とによるトルク変換を伴って要求動力力 Sリングギヤ軸 32aに出力されるようモー タ MG1およびモータ MG2を駆動制御する充放電運転モード、エンジン 22の運転を 停止してモータ MG2からの要求動力に見合う動力をリングギヤ軸 32aに出力するよ う運転制御するモータ運転モードなどがある。
[0033] 次に、こうして構成された実施例のハイブリッド自動車 20の動作、特に踏み込んで V、たアクセルペダル 83を戻してアクセルオフとしたときの動作につ!/、て説明する。図 3はアクセルオフ時にハイブリッド用電子制御ユニット 70により実行される駆動制御ル 一チンの一例を示すフローチャートであり、図 4はアクセルオフ時にエンジン ECU24 により実行されるエンジン制御ルーチンの一例を示すフローチャートである。この駆 動制御ルーチンやエンジン制御は、所定時間毎 (例えば数 msec毎)に繰り返し実行 される。説明の容易のため、まず、図 3の駆動制御ルーチンを用いてアクセルオフ時 の駆動制御について説明し、その後、図 4のエンジン制御ルーチンを用いてアクセル オフ時のエンジン制御について説明する。
[0034] 駆動制御ルーチンが実行されると、ハイブリッド用電子制御ユニット 70の CPU72は 、まず、ブレーキぺダノレポジションセンサ 86からのブレーキぺダノレポジション BPや車 速センサ 88からの車速 V,モータ MG1 , MG2の回転数 Nml , Nm2,エンジン 22 の回転数 Ne,バッテリ 50の入出力制限 Win, Woutなど制御に必要なデータを入力 する処理を実行する(ステップ S 100)。ここで、エンジン 22の回転数 Neはクランクシ ャフト 26に取り付けられた図示しないクランクポジションセンサからの信号に基づいて 計算されたものをエンジン ECU24から通信により入力するものとした。また、モータ MG1 , MG2の回転数 Nml , Nm2は、回転位置検出センサ 43, 44により検出され るモータ MG1 , MG2の回転子の回転位置に基づいて計算されたものをモータ EC U40から通信により入力するものとした。さらに、バッテリ 50の入出力制限 Win, Wo utは、温度センサ 51により検出されたバッテリ 50の電池温度 Tbとバッテリ 50の残容 量(SOC)とに基づいて設定されたものをバッテリ ECU52から通信により入力するも のとした。
[0035] こうしてデータを入力すると、入力したブレーキペダルポジション BPと車速 Vとに基 づいて車両に要求される制動トルクとして駆動輪 39a, 39bに連結された駆動軸とし てのリングギヤ軸 32aに出力すべき要求制動トルク Tr *を設定する(ステップ S 110) 。要求制動トルク Tr *は、実施例では、ブレーキペダルポジション BPと車速 Vと要求 制動トルク Tr *との関係を予め定めて要求制動トルク設定用マップとして ROM74に 記憶しておき、ブレーキペダルポジション BPと車速 Vとが与えられると記憶したマップ 力、ら対応する要求制動トルク Tr *を導出して設定するものとした。図 5に要求制動ト ルク設定用マップの一例を示す。 [0036] 次に、モータ MG1によるエンジン 22の回転数 Neの引き下げを行なうための所定 条件が成立しているか否かを判定する(ステップ S120)。この判定は、例えば、ブレ ーキペダルポジション BPが踏み込まれている条件ゃバッテリ 50の残容量(SOC)が 所定値未満で十分に充電できる条件などを用いて行なわれる。
[0037] モータ MG1によるエンジン 22の回転数 Neの引き下げを行なうための所定条件が 成立しているときには、エンジン 22の回転数 Neがアイドル回転数(例えば、 1200rp mなど) Nidiとなるよう次式(1)のフィードバック制御の関係式を用いてモータ MG1の トルク指令 Tml *を設定すると共に (ステップ S130)、回転数調整フラグ Fに値 1を セットし(ステップ S 140)、モータ MG1によるエンジン 22の回転数 Neの引き下げを 行なうための所定条件が成立していないときには、モータ MG1のトルク指令 Tml * に値 0を設定すると共に (ステップ S 150)、回転数調整フラグ Fに値 0をセットする(ス テツプ S 160)。ここで、式(1)中、右辺第 1項の「kl」は比例項のゲインであり、右辺 第 2項の「k2」は積分項のゲインである。
[0038] Tml>K=kl(Nidl-Ne)+k2 j (Nidl-Ne)dt (1)
