WO2008044370A1 - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
WO2008044370A1
WO2008044370A1 PCT/JP2007/062307 JP2007062307W WO2008044370A1 WO 2008044370 A1 WO2008044370 A1 WO 2008044370A1 JP 2007062307 W JP2007062307 W JP 2007062307W WO 2008044370 A1 WO2008044370 A1 WO 2008044370A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
photodiode
display device
pixels
Prior art date
Application number
PCT/JP2007/062307
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromi Katoh
Christopher Brown
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2008044370A1 publication Critical patent/WO2008044370A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13312Circuits comprising photodetectors for purposes other than feedback
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters

Definitions

  • the present invention relates to a liquid crystal display device including a photodiode that reacts to light incident from the observer side of a display screen.
  • a liquid crystal display device includes a liquid crystal display panel and a knock light that illuminates the liquid crystal display panel from the back.
  • a liquid crystal display panel is configured by sandwiching a liquid crystal layer between an active matrix substrate and a counter substrate.
  • An active matrix substrate is formed by forming a plurality of pixels in a matrix on a glass substrate.
  • one pixel is usually composed of three sub-pixels.
  • Each sub-pixel is composed of a TFT and a pixel electrode.
  • the counter substrate includes a counter electrode and a color filter on a glass substrate.
  • the color filter has a red (R), green (G), or blue (B) colored layer for each sub-pixel.
  • the voltage applied between each pixel electrode and the counter electrode is adjusted, and the transmittance of the liquid crystal layer is adjusted for each sub-pixel.
  • an image is displayed on the display screen by the illumination light of the backlight transmitted through the liquid crystal layer and the colored layer.
  • a conventional liquid crystal display device has a function of displaying an image. Recently, however, a liquid crystal display device having a function of capturing an image has been proposed (for example, a patent) Refer to Document 1.) o
  • a liquid crystal display device disclosed in Patent Document 1 a plurality of photodiodes are formed in a matrix on an active matrix substrate, and the liquid crystal display panel functions as an area sensor.
  • each photodiode uses a TFT process to form a p-type semiconductor region, photodetection region (intrinsic region), and n-type The semiconductor regions are formed in order.
  • this photodiode reacts even with illumination light from a knock light that is not only incident on the observer side force.
  • Patent Document 1 unlike a general liquid crystal display device, a knock light is arranged on the counter substrate side, and is connected to the n layer of the photodiode in order to block the illumination light.
  • the wiring covers the upper surface of the i layer.
  • the photodiode can be prevented from reacting to the illumination light.
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 2006-3857 (Page 7, Figures 5 and 6)
  • the second light-shielding film is formed of a conductive metal material. Further, only a thin insulating layer exists between the silicon film constituting the photodiode and the second light shielding film. For this reason, a depletion layer is less likely to occur in the light detection region. As a result, the liquid crystal display device of Patent Document 1 has a problem that only a low-capacity picked-up image with which dark current is easily generated in a photodiode can be obtained.
  • An object of the present invention is to provide a liquid crystal display device that can prevent the photodiode from reacting with illumination light while solving the above problems and suppressing the generation of dark current in the photodiode. .
  • a liquid crystal display device includes a liquid crystal display panel and a knocklight, and the liquid crystal display panel includes an active matrix substrate in which a plurality of pixels are arranged in a matrix, A liquid crystal layer; and a counter substrate provided with a color filter.
  • Each of the plurality of pixels includes three sub-pixels.
  • the matrix substrate further includes a plurality of photodiodes in a display area.
  • the photodiode has a characteristic that sensitivity is increased as the wavelength of incident light is shorter, and the light detection area of the photodiode is In the thickness direction of the liquid crystal display device, the liquid crystal display device is disposed so as to overlap the red colored layer.
  • the red colored layer is interposed between the photodiode and the backlight. Therefore, the force that only the red light out of the light components contained in the illumination light is directed to the photodiode.
  • the photodiode used in the present invention has a short wavelength like red light and low sensitivity to light. It has the characteristic that it is.
  • the liquid crystal display device of the present invention it is possible to suppress the photodiode from reacting with the illumination light.
  • it is not necessary to provide a light-shielding film with a conductive metal material generation of dark current in the photodiode can be suppressed.
  • FIG. 1 is a plan view partially showing a configuration of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a cross-section obtained by cutting along cutting line A-- FIG.
  • FIG. 3 is a graph showing the spectral sensitivity of the photodiode shown in FIGS. 1 and 2.
  • a liquid crystal display device includes a liquid crystal display panel and a backlight, and the liquid crystal display panel includes an active matrix substrate in which a plurality of pixels are arranged in a matrix, a liquid crystal layer, and a color filter.
  • a plurality of pixels each including three sub-pixels, and the color filter includes a red, green or blue colored layer for each of the sub-pixels.
  • the backlight is arranged so as to illuminate the liquid crystal display panel with the counter substrate side force
  • the active matrix substrate further includes a plurality of photodiodes in a display region, Photodio
  • the photodiode has a characteristic that the sensitivity increases as the wavelength of incident light is shorter, and the photodiode is arranged so that the photodetection region of the photodiode overlaps the red colored layer in the thickness direction of the liquid crystal display device. It is characterized by being.
  • the photodiode is formed of a silicon film provided on a base substrate of the active matrix substrate, and the silicon film is formed of polycrystalline silicon or continuous grains.
  • the semiconductor region may be provided, and the intrinsic semiconductor region may be the light detection region.
  • the silicon film is covered with a plurality of insulating films, and is electrically connected to the first conductivity type semiconductor region on the plurality of insulating films.
  • Wiring and a second wiring electrically connected to the second conductivity type semiconductor region are provided, and one of the first wiring and the second wiring is the liquid crystal display device.
  • it is preferably formed so as to overlap the intrinsic semiconductor region! In this case, the incidence of illumination light on the photodiode can be further suppressed.
  • FIG. 1 is a plan view partially showing a configuration of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a cross section obtained by cutting along the cutting line ⁇ - ⁇ in FIG.
  • FIG. 1 mainly shows the structure of the pixels formed on the active matrix substrate.
  • the outer shape of the color filter is indicated by a one-dot chain line.
  • the plan view in FIG. 1 shows the state of the active matrix substrate when observing a side force in which pixels are not formed.
  • the description of the interlayer insulating film is omitted, and in FIG. 2, hatching of the interlayer insulating film is omitted.
  • the liquid crystal display device in the present embodiment includes the liquid crystal display panel 4 shown in FIG. 2 and a backlight (not shown) that illuminates the liquid crystal display panel 4.
  • the liquid crystal surface The display panel 4 includes an active matrix substrate 1, a liquid crystal layer 2, and a counter substrate 3, and is formed by sandwiching the liquid crystal layer 2 between two substrates.
  • the backlight of the liquid crystal display panel 4 is illuminated from the counter substrate 3 side, and the illumination light 30 is transmitted in the order of the counter substrate 3, the liquid crystal layer 2, and the active matrix substrate 1.
  • the liquid crystal display device according to the present embodiment also includes various optical films.
  • the active matrix substrate 1 includes pixels. Although not shown in FIGS. 1 and 2, a plurality of pixels are arranged in a matrix. In the active matrix substrate 1, an area where a plurality of pixels are arranged is a display area. One pixel is composed of three sub-pixels.
  • FIG. 1 illustrates only three sub-pixels 5a to 5c.
  • each of the sub-pixels 5 a to 5 c includes an active element 7 and a transparent electrode 8.
  • the active element 7 is a thin film transistor (TFT).
  • the transparent electrode 8 is a pixel electrode formed of ITO or the like.
  • the active element 7 includes a silicon film 11 in which a source region 15 and a drain region 16 are formed, and a gate electrode 9.
  • the silicon film 11 is formed of continuous grain boundary crystalline silicon (CGS) because of its excellent charge transfer speed.
  • CGS continuous grain boundary crystalline silicon
  • Both the source region 15 and the drain region 16 are n-type semiconductor regions.
  • a region of the silicon film 11 that overlaps the gate electrode 9 is a channel region 17.
  • the gate electrode 9 is formed integrally with the gate line 10 arranged along the horizontal direction of the screen.
  • a source electrode 12 is connected to the source region 15, and a drain electrode 14 is connected to the drain region 16.
  • the source electrode 12 is formed integrally with a source wiring 13 arranged along the vertical direction of the screen.
  • the drain electrode 14 is connected to the transparent electrode 8.
  • the active matrix substrate 1 includes a photodiode 20 in the display area. Although only a single photodiode 20 is shown in FIGS. 1 and 2, in practice, a photodiode 20 is disposed on the active matrix substrate 1 for each pixel. A plurality of photodiodes 20 arranged for each pixel are connected to each other. It functions as a sensor.
  • the photodiode 20 is a PIN diode having a lateral structure.
  • the photodiode 20 includes a silicon film provided on a glass substrate 26 that serves as a base substrate of the active matrix substrate 1.
  • the silicon film constituting the photodiode 20 is formed at the same time using the formation process of the active element 7. For this reason, the photodiode 20 is also formed of continuous grain boundary crystalline silicon (CGS) excellent in charge transfer speed.
  • the silicon film is provided with a p-type semiconductor region (p layer) 21, an intrinsic semiconductor region (transition) 22 and an n-type semiconductor region (n layer) 23 in this order along the plane direction.
  • the i layer 22 is a light detection region.
  • the i layer 22 may be a region that is electrically more neutral than the adjacent p layer 21 and n layer 23.
  • the i layer 22 is preferably a region that does not contain any impurities, or a region where the conduction electron density and hole density are equal to each other.
  • reference numeral 27 denotes an insulating film formed on the glass substrate 26, and the photodiode 20 is formed thereon.
  • the photodiode 20 is covered with interlayer insulating films 28 and 29.
  • 24 indicates the wiring electrically connected to the p-layer 21, and 25 indicates the wiring electrically connected to the n-layer 23.
  • the wiring 24 connected to the p layer 21 is formed so as to overlap the i layer 22 in the thickness direction of the liquid crystal display device.
  • the wiring 24 includes a light shielding portion 24 a at a position overlapping the i layer 22. For this reason, the illumination light 30 is prevented from entering the i layer 23.
  • the counter substrate 3 includes a color filter having a plurality of colored layers.
  • the colored layer is provided for each subpixel.
  • FIG. 1 only the colored layers 6 a to 6 c corresponding to the sub-pixels 5 a to 5 c among the many colored layers are illustrated.
  • the colored layers 6a to 6c overlap the transparent electrodes 8 of the corresponding sub-pixels on the surface of the glass substrate 31 serving as the base substrate of the counter substrate 3 in the thickness direction of the liquid crystal display device. Is formed. Further, a black matrix for light shielding is provided between adjacent colored layers. Tas 32 is provided. A transparent counter electrode 33 is formed so as to cover all the colored layers.
  • the photodiode 20 is arranged in accordance with the sensitivity characteristic of the force photodiode 20 having the same configuration as that of the conventional liquid crystal display device. This is different from the conventional liquid crystal display device. This point will be described with reference to FIG. FIG. 3 is a graph showing the spectral sensitivity of the photodiode shown in FIGS.
  • the silicon film constituting the photodiode 20 is formed of continuous grain boundary crystalline silicon.
  • the photodiode 20 formed of continuous grain boundary crystalline silicon has a characteristic that the sensitivity increases as the wavelength of incident light is shorter. That is, the photodiode 20 has a characteristic that it is easy to react to blue light having a short wavelength, has a long wavelength, is difficult to react to red light, and has characteristics.
  • the photodiode 20 is disposed so as to overlap the red (R) colored layer 6c in the thickness direction of the semiconductor device. Therefore, only red light out of the light components included in the illumination light is directed toward the photodiode 20.
  • the colored layer 6a is a green (G) colored layer
  • the colored layer 6b is a blue (B) colored layer.
  • illumination light 30 is directed to the i layer 22 from the gap 18 (see FIGS. 1 and 2) between the light shielding portion 24a of the wiring 24 and the wiring 25. Even if light enters, the photodiode 20 hardly reacts. Therefore, according to the present embodiment, in order to shield the illumination light incident through the gap 18, it is not necessary to provide a new light shielding film separately from the light shielding part 24a. Can be suppressed.
  • the light shielding portion 24a for shielding the i layer 22 from the illumination light 30 is the force provided on the wiring 24 connected to the p layer 21. It is not limited to.
  • the light shielding portion may be provided in the wiring 25 connected to the n layer.
  • a dark current may be generated in the photodiode 20 or may be supple.
  • this dark current is The magnitude of the reverse noise voltage applied to the n layer 21 of the photodiode 20 is also related. Therefore, the formation of the light shielding portion in the wiring 24 or the wiring 25 may be performed so that the negative current becomes the smallest depending on the magnitude of the reverse bias voltage.
  • the liquid crystal display device according to the present embodiment may be in any form, provided with the light shielding portion 24a. Even in this embodiment, since the photodiode 20 hardly reacts to the red light, the reaction of the photodiode 20 due to the illumination light 30 is sufficiently suppressed.
  • the formation of the silicon film of continuous grain boundary crystalline silicon can be performed, for example, by the following steps. First, an oxide silicon film and an amorphous silicon film are sequentially formed on the interlayer insulating film 27 shown in FIG. Next, a nickel thin film serving as a catalyst for promoting crystallization is formed on the surface of the amorphous silicon film. Next, the nickel thin film and the amorphous silicon film are reacted by annealing to form a crystalline silicon layer at the interface between them. Thereafter, the unreacted nickel film and the silicon-nickel layer are removed by etching or the like. Next, annealing is performed on the remaining silicon film to advance crystallization, so that a silicon film formed of continuous grain boundary crystalline silicon is obtained. Thereafter, the formation of the photoresist and the etching are performed to make the shape of the silicon film a predetermined shape, and further, various types of ion implantation are performed to complete the photodiode 20.
  • the photodiode 20 is not limited to the one formed by the silicon film of continuous grain boundary crystal silicon.
  • the photodiode 20 only needs to have a characteristic that the sensitivity increases as the wavelength of incident light is shorter. Therefore, the photodiode 20 may be formed of, for example, polycrystalline silicon. This is because polycrystalline silicon has characteristics similar to those of the continuous grain boundary crystalline silicon shown in FIG.
  • Formation of a silicon film from polycrystalline silicon can be performed, for example, as follows.
  • an amorphous silicon silicon film is formed.
  • the amorphous silicon film is dehydrogenated, for example, by heating at 500 ° C. for 2 hours, and annealing is performed to crystallize the amorphous silicon film.
  • a polycrystalline silicon film is obtained.
  • a known laser annealing method for example, a method of irradiating an amorphous silicon film with a laser beam with an excimer laser can be mentioned.
  • the generation of dark current from the photodiode and the photo-diode are provided in the liquid crystal display device including the photodiode that reacts to the light incident from the observer side of the display screen. Reaction due to incidence of illumination light from the diode can be suppressed at the same time. Therefore, the liquid crystal display device according to the present invention can have industrial applicability.

Abstract

Disclosed is a liquid crystal display wherein a photodiode is prevented from responding to the illumination light, while suppressing occurrence of dark current in the photodiode. Specifically disclosed is a liquid crystal display comprising a liquid crystal display panel (4) and a backlight. The liquid crystal display panel (4) comprises an active matrix substrate (1), a liquid crystal layer (2) and a counter substrate (3). A plurality of pixels respectively have three sub-pixels (5a-5c), and a color filter provided on the counter substrate (3) has colored layers (6a-6c) respectively corresponding to the sub-pixels. In this liquid crystal display, the backlight is so arranged as to illuminate the liquid display panel (4) from the counter substrate side. The active matrix substrate (1) comprises a photodiode (20) within a display region. The photodiode (20) has such a characteristic that the sensitivity increases as the wavelength of an incident light is shorter, and is so arranged that its light sensing region overlaps a red colored layer (6c) in the thickness direction of the liquid crystal display.

Description

明 細 書  Specification
液晶表示装置  Liquid crystal display
技術分野  Technical field
[0001] 本発明は、表示画面の観察者側から入射した光に反応するフォトダイオードを備え た液晶表示装置に関する。  The present invention relates to a liquid crystal display device including a photodiode that reacts to light incident from the observer side of a display screen.
背景技術  Background art
[0002] 近年、液晶表示装置は、省電力、薄型、軽量といった特徴から、コンピュータ、携帯 電話、 PDA、ゲーム機の表示装置として広く採用されている。一般に、液晶表示装 置は、液晶表示パネルと、それを背面から照明するノ ックライトとを備えている。液晶 表示パネルは、アクティブマトリクス基板と対向基板とで液晶層を挟み込んで構成さ れている。  In recent years, liquid crystal display devices have been widely used as display devices for computers, mobile phones, PDAs, and game machines because of their power saving, thinness, and light weight. In general, a liquid crystal display device includes a liquid crystal display panel and a knock light that illuminates the liquid crystal display panel from the back. A liquid crystal display panel is configured by sandwiching a liquid crystal layer between an active matrix substrate and a counter substrate.
[0003] アクティブマトリクス基板は、ガラス基板上に複数の画素をマトリクス状に形成して構 成されている。また、カラー表示が行われる場合は、通常、 1画素は、 3つのサブ画素 によって構成されている。各サブ画素は、 TFTと画素電極とで構成されている。更に 、対向基板は、ガラス基板上に対向電極とカラーフィルタとを備えている。カラーフィ ルタは、サブ画素毎に、赤色 (R)、緑色 (G)又は青色 (B)の着色層を有している。  [0003] An active matrix substrate is formed by forming a plurality of pixels in a matrix on a glass substrate. When color display is performed, one pixel is usually composed of three sub-pixels. Each sub-pixel is composed of a TFT and a pixel electrode. Furthermore, the counter substrate includes a counter electrode and a color filter on a glass substrate. The color filter has a red (R), green (G), or blue (B) colored layer for each sub-pixel.
[0004] この液晶表示装置においては、各画素電極と対向電極との間に印加される電圧が 調整され、サブ画素毎に液晶層の透過率が調整される。この結果、液晶層及び着色 層を透過したバックライトの照明光により、表示画面上に画像が表示される。  In this liquid crystal display device, the voltage applied between each pixel electrode and the counter electrode is adjusted, and the transmittance of the liquid crystal layer is adjusted for each sub-pixel. As a result, an image is displayed on the display screen by the illumination light of the backlight transmitted through the liquid crystal layer and the colored layer.
[0005] このように、従来からの液晶表示装置は、画像を表示する機能を備えて 、るが、近 年、画像の取り込み機能をも備えた液晶表示装置が提案されている (例えば、特許 文献 1参照。 ) o特許文献 1に開示の液晶表示装置では、アクティブマトリクス基板上 に、複数のフォトダイオードがマトリクス状に形成されており、液晶表示パネルがエリア センサとして機能する。  As described above, a conventional liquid crystal display device has a function of displaying an image. Recently, however, a liquid crystal display device having a function of capturing an image has been proposed (for example, a patent) Refer to Document 1.) o In the liquid crystal display device disclosed in Patent Document 1, a plurality of photodiodes are formed in a matrix on an active matrix substrate, and the liquid crystal display panel functions as an area sensor.
[0006] また、特許文献 1にお 、て、各フォトダイオードとしては、ラテラル構造のフォトダイ オードが用いられている。各フォトダイオードは、 TFTのプロセスを利用して、 TFTと 共通のシリコン膜に、 p型の半導体領域、光検出領域 (イントリンシック領域)、 n型の 半導体領域を順に設けて形成されている。但し、このフォトダイオードは、その構造上 、観察者側力 入射する光だけでなぐノ ックライトからの照明光によっても反応する [0006] Further, in Patent Document 1, a photodiode having a lateral structure is used as each photodiode. Each photodiode uses a TFT process to form a p-type semiconductor region, photodetection region (intrinsic region), and n-type The semiconductor regions are formed in order. However, due to its structure, this photodiode reacts even with illumination light from a knock light that is not only incident on the observer side force.
[0007] このため、特許文献 1においては、一般的な液晶表示装置と異なり、対向基板側に ノ ックライトが配置され、そして、照明光を遮光するため、フォトダイオードの n層に接 続された配線が i層の上面を覆っている。この構成では、 i層の上面を覆う配線が遮光 膜となるため、フォトダイオードが照明光に反応してしまうのを抑制できる。 [0007] Therefore, in Patent Document 1, unlike a general liquid crystal display device, a knock light is arranged on the counter substrate side, and is connected to the n layer of the photodiode in order to block the illumination light. The wiring covers the upper surface of the i layer. In this configuration, since the wiring covering the upper surface of the i layer serves as a light shielding film, the photodiode can be prevented from reacting to the illumination light.
[0008] また、この構成のみでは、 i層の上面を覆う配線と p層に接続された配線との間に隙 間ができ (特許文献 1の第 6図参照。)、この隙間からフォトダイオードに照明光が入 射する可能性がある。よって、特許文献 1では、この隙間を通過しょうとする照明光を も遮光するため、配線とフォトダイオードとの間の層に、第 2の遮光膜が形成されてい る。第 2の遮光膜は、 TFTのゲート電極の形成工程を利用して形成されている。 特許文献 1 :特開 2006— 3857号公報 (第 7頁、第 5図、第 6図)  [0008] Further, with this configuration alone, a gap is formed between the wiring covering the upper surface of the i layer and the wiring connected to the p layer (see FIG. 6 of Patent Document 1). Illumination light may be incident on Therefore, in Patent Document 1, a second light shielding film is formed in a layer between the wiring and the photodiode in order to shield the illumination light that attempts to pass through this gap. The second light shielding film is formed by using a TFT gate electrode formation process. Patent Document 1: Japanese Laid-Open Patent Publication No. 2006-3857 (Page 7, Figures 5 and 6)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] ところで、特許文献 1にお ヽて、第 2の遮光膜は、導電性の金属材料で形成されて いる。更に、フォトダイオードを構成するシリコン膜と第 2の遮光膜との間には、薄い絶 縁層が存在するのみである。このため、光検出領域には空乏層が生じ難くなつている 。この結果、特許文献 1の液晶表示装置においては、フォトダイオードに暗電流が発 生し易ぐ画質の低!ヽ撮像画像しか得られな ヽと ヽぅ問題がある。  Incidentally, in Patent Document 1, the second light-shielding film is formed of a conductive metal material. Further, only a thin insulating layer exists between the silicon film constituting the photodiode and the second light shielding film. For this reason, a depletion layer is less likely to occur in the light detection region. As a result, the liquid crystal display device of Patent Document 1 has a problem that only a low-capacity picked-up image with which dark current is easily generated in a photodiode can be obtained.
[0010] 本発明の目的は、上記問題を解消し、フォトダイオードにおける暗電流の発生を抑 制しつつ、フォトダイオードが照明光によって反応するのを阻止し得る液晶表示装置 を提供することにある。  An object of the present invention is to provide a liquid crystal display device that can prevent the photodiode from reacting with illumination light while solving the above problems and suppressing the generation of dark current in the photodiode. .
課題を解決するための手段  Means for solving the problem
[0011] 上記目的を達成するために本発明における液晶表示装置は、液晶表示パネルと、 ノ ックライトとを備え、前記液晶表示パネルは、複数の画素がマトリクス状に配置され たアクティブマトリクス基板と、液晶層と、カラーフィルタが設けられた対向基板とを備 え、前記複数の画素は、それぞれ 3つのサブ画素を備え、前記カラーフィルタは、前 記サブ画素毎に、赤色、緑色又は青色の着色層を備えた液晶表示装置であって、 前記バックライトは、前記液晶表示パネルを、その前記対向基板側から照明するよう に配置され、前記アクティブマトリクス基板は、更に、表示領域内に複数のフォトダイ オードを備え、前記フォトダイオードは、入射光の波長が短いほど感度が増加する特 性を有し、且つ、前記フォトダイオードの光検出領域が当該液晶表示装置の厚み方 向にお 、て赤色の前記着色層に重なるように、配置されて 、ることを特徴とする。 発明の効果 In order to achieve the above object, a liquid crystal display device according to the present invention includes a liquid crystal display panel and a knocklight, and the liquid crystal display panel includes an active matrix substrate in which a plurality of pixels are arranged in a matrix, A liquid crystal layer; and a counter substrate provided with a color filter. Each of the plurality of pixels includes three sub-pixels. A liquid crystal display device having a red, green or blue colored layer for each subpixel, wherein the backlight is arranged to illuminate the liquid crystal display panel from the counter substrate side, and The matrix substrate further includes a plurality of photodiodes in a display area. The photodiode has a characteristic that sensitivity is increased as the wavelength of incident light is shorter, and the light detection area of the photodiode is In the thickness direction of the liquid crystal display device, the liquid crystal display device is disposed so as to overlap the red colored layer. The invention's effect
[0012] 以上のように本発明における液晶表示装置では、フォトダイオードとバックライトとの 間に赤色の着色層が介在している。よって、照明光に含まれる光成分のうち赤色光 のみがフォトダイオードへと向力うことになる力 本発明で用いられるフォトダイオード は、赤色光のような波長の短 、光に対する感度が低 、と 、う特性を有して 、る。  As described above, in the liquid crystal display device according to the present invention, the red colored layer is interposed between the photodiode and the backlight. Therefore, the force that only the red light out of the light components contained in the illumination light is directed to the photodiode. The photodiode used in the present invention has a short wavelength like red light and low sensitivity to light. It has the characteristic that it is.
[0013] このため、本発明における液晶表示装置によれば、フォトダイオードが照明光によ つて反応するのを抑制できる。また、導電性の金属材料によって遮光膜を設ける必要 がな 、ため、フォトダイオードにおける暗電流の発生も抑制できる。  Therefore, according to the liquid crystal display device of the present invention, it is possible to suppress the photodiode from reacting with the illumination light. In addition, since it is not necessary to provide a light-shielding film with a conductive metal material, generation of dark current in the photodiode can be suppressed.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]図 1は、本発明の実施の形態における液晶表示装置の構成を部分的に示す平 面図である。  FIG. 1 is a plan view partially showing a configuration of a liquid crystal display device according to an embodiment of the present invention.
[図 2]図 2は、図 1中の切断線 A— ΑΊこ沿って切断して得られた断面を示す断面図で ある。  [FIG. 2] FIG. 2 is a cross-sectional view showing a cross-section obtained by cutting along cutting line A-- FIG.
[図 3]図 3は、図 1及び図 2に示したフォトダイオードの分光感度を示すグラフである。 発明を実施するための最良の形態  FIG. 3 is a graph showing the spectral sensitivity of the photodiode shown in FIGS. 1 and 2. BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 本発明における液晶表示装置は、液晶表示パネルと、バックライトとを備え、前記液 晶表示パネルは、複数の画素がマトリクス状に配置されたアクティブマトリクス基板と、 液晶層と、カラーフィルタが設けられた対向基板とを備え、前記複数の画素は、それ ぞれ 3つのサブ画素を備え、前記カラーフィルタは、前記サブ画素毎に、赤色、緑色 又は青色の着色層を備えた液晶表示装置であって、前記バックライトは、前記液晶 表示パネルを、その前記対向基板側力 照明するように配置され、前記アクティブマ トリタス基板は、更に、表示領域内に複数のフォトダイオードを備え、前記フォトダイォ ードは、入射光の波長が短いほど感度が増加する特性を有し、且つ、前記フォトダイ オードの光検出領域が当該液晶表示装置の厚み方向において赤色の前記着色層 に重なるように、配置されていることを特徴とする。 [0015] A liquid crystal display device according to the present invention includes a liquid crystal display panel and a backlight, and the liquid crystal display panel includes an active matrix substrate in which a plurality of pixels are arranged in a matrix, a liquid crystal layer, and a color filter. A plurality of pixels each including three sub-pixels, and the color filter includes a red, green or blue colored layer for each of the sub-pixels. The backlight is arranged so as to illuminate the liquid crystal display panel with the counter substrate side force, and the active matrix substrate further includes a plurality of photodiodes in a display region, Photodio The photodiode has a characteristic that the sensitivity increases as the wavelength of incident light is shorter, and the photodiode is arranged so that the photodetection region of the photodiode overlaps the red colored layer in the thickness direction of the liquid crystal display device. It is characterized by being.
[0016] また、上記本発明における液晶表示装置は、前記フォトダイオードが、前記ァクティ ブマトリクス基板のベース基板上に設けられたシリコン膜によって形成され、前記シリ コン膜は、多結晶シリコンまたは連続粒界結晶シリコンによって形成され、且つ、前記 シリコン膜の面方向に沿って順に設けられた、第 1導電型の半導体領域、真性半導 体領域、及び前記第 1導電型と逆の第 2導電型の半導体領域を備え、前記真性半導 体領域が、前記光検出領域となる態様であっても良い。  In the liquid crystal display device according to the present invention, the photodiode is formed of a silicon film provided on a base substrate of the active matrix substrate, and the silicon film is formed of polycrystalline silicon or continuous grains. A first conductivity type semiconductor region, an intrinsic semiconductor region, and a second conductivity type opposite to the first conductivity type, which are formed of field crystal silicon and provided in order along the surface direction of the silicon film. The semiconductor region may be provided, and the intrinsic semiconductor region may be the light detection region.
[0017] 上記態様においては、前記シリコン膜が、複数層の絶縁膜によって被覆され、前記 複数層の絶縁膜の上に、前記第 1導電型の半導体領域に電気的に接続される第 1 の配線と、前記第 2導電型の半導体領域に電気的に接続される第 2の配線とが設け られ、前記第 1の配線及び前記第 2の配線のうちいずれか一方が、当該液晶表示装 置の厚み方向にお 、て、前記真性半導体領域に重なるように形成されて!、るのが好 ましい。この場合は、フォトダイオードへの照明光の入射をより一層抑制することがで きる。  In the above aspect, the silicon film is covered with a plurality of insulating films, and is electrically connected to the first conductivity type semiconductor region on the plurality of insulating films. Wiring and a second wiring electrically connected to the second conductivity type semiconductor region are provided, and one of the first wiring and the second wiring is the liquid crystal display device. In the thickness direction, it is preferably formed so as to overlap the intrinsic semiconductor region! In this case, the incidence of illumination light on the photodiode can be further suppressed.
[0018] (実施の形態)  [0018] (Embodiment)
以下、本発明の実施の形態における液晶表示装置について、図 1〜図 3を参照し ながら説明する。図 1は、本発明の実施の形態における液晶表示装置の構成を部分 的に示す平面図である。図 2は、図 1中の切断線 Α—ΑΊこ沿って切断して得られた 断面を示す断面図である。  Hereinafter, a liquid crystal display device according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a plan view partially showing a configuration of a liquid crystal display device according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing a cross section obtained by cutting along the cutting line Α-Α in FIG.
[0019] また、図 1は、アクティブマトリクス基板に形成された画素の構造を主に示しており、 対向基板については、カラーフィルタの外形のみを一点鎖線で示している。更に、図 1における平面図は、アクティブマトリクス基板を、画素が形成されていない側力も観 察したときの状態を示している。また、図 1においては層間絶縁膜の記載は省略され ており、図 2においては層間絶縁膜へのハッチングは省略されている。  FIG. 1 mainly shows the structure of the pixels formed on the active matrix substrate. For the counter substrate, only the outer shape of the color filter is indicated by a one-dot chain line. Further, the plan view in FIG. 1 shows the state of the active matrix substrate when observing a side force in which pixels are not formed. In FIG. 1, the description of the interlayer insulating film is omitted, and in FIG. 2, hatching of the interlayer insulating film is omitted.
[0020] 本実施の形態における液晶表示装置は、図 2に示す液晶表示パネル 4と、それを 照明するバックライト(図示せず)とを備えている。図 1及び図 2に示すように、液晶表 示パネル 4は、アクティブマトリクス基板 1と、液晶層 2と、対向基板 3とを備え、二つの 基板間に液晶層 2を挟み込んで形成されて 、る。 The liquid crystal display device in the present embodiment includes the liquid crystal display panel 4 shown in FIG. 2 and a backlight (not shown) that illuminates the liquid crystal display panel 4. As shown in Fig. 1 and Fig. 2, the liquid crystal surface The display panel 4 includes an active matrix substrate 1, a liquid crystal layer 2, and a counter substrate 3, and is formed by sandwiching the liquid crystal layer 2 between two substrates.
[0021] また、図 2に示すように、バックライトによる液晶表示パネル 4の照明は、対向基板 3 側から行われ、照明光 30は、対向基板 3、液晶層 2、アクティブマトリクス基板 1の順 に通過する。なお、図示していないが、本実施の形態における液晶表示装置は、そ の他に各種の光学フィルムも備えて 、る。  In addition, as shown in FIG. 2, the backlight of the liquid crystal display panel 4 is illuminated from the counter substrate 3 side, and the illumination light 30 is transmitted in the order of the counter substrate 3, the liquid crystal layer 2, and the active matrix substrate 1. To pass through. Although not shown, the liquid crystal display device according to the present embodiment also includes various optical films.
[0022] 更に、図 1に示すように、アクティブマトリクス基板 1は、画素を備えている。図 1及び 図 2には、図示していないが、画素は、マトリクス状に複数個配置されている。ァクティ ブマトリクス基板 1においては、複数の画素が配置された領域が表示領域となる。ま た、一つの画素は、三つのサブ画素によって構成されている。  Furthermore, as shown in FIG. 1, the active matrix substrate 1 includes pixels. Although not shown in FIGS. 1 and 2, a plurality of pixels are arranged in a matrix. In the active matrix substrate 1, an area where a plurality of pixels are arranged is a display area. One pixel is composed of three sub-pixels.
[0023] 図 1は、三つのサブ画素 5a〜5cのみを図示して!/、る。図 1に示すように、サブ画素 5a〜5cそれぞれは、アクティブ素子 7と、透明電極 8とを備えている。アクティブ素子 7は薄膜トランジスタ(TFT: Thin Film Transistor)である。透明電極 8は、 ITO等で形 成された画素電極である。  [0023] FIG. 1 illustrates only three sub-pixels 5a to 5c. As shown in FIG. 1, each of the sub-pixels 5 a to 5 c includes an active element 7 and a transparent electrode 8. The active element 7 is a thin film transistor (TFT). The transparent electrode 8 is a pixel electrode formed of ITO or the like.
[0024] また、図 2に示すように、アクティブ素子 7は、ソース領域 15及びドレイン領域 16が 形成されたシリコン膜 11と、ゲート電極 9とを備えている。シリコン膜 11は、電荷の移 動速度の点で優れていることから、連続粒界結晶シリコン (CGS)によって形成されて いる。ソース領域 15及びドレイン領域 16は、共に n型の半導体領域である。また、シ リコン膜 11のゲート電極 9に重なる領域は、チャネル領域 17となっている。  As shown in FIG. 2, the active element 7 includes a silicon film 11 in which a source region 15 and a drain region 16 are formed, and a gate electrode 9. The silicon film 11 is formed of continuous grain boundary crystalline silicon (CGS) because of its excellent charge transfer speed. Both the source region 15 and the drain region 16 are n-type semiconductor regions. A region of the silicon film 11 that overlaps the gate electrode 9 is a channel region 17.
[0025] 更に、図 1に示すように、ゲート電極 9は、画面の水平方向に沿って配置されたゲー ト線 10と一体的に形成されている。また、ソース領域 15にはソース電極 12が接続さ れ、ドレイン領域 16にはドレイン電極 14が接続されている。ソース電極 12は、画面の 垂直方向に沿って配置されたソース配線 13と一体的に形成されている。ドレイン電 極 14は、透明電極 8に接続されている。  Furthermore, as shown in FIG. 1, the gate electrode 9 is formed integrally with the gate line 10 arranged along the horizontal direction of the screen. A source electrode 12 is connected to the source region 15, and a drain electrode 14 is connected to the drain region 16. The source electrode 12 is formed integrally with a source wiring 13 arranged along the vertical direction of the screen. The drain electrode 14 is connected to the transparent electrode 8.
[0026] また、図 1及び図 2に示すように、アクティブマトリクス基板 1は、表示領域内にフォト ダイオード 20を備えている。図 1及び図 2には、単一のフォトダイオード 20しか図示さ れていないが、実際は、アクティブマトリクス基板 1には、一つの画素毎に、フォトダイ オード 20が配置されている。画素毎に配置された複数のフォトダイオード 20は、エリ ァセンサとして機能する。 As shown in FIGS. 1 and 2, the active matrix substrate 1 includes a photodiode 20 in the display area. Although only a single photodiode 20 is shown in FIGS. 1 and 2, in practice, a photodiode 20 is disposed on the active matrix substrate 1 for each pixel. A plurality of photodiodes 20 arranged for each pixel are connected to each other. It functions as a sensor.
[0027] 図 2に示すように、本実施の形態において、フォトダイオード 20は、ラテラル構造を 備えた PINダイオードである。フォトダイオード 20は、アクティブマトリクス基板 1のべ ース基板となるガラス基板 26に設けられたシリコン膜を備えている。  As shown in FIG. 2, in the present embodiment, the photodiode 20 is a PIN diode having a lateral structure. The photodiode 20 includes a silicon film provided on a glass substrate 26 that serves as a base substrate of the active matrix substrate 1.
[0028] フォトダイオード 20を構成するシリコン膜は、アクティブ素子 7の形成工程を利用し て、これと同時に形成される。このため、フォトダイオード 20も、電荷の移動速度に優 れた連続粒界結晶シリコン (CGS)によって形成されている。また、シリコン膜には、 面方向に沿って順に、 p型の半導体領域 (p層) 21、真性半導体領域 (遷) 22及び n 型の半導体領域 (n層) 23が設けられている。  The silicon film constituting the photodiode 20 is formed at the same time using the formation process of the active element 7. For this reason, the photodiode 20 is also formed of continuous grain boundary crystalline silicon (CGS) excellent in charge transfer speed. The silicon film is provided with a p-type semiconductor region (p layer) 21, an intrinsic semiconductor region (transition) 22 and an n-type semiconductor region (n layer) 23 in this order along the plane direction.
[0029] フォトダイオード 20においては、 i層 22が光検出領域となる。本実施の形態におい て、 i層 22は、隣接する p層 21及び n層 23に比べて電気的に中性に近い領域であれ ば良い。 i層 22は、不純物を全く含まない領域や、伝導電子密度と正孔密度とが等し V、領域であるのが好まし 、。  In the photodiode 20, the i layer 22 is a light detection region. In the present embodiment, the i layer 22 may be a region that is electrically more neutral than the adjacent p layer 21 and n layer 23. The i layer 22 is preferably a region that does not contain any impurities, or a region where the conduction electron density and hole density are equal to each other.
[0030] 図 2において、 27は、ガラス基板 26上に形成された絶縁膜であり、フォトダイオード 20は、この上に形成されている。また、フォトダイオード 20は、層間絶縁膜 28及び 29 によって被覆されている。 24は p層 21に電気的に接続された配線を示し、 25は n層 2 3に電気的に接続された配線を示して!/、る。  In FIG. 2, reference numeral 27 denotes an insulating film formed on the glass substrate 26, and the photodiode 20 is formed thereon. The photodiode 20 is covered with interlayer insulating films 28 and 29. 24 indicates the wiring electrically connected to the p-layer 21, and 25 indicates the wiring electrically connected to the n-layer 23.
[0031] また、二つの配線 24及び 25のうち、 p層 21に接続された配線 24は、液晶表示装置 の厚み方向において i層 22に重なるように形成されている。具体的には、配線 24は、 i層 22に重なる位置に遮光部 24aを備えている。このため、照明光 30の i層 23への入 射が抑制されている。  [0031] Of the two wirings 24 and 25, the wiring 24 connected to the p layer 21 is formed so as to overlap the i layer 22 in the thickness direction of the liquid crystal display device. Specifically, the wiring 24 includes a light shielding portion 24 a at a position overlapping the i layer 22. For this reason, the illumination light 30 is prevented from entering the i layer 23.
[0032] また、図 1及び図 2に示すように、対向基板 3は、複数の着色層を有するカラーフィ ルタを備えている。着色層は、サブ画素毎に設けられている。図 1では、多数ある着 色層のうち、サブ画素 5a〜5cそれぞれに対応する着色層 6a〜6cのみが図示されて いる。  [0032] As shown in FIGS. 1 and 2, the counter substrate 3 includes a color filter having a plurality of colored layers. The colored layer is provided for each subpixel. In FIG. 1, only the colored layers 6 a to 6 c corresponding to the sub-pixels 5 a to 5 c among the many colored layers are illustrated.
[0033] 具体的には、着色層 6a〜6cは、対向基板 3のベース基板となるガラス基板 31の面 上に、液晶表示装置の厚み方向において、対応するサブ画素の透明電極 8に重なる ようにして形成されている。更に、隣接する着色層の間には、遮光用のブラックマトリ タス 32が設けられている。また、全ての着色層を覆うようにして、透明の対向電極 33 が形成されている。 [0033] Specifically, the colored layers 6a to 6c overlap the transparent electrodes 8 of the corresponding sub-pixels on the surface of the glass substrate 31 serving as the base substrate of the counter substrate 3 in the thickness direction of the liquid crystal display device. Is formed. Further, a black matrix for light shielding is provided between adjacent colored layers. Tas 32 is provided. A transparent counter electrode 33 is formed so as to cover all the colored layers.
[0034] このように、本実施の形態における液晶表示装置は、従来の液晶表示装置と同様 の構成を有している力 フォトダイオード 20の感度特性に合わせて、フォトダイオード 20の配置が行われている点で、従来の液晶表示装置と異なっている。この点につい て図 3を用いて説明する。図 3は、図 1及び図 2に示したフォトダイオードの分光感度 を示すグラフである。  Thus, in the liquid crystal display device in the present embodiment, the photodiode 20 is arranged in accordance with the sensitivity characteristic of the force photodiode 20 having the same configuration as that of the conventional liquid crystal display device. This is different from the conventional liquid crystal display device. This point will be described with reference to FIG. FIG. 3 is a graph showing the spectral sensitivity of the photodiode shown in FIGS.
[0035] 上述したように、フォトダイオード 20を構成するシリコン膜は、連続粒界結晶シリコン  [0035] As described above, the silicon film constituting the photodiode 20 is formed of continuous grain boundary crystalline silicon.
(CGS)によって形成されている。よって、図 3に示すように、連続粒界結晶シリコンに よって形成されたフォトダイオード 20は、入射光の波長が短!、ほど感度が増加する 特性を有している。即ち、フォトダイオード 20は、波長の短い青色光には反応し易い 力 波長の長 、赤色光には反応し難 、特性を有して 、る。  (CGS). Therefore, as shown in FIG. 3, the photodiode 20 formed of continuous grain boundary crystalline silicon has a characteristic that the sensitivity increases as the wavelength of incident light is shorter. That is, the photodiode 20 has a characteristic that it is easy to react to blue light having a short wavelength, has a long wavelength, is difficult to react to red light, and has characteristics.
[0036] 一方、図 1及び図 2に示すように、フォトダイオード 20は、半導体装置の厚み方向に おいて、赤色 (R)の着色層 6cに重なるように配置されている。よって、照明光に含ま れる光成分のうち赤色光のみがフォトダイオード 20へと向力 ことになる。なお、着色 層 6aは緑色 (G)の着色層、着色層 6bは青色 (B)の着色層である。  On the other hand, as shown in FIGS. 1 and 2, the photodiode 20 is disposed so as to overlap the red (R) colored layer 6c in the thickness direction of the semiconductor device. Therefore, only red light out of the light components included in the illumination light is directed toward the photodiode 20. The colored layer 6a is a green (G) colored layer, and the colored layer 6b is a blue (B) colored layer.
[0037] このため、本実施の形態における液晶表示装置では、配線 24の遮光部 24aと配線 25との間の隙間 18 (図 1及び図 2参照)から i層 22に向力つて照明光 30が入射しても 、フォトダイオード 20が殆ど反応しない状態となっている。よって、本実施の形態によ れば、隙間 18を通って入射する照明光を遮光するために、遮光部 24aとは別に新た な遮光膜を設ける必要が無ぐ従来に比べて暗電流の発生を抑制できる。  For this reason, in the liquid crystal display device according to the present embodiment, illumination light 30 is directed to the i layer 22 from the gap 18 (see FIGS. 1 and 2) between the light shielding portion 24a of the wiring 24 and the wiring 25. Even if light enters, the photodiode 20 hardly reacts. Therefore, according to the present embodiment, in order to shield the illumination light incident through the gap 18, it is not necessary to provide a new light shielding film separately from the light shielding part 24a. Can be suppressed.
[0038] このように、本実施の形態における液晶表示装置によれば、フォトダイオード 20に おける暗電流の発生と、フォトダイオード 20の照明光 30による反応との両方を抑制 できる。また、図 1及び図 2の例では、 i層 22を照明光 30から遮光するための遮光部 2 4aは、 p層 21に接続された配線 24に設けられている力 本実施の形態はこれに限定 されるものではない。遮光部は、 n層に接続された配線 25に設けられていても良い。  Thus, according to the liquid crystal display device of the present embodiment, both the generation of dark current in photodiode 20 and the reaction due to illumination light 30 of photodiode 20 can be suppressed. Further, in the example of FIGS. 1 and 2, the light shielding portion 24a for shielding the i layer 22 from the illumination light 30 is the force provided on the wiring 24 connected to the p layer 21. It is not limited to. The light shielding portion may be provided in the wiring 25 connected to the n layer.
[0039] 但し、遮光部が設けられた配線がいずれであるかによって、フォトダイオード 20に 暗電流が発生したり、しな力つたりする場合がある。また、この暗電流の発生には、フ オトダイオード 20の n層 21に印加する逆ノィァス電圧の大きさも関係している。よって 、配線 24又は配線 25への遮光部の形成は、逆バイアス電圧の大きさに応じて、喑電 流が最も小さくなるように行えば良い。 However, depending on which wiring is provided with the light shielding portion, a dark current may be generated in the photodiode 20 or may be supple. In addition, this dark current is The magnitude of the reverse noise voltage applied to the n layer 21 of the photodiode 20 is also related. Therefore, the formation of the light shielding portion in the wiring 24 or the wiring 25 may be performed so that the negative current becomes the smallest depending on the magnitude of the reverse bias voltage.
[0040] また、本実施の形態における液晶表示装置は、遮光部 24aが設けられて 、な 、態 様であっても良い。この態様であっても、フォトダイオード 20が赤色光に殆ど反応しな いことから、フォトダイオード 20の照明光 30による反応は十分抑制される。  [0040] In addition, the liquid crystal display device according to the present embodiment may be in any form, provided with the light shielding portion 24a. Even in this embodiment, since the photodiode 20 hardly reacts to the red light, the reaction of the photodiode 20 due to the illumination light 30 is sufficiently suppressed.
[0041] また、連続粒界結晶シリコンのシリコン膜の形成は、例えば、以下の工程によって行 うことができる。先ず、図 2に示した層間絶縁膜 27の上に酸ィ匕シリコン膜とァモルファ スシリコン膜とを順に成膜する。次に、アモルファスシリコン膜の表層に、結晶化促進 の触媒となるニッケル薄膜を形成する。次に、ァニールによって、ニッケル薄膜とァモ ルファスシリコン膜とを反応させ、これらの界面に結晶シリコン層を形成する。その後、 エッチング等によって、未反応のニッケル膜と珪ィ匕ニッケルの層を除去する。次に、 残ったシリコン膜にァニールを行って結晶化を進展させると、連続粒界結晶シリコン によって形成されたシリコン膜が得られる。その後、フォトレジストの形成及びエツチン グの実施により、シリコン膜の形状を所定の形状とし、更に、種々のイオン注入を実施 することによってフォトダイオード 20が完成する。  In addition, the formation of the silicon film of continuous grain boundary crystalline silicon can be performed, for example, by the following steps. First, an oxide silicon film and an amorphous silicon film are sequentially formed on the interlayer insulating film 27 shown in FIG. Next, a nickel thin film serving as a catalyst for promoting crystallization is formed on the surface of the amorphous silicon film. Next, the nickel thin film and the amorphous silicon film are reacted by annealing to form a crystalline silicon layer at the interface between them. Thereafter, the unreacted nickel film and the silicon-nickel layer are removed by etching or the like. Next, annealing is performed on the remaining silicon film to advance crystallization, so that a silicon film formed of continuous grain boundary crystalline silicon is obtained. Thereafter, the formation of the photoresist and the etching are performed to make the shape of the silicon film a predetermined shape, and further, various types of ion implantation are performed to complete the photodiode 20.
[0042] なお、本発明にお 、て、フォトダイオード 20は、連続粒界結晶シリコンのシリコン膜 によって形成されたものに限定されることはない。フォトダイオード 20は、入射光の波 長が短いほど感度が増加する特性を有するものであれば良い。よって、フォトダイォ ード 20は、例えば、多結晶シリコンによって形成されたものであっても良い。多結晶 シリコンも、図 3に示した連続粒界結晶シリコンの特性と同様の特性を備えているから である。  In the present invention, the photodiode 20 is not limited to the one formed by the silicon film of continuous grain boundary crystal silicon. The photodiode 20 only needs to have a characteristic that the sensitivity increases as the wavelength of incident light is shorter. Therefore, the photodiode 20 may be formed of, for example, polycrystalline silicon. This is because polycrystalline silicon has characteristics similar to those of the continuous grain boundary crystalline silicon shown in FIG.
[0043] 多結晶シリコンによるシリコン膜の形成は、例えば、次のようにして行うことができる。  [0043] Formation of a silicon film from polycrystalline silicon can be performed, for example, as follows.
先ず、非晶質シリコンのシリコン膜を形成する。そして、この非晶質シリコンのシリコン 膜に対して、例えば 500°Cで 2時間加熱する等して脱水素化を行い、更に、ァニール を実施して、これを結晶化させる。この結果、多結晶シリコンのシリコン膜が得られる。 ァニールの方法としては、公知のレーザァニール法、例えば、非晶質シリコン膜にェ キシマレーザによってレーザビームを照射する方法が挙げられる。 産業上の利用可能性 First, an amorphous silicon silicon film is formed. The amorphous silicon film is dehydrogenated, for example, by heating at 500 ° C. for 2 hours, and annealing is performed to crystallize the amorphous silicon film. As a result, a polycrystalline silicon film is obtained. As the annealing method, a known laser annealing method, for example, a method of irradiating an amorphous silicon film with a laser beam with an excimer laser can be mentioned. Industrial applicability
以上のように、本発明によれば、表示画面の観察者側から入射した光に反応するフ オトダイオードを備えた液晶表示装置にぉ 、て、フォトダイオードからの暗電流の発 生と、フォトダイオードの照明光の入射による反応とを同時に抑制できる。このことから 、本発明における液晶表示装置は、産業上の利用可能性を有し得るものである。  As described above, according to the present invention, the generation of dark current from the photodiode and the photo-diode are provided in the liquid crystal display device including the photodiode that reacts to the light incident from the observer side of the display screen. Reaction due to incidence of illumination light from the diode can be suppressed at the same time. Therefore, the liquid crystal display device according to the present invention can have industrial applicability.

Claims

請求の範囲 The scope of the claims
[1] 液晶表示パネルと、バックライトとを備え、  [1] A liquid crystal display panel and a backlight are provided.
前記液晶表示パネルは、複数の画素がマトリクス状に配置されたアクティブマトリク ス基板と、液晶層と、カラーフィルタが設けられた対向基板とを備え、  The liquid crystal display panel includes an active matrix substrate in which a plurality of pixels are arranged in a matrix, a liquid crystal layer, and a counter substrate provided with a color filter,
前記複数の画素は、それぞれ 3つのサブ画素を備え、  Each of the plurality of pixels includes three sub-pixels,
前記カラーフィルタは、前記サブ画素毎に、赤色、緑色又は青色の着色層を備え た液晶表示装置であって、  The color filter is a liquid crystal display device provided with a red, green or blue colored layer for each of the sub-pixels,
前記バックライトは、前記液晶表示パネルを、その前記対向基板側から照明するよ うに配置され、  The backlight is arranged to illuminate the liquid crystal display panel from the counter substrate side,
前記アクティブマトリクス基板は、更に、表示領域内に複数のフォトダイオードを備 え、  The active matrix substrate further includes a plurality of photodiodes in a display area,
前記フォトダイオードは、入射光の波長が短いほど感度が増加する特性を有し、且 つ、前記フォトダイオードの光検出領域が当該液晶表示装置の厚み方向において赤 色の前記着色層に重なるように、配置されて!ヽることを特徴とする液晶表示装置。  The photodiode has a characteristic that the sensitivity increases as the wavelength of incident light is shorter, and the photodetection region of the photodiode overlaps the red colored layer in the thickness direction of the liquid crystal display device. Arranged! A liquid crystal display device characterized by squeezing.
[2] 前記フォトダイオードが、前記アクティブマトリクス基板のベース基板上に設けられ たシリコン膜によって形成され、 [2] The photodiode is formed of a silicon film provided on a base substrate of the active matrix substrate,
前記シリコン膜は、多結晶シリコンまたは連続粒界結晶シリコンによって形成され、 且つ、前記シリコン膜の面方向に沿って順に設けられた、第 1導電型の半導体領域、 真性半導体領域、及び前記第 1導電型と逆の第 2導電型の半導体領域を備え、 前記真性半導体領域が、前記光検出領域となる請求項 1に記載の液晶表示装置。  The silicon film is formed of polycrystalline silicon or continuous grain boundary crystal silicon, and is provided in order along a surface direction of the silicon film, a first conductivity type semiconductor region, an intrinsic semiconductor region, and the first 2. The liquid crystal display device according to claim 1, further comprising a semiconductor region of a second conductivity type opposite to the conductivity type, wherein the intrinsic semiconductor region becomes the photodetection region.
[3] 前記シリコン膜が、複数層の絶縁膜によって被覆され、 [3] The silicon film is covered with a plurality of insulating films,
前記複数層の絶縁膜の上に、前記第 1導電型の半導体領域に電気的に接続され る第 1の配線と、前記第 2導電型の半導体領域に電気的に接続される第 2の配線とが 設けられ、  A first wiring electrically connected to the first conductivity type semiconductor region and a second wiring electrically connected to the second conductivity type semiconductor region on the plurality of layers of insulating films And are provided,
前記第 1の配線及び前記第 2の配線のうちいずれか一方が、当該液晶表示装置の 厚み方向にぉ 、て、前記真性半導体領域に重なるように形成されて 、る請求項 2に 記載の液晶表示装置。  3. The liquid crystal according to claim 2, wherein any one of the first wiring and the second wiring is formed so as to overlap the intrinsic semiconductor region in the thickness direction of the liquid crystal display device. Display device.
PCT/JP2007/062307 2006-10-11 2007-06-19 Liquid crystal display WO2008044370A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006277834 2006-10-11
JP2006-277834 2006-10-11

Publications (1)

Publication Number Publication Date
WO2008044370A1 true WO2008044370A1 (en) 2008-04-17

Family

ID=39282580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062307 WO2008044370A1 (en) 2006-10-11 2007-06-19 Liquid crystal display

Country Status (1)

Country Link
WO (1) WO2008044370A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069493A1 (en) * 2007-11-29 2009-06-04 Sharp Kabushiki Kaisha Image display device
WO2009133716A1 (en) * 2008-04-28 2009-11-05 シャープ株式会社 Diode and photosensor circuit and display equipped with diode
US7773139B2 (en) 2004-04-16 2010-08-10 Apple Inc. Image sensor with photosensitive thin film transistors
US7830461B2 (en) 2002-05-23 2010-11-09 Apple Inc. Light sensitive display
US7872641B2 (en) 2002-02-20 2011-01-18 Apple Inc. Light sensitive display
WO2012063910A1 (en) * 2010-11-11 2012-05-18 シャープ株式会社 Liquid crystal display device
US8207946B2 (en) 2003-02-20 2012-06-26 Apple Inc. Light sensitive display
US8441422B2 (en) 2002-02-20 2013-05-14 Apple Inc. Light sensitive display with object detection calibration
US8638320B2 (en) 2011-06-22 2014-01-28 Apple Inc. Stylus orientation detection
US8928635B2 (en) 2011-06-22 2015-01-06 Apple Inc. Active stylus
US9176604B2 (en) 2012-07-27 2015-11-03 Apple Inc. Stylus device
US9310923B2 (en) 2010-12-03 2016-04-12 Apple Inc. Input device for touch sensitive devices
US9329703B2 (en) 2011-06-22 2016-05-03 Apple Inc. Intelligent stylus
US9557845B2 (en) 2012-07-27 2017-01-31 Apple Inc. Input device for and method of communication with capacitive devices through frequency variation
US9652090B2 (en) 2012-07-27 2017-05-16 Apple Inc. Device for digital communication through capacitive coupling
US9939935B2 (en) 2013-07-31 2018-04-10 Apple Inc. Scan engine for touch controller architecture
US10048775B2 (en) 2013-03-14 2018-08-14 Apple Inc. Stylus detection and demodulation
US10061450B2 (en) 2014-12-04 2018-08-28 Apple Inc. Coarse scan and targeted active mode scan for touch
US10474277B2 (en) 2016-05-31 2019-11-12 Apple Inc. Position-based stylus communication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08272529A (en) * 1995-03-31 1996-10-18 Toshiba Corp Picture input display device
JP2006003857A (en) * 2003-08-25 2006-01-05 Toshiba Matsushita Display Technology Co Ltd Display device and photoelectric conversion device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08272529A (en) * 1995-03-31 1996-10-18 Toshiba Corp Picture input display device
JP2006003857A (en) * 2003-08-25 2006-01-05 Toshiba Matsushita Display Technology Co Ltd Display device and photoelectric conversion device

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8441422B2 (en) 2002-02-20 2013-05-14 Apple Inc. Light sensitive display with object detection calibration
US11073926B2 (en) 2002-02-20 2021-07-27 Apple Inc. Light sensitive display
US9971456B2 (en) 2002-02-20 2018-05-15 Apple Inc. Light sensitive display with switchable detection modes for detecting a fingerprint
US9411470B2 (en) 2002-02-20 2016-08-09 Apple Inc. Light sensitive display with multiple data set object detection
US9134851B2 (en) 2002-02-20 2015-09-15 Apple Inc. Light sensitive display
US8570449B2 (en) 2002-02-20 2013-10-29 Apple Inc. Light sensitive display with pressure sensor
US7872641B2 (en) 2002-02-20 2011-01-18 Apple Inc. Light sensitive display
US8044930B2 (en) 2002-05-23 2011-10-25 Apple Inc. Light sensitive display
US9354735B2 (en) 2002-05-23 2016-05-31 Apple Inc. Light sensitive display
US7880819B2 (en) 2002-05-23 2011-02-01 Apple Inc. Light sensitive display
US7830461B2 (en) 2002-05-23 2010-11-09 Apple Inc. Light sensitive display
US7852417B2 (en) 2002-05-23 2010-12-14 Apple Inc. Light sensitive display
US7880733B2 (en) 2002-05-23 2011-02-01 Apple Inc. Light sensitive display
US8207946B2 (en) 2003-02-20 2012-06-26 Apple Inc. Light sensitive display
US8289429B2 (en) 2004-04-16 2012-10-16 Apple Inc. Image sensor with photosensitive thin film transistors and dark current compensation
US7773139B2 (en) 2004-04-16 2010-08-10 Apple Inc. Image sensor with photosensitive thin film transistors
WO2009069493A1 (en) * 2007-11-29 2009-06-04 Sharp Kabushiki Kaisha Image display device
EP2214150A1 (en) * 2007-11-29 2010-08-04 Sharp Kabushiki Kaisha Image display device
US8248395B2 (en) 2007-11-29 2012-08-21 Sharp Kabushiki Kaisha Image display device
EP2214150A4 (en) * 2007-11-29 2011-02-23 Sharp Kk Image display device
WO2009133716A1 (en) * 2008-04-28 2009-11-05 シャープ株式会社 Diode and photosensor circuit and display equipped with diode
US8294079B2 (en) 2008-04-28 2012-10-23 Sharp Kabushiki Kaisha Diode, photodetector circuit including same, and display device
WO2012063910A1 (en) * 2010-11-11 2012-05-18 シャープ株式会社 Liquid crystal display device
US9310923B2 (en) 2010-12-03 2016-04-12 Apple Inc. Input device for touch sensitive devices
US9921684B2 (en) 2011-06-22 2018-03-20 Apple Inc. Intelligent stylus
US9329703B2 (en) 2011-06-22 2016-05-03 Apple Inc. Intelligent stylus
US8928635B2 (en) 2011-06-22 2015-01-06 Apple Inc. Active stylus
US8638320B2 (en) 2011-06-22 2014-01-28 Apple Inc. Stylus orientation detection
US9519361B2 (en) 2011-06-22 2016-12-13 Apple Inc. Active stylus
US9557845B2 (en) 2012-07-27 2017-01-31 Apple Inc. Input device for and method of communication with capacitive devices through frequency variation
US9582105B2 (en) 2012-07-27 2017-02-28 Apple Inc. Input device for touch sensitive devices
US9176604B2 (en) 2012-07-27 2015-11-03 Apple Inc. Stylus device
US9652090B2 (en) 2012-07-27 2017-05-16 Apple Inc. Device for digital communication through capacitive coupling
US10048775B2 (en) 2013-03-14 2018-08-14 Apple Inc. Stylus detection and demodulation
US10845901B2 (en) 2013-07-31 2020-11-24 Apple Inc. Touch controller architecture
US9939935B2 (en) 2013-07-31 2018-04-10 Apple Inc. Scan engine for touch controller architecture
US11687192B2 (en) 2013-07-31 2023-06-27 Apple Inc. Touch controller architecture
US10067580B2 (en) 2013-07-31 2018-09-04 Apple Inc. Active stylus for use with touch controller architecture
US10067618B2 (en) 2014-12-04 2018-09-04 Apple Inc. Coarse scan and targeted active mode scan for touch
US10664113B2 (en) 2014-12-04 2020-05-26 Apple Inc. Coarse scan and targeted active mode scan for touch and stylus
US10061449B2 (en) 2014-12-04 2018-08-28 Apple Inc. Coarse scan and targeted active mode scan for touch and stylus
US10061450B2 (en) 2014-12-04 2018-08-28 Apple Inc. Coarse scan and targeted active mode scan for touch
US10474277B2 (en) 2016-05-31 2019-11-12 Apple Inc. Position-based stylus communication

Similar Documents

Publication Publication Date Title
WO2008044370A1 (en) Liquid crystal display
WO2008044368A1 (en) Liquid crystal display
JP4854745B2 (en) Liquid crystal display
US8164719B2 (en) Liquid crystal display device
EP2154731B1 (en) Photodetector and display device provided with same
US10177170B2 (en) Display device and method for manufacturing same
JP5512800B2 (en) Semiconductor device
JP4737956B2 (en) Display device and photoelectric conversion element
US20120241769A1 (en) Photodiode and manufacturing method for same, substrate for display panel, and display device
JP5351282B2 (en) Semiconductor device and manufacturing method thereof
KR20050022358A (en) Display device and photoelectric conversion device
US8415678B2 (en) Semiconductor device and display device
WO2010035544A1 (en) Photodiode, method for producing the same, and display device comprising photodiode
EP2527913A1 (en) Display device
EP2154732B1 (en) Photodetector and display device provided with same
US8248395B2 (en) Image display device
JP2009053261A (en) Liquid crystal display device
WO2006129427A1 (en) Light sensor and display device
US20120212687A1 (en) Optical sensor, semiconductor device, and liquid crystal panel
JP2008277710A (en) Light receