WO2008045218A1 - System and method for reducing visual artifacts in displays - Google Patents

System and method for reducing visual artifacts in displays Download PDF

Info

Publication number
WO2008045218A1
WO2008045218A1 PCT/US2007/020911 US2007020911W WO2008045218A1 WO 2008045218 A1 WO2008045218 A1 WO 2008045218A1 US 2007020911 W US2007020911 W US 2007020911W WO 2008045218 A1 WO2008045218 A1 WO 2008045218A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
illumination elements
modulators
light modulators
array
Prior art date
Application number
PCT/US2007/020911
Other languages
French (fr)
Inventor
Ion Bita
Gang Xu
Marek Mienko
Russell Wayne Gruhlke
Original Assignee
Qualcomm Mems Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Mems Technologies, Inc. filed Critical Qualcomm Mems Technologies, Inc.
Priority to CN2007800415900A priority Critical patent/CN101535713B/en
Priority to JP2009531404A priority patent/JP2010507103A/en
Priority to EP07852454A priority patent/EP2069684A1/en
Publication of WO2008045218A1 publication Critical patent/WO2008045218A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide

Definitions

  • the field of the invention relates to display systems.
  • Display systems may include light modulators to produce a displayed image by modulating light directed to the light modulators.
  • Such display systems may include a source of illumination to at least partly provide light to the light modulators.
  • a light modulator comprises microelectromechanical systems (MEMS).
  • MEMS microelectromechanical systems
  • Micromechanical elements may be created using deposition, etching, and or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices.
  • MEMS device is called an interferometric modulator.
  • interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference.
  • an interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal.
  • one plate may comprise a stationary layer deposited on a substrate and the other plate may comprise a metallic membrane separated from the stationary layer by an air gap.
  • the position of one plate in relation to another can change the optical interference of light incident on the interferometric modulator.
  • Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed. For example, a need exists for improved illumination sources for light modulator based displays.
  • One embodiment comprises an optical apparatus.
  • the apparatus comprises a plurality of illumination elements configured to direct a nonuniformly varying pattern of light to a plurality of light modulators.
  • optical apparatus comprises a plurality of illumination elements arranged in a nonuniform pattern and configured to direct light to a plurality of light modulators.
  • One embodiment comprises an optical apparatus.
  • the apparatus comprises a plurality of illumination elements configured to direct light to a plurality of light modulators.
  • the plurality of illumination elements is adapted to illuminate the light modulators without producing a visible moire pattern.
  • One embodiment comprises an optical apparatus.
  • the apparatus comprises means for guiding light and means for illuminating a plurality of light modulators with a nonuniformly varying pattern of light.
  • Another embodiment comprises a method of making an illuminator.
  • the method comprises forming a plurality of illumination elements configured to direct a nonuniformly varying pattern of light to an array of light modulators.
  • Another embodiment comprises a method comprising illuminating a plurality of illumination elements with light.
  • the method comprises directing a nonuniformly varying pattern of the light from the illumination elements to a plurality of light modulators.
  • FIG. 1 is an isometric view depicting a portion of one embodiment of an interferometric modulator display in which a movable reflective layer of a first interferometric modulator is in a relaxed position and a movable reflective layer of a second interferometric modulator is in an actuated position.
  • FIG. 2 is a system block diagram illustrating one embodiment of an electronic device incorporating a 3x3 interferometric modulator display.
  • FIG. 3 is a diagram of movable mirror position versus applied voltage for one exemplary embodiment of an interferometric modulator of FIG. I .
  • FIG. 4 is an illustration of a set of row and column voltages that may be used to drive an interferometric modulator display.
  • FIGS. 5A and 5B illustrate one exemplary timing diagram for row and column signals that may be used to write a frame of display data to the 3x3 interferometric modulator display of FIG. 2.
  • FIGS. 6A and 6B are system block diagrams illustrating an embodiment of a visual display device comprising a plurality of interferometric modulators.
  • FIG. 7A is a cross section of the device of FIG. 1.
  • FIG. 7B is a cross section of an alternative embodiment of an interferometric modulator.
  • FIG. 7C is a cross section of another alternative embodiment of an interferometric modulator.
  • FIG. 7D is a cross section of yet another alternative embodiment of an interferometric modulator.
  • FIG. 7E is a cross section of an additional alternative embodiment of an interferometric modulator.
  • FIG. 8 is a cross section of an example of a display system comprising an array of light modulators, such as devices illustrated in FIG. 1 , illuminated by an illuminator.
  • FIG. 9 is a cross section of an example of display system such as illustrated in FIG. 8 that comprises an array of light modulators illuminated by an illuminator comprising an array of reflective light turning elements.
  • FIG. 1OA is a cross section of an example of an illuminator comprising periodically spaced light turning elements such as illustrated in FIG. 8
  • FIG. 1OB is a perspective view of an example of an illuminator comprising periodically spaced reflective light turning elements such as illustrated in FIG. 1OA.
  • FIG. 1 OC is a top view of an example of an illuminator comprising periodically spaced reflective light turning elements such as illustrated in FlG. 1OB.
  • FIG. 1 1 A illustrates a cross section view of an illuminator comprising a periodically arranged reflective light turning elements such as illustrated in FlG. 1OB.
  • FIG. 1 1 B illustrates a schematic cross section view of an illuminator comprising a periodically arranged reflective light turning elements and a light modulator array such as illustrated in FIG. 9.
  • FIG. 12 is a top view exemplifying moire patterns formed by three sets of two superimposed periodic arrangements of lines.
  • FIG. 13A illustrates a cross section view of an illuminator comprising nonuniformly arranged reflective light turning elements.
  • FIG. 13B illustrates a schematic cross section view of an illuminator comprising a nonuniformly arranged reflective light turning elements and a light modulator array such as illustrated in FIG. 13 A.
  • FIG. 14 illustrates a top view of the nonuniformly arranged light turning elements illustrated in FIG. 13A.
  • FIG. 15A illustrates a top view of another embodiment of an illuminator comprising nonuniformly arranged reflective light turning elements that is conceptually similar to that of FIG. 13A.
  • FIG. 15B illustrates a top view of a portion of the array of light turning elements of FIG. 15A in more detail.
  • FIG. 16A is a graphical illustration of a uniform distribution illustrative of the distribution of elements in one embodiment of a light turning array such as illustrated in FIG. 15A.
  • FIG. 16B is a graphical illustration of a normal distribution illustrative of the nonuniform distribution of elements in one embodiment of a light turning array such as illustrated in FlG. 15A
  • FIG. 17A illustrates a top view of another embodiment of an illuminator comprising nonuniformly arranged reflective light turning elements that is conceptually similar to that of FIG. 15A.
  • FlG. 17B illustrates a top view of another embodiment of an illuminator comprising nonuniformly arranged reflective light turning elements that is conceptually similar to that of FIG. 17A.
  • FIG. 18A illustrates a cross section view of yet another embodiment of a nonuniformly arranged light turning array that is conceptually similar to that of FIG. 13A.
  • FIG. 18B illustrates a schematic cross section view of the nonuniformly arranged light turning array of FIG. 18A in relation to a display.
  • the embodiments may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry).
  • MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.
  • Light modulator based displays including reflective and interferometric displays, generally comprise periodically arranged light modulators in order to correspond to pixel layouts of video signals. Such light modulators may be illuminated using an illuminator or light guide that directs a pattern of light to the light modulators.
  • the illuminator may comprise a periodically arranged light turning (and/or light emissive) elements that directs a periodic pattern of light onto the array of light modulators. When the periodically arranged array of light modulators is illuminated with the periodic pattern of light from the illuminator, the superposition of the two periodic arrays may result in visible Moire patterns.
  • nonuniform arrangement of the illumination elements that directs a nonuniformly varying pattern of light onto the light modulators reduces or even substantially eliminates visible Moire patterns resulting from this superposition in such display systems. Accordingly, several inventive examples of such nonuniformly arranged (e.g., irregularly or aperiodically arranged so as to be uncorrelated with the arrangement of the light modulators) illumination arrays are disclosed herein.
  • FIG. 1 One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in FIG. 1.
  • the pixels are in either a bright or dark state.
  • the display element In the bright ("on” or “open") state, the display element reflects a large portion of incident visible light to a user.
  • the dark (“off or “closed”) state When in the dark (“off or “closed”) state, the display element reflects little incident visible light to the user.
  • the light reflectance properties of the "on” and "off states may be reversed.
  • MEMS pixels can be configured to reflect predominantly at selected colors, allowing for a color display in addition to black and white.
  • FIG. 1 is an isometric view depicting two adjacent pixels in a series of pixels of a visual display, wherein each pixel comprises a MEMS interferometric modulator.
  • an interferometric modulator display comprises a row/column array of these interferometric modulators.
  • Each interferometric modulator includes a pair of reflective layers positioned at a variable and controllable distance from each other to form a resonant optical cavity with at least one variable dimension.
  • one of the reflective layers may be moved between two positions. In the first position, referred to herein as the relaxed position, the movable reflective layer is positioned at a relatively large distance from a fixed partially reflective layer.
  • the movable reflective layer In the second position, referred to herein as the actuated position, the movable reflective layer is positioned more closely adjacent to the partially reflective layer. Incident light that reflects from the two layers interferes constructively or destructively depending on the position of the movable reflective layer, producing either an overall reflective or non-reflective state for each pixel.
  • the depicted portion of the pixel array in FIG. 1 includes two adjacent interferometric modulators 12a and 12b.
  • a movable reflective layer 14a is illustrated in a relaxed position at a predetermined distance from an optical stack 16a, which includes a partially reflective layer.
  • the movable reflective layer 14b is illustrated in an actuated position adjacent to the optical stack 16b.
  • optical stack 16 typically comprise of several fused layers, which can include an electrode layer, such as indium tin oxide (ITO), a partially reflective layer, such as chromium, and a transparent dielectric.
  • ITO indium tin oxide
  • the optical stack 16 is thus electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more of the above layers onto a transparent substrate 20.
  • the layers are patterned into parallel strips, and may form row electrodes in a display device as described further below.
  • the movable reflective layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes of 16a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the movable reflective layers 14a, 14b are separated from the optical stacks 16a, 16b by a defined gap 19.
  • a highly conductive and reflective material such as aluminum may be used for the reflective layers 14, and these strips may form column electrodes in a display device.
  • the cavity 19 remains between the movable reflective layer 14a and optical stack 16a, with the movable reflective layer 14a in a mechanically relaxed state, as illustrated by the pixel 12a in FIG. 1.
  • a potential difference is applied to a selected row and column
  • the capacitor formed at the intersection of the row and column electrodes at the corresponding pixel becomes charged, and electrostatic forces pull the electrodes together.
  • the movable reflective layer 14 is deformed and is forced against the optical stack 16.
  • a dielectric layer within the optical stack 16 may prevent shorting and control the separation distance between layers 14 and 16, as illustrated by pixel 12b on the right in FIG. 1.
  • the behavior is the same regardless of the polarity of the applied potential difference. In this way, row/column actuation that can control the reflective vs. non-reflective pixel states is analogous in many ways to that used in conventional LCD and other display technologies.
  • FIGS. 2 through 5 illustrate one exemplary process and system for using an array of interferometric modulators in a display application.
  • FIG. 2 is a system block diagram illustrating one embodiment of an electronic device that may incorporate aspects of the invention.
  • the electronic device includes a processor 21 which may be any general purpose single- or multi-chip microprocessor such as an ARM, Pentium ® , Pentium II ® , Pentium III ® , Pentium IV ® , Pentium ® Pro, an 8051 , a MIPS ® , a Power PC ® , an ALPHA ® , or any special purpose microprocessor such as a digital signal processor, microcontroller, or a programmable gate array.
  • the processor 21 may be configured to execute one or more software modules.
  • the processor may be configured to execute one or more software applications, including a web browser, a telephone application, an email program, or any other software application.
  • the processor 21 is also configured to communicate with an array driver 22.
  • the array driver 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a panel or display array (display) 30.
  • the cross section of the array illustrated in FIG. 1 is shown by the lines 1-1 in FIG. 2.
  • the row/column actuation protocol may take advantage of a hysteresis property of these devices illustrated in FIG. 3. It may require, for example, a 10 volt potential difference to cause a movable layer to deform from the relaxed state to the actuated state. However, when the voltage is reduced from that value, the movable layer maintains its state as the voltage drops back below 10 volts.
  • the movable layer does not relax completely until the voltage drops below 2 volts.
  • the row/column actuation protocol can be designed such that during row strobing, pixels in the strobed row that are to be actuated are exposed to a voltage difference of about 10 volts, and pixels that are to be relaxed are exposed to a voltage difference of close to zero volts.
  • each pixel sees a potential difference within the "stability window" of 3-7 volts in this example.
  • This feature makes the pixel design illustrated in FIG. 1 stable under the same applied voltage conditions in either an actuated or relaxed pre-existing state. Since each pixel of the interferometric modulator, whether in the actuated or relaxed state, is essentially a capacitor formed by the fixed and moving reflective layers, this stable state can be held at a voltage within the hysteresis window with almost no power dissipation. Essentially no current flows into the pixel if the applied potential is fixed.
  • a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row.
  • a row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines.
  • the asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row.
  • a pulse is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes.
  • the row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame.
  • the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second.
  • protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.
  • FIGS. 4 and 5 illustrate one possible actuation protocol for creating a display frame on the 3x3 array of FIG. 2.
  • FIG. 4 illustrates a possible set of column and row voltage levels that may be used for pixels exhibiting the hysteresis curves of FIG. 3.
  • actuating a pixel involves setting the appropriate column to -Vbj as , and the appropriate row to + ⁇ V, which may correspond to -5 volts and +5 volts respectively Relaxing the pixel is accomplished by setting the appropriate column to +Vbj as , and the appropriate row to the same + ⁇ V, producing a zero volt potential difference across the pixel.
  • the pixels are stable in whatever state they were originally in, regardless of whether the column is at +Vbi as , or -Vbi as .
  • voltages of opposite polarity than those described above can be used, e.g., actuating a pixel can involve setting the appropriate column to +V b j as , and the appropriate row to - ⁇ V.
  • releasing the pixel is accomplished by setting the appropriate column to -Vbi as , and the appropriate row to the same - ⁇ V, producing a zero volt potential difference across the pixel.
  • FIG. 5B is a timing diagram showing a series of row and column signals applied to the 3x3 array of FIG. 2 which will result in the display arrangement illustrated in FIG. 5A, where actuated pixels are non-reflective.
  • the pixels Prior to writing the frame illustrated in FIG. 5A, the pixels can be in any state, and in this example, all the rows are at 0 volts, and all the columns are at +5 volts. With these applied voltages, all pixels are stable in their existing actuated or relaxed states.
  • pixels (1 , 1 ), (1 ,2), (2,2), (3,2) and (3,3) are actuated.
  • columns 1 and 2 are set to -5 volts
  • column 3 is set to +5 volts. This does not change the state of any pixels, because all the pixels remain in the 3-7 volt stability window.
  • Row 1 is then strobed with a pulse that goes from 0, up to 5 volts, and back to zero. This actuates the (1 , 1) and (1 ,2) pixels and relaxes the ( 1 ,3) pixel. No other pixels in the array are affected.
  • row 2 is set to -5 volts, and columns 1 and 3 are set to +5 volts.
  • the same strobe applied to row 2 will then actuate pixel (2,2) and relax pixels (2, 1) and (2,3). Again, no other pixels of the array are affected.
  • Row 3 is similarly set by setting columns 2 and 3 to -5 volts, and column 1 to +5 volts.
  • the row 3 strobe sets the row 3 pixels as shown in FlG. 5A. After writing the frame, the row potentials are zero, and the column potentials can remain at either +5 or -5 volts, and the display is then stable in the arrangement of FlG. 5A. It will be appreciated that the same procedure can be employed for arrays of dozens or hundreds of rows and columns.
  • FIGS. 6A and 6B are system block diagrams illustrating an embodiment of a display device 40.
  • the display device 40 can be, for example, a cellular or mobile telephone.
  • the same components of display device 40 or slight variations thereof are also illustrative of various types of display devices such as televisions and portable media players.
  • the display device 40 includes a housing 41 , a display 30, an antenna 43, a speaker 45, an input device 48, and a microphone 46.
  • the housing 41 is generally formed from any of a variety of manufacturing processes as are well known to those of skill in the art, including injection molding, and vacuum forming.
  • the housing 41 may be made from any of a variety of materials, including but not limited to plastic, metal, glass, rubber, and ceramic, or a combination thereof.
  • the housing 41 includes removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.
  • the display 30 of exemplary display device 40 may be any of a variety of displays, including a bi-stable display, as described herein.
  • the display 30 includes a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD as described above, or a non-flat-panel display, such as a CRT or other tube device, as is well known to those of skill in the art.
  • the display 30 includes an interferometric modulator display, as described herein.
  • the components of one embodiment of exemplary display device 40 are schematically illustrated in FIG. 6B.
  • the illustrated exemplary display device 40 includes a housing 41 and can include additional components at least partially enclosed therein.
  • the exemplary display device 40 includes a network interface 27 that includes an antenna 43 which is coupled to a transceiver 47.
  • the transceiver 47 is connected to the processor 21, which is connected to conditioning hardware 52.
  • the conditioning hardware 52 may be configured to condition a signal (e.g. filter a signal).
  • the conditioning hardware 52 is connected to a speaker 45 and a microphone 46.
  • the processor 21 is also connected to an input device 48 and a driver controller 29.
  • the driver controller 29 is coupled to a frame buffer 28 and to the array driver 22, which in turn is coupled to a display array 30.
  • a power supply 50 provides power to all components as required by the particular exemplary display device 40 design.
  • the network interface 27 includes the antenna 43 and the transceiver 47 so that the exemplary display device 40 can communicate with one ore more devices over a network. In one embodiment the network interface 27 may also have some processing capabilities to relieve requirements of the processor 21.
  • the antenna 43 is any antenna known to those of skill in the art for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals according to the IEEE 802.12 standard, including IEEE 802.12(a), (b), or (g). In another embodiment, the antenna transmits and receives RP signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS or other known signals that are used to communicate within a wireless cell phone network.
  • the transceiver 47 pre- processes the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21.
  • the transceiver 47 also processes signals received from the processor 21 so that they may be transmitted from the exemplary display device 40 via the antenna 43.
  • the transceiver 47 can be replaced by a receiver.
  • network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21.
  • the image source can be a digital video disc (DVD) or a hard-disc drive that contains image data, or a software module that generates image data.
  • Processor 21 generally controls the overall operation of the exemplary display device 40.
  • the processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data.
  • the processor 21 then sends the processed data to the driver controller 29 or to frame buffer 28 for storage.
  • Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level.
  • the processor 21 includes a microcontroller, CPU, or logic unit to control operation of the exemplary display device 40.
  • Conditioning hardware 52 generally includes amplifiers and filters for transmitting signals to the speaker 45, and for receiving signals from the microphone 46. Conditioning hardware 52 may be discrete components within the exemplary display device 40, or may be incorporated within the processor 21 or other components.
  • the driver controller 29 takes the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and reformats the raw image data appropriately for high speed transmission to the array driver 22. Specifically, the driver controller 29 reformats the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30. Then the driver controller 29 sends the formatted information to the array driver 22.
  • a driver controller 29, such as a LCD controller is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. They may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22.
  • IC Integrated Circuit
  • the array driver 22 receives the formatted information from the driver controller 29 and reformats the video data into a parallel set of waveforms that are applied many times per second to the hundreds and sometimes thousands of leads coming from the display's x-y matrix of pixels.
  • the driver controller 29, array driver 22, and display array 30 are appropriate for any of the types of displays described herein.
  • driver controller 29 is a conventional display controller or a bi-stable display controller (e.g., an interferometric modulator controller).
  • array driver 22 is a conventional driver or a bi-stable display driver (e.g., an interferometric modulator display).
  • a driver controller 29 is integrated with the array driver 22.
  • display array 30 is a typical display array or a bi-stable display array (e.g., a display including an array of interferometric modulators).
  • the input device 48 allows a user to control the operation of the exemplary display device 40.
  • input device 48 includes a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a touch-sensitive screen, a pressure- or heat-sensitive membrane.
  • the microphone 46 is an input device for the exemplary display device 40. When the microphone 46 is used to input data to the device, voice commands may be provided by a user for controlling operations of the exemplary display device 40.
  • Power supply 50 can include a variety of energy storage devices as are well known in the art.
  • power supply 50 is a rechargeable battery, such as a nickel-cadmium battery or a lithium ion battery.
  • power supply 50 is a renewable energy source, a capacitor, or a solar cell, including a plastic solar cell, and solar-cell paint.
  • power supply 50 is configured to receive power from a wall outlet.
  • control programmability resides, as described above, in a driver controller which can be located in several places in the electronic display system. In some cases control programmability resides in the array driver 22. Those of skill in the art will recognize that the above-described optimization may be implemented in any number of hardware and/or software components and in various configurations.
  • FIGS. 7A-7E illustrate five different embodiments of the movable reflective layer 14 and its supporting structures.
  • FlG. 7A is a cross section of the embodiment of FIG. 1, where a strip of metal material 14 is deposited on orthogonally extending supports 18.
  • the moveable reflective layer 14 is attached to supports at the corners only, on tethers 32.
  • the moveable reflective layer 14 is suspended from a deformable layer 34, which may comprise a flexible metal.
  • the deformable layer 34 connects, directly or indirectly, to the substrate 20 around the perimeter of the deformable layer 34.
  • FIG. 7D has support post plugs 42 upon which the deformable layer 34 rests.
  • the movable reflective layer 14 remains suspended over the cavity, as in FIGS. 7A-7C, but the deformable layer 34 does not form the support posts by filling holes between the deformable layer 34 and the optical stack 16. Rather, the support posts are formed of a planarization material, which is used to form support post plugs 42.
  • the embodiment illustrated in FIG. 7E is based on the embodiment shown in FIG. 7D, but may also be adapted to work with any of the embodiments illustrated in FIGS. 7A-7C as well as additional embodiments not shown. In the embodiment shown in FlG. 7E, an extra layer of metal or other conductive material has been used to form a bus structure 44. This allows signal routing along the back of the interferometric modulators, eliminating a number of electrodes that may otherwise have had to be formed on the substrate 20.
  • the interferometric modulators function as direct-view devices, in which images are viewed from the front side of the transparent substrate 20, the side opposite to that upon which the modulator is arranged.
  • the reflective layer 14 optically shields some portions of the interferometric modulator on the side of the reflective layer opposite the substrate 20, including the deformable layer 34 and the bus structure 44. This allows the shielded areas to be configured and operated upon without negatively affecting the image quality.
  • This separable modulator architecture allows the structural design and materials used for the electromechanical aspects and the optical aspects of the modulator to be selected and to function independently of each other.
  • FlG. 8 is a cross section of an example of display system that comprises an example of the array of light modulators 30 illuminated by an illuminator 1 10 comprising an array of illuminating or light turning elements 1 12.
  • the light turning elements 1 12 direct light 124 such as from a light source 122 to the light modulators 126 and then to a viewing position 128.
  • the light modulators 126 comprise reflective light modulators such as the interferometric modulators such as illustrated in FIGS. 1 , 7A, 7B, 7C, 7D, and 7E. Other embodiments may comprise other types of light modulators.
  • the light turning elements 1 12 comprise at least partially reflective surfaces configured to direct the light 124 to the light modulators 126.
  • the illuminator 1 10 may comprise various structures configured to illuminate the light modulators 126.
  • the light turning elements 1 12 may comprise any other suitable structure for directing a pattern of light onto the light modulators 126.
  • the light turning elements 1 12 may comprise materials, e.g., photoluminescent or electroluminescent materials, configured to direct a pattern of illumination onto the light modulators 126.
  • FIG. 9 is a cross section of an example of display system such as illustrated in FIG. 8 that comprises an array 30 of light modulators 126 illuminated by an array of reflective light turning elements 1 12.
  • the example light turning elements 1 12 in FIG. 9 each comprise surfaces 130 and 132 that are configured to direct light to the light modulators 126.
  • the light 124 enters through a side surface of the illuminator 1 10.
  • the illuminator 1 10 internally reflects the light 124 until the light 124 strikes the surfaces 130 and 132 so as to be directed onto one or more of the light modulators 126, which in turn modulate the light 124 and direct a portion of the modulated light to the viewing position 128.
  • the illuminator 1 10 is configured with respect to the light source (e.g., light source 122 of FIG. 8) so that total internal reflectance of the light 124 within the illuminator 1 10 reduces loss of the light 124 except when reflected by the light turning elements 1 12 towards the light modulators 126.
  • FlG. 1 OA is a cross section of an example of an array of periodically spaced light turning elements 1 12 in the illuminator 1 10 such as illustrated in FIG. 9.
  • each light turning element 1 12 is represented schematically and separated from adjacent light turning elements 1 12 by a substantially fixed distance PFL that is indicative of the periodicity of the light turning elements 1 12 in the illuminator 1 10.
  • the distance PF L is gradually decreased as the distance within the illuminator 1 10 increases from a light source.
  • the distance PFL between each adjacent line of light turning elements 1 12 in such an embodiment is substantially the same.
  • a Moire pattern may still be visible.
  • FIG. 1OB is a perspective view of an example of the illuminator 1 10 comprising the array of periodically spaced reflective light turning elements 1 12 such as illustrated in FIG. 1 OA.
  • the surfaces 130 and 132 form lines, e.g., rows or columns, approximately along one axis of the illuminator 1 10.
  • each light turning element 1 12 may illuminate a plurality of light modulators 126, for example, one or more rows or columns of light modulators 126.
  • the periodicity, PFL, of the array of light turning elements 1 12 is illustrated with reference to the reflective surfaces 130 and 132 of each of the light turning elements 1 12.
  • FIG. 1 OC is a top view further illustrating the example of the illuminator 1 10 comprising the periodic array of periodically spaced reflective light turning elements 1 12 such as illustrated in FIG. 1 OB.
  • FIG. 1 1 A illustrates a schematic cross section view of a periodically arranged light turning elements 1 12 and a light modulator array such as illustrated in FIG. 1 OA. Each of the light turning elements 1 12 is separated by a distance PFL indicative of the periodicity of the array of light turning elements 1 12.
  • FIG. H A illustrates light 124 periodically directed by the light turning elements 1 12 onto the modulator array 30.
  • FIG. 1 I B illustrates a cross section view of the example of the periodically arranged reflective light turning array 1 10 such as illustrated in FIG. H A.
  • the light reflecting surfaces 130 and 132 of each of the illustrated light turning elements 1 12 are positioned at an angle of ⁇ FL -
  • FlG. 12 is a top view exemplifying Moire patterns formed by three sets of two superimposed periodic arrangements of lines.
  • FlG. 12 illustrates Moire patterns formed in region 212, 214, and 216 where a pattern 202 of lines and a pattern 208 of lines overlap at angles of 10°, 20°, and 30°, respectively.
  • an interference pattern of somewhat horizontal lines angled slightly toward the lower right corner of FIG. 12. It is to be recognized that while the Moire patterns of FIG. 12 are formed by patterns of lines that overlap at different angles, it is the resulting difference in superimposed periodicity that generates the artifacts of the Moire pattern.
  • such artifacts can be generated by two overlapping periodic patterns such as the illuminator 1 10 and the light modulator array 30 regardless of the alignment of the two arrays. . It has been found that by arranging the light turning elements 1 12 of the illuminator 1 10 to direct a nonuniformly varying pattern of light to the light modulators 126, the Moire patterns are substantially reduced. Note that a periodic arrangement of light turning elements 1 12 such as in FlG. 1 IA generally produces a nonuniform pattern of light. However, such a pattern of light on the light modulators 126 varies substantially uniformly in accordance with the pattern of light turning elements 1 12.
  • a nonuniform arrangement of light turning elements 1 12 directs a nonuniformly varying pattern of light on the light modulators 126 that varies nonuniformly according to the nonuniform arrangement of the light turning elements 1 12.
  • FIG. 13A illustrates a schematic cross section view of an example of an light turning array 1 10 in which the light turning elements 1 12 are aperiodically or nonuniformly spaced.
  • Each of light turning elements 1 12 is positioned from adjacent light turning elements 1 12 by different distances, e.g., P 1 , P, + i, P, +2 , etc.
  • light rays 124 reflected by the light turning elements 1 12 collectively define a non-periodically, or nonuniformly varying, pattern of light illuminating the light modulators 126.
  • FIG. 13B illustrates a cross section view of the nonuniformly arranged reflective light turning array 1 10 such as illustrated schematically in FIG. 13A.
  • the surface 130 each light turning element 1 12 is positioned at substantially the same angle OFL relative to the surface 132 of the same light turning element 1 12.
  • the position of each adjacent line of light turning elements 1 12 varies, e.g., the distances P 1 , P, + i, P, +2 , vary.
  • each value P, within the array is different.
  • the distances repeat at a sufficiently low frequency within the light turning array 1 10 that the interaction with the light modulator array 30 produces no substantial visible artifacts.
  • FIG. 14 illustrates a top view of the nonuniformly arranged light turning array 1 10 illustrated in FlG. 13B.
  • FlG. 14 illustrates the positions X',, X', + i, X', +2 , etc. of each of the light turning elements 1 12 (e.g., the position of the intersection of the surface 130 and the surface 132).
  • Each of these positions X',, X', + ⁇ , X', +2 is offset from a corresponding periodically spaced position X,, X, + i, X 1+2 by an offset distance 140a, 140b, 140c, 14Od, 14Oe (collectively offset distances 140).
  • Each of the offset distances 140 may be different in a particular array 1 10.
  • each of the offset distances 140 in a particular array 1 10 may be selected randomly, e.g., from within a range of available offsets. Note that as used herein random refers to random and pseudo random selections.
  • each offset distance 140a, 140b, 140c, 14Od, 140e may be selected to have a pattern that repeats throughout the array 1 10 with a frequency that is too low to result in any substantial visible artifacts.
  • the offset distances 140 may be selected, randomly or otherwise, to be distributed according to a particular distribution within a range of distances, for example, the distances may be distributed with uniform or Gaussian distribution.
  • each offset distance (X', - X 1 ) is determined by multiplying a random number between -1 and +1 with the separation from the first neighboring unit, such as (X 1+I -X 1 ) or (X,-X,_i).
  • the random number multiplier is between -0.5 and 0.5.
  • at least two offset distances are selected and applied in a random order to each light turning element X 1 (this order can be completely random, or a prescribed random sequence such as the Fibonacci, Thue-Morse, or other similar random numerical sequences.
  • the at least two offset distances are selected randomly so that at least one of them is larger than 10% of the average separation between light turning elements. It is to be recognized that randomness selection in the arrangement of light turning elements 1 12 is generally incorporated at the design or manufacturing stage. During manufacturing, a particular arrangement of light turning elements 1 12 may be substantially reproduced once or many times.
  • FIG. 15A illustrates a top view of another embodiment of another example of an illuminator comprising an array of a nonuniformly arranged light turning elements 1 12 that is conceptually similar to that of FIG. 13A.
  • the light turning elements 1 12 comprise regions of the illuminator 1 10 that include the reflecting surfaces 130 and 132.
  • the light turning elements 1 12 of FIG. 15A may be varied in both size and position so that the illuminator 1 10 directs a nonuniformly varying pattern of light to the modulator array 30 (not shown) in one or both of vertical and horizontal dimensions.
  • FIG. 15A illustrates a top view of another embodiment of another example of an illuminator comprising an array of a nonuniformly arranged light turning elements 1 12 that is conceptually similar to that of FIG. 13A.
  • the light turning elements 1 12 comprise regions of the illuminator 1 10 that include the reflecting surfaces 130 and 132.
  • the light turning elements 1 12 of FIG. 15A may be varied in both size
  • a line of the light turning elements 1 12 is distributed generally along lines XJ 1 XJ + ] , ... X k ..
  • each of the light turning elements 1 12 is offset by a random distance in both the vertical (Y) and horizontal (X) from a position along one of the lines X j1 ... X k.
  • the vertical and horizontal offsets may be determined in any suitable way, including those discussed with reference to FIG. 14. In one embodiment, the vertical offsets may be zero.
  • FIG. 15B illustrates a top view of a portion 150 of the illuminator 1 10 of FIG. 15A in more detail.
  • the example of the portion 150 comprises light turning elements 1 12a, 1 12b, and 1 12c that are each offset in the horizontal direction along an axis X k , where k is a value between 1 and N, the number of lines in a particular illuminator, and where k represents a particular vertical line of light turning elements in the illuminator 1 10.
  • offset of the reflective surfaces 130 and 132 of each light turning element 1 12a, 1 12b, or 1 12c varies by horizontal offsets that change at positions Yy, where j is a value between 1 and M, the number of light turning elements 1 12 in a particular line in a particular illuminator, and where j represents a particular vertical position of a particular light turning element 1 12 in the line k of light turning elements 1 12.
  • the vertical length of the light turning element elements 1 12, e.g., element 1 12b is determined by a corresponding vertical position, Yig and the vertical position Y kj+ i of the adjacent element 1 12c.
  • Each vertical position Y k1 may be selected so that each light turning element 1 12 has a vertical size or extent within a particular range, e.g., ⁇ Y mm and ⁇ Y max -
  • the vertical size of each light turning element 1 12 is randomly distributed within the range e.g., ⁇ Ym m and ⁇ Y ma ⁇ .
  • the light turning element 1 12b at vertical position Y kj is also offset by an amount ⁇ X kj from the line X k .
  • the vertical positions Y kj are distributed within a particular or predetermined range of distances, e.g., between ⁇ X min and ⁇ X max .
  • the positions Y ⁇ are randomly distributed within the range of distances.
  • each light turning element 1 12 is desirably offset in both vertical and horizontal directions, in other embodiments, the light turning element 1 12 may be offset only in one of the vertical or horizontal directions.
  • the illuminator 1 10 of FIG. 15A and 15B thus is configured to direct a nonuniformly varying pattern of light to light modulators such as the array 30 of light modulators 126 of FIG. I I A.
  • FIG. 16A is a graphical illustration of a uniform distribution illustrative of the nonuniform distribution of light turning elements 1 12 in one embodiment of the illuminator 1 10.
  • the horizontal offset positions X kj of the light turning elements 1 12 along a line of light turning elements are randomly distributed within a range of distances, e.g., ⁇ X m ⁇ n and ⁇ X max .
  • the offset for each light turning element 1 12 may be selected according to a uniform distribution such as illustrated in FIG. 16A.
  • the distribution of offsets is a uniform distribution that results in a nonuniform arrangement of the light turning elements.
  • FIG. 16B is a graphical illustration of a normal distribution illustrative of the nonuniform distribution of light turning elements 1 12 in one embodiment of the illuminator 1 10.
  • the offset for each light turning element 1 12 may be selected according to a normal (Gaussian) distribution such as illustrated in FIG. 16A. It is to be recognized that in various embodiments the light turning elements 1 12 may be distributed based on any suitable mathematical distribution that generates a substantially nonuniform array.
  • FlG. 17A illustrates a top view of another example of the illuminator 1 10 comprising an array of a nonuniformly arranged light turning elements 1 12 that is conceptually similar to that of FIG. 13A.
  • a nonuniformly varying pattern of reflected light is achieved by rotating each of the light reflecting elements 1 12 about a point 170 by an angle a k .
  • Each light turning element 1 12 may have a different angle a ⁇ ⁇ of rotation (e.g., from vertical line X k ) that is distributed within a range a m ⁇ n to a max -
  • the angles a ⁇ ⁇ are randomly distributed within the range, e.g., according to a uniform or Gaussian distribution.
  • the angles may be selected in any suitable way, including according to methods similar to those discussed with reference to FlG. 14.
  • FlG. 17B illustrates a top view of another example of the illuminator 1 10 comprising an array of a nonuniformly arranged light turning elements 1 12 that is conceptually similar to that of FIG. 17A.
  • each of the light turning elements 1 12 is rotated about the positions 170 along each line X k , which are with substantially equal distances P F L horizontally between each line X k on the illuminator 1 10.
  • each light turning element 1 12 is rotated about a point that is randomly selected at a distance X k along the line X k .
  • the distance X k of each line X k may be selected from a range of distances, e.g., ⁇ X' mm and ⁇ X' max .
  • the distances X k are randomly distributed within the range, e.g., according to a uniform or Gaussian distribution.
  • the periodicity of the pattern of light directed from the light turning elements 1 12 of FlG. 17B to the light modulators 30 (not shown) is further reduced with respect to the embodiment illustrated in FIG. 17A.
  • the offset distances X k may be selected from a set in which each distance in the set is used one or more times.
  • any repetition of particular offset distances X k is minimized and preferably offset distances X k of adjacent light turning elements 1 12 are different.
  • the distances X' k may be determined in any suitable way, including those discussed with reference to FlG. 14.
  • FlG. 18A illustrates a top view of another example of the illuminator 1 10 comprising an array of a nonuniformly arranged light turning elements 1 12 that is conceptually similar to that of FIG. 13A.
  • each of the light turning elements 1 12 is positioned along each line X k .
  • the reflecting surface 130 of each light turning element 1 12, e.g., element 1 12a intersects the reflecting surface 132 at an angle, e.g., ⁇ k .
  • the angle ⁇ k , ⁇ k+ i , ⁇ k+2 , corresponding to each of, at least, adjacent light turning elements 1 12 is di fferent.
  • each light turning element 1 12 may have a different angle ⁇ k that is distributed within a range ⁇ m ; n to ⁇ ma ⁇ .
  • the angle ⁇ k are randomly distributed within the range, e.g., according to a uniform or Gaussian distribution.
  • the angles ⁇ k may be selected from a set in which each angle in the set is used one or more times. In one such an embodiment, any repetition of particular angles ⁇ k is minimized and preferably angles of adjacent light turning elements 1 12 are different.
  • angles ⁇ k may be selected in any suitable way, including according to methods similar to those discussed with reference to FlG. 14.
  • the range ⁇ m j n to ⁇ ma ⁇ is selected to exceed the larger of the vertical angular divergence of the light emitted by the illuminator in the plane of the ⁇ k rotation and of +/-1 °, which is the angular cone typically collected by the human eye.
  • FIG. 18B illustrates a schematic cross section view of the nonuniformly arranged illuminator 1 10 of FIG. 18A in relation to the array 30 of light modulators 130.
  • each of light turning elements 1 12 direct light from the illuminator 1 10 at different angles to generate a nonuniformly varying pattern of light 124 that is modulated, and in the illustrated example reflected, by the array 30 of light modulators 126.
  • the distances Pi, Pj + ] between the light rays 124 directed onto the array 30 vary nonuniformly within the illuminator 1 10.
  • the illuminator 1 10 is formed separately from the light modulator array 30 and then applied to the array 30. In another embodiment, the illuminator 1 10 is formed on or above the substrate 20.