[0039] こうしてモータ MG1のトルク指令 Tml *を計算すると、バッテリ 50の入出力制限 W in, Woutと計算したモータ MG1のトルク指令 Tml *に現在のモータ MG1の回転 数 Nmlを乗じて得られるモータ MG1の消費電力(発電電力)との偏差をモータ MG 2の回転数 Nm2で割ることによりモータ MG2から出力してもよいトルクの上下限とし てのトルク制限 Tmin, Tmaxを次式(2)および式(3)により計算すると共に(ステップ S 170)、要求制動トルク Tr *とトルク指令 Tml *と動力分配統合機構 30のギヤ比 pを用いてモータ MG2から出力すべきトルクとしての仮モータトルク Tm2tmpを式( 4)により計算し(ステップ S180)、計算したトルク制限 Tmin, Tmaxで仮モータトルク Tm2tmpを制限した値としてモータ MG2のトルク指令 Tm2 *を設定する(ステップ S 190)。ここで、上述の式(2)ないし(4)については、ステップ S 130によりモータ MG1 のトルク指令 Tml *に値 0が設定されたときには、値 0のトルク指令 Tml *を用いて 計算することになる。式 (4)は、動力分配統合機構 30の回転要素に対する力学的な 関係式から導くことができる。動力分配統合機構 30の回転要素における回転数とト ルクとの力学的な関係を示す共線図を図 6に示す。図中、左の S軸はモータ MG1の 回転数 Nmlであるサンギヤ 31の回転数を示し、 C軸はエンジン 22の回転数 Neであ るキャリア 34の回転数を示し、 R軸はモータ MG2の回転数 Nm2を減速ギヤ 35のギ ャ比 Grで除したリングギヤ 32の回転数 Nrを示す。 R軸上の 2つの太線矢印は、モー タ MG1から出力されたトルク Tmlがリングギヤ軸 32aに作用するトルクと、モータ MG 2から出力されるトルク Tm2が減速ギヤ 35を介してリングギヤ軸 32aに作用するトルク とを示す。このようにモータ MG2のトルク指令 Tm2 *を設定することにより、駆動軸と してのリングギヤ軸 32aに出力する要求制動トルク Tr *を、バッテリ 50の入出力制限 Win, Woutの範囲内で制限したトルクとして設定することができる。
[0040] Tmin=(Win-Tml>K · Nml)/Nm2 (2)
Tmax=(Wout-Tml>K · Nml)/Nm2 (3)
Tm2tmp=(Tr*+Tm 1 */ p )/Gr (4)
[0041] 次に、油圧ブレーキにより作用させるべきトルクのリングギヤ軸 32aに換算したブレ 一キトルク Tb *を仮モータトルク Tm2tmpからモータ MG2のモータトルク指令 Tm2 *を減じることにより設定し(ステップ S200)、設定したモータ MG1 , MG2のトルク指 令 Tml * , Tm2 *についてはモータ ECU40に、設定したブレーキトルク Tb *につ いてはブレーキ ECU94に送信して(ステップ S210)、駆動制御ルーチンを終了する 。なお、仮モータトルク Tm2tmpがそのままモータ MG2のモータトルク指令 Tm2 *と して設定されたときには、ブレーキトルク Tb *には値 0が設定される。トルク指令 Tml * , Tm2 *を受信したモータ ECU40は、トルク指令 Tml *でモータ MG1が駆動さ れると共にトルク指令 Tm2 *でモータ MG2が駆動されるようインバータ 41 , 42のス イッチング素子のスイッチング制御を行なう。また、ブレーキトルク Tb *を受信したブ レーキ ECU94は、リングギヤ軸 32aに換算したときにブレーキトルク Tb *力 Sリングギ ャ軸 32aに作用するようブレーキアクチユエータ 92によりブレーキホイールシリンダ 9 6a〜96dの油圧を調整する。こうした制御により、要求制動トルク Tr *をリングギヤ軸 32aに、即ち車両に作用させることができる。
[0042] 次に、こうした駆動制御ルーチンがハイブリッド用電子制御ユニット 70により実行さ れている最中にエンジン ECU24により実行されるエンジン制御ルーチンによるェン ジン制御について説明する。エンジン制御ルーチンが実行されると、エンジン ECU2 4の CPU24aは、まず、駆動制御により設定される回転数調整フラグ Fとエンジン 22 の回転数 Neと車速 Vなどエンジン制御に必要なデータを入力する処理を実行する( ステップ S300)。ここで、回転数調整フラグ Fについてはハイブリッド用電子制御ュニ ット 70から通信により入力するものとした。また、エンジン 22の回転数 Neについては 、クランクポジションセンサ 140からのクランクポジションに基づいて計算されたものを 入力するものとした。さらに、車速 Vについては車速センサ 88により検出されたものを ハイブリッド用電子制御ユニット 70から通信により入力するものとした。
[0043] こうしてデータを入力すると、入力したエンジン 22の回転数 Neを閾値 Nref lと比較 する(ステップ S310)。ここで、閾値 Nreflは、燃料カットしているエンジン 22に燃料 噴射を再開するエンジン 22の回転数として設定された閾値 Nref2より若干大きな回 転数として設定されている。閾値 Nref2としては例えば 1500rpmを用いることができ 、閾値 Nreflとしては例えば 1600rpmを用いることができる。エンジン 22の回転数 N eが閾値 Nrefl以上のときには、エンジン 22の燃料カットが実行されるよう燃料噴射 弁 126からの燃料噴射を停止すると共に (ステップ S320)、スロットルバルブ 124を 閾値 Nref2で自立運転するときのスロットル開度より大きな開度(例えば、 30%など) となるようスロットルモータ 136を駆動する(ステップ S330)。このように、スロットノレ開 度を大きくすることにより、浄化装置 134側に空気を多く送ることができるから、空気 量が不足することにより浄化装置 134に充填された触媒に保持されている硫黄酸化 物が硫化水素となって外部に放出されることによって生じる触媒臭を抑制することが できる。続いて、エンジン 22の回転数 Neを閾値 Nref2と比較する(ステップ S350)。 いま、エンジン 22の回転数 Neが閾値 Nref l以上のときを考えれば、 Nref l〉Nref2 であるから、エンジン 22の回転数 Neは閾値 Nref2以上と判定され、これでエンジン 制御ルーチンを終了する。
