WO2008044459A1 - Appareil pour la fabrication d'une capsule sans soudure - Google Patents

Appareil pour la fabrication d'une capsule sans soudure Download PDF

Info

Publication number
WO2008044459A1
WO2008044459A1 PCT/JP2007/068500 JP2007068500W WO2008044459A1 WO 2008044459 A1 WO2008044459 A1 WO 2008044459A1 JP 2007068500 W JP2007068500 W JP 2007068500W WO 2008044459 A1 WO2008044459 A1 WO 2008044459A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
seamless capsule
liquid
nozzle
manufacturing apparatus
Prior art date
Application number
PCT/JP2007/068500
Other languages
English (en)
French (fr)
Inventor
Narimichi Takei
Hiroshi Nagao
Original Assignee
Freund Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Freund Corporation filed Critical Freund Corporation
Priority to EP07828317.3A priority Critical patent/EP2080551A4/en
Priority to JP2008538621A priority patent/JP5394067B2/ja
Priority to US12/311,491 priority patent/US8070466B2/en
Publication of WO2008044459A1 publication Critical patent/WO2008044459A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/07Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of capsules or similar small containers for oral use

Definitions

  • the present invention relates to a technology for producing a seamless capsule in which a filling material such as food, health food, medicine, fragrance, spice, etc. is coated with a film containing gelatin, agar, or the like.
  • Patent Document 1 describes a seamless capsule manufacturing apparatus using multiple nozzles equipped with a vibration device.
  • a capsule forming liquid flow is ejected from a multiple nozzle into the hardening liquid.
  • the jet liquid flow formed in the curing liquid is divided by vibration to form a multi-layer seamless capsule.
  • a vibration device is arranged on the diaphragm-like flexible part provided on the upper part of the nozzle. The vibration is applied to the nozzle by this vibration device to divide the jet liquid flow in the hardening liquid into small multilayer droplets.
  • the multilayer droplet moves along with the liquid flow in the curing liquid, and at this time, the outer layer of the droplet is cured to form a multilayer seamless capsule.
  • Patent Document 2 discloses a seamless seamless capsule in which a multilayer seamless capsule is formed by regularly adding an intermittent flow of cooling liquid from the side periphery to the jet flow of the capsule forming liquid ejected from the multiple nozzles.
  • a capsule manufacturing apparatus is described.
  • the capsule forming liquid is supplied from a liquid storage tank to a nozzle using a liquid feed pump, and is ejected from the nozzle as a jet flow. This jet flow is separated by the impact of the intermittent coolant flow. Cut into small multi-layer droplets and harden in the cooling liquid to form multi-layer seamless capsules.
  • Patent Document 3 describes a seamless capsule manufacturing apparatus that forms a multilayer seamless capsule by directly vibrating a nozzle.
  • a flexible portion as in Patent Document 1 is not provided in the nozzle, and vibration is directly applied to the nozzle by a vibration device provided in the upper part of the nozzle.
  • Patent Document 1 Japanese Patent No. 3361131
  • Patent Document 2 Japanese Patent Publication No. 4-67985
  • Patent Document 3 Japanese Patent Application Laid-Open No. 59-112831
  • a capsule forming liquid is supplied from a liquid storage tank to a nozzle by a liquid supply apparatus provided with a liquid feed pump.
  • the liquid storage tank and the nozzle are connected by a liquid supply pipe, and the liquid for capsule formation is supplied to the nozzle through the liquid supply pipe in accordance with the pump operation.
  • vibration is generated in the liquid supply apparatus, and this vibration is transmitted to the liquid supply pipe and vibrates the pipe itself.
  • the vibration is transmitted to the nozzle, and the vibration is put on (added to) the jet flow ejected from the nozzle.
  • an accumulator is provided between the pump and the nozzle to alleviate a minute pulsating flow of the supply liquid, and the internal pressure in the nozzle is kept substantially constant. It is structured as follows. However, the vibration generated by the pump is not transmitted to the nozzle, and the problem of noise vibration cannot be solved.
  • the nozzle vibration is prevented from being transmitted to the pump side.
  • a flexible portion that absorbs the vibration is installed in the middle of the liquid supply pipe. If such a flexible part is installed in the middle of the liquid supply pipe, the vibration generated by the pump can be absorbed there as a result.
  • the flexible part of Patent Document 3 is provided in order to prevent the adverse effect caused by applying vibration to the nozzle itself, and is an adapter-like member attached to the connection part between the supply pipe and the nozzle. It is. According to the experiments by the inventors, the vibration on the liquid supply device side cannot be sufficiently blocked by attaching an adapter-like small member to the base. In addition, the effect of vibration on the liquid supply device side on the nozzle is much greater than the effect of nozzle vibration on the pump, and is directly linked to product quality.
  • An object of the present invention is to prevent the vibration on the liquid supply device side from being transmitted to the nozzle in the seamless capsule manufacturing apparatus, and to reduce the vibration noise at the time of capsule formation, thereby stabilizing the product quality. There is to plan.
  • the seamless capsule manufacturing apparatus of the present invention is a seamless capsule manufacturing apparatus that discharges droplets from a nozzle into a curing liquid and cures at least a surface portion of the droplets to manufacture a seamless capsule.
  • a liquid tank that stores a liquid for forming a capsule, a pipe line that connects the liquid tank and the nozzle, and a liquid supply apparatus that is connected to the pipe line and feeds the liquid in the liquid tank to the nozzle.
  • the vibration is transmitted to the nozzle by disposing the vibration absorbing means for absorbing the vibration by the liquid supply device in the path of the pipe line between the liquid supply device and the nozzle. Can be prevented. For this reason, vibration noise from other than the vibration device is not added during droplet formation.
  • the vibration absorbing means may be the pipe line in which at least 50% or more of the vibration absorbing means is formed of a flexible member.
  • the pipe line may be formed of a synthetic resin tube.
  • the vibration absorbing means an absorption member formed of an elastic member and attached to the conduit.
  • a shaking block may be used.
  • a pipe mounting hole through which the pipe is passed may be provided in the vibration absorption block.
  • a tightening member for tightening the vibration absorption block from the outer periphery may be attached in a state where the pipe line is passed through the vibration absorption block.
  • a vibration absorber provided with a pad member formed of an elastic member and sandwiching the pipe line may be used.
  • the pad members may be arranged so as to face each other while being held by the holder member, and the pipe line may be sandwiched between the pad members.