Abstract

Embodiments include systems and methods for reducing visible artifacts such as Moire, or interference, patterns, in displays. One embodiment includes an optical apparatus comprising a plurality of illumination elements configured to direct light to a plurality of light modulators. The directed light of the plurality of illumination elements collectively defines a nonuniformly varying pattern of light.

Description

SYSTEM AND METHOD FOR REDUCING VISUAL ARTIFACTS IN DISPLAYS BACKGROUND OF THE INVENTION
Field
[0001] The field of the invention relates to display systems.
Description of the Related Technology
[0002] Display systems may include light modulators to produce a displayed image by modulating light directed to the light modulators. Such display systems may include a source of illumination to at least partly provide light to the light modulators. One embodiment of a light modulator comprises microelectromechanical systems (MEMS). Micromechanical elements may be created using deposition, etching, and or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices. One type of MEMS device is called an interferometric modulator. As used herein, the term interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference. In certain embodiments, an interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal. In a particular embodiment, one plate may comprise a stationary layer deposited on a substrate and the other plate may comprise a metallic membrane separated from the stationary layer by an air gap. As described herein in more detail, the position of one plate in relation to another can change the optical interference of light incident on the interferometric modulator. Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed. For example, a need exists for improved illumination sources for light modulator based displays. SUMMARY OF CERTAIN INVENTIVE ASPECTS
[0003] The system, method, and devices of the invention each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention as expressed by the claims which follow, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled "Detailed Description" one will understand how the features of this invention provide advantages that include reduced visual artifacts or noise in illuminated display systems.
[0004] One embodiment comprises an optical apparatus. The apparatus comprises a plurality of illumination elements configured to direct a nonuniformly varying pattern of light to a plurality of light modulators.
[0005] Another embodiment comprises an optical apparatus. The optical apparatus comprises a plurality of illumination elements arranged in a nonuniform pattern and configured to direct light to a plurality of light modulators.
[0006] One embodiment comprises an optical apparatus. The apparatus comprises a plurality of illumination elements configured to direct light to a plurality of light modulators. The plurality of illumination elements is adapted to illuminate the light modulators without producing a visible moire pattern.
[0007] One embodiment comprises an optical apparatus. The apparatus comprises means for guiding light and means for illuminating a plurality of light modulators with a nonuniformly varying pattern of light.
[0008] Another embodiment comprises a method of making an illuminator. The method comprises forming a plurality of illumination elements configured to direct a nonuniformly varying pattern of light to an array of light modulators.
[0009] Another embodiment comprises a method comprising illuminating a plurality of illumination elements with light. The method comprises directing a nonuniformly varying pattern of the light from the illumination elements to a plurality of light modulators. BRIEF DESCRIPTION OF THE DRAWINGS
[0010] FIG. 1 is an isometric view depicting a portion of one embodiment of an interferometric modulator display in which a movable reflective layer of a first interferometric modulator is in a relaxed position and a movable reflective layer of a second interferometric modulator is in an actuated position.
[0011] FIG. 2 is a system block diagram illustrating one embodiment of an electronic device incorporating a 3x3 interferometric modulator display.
[0012] FIG. 3 is a diagram of movable mirror position versus applied voltage for one exemplary embodiment of an interferometric modulator of FIG. I .
[0013] FIG. 4 is an illustration of a set of row and column voltages that may be used to drive an interferometric modulator display.
[0014] FIGS. 5A and 5B illustrate one exemplary timing diagram for row and column signals that may be used to write a frame of display data to the 3x3 interferometric modulator display of FIG. 2.
[0015] FIGS. 6A and 6B are system block diagrams illustrating an embodiment of a visual display device comprising a plurality of interferometric modulators.
[0016] FIG. 7A is a cross section of the device of FIG. 1.
[0017] FIG. 7B is a cross section of an alternative embodiment of an interferometric modulator.
[0018] FIG. 7C is a cross section of another alternative embodiment of an interferometric modulator.
[0019] FIG. 7D is a cross section of yet another alternative embodiment of an interferometric modulator.
[0020] FIG. 7E is a cross section of an additional alternative embodiment of an interferometric modulator.
[0021] FIG. 8 is a cross section of an example of a display system comprising an array of light modulators, such as devices illustrated in FIG. 1 , illuminated by an illuminator.
[0022] FIG. 9 is a cross section of an example of display system such as illustrated in FIG. 8 that comprises an array of light modulators illuminated by an illuminator comprising an array of reflective light turning elements. [0023] FIG. 1OA is a cross section of an example of an illuminator comprising periodically spaced light turning elements such as illustrated in FIG. 8
[0024] FIG. 1OB is a perspective view of an example of an illuminator comprising periodically spaced reflective light turning elements such as illustrated in FIG. 1OA.
[0025] FIG. 1 OC is a top view of an example of an illuminator comprising periodically spaced reflective light turning elements such as illustrated in FlG. 1OB.
[0026] FIG. 1 1 A illustrates a cross section view of an illuminator comprising a periodically arranged reflective light turning elements such as illustrated in FlG. 1OB.
[0027] FIG. 1 1 B illustrates a schematic cross section view of an illuminator comprising a periodically arranged reflective light turning elements and a light modulator array such as illustrated in FIG. 9.
[0028] FIG. 12 is a top view exemplifying moire patterns formed by three sets of two superimposed periodic arrangements of lines.
[0029] FIG. 13A illustrates a cross section view of an illuminator comprising nonuniformly arranged reflective light turning elements.
[0030] FIG. 13B illustrates a schematic cross section view of an illuminator comprising a nonuniformly arranged reflective light turning elements and a light modulator array such as illustrated in FIG. 13 A.
[0031] FIG. 14 illustrates a top view of the nonuniformly arranged light turning elements illustrated in FIG. 13A.
[0032] FIG. 15A illustrates a top view of another embodiment of an illuminator comprising nonuniformly arranged reflective light turning elements that is conceptually similar to that of FIG. 13A.
[0033] FIG. 15B illustrates a top view of a portion of the array of light turning elements of FIG. 15A in more detail.
[0034] FIG. 16A is a graphical illustration of a uniform distribution illustrative of the distribution of elements in one embodiment of a light turning array such as illustrated in FIG. 15A. [0035] FIG. 16B is a graphical illustration of a normal distribution illustrative of the nonuniform distribution of elements in one embodiment of a light turning array such as illustrated in FlG. 15A
[0036] FIG. 17A illustrates a top view of another embodiment of an illuminator comprising nonuniformly arranged reflective light turning elements that is conceptually similar to that of FIG. 15A.
[0037] FlG. 17B illustrates a top view of another embodiment of an illuminator comprising nonuniformly arranged reflective light turning elements that is conceptually similar to that of FIG. 17A.
[0038] FIG. 18A illustrates a cross section view of yet another embodiment of a nonuniformly arranged light turning array that is conceptually similar to that of FIG. 13A.
[0039] FIG. 18B illustrates a schematic cross section view of the nonuniformly arranged light turning array of FIG. 18A in relation to a display.
DETAILED DESCRIPTION
[0040] The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout. As will be apparent from the following description, the embodiments may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual or pictorial. More particularly, it is contemplated that the embodiments may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry). MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.
[0041] Light modulator based displays, including reflective and interferometric displays, generally comprise periodically arranged light modulators in order to correspond to pixel layouts of video signals. Such light modulators may be illuminated using an illuminator or light guide that directs a pattern of light to the light modulators. The illuminator may comprise a periodically arranged light turning (and/or light emissive) elements that directs a periodic pattern of light onto the array of light modulators. When the periodically arranged array of light modulators is illuminated with the periodic pattern of light from the illuminator, the superposition of the two periodic arrays may result in visible Moire patterns. It has been found that nonuniform arrangement of the illumination elements that directs a nonuniformly varying pattern of light onto the light modulators reduces or even substantially eliminates visible Moire patterns resulting from this superposition in such display systems. Accordingly, several inventive examples of such nonuniformly arranged (e.g., irregularly or aperiodically arranged so as to be uncorrelated with the arrangement of the light modulators) illumination arrays are disclosed herein.
[0042] One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in FIG. 1. In these devices, the pixels are in either a bright or dark state. In the bright ("on" or "open") state, the display element reflects a large portion of incident visible light to a user. When in the dark ("off or "closed") state, the display element reflects little incident visible light to the user. Depending on the embodiment, the light reflectance properties of the "on" and "off states may be reversed. MEMS pixels can be configured to reflect predominantly at selected colors, allowing for a color display in addition to black and white.
[0043] FIG. 1 is an isometric view depicting two adjacent pixels in a series of pixels of a visual display, wherein each pixel comprises a MEMS interferometric modulator. In some embodiments, an interferometric modulator display comprises a row/column array of these interferometric modulators. Each interferometric modulator includes a pair of reflective layers positioned at a variable and controllable distance from each other to form a resonant optical cavity with at least one variable dimension. In one embodiment, one of the reflective layers may be moved between two positions. In the first position, referred to herein as the relaxed position, the movable reflective layer is positioned at a relatively large distance from a fixed partially reflective layer. In the second position, referred to herein as the actuated position, the movable reflective layer is positioned more closely adjacent to the partially reflective layer. Incident light that reflects from the two layers interferes constructively or destructively depending on the position of the movable reflective layer, producing either an overall reflective or non-reflective state for each pixel.
[0044] The depicted portion of the pixel array in FIG. 1 includes two adjacent interferometric modulators 12a and 12b. In the interferometric modulator 12a on the left, a movable reflective layer 14a is illustrated in a relaxed position at a predetermined distance from an optical stack 16a, which includes a partially reflective layer. In the interferometric modulator 12b on the right, the movable reflective layer 14b is illustrated in an actuated position adjacent to the optical stack 16b.
[0045] The optical stacks 16a and 16b (collectively referred to as optical stack 16), as referenced herein, typically comprise of several fused layers, which can include an electrode layer, such as indium tin oxide (ITO), a partially reflective layer, such as chromium, and a transparent dielectric. The optical stack 16 is thus electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more of the above layers onto a transparent substrate 20. In some embodiments, the layers are patterned into parallel strips, and may form row electrodes in a display device as described further below. The movable reflective layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes of 16a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the movable reflective layers 14a, 14b are separated from the optical stacks 16a, 16b by a defined gap 19. A highly conductive and reflective material such as aluminum may be used for the reflective layers 14, and these strips may form column electrodes in a display device.
[0046] With no applied voltage, the cavity 19 remains between the movable reflective layer 14a and optical stack 16a, with the movable reflective layer 14a in a mechanically relaxed state, as illustrated by the pixel 12a in FIG. 1. However, when a potential difference is applied to a selected row and column, the capacitor formed at the intersection of the row and column electrodes at the corresponding pixel becomes charged, and electrostatic forces pull the electrodes together. If the voltage is high enough, the movable reflective layer 14 is deformed and is forced against the optical stack 16. A dielectric layer (not illustrated in this FIG.) within the optical stack 16 may prevent shorting and control the separation distance between layers 14 and 16, as illustrated by pixel 12b on the right in FIG. 1. The behavior is the same regardless of the polarity of the applied potential difference. In this way, row/column actuation that can control the reflective vs. non-reflective pixel states is analogous in many ways to that used in conventional LCD and other display technologies.
[0047] FIGS. 2 through 5 illustrate one exemplary process and system for using an array of interferometric modulators in a display application.
[0048] FIG. 2 is a system block diagram illustrating one embodiment of an electronic device that may incorporate aspects of the invention. In the exemplary embodiment, the electronic device includes a processor 21 which may be any general purpose single- or multi-chip microprocessor such as an ARM, Pentium®, Pentium II®, Pentium III®, Pentium IV®, Pentium® Pro, an 8051 , a MIPS®, a Power PC®, an ALPHA®, or any special purpose microprocessor such as a digital signal processor, microcontroller, or a programmable gate array. As is conventional in the art, the processor 21 may be configured to execute one or more software modules. In addition to executing an operating system, the processor may be configured to execute one or more software applications, including a web browser, a telephone application, an email program, or any other software application.
[0049] In one embodiment, the processor 21 is also configured to communicate with an array driver 22. In one embodiment, the array driver 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a panel or display array (display) 30. The cross section of the array illustrated in FIG. 1 is shown by the lines 1-1 in FIG. 2. For MEMS interferometric modulators, the row/column actuation protocol may take advantage of a hysteresis property of these devices illustrated in FIG. 3. It may require, for example, a 10 volt potential difference to cause a movable layer to deform from the relaxed state to the actuated state. However, when the voltage is reduced from that value, the movable layer maintains its state as the voltage drops back below 10 volts. In the exemplary embodiment of FIG. 3, the movable layer does not relax completely until the voltage drops below 2 volts. There is thus a range of voltage, about 3 to 7 V in the example illustrated in FIG. 3, where there exists a window of applied voltage within which the device is stable in either the relaxed or actuated state. This is referred to herein as the "hysteresis window" or "stability window." For a display array having the hysteresis characteristics of FIG. 3, the row/column actuation protocol can be designed such that during row strobing, pixels in the strobed row that are to be actuated are exposed to a voltage difference of about 10 volts, and pixels that are to be relaxed are exposed to a voltage difference of close to zero volts. After the strobe, the pixels are exposed to a steady state voltage difference of about 5 volts such that they remain in whatever state the row strobe put them in. After being written, each pixel sees a potential difference within the "stability window" of 3-7 volts in this example. This feature makes the pixel design illustrated in FIG. 1 stable under the same applied voltage conditions in either an actuated or relaxed pre-existing state. Since each pixel of the interferometric modulator, whether in the actuated or relaxed state, is essentially a capacitor formed by the fixed and moving reflective layers, this stable state can be held at a voltage within the hysteresis window with almost no power dissipation. Essentially no current flows into the pixel if the applied potential is fixed.
[0050] In typical applications, a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row. A row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines. The asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row. A pulse is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes. The row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame. Generally, the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second. A wide variety of protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.
[0051] FIGS. 4 and 5 illustrate one possible actuation protocol for creating a display frame on the 3x3 array of FIG. 2. FIG. 4 illustrates a possible set of column and row voltage levels that may be used for pixels exhibiting the hysteresis curves of FIG. 3. In the FIG. 4 embodiment, actuating a pixel involves setting the appropriate column to -Vbjas, and the appropriate row to +ΔV, which may correspond to -5 volts and +5 volts respectively Relaxing the pixel is accomplished by setting the appropriate column to +Vbjas, and the appropriate row to the same +ΔV, producing a zero volt potential difference across the pixel. In those rows where the row voltage is held at zero volts, the pixels are stable in whatever state they were originally in, regardless of whether the column is at +Vbias, or -Vbias. As is also illustrated in FIG. 4, it will be appreciated that voltages of opposite polarity than those described above can be used, e.g., actuating a pixel can involve setting the appropriate column to +Vbjas, and the appropriate row to -ΔV. In this embodiment, releasing the pixel is accomplished by setting the appropriate column to -Vbias, and the appropriate row to the same -ΔV, producing a zero volt potential difference across the pixel.
[0052] FIG. 5B is a timing diagram showing a series of row and column signals applied to the 3x3 array of FIG. 2 which will result in the display arrangement illustrated in FIG. 5A, where actuated pixels are non-reflective. Prior to writing the frame illustrated in FIG. 5A, the pixels can be in any state, and in this example, all the rows are at 0 volts, and all the columns are at +5 volts. With these applied voltages, all pixels are stable in their existing actuated or relaxed states.
[0053] In the FIG. 5 A frame, pixels (1 , 1 ), (1 ,2), (2,2), (3,2) and (3,3) are actuated. To accomplish this, during a "line time" for row 1 , columns 1 and 2 are set to -5 volts, and column 3 is set to +5 volts. This does not change the state of any pixels, because all the pixels remain in the 3-7 volt stability window. Row 1 is then strobed with a pulse that goes from 0, up to 5 volts, and back to zero. This actuates the (1 , 1) and (1 ,2) pixels and relaxes the ( 1 ,3) pixel. No other pixels in the array are affected. To set row 2 as desired, column 2 is set to -5 volts, and columns 1 and 3 are set to +5 volts. The same strobe applied to row 2 will then actuate pixel (2,2) and relax pixels (2, 1) and (2,3). Again, no other pixels of the array are affected. Row 3 is similarly set by setting columns 2 and 3 to -5 volts, and column 1 to +5 volts. The row 3 strobe sets the row 3 pixels as shown in FlG. 5A. After writing the frame, the row potentials are zero, and the column potentials can remain at either +5 or -5 volts, and the display is then stable in the arrangement of FlG. 5A. It will be appreciated that the same procedure can be employed for arrays of dozens or hundreds of rows and columns. It will also be appreciated that the timing, sequence, and levels of voltages used to perform row and column actuation can be varied widely within the general principles outlined above, and the above example is exemplary only, and any actuation voltage method can be used with the systems and methods described herein. '
[0054] FIGS. 6A and 6B are system block diagrams illustrating an embodiment of a display device 40. The display device 40 can be, for example, a cellular or mobile telephone. However, the same components of display device 40 or slight variations thereof are also illustrative of various types of display devices such as televisions and portable media players.
[0055] The display device 40 includes a housing 41 , a display 30, an antenna 43, a speaker 45, an input device 48, and a microphone 46. The housing 41 is generally formed from any of a variety of manufacturing processes as are well known to those of skill in the art, including injection molding, and vacuum forming. In addition, the housing 41 may be made from any of a variety of materials, including but not limited to plastic, metal, glass, rubber, and ceramic, or a combination thereof. In one embodiment the housing 41 includes removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.
[0056] The display 30 of exemplary display device 40 may be any of a variety of displays, including a bi-stable display, as described herein. In other embodiments, the display 30 includes a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD as described above, or a non-flat-panel display, such as a CRT or other tube device, as is well known to those of skill in the art. However, for purposes of describing the present embodiment, the display 30 includes an interferometric modulator display, as described herein.
-I I- [0057] The components of one embodiment of exemplary display device 40 are schematically illustrated in FIG. 6B. The illustrated exemplary display device 40 includes a housing 41 and can include additional components at least partially enclosed therein. For example, in one embodiment, the exemplary display device 40 includes a network interface 27 that includes an antenna 43 which is coupled to a transceiver 47. The transceiver 47 is connected to the processor 21, which is connected to conditioning hardware 52. The conditioning hardware 52 may be configured to condition a signal (e.g. filter a signal). The conditioning hardware 52 is connected to a speaker 45 and a microphone 46. The processor 21 is also connected to an input device 48 and a driver controller 29. The driver controller 29 is coupled to a frame buffer 28 and to the array driver 22, which in turn is coupled to a display array 30. A power supply 50 provides power to all components as required by the particular exemplary display device 40 design.
[0058] The network interface 27 includes the antenna 43 and the transceiver 47 so that the exemplary display device 40 can communicate with one ore more devices over a network. In one embodiment the network interface 27 may also have some processing capabilities to relieve requirements of the processor 21. The antenna 43 is any antenna known to those of skill in the art for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals according to the IEEE 802.12 standard, including IEEE 802.12(a), (b), or (g). In another embodiment, the antenna transmits and receives RP signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS or other known signals that are used to communicate within a wireless cell phone network. The transceiver 47 pre- processes the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21. The transceiver 47 also processes signals received from the processor 21 so that they may be transmitted from the exemplary display device 40 via the antenna 43.
[0059] In an alternative embodiment, the transceiver 47 can be replaced by a receiver. In yet another alternative embodiment, network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21. For example, the image source can be a digital video disc (DVD) or a hard-disc drive that contains image data, or a software module that generates image data.
[0060] Processor 21 generally controls the overall operation of the exemplary display device 40. The processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data. The processor 21 then sends the processed data to the driver controller 29 or to frame buffer 28 for storage. Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level.
[0061] In one embodiment, the processor 21 includes a microcontroller, CPU, or logic unit to control operation of the exemplary display device 40. Conditioning hardware 52 generally includes amplifiers and filters for transmitting signals to the speaker 45, and for receiving signals from the microphone 46. Conditioning hardware 52 may be discrete components within the exemplary display device 40, or may be incorporated within the processor 21 or other components.
[0062J The driver controller 29 takes the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and reformats the raw image data appropriately for high speed transmission to the array driver 22. Specifically, the driver controller 29 reformats the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30. Then the driver controller 29 sends the formatted information to the array driver 22. Although a driver controller 29, such as a LCD controller, is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. They may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22.