[0044] エンジン 22の回転数 Neが閾値 Nref l未満になると、スロットルバルブ 124を閾値 N ref 2で自立運転するときのスロットル開度やこれより若干大きな開度となるよう、即ち、 スロットル開度が小さくされるようスロットルモータ 136を駆動し(ステップ S340)、ェン ジン 22の回転数 Neを閾値 Nref2と比較する(ステップ S350)。このように、スロットル 開度を小さくすることにより、排気管の空気を減少させることができ、アフターファイア をより効果的に抑制することができる。いま、エンジン 22の回転数 Neが閾値 Nrefl未 満に至った直後を考えれば、エンジン 22の回転数 Neは閾値 Nref2以上と判定され るから、これでエンジン制御ルーチンを終了する。
[0045] エンジン 22の回転数 Neが閾値 Nref 2未満と判定されると、吸入空気量から理論空 燃比となるよう基本燃料噴射量 TOを計算し (ステップ S360)、回転数調整フラグ Fの 値を調べると共に車速 Vが閾値 Vref以上であるか否かを判定する(ステップ S370, S380)。ここで、基本燃料噴射量 TOは、閾値 Nref2の回転数でエンジン 22を自立 運転するときのスロットル開度に対して理論空燃比となるよう計算されるから、ェンジ ン 22が定常運転していれば閾値 Nref2の回転数でアイドリング運転することになる。 また、閾値 Vrefは、エンジン 22への燃料噴射を再開した直後にエンジン 22から比較 的大きな出力が必要となるために迅速なエンジン 22の始動が必要か否かを判定す るための閾値であり、比較的低車速、例えば 20km/hや 30km/hなどを用いること 力できる。回転数調整フラグ Fが値 1で車速 Vが閾値 Vref以上のときには、モータ M G1によるエンジン 22の回転数 Neの引き下げ制御が行なわれ、且つ、車速 Vが比較 的大きいことから、迅速なエンジン 22の始動が必要と判断し、燃料の増量補正に比 較的大きな補正量 T1を増量補正量 Taとして設定し (ステップ S390)、基本燃料噴射 量 TOと増量補正量 Taとの和として燃料噴射量 Tを設定し (ステップ S410)、設定し た燃料噴射量 Tに対応する開弁時間だけ燃料噴射弁 126を開弁して (ステップ S42 0)、エンジン制御ルーチンを終了する。これにより迅速にエンジン 22を始動すること ができる。
[0046] 回転数調整フラグ Fが値 0のときや回転数調整フラグ Fが値 1であっても車速 Vが閾 値 Vref未満のときには、迅速なエンジン 22の始動は不要と判断し、補正量 T1より小 さな補正量 T2を増量補正量 Taとして設定し (ステップ S400)、基本燃料噴射量 TOと 増量補正量 Taとの和として燃料噴射量 Tを設定し (ステップ S410)、設定した燃料噴 射量 Tに対応する開弁時間だけ燃料噴射弁 126を開弁して (ステップ S420)、ェン ジン制御ルーチンを終了する。小さな補正量 T2を増量補正量 Taとして用いるから、 エンジン 22の燃料噴射の再開時に生じ得るアフターファイアを抑制することができる [0047] 以上説明した実施例のハイブリッド自動車 20によれば、アクセルオフにエンジン 22 の燃料カットを実行する際にはエンジン 22を閾値 Nref2の回転数でアイドル運転す るときのスロットル開度より大きなスロットル開度とすることにより、排気管に多くの空気 を送り込み、空気量が不足することにより浄化装置 134に充填された触媒に保持され ている硫黄酸化物が硫化水素となって外部に放出されることによって生じる触媒臭を 抑制すること力 Sできる。また、エンジン 22への燃料噴射を再開するときには、燃料噴 射を再開する前にエンジン 22を閾値 Nref2の回転数でアイドル運転するときのスロッ トル開度となるようスロットル開度を小さくすることにより、排気管の空気を減少させるこ とができ、アフターファイアをより効果的に抑制することができる。さらに、モータ MG1 によるエンジン 22の回転数の引き下げが行なわれていないときやモータ MG1による エンジン 22の回転数の引き下げが行なわれていても低車速のときにエンジン 22への 燃料噴射を再開するときには、小さな補正量 T2を増量補正量 Taとして用いてェンジ ン 22への燃料噴射を再開するから、エンジン 22の燃料噴射の再開時に生じ得るァ フタ一ファイアを抑制することができる。加えて、モータ MG1によるエンジン 22の回 転数の引き下げが行なわれており、且つ、中高車速のときにエンジン 22への燃料噴 射を再開するときには、大きな補正量 T1を増量補正量 Taとして用いてエンジン 22へ の燃料噴射を再開するから、迅速にエンジン 22を始動して、エンジン 22からの動力 を迅速に走行用の動力に用いることができるようにすることができる。