  • a seamless capsule manufacturing apparatus that discharges droplets from a nozzle into a curing liquid and cures at least a surface portion of the droplets to manufacture a seamless capsule. Since the vibration absorbing means that absorbs the vibration caused by the liquid supply device in the pipe path is arranged between the liquid supply device and the nozzle, it is possible to prevent the vibration of the liquid supply device from being transmitted to the nozzle. Become. As a result, vibration noise during the formation of droplets can be reduced, and seamless capsules can be reduced in size, unevenness in particle size, etc., improved product quality, and stable production of stable seamless capsules is possible. It becomes.
  • FIG. 1 is an explanatory diagram showing the configuration of a seamless capsule manufacturing apparatus that is Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory view showing a configuration of a vibration absorbing block 31 used in the seamless capsule manufacturing apparatus of Example 2, where (a) shows a state before mounting, and (b) shows a state after mounting.
  • FIG. 3 is an explanatory diagram showing the configuration of a vibration absorption block (vibration absorbing means) 36 used in the seamless capsule manufacturing apparatus according to Embodiment 3 of the present invention, where (a) is before installation and (b) is installation. Each subsequent state is shown.
  • FIG. 4 is a perspective view showing a configuration of a vibration absorber used in a seamless capsule manufacturing apparatus that is Embodiment 4 of the present invention.
  • FIG. 5 is an exploded perspective view of the vibration damping device of FIG.
  • FIG. 6 is an exploded perspective view showing the configuration of the pad holder.
  • FIG. 7 is an explanatory view showing a modified example related to the pad holder fixing structure.
  • FIG. 8] is an explanatory view showing a modified example related to the pad holder fixing structure.
  • FIG. 1 is an explanatory diagram showing the configuration of a seamless capsule manufacturing apparatus that is Embodiment 1 of the present invention.
  • a seamless capsule SC is manufactured by discharging droplets from a multi-nozzle 7 (hereinafter abbreviated as “nozzle 7”) into the flow channel 11.
  • the core liquid (inner layer liquid) 1 for forming the seamless capsule SC is stored in a core liquid tank (liquid tank) 2.
  • the coating liquid (outer layer liquid) 3 covering the core liquid 1 is stored in a coating liquid tank (liquid tank) 4.
  • the core liquid 1 is pumped from the core liquid tank 2 through the pipe 6 to the nozzle 7 by a pump (liquid supply device) 5.
  • the coating liquid 3 is pumped from the coating liquid tank 4 to the nozzle 7 through the conduit 9 by a pump (liquid supply device) 8.
  • a heater using a nickel-chromium alloy conducting wire is wound around the outside of the pipe 9 to heat the coating liquid 3 flowing inside.
  • An inflow portion 11A for the hardening liquid 10 is provided at the upper end inlet of the flow channel tube 11.
  • the hardening liquid 10 is supplied to the inflow portion 11A from the pump 22 through the pipe line 23.
  • the seamless capsule manufacturing apparatus is a submerged nozzle type, and a nozzle 7 is inserted into the inlet 24 of the inlet 11A. From the nozzle 7, the core liquid 1 and the skin film liquid 3 which are capsule forming liquids are discharged.
  • the nozzle 7 is given vibration by a vibration device (vibration means) 15.
  • the liquid discharged from the nozzle 7 is appropriately cut by vibration to form a multilayer liquid droplet 25 (hereinafter abbreviated as a liquid droplet 25) in which the coating liquid 3 covers the entire periphery of the core liquid 1. Then, the liquid droplet 25 is cooled and hardened while moving in the hardening liquid 10 to form a seamless capsule SC.
  • the flow pipe 11 is formed in a bent cylindrical body, and is composed of a substantially J-shaped inflow portion 11A and a nested connection with the inflow portion 11A; ⁇ J-shaped outflow portion 11B Being! / Inflow 1 1A and outflow portion 11B are fitted and fixed in a sealed state at fitting portion 11C.
  • the inflow portion 11A and the outflow portion 11B may be joined to each other so as to be relatively movable in the vertical direction.
  • the height difference A h between the liquid level of the inflow part 11A and the liquid level of the outflow part 11B can be adjusted, and the flow rate of the hardening liquid 10 in the flow path pipe 11 can be adjusted.
  • a cylindrical inlet 24 is provided at the upper end of the inflow portion 11A so as to face the nozzle 7.
  • a substantially funnel-shaped separator 12 is disposed below the outlet end of the outflow portion 11B.
  • a mesh 13 that does not allow the seamless capsule SC to pass and allows only the hardening liquid 10 to pass therethrough is stretched.
  • the separator 12 separates the seamless capsule SC and the hardening liquid 10 that have flowed together from the flow path tube 11 from each other.
  • the hardening liquid 10 separated from the seamless capsule SC by the separator 12 is collected in the lower separation tank 14.
  • the curing liquid 10 in the separation tank 14 is pumped to the cooling tank 19 via the pipe line 18 by the pump 17.
  • the curing liquid 10 is cooled to a predetermined temperature by the cooler 21 in the cooling tank 19.
  • the hardening liquid 10 in the cooling tank 19 is returned to the flow path pipe 11 by the pump 22.
  • a part of pipes 6 and 9 (parts 6a and 9a on the nozzle 7 side from pumps 5 and 8: indicated by hatching in FIG. 1) (Flexible member) and is a flexible portion 16.
  • a tube having an inner diameter of about 4 mm formed of Teflon (trade name) manufactured by DuPont is used for the flexible part 16.
  • the core liquid 1 uses many oils, and the pipeline 6 through which oil flows is required to have oil resistance.
  • the coating solution 3 is often used as a gelatin solution, and is usually supplied in a heated state (about 80 ° C.). Desired.
  • the pipes 6 and 9 are preferably members having oil resistance and heat resistance. Therefore, a fluororesin tube is used here as a material that is flexible and satisfies these requirements.
  • seamless capsules are manufactured as follows. First, the core liquid 1 and the coating liquid 3 are ejected from the nozzle 7, and spherical droplets 25 are formed in the curing liquid 10 in the flow path tube 11. The droplet 25 is cooled in the flow path pipe 11 to be Muleless capsule SC. Thereafter, the seamless capsule SC flows down together with the hardening liquid 10 onto the mesh 13 of the separator 12 from the outlet end of the outflow part 11B. The seamless capsule SC is separated from the curing solution 10 by the mesh 13 and when it reaches an appropriate amount, it is collected in a batch-type product collection container (not shown). On the other hand, the curing liquid 10 passes through the mesh 13 and is collected in the separation tank 14.
  • the vibration noise from the pumps 5 and 8 is blocked by the flexible portion 16, and the liquid discharged from the nozzle 7 is cut only by the vibration of the vibration device 15. Therefore, the seamless capsule SC can be prevented from uneven thickness and particle size variation due to vibration noise, the product quality can be improved, and good seamless capsules can be stably produced. .
  • FIG. 2 is an explanatory view showing a configuration of a vibration absorbing block 31 used in the seamless capsule manufacturing apparatus of the second embodiment, where (a) shows a state before mounting, and (b) shows a state after mounting.
  • the following embodiment is the same as the first embodiment except for the configuration of the vibration absorbing means, and a description thereof will be omitted.