[0063] Typically, the array driver 22 receives the formatted information from the driver controller 29 and reformats the video data into a parallel set of waveforms that are applied many times per second to the hundreds and sometimes thousands of leads coming from the display's x-y matrix of pixels. [0064] In one embodiment, the driver controller 29, array driver 22, and display array 30 are appropriate for any of the types of displays described herein. For example, in one embodiment, driver controller 29 is a conventional display controller or a bi-stable display controller (e.g., an interferometric modulator controller). In another embodiment, array driver 22 is a conventional driver or a bi-stable display driver (e.g., an interferometric modulator display). In one embodiment, a driver controller 29 is integrated with the array driver 22. Such an embodiment is common in highly integrated systems such as cellular phones, watches, and other small area displays. In yet another embodiment, display array 30 is a typical display array or a bi-stable display array (e.g., a display including an array of interferometric modulators).
[0065] The input device 48 allows a user to control the operation of the exemplary display device 40. In one embodiment, input device 48 includes a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a touch-sensitive screen, a pressure- or heat-sensitive membrane. In one embodiment, the microphone 46 is an input device for the exemplary display device 40. When the microphone 46 is used to input data to the device, voice commands may be provided by a user for controlling operations of the exemplary display device 40.
[0066] Power supply 50 can include a variety of energy storage devices as are well known in the art. For example, in one embodiment, power supply 50 is a rechargeable battery, such as a nickel-cadmium battery or a lithium ion battery. In another embodiment, power supply 50 is a renewable energy source, a capacitor, or a solar cell, including a plastic solar cell, and solar-cell paint. In another embodiment, power supply 50 is configured to receive power from a wall outlet.
[0067] In some implementations control programmability resides, as described above, in a driver controller which can be located in several places in the electronic display system. In some cases control programmability resides in the array driver 22. Those of skill in the art will recognize that the above-described optimization may be implemented in any number of hardware and/or software components and in various configurations.
[0068] The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example, FIGS. 7A-7E illustrate five different embodiments of the movable reflective layer 14 and its supporting structures. FlG. 7A is a cross section of the embodiment of FIG. 1, where a strip of metal material 14 is deposited on orthogonally extending supports 18. In FIG..7B, the moveable reflective layer 14 is attached to supports at the corners only, on tethers 32. In FIG. 7C, the moveable reflective layer 14 is suspended from a deformable layer 34, which may comprise a flexible metal. The deformable layer 34 connects, directly or indirectly, to the substrate 20 around the perimeter of the deformable layer 34. These connections are herein referred to as support posts. The embodiment illustrated in FIG. 7D has support post plugs 42 upon which the deformable layer 34 rests. The movable reflective layer 14 remains suspended over the cavity, as in FIGS. 7A-7C, but the deformable layer 34 does not form the support posts by filling holes between the deformable layer 34 and the optical stack 16. Rather, the support posts are formed of a planarization material, which is used to form support post plugs 42. The embodiment illustrated in FIG. 7E is based on the embodiment shown in FIG. 7D, but may also be adapted to work with any of the embodiments illustrated in FIGS. 7A-7C as well as additional embodiments not shown. In the embodiment shown in FlG. 7E, an extra layer of metal or other conductive material has been used to form a bus structure 44. This allows signal routing along the back of the interferometric modulators, eliminating a number of electrodes that may otherwise have had to be formed on the substrate 20.
[0069] In embodiments such as those shown in FIG. 7, the interferometric modulators function as direct-view devices, in which images are viewed from the front side of the transparent substrate 20, the side opposite to that upon which the modulator is arranged. In these embodiments, the reflective layer 14 optically shields some portions of the interferometric modulator on the side of the reflective layer opposite the substrate 20, including the deformable layer 34 and the bus structure 44. This allows the shielded areas to be configured and operated upon without negatively affecting the image quality. This separable modulator architecture allows the structural design and materials used for the electromechanical aspects and the optical aspects of the modulator to be selected and to function independently of each other. Moreover, the embodiments shown in FIGS. 7C-7E have additional benefits deriving from the decoupling of the optical properties of the reflective layer 14 from its mechanical properties, which are carried out by the deformable layer 34. This allows the structural design and materials used for the reflective layer 14 to be optimized with respect to the optical properties, and the structural design and materials used for the deformable layer 34 to be optimized with respect to desired mechanical properties.
[0070] FlG. 8 is a cross section of an example of display system that comprises an example of the array of light modulators 30 illuminated by an illuminator 1 10 comprising an array of illuminating or light turning elements 1 12. As illustrated in the example system of FIG. 8, the light turning elements 1 12 direct light 124 such as from a light source 122 to the light modulators 126 and then to a viewing position 128. In one embodiment, the light modulators 126 comprise reflective light modulators such as the interferometric modulators such as illustrated in FIGS. 1 , 7A, 7B, 7C, 7D, and 7E. Other embodiments may comprise other types of light modulators. In one embodiment, the light turning elements 1 12 comprise at least partially reflective surfaces configured to direct the light 124 to the light modulators 126. In other embodiments, the illuminator 1 10 may comprise various structures configured to illuminate the light modulators 126. For example, the light turning elements 1 12 may comprise any other suitable structure for directing a pattern of light onto the light modulators 126. Moreover, the light turning elements 1 12 may comprise materials, e.g., photoluminescent or electroluminescent materials, configured to direct a pattern of illumination onto the light modulators 126.
[0071] FIG. 9 is a cross section of an example of display system such as illustrated in FIG. 8 that comprises an array 30 of light modulators 126 illuminated by an array of reflective light turning elements 1 12. The example light turning elements 1 12 in FIG. 9 each comprise surfaces 130 and 132 that are configured to direct light to the light modulators 126. In the illustrated embodiment, the light 124 enters through a side surface of the illuminator 1 10. The illuminator 1 10 internally reflects the light 124 until the light 124 strikes the surfaces 130 and 132 so as to be directed onto one or more of the light modulators 126, which in turn modulate the light 124 and direct a portion of the modulated light to the viewing position 128. In one embodiment, the illuminator 1 10 is configured with respect to the light source (e.g., light source 122 of FIG. 8) so that total internal reflectance of the light 124 within the illuminator 1 10 reduces loss of the light 124 except when reflected by the light turning elements 1 12 towards the light modulators 126. [0072] FlG. 1 OA is a cross section of an example of an array of periodically spaced light turning elements 1 12 in the illuminator 1 10 such as illustrated in FIG. 9. In FlG. 10, each light turning element 1 12 is represented schematically and separated from adjacent light turning elements 1 12 by a substantially fixed distance PFL that is indicative of the periodicity of the light turning elements 1 12 in the illuminator 1 10. Note that in some embodiments, the distance PFL is gradually decreased as the distance within the illuminator 1 10 increases from a light source. However, for a particular line of light turning elements PFL, the distance PFL between each adjacent line of light turning elements 1 12 in such an embodiment is substantially the same. Thus, a Moire pattern may still be visible.
[0073] FIG. 1OB is a perspective view of an example of the illuminator 1 10 comprising the array of periodically spaced reflective light turning elements 1 12 such as illustrated in FIG. 1 OA. In the embodiment illustrated in FIG. 1 OB, the surfaces 130 and 132 form lines, e.g., rows or columns, approximately along one axis of the illuminator 1 10. Thus, each light turning element 1 12 may illuminate a plurality of light modulators 126, for example, one or more rows or columns of light modulators 126. The periodicity, PFL, of the array of light turning elements 1 12 is illustrated with reference to the reflective surfaces 130 and 132 of each of the light turning elements 1 12. FIG. 1 OC is a top view further illustrating the example of the illuminator 1 10 comprising the periodic array of periodically spaced reflective light turning elements 1 12 such as illustrated in FIG. 1 OB.
[0074] FIG. 1 1 A illustrates a schematic cross section view of a periodically arranged light turning elements 1 12 and a light modulator array such as illustrated in FIG. 1 OA. Each of the light turning elements 1 12 is separated by a distance PFL indicative of the periodicity of the array of light turning elements 1 12. FIG. H A illustrates light 124 periodically directed by the light turning elements 1 12 onto the modulator array 30.
[0075] FIG. 1 I B illustrates a cross section view of the example of the periodically arranged reflective light turning array 1 10 such as illustrated in FIG. H A. The light reflecting surfaces 130 and 132 of each of the illustrated light turning elements 1 12 are positioned at an angle of ΘFL-
[0076] It has been found that when a periodic array of light turning elements 1 12 is positioned between a periodic array of light modulators 126 and viewing positions 128 of the light modulators 126, the superposition of the two periodic structures tends to create visual artifacts. These visual artifacts typically comprise lines or two dimensional patterns of lights formed as an interference or Moire pattern.
[0077] FlG. 12 is a top view exemplifying Moire patterns formed by three sets of two superimposed periodic arrangements of lines. In particular, FlG. 12 illustrates Moire patterns formed in region 212, 214, and 216 where a pattern 202 of lines and a pattern 208 of lines overlap at angles of 10°, 20°, and 30°, respectively. As illustrated in each of the overlap regions 212, 214, and 216, an interference pattern of somewhat horizontal lines (angled slightly toward the lower right corner of FIG. 12). It is to be recognized that while the Moire patterns of FIG. 12 are formed by patterns of lines that overlap at different angles, it is the resulting difference in superimposed periodicity that generates the artifacts of the Moire pattern. Thus, such artifacts can be generated by two overlapping periodic patterns such as the illuminator 1 10 and the light modulator array 30 regardless of the alignment of the two arrays. . It has been found that by arranging the light turning elements 1 12 of the illuminator 1 10 to direct a nonuniformly varying pattern of light to the light modulators 126, the Moire patterns are substantially reduced. Note that a periodic arrangement of light turning elements 1 12 such as in FlG. 1 IA generally produces a nonuniform pattern of light. However, such a pattern of light on the light modulators 126 varies substantially uniformly in accordance with the pattern of light turning elements 1 12. As discussed in further detail below with respect to various embodiments, a nonuniform arrangement of light turning elements 1 12 directs a nonuniformly varying pattern of light on the light modulators 126 that varies nonuniformly according to the nonuniform arrangement of the light turning elements 1 12.
[0078] FIG. 13A illustrates a schematic cross section view of an example of an light turning array 1 10 in which the light turning elements 1 12 are aperiodically or nonuniformly spaced. Each of light turning elements 1 12 is positioned from adjacent light turning elements 1 12 by different distances, e.g., P1, P,+i, P,+2, etc. Thus, light rays 124 reflected by the light turning elements 1 12 collectively define a non-periodically, or nonuniformly varying, pattern of light illuminating the light modulators 126.
[0079] FIG. 13B illustrates a cross section view of the nonuniformly arranged reflective light turning array 1 10 such as illustrated schematically in FIG. 13A. In the embodiment illustrated in FIG. 13B, the surface 130 each light turning element 1 12 is positioned at substantially the same angle OFL relative to the surface 132 of the same light turning element 1 12. In contrast, the position of each adjacent line of light turning elements 1 12 varies, e.g., the distances P1, P,+i, P,+2, vary. For example, in one embodiment, each value P, within the array is different. In another embodiment, the distances repeat at a sufficiently low frequency within the light turning array 1 10 that the interaction with the light modulator array 30 produces no substantial visible artifacts.
|0080] FIG. 14 illustrates a top view of the nonuniformly arranged light turning array 1 10 illustrated in FlG. 13B. FlG. 14 illustrates the positions X',, X',+i, X',+2, etc. of each of the light turning elements 1 12 (e.g., the position of the intersection of the surface 130 and the surface 132). Each of these positions X',, X',+ι, X',+2 is offset from a corresponding periodically spaced position X,, X,+i, X1+2 by an offset distance 140a, 140b, 140c, 14Od, 14Oe (collectively offset distances 140). Each of the offset distances 140 may be different in a particular array 1 10. Alternatively, each of the offset distances 140 in a particular array 1 10 may be selected randomly, e.g., from within a range of available offsets. Note that as used herein random refers to random and pseudo random selections. In yet another embodiment, each offset distance 140a, 140b, 140c, 14Od, 140e may be selected to have a pattern that repeats throughout the array 1 10 with a frequency that is too low to result in any substantial visible artifacts. The offset distances 140 may be selected, randomly or otherwise, to be distributed according to a particular distribution within a range of distances, for example, the distances may be distributed with uniform or Gaussian distribution. In one embodiment, each offset distance (X', - X1) is determined by multiplying a random number between -1 and +1 with the separation from the first neighboring unit, such as (X1+I-X1) or (X,-X,_i). In another embodiment, the random number multiplier is between -0.5 and 0.5. In yet another embodiment, at least two offset distances are selected and applied in a random order to each light turning element X1 (this order can be completely random, or a prescribed random sequence such as the Fibonacci, Thue-Morse, or other similar random numerical sequences. In one embodiment, the at least two offset distances are selected randomly so that at least one of them is larger than 10% of the average separation between light turning elements. It is to be recognized that randomness selection in the arrangement of light turning elements 1 12 is generally incorporated at the design or manufacturing stage. During manufacturing, a particular arrangement of light turning elements 1 12 may be substantially reproduced once or many times.
[0081] FIG. 15A illustrates a top view of another embodiment of another example of an illuminator comprising an array of a nonuniformly arranged light turning elements 1 12 that is conceptually similar to that of FIG. 13A. In the example illustrated in FIG. 15A, the light turning elements 1 12 comprise regions of the illuminator 1 10 that include the reflecting surfaces 130 and 132. The light turning elements 1 12 of FIG. 15A may be varied in both size and position so that the illuminator 1 10 directs a nonuniformly varying pattern of light to the modulator array 30 (not shown) in one or both of vertical and horizontal dimensions. In the embodiment illustrated in FIG. 15A, a line of the light turning elements 1 12 is distributed generally along lines XJ1 XJ+] , ... Xk.. In the illustrated embodiment, each of the light turning elements 1 12 is offset by a random distance in both the vertical (Y) and horizontal (X) from a position along one of the lines Xj1 ... Xk.. The vertical and horizontal offsets may be determined in any suitable way, including those discussed with reference to FIG. 14. In one embodiment, the vertical offsets may be zero.
[0082] FIG. 15B illustrates a top view of a portion 150 of the illuminator 1 10 of FIG. 15A in more detail. The example of the portion 150 comprises light turning elements 1 12a, 1 12b, and 1 12c that are each offset in the horizontal direction along an axis Xk, where k is a value between 1 and N, the number of lines in a particular illuminator, and where k represents a particular vertical line of light turning elements in the illuminator 1 10. In one embodiment, offset of the reflective surfaces 130 and 132 of each light turning element 1 12a, 1 12b, or 1 12c varies by horizontal offsets that change at positions Yy, where j is a value between 1 and M, the number of light turning elements 1 12 in a particular line in a particular illuminator, and where j represents a particular vertical position of a particular light turning element 1 12 in the line k of light turning elements 1 12. The vertical length of the light turning element elements 1 12, e.g., element 1 12b is determined by a corresponding vertical position, Yig and the vertical position Ykj+i of the adjacent element 1 12c. Each vertical position Yk1, may be selected so that each light turning element 1 12 has a vertical size or extent within a particular range, e.g., ΔYmm and ΔYmax- In one embodiment, the vertical size of each light turning element 1 12 is randomly distributed within the range e.g., ΔYmm and ΔYmaχ. The light turning element 1 12b at vertical position Ykj is also offset by an amount ΔXkj from the line Xk. In one embodiment, the vertical positions Ykj are distributed within a particular or predetermined range of distances, e.g., between ΔXmin and ΔXmax. In one embodiment, the positions Y^ are randomly distributed within the range of distances. It is to be recognized that while in one embodiment, each light turning element 1 12 is desirably offset in both vertical and horizontal directions, in other embodiments, the light turning element 1 12 may be offset only in one of the vertical or horizontal directions. The illuminator 1 10 of FIG. 15A and 15B thus is configured to direct a nonuniformly varying pattern of light to light modulators such as the array 30 of light modulators 126 of FIG. I I A.
[0083] FIG. 16A is a graphical illustration of a uniform distribution illustrative of the nonuniform distribution of light turning elements 1 12 in one embodiment of the illuminator 1 10. As noted above, in one embodiment, the horizontal offset positions Xkj of the light turning elements 1 12 along a line of light turning elements are randomly distributed within a range of distances, e.g., ΔXmιn and ΔXmax. In one embodiment, the offset for each light turning element 1 12 may be selected according to a uniform distribution such as illustrated in FIG. 16A. Hence, the distribution of offsets is a uniform distribution that results in a nonuniform arrangement of the light turning elements.
[0084] FIG. 16B is a graphical illustration of a normal distribution illustrative of the nonuniform distribution of light turning elements 1 12 in one embodiment of the illuminator 1 10. In one embodiment, the offset for each light turning element 1 12 may be selected according to a normal (Gaussian) distribution such as illustrated in FIG. 16A. It is to be recognized that in various embodiments the light turning elements 1 12 may be distributed based on any suitable mathematical distribution that generates a substantially nonuniform array.
[0085| FlG. 17A illustrates a top view of another example of the illuminator 1 10 comprising an array of a nonuniformly arranged light turning elements 1 12 that is conceptually similar to that of FIG. 13A. In the embodiment illustrated in FIG. 17A, a nonuniformly varying pattern of reflected light is achieved by rotating each of the light reflecting elements 1 12 about a point 170 by an angle ak. Each light turning element 1 12 may have a different angle aι< of rotation (e.g., from vertical line Xk) that is distributed within a range amιn to amax- In one embodiment, the angles aι< are randomly distributed within the range, e.g., according to a uniform or Gaussian distribution. The angles may be selected in any suitable way, including according to methods similar to those discussed with reference to FlG. 14.
[0086] FlG. 17B illustrates a top view of another example of the illuminator 1 10 comprising an array of a nonuniformly arranged light turning elements 1 12 that is conceptually similar to that of FIG. 17A. In the example of FlG. 17A, each of the light turning elements 1 12 is rotated about the positions 170 along each line Xk, which are with substantially equal distances PFL horizontally between each line Xk on the illuminator 1 10. In the example of FlG. 17B, each light turning element 1 12 is rotated about a point that is randomly selected at a distance X k along the line Xk. The distance X k of each line Xk may be selected from a range of distances, e.g., ΔX'mm and ΔX'max. In one embodiment, the distances X k are randomly distributed within the range, e.g., according to a uniform or Gaussian distribution. Thus, the periodicity of the pattern of light directed from the light turning elements 1 12 of FlG. 17B to the light modulators 30 (not shown) is further reduced with respect to the embodiment illustrated in FIG. 17A. In other embodiments, the offset distances X k may be selected from a set in which each distance in the set is used one or more times. In one such an embodiment, any repetition of particular offset distances X k is minimized and preferably offset distances X k of adjacent light turning elements 1 12 are different. The distances X'k may be determined in any suitable way, including those discussed with reference to FlG. 14.
[0087| FlG. 18A illustrates a top view of another example of the illuminator 1 10 comprising an array of a nonuniformly arranged light turning elements 1 12 that is conceptually similar to that of FIG. 13A. In the example of FIG. 18A, each of the light turning elements 1 12 is positioned along each line Xk. To direct a nonuniformly varying pattern of light, the reflecting surface 130 of each light turning element 1 12, e.g., element 1 12a, intersects the reflecting surface 132 at an angle, e.g., θk. In one embodiment, the angle Θk, θk+i, θk+2, corresponding to each of, at least, adjacent light turning elements 1 12 is di fferent. For example, each light turning element 1 12 may have a different angle θk that is distributed within a range θm;n to θmaχ. In one embodiment, the angle θk are randomly distributed within the range, e.g., according to a uniform or Gaussian distribution. In other embodiments, the angles θk may be selected from a set in which each angle in the set is used one or more times. In one such an embodiment, any repetition of particular angles θk is minimized and preferably angles of adjacent light turning elements 1 12 are different. The angles θk may be selected in any suitable way, including according to methods similar to those discussed with reference to FlG. 14. In one embodiment, the range θmjn to θmaχ is selected to exceed the larger of the vertical angular divergence of the light emitted by the illuminator in the plane of the θk rotation and of +/-1 °, which is the angular cone typically collected by the human eye.
[0088] FIG. 18B illustrates a schematic cross section view of the nonuniformly arranged illuminator 1 10 of FIG. 18A in relation to the array 30 of light modulators 130. As illustrated schematically, each of light turning elements 1 12 direct light from the illuminator 1 10 at different angles to generate a nonuniformly varying pattern of light 124 that is modulated, and in the illustrated example reflected, by the array 30 of light modulators 126. In particular, the distances Pi, Pj+] between the light rays 124 directed onto the array 30 vary nonuniformly within the illuminator 1 10.
|0089] In one embodiment, the illuminator 1 10 is formed separately from the light modulator array 30 and then applied to the array 30. In another embodiment, the illuminator 1 10 is formed on or above the substrate 20.
|0090] It is to be recognized that while certain embodiments are disclosed with reference to horizontal or vertical axis, in other embodiments, the arrangement of components of the illuminator 1 10 or light modulator array 30 with respect to horizontal and vertical axis may be reversed. Furthermore, it is to be recognized that embodiments may include combinations of features described with respect to the disclosed examples of light turning elements 1 12 that direct nonuniformly varying patterns of light to the light modulator array 130, regardless of whether such combinations are expressly disclosed herein.
[0091] While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the spirit of the invention. As will be recognized, the present invention may be embodied within a form that does not provide all of the features and benefits set forth herein, as some features may be used or practiced separately from others. The scope of the invention is indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims

WHAT IS CLAIMED IS:
1. An optical apparatus comprising: a light guide configured to guide light therein; and a plurality of illumination elements disposed on said light guide and configured to direct a nonuniformly varying pattern of light to a plurality of light modulators.
2. The apparatus of Claim 1, further comprising a plurality of light modulators formed on a substrate.
3. The apparatus of Claim 2, wherein each of the illumination elements comprises at least one surface defining an angle with respect to the substrate, wherein each of said surfaces is configured to direct light to said light modulators.
4. The apparatus of Claim 3, wherein the surfaces of at least two of the illumination elements define different angles with respect to the substrate.
5. The apparatus of Claim 1 , further comprising a light source configured to provide light to the plurality of illumination elements.
6. The apparatus of Claim 1 , wherein the illumination elements are arranged in a nonuniform pattern.
7. The apparatus of Claim 6 wherein each of the illumination elements is positioned adjacent to at least one other of the illumination elements and each of the illumination elements is positioned at a nonuniform offset from said at least one other of the illumination elements.
8. The apparatus of Claim 7, wherein said offset comprises an offset in two dimensions.
9. The apparatus of Claim 7, wherein at least two of the illumination elements have different sizes.
10. The apparatus of Claim 6 wherein the illumination elements are arranged in a plurality of lines and wherein the lines are non-parallel to each other.
1 1. The apparatus of Claim 10, wherein each of the lines has a midpoint, and wherein the midpoints of the lines are arranged nonuniformly within the plurality of illumination elements.
12. The apparatus of Claim 1 , further comprising the plurality of light modulators.
13. The apparatus of Claim 12, wherein light modulators comprise interferometric light modulators.
14. The apparatus of Claim 12, further comprising: a processor that is in electrical communication with said light modulators, said processor being configured to process image data; a memory device in electrical communication with said processor.
15. The apparatus of Claim 14, further comprising a driver circuit configured to send at least one signal to said light modulators.
16. The apparatus of Claim 15, further comprising a controller configured to send at least a portion of said image data to said driver circuit.
17. The apparatus of Claim 14, further comprising an image source module configured to send said image data to said processor.
18. The apparatus of Claim 17, wherein said image source module comprises at least one of a receiver, transceiver, and transmitter.
19. The apparatus of Claim 14, further comprising an input device configured to receive input data and to communicate said input data to said processor.
20. An optical apparatus comprising: a light guide configured to guide light therein; and a plurality of illumination elements arranged in a nonuniform pattern on said light guide and configured to direct light to a plurality of light modulators.
21. An optical apparatus comprising: a light guide configured to guide light therein; and a plurality of illumination elements disposed on said light guide and configured to direct light to a plurality of light modulators, wherein the plurality of illumination elements is adapted to illuminate the light modulators without producing a visible moire pattern.
22. An optical apparatus comprising: means for guiding light; and means for illuminating a plurality of light modulators with a nonuniformly varying pattern of light.
23. The apparatus of Claim 22, further comprising means for modulating light.
24. The apparatus of Claim 23, wherein the light modulating means comprises a plurality of interferometric modulators.
25. The apparatus of Claim 23, wherein the illuminating means comprises means for reflecting light.
26. The apparatus of Claim 23, wherein the illuminating means comprises a plurality of illumination elements.
27. The apparatus of Claim 26, wherein each of the illumination elements comprises a surface defining an angle with respect to the substrate, wherein each of said surfaces is configured to direct light to said light modulating means.
28. A method of making an illuminator, the method comprising: forming a light guide; and forming a plurality of illumination elements on the light guide, the illumination elements being configured to direct a nonuniformly varying pattern of light to an array of light modulators.
29. The method of Claim 28, further comprising forming the array of light modulators on a substrate.
30. The method of Claim 29, wherein forming the plurality of illumination elements comprises forming the plurality illumination elements above the substrate.
31. The method of Claim 28, wherein forming each of the plurality of illumination elements comprising forming at least one surface configured to direct the nonuniformly varying pattern of light onto the array of light modulators.
32. The method of Claim 31 , wherein the surfaces of at least two of the illumination elements define different angles with respect to a substrate on which the light modulators are formed.
33. The method of Claim 28, wherein the illumination elements are arranged in a nonuniform pattern.
34. The method of Claim 33, wherein each of the illumination elements is formed at a position adjacent to at least one other of the illumination elements and each of the illumination elements is formed at a position at a non-uniform offset from said at least one other of the illumination elements.
35. The method of Claim 33, wherein the illumination elements are arranged in a plurality of lines and wherein the lines are non-parallel to each other.
36. The method of Claim 35, wherein each of the lines has a midpoint, and wherein the midpoints of the lines are arranged nonuniformly within the plurality of illumination elements.
37. The method of Claim 28, wherein light modulators comprise interferometric light modulators.
38. A method, comprising: illuminating a plurality of illumination elements with light; and directing a nonuniformly varying pattern of the light from the illumination elements to a plurality of light modulators.
39. The method of 38, wherein illuminating each of the illumination elements comprises at least one surface defining an angle with respect to the substrate, wherein each of said surfaces is configured to direct light to said light modulators.
40. The method of Claim 38, wherein the illumination elements are arranged in a nonuniform pattern.
41. The method of 38, further comprising modulating the nonuniformly varying pattern of light.
42. The method of Claim 41, wherein modulating the nonuniformly varying pattern of light comprises interferometrically modulating the light.
PCT/US2007/020911 2006-10-06 2007-09-28 System and method for reducing visual artifacts in displays WO2008045218A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800415900A CN101535713B (en) 2006-10-06 2007-09-28 System and method for reducing visual artifacts in displays
JP2009531404A JP2010507103A (en) 2006-10-06 2007-09-28 System and method for reducing visual artifacts in a display
EP07852454A EP2069684A1 (en) 2006-10-06 2007-09-28 System and method for reducing visual artifacts in displays

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/545,104 US8107155B2 (en) 2006-10-06 2006-10-06 System and method for reducing visual artifacts in displays
US11/545,104 2006-10-06

Publications (1)

Publication Number Publication Date
WO2008045218A1 true WO2008045218A1 (en) 2008-04-17

Family

ID=39135200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/020911 WO2008045218A1 (en) 2006-10-06 2007-09-28 System and method for reducing visual artifacts in displays

Country Status (6)

Country Link
US (1) US8107155B2 (en)
EP (1) EP2069684A1 (en)
JP (1) JP2010507103A (en)
KR (1) KR20090089302A (en)
CN (1) CN101535713B (en)
WO (1) WO2008045218A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8107155B2 (en) 2006-10-06 2012-01-31 Qualcomm Mems Technologies, Inc. System and method for reducing visual artifacts in displays
CN103109224A (en) * 2010-09-16 2013-05-15 高通Mems科技公司 Curvilinear camera lens as monitor cover plate
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US8979349B2 (en) 2009-05-29 2015-03-17 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US9019183B2 (en) 2006-10-06 2015-04-28 Qualcomm Mems Technologies, Inc. Optical loss structure integrated in an illumination apparatus
US9025235B2 (en) 2002-12-25 2015-05-05 Qualcomm Mems Technologies, Inc. Optical interference type of color display having optical diffusion layer between substrate and electrode
US9110289B2 (en) 1998-04-08 2015-08-18 Qualcomm Mems Technologies, Inc. Device for modulating light with multiple electrodes

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7907319B2 (en) * 1995-11-06 2011-03-15 Qualcomm Mems Technologies, Inc. Method and device for modulating light with optical compensation
US7342705B2 (en) 2004-02-03 2008-03-11 Idc, Llc Spatial light modulator with integrated optical compensation structure
US7706050B2 (en) 2004-03-05 2010-04-27 Qualcomm Mems Technologies, Inc. Integrated modulator illumination
US7630123B2 (en) 2004-09-27 2009-12-08 Qualcomm Mems Technologies, Inc. Method and device for compensating for color shift as a function of angle of view
US7750886B2 (en) * 2004-09-27 2010-07-06 Qualcomm Mems Technologies, Inc. Methods and devices for lighting displays
US7603001B2 (en) * 2006-02-17 2009-10-13 Qualcomm Mems Technologies, Inc. Method and apparatus for providing back-lighting in an interferometric modulator display device
US7766498B2 (en) 2006-06-21 2010-08-03 Qualcomm Mems Technologies, Inc. Linear solid state illuminator
US7845841B2 (en) 2006-08-28 2010-12-07 Qualcomm Mems Technologies, Inc. Angle sweeping holographic illuminator
KR20090094241A (en) * 2006-10-06 2009-09-04 퀄컴 엠이엠스 테크놀로지스, 인크. Thin light bar and method of manufacturing
WO2008045207A2 (en) * 2006-10-06 2008-04-17 Qualcomm Mems Technologies, Inc. Light guide
US7855827B2 (en) * 2006-10-06 2010-12-21 Qualcomm Mems Technologies, Inc. Internal optical isolation structure for integrated front or back lighting
WO2008045311A2 (en) * 2006-10-06 2008-04-17 Qualcomm Mems Technologies, Inc. Illumination device with built-in light coupler
EP1946162A2 (en) 2006-10-10 2008-07-23 Qualcomm Mems Technologies, Inc Display device with diffractive optics
US7864395B2 (en) * 2006-10-27 2011-01-04 Qualcomm Mems Technologies, Inc. Light guide including optical scattering elements and a method of manufacture
US7777954B2 (en) * 2007-01-30 2010-08-17 Qualcomm Mems Technologies, Inc. Systems and methods of providing a light guiding layer
KR100856206B1 (en) * 2007-01-31 2008-09-03 삼성전자주식회사 Keypad and keypad assembly
US7733439B2 (en) * 2007-04-30 2010-06-08 Qualcomm Mems Technologies, Inc. Dual film light guide for illuminating displays
US8203547B2 (en) 2007-06-15 2012-06-19 Ricoh Co. Ltd Video playback on electronic paper displays
US8913000B2 (en) 2007-06-15 2014-12-16 Ricoh Co., Ltd. Video playback on electronic paper displays
US8279232B2 (en) 2007-06-15 2012-10-02 Ricoh Co., Ltd. Full framebuffer for electronic paper displays
US8355018B2 (en) * 2007-06-15 2013-01-15 Ricoh Co., Ltd. Independent pixel waveforms for updating electronic paper displays
US8319766B2 (en) * 2007-06-15 2012-11-27 Ricoh Co., Ltd. Spatially masked update for electronic paper displays
US8416197B2 (en) * 2007-06-15 2013-04-09 Ricoh Co., Ltd Pen tracking and low latency display updates on electronic paper displays
US8068710B2 (en) 2007-12-07 2011-11-29 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US7949213B2 (en) * 2007-12-07 2011-05-24 Qualcomm Mems Technologies, Inc. Light illumination of displays with front light guide and coupling elements
WO2009102733A2 (en) * 2008-02-12 2009-08-20 Qualcomm Mems Technologies, Inc. Integrated front light diffuser for reflective displays
WO2009102731A2 (en) 2008-02-12 2009-08-20 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing brightness of displays using angle conversion layers
US8654061B2 (en) * 2008-02-12 2014-02-18 Qualcomm Mems Technologies, Inc. Integrated front light solution
EP2279530B1 (en) * 2008-04-11 2013-06-26 QUALCOMM MEMS Technologies, Inc. Method for improving pv aesthetics and efficiency
US8049951B2 (en) 2008-04-15 2011-11-01 Qualcomm Mems Technologies, Inc. Light with bi-directional propagation
US8118468B2 (en) * 2008-05-16 2012-02-21 Qualcomm Mems Technologies, Inc. Illumination apparatus and methods
JP2011526053A (en) * 2008-06-04 2011-09-29 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Reduction method of edge shadow for prism front light
US20090323144A1 (en) * 2008-06-30 2009-12-31 Qualcomm Mems Technologies, Inc. Illumination device with holographic light guide
CN102449510A (en) * 2009-05-29 2012-05-09 高通Mems科技公司 Illumination devices for reflective displays
WO2010149027A1 (en) 2009-06-22 2010-12-29 Industrial Technology Research Institute Light-emitting unit array, method for fabricating the same and projection apparatus
WO2011082086A1 (en) * 2009-12-29 2011-07-07 Qualcomm Mems Technologies, Inc. Illumination device with metalized light-turning features
TWI424251B (en) * 2009-12-31 2014-01-21 Ind Tech Res Inst Light-emitting unit array, mothod for fabricating the same and imaging apparatus
US8733951B2 (en) * 2010-04-26 2014-05-27 Microsoft Corporation Projected image enhancement
US8902484B2 (en) 2010-12-15 2014-12-02 Qualcomm Mems Technologies, Inc. Holographic brightness enhancement film
JP5666945B2 (en) * 2011-02-28 2015-02-12 株式会社東芝 Display element and display device
US8876325B2 (en) * 2011-07-01 2014-11-04 Cree, Inc. Reverse total internal reflection features in linear profile for lighting applications
US20130050043A1 (en) * 2011-08-31 2013-02-28 The Boeing Company Artificial magnetic conductor using complementary tilings
US9733416B2 (en) * 2011-11-08 2017-08-15 Philips Lighting Holding B.V. Lighting unit comprising a waveguide
US20130127784A1 (en) * 2011-11-22 2013-05-23 Qualcomm Mems Technologies, Inc. Methods and apparatuses for hiding optical contrast features
US8905134B2 (en) 2012-03-05 2014-12-09 Halliburton Energy Services, Inc. Wellbore servicing compositions and methods of making and using same
EP2822811B1 (en) * 2012-03-08 2021-01-27 Lumileds LLC Controllable high luminance illumination with moving light-sources
TWI475309B (en) * 2012-11-06 2015-03-01 Wistron Corp Electronic paper display
JP6457872B2 (en) * 2015-04-10 2019-01-23 株式会社ジャパンディスプレイ Display device, lighting device, light guide plate, and manufacturing method thereof
IL263519B (en) * 2018-12-05 2022-07-01 Elbit Systems Ltd Display illumimation optics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143270A2 (en) * 2000-01-13 2001-10-10 Nitto Denko Corporation Optical film and liquid-crystal display device
EP1296094A1 (en) * 2001-09-21 2003-03-26 Omron Corporation Plane light source apparatus
US20060066783A1 (en) * 2004-09-27 2006-03-30 Sampsell Jeffrey B Methods and devices for lighting displays

Family Cites Families (448)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3924929A (en) 1966-11-14 1975-12-09 Minnesota Mining & Mfg Retro-reflective sheet material
US4154219A (en) 1977-03-11 1979-05-15 E-Systems, Inc. Prismatic solar reflector apparatus and method of solar tracking
US4375312A (en) 1980-08-07 1983-03-01 Hughes Aircraft Company Graded index waveguide structure and process for forming same
US4378567A (en) * 1981-01-29 1983-03-29 Eastman Kodak Company Electronic imaging apparatus having means for reducing inter-pixel transmission nonuniformity
US4863224A (en) 1981-10-06 1989-09-05 Afian Viktor V Solar concentrator and manufacturing method therefor
US4850682A (en) 1986-07-14 1989-07-25 Advanced Environmental Research Group Diffraction grating structures
EP0278038A1 (en) 1987-02-13 1988-08-17 Battelle-Institut e.V. Active flat type display panel
US20050259302A9 (en) 1987-09-11 2005-11-24 Metz Michael H Holographic light panels and flat panel display systems and method and apparatus for making same
JPH01108501U (en) 1988-01-16 1989-07-21
US5123247A (en) 1990-02-14 1992-06-23 116736 (Canada) Inc. Solar roof collector
US5050946A (en) 1990-09-27 1991-09-24 Compaq Computer Corporation Faceted light pipe
US5226099A (en) 1991-04-26 1993-07-06 Texas Instruments Incorporated Digital micromirror shutter device
US5555160A (en) 1991-06-27 1996-09-10 Nissen Chemitec Co., Ltd. Light-guiding panel for surface lighting and a surface lighting body
JPH0593908A (en) 1991-09-30 1993-04-16 Sony Corp Liquid crystal display device
GB9121159D0 (en) 1991-10-04 1991-11-13 Marconi Gec Ltd Colour display system
EP0539099A3 (en) 1991-10-25 1993-05-19 Optical Coating Laboratory, Inc. Repositionable optical cover for monitors
US5515184A (en) 1991-11-12 1996-05-07 The University Of Alabama In Huntsville Waveguide hologram illuminators
US5349503A (en) 1991-12-31 1994-09-20 At&T Bell Laboratories Illuminated transparent display with microtextured back reflector
US5764315A (en) 1992-01-27 1998-06-09 Sekisui Chemical Co., Ltd. Light adjusting sheet for a planar lighting device and a planar lighting device and a liquid crystal display using the sheet
US5528720A (en) 1992-03-23 1996-06-18 Minnesota Mining And Manufacturing Co. Tapered multilayer luminaire devices
JPH0695112A (en) 1992-09-16 1994-04-08 Hitachi Ltd Prism plate and information display device formed by using this plate
GB9219671D0 (en) 1992-09-17 1992-10-28 Canterbury Park Limited Ink
US5339179A (en) 1992-10-01 1994-08-16 International Business Machines Corp. Edge-lit transflective non-emissive display with angled interface means on both sides of light conducting panel
KR0168879B1 (en) 1992-12-25 1999-04-15 기따지마 요시또시 Renticular lens, surface light source and liquid crystal display apparatus
JP2823470B2 (en) 1993-03-09 1998-11-11 シャープ株式会社 Optical scanning device, display device using the same, and image information input / output device
US6674562B1 (en) 1994-05-05 2004-01-06 Iridigm Display Corporation Interferometric modulation of radiation
US5481385A (en) 1993-07-01 1996-01-02 Alliedsignal Inc. Direct view display device with array of tapered waveguide on viewer side
WO1995003935A1 (en) 1993-07-27 1995-02-09 Physical Optics Corporation Light source destructuring and shaping device
US5659410A (en) 1993-12-28 1997-08-19 Enplas Corporation Surface light source device and liquid crystal display
TW334523B (en) 1994-03-02 1998-06-21 Toso Kk Back light
US5982540A (en) 1994-03-16 1999-11-09 Enplas Corporation Surface light source device with polarization function
US7123216B1 (en) 1994-05-05 2006-10-17 Idc, Llc Photonic MEMS and structures
US6040937A (en) 1994-05-05 2000-03-21 Etalon, Inc. Interferometric modulation
US6680792B2 (en) 1994-05-05 2004-01-20 Iridigm Display Corporation Interferometric modulation of radiation
US5671994A (en) 1994-06-08 1997-09-30 Clio Technologies, Inc. Flat and transparent front-lighting system using microprisms
WO1996002862A1 (en) 1994-07-15 1996-02-01 Matsushita Electric Industrial Co., Ltd. Head-up display apparatus, liquid crystal display panel and production method thereof
US5544268A (en) 1994-09-09 1996-08-06 Deacon Research Display panel with electrically-controlled waveguide-routing
US5647036A (en) 1994-09-09 1997-07-08 Deacon Research Projection display with electrically-controlled waveguide routing
JP3219943B2 (en) 1994-09-16 2001-10-15 株式会社東芝 Planar direct-view display device
WO1996017207A1 (en) 1994-11-29 1996-06-06 Precision Lamp, Inc. Edge light for panel display
TW373116B (en) 1994-12-15 1999-11-01 Sharp Kk Lighting apparatus
JP3251452B2 (en) 1995-01-31 2002-01-28 シャープ株式会社 Backlight device for liquid crystal display device
JP3429384B2 (en) 1995-02-03 2003-07-22 株式会社エンプラス Sidelight type surface light source device
US5650865A (en) 1995-03-21 1997-07-22 Hughes Electronics Holographic backlight for flat panel displays
US6712481B2 (en) 1995-06-27 2004-03-30 Solid State Opto Limited Light emitting panel assemblies
US5932309A (en) 1995-09-28 1999-08-03 Alliedsignal Inc. Colored articles and compositions and methods for their fabrication
US7907319B2 (en) 1995-11-06 2011-03-15 Qualcomm Mems Technologies, Inc. Method and device for modulating light with optical compensation
US6104454A (en) 1995-11-22 2000-08-15 Hitachi, Ltd Liquid crystal display
US6099135A (en) 1996-02-01 2000-08-08 Mitsubishi Rayon Co., Ltd. Surface light source element and liquid crystal display device, sign device and traffic control sign device using same
US5771321A (en) 1996-01-04 1998-06-23 Massachusetts Institute Of Technology Micromechanical optical switch and flat panel display
US5961198A (en) 1996-02-02 1999-10-05 Hitachi, Ltd. Liquid crystal display device and method of manufacturing backlighting light guide panel therefor
US5980054A (en) 1996-05-09 1999-11-09 Matsushita Electric Industrial Co., Ltd. Panel-form illuminating system
JP2865618B2 (en) 1996-05-31 1999-03-08 嶋田プレシジョン株式会社 Light guide plate and light guide plate assembly
US5782993A (en) 1996-06-28 1998-07-21 Ponewash; Jackie Photovoltaic cells having micro-embossed optical enhancing structures
KR100213968B1 (en) 1996-07-15 1999-08-02 구자홍 Liquid crystal display device
FR2751398B1 (en) 1996-07-16 1998-08-28 Thomson Csf LIGHTING DEVICE AND APPLICATION TO THE LIGHTING OF A TRANSMISSION SCREEN
EP0868681A1 (en) 1996-09-23 1998-10-07 Koninklijke Philips Electronics N.V. Illumination system for a flat-panel picture display device
DE69724411T3 (en) 1996-09-24 2012-05-16 Seiko Epson Corp. LIGHTING DEVICE AND DISPLAY WHICH IT USES
JP3402138B2 (en) 1996-09-27 2003-04-28 株式会社日立製作所 Liquid crystal display
US5854872A (en) 1996-10-08 1998-12-29 Clio Technologies, Inc. Divergent angle rotator system and method for collimating light beams
US6486862B1 (en) 1996-10-31 2002-11-26 Kopin Corporation Card reader display system
GB2321532A (en) 1997-01-22 1998-07-29 Sharp Kk Multi-colour reflector device and display
JPH10293212A (en) 1997-02-18 1998-11-04 Dainippon Printing Co Ltd Backlight and liquid crystal display device
US5783614A (en) 1997-02-21 1998-07-21 Copytele, Inc. Polymeric-coated dielectric particles and formulation and method for preparing same
US5913594A (en) 1997-02-25 1999-06-22 Iimura; Keiji Flat panel light source device and passive display device utilizing the light source device
JPH10260405A (en) 1997-03-18 1998-09-29 Seiko Epson Corp Lighting device, liquid-crystal display device, and electronic equipment
US6123431A (en) 1997-03-19 2000-09-26 Sanyo Electric Co., Ltd Backlight apparatus and light guide plate
EP0867747A3 (en) 1997-03-25 1999-03-03 Sony Corporation Reflective display device
JP3231655B2 (en) 1997-03-28 2001-11-26 シャープ株式会社 Forward illumination device and reflection type liquid crystal display device having the same
US6879354B1 (en) 1997-03-28 2005-04-12 Sharp Kabushiki Kaisha Front-illuminating device and a reflection-type liquid crystal display using such a device
US5995288A (en) * 1997-04-22 1999-11-30 Dai Nippon Printing Co., Ltd. Optical sheet optical sheet lamination light source device, and light-transmissive type display apparatus
EP0879991A3 (en) 1997-05-13 1999-04-21 Matsushita Electric Industrial Co., Ltd. Illuminating system
GB9710062D0 (en) 1997-05-16 1997-07-09 British Tech Group Optical devices and methods of fabrication thereof
WO1998054606A1 (en) 1997-05-29 1998-12-03 Kuraray Co., Ltd. Lightguide
US5883684A (en) 1997-06-19 1999-03-16 Three-Five Systems, Inc. Diffusively reflecting shield optically, coupled to backlit lightguide, containing LED's completely surrounded by the shield
US6259082B1 (en) 1997-07-31 2001-07-10 Rohm Co., Ltd. Image reading apparatus
FR2769382B1 (en) 1997-10-03 2000-12-01 Thomson Multimedia Sa REAR LIGHTING SYSTEM FOR A TRANSMISSIBLE ELECTRO-OPTICAL MODULATOR USING THE LIGHT POLARIZATION EFFECT
US6273577B1 (en) 1997-10-31 2001-08-14 Sanyo Electric Co., Ltd. Light guide plate, surface light source using the light guide plate, and liquid crystal display using the surface light source
US6322901B1 (en) 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
ATE272224T1 (en) * 1997-11-17 2004-08-15 Max Planck Gesellschaft CONFOCAL SPECTROSCOPY SYSTEM AND METHOD
JP3808992B2 (en) 1997-11-21 2006-08-16 三菱電機株式会社 LCD panel module
US6151089A (en) 1998-01-20 2000-11-21 Sony Corporation Reflection type display with light waveguide with inclined and planar surface sections
US6897855B1 (en) 1998-02-17 2005-05-24 Sarnoff Corporation Tiled electronic display structure
JP3824290B2 (en) 1998-05-07 2006-09-20 富士写真フイルム株式会社 Array type light modulation element, array type exposure element, flat display, and method for driving array type light modulation element
US6195196B1 (en) 1998-03-13 2001-02-27 Fuji Photo Film Co., Ltd. Array-type exposing device and flat type display incorporating light modulator and driving method thereof
JP2986773B2 (en) 1998-04-01 1999-12-06 嶋田プレシジョン株式会社 Light guide plate for point light source
JP3644476B2 (en) 1998-04-30 2005-04-27 松下電器産業株式会社 Portable electronic devices
JP3520494B2 (en) 1998-05-11 2004-04-19 日東電工株式会社 Reflective liquid crystal display
TW386175B (en) 1998-05-19 2000-04-01 Dainippon Printing Co Ltd Light reflective panel for reflective liquid crystal panel
WO1999067678A2 (en) 1998-06-22 1999-12-29 E-Ink Corporation Means of addressing microencapsulated display media
US6741788B2 (en) * 1999-07-01 2004-05-25 Honeywell International Inc Efficient light distribution system
TW523627B (en) 1998-07-14 2003-03-11 Hitachi Ltd Liquid crystal display device
JP2000056226A (en) 1998-08-04 2000-02-25 Olympus Optical Co Ltd Display/image pickup device
GB2340281A (en) 1998-08-04 2000-02-16 Sharp Kk A reflective liquid crystal display device
JP2000075293A (en) 1998-09-02 2000-03-14 Matsushita Electric Ind Co Ltd Illuminator, touch panel with illumination and reflective liquid crystal display device
JP2000081848A (en) 1998-09-03 2000-03-21 Semiconductor Energy Lab Co Ltd Electronic equipment mounting liquid crystal display device
JP3119846B2 (en) 1998-09-17 2000-12-25 恵和株式会社 Light diffusion sheet and backlight unit using the same
DE69942499D1 (en) 1998-10-05 2010-07-29 Semiconductor Energy Lab Reflecting semiconductor device
JP2000181367A (en) 1998-10-05 2000-06-30 Semiconductor Energy Lab Co Ltd Reflection type semiconductor display device
US6199989B1 (en) 1998-10-29 2001-03-13 Sumitomo Chemical Company, Limited Optical plate having reflecting function and transmitting function
TW422346U (en) 1998-11-17 2001-02-11 Ind Tech Res Inst A reflector device with arc diffusion uint
US6940570B1 (en) 1998-11-27 2005-09-06 Sharp Kabushiki Kaisha Lighting element for liquid crystal display
JP3871176B2 (en) 1998-12-14 2007-01-24 シャープ株式会社 Backlight device and liquid crystal display device
JP2000193933A (en) 1998-12-25 2000-07-14 Matsushita Electric Works Ltd Display device
JP2000214804A (en) 1999-01-20 2000-08-04 Fuji Photo Film Co Ltd Light modulation element, aligner, and planar display
US20050024849A1 (en) 1999-02-23 2005-02-03 Parker Jeffery R. Methods of cutting or forming cavities in a substrate for use in making optical films, components or wave guides
US6827456B2 (en) 1999-02-23 2004-12-07 Solid State Opto Limited Transreflectors, transreflector systems and displays and methods of making transreflectors
KR20010043176A (en) 1999-03-02 2001-05-25 모리시타 요이찌 Illuminating device and display device provided with the device
JP3434465B2 (en) 1999-04-22 2003-08-11 三菱電機株式会社 Backlight for liquid crystal display
JP3594868B2 (en) 1999-04-26 2004-12-02 日東電工株式会社 Laminated polarizing plate and liquid crystal display
JP3527961B2 (en) 1999-04-30 2004-05-17 株式会社日立製作所 Front-light reflective liquid crystal display
FI107085B (en) 1999-05-28 2001-05-31 Ics Intelligent Control System light Panel
DE19927359A1 (en) 1999-06-16 2000-12-21 Creavis Tech & Innovation Gmbh Electrophoretic displays made of light-scattering carrier materials
JP2001021883A (en) 1999-07-06 2001-01-26 Nec Corp Reflective liquid crystal display device and electronic equipment
JP2001035222A (en) 1999-07-23 2001-02-09 Minebea Co Ltd Surface lighting system
JP2001035225A (en) 1999-07-26 2001-02-09 Minebea Co Ltd Surface lighting system
JP2001051272A (en) 1999-08-11 2001-02-23 Semiconductor Energy Lab Co Ltd Front light and electronic appliance
JP2001052518A (en) 1999-08-16 2001-02-23 Minebea Co Ltd Plane-like lighting system
JP2001060409A (en) 1999-08-23 2001-03-06 Minebea Co Ltd Sheet-like lighting system
EP1127984A4 (en) 1999-08-30 2004-12-15 Matsushita Shokai Co Ltd Planar light emitting device and light-emitting guide
DE19942513A1 (en) 1999-09-07 2001-03-08 Gerhard Karl Luminous body for images capable of screening
WO2003007049A1 (en) 1999-10-05 2003-01-23 Iridigm Display Corporation Photonic mems and structures
JP3457591B2 (en) 1999-10-08 2003-10-20 インターナショナル・ビジネス・マシーンズ・コーポレーション Liquid crystal display
US7046905B1 (en) 1999-10-08 2006-05-16 3M Innovative Properties Company Blacklight with structured surfaces
US6421104B1 (en) 1999-10-22 2002-07-16 Motorola, Inc. Front illuminator for a liquid crystal display and method of making same
US6398389B1 (en) 1999-12-03 2002-06-04 Texas Instruments Incorporated Solid state light source augmentation for SLM display systems
JP3987257B2 (en) 1999-12-10 2007-10-03 ローム株式会社 Liquid crystal display
DE60033264T2 (en) 1999-12-28 2007-11-08 Fujitsu Kasei Ltd., Yokohama Lighting apparatus for display
JP2001194534A (en) 2000-01-13 2001-07-19 Nitto Denko Corp Light transmission plate and its manufacturing method
JP4548628B2 (en) * 2000-01-13 2010-09-22 日東電工株式会社 Optical film
JP4614400B2 (en) 2000-01-17 2011-01-19 日東電工株式会社 ORGANIC EL LIGHT EMITTING DEVICE, POLARIZING PLANE LIGHT SOURCE DEVICE, AND LIQUID CRYSTAL DISPLAY DEVICE
JP4442836B2 (en) 2000-02-02 2010-03-31 日東電工株式会社 Optical film
JP4609962B2 (en) 2000-02-02 2011-01-12 日東電工株式会社 Optical film
DE10004972A1 (en) 2000-02-04 2001-08-16 Bosch Gmbh Robert Display device
JP4006918B2 (en) 2000-02-28 2007-11-14 オムロン株式会社 Surface light source device and manufacturing method thereof
JP4015342B2 (en) 2000-03-03 2007-11-28 ローム株式会社 LIGHTING DEVICE AND LIQUID CRYSTAL DISPLAY DEVICE HAVING THE SAME
JP2001283622A (en) 2000-03-29 2001-10-12 Matsushita Electric Ind Co Ltd Illumination apparatus and reflector liquid crystal display
JP3301752B2 (en) 2000-03-31 2002-07-15 三菱電機株式会社 Front light, reflective liquid crystal display device and portable information terminal
US6789910B2 (en) 2000-04-12 2004-09-14 Semiconductor Energy Laboratory, Co., Ltd. Illumination apparatus
JP2002014344A (en) 2000-04-28 2002-01-18 Minolta Co Ltd Liquid crystal display device
US6864882B2 (en) 2000-05-24 2005-03-08 Next Holdings Limited Protected touch panel display system
JP2001356701A (en) 2000-06-15 2001-12-26 Fuji Photo Film Co Ltd Optical element, light source unit and display device
US6598987B1 (en) 2000-06-15 2003-07-29 Nokia Mobile Phones Limited Method and apparatus for distributing light to the user interface of an electronic device
KR20020001594A (en) 2000-06-26 2002-01-09 가마이 고로 Light pipe, plane light source unit and reflection type liquid-crystal display device
FR2811139B1 (en) 2000-06-29 2003-10-17 Centre Nat Rech Scient OPTOELECTRONIC DEVICE WITH INTEGRATED WAVELENGTH FILTERING
JP3774616B2 (en) 2000-06-29 2006-05-17 株式会社日立製作所 Lighting device and light guide plate manufacturing method
JP3700078B2 (en) 2000-07-11 2005-09-28 ミネベア株式会社 Surface lighting device
JP2002025326A (en) 2000-07-13 2002-01-25 Seiko Epson Corp Light source device, lighting device, liquid crystal device, and electronic device
US20040032659A1 (en) 2000-07-18 2004-02-19 Drinkwater John K Difractive device
US6565225B2 (en) 2000-07-19 2003-05-20 Sanyo Electric Co., Ltd. Bar-shaped light guide, beam lighting device using the bar-shaped light guide, and surface lighting device using the beam lighting device
JP3773818B2 (en) 2000-07-19 2006-05-10 三洋電機株式会社 Bar-shaped light guide, linear illumination device using the same, and planar illumination device using the linear illumination device
JP2002108227A (en) 2000-07-26 2002-04-10 Bridgestone Corp Front light and liquid crystal display device
US7525531B2 (en) 2000-07-31 2009-04-28 Toshiba Matsushita Display Technology Co., Ltd. Method for manufacturing lighting device, image display, liquid crystal monitor, liquid crystal television, liquid crystal information terminal, and light guide plate
US6795605B1 (en) 2000-08-01 2004-09-21 Cheetah Omni, Llc Micromechanical optical switch
JP2002075037A (en) 2000-09-05 2002-03-15 Minebea Co Ltd Surface lighting equipment
US6792293B1 (en) 2000-09-13 2004-09-14 Motorola, Inc. Apparatus and method for orienting an image on a display of a wireless communication device
JP3394025B2 (en) 2000-09-13 2003-04-07 嶋田プレシジョン株式会社 Front light light guide plate
JP3561685B2 (en) 2000-09-20 2004-09-02 三洋電機株式会社 Linear light source device and lighting device using the same
CN100487304C (en) 2000-09-25 2009-05-13 三菱丽阳株式会社 Light source device
JP4570228B2 (en) 2000-10-11 2010-10-27 日東電工株式会社 Glass substrate and liquid crystal display device
JP4374482B2 (en) 2000-11-02 2009-12-02 ミネベア株式会社 Surface lighting device
JP2002148615A (en) 2000-11-08 2002-05-22 Nitto Denko Corp Optical film and reflection type liquid crystal display device
US6643067B2 (en) 2000-11-22 2003-11-04 Seiko Epson Corporation Electro-optical device and electronic apparatus
JP2002174732A (en) 2000-12-07 2002-06-21 Mark:Kk Light guide plate, display device using the same and method for manufacturing electronic device and light guide plate
JP2002174780A (en) 2000-12-08 2002-06-21 Stanley Electric Co Ltd Reflection type color display device
IL140318A0 (en) 2000-12-14 2002-02-10 Planop Planar Optics Ltd Compact dynamic crossbar switch by means of planar optics
JP4266551B2 (en) 2000-12-14 2009-05-20 三菱レイヨン株式会社 Surface light source system and light deflection element used therefor
JP2002184223A (en) 2000-12-14 2002-06-28 Alps Electric Co Ltd Flat light emitting device and manufacturing method thereof, and liquid crystal display device
JP4361206B2 (en) 2000-12-21 2009-11-11 日東電工株式会社 Optical film and liquid crystal display device
US20020080597A1 (en) 2000-12-21 2002-06-27 Durel Corporation EL lamp for a front lit display
JP2002196151A (en) 2000-12-25 2002-07-10 Citizen Electronics Co Ltd Light guide plate
WO2002054119A1 (en) 2000-12-28 2002-07-11 Fuji Electric Co., Ltd. Light guiding plate and liquid crystal display device with the light guiding plate
JP4074977B2 (en) 2001-02-02 2008-04-16 ミネベア株式会社 Surface lighting device
JP4476505B2 (en) 2001-02-09 2010-06-09 シャープ株式会社 Liquid crystal display
JP2002245835A (en) 2001-02-15 2002-08-30 Minolta Co Ltd Illumination device, display device, and electronic equipment
JP3713596B2 (en) 2001-03-26 2005-11-09 ミネベア株式会社 Surface lighting device
US6592234B2 (en) 2001-04-06 2003-07-15 3M Innovative Properties Company Frontlit display
US6678026B2 (en) 2001-04-10 2004-01-13 Seiko Epson Corporation Liquid crystal device and electronic apparatus
US6552842B2 (en) 2001-04-13 2003-04-22 Ut-Battelle, Llc Reflective coherent spatial light modulator
JP2002313121A (en) 2001-04-16 2002-10-25 Nitto Denko Corp Luminaire with touch panel and reflective liquid crystal display device
US6697403B2 (en) 2001-04-17 2004-02-24 Samsung Electronics Co., Ltd. Light-emitting device and light-emitting apparatus using the same
US6660997B2 (en) * 2001-04-26 2003-12-09 Creo Srl Absolute position Moiré type encoder for use in a control system
JP2002333618A (en) 2001-05-07 2002-11-22 Nitto Denko Corp Reflection type liquid crystal display device
US7001058B2 (en) 2001-05-16 2006-02-21 Ben-Zion Inditsky Ultra-thin backlight
JP4049267B2 (en) 2001-06-01 2008-02-20 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー Compact lighting system and display device
JP2002365438A (en) 2001-06-05 2002-12-18 Mark:Kk Linear light guiding body, display device and electronic apparatus using the same, production method for linear light guiding body
US6961045B2 (en) * 2001-06-16 2005-11-01 Che-Chih Tsao Pattern projection techniques for volumetric 3D displays and 2D displays
JP2003007114A (en) 2001-06-26 2003-01-10 Sharp Corp Front light and reflection type display device using the same
US20030001985A1 (en) 2001-06-28 2003-01-02 Steve Doe Electronic display
US7253799B2 (en) 2001-06-30 2007-08-07 Samsung Electronics Co., Ltd. Backlight using planar hologram for flat display device
US6903788B2 (en) 2001-07-05 2005-06-07 Nitto Denko Corporation Optical film and a liquid crystal display using the same
US6478432B1 (en) 2001-07-13 2002-11-12 Chad D. Dyner Dynamically generated interactive real imaging device
JP3959678B2 (en) 2001-07-13 2007-08-15 ミネベア株式会社 Touch panel for display device
KR100799156B1 (en) 2001-07-13 2008-01-29 삼성전자주식회사 Light guided panel and method for fabricating thereof and liquid crystal display device using the same
JP2003031017A (en) 2001-07-13 2003-01-31 Minebea Co Ltd Planar lighting device
US7263268B2 (en) 2001-07-23 2007-08-28 Ben-Zion Inditsky Ultra thin radiation management and distribution systems with hybrid optical waveguide
US6576887B2 (en) 2001-08-15 2003-06-10 3M Innovative Properties Company Light guide for use with backlit display
JP2003057652A (en) 2001-08-20 2003-02-26 Japan Science & Technology Corp Picture display device, illuminator
JP2003057653A (en) 2001-08-21 2003-02-26 Citizen Watch Co Ltd Liquid crystal display device
JP4671562B2 (en) 2001-08-31 2011-04-20 富士通株式会社 Illumination device and liquid crystal display device
CN1559000A (en) 2001-09-26 2004-12-29 皇家飞利浦电子股份有限公司 Waveguide, edge-lit illumination arrangement and display comprising such
NZ514500A (en) 2001-10-11 2004-06-25 Deep Video Imaging Ltd A multiplane visual display unit with a transparent emissive layer disposed between two display planes
JP4001736B2 (en) 2001-10-23 2007-10-31 アルプス電気株式会社 Surface light emitting device and liquid crystal display device
US6636285B2 (en) 2001-11-01 2003-10-21 Motorola, Inc. Reflective liquid crystal display with improved contrast
US20030085849A1 (en) 2001-11-06 2003-05-08 Michael Grabert Apparatus for image projection
JP3828402B2 (en) 2001-11-08 2006-10-04 株式会社日立製作所 BACKLIGHTING DEVICE, LIQUID CRYSTAL DISPLAY DEVICE USING SAME, AND LIGHTING METHOD FOR LIQUID CRYSTAL DISPLAY DEVICE
US7128459B2 (en) 2001-11-12 2006-10-31 Nidec Copal Corporation Light-guide plate and method for manufacturing the same
JP2003149642A (en) 2001-11-13 2003-05-21 Matsushita Electric Works Ltd Front light for liquid crystal
JP2003151331A (en) 2001-11-15 2003-05-23 Minebea Co Ltd Sheet lighting system
JP2003149643A (en) 2001-11-16 2003-05-21 Goyo Paper Working Co Ltd Front light for liquid crystal display
US20030095401A1 (en) 2001-11-20 2003-05-22 Palm, Inc. Non-visible light display illumination system and method
US6802614B2 (en) 2001-11-28 2004-10-12 Robert C. Haldiman System, method and apparatus for ambient video projection
JP3801032B2 (en) 2001-11-29 2006-07-26 日本電気株式会社 Light source and liquid crystal display device using the light source
JP2003167132A (en) 2001-11-30 2003-06-13 Toyota Industries Corp Wedge-shaped light guide plate for front light
JP2003173713A (en) 2001-12-04 2003-06-20 Rohm Co Ltd Illumination device and liquid crystal display device
US7253853B2 (en) 2001-12-04 2007-08-07 Rohm Co., Ltd. Liquid crystal display and lighting unit having parabolic surface
JP3683212B2 (en) 2001-12-14 2005-08-17 Necアクセステクニカ株式会社 Mobile phone
EP2420873A3 (en) 2001-12-14 2013-01-16 QUALCOMM MEMS Technologies, Inc. Uniform illumination system
US7515336B2 (en) 2001-12-21 2009-04-07 Bose Corporation Selective reflecting
JP4162900B2 (en) 2002-02-05 2008-10-08 アルプス電気株式会社 Illumination device and liquid crystal display device
US7203002B2 (en) 2002-02-12 2007-04-10 Nitto Denko Corporation Polarizer, polarizing plate, liquid crystal display, and image display, and a method for producing the polarizer
US6794119B2 (en) 2002-02-12 2004-09-21 Iridigm Display Corporation Method for fabricating a structure for a microelectromechanical systems (MEMS) device
US7369735B2 (en) 2002-02-15 2008-05-06 Biosynergetics, Inc. Apparatus for the collection and transmission of electromagnetic radiation
JP2003255338A (en) 2002-02-28 2003-09-10 Mitsubishi Electric Corp Liquid crystal display
WO2003075051A1 (en) 2002-03-05 2003-09-12 Koninklijke Philips Electronics N.V. Illumination system combining diffuse homogeneous lighting with direct spot illumination
JP2003255344A (en) 2002-03-05 2003-09-10 Citizen Electronics Co Ltd Front light for color liquid crystal display
CN1639596A (en) 2002-03-08 2005-07-13 皇家飞利浦电子股份有限公司 Display device comprising a light guide
JP3716934B2 (en) 2002-03-14 2005-11-16 日本電気株式会社 Light modulation display device, method of manufacturing the same, and display device equipped with the light modulation display device
JP2003295183A (en) 2002-03-29 2003-10-15 Citizen Watch Co Ltd Plane illuminator of liquid crystal display device
TW554211B (en) 2002-04-10 2003-09-21 Au Optronics Corp Light guiding plate of controlling light emission angle and its liquid crystal display apparatus
JP2003315694A (en) 2002-04-25 2003-11-06 Fuji Photo Film Co Ltd Image display element and image display device using the same
GB2388236A (en) 2002-05-01 2003-11-05 Cambridge Display Tech Ltd Display and driver circuits
JP2003322852A (en) 2002-05-07 2003-11-14 Nitto Denko Corp Reflective liquid crystal display and optical film
US6862141B2 (en) 2002-05-20 2005-03-01 General Electric Company Optical substrate and method of making
TW200307148A (en) 2002-05-20 2003-12-01 Mitsubishi Rayon Co Planar light source and light guide being used
US7180672B2 (en) * 2002-05-20 2007-02-20 General Electric Company Optical substrate and method of making
JP2003344881A (en) 2002-05-22 2003-12-03 Alps Electric Co Ltd Electrophoretic display device
US7010212B2 (en) 2002-05-28 2006-03-07 3M Innovative Properties Company Multifunctional optical assembly
JP4048844B2 (en) 2002-06-17 2008-02-20 カシオ計算機株式会社 Surface light source and display device using the same
JP3977169B2 (en) 2002-07-01 2007-09-19 松下電器産業株式会社 Mobile terminal device
US7019876B2 (en) 2002-07-29 2006-03-28 Hewlett-Packard Development Company, L.P. Micro-mirror with rotor structure
JP4126210B2 (en) 2002-08-09 2008-07-30 株式会社日立製作所 Liquid crystal display
TWI266106B (en) 2002-08-09 2006-11-11 Sanyo Electric Co Display device with a plurality of display panels
JP2004078613A (en) 2002-08-19 2004-03-11 Fujitsu Ltd Touch panel system
JP4141766B2 (en) 2002-08-23 2008-08-27 富士通株式会社 Illumination device and liquid crystal display device
JP2004095390A (en) 2002-08-30 2004-03-25 Fujitsu Display Technologies Corp Lighting device and display device
WO2004025174A1 (en) 2002-08-30 2004-03-25 Hitachi Chemical Co., Ltd. Light guide plate and backlight device
JP2004126196A (en) 2002-10-02 2004-04-22 Toshiba Corp Liquid crystal display device
US7406245B2 (en) 2004-07-27 2008-07-29 Lumitex, Inc. Flat optical fiber light emitters
KR100883096B1 (en) 2002-10-05 2009-02-11 삼성전자주식회사 Optical member and method for fabricating the same and liquid crystal display device using the same
TW573170B (en) 2002-10-11 2004-01-21 Toppoly Optoelectronics Corp Dual-sided display liquid crystal panel
JP4130115B2 (en) 2002-10-16 2008-08-06 アルプス電気株式会社 Illumination device and liquid crystal display device
US6747785B2 (en) 2002-10-24 2004-06-08 Hewlett-Packard Development Company, L.P. MEMS-actuated color light modulator and methods
DE60337026D1 (en) 2002-11-07 2011-06-16 Sony Deutschland Gmbh LIGHTING ARRANGEMENT FOR A PROJECTION DEVICE
TW547670U (en) 2002-11-08 2003-08-11 Hon Hai Prec Ind Co Ltd Backlight system and its light guide plate
US7063449B2 (en) 2002-11-21 2006-06-20 Element Labs, Inc. Light emitting diode (LED) picture element
TWI252938B (en) 2002-11-22 2006-04-11 Hon Hai Prec Ind Co Ltd Light guide plate and backlight system using the same
US6811274B2 (en) 2002-12-04 2004-11-02 General Electric Company Polarization sensitive optical substrate
EP1575452A2 (en) 2002-12-09 2005-09-21 Oree, Advanced Illumination Solutions Inc. Flexible optical device
JP3983166B2 (en) 2002-12-26 2007-09-26 日東電工株式会社 Optical element, polarization plane light source using the same, and display device using the same
KR100624408B1 (en) 2003-01-07 2006-09-18 삼성전자주식회사 Backlight unit
KR100506088B1 (en) 2003-01-14 2005-08-03 삼성전자주식회사 Liquid crystal displaying apparatus
KR20050086953A (en) * 2003-01-15 2005-08-30 마이크로닉 레이저 시스템즈 에이비 A method to detect a defective pixel
US7042444B2 (en) 2003-01-17 2006-05-09 Eastman Kodak Company OLED display and touch screen
US6930816B2 (en) 2003-01-17 2005-08-16 Fuji Photo Film Co., Ltd. Spatial light modulator, spatial light modulator array, image forming device and flat panel display
JP4397394B2 (en) 2003-01-24 2010-01-13 ディジタル・オプティクス・インターナショナル・コーポレイション High density lighting system
TW577549U (en) 2003-01-30 2004-02-21 Toppoly Optoelectronics Corp Back light module for flat display device
KR100519238B1 (en) 2003-02-04 2005-10-07 화우테크놀러지 주식회사 A Light Guide Panel With Guided-light Parts
KR100720426B1 (en) 2003-02-18 2007-05-22 엘지.필립스 엘시디 주식회사 back light unit
TWI352228B (en) 2003-02-28 2011-11-11 Sharp Kk Surface dadiation conversion element, liquid cryst
JP4294992B2 (en) 2003-03-31 2009-07-15 シャープ株式会社 Reflective liquid crystal display
US20050120553A1 (en) 2003-12-08 2005-06-09 Brown Dirk D. Method for forming MEMS grid array connector
KR100506092B1 (en) 2003-04-16 2005-08-04 삼성전자주식회사 Light guide panel of edge light type backlight apparatus and edge light type backlight apparatus using the same
KR20040090667A (en) 2003-04-18 2004-10-26 삼성전기주식회사 light unit for displaying
JP2004361914A (en) 2003-05-15 2004-12-24 Omron Corp Front light, reflective display device, and light control method in front light
JP4240037B2 (en) 2003-05-22 2009-03-18 日立化成工業株式会社 Optical film and surface light source device using the same
WO2004106983A2 (en) * 2003-05-22 2004-12-09 Optical Research Associates Illumination in optical systems
US7206133B2 (en) * 2003-05-22 2007-04-17 Optical Research Associates Light distribution apparatus and methods for illuminating optical systems
US7268840B2 (en) 2003-06-18 2007-09-11 Citizen Holdings Co., Ltd. Display device employing light control member and display device manufacturing method
US20050024890A1 (en) 2003-06-19 2005-02-03 Alps Electric Co., Ltd. Light guide plate, surface light-emitting unit, and liquid crystal display device and method for manufacturing the same
JP2007027150A (en) 2003-06-23 2007-02-01 Hitachi Chem Co Ltd Concentrating photovoltaic power generation system
JP4611202B2 (en) 2003-06-30 2011-01-12 株式会社ワールドビジョン Light guide plate, manufacturing method and manufacturing apparatus thereof, and light source device and liquid crystal display using the same
US6980347B2 (en) 2003-07-03 2005-12-27 Reflectivity, Inc Micromirror having reduced space between hinge and mirror plate of the micromirror
EP1649309A4 (en) 2003-07-03 2011-03-09 Holo Touch Inc Holographic human-machine interfaces
US7112885B2 (en) 2003-07-07 2006-09-26 Board Of Regents, The University Of Texas System System, method and apparatus for improved electrical-to-optical transmitters disposed within printed circuit boards
US20070201234A1 (en) 2003-07-21 2007-08-30 Clemens Ottermann Luminous element
DE10336352B4 (en) 2003-08-08 2007-02-08 Schott Ag Method for producing scattered light structures on flat light guides
AU2003257833A1 (en) 2003-08-13 2005-03-07 Fujitsu Limited Illuminating device and liquid crystal display unit
US7025461B2 (en) 2003-08-28 2006-04-11 Brookhaven Science Associates Interactive display system having a digital micromirror imaging device
US7218812B2 (en) 2003-10-27 2007-05-15 Rpo Pty Limited Planar waveguide with patterned cladding and method for producing the same
DE60322549D1 (en) 2003-12-01 2008-09-11 Asulab Sa Transparent substrate with invisible electrodes and devices with this substrate
ATE552521T1 (en) 2003-12-19 2012-04-15 Barco Nv BROADBAND REFLECTIVE DISPLAY DEVICE
JP4079143B2 (en) 2003-12-22 2008-04-23 セイコーエプソン株式会社 LIGHTING DEVICE, ELECTRO-OPTICAL DEVICE, AND ELECTRONIC DEVICE
US20050271325A1 (en) 2004-01-22 2005-12-08 Anderson Michael H Liquid crystal waveguide having refractive shapes for dynamically controlling light
US6964484B2 (en) * 2004-02-02 2005-11-15 Hewlett-Packard Development Company, L.P. Overfill reduction for an optical modulator
TWI323367B (en) 2004-02-03 2010-04-11 Hannstar Display Corp Backlight module
US20060110090A1 (en) 2004-02-12 2006-05-25 Panorama Flat Ltd. Apparatus, method, and computer program product for substrated/componentized waveguided goggle system
CN100434988C (en) 2004-02-16 2008-11-19 西铁城电子股份有限公司 Light guide plate
US20050185416A1 (en) 2004-02-24 2005-08-25 Eastman Kodak Company Brightness enhancement film using light concentrator array
US7706050B2 (en) 2004-03-05 2010-04-27 Qualcomm Mems Technologies, Inc. Integrated modulator illumination
US7439965B2 (en) 2004-03-05 2008-10-21 Anderson Daryl E Method for driving display device
JP4452528B2 (en) 2004-03-09 2010-04-21 日本Cmo株式会社 Planar light generator, image display device
JP4195936B2 (en) 2004-03-17 2008-12-17 独立行政法人産業技術総合研究所 Reflective dimmer with a diffusive reflective surface
JP2005300673A (en) 2004-04-07 2005-10-27 Hitachi Displays Ltd Liquid crystal display
JP4539160B2 (en) 2004-04-28 2010-09-08 日立化成工業株式会社 Optical element, optical element manufacturing method, and surface light source device
WO2005107363A2 (en) 2004-04-30 2005-11-17 Oy Modilis Ltd. Ultrathin lighting element
US7602369B2 (en) 2004-05-04 2009-10-13 Sharp Laboratories Of America, Inc. Liquid crystal display with colored backlight
WO2005111669A1 (en) 2004-05-17 2005-11-24 Nikon Corporation Optical element, combiner optical system, and image display unit
US7160017B2 (en) 2004-06-03 2007-01-09 Eastman Kodak Company Brightness enhancement film using a linear arrangement of light concentrators
JP4449036B2 (en) 2004-06-03 2010-04-14 ミネベア株式会社 Surface lighting device
JP4020397B2 (en) 2004-06-14 2007-12-12 惠次 飯村 Surface light source using point light source
US7213958B2 (en) 2004-06-30 2007-05-08 3M Innovative Properties Company Phosphor based illumination system having light guide and an interference reflector
KR100606549B1 (en) 2004-07-01 2006-08-01 엘지전자 주식회사 Light guide plate of surface light emitting device and method for manufacturing the same
US7256922B2 (en) 2004-07-02 2007-08-14 Idc, Llc Interferometric modulators with thin film transistors
US7346281B2 (en) * 2004-07-06 2008-03-18 The Boeing Company Hybrid RF/optical communication system with deployable optics and atmosphere compensation system and method
EP1788423A4 (en) 2004-08-18 2008-02-27 Sony Corp Backlight device and color liquid crystal display device
JP2006093104A (en) 2004-08-25 2006-04-06 Seiko Instruments Inc Lighting system, and display device using the same
US7212345B2 (en) * 2004-09-13 2007-05-01 Eastman Kodak Company Randomized patterns of individual optical elements
JP4238806B2 (en) 2004-09-21 2009-03-18 セイコーエプソン株式会社 Light guide plate, lighting device, electro-optical device, and electronic device
US7508571B2 (en) 2004-09-27 2009-03-24 Idc, Llc Optical films for controlling angular characteristics of displays
US7564612B2 (en) 2004-09-27 2009-07-21 Idc, Llc Photonic MEMS and structures
US7719500B2 (en) 2004-09-27 2010-05-18 Qualcomm Mems Technologies, Inc. Reflective display pixels arranged in non-rectangular arrays
US20060132383A1 (en) 2004-09-27 2006-06-22 Idc, Llc System and method for illuminating interferometric modulator display
US20060066586A1 (en) 2004-09-27 2006-03-30 Gally Brian J Touchscreens for displays
US7911428B2 (en) 2004-09-27 2011-03-22 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US7327510B2 (en) 2004-09-27 2008-02-05 Idc, Llc Process for modifying offset voltage characteristics of an interferometric modulator
US7355780B2 (en) 2004-09-27 2008-04-08 Idc, Llc System and method of illuminating interferometric modulators using backlighting
US7815357B2 (en) 2004-09-28 2010-10-19 Mitsubishi Rayon Co., Ltd. Light guide for surface light source device and surface light source device
TWI254821B (en) 2004-10-01 2006-05-11 Delta Electronics Inc Backlight module
KR20060030350A (en) 2004-10-05 2006-04-10 삼성전자주식회사 White light generating unit, backlight assembly having the same and liquid crystal display apparatus having the same
JP4445827B2 (en) 2004-10-07 2010-04-07 大日本印刷株式会社 Condensing sheet, surface light source device, and manufacturing method of condensing sheet
TWI259313B (en) 2004-10-19 2006-08-01 Ind Tech Res Inst Light-guide plate and method for manufacturing thereof
JP2006120571A (en) 2004-10-25 2006-05-11 Fujikura Ltd Lighting system
WO2006055873A2 (en) 2004-11-17 2006-05-26 Fusion Optix, Inc. Enhanced electroluminescent sign
US7431489B2 (en) 2004-11-17 2008-10-07 Fusion Optix Inc. Enhanced light fixture
TWI264601B (en) 2004-11-19 2006-10-21 Innolux Display Corp Light guide plate and backlight module using the same
US8130210B2 (en) 2004-11-30 2012-03-06 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Touch input system using light guides
KR100682907B1 (en) 2004-12-14 2007-02-15 삼성전자주식회사 Illumination apparatus for a display device using light guide plate
CN101116133B (en) * 2004-12-23 2014-02-05 杜比实验室特许公司 Wide color gamut displays
WO2006070746A1 (en) 2004-12-27 2006-07-06 Nichia Corporation Light guide and surface emitting device using same
JP4420813B2 (en) 2004-12-28 2010-02-24 株式会社エンプラス Surface light source device and display device
US7339635B2 (en) 2005-01-14 2008-03-04 3M Innovative Properties Company Pre-stacked optical films with adhesive layer
JP4547276B2 (en) 2005-01-24 2010-09-22 シチズン電子株式会社 Planar light source
CA2597009A1 (en) 2005-02-07 2006-08-10 Rpo Pty Limited Waveguide design incorporating reflective optics
TWI263098B (en) 2005-02-16 2006-10-01 Au Optronics Corp Backlight module
KR100619069B1 (en) 2005-02-16 2006-08-31 삼성전자주식회사 Multi-chip light emitting diode unit, backlight unit and liquid crystal display employing the same
US20060187676A1 (en) 2005-02-18 2006-08-24 Sharp Kabushiki Kaisha Light guide plate, light guide device, lighting device, light guide system, and drive circuit
US20060209012A1 (en) 2005-02-23 2006-09-21 Pixtronix, Incorporated Devices having MEMS displays
US7224512B2 (en) 2005-03-15 2007-05-29 Motorola, Inc. Microelectromechanical system optical apparatus and method
TWI255924B (en) 2005-03-16 2006-06-01 Au Optronics Corp Backlight module and brightness enhancement film thereof
US7352501B2 (en) 2005-03-31 2008-04-01 Xerox Corporation Electrophoretic caps prepared from encapsulated electrophoretic particles
US7346251B2 (en) 2005-04-18 2008-03-18 The Trustees Of Columbia University In The City Of New York Light emission using quantum dot emitters in a photonic crystal
JP4743846B2 (en) 2005-05-10 2011-08-10 シチズン電子株式会社 Optical communication apparatus and information equipment using the same
TW200641422A (en) 2005-05-30 2006-12-01 Polarlite Corp Transparent type light guiding module
KR101176531B1 (en) 2005-05-31 2012-08-24 삼성전자주식회사 Backligh system and liquid crystal display apparatus employing the same
US8039731B2 (en) 2005-06-06 2011-10-18 General Electric Company Photovoltaic concentrator for solar energy system
KR100647327B1 (en) 2005-06-18 2006-11-23 삼성전기주식회사 Back light unit for flat display device, and flat display apparatus having the same
US20060285356A1 (en) 2005-06-21 2006-12-21 K-Bridge Electronics Co., Ltd. Side-edge backlight module dimming pack
US8079743B2 (en) 2005-06-28 2011-12-20 Lighting Science Group Corporation Display backlight with improved light coupling and mixing
US7161136B1 (en) * 2005-07-06 2007-01-09 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Light modulating input device for capturing user control inputs
FR2889597B1 (en) 2005-08-02 2008-02-08 Saint Gobain TEXTURE PLATE WITH ASYMMETRIC PATTERNS
US7278774B2 (en) 2005-10-03 2007-10-09 Radiant Opto-Electronics Corporation Light-conductive panel of side-light type backlight module
WO2007047684A2 (en) 2005-10-17 2007-04-26 I2Ic Corporation An apparatus and method for providing a light source in the form of a surface
KR100784551B1 (en) 2005-10-19 2007-12-11 엘지전자 주식회사 A prism sheet employed in backlight unit
JP2009512898A (en) 2005-10-24 2009-03-26 アールピーオー・ピーティワイ・リミテッド Improved optical element for waveguide-based optical touch screens
US7760197B2 (en) 2005-10-31 2010-07-20 Hewlett-Packard Development Company, L.P. Fabry-perot interferometric MEMS electromagnetic wave modulator with zero-electric field
TWI312895B (en) 2005-11-11 2009-08-01 Chunghwa Picture Tubes Ltd Backlight module structure for led chip holder
JP2006065360A (en) 2005-11-16 2006-03-09 Omron Corp Light guide and display apparatus
US20070133226A1 (en) 2005-12-13 2007-06-14 Eastman Kodak Company Polarizing turning film with multiple operating orientations
US7561133B2 (en) 2005-12-29 2009-07-14 Xerox Corporation System and methods of device independent display using tunable individually-addressable fabry-perot membranes
US7366393B2 (en) * 2006-01-13 2008-04-29 Optical Research Associates Light enhancing structures with three or more arrays of elongate features
US7545569B2 (en) * 2006-01-13 2009-06-09 Avery Dennison Corporation Optical apparatus with flipped compound prism structures
US7674028B2 (en) * 2006-01-13 2010-03-09 Avery Dennison Corporation Light enhancing structures with multiple arrays of elongate features of varying characteristics
CN101310351B (en) 2006-01-20 2011-04-13 日本写真印刷株式会社 Capacitive light emitting switch and light emitting switch element used therefor
TWI345105B (en) 2006-01-26 2011-07-11 Chimei Innolux Corp Backlight module and application thereof
US20070177405A1 (en) 2006-01-27 2007-08-02 Toppoly Optoelectronics Corp. Backlight unit, liquid crystal display module and electronic device
TW200730951A (en) 2006-02-10 2007-08-16 Wintek Corp Guide light module
JP4639337B2 (en) 2006-02-17 2011-02-23 国立大学法人長岡技術科学大学 Solar cell and solar collector
US7603001B2 (en) 2006-02-17 2009-10-13 Qualcomm Mems Technologies, Inc. Method and apparatus for providing back-lighting in an interferometric modulator display device
KR100678067B1 (en) 2006-02-28 2007-02-02 삼성전자주식회사 Touch sensor apparatus
US7450295B2 (en) 2006-03-02 2008-11-11 Qualcomm Mems Technologies, Inc. Methods for producing MEMS with protective coatings using multi-component sacrificial layers
JP2007271865A (en) 2006-03-31 2007-10-18 Hitachi Displays Ltd Liquid crystal display device
US20070241340A1 (en) 2006-04-17 2007-10-18 Pan Shaoher X Micro-mirror based display device having an improved light source
US7417784B2 (en) 2006-04-19 2008-08-26 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing a porous surface
JP5290157B2 (en) 2006-05-01 2013-09-18 ゼッタ リサーチ アンド デベロップメント エルエルシー−アールピーオー シリーズ Waveguide material for optical touch screen
TW200742610A (en) 2006-05-10 2007-11-16 Tpk Touch Solutions Inc Method of hiding transparent electrodes on a transparent substrate
US20080232135A1 (en) 2006-05-31 2008-09-25 3M Innovative Properties Company Light guide
US20070279935A1 (en) 2006-05-31 2007-12-06 3M Innovative Properties Company Flexible light guide
US7876489B2 (en) 2006-06-05 2011-01-25 Pixtronix, Inc. Display apparatus with optical cavities
US7561773B2 (en) 2006-06-19 2009-07-14 Fuji Xerox Co., Ltd. Optical waveguide, method of manufacturing the same and optical communication module
US7766498B2 (en) 2006-06-21 2010-08-03 Qualcomm Mems Technologies, Inc. Linear solid state illuminator
JP4695626B2 (en) 2006-06-30 2011-06-08 株式会社東芝 Illumination device and liquid crystal display device
US20080049445A1 (en) 2006-08-25 2008-02-28 Philips Lumileds Lighting Company, Llc Backlight Using High-Powered Corner LED
US7845841B2 (en) 2006-08-28 2010-12-07 Qualcomm Mems Technologies, Inc. Angle sweeping holographic illuminator
WO2008034184A1 (en) 2006-09-22 2008-03-27 Rpo Pty Limited Waveguide configurations for optical touch systems
US7679610B2 (en) 2006-09-28 2010-03-16 Honeywell International Inc. LCD touchscreen panel with external optical path
WO2008045363A2 (en) 2006-10-06 2008-04-17 Qualcomm Mems Technologies, Inc. Light bar with reflector
EP2069840A1 (en) 2006-10-06 2009-06-17 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing back reflection from an illumination device
US8107155B2 (en) 2006-10-06 2012-01-31 Qualcomm Mems Technologies, Inc. System and method for reducing visual artifacts in displays
WO2008045311A2 (en) 2006-10-06 2008-04-17 Qualcomm Mems Technologies, Inc. Illumination device with built-in light coupler
EP2366945A1 (en) 2006-10-06 2011-09-21 Qualcomm Mems Technologies, Inc. Optical loss layer integrated in an illumination apparatus of a display
US7855827B2 (en) 2006-10-06 2010-12-21 Qualcomm Mems Technologies, Inc. Internal optical isolation structure for integrated front or back lighting
KR20090094241A (en) 2006-10-06 2009-09-04 퀄컴 엠이엠스 테크놀로지스, 인크. Thin light bar and method of manufacturing
WO2008045207A2 (en) 2006-10-06 2008-04-17 Qualcomm Mems Technologies, Inc. Light guide
EP1946162A2 (en) 2006-10-10 2008-07-23 Qualcomm Mems Technologies, Inc Display device with diffractive optics
KR100818278B1 (en) 2006-10-16 2008-04-01 삼성전자주식회사 Illuminating device for liquid crystal display
JP4511504B2 (en) 2006-10-17 2010-07-28 日本ライツ株式会社 Light guide plate and flat illumination device
EP2080045A1 (en) 2006-10-20 2009-07-22 Pixtronix Inc. Light guides and backlight systems incorporating light redirectors at varying densities
US7864395B2 (en) 2006-10-27 2011-01-04 Qualcomm Mems Technologies, Inc. Light guide including optical scattering elements and a method of manufacture
KR100951723B1 (en) 2006-12-28 2010-04-07 제일모직주식회사 Optical sheet for back light unit
TW200830000A (en) 2007-01-15 2008-07-16 Dynascan Technology Corp LED backlight module
CN101226259A (en) 2007-01-16 2008-07-23 财团法人工业技术研究院 Coupling light element
US7777954B2 (en) 2007-01-30 2010-08-17 Qualcomm Mems Technologies, Inc. Systems and methods of providing a light guiding layer
EP1975651A1 (en) 2007-03-31 2008-10-01 Sony Deutschland Gmbh Spatial light modulator display
US7733439B2 (en) 2007-04-30 2010-06-08 Qualcomm Mems Technologies, Inc. Dual film light guide for illuminating displays
CA2688214A1 (en) 2007-05-11 2008-11-20 Rpo Pty Limited A transmissive body
US7507012B2 (en) 2007-05-16 2009-03-24 Rohm And Haas Denmark Finance A/S LCD displays with light redirection
US8523419B2 (en) 2007-05-20 2013-09-03 3M Innovative Properties Company Thin hollow backlights with beneficial design characteristics
US8469575B2 (en) 2007-05-20 2013-06-25 3M Innovative Properties Company Backlight and display system using same
DE102007025092A1 (en) 2007-05-30 2008-12-04 Osram Opto Semiconductors Gmbh LED chip
US7808578B2 (en) 2007-07-12 2010-10-05 Wintek Corporation Light guide place and light-diffusing structure thereof
JP2010533976A (en) 2007-07-18 2010-10-28 キユーデイー・ビジヨン・インコーポレーテツド Quantum dot-based light sheet useful for solid-state lighting
US7477809B1 (en) 2007-07-31 2009-01-13 Hewlett-Packard Development Company, L.P. Photonic guiding device
JP4384214B2 (en) 2007-09-27 2009-12-16 株式会社 日立ディスプレイズ Surface light emitting device, image display device, and image display device using the same
ES2379890T3 (en) 2007-10-08 2012-05-04 Whirlpool Corporation Capacitive and household touch switch provided with such a switch
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
US20090126792A1 (en) 2007-11-16 2009-05-21 Qualcomm Incorporated Thin film solar concentrator/collector
US7791683B2 (en) 2007-11-19 2010-09-07 Honeywell International Inc. Backlight systems for liquid crystal displays
KR101454171B1 (en) 2007-11-28 2014-10-27 삼성전자주식회사 Reflection type display apparatus and manufacturing method of light guide plate
US8068710B2 (en) 2007-12-07 2011-11-29 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US7949213B2 (en) 2007-12-07 2011-05-24 Qualcomm Mems Technologies, Inc. Light illumination of displays with front light guide and coupling elements
US20090168459A1 (en) 2007-12-27 2009-07-02 Qualcomm Incorporated Light guide including conjugate film
TWI368788B (en) 2008-02-01 2012-07-21 Au Optronics Corp Backlight module and display apparatus having the same
WO2009102733A2 (en) 2008-02-12 2009-08-20 Qualcomm Mems Technologies, Inc. Integrated front light diffuser for reflective displays
US8654061B2 (en) 2008-02-12 2014-02-18 Qualcomm Mems Technologies, Inc. Integrated front light solution
WO2009102731A2 (en) 2008-02-12 2009-08-20 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing brightness of displays using angle conversion layers
CN101946334B (en) 2008-02-12 2013-08-21 高通Mems科技公司 Dual layer thin film holographic solar concentrator/collector
US8116005B2 (en) 2008-04-04 2012-02-14 Texas Instruments Incorporated Light combiner
EP2291694A2 (en) 2008-05-28 2011-03-09 QUALCOMM MEMS Technologies, Inc. Light guide panel with light turning microstructure, method of fabrication thereof, and display device
JP2011526053A (en) 2008-06-04 2011-09-29 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Reduction method of edge shadow for prism front light
US8023167B2 (en) 2008-06-25 2011-09-20 Qualcomm Mems Technologies, Inc. Backlight displays
US20090323144A1 (en) 2008-06-30 2009-12-31 Qualcomm Mems Technologies, Inc. Illumination device with holographic light guide
TW201007288A (en) 2008-08-11 2010-02-16 Advanced Optoelectronic Tech Edge lighting back light unit
US20100051089A1 (en) 2008-09-02 2010-03-04 Qualcomm Mems Technologies, Inc. Light collection device with prismatic light turning features
US8358266B2 (en) 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
US20100157406A1 (en) 2008-12-19 2010-06-24 Qualcomm Mems Technologies, Inc. System and method for matching light source emission to display element reflectivity
CN102272516A (en) 2009-01-13 2011-12-07 高通Mems科技公司 large area light panel and screen
WO2011082086A1 (en) 2009-12-29 2011-07-07 Qualcomm Mems Technologies, Inc. Illumination device with metalized light-turning features

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143270A2 (en) * 2000-01-13 2001-10-10 Nitto Denko Corporation Optical film and liquid-crystal display device
EP1296094A1 (en) * 2001-09-21 2003-03-26 Omron Corporation Plane light source apparatus
US20060066783A1 (en) * 2004-09-27 2006-03-30 Sampsell Jeffrey B Methods and devices for lighting displays

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2069684A1 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US9110289B2 (en) 1998-04-08 2015-08-18 Qualcomm Mems Technologies, Inc. Device for modulating light with multiple electrodes
US9025235B2 (en) 2002-12-25 2015-05-05 Qualcomm Mems Technologies, Inc. Optical interference type of color display having optical diffusion layer between substrate and electrode
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US8107155B2 (en) 2006-10-06 2012-01-31 Qualcomm Mems Technologies, Inc. System and method for reducing visual artifacts in displays
US9019183B2 (en) 2006-10-06 2015-04-28 Qualcomm Mems Technologies, Inc. Optical loss structure integrated in an illumination apparatus
US8979349B2 (en) 2009-05-29 2015-03-17 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
CN103109224A (en) * 2010-09-16 2013-05-15 高通Mems科技公司 Curvilinear camera lens as monitor cover plate

Also Published As

Publication number Publication date
EP2069684A1 (en) 2009-06-17
US20080084600A1 (en) 2008-04-10
CN101535713B (en) 2013-09-11
US8107155B2 (en) 2012-01-31
CN101535713A (en) 2009-09-16
JP2010507103A (en) 2010-03-04
KR20090089302A (en) 2009-08-21

Similar Documents

Publication Publication Date Title
US8107155B2 (en) System and method for reducing visual artifacts in displays
US7948457B2 (en) Systems and methods of actuating MEMS display elements
US7845841B2 (en) Angle sweeping holographic illuminator
US7719500B2 (en) Reflective display pixels arranged in non-rectangular arrays
US7768690B2 (en) Backlight displays
US8023167B2 (en) Backlight displays
US7499208B2 (en) Current mode display driver circuit realization feature
US7304784B2 (en) Reflective display device having viewable display on both sides
US20090303746A1 (en) Edge shadow reducing methods for prismatic front light
EP2006714A1 (en) Infrared and dual mode displays
WO2008039229A2 (en) Method and apparatus for providing back-lighting in an interferometric modulator display device
US8194056B2 (en) Method and system for writing data to MEMS display elements
EP2076711A2 (en) Light guide including optical scattering elements and a method of manufacture
CA2520388A1 (en) System and method for multi-level brightness in interferometric modulation
CA2520325A1 (en) System and method for implementation of interferometric modulator displays
US8118468B2 (en) Illumination apparatus and methods
US20120320010A1 (en) Backlight utilizing desiccant light turning array
US8310421B2 (en) Display drive switch configuration
US7791783B2 (en) Backlight displays

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780041590.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07852454

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007852454

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009531404

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2453/DELNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020097009268

Country of ref document: KR