[0048] 実施例のハイブリッド自動車 20では、エンジン 22への燃料噴射を再開するときに は、燃料噴射を再開する前にエンジン 22を閾値 Nref2の回転数でアイドル運転する ときのスロットル開度となるようスロットル開度を小さくした力 S、燃料噴射を再開する前 にスロットル開度を小さくしなレ、ものとしても構わなレ、。
[0049] 実施例のハイブリッド自動車 20では、モータ MG1によるエンジン 22の回転数の引 き下げが行なわれていないときやモータ MG1によるエンジン 22の回転数の引き下げ が行なわれていても低車速のときにエンジン 22への燃料噴射を再開するときには、 小さな補正量 T2を増量補正量 Taとして用いてエンジン 22への燃料噴射を再開する ものとしたが、モータ MG1によるエンジン 22の回転数の引き下げが行なわれている ときにエンジン 22への燃料噴射を再開するときでも、小さな補正量 T2を増量補正量 Taとして用いてエンジン 22への燃料噴射を再開するものとしても構わないし、中高 車速のときにエンジン 22への燃料噴射を再開するときでも、小さな補正量 T2を増量 補正量 Taとして用いてエンジン 22への燃料噴射を再開するものとしても構わない。 実施例のハイブリッド自動車 20では、エンジン 22への燃料噴射を再開するときに は、燃料噴射を再開する前にエンジン 22を閾値 Nref2の回転数でアイドル運転する ときのスロットル開度となるようスロットル開度を小さくすると共にモータ MG1によるェ ンジン 22の回転数の引き下げが行なわれていないときやモータ MG1によるエンジン 22の回転数の引き下げが行なわれていても低車速のときに小さな補正量 T2を増量 補正量 Taとして用いてエンジン 22への燃料噴射を再開するものとした力、燃料噴射 を再開する前にエンジン 22を閾値 Nref2の回転数でアイドル運転するときのスロット ル開度となるようスロットル開度を小さくするだけで何時も大きな補正量 T1を増量補 正量 Taとして用いてエンジン 22への燃料噴射を再開するものとしてもよい。この場合 のエンジン制御ルーチンを図 7に示す。図 7のエンジン制御ルーチンでは、入力する データはエンジン 22の回転数 Neだけでよく(ステップ S300B)、エンジン 22の回転 数 Neが閾値 Nrefl未満に至ったときにエンジン 22を閾値 Nref2の回転数でアイド ル運転するときのスロットル開度となるようスロットル開度を小さくし (ステップ S340)、 エンジン 22の回転数 Neが閾値 Nref2未満に至ったときに、吸入空気量から理論空 燃比となるよう基本燃料噴射量 TOを計算し (ステップ S360)、燃料の増量補正に比 較的大きな補正量 T1を増量補正量 Taとして設定し (ステップ S390)、基本燃料噴射 量 TOと増量補正量 Taとの和として燃料噴射量 Tを設定し (ステップ S400)、設定し た燃料噴射量 Tに対応する開弁時間だけ燃料噴射弁 126を開弁して (ステップ S41 0)、エンジン制御ルーチンを終了する。こうした変形例でも、エンジン 22への燃料噴 射を再開するときには、燃料噴射を再開する前にエンジン 22を閾値 Nref 2の回転数 でアイドル運転するときのスロットル開度となるようスロットル開度を小さくすることによ り、排気管の空気を減少させることができ、アフターファイアをより効果的に抑制する ことができる。この場合、エンジンへの燃料噴射を再開するときには、燃料噴射を再 開する前にエンジンに吸入される空気量が小さくなるようスロットル開度を小さくするも のであればよいから、ハイブリッド自動車の形態とする必要はなぐ内燃機関と電動機 とを備える動力出力装置の形態としたり、内燃機関は備えるが電動機は備えない内 燃機関装置の形態とすることもできる。
[0051] 実施例のハイブリッド自動車 20では、モータ MG2の動力を減速ギヤ 35により変速 してリングギヤ軸 32 aに出力するものとした力 図 8の変形例のハイブリッド自動車 12 0に例示するように、モータ MG2の動力をリングギヤ軸 32aが接続された車軸(駆動 輪 63a, 63bが接続された車軸)とは異なる車軸(図 8における車輪 64a, 64bに接続 された車軸)に接続するものとしてもよい。
[0052] 実施例のハイブリッド自動車 20では、エンジン 22の動力を動力分配統合機構 30を 介して駆動輪 63a, 63bに接続された駆動軸としてのリングギヤ軸 32aに出力するも のとしたが、図 9の変形例のハイブリッド自動車 220に例示するように、エンジン 22の クランクシャフト 26に接続されたインナーロータ 232と駆動輪 63a, 63bに動力を出力 する駆動軸に接続されたアウターロータ 234とを有し、エンジン 22の動力の一部を駆 動軸に伝達すると共に残余の動力を電力に変換する対ロータ電動機 230を備えるも のとしてあよい。
[0053] 実施例や変形例では、ハイブリッド自動車 20, 120, 220として説明した力 内燃機 関と内燃機関の回転数を調整する電動機などを備える動力出力装置の形態としても よぐあるいは、内燃機関を備えるだけで電動機や発電機を備えない内燃機関装置 の形態としても構わない。また、動力出力装置の制御方法や内燃機関装置の制御方 法の形態としてもよい。
[0054] ここで、実施例の主要な要素と発明の開示の欄に記載した発明の主要な要素との 対応関係について説明する。実施例では、一酸化炭素 (CO)や炭化水素 (HC) ,窒 素酸化物(NOx)の有害成分を浄化する酸素吸蔵能力が高い触媒が充填された浄 化装置 134を有するエンジン 22が「内燃機関」に相当し、動力分配統合機構 30とモ ータ MG1とが「回転数調整手段」に相当し、アクセルペダルポジションセンサ 84が「 アクセルオフ検出手段」に相当し、アクセルオフ時に所定条件に基づいてモータ MG 1によるエンジン 22の回転数の引き下げを行なったり行なわなかったりする図 3の駆 動制御ルーチンのステップ S 120〜S160の処理を実行するハイブリッド用電子制御 ユニット 70およびノヽイブリツド用電子制御ユニット 70による制御信号によりモータ MG 1を駆動制御するモータ ECU40と、アクセルオフにエンジン 22の燃料カットを実行 する際にはエンジン 22を閾値 Nref2の回転数でアイドル運転するときのスロットル開 度より大きなスロットル開度とし、エンジン 22への燃料噴射を再開する前にエンジン 2 2を閾値 Nref2の回転数でアイドル運転するときのスロットル開度となるようスロットル 開度を小さくし、モータ MG1によるエンジン 22の回転数の引き下げが行なわれてお り且つ中高車速のときにエンジン 22への燃料噴射を再開するときには大きな補正量 T1を増量補正量 Taとして用いてエンジン 22への燃料噴射を再開し、モータ MG1に よるエンジン 22の回転数の引き下げが行なわれていないときやモータ MG1によるェ ンジン 22の回転数の引き下げが行なわれていても低車速のときにエンジン 22への 燃料噴射を再開するときには補正量 T1より小さな補正量 T2を増量補正量 Taとして 用いてエンジン 22への燃料噴射を再開する図 4のエンジン制御ルーチンを実行する エンジン ECU24と、力 S「制御手段」に相当する。また、車速 Vを検出する車速センサ 88が「回転数反映物理量検出手段」に相当し、モータ MG2が「電動機」に相当し、 ブレーキアクチユエータ 92とブレーキ ECU94とブレーキホイールシリンダ 96a〜96d とからなる油圧ブレーキを発生させる装置が「制動力付与手段」に相当し、ブレーキ ペダルポジション BPと車速 Vとに基づ!/、て要求制動トルク Tr *を設定する図 3の駆 動制御ルーチンのステップ S 110の処理を実行するハイブリッド用電子制御ユニット 7 0が要求駆動力設定手段」に相当し、動力分配統合機構 30が「3軸式動力入出力手 段」に相当し、モータ MG1が「発電機」に相当する。また、図 9に例示する対ロータ電 動機 230も「回転数調整手段」に相当する。また、発明の開示の欄に記載した内燃機 関装置に対しては、一酸化炭素(CO)や炭化水素(HC) ,窒素酸化物(NOx)の有 害成分を浄化する酸素吸蔵能力が高い触媒が充填された浄化装置 134を有するェ ンジン 22が「内燃機関」に相当し、アクセルペダルポジションセンサ 84が「アクセルォ フ検出手段」に相当し、アクセルオフにエンジン 22の燃料カットを実行する際にはェ ンジン 22を閾値 Nref2の回転数でアイドル運転するときのスロットル開度より大きなス ロットル開度とし、エンジン 22への燃料噴射を再開するときには、燃料噴射を再開す る前にエンジン 22を閾値 Nref2の回転数でアイドル運転するときのスロットル開度と なるようスロットル開度を小さくしてエンジン 22への燃料噴射を再開する図 7のェンジ ン制御ルーチンを実行するエンジン ECU24が制御手段に相当する。なお、実施例 の主要な要素と発明の開示の欄に記載した発明の主要な要素との対応関係は、実 施例が発明の開示の欄に記載した発明を実施するための最良の形態を具体的に説 明するための一例であることから、発明の開示の欄に記載した発明の要素を限定す るものではない。即ち、発明の開示の欄に記載した発明についての解釈はその欄の 記載に基づいて行なわれるべきものであり、実施例は発明の開示の欄に記載した発 明の具体的な一例に過ぎないものである。
[0055] 以上、本発明の実施の形態について実施例を用いて説明した力 本発明はこうし た実施例に何等限定されるものではなぐ本発明の要旨を逸脱しない範囲内におい て、種々なる形態で実施し得ることは勿論である。
産業上の利用可能性
[0056] 本発明は、動力出力装置の製造産業などに利用可能である。