  • the same members and parts as those in Example 1 are denoted by the same reference numerals, and the description thereof is also omitted.
  • the entire vibration absorbing block 31 is formed in a substantially cylindrical shape, and is formed of an elastic member using a synthetic resin such as rubber, urethane, or sponge.
  • the vibration absorption block 31 is attached to the nozzle 7 side of the pumps 5 and 8 in the pipelines 6 and 9.
  • Two pipe mounting holes 32a and 32b are formed in the central portion of the vibration absorbing block 31 along the axial direction. each In the pipe mounting holes 32a and 32b, cuts 33a and 33b are formed along the axial direction. As shown in FIG. 2 (a), pipes 6 and 9 are passed through the pipe mounting holes 32a and 32b.
  • a block mounting bar 34 is fixed substantially at the center of the vibration absorbing block 31.
  • the vibration absorbing block 31 is installed in a stable place where the vibration is not affected by other vibrations such as the main body of the apparatus by the bar 34. That is, in the seamless capsule manufacturing apparatus, the vibration absorption block 31 is prevented from floating in the air.
  • the vibration absorbing block 31 is fastened by a cable tie (tightening member) 35 as shown in FIG. 2 (b).
  • the cable tie 35 is attached to the outer periphery of the vibration absorbing block 31 and tightens the vibration absorbing block 31 from the outer periphery. As a result, the notches 33a and 33b are closed, and the vibration absorbing block 31 is fixed to the outside of the pipelines 6 and 9.
  • FIG. 3 is an explanatory view showing the configuration of a vibration absorption block (vibration absorbing means) 36 used in the seamless capsule manufacturing apparatus according to Embodiment 3 of the present invention. ) Shows the state after installation.
  • the vibration absorption block 36 is not provided with notches 33a and 33b. That is, the vibration absorbing block 36 has a configuration in which two pipe mounting holes 37a and 37b having no cut are formed in a cylindrical main body.
  • the vibration absorbing block 36 is also provided with a block mounting bar 38, and the vibration absorbing block 36 is installed in the apparatus main body or the like.
  • a cable tie 39 is attached to the outside of the vibration absorbing block 36.
  • the vibration absorbing block 36 is also attached to a portion on the nozzle 7 side of the pumps 5 and 8 in the pipelines 6 and 9. As a result, the vibrations of the pumps 5 and 8 are absorbed by the vibration absorbing block 36 as described above, and it is possible to suppress the unevenness of the seamless capsule SC due to vibration noise and the variation in particle diameter.
  • Set the diameter of the pipe mounting holes 37a and 37b to be smaller than the diameter of the pipes 6 and 9, and It is also possible to press the paths 6 and 9 into the vibration absorbing block 36. In this case, depending on the material of the vibration absorbing block 36, the cable tie 39 can be omitted.
  • FIG. 4 is a perspective view showing a configuration of a vibration absorbing device (vibration absorbing means) 41 used in the seamless capsule manufacturing apparatus according to Embodiment 4 of the present invention
  • FIG. 5 is an exploded perspective view thereof.
  • the vibration absorber 41 includes pads 42a and 42b arranged so as to face each other, and the pipes 6 and 9 are sandwiched between the pads 42a and 42b.
  • the vibration absorber 41 is also provided with a block mounting bar 43, and the vibration absorber 41 is also located on the nozzle 7 side from the pumps 5 and 8 in the pipes 6 and 9 (6a in FIG. 1). , 9a part).
  • the nodes 42a and 42b are formed of an elastic member using a synthetic resin such as rubber, urethane or sponge.
  • the opposing surfaces of the pads 42a and 42b are formed in a corrugated convex surface so that the pipes 6 and 9 are sandwiched and fixed easily.
  • the pads 42a and 42b are attached to pad holders 44 (44a and 44b) made of metal or synthetic resin.
  • the pad holder 44 has a substantially U-shaped cross section, and is inserted into a holder mounting groove 45 provided at the top and bottom of the holder by a side force slide.
  • a fixing bolt 46 is attached to the node Honoreda 44b.
  • bolt holes 47 and 48 are formed in the pad holder 44a and the pad 42a.
  • Both the node horedas 44a and 44b are fixed in a state where the pipes 6 and 9 are sandwiched, and a wing nut 49 is attached to the fixing bolt 46 passed through the bolt holes 4 and 48 at that time.
  • the wing nut 49 By tightening the wing nut 49, the pipes 6 and 9 are clamped together between the pads 42a and 42b in the form shown in FIG.
  • the vibration absorbing device 41 is mounted between the pump nozzles of the pipes 6 and 9, the vibrations of the pumps 5 and 8 are absorbed by the vibration absorbing device 41. For this reason, the vibrations of pumps 5 and 8 are not transmitted to the nozzle 7, and the seamless capsule SC can be prevented from becoming uneven due to vibration noise, resulting in improved product quality. Seamless capsules can be produced stably. Further, the vibration absorber 41 can be easily opened and closed by operating the wing nut 49, the pipes 6 and 9 can be easily attached and detached, and the tightening force (pipe holding force) can be adjusted. Furthermore, the vibration absorber 41 can hold the pipes 6 and 9 together with a simple operation, so compared to the case where vibration absorbing means is individually attached to each pipe line or multiple pipes are threaded through the vibration absorbing means. Installation is easy.
  • FIGS. 7 and 8 are explanatory views showing a modified example regarding the fixing structure of the node holder.
  • pad holders 51a and 51b are attached by hinges 52 so as to be freely opened and closed.
  • a locking claw 53 is projected from the end of the pad holder 51a.
  • a locking groove 54 is recessed at the end of the pad holder 5 lb.
  • the pad holders 55a and 55b are attached by hinges 56 so as to be freely opened and closed. Further, an engagement piece 57 projects from the end of the pad holder 55a. On the other hand, a fixed hand 58 is provided at the end of the pad holder 55b. Fixed hand 5 8 is toggle clamp type. When pinching the pipes 6 and 9, the pad holder 55a is turned upside down and the pad holders 55a and 55b are closed. Then, when the clamp is loosened, the engaging piece 57 is hooked on the fixed hand 58, and the clamp is tightened to fix the holders 55a and 55b in the closed state.
  • the force in which the portion of the pipes 6 and 9 on the nozzle 7 side from the pumps 5 and 8 is the flexible portion 16 is the flexible portion 16, according to the experiments of the inventors, the flexible portion 16 is If 50% or more of the part on the nozzle 7 side from 8, it will function sufficiently as a vibration absorbing means.
  • the force S is configured so that the two pipelines 6 and 9 are passed through the single damping block 31 and 36, and even if a damping block is attached to each pipeline. good.
  • the shape of the vibration absorbing blocks 31 and 36 is not limited to a cylindrical shape, and various forms such as a rectangular parallelepiped shape and a polygonal (hexagonal, octagonal, etc.) cross section can be adopted.
  • the pipe line between the pump nozzle is provided with two pipes for the core liquid and the coating liquid, but the double pipe for circulating the core liquid on the inside and the coating liquid on the outside is provided. May be used.
  • the seamless capsule has more than 3 layers, there are 3 conduits accordingly. You may provide above.

Description

明 細 書
シームレスカプセル製造装置
技術分野
[0001] 本発明は、食品や健康食品、医薬品、香料、香辛料等の充填物質を、ゼラチンや 寒天等を含む皮膜によって被覆したシームレスカプセルの製造技術に関する。 背景技術
[0002] 医薬品等に使用されるシームレスカプセルの多くは、従来より、滴下法と呼ばれる 製法によって製造されている。この滴下法は多重ノズルを用いて行われ、 2層のカブ セルの場合、内側にカプセル充填物質の吐出口、外側に皮膜物質の吐出口を配し た二重ノズルが使用される。充填物質と皮膜物質は各ノズル先端から硬化用液中に 放出され、放出された液滴はその表面張力によって球形となる。そして、この液滴が 一定速度で還流する硬化用液中で冷却、凝固し、球形のシームレスカプセルが形成 される。
[0003] このようなシームレスカプセルの製造装置としては、従来より、例えば特許文献;!〜 3のようなものが提案されている。そのうち、特許文献 1には、加振装置を備えた多重 ノズルを用いたシームレスカプセル製造装置が記載されている。特許文献 1の装置で は、多重ノズルからカプセル形成用の液流を硬化用液内に噴出させる。そして、硬化 用液内に形成されたジェット液流を振動によって分断し、多層のシームレスカプセル を形成する。ノズル上部に設けたダイヤフラム状の可撓性部分には加振装置が配さ れている。この加振装置によってノズルに振動を付与し、硬化用液内のジェット液流 を小さな多層液滴に分断する。この多層液滴は、硬化用液中を液流と共に移動し、 その際、液滴外層が硬化して多層のシームレスカプセルが形成される。
[0004] また、特許文献 2には、多重ノズルから噴出されたカプセル形成用液のジェット流に 対し、その側周から冷却液の断続流を規則的に加えて多層シームレスカプセルを形 成するシームレスカプセル製造装置が記載されている。特許文献 2の装置では、カブ セル形成用液は、貯液タンクから送液ポンプを用いてノズルに供給され、ノズルから ジェット流となって噴出される。このジェット流は、冷却液の断続流の衝撃によって分 断されて小さな多層液滴となり、冷却液中にて硬化して多層シームレスカプセルとな る。さらに、特許文献 3には、ノズルを直接加振して多層シームレスカプセルを形成す るシームレスカプセル製造装置が記載されている。特許文献 3の装置では、特許文 献 1のような可撓性部分がノズルには設けられておらず、ノズル上部に設けた加振装 置により、ノズルに直接、振動が付与される。
特許文献 1:特許第 3361131号公報
特許文献 2:特公平 4-67985号公報
特許文献 3:特開昭 59- 112831号公報
発明の開示
発明が解決しょうとする課題
[0005] 一方、シームレスカプセル製造装置にお!/、ては、一般にカプセル形成用液は、送 液ポンプを備えた液供給装置によって貯液タンクからノズルに供給される。貯液タン クとノズルとの間は液供給管にて接続されており、ポンプ動作に伴い、液供給管を介 して、カプセル形成用液がノズルに供給される。ところ力 このようなシームレスカプセ ノレ製造装置では、送液ポンプが作動すると、それに伴って液供給装置に振動が発生 し、この振動が液供給管に伝わり管自体をも振動させる。液供給管が振動すると、そ の振動がノズルに伝わり、ノズルから噴出するジェット流にその振動が乗った (加わつ た)状態となる。
[0006] ジェット流に振動が乗った状態で、例えば、特許文献 1 ,3の装置のようにノズルに振 動を付与すると、ジェット流に加振装置による振動以外の振動がノイズとして加わって しまうという問題が生じる。ジェット流に付与される振動に加振装置以外のノイズ成分 が加わると、液層や液滴径が不均一になるなどのおそれがあり、シームレスカプセル のアイズゃ偏肉、粒径のバラツキなどの原因となるという問題があった。
[0007] これに対し、特許文献 2の装置では、ポンプとノズルの間には、供給液の微小な脈 流を緩和するためのアキュムレータが設置されており、ノズル内の内圧を略一定に保 つように構成されている。し力もながら、ポンプにて発生する振動がノズルに伝わらな い構成とはなっておらず、ノイズ振動による問題は解決できない。
[0008] 一方、特許文献 3の装置では、ノズルの振動がポンプ側に伝わらないように、ノズル の振動を吸収するフレキシブル部が液供給管の途中に設置されている。このようなフ レキシブル部を液供給管の途中に設置すれば、結果的には、ポンプにて発生する振 動をそこで吸収することも可能である。し力もながら、特許文献 3のフレキシブル部は 、ノズル自身に振動を付与するために生じる弊害を防止すべく設けられているもので あり、供給管とノズルとの接続部に取り付けられるアダプタ状の部材である。発明者ら の実験によれば、アダプタ状の小部材を口金に取り付ける程度では、液供給装置側 の振動は十分に遮断できない。加えて、ノズルの振動がポンプに与える影響に比し て、液供給装置側の振動がノズルに与える影響は遙かに大きぐしかも、製品品質に 直結している。
[0009] 本発明の目的は、シームレスカプセル製造装置にお!/、て、液供給装置側の振動が ノズルに伝わるのを防止し、カプセル形成時における振動ノイズを削減して製品品質 の安定を図ることにある。
課題を解決するための手段
[0010] 本発明のシームレスカプセル製造装置は、ノズルから硬化用液中に液滴を吐出し、 前記液滴の少なくとも表面部分を硬化させてシームレスカプセルを製造するシームレ スカプセル製造装置であって、カプセル形成用の液体を貯留する液タンクと、前記液 タンクと前記ノズルを接続する管路と、前記管路に接続され前記液タンク内の前記液 体を前記ノズルに送給する液供給装置と、前記ノズルに対し振動を付与する加振手 段と、前記液供給装置と前記ノズルとの間に配置され、前記液供給装置による振動 を前記管路の経路中にて吸収する振動吸収手段とを有することを特徴とする。
[0011] 本発明にあっては、液供給装置とノズルとの間に、液供給装置による振動を管路の 経路中にて吸収する振動吸収手段を配置することにより、この振動がノズルに伝わる のを防止できる。このため、液滴形成時に加振装置以外からの振動ノイズが加わらず
[0012] 前記シームレスカプセル製造装置において、前記振動吸収手段が、少なくともその 50%以上の部分が可撓性部材にて形成された前記管路であっても良い。この場合、 前記管路を、合成樹脂製のチューブにて形成しても良い。
[0013] また、前記振動吸収手段として、弾性部材にて形成され前記管路に装着される吸 振ブロックを用いても良い。この場合、前記吸振ブロックに、前記管路が揷通される 管路取付孔を設けても良い。また、前記吸振ブロックに前記管路を揷通した状態で、 該吸振ブロックを外周から締め付ける緊締部材を装着しても良い。
[0014] さらに、前記振動吸収手段として、弾性部材にて形成され前記管路を挟持するパッ ド部材を備えた吸振装置を用いても良い。この場合、前記パッド部材をホルダ部材に て保持した状態で互いに対向するように配置し、前記管路を前記パッド部材の間に 挟持するようにしても良い。
発明の効果
[0015] 本発明のシームレスカプセル製造装置によれば、ノズルから硬化用液中に液滴を 吐出し、液滴の少なくとも表面部分を硬化させてシームレスカプセルを製造するシー ムレスカプセル製造装置にて、液供給装置とノズルとの間に、液供給装置による振動 を管路の経路中にて吸収する振動吸収手段を配置したので、液供給装置の振動が ノズルに伝わるのを防止することが可能となる。これにより、液滴形成時における振動 ノイズを削減でき、シームレスカプセルのアイズゃ偏肉、粒径のバラツキなどを抑え、 製品品質の向上を図り、良好なシームレスカプセルを安定的に生産することが可能と なる。
図面の簡単な説明
[0016] [図 1]本発明の実施例 1であるシームレスカプセル製造装置の構成を示す説明図で ある。
[図 2]実施例 2のシームレスカプセル製造装置に使用される吸振ブロック 31の構成を 示す説明図であり、(a)は装着前、(b)は装着後の状態をそれぞれ示している。
[図 3]本発明の実施例 3であるシームレスカプセル製造装置に使用される吸振ブロッ ク (振動吸収手段) 36の構成を示す説明図であり、(a)は装着前、(b)は装着後の状 態をそれぞれ示している。
[図 4]本発明の実施例 4であるシームレスカプセル製造装置に使用される吸振装置の 構成を示す斜視図である。
[図 5]図 4の吸振装置の分解斜視図である。
[図 6]パッドホルダの構成を示す分解斜視図である。 園 7]パッドホルダの固定構造に関する変形例を示す説明図である。 園 8]パッドホルダの固定構造に関する変形例を示す説明図である。 符号の説明
1 芯液 2 芯液用タンク
3 皮膜液 4 皮膜液用タンク
5 ポンプ 6 管路
6a 管路のポンプーノズル間部分 7 多重ノズル
8 ホンノ 9 管路
9a 管路のポンプーノズル間部分 10 硬化用液
1 1 流路管 1 1A 流入部
11B 流出部 11C 嵌合部
12 分離器 13 メッシュ
14 分離タンク 15 加振装置
16 可撓部 17 ホンノ
18 管路 19 冷却タンク
21 冷却器 22 ポンプ
23 管路 24 入口部
25 液滴 31 吸振ブロック
32a,32b 管路取付孔 33a,33b 切れ込み
34 ブロック取付バ、 35 ケーブルタイ
36 吸振ブロック 37a,37b 管路取付?
38 ブロック取付バ 39 ケーブルタイ
1 吸振装置 42a,42b ノ ッド
3 ブロック取付バ 44 パッドホルダ
4a,44b ノ ッドホノ 1 ,ダ 45 ホルダ取付溝
6 固定ボルト 47 ボノレト孔
8 ボノレト孑し 49 蝶ナット
l a, 5 lb ノ ッドホノ 1 ,ダ 52 蝶番 53 係止爪 54 係止溝
55a,55b パッドホルダ 56 蝶番
57 係合片 58 固定ハンド
SC シームレスカプセノレ
発明を実施するための最良の形態
[0018] 以下、本発明の実施例を図面に基づいて詳細に説明する。
実施例 1
[0019] 図 1は、本発明の実施例 1であるシームレスカプセル製造装置の構成を示す説明 図である。図 1のシームレスカプセル製造装置では、多重ノズル 7 (以下、ノズル 7と略 記する)から流路管 11内に液滴を吐出してシームレスカプセル SCを製造する。シー ムレスカプセル SCを形成するための芯液(内層液) 1は、芯液用タンク(液タンク) 2の 中に貯留される。芯液 1を被覆する皮膜液 (外層液) 3は、皮膜液用タンク (液タンク) 4の中に貯留される。芯液 1は、ポンプ (液供給装置) 5により、芯液用タンク 2から管 路 6を経てノズル 7に圧送される。皮膜液 3は、ポンプ (液供給装置) 8により、皮膜液 用タンク 4から管路 9を経てノズル 7に圧送される。管路 9の外側には、ニッケル—クロ ム合金導線を用いた加熱器が巻装されており、内部を流通する皮膜液 3を加温して いる。
[0020] 流路管 11の上端入口部には、硬化用液 10の流入部 11Aが設けられている。流入 部 11Aには、ポンプ 22より管路 23を介して硬化用液 10が供給される。当該シームレ スカプセル製造装置は液中ノズル式となっており、流入部 11Aの入口部 24内にはノ ズル 7が揷入設置されている。ノズル 7からは、カプセル形成用液体である芯液 1と皮 膜液 3が吐出される。ノズル 7には加振装置 (加振手段) 15により振動が付与されて いる。ノズル 7から吐出された液体は振動により適宜切断され、皮膜液 3が芯液 1の全 周囲を被覆した多層液滴 25 (以下、液滴 25と略記する)を形成する。そして、この液 滴 25が硬化用液 10内を移動しつつ冷却硬化され、シームレスカプセル SCが形成さ れる。
[0021] 流路管 11は曲折形状の筒体に形成されており、略 J字形の流入部 11Aと、流入部 11 Aと入れ子式に接合された;^ J字形の流出部 11Bとから構成されて!/、る。流入部 1 1Aと流出部 11Bは、嵌合部 11Cにて密封状態で嵌合固定されている。なお、嵌合 部 11Cにおいて、流入部 11Aと流出部 11Bを互いに上下方向に相対移動可能に接 合しても良い。これにより、流入部 11Aの液面と流出部 11Bの液面との高さの差 A h が調節可能となり、流路管 11内における硬化用液 10の流速を調節できるようになる
[0022] 流入部 11Aの上端部には、ノズル 7に臨んで円筒状の入口部 24が設けられている 。流出部 11Bの出口端下方には、略漏斗形状の分離器 12が配設されている。分離 器 12内には、シームレスカプセル SCは通過させず、かつ硬化用液 10のみを通過さ せるメッシュ 13が張設されている。この分離器 12により、流路管 11から一緒に流出し たシームレスカプセル SCと硬化用液 10が互いに分離される。分離器 12にてシーム レスカプセル SCから分離された硬化用液 10は、下方の分離タンク 14の中に回収さ れる。分離タンク 14内の硬化用液 10は、ポンプ 17により管路 18を経て冷却タンク 19 に圧送される。硬化用液 10は、冷却タンク 19内にて冷却器 21により所定の温度に 冷却される。冷却タンク 19内の硬化用液 10は、ポンプ 22によって流路管 11に戻さ れる。
[0023] 一方、当該シームレスカプセル製造装置では、管路 6,9の一部(ポンプ 5,8よりノズ ノレ 7側の部分 6a,9a :図 1に斜線にて表示)は、フッ素系合成樹脂(可撓性部材)にて 形成されており、可撓部 16となっている。可撓部 16には、例えば、デュポン社製のテ フロン(商標名)にて形成された内径 4mm程度のチューブが使用される。ここで、芯液 1には油を使用したものも多ぐそれが流通する管路 6には耐油性が求められる。一 方、皮膜液 3はゼラチン用液が使用されることが多ぐ通常、加温された状態(80° C 程度)で送給されるため、それが流通する管路 9には耐熱性が求められる。このため 、管路 6,9には、耐油性と耐熱性を備えた部材が好ましい。そこで、可撓性があり、し かも、これらの要求を満たすものとして、ここではフッ素系樹脂のチューブが使用され ている。
[0024] このようなシームレスカプセル製造装置では、次のようにしてシームレスカプセルが 製造される。まず、ノズル 7から芯液 1と皮膜液 3が噴出され、流路管 11内の硬化用 液 10中に球形の液滴 25が形成される。この液滴 25は、流路管 11内にて冷却されシ ームレスカプセル SCとなる。その後、シームレスカプセル SCは、流出部 11Bの出口 端から分離器 12のメッシュ 13の上に硬化用液 10と共に流下する。シームレスカプセ ル SCはメッシュ 13で硬化用液 10から分離され、適当な量に達した時に、バッチ式に 図示しない製品回収容器の中に回収される。一方、硬化用液 10はメッシュ 13を通過 して分離タンク 14の中に回収される。
[0025] 一方、シームレスカプセルの製造中、ポンプ 5,8が作動すると、その振動が管路 6,9 を介してノズル 7に伝わり、振動ノイズとなってシームレスカプセルの品質に影響を与 える場合がある。これに対し、本発明によるシームレスカプセル製造装置では、管路 6,9のポンプーノズル間が可撓部 16となっているため、そこが振動吸収手段として作 用し、ポンプ 5,8の振動は可撓部 16にて吸収される。このため、ポンプ 5,8の振動が ノズル 7に伝わらず、液滴 25形成時に加振装置 15以外から振動が加わらない。
[0026] すなわち、可撓部 16によってポンプ 5,8からの振動ノイズが遮断され、ノズル 7から 吐出された液体は、加振装置 15の振動のみによって切断される。従って、振動ノイズ に起因するシームレスカプセル SCのアイズゃ偏肉、粒径のバラツキなどを抑えること ができ、製品品質の向上が図られ、良好なシームレスカプセルを安定的に生産する ことが可能となる。
実施例 2
[0027] 次に、本発明の実施例 2であるシームレスカプセル製造装置について説明する。実 施例 2は、振動吸収手段として、弾性体からなる吸振ブロックを使用し、これを管路 6, 9の外側に装着して、振動ノイズを遮断する。図 2は、実施例 2のシームレスカプセル 製造装置に使用される吸振ブロック 31の構成を示す説明図であり、(a)は装着前、( b)は装着後の状態をそれぞれ示している。なお、以下の実施例は、振動吸収手段の 部分の構成以外は実施例 1と同様であり、その説明は省略する。また、実施例 1と同 様の部材、部分については同一の符号を付し、その説明についても省略する。
[0028] 図 2に示すように、吸振ブロック 31は、全体が略円柱状に形成されており、ゴムや、 ウレタン、スポンジ等の合成樹脂を用いた弾性部材にて形成されている。吸振ブロッ ク 31は、管路 6,9のポンプ 5,8よりノズル 7側の部分に取り付けられる。吸振ブロック 3 1の中央部には、軸方向に沿って 2個の管路取付孔 32a,32bが形成されている。各 管路取付孔 32a,32bには、軸方向に沿って切れ込み 33a,33bが形成されている。 図 2 (a)に示すように、各管路取付孔 32a,32bには管路 6,9が揷通される。
[0029] また、吸振ブロック 31の略中央には、ブロック取付バー 34が固定されている。吸振 ブロック 31は、このバー 34によって、装置本体等、他の振動の影響受けない安定し た場所に設置される。すなわち、当該シームレスカプセル製造装置では、吸振ブロッ ク 31が宙に浮いた状態とならないようになつている。管路取付孔 32a,32bに管路 6,9 を揷通させた後、吸振ブロック 31は、図 2 (b)に示すようにケーブルタイ(緊締部材) 3 5によって緊締される。ケーブルタイ 35は吸振ブロック 31の外周に装着され、吸振ブ ロック 31を外周から締め付ける。これにより、切れ込み 33a,33bが閉じ、管路 6,9の外 側に吸振ブロック 31が固定される。
[0030] このようなシームレスカプセル製造装置では、管路 6,9のポンプーノズル間に吸振 ブロック 31が装着されているため、ポンプ 5,8の振動はこの吸振ブロック 31にて吸収 される。このため、ポンプ 5,8の振動がノズル 7に伝わらず、振動ノイズによるシームレ スカプセル SCのアイズゃ偏肉、粒径のバラツキなどを抑えることができ、製品品質の 向上が図られ、良好なシームレスカプセルを安定的に生産することが可能となる。 実施例 3
[0031] 図 3は、本発明の実施例 3であるシームレスカプセル製造装置に使用される吸振ブ ロック (振動吸収手段) 36の構成を示す説明図であり、(a)は装着前、(b)は装着後 の状態をそれぞれ示している。吸振ブロック 36は、先の吸振ブロック 31とほぼ同様の 構成となっている力 吸振ブロック 31とは異なり、切れ込み 33a,33bが設けられてい ない。すなわち、吸振ブロック 36は円柱状の本体に、切れ込みのない管路取付孔 37 a, 37bが 2個形成された構成となっている。吸振ブロック 36にもブロック取付バー 38 が設けられており、吸振ブロック 36は装置本体等に設置される。また、吸振ブロック 3 6の外側には、ケーブルタイ 39が装着される。
[0032] 吸振ブロック 36もまた、管路 6,9のポンプ 5,8よりノズル 7側の部分に取り付けられる 。これにより、前述同様、ポンプ 5,8の振動が吸振ブロック 36によって吸収され、振動 ノイズによるシームレスカプセル SCのアイズゃ偏肉、粒径のバラツキなどを抑えること が可能となる。なお、管路取付孔 37a,37bの径を管路 6,9の径よりも小さく設定し、管 路 6,9を吸振ブロック 36に圧入する形としても良い。この場合、吸振ブロック 36の材 質にもよるが、ケーブルタイ 39を省くことも可能となる。
実施例 4
[0033] 図 4は、本発明の実施例 4であるシームレスカプセル製造装置に使用される吸振装 置 (振動吸収手段) 41の構成を示す斜視図、図 5は、その分解斜視図である。図 4に 示すように、吸振装置 41は、互いに対向するように配置されたパッド 42a,42bを備え ており、両パッド 42a,42bにて管路 6,9を挟持するようになっている。吸振装置 41にも ブロック取付バー 43が設けられており、吸振装置 41もまた、先の実施例と同様に、管 路 6,9のポンプ 5,8よりノズル 7側の部分(図 1の 6a,9a部分)に取り付けられる。
[0034] ノ ッド 42a,42bは、ゴムや、ウレタン、スポンジ等の合成樹脂を用いた弾性部材にて 形成されている。パッド 42a,42bの対向面は、波形の凸面に形成されており、管路 6, 9を挟み込んで固定し易いようになつている。パッド 42a,42bは、図 6に示すように、 金属又は合成樹脂にて形成されたパッドホルダ 44 (44a,44b)に取り付けられている 。パッドホルダ 44は、断面略コの字形に形成されており、ホルダ上下に設けられたホ ルダ取付溝 45に、側方力 スライド揷入される。
[0035] ノ ッドホノレダ 44bには、固定ボルト 46が取り付けられている。また、固定ボルト 46に 対応して、パッドホルダ 44aとパッド 42aには、ボルト孔 47,48が形成されている。両 ノ ッドホノレダ 44a,44bは、管路 6,9を挟み込んた状態で固定され、その際、ボルト孔 4 7,48に揷通された固定ボルト 46には蝶ナット 49が取り付けられる。この蝶ナット 49を 締め付けることにより、管路 6,9は、図 4に示すような形でパッド 42a,42bの間にまとめ て挟持される。
[0036] このようなシームレスカプセル製造装置においても、管路 6,9のポンプーノズル間に 吸振装置 41が装着されているため、ポンプ 5,8の振動はこの吸振装置 41にて吸収さ れる。このため、ポンプ 5,8の振動がノズル 7に伝わらず、振動ノイズによるシームレス カプセル SCのアイズゃ偏肉、粒径のバラツキなどを抑えることができ、製品品質の向 上が図られ、良好なシームレスカプセルを安定的に生産することが可能となる。また、 吸振装置 41は蝶ナット 49の操作により、容易に開閉可能であり、管路 6,9の着脱が 容易であると共に、締め付け力(管路挟持力)の調整も可能である。さらに、吸振装置 41は、管路 6,9を簡単な操作でまとめて挟持できるため、各管路に個別に振動吸収 手段を取り付けたり、複数本の管路を振動吸収手段に揷通したりする場合に比して、 取り付け作業が容易である。
[0037] 図 7,8は、ノ ンドホルダの固定構造に関する変形例を示す説明図である。図 7の変 形例では、パッドホルダ 51a,51bが蝶番 52にて開閉自在に取り付けられている。パ ッドホルダ 51aの端部には、係止爪 53が突設されている。これに対し、パッドホルダ 5 lbの端部には、係止溝 54が凹設されている。管路 6,9を挟持する際には、パッドホ ルダ 51aを上方向に反転させてパッドホルダ 51a,51bを閉じる。そして、係止爪 53を 係止溝 54に引っ掛けることにより、両ホルダ 51a,51bが閉状態で固定される。
[0038] 図 8の変形例においても、パッドホルダ 55a,55bは、蝶番 56にて開閉自在に取り付 けられている。また、パッドホルダ 55aの端部には、係合片 57が突設されている。これ に対し、パッドホルダ 55bの端部には、固定ハンド 58が設けられている。固定ハンド 5 8はトグルクランプ式となっている。管路 6,9を挟持する際には、パッドホルダ 55aを上 方向に反転させてパッドホルダ 55a,55bを閉じる。そして、クランプを緩めた状態で 固定ハンド 58に係合片 57を引っ掛け、クランプを締めることにより、両ホルダ 55a,55 bが閉状態で固定される。
[0039] 本発明は前記実施例に限定されるものではなぐその要旨を逸脱しない範囲で種 々変更可能であることは言うまでもなレ、。
例えば、実施例 1では、管路 6,9のポンプ 5,8よりノズル 7側の部分全部を可撓部 16 とした力 発明者らの実験によれば、可撓部 16は、ポンプ 5,8よりノズル 7側の部分の 50%以上あれば、振動吸収手段として十分機能する。また、実施例 2,3では、 2本の 管路 6,9を 1個の吸振ブロック 31 ,36に揷通する構成とした力 S、各管路毎に吸振プロ ックを装着しても良い。また、吸振ブロック 31 ,36の形状も、円柱形状には限定されず 、直方体状や、多角形(六角形,八角形など)断面のブロックなど、種々の形態を採 用できる。
[0040] 一方、前述の実施例では、ポンプーノズル間の管路を、芯液用と皮膜液用の 2本設 けた構成としたが、内側に芯液、外側に皮膜液を流通させる二重管を用いても良い。 さらに、シームレスカプセルが 3層以上の構造の場合には、管路をそれに応じて 3本 以上設けても良い。

Claims

請求の範囲
[1] ノズルから硬化用液中に液滴を吐出し、前記液滴の少なくとも表面部分を硬化させ てシームレスカプセルを製造するシームレスカプセル製造装置であって、
カプセル形成用の液体を貯留する液タンクと、
前記液タンクと前記ノズルを接続する管路と、
前記管路に接続され、前記液タンク内の前記液体を前記ノズルに送給する液供給 装置と、
前記ノズルに対し振動を付与する加振手段と、
前記液供給装置と前記ノズルとの間に配置され、前記液供給装置による振動を前 記管路の経路中にて吸収する振動吸収手段とを有することを特徴とするシームレス カプセル製造装置。
[2] 請求項 1記載のシームレスカプセル製造装置にお!/、て、前記振動吸収手段は、少 なくともその 50%以上の部分が可撓性部材にて形成された前記管路であることを特 徴とするシームレスカプセル製造装置。
[3] 請求項 2記載のシームレスカプセル製造装置にお!/、て、前記管路は、合成樹脂製 のチューブにて形成されることを特徴とするシームレスカプセル製造装置。
[4] 請求項 1記載のシームレスカプセル製造装置において、前記振動吸収手段は、弾 性部材にて形成され前記管路に装着される吸振ブロックであることを特徴とするシー ムレスカプセル製造装置。
[5] 請求項 4記載のシームレスカプセル製造装置にお!/、て、前記吸振ブロックは、前記 管路が揷通される管路取付孔を有することを特徴とするシームレスカプセル製造装 置。
[6] 請求項 5記載のシームレスカプセル製造装置にお!/、て、前記吸振ブロックは、前記 管路が揷通された状態で、該吸振ブロックを外周力 締め付ける緊締部材が装着さ れることを特徴とするシームレスカプセル製造装置。
[7] 請求項 1記載のシームレスカプセル製造装置において、前記振動吸収手段は、弾 性部材にて形成され前記管路を挟持するパッド部材を備えた吸振装置であることを 特徴とするシームレスカプセル製造装置。 請求項 7記載のシームレスカプセル製造装置において、前記パッド部材は、ホルダ 部材にて保持された状態で互いに対向するように配置され、前記管路は前記パッド 部材の間に挟持されることを特徴とするシームレスカプセル製造装置。
PCT/JP2007/068500 2006-10-11 2007-09-25 Appareil pour la fabrication d'une capsule sans soudure WO2008044459A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07828317.3A EP2080551A4 (en) 2006-10-11 2007-09-25 DEVICE FOR PRODUCING A SEAMLESS CAPSULE
JP2008538621A JP5394067B2 (ja) 2006-10-11 2007-09-25 シームレスカプセル製造装置
US12/311,491 US8070466B2 (en) 2006-10-11 2007-09-25 Seamless capsule manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-278031 2006-10-11
JP2006278031 2006-10-11

Publications (1)

Publication Number Publication Date
WO2008044459A1 true WO2008044459A1 (fr) 2008-04-17

Family

ID=39282664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068500 WO2008044459A1 (fr) 2006-10-11 2007-09-25 Appareil pour la fabrication d'une capsule sans soudure

Country Status (4)

Country Link
US (1) US8070466B2 (ja)
EP (1) EP2080551A4 (ja)
JP (1) JP5394067B2 (ja)
WO (1) WO2008044459A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201113775D0 (en) * 2011-08-10 2011-09-21 British American Tobacco Co Capsule formation
CN102583234A (zh) * 2012-03-06 2012-07-18 上海理工大学 数字化流体微粒制备装置
US10080997B2 (en) 2012-03-16 2018-09-25 Versitech Limited System and method for generation of emulsions with low interfacial tension and measuring frequency vibrations in the system
CN104287968A (zh) * 2014-09-25 2015-01-21 安徽华盛科技控股股份有限公司 Cit胶囊生产自动放液装置
US10334873B2 (en) 2016-06-16 2019-07-02 Altria Client Services Llc Breakable capsules and methods of forming thereof
CN110573243B (zh) * 2017-05-21 2022-03-04 Lg电子株式会社 流体组合物制备装置
CN110338450B (zh) * 2019-07-10 2021-11-30 云南巴菰生物科技股份有限公司 一种多滴头uv光固化的水性胶囊生产设备
CN113647674B (zh) * 2021-07-27 2023-08-29 常德市雄鹰科技有限责任公司 一种控制香烟爆珠大小的装置及方法
WO2023113634A1 (en) * 2021-12-14 2023-06-22 Saudi Arabian Oil Company Forming core-shell microcapsules

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112831A (ja) 1982-12-17 1984-06-29 Nippon Carbide Ind Co Ltd 継目なし粒状物製造装置
JPS59112833A (ja) * 1982-12-17 1984-06-29 Nippon Carbide Ind Co Ltd 継目なし充てんカプセル製造装置
JPH0467985A (ja) 1990-07-10 1992-03-03 Asahi Glass Co Ltd アルミナゾル塗工液
JPH0640953B2 (ja) * 1986-01-27 1994-06-01 フロイント産業株式会社 カプセル製造方法および装置
JP3361131B2 (ja) 1992-11-18 2003-01-07 フロイント産業株式会社 シームレスカプセル製造装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE544714A (ja) * 1955-01-28
US3729278A (en) * 1970-12-17 1973-04-24 Mc Donnell Douglas Corp Apparatus for producing microspheres
US4003683A (en) * 1975-01-16 1977-01-18 Urban Research & Development Corporation Apparatus for pyrolytic treatment of solid waste materials to form ceramic prills
JPS5260795A (en) * 1975-11-13 1977-05-19 Shionogi Seiyaku Kk Powder charger
NL180807C (nl) * 1975-12-26 1987-05-04 Morishita Jintan Co Inrichting voor het vervaardigen van naadloze, met materiaal gevulde capsules.
US4302166A (en) * 1976-04-22 1981-11-24 Coulter Electronics, Inc. Droplet forming apparatus for use in producing uniform particles
US4162282A (en) * 1976-04-22 1979-07-24 Coulter Electronics, Inc. Method for producing uniform particles
JPS5481175A (en) * 1977-12-13 1979-06-28 Sumitomo Durez Co Method and apparatus for pelletizing melt matter
US4279632A (en) * 1979-05-08 1981-07-21 Nasa Method and apparatus for producing concentric hollow spheres
US4344787A (en) * 1979-05-08 1982-08-17 Beggs James M Administrator Of Method and apparatus for producing gas-filled hollow spheres
US4238173A (en) * 1979-08-29 1980-12-09 Scott Anderson Apparatus for manufacturing high-purity sodium amalgam particles
FR2471827A1 (fr) * 1979-12-21 1981-06-26 Extramet Sa Dispositif pour la production de granules metalliques uniformes
US4960351A (en) * 1982-04-26 1990-10-02 California Institute Of Technology Shell forming system
JPS60124626A (ja) * 1983-12-12 1985-07-03 Mitsubishi Rayon Co Ltd 重合体粉末の製造方法
US4692284A (en) * 1986-04-30 1987-09-08 Damon Biotech, Inc. Method and apparatus for forming droplets and microcapsules
CH670061A5 (ja) * 1986-11-26 1989-05-12 Charmilles Technologies
DE3708695A1 (de) * 1987-03-18 1988-09-29 Reinhard Michael Granulator zum granulieren schmelzender und erweichender stoffe
US4981625A (en) * 1988-03-14 1991-01-01 California Institute Of Technology Monodisperse, polymeric microspheres produced by irradiation of slowly thawing frozen drops
US4902450A (en) * 1988-09-28 1990-02-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multi-element spherical shell generation
JP3159724B2 (ja) * 1991-04-19 2001-04-23 フロイント産業株式会社 シームレスカプセル製造方法および装置
JP3091254B2 (ja) * 1991-05-14 2000-09-25 フロイント産業株式会社 シームレスカプセル製造装置
US5186948A (en) * 1991-05-28 1993-02-16 Freund Inphachem Inc. Apparatus for manufacturing seamless capsules
JP3408271B2 (ja) 1992-07-17 2003-05-19 生化学工業株式会社 糖のアミノ化法
JP3405746B2 (ja) * 1992-10-28 2003-05-12 フロイント産業株式会社 シームレスカプセルの製造方法
US5474235A (en) * 1994-04-13 1995-12-12 Wheelabrator Technologies, Inc. Spray nozzle insert and method for reducing wear in spray nozzles
US6183670B1 (en) * 1997-09-23 2001-02-06 Leonard Torobin Method and apparatus for producing high efficiency fibrous media incorporating discontinuous sub-micron diameter fibers, and web media formed thereby
EP1062032B1 (de) * 1998-03-07 2004-03-31 Inotech Ag Verfahren und vorrichtung zum verkapseln von mikrobiellen, pflanzlichen und tierischen zellen bzw. von biologischen und chemischen substanzen
AT407247B (de) * 1998-12-01 2001-01-25 Holderbank Financ Glarus Verfahren zum granulieren von flüssigen schlackenschmelzen sowie vorrichtung zur durchführung dieses verfahrens
AU4202100A (en) * 1999-04-06 2000-10-23 E-Ink Corporation Methods for producing droplets for use in capsule-based electrophoretic displays
US6620351B2 (en) * 2000-05-24 2003-09-16 Auburn University Method of forming nanoparticles and microparticles of controllable size using supercritical fluids with enhanced mass transfer
US6432330B1 (en) * 2001-03-28 2002-08-13 Ball Semiconductor, Inc. Jet system for spherical shape devices
CN1269847C (zh) * 2001-06-22 2006-08-16 积水化学工业株式会社 制备树脂颗粒的方法、树脂颗粒及制备树脂颗粒的装置
US6841593B2 (en) * 2001-07-05 2005-01-11 Baker Hughes Incorporated Microencapsulated and macroencapsulated drag reducing agents
TW577780B (en) * 2001-07-26 2004-03-01 Ind Des Poudres Spheriques Device for producing spherical balls
US20030116641A1 (en) * 2001-10-02 2003-06-26 Ngk Insulators, Ltd. Liquid injection apparatus
EP1477219A1 (en) * 2003-05-16 2004-11-17 Tuttle Prilling Systems Granulation apparatus
US7413690B1 (en) * 2003-10-29 2008-08-19 The University Of Mississippi Process and apparatus for producing spherical pellets using molten solid matrices
JP2006013427A (ja) * 2004-05-25 2006-01-12 Ricoh Co Ltd 微小接着剤ノズルおよび接着剤塗布装置
US7776503B2 (en) * 2005-03-31 2010-08-17 Ricoh Company, Ltd. Particles and manufacturing method thereof, toner and manufacturing method thereof, and developer, toner container, process cartridge, image forming method and image forming apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112831A (ja) 1982-12-17 1984-06-29 Nippon Carbide Ind Co Ltd 継目なし粒状物製造装置
JPS59112833A (ja) * 1982-12-17 1984-06-29 Nippon Carbide Ind Co Ltd 継目なし充てんカプセル製造装置
JPH0640953B2 (ja) * 1986-01-27 1994-06-01 フロイント産業株式会社 カプセル製造方法および装置
JPH0467985A (ja) 1990-07-10 1992-03-03 Asahi Glass Co Ltd アルミナゾル塗工液
JP3361131B2 (ja) 1992-11-18 2003-01-07 フロイント産業株式会社 シームレスカプセル製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2080551A4 *

Also Published As

Publication number Publication date
US8070466B2 (en) 2011-12-06
JPWO2008044459A1 (ja) 2010-02-04
JP5394067B2 (ja) 2014-01-22
EP2080551A4 (en) 2013-12-25
US20100040717A1 (en) 2010-02-18
EP2080551A1 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
WO2008044459A1 (fr) Appareil pour la fabrication d'une capsule sans soudure
JP5593022B2 (ja) シームレスカプセル製造装置
KR100230059B1 (ko) 심리스 캡슐의 제조장치
JP2015514515A5 (ja)
KR20140121456A (ko) 환원제 전달 장치용 필터 카트리지
JP2005230299A (ja) 流動体貯留容器
JP4511564B2 (ja) スリットノズル及びそれを備える薬液塗布装置
WO2010058661A1 (ja) シームレスカプセル製造装置
JP6675865B2 (ja) 液体材料気化装置
JP2009269012A (ja) 液体供給装置及び噴霧装置
CN105960287A (zh) 液体微滴设备
JP3361131B2 (ja) シームレスカプセル製造装置
WO2014172547A2 (en) Device for mixing chemicals and air to form a foam & method for forming a chemical foam
KR101845580B1 (ko) 액체 기화기
KR102425059B1 (ko) 거품 생성 유닛 및 이를 포함하는 거품 발생 장치
JP2014512937A (ja) 液体流体を処理するイオン交換器
JP2018507100A (ja) 端部キャップデバイスを伴う膜アセンブリおよび関連する方法
JP2006181409A (ja) 印刷装置
JP2009125734A (ja) 洗浄装置
JP6791595B2 (ja) 薄膜製造装置
JP2006198526A (ja) 吐出装置及び吐出方法
JP7212389B2 (ja) 液剤塗布装置
JP4509201B2 (ja) 流路構成部材およびインクジェットヘッドユニット
JP2011062907A (ja) 液滴噴射ヘッド及び塗布体の製造方法
JP3203091U (ja) カプセル製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828317

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008538621

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12311491

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007828317

Country of ref document: EP