Claims

請求の範囲
[1] 駆動軸に動力を出力する動力出力装置であって、
前記駆動軸とは独立に回転可能に且つ該駆動軸に動力の一部を出力可能に該駆 動軸に接続され、酸素吸蔵能力が高い触媒を用いて排気を浄化する浄化装置を有 する内燃機関と、
前記内燃機関の出力軸の回転数を調整可能な回転数調整手段と、
アクセルオフを検出するアクセルオフ検出手段と、
前記アクセルオフ検出手段によりアクセルオフが検出されているときに前記内燃機 関の出力軸の回転数が低下するよう前記内燃機関と前記回転数調整手段とを制御 する積極的回転数低下制御を実行して!/、るときには、前記内燃機関への燃料噴射を 停止すると共に前記内燃機関へ供給される空気が多くなるよう前記内燃機関を制御 し、その後に前記内燃機関への燃料噴射を再開する際には該内燃機関に吸入され てレ、る空気量に対して前記内燃機関を定常運転して!/、るときの燃料噴射量より増量 した復帰時燃料噴射量の燃料噴射を行なって前記内燃機関への燃料噴射が再開さ れるよう前記内燃機関を制御し、前記アクセルオフ検出手段によりアクセルオフが検 出されているときに前記回転数調整手段による前記内燃機関の出力軸の回転数の 調整を伴わずに前記内燃機関の出力軸の回転数が低下するよう前記内燃機関と前 記回転数調整手段とを制御する消極的回転数低下制御を実行して!/、るときには、前 記内燃機関への燃料噴射を停止すると共に前記内燃機関へ供給される空気が多く なるよう前記内燃機関を制御し、その後に前記内燃機関への燃料噴射を再開する際 には前記復帰時燃料噴射量より少ない燃料噴射量の燃料噴射を行なって前記内燃 機関への燃料噴射が再開されるよう前記内燃機関を制御する制御手段と、
を備える動力出力装置。
[2] 請求項 1記載の動力出力装置であって、
前記駆動軸の回転数を反映する物理量である回転数反映物理量を検出する回転 数反映物理量検出手段を備え、
前記制御手段は、前記検出された回転数反映物理量が所定物理量以上のときに は、前記消極的回転数低下制御を実行して!/、るときであっても前記内燃機関への燃 料噴射を再開する際には前記復帰時燃料噴射量の燃料噴射を行なって前記内燃 機関への燃料噴射が再開されるよう前記内燃機関を制御する手段である、
動力出力装置。
[3] 請求項 1記載の動力出力装置であって、
前記制御手段は、前記内燃機関への燃料噴射を再開する際には前記燃料噴射を 行なう前に前記内燃機関へ供給される空気が少なくなるよう前記内燃機関を制御す る手段である、
動力出力装置。
[4] 請求項 1記載の動力出力装置であって、
前記駆動軸に動力を入出力する電動機と、
前記駆動軸に制動力を付与可能な制動力付与手段と、
前記駆動軸に要求される要求駆動力を設定する要求駆動力設定手段と、 を備え、
前記制御手段は、前記設定された要求駆動力に基づく駆動力が前記駆動軸に出 力されるよう前記電動機と前記制動力付与手段とを制御する手段である、
動力出力装置。
[5] 請求項 1記載の動力出力装置であって、
前記回転数調整手段は、前記駆動軸に接続されると共に該駆動軸とは独立に回 転可能に前記内燃機関の出力軸に接続され、前記駆動軸への反力としてのトルクの 出力を伴って前記内燃機関の出力軸とトルクを出力して該内燃機関の出力軸の回 転数を調整する手段である、
動力出力装置。
[6] 請求項 5記載の動力出力装置であって、
前記回転数調整手段は、前記駆動軸と前記内燃機関の出力軸と第 3の軸の 3軸に 接続され該 3軸のうちのいずれ力、 2軸に入出力される動力に基づいて残余の軸に動 力を入出力する 3軸式動力入出力手段と、前記第 3の軸に動力を入出力する発電機 と、を備える手段である、
動力出力装置。
[7] 請求項 5記載の動力出力装置であって、
前記回転数調整手段は、前記内燃機関の出力軸に接続された第 1の回転子と前 記駆動軸に接続された第 2の回転子とを有し、該第 1の回転子と該第 2の回転子との 相対的な回転により回転する対回転子電動機である、
動力出力装置。
[8] 酸素吸蔵能力が高い触媒を用いて排気を浄化する浄化装置を有する内燃機関を 備える内燃機関装置であって、
アクセルオフを検出するアクセルオフ検出手段と、
前記アクセルオフ検出手段によりアクセルオフが検出されているときには前記内燃 機関への燃料噴射を停止すると共に前記内燃機関へ供給される空気が多くなるよう 前記内燃機関を制御し、その後に前記内燃機関への燃料噴射を再開するときには 前記内燃機関へ供給される空気を少なくした後で前記内燃機関への燃料噴射が再 開されるよう前記内燃機関を制御する制御手段と、
を備える内燃機関装置。
[9] 駆動軸に動力を出力する動力出力装置であって、
酸素吸蔵能力が高い触媒を用いて排気を浄化する浄化装置を有する内燃機関と、 前記駆動軸への反力としてのトルクの出力を伴って前記内燃機関の出力軸の回転 数を調整可能な回転数調整手段と、
アクセルオフを検出するアクセルオフ検出手段と、
前記アクセルオフ検出手段によりアクセルオフが検出されているときには前記内燃 機関への燃料噴射を停止すると共に前記内燃機関へ供給される空気が多くなるよう 前記内燃機関を制御し、その後に前記内燃機関への燃料噴射を再開するときには 前記内燃機関へ供給される空気を少なくした後で前記内燃機関への燃料噴射が再 開されるよう前記内燃機関を制御する制御手段と、
を備える動力出力装置。
[10] 請求項 9記載の動力出力装置であって、
前記駆動軸に動力を入出力する電動機と、
前記駆動軸に制動力を付与可能な制動力付与手段と、 前記駆動軸に要求される要求駆動力を設定する要求駆動力設定手段と、 を備え、
前記制御手段は、前記設定された要求駆動力に基づく駆動力が前記駆動軸に出 力されるよう前記電動機と前記制動力付与手段とを制御する手段である、
動力出力装置。
[11] 請求項 9記載の動力出力装置であって、
前記回転数調整手段は、前記駆動軸に接続されると共に該駆動軸とは独立に回 転可能に前記内燃機関の出力軸に接続され、前記駆動軸への反力としてのトルクの 出力を伴って前記内燃機関の出力軸とトルクを出力して該内燃機関の出力軸の回 転数を調整する手段である、
動力出力装置。
[12] 請求項 11記載の動力出力装置であって、
前記回転数調整手段は、前記駆動軸と前記内燃機関の出力軸と第 3の軸の 3軸に 接続され該 3軸のうちのいずれ力、 2軸に入出力される動力に基づいて残余の軸に動 力を入出力する 3軸式動力入出力手段と、前記第 3の軸に動力を入出力する発電機 と、を備える手段である、
動力出力装置。
[13] 請求項 11記載の動力出力装置であって、
前記回転数調整手段は、前記内燃機関の出力軸に接続された第 1の回転子と前 記駆動軸に接続された第 2の回転子とを有し、該第 1の回転子と該第 2の回転子との 相対的な回転により回転する対回転子電動機である、
動力出力装置。
[14] 駆動軸とは独立に回転可能に且つ該駆動軸に動力の一部を出力可能に該駆動軸 に接続され酸素吸蔵能力が高い触媒を用いて排気を浄化する浄化装置を有する内 燃機関と、前記内燃機関の出力軸の回転数を調整可能な回転数調整手段と、を備 え、前記駆動軸に動力を出力する動力出力装置の制御方法であって、
アクセルオフのときに前記内燃機関の出力軸の回転数が低下するよう前記内燃機 関と前記回転数調整手段とを制御する積極的回転数低下制御を実行して!/、るときに は、前記内燃機関への燃料噴射を停止すると共に前記内燃機関へ供給される空気 が多くなるよう前記内燃機関を制御し、その後に前記内燃機関への燃料噴射を再開 する際には該内燃機関に吸入されている空気量に対して前記内燃機関を定常運転 しているときの燃料噴射量より増量した復帰時燃料噴射量の燃料噴射を行なって前 記内燃機関への燃料噴射が再開されるよう前記内燃機関を制御し、前記アクセルォ フのときに前記回転数調整手段による前記内燃機関の出力軸の回転数の調整を伴 わずに前記内燃機関の出力軸の回転数が低下するよう前記内燃機関と前記回転数 調整手段とを制御する消極的回転数低下制御を実行して!/、るときには、前記内燃機 関への燃料噴射を停止すると共に前記内燃機関へ供給される空気が多くなるよう前 記内燃機関を制御し、その後に前記内燃機関への燃料噴射を再開する際には前記 復帰時燃料噴射量より少ない燃料噴射量の燃料噴射を行なって前記内燃機関への 燃料噴射が再開されるよう前記内燃機関を制御する、
ことを特徴とする動力出力装置の制御方法。
酸素吸蔵能力が高い触媒を用いて排気を浄化する浄化装置を有する内燃機関を 備える内燃機関装置の制御方法であって、
アクセルオフのときには前記内燃機関への燃料噴射を停止すると共に前記内燃機 関へ供給される空気が多くなるよう前記内燃機関を制御し、その後に前記内燃機関 への燃料噴射を再開するときには前記内燃機関へ供給される空気を少なくした後で 前記内燃機関への燃料噴射が再開されるよう前記内燃機関を制御する、
ことを特徴とする内燃機関装置の制御方法。
PCT/JP2007/066410 2006-10-27 2007-08-24 Dispositif de sortie de puissance, dispositif de moteur à combustion interne et leur procédé de commande WO2008050531A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07806028.2A EP2078651A4 (en) 2006-10-27 2007-08-24 Power output device, internal combustion engine device, and method of controlling them
US12/444,422 US8032289B2 (en) 2006-10-27 2007-08-24 Power output apparatus, internal combustion engine system, and control methods thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-292290 2006-10-27
JP2006292290A JP4165597B2 (ja) 2006-10-27 2006-10-27 動力出力装置,内燃機関装置及びこれらの制御方法並びに車両

Publications (1)

Publication Number Publication Date
WO2008050531A1 true WO2008050531A1 (fr) 2008-05-02

Family

ID=39324341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066410 WO2008050531A1 (fr) 2006-10-27 2007-08-24 Dispositif de sortie de puissance, dispositif de moteur à combustion interne et leur procédé de commande

Country Status (4)

Country Link
US (1) US8032289B2 (ja)
EP (1) EP2078651A4 (ja)
JP (1) JP4165597B2 (ja)
WO (1) WO2008050531A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008000579A1 (de) * 2008-03-10 2009-09-17 Robert Bosch Gmbh Verfahren und Anordnung zur Ansteuerung eines Fahrzeuges mit Hybridantrieb
JP4780219B2 (ja) * 2009-04-02 2011-09-28 トヨタ自動車株式会社 動力出力装置、それを備えたハイブリッド自動車および動力出力装置の制御方法
US8447503B2 (en) * 2009-05-19 2013-05-21 GM Global Technology Operations LLC Control strategy for operating a homogeneous-charge compression-ignition engine subsequent to a fuel cutoff event
JP5273170B2 (ja) * 2011-02-02 2013-08-28 トヨタ自動車株式会社 ハイブリッド車両
JP5652308B2 (ja) * 2011-04-14 2015-01-14 トヨタ自動車株式会社 ハイブリッド車両の駆動制御装置
KR101339228B1 (ko) * 2011-12-07 2014-01-02 현대자동차 주식회사 자동차의 브레이크 신호 제어장치 및 그 방법
US9090243B2 (en) * 2012-06-15 2015-07-28 Fca Us Llc Hybrid vehicle control
JP6242863B2 (ja) * 2013-04-02 2017-12-06 パナソニック株式会社 エンジン駆動車両に用いられる電動駆動装置
DE102014205767A1 (de) * 2014-03-27 2015-10-01 Schaeffler Technologies AG & Co. KG Verfahren zum Betrieb einer Brennkraftmaschine
US9847640B2 (en) * 2014-07-31 2017-12-19 General Electric Company Synchronous condenser
DE102016219577B4 (de) * 2016-10-10 2018-09-27 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029323A (ja) 2004-06-17 2006-02-02 Toyota Motor Corp 内燃機関の制御装置
JP2007113507A (ja) * 2005-10-21 2007-05-10 Toyota Motor Corp 内燃機関の制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636266Y2 (ja) 1987-07-31 1994-09-21 トヨタ自動車株式会社 内燃機関の排気浄化装置
US5438967A (en) * 1992-10-21 1995-08-08 Toyota Jidosha Kabushiki Kaisha Internal combustion device
JP2000054826A (ja) * 1998-08-11 2000-02-22 Nissan Motor Co Ltd エンジンの排気浄化装置
JP3982178B2 (ja) * 2000-10-27 2007-09-26 トヨタ自動車株式会社 有害ガス成分排出抑制型車輌
JP3707408B2 (ja) * 2001-08-29 2005-10-19 トヨタ自動車株式会社 内燃機関の停止・始動制御装置
JP4233490B2 (ja) 2004-05-25 2009-03-04 三菱電機株式会社 内燃機関の制御装置
JP4086018B2 (ja) * 2004-07-15 2008-05-14 トヨタ自動車株式会社 ハイブリッド車およびその制御方法並びに動力出力装置
JP4385962B2 (ja) * 2004-09-14 2009-12-16 トヨタ自動車株式会社 内燃機関の制御装置
JP4513629B2 (ja) * 2005-03-29 2010-07-28 トヨタ自動車株式会社 車両の制御装置
JP2007192114A (ja) * 2006-01-19 2007-08-02 Toyota Motor Corp 車両及びその制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029323A (ja) 2004-06-17 2006-02-02 Toyota Motor Corp 内燃機関の制御装置
JP2007113507A (ja) * 2005-10-21 2007-05-10 Toyota Motor Corp 内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2078651A4 *

Also Published As

Publication number Publication date
EP2078651A1 (en) 2009-07-15
US20100036589A1 (en) 2010-02-11
EP2078651A4 (en) 2017-11-22
JP2008105632A (ja) 2008-05-08
US8032289B2 (en) 2011-10-04
JP4165597B2 (ja) 2008-10-15

Similar Documents

Publication Publication Date Title
KR100992166B1 (ko) 내연기관시스템, 내연기관시스템의 제어방법 및 동력출력장치
JP4165597B2 (ja) 動力出力装置,内燃機関装置及びこれらの制御方法並びに車両
JP4325700B2 (ja) 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
JP4615037B2 (ja) ハイブリッド自動車およびその制御方法
JP4850801B2 (ja) 内燃機関装置およびこれを搭載する車両、内燃機関装置の制御方法
JP4306719B2 (ja) 内燃機関装置およびこれを備える動力出力装置並びにこれを搭載する車両、内燃機関装置の制御方法
WO2008050530A1 (fr) Véhicule hybride et procédé de commande
WO2007080729A1 (ja) ハイブリッド車両およびその制御方法
JP2010179780A (ja) ハイブリッド車およびその制御方法
WO2007023952A1 (ja) 動力出力装置およびその制御方法並びに車両
JP2008247251A (ja) 動力出力装置およびその制御方法並びに車両、駆動装置
JP4085996B2 (ja) 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP4811323B2 (ja) 車両およびその制御方法
JP2007120382A (ja) 動力出力装置およびその制御方法並びに車両
JP4375329B2 (ja) ハイブリッド車両およびその制御方法
JP2007176418A (ja) 車両およびその制御方法
JP4438752B2 (ja) 動力出力装置およびその制御方法並びに車両
JP4306685B2 (ja) 内燃機関装置,動力出力装置,内燃機関の運転停止方法および内燃機関装置の制御方法
JP4862687B2 (ja) 内燃機関装置および動力出力装置並びにこれらの制御方法
JP4229116B2 (ja) ハイブリッド車両およびその制御方法
JP2011111951A (ja) 車両および排気再循環制御方法
JP2008195134A (ja) 動力出力装置およびその制御方法並びに車両
JP2008247266A (ja) 車両およびその制御方法
JP2006258062A (ja) 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP2010019234A (ja) 内燃機関装置およびその制御方法並びに車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806028

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007806028

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12444422

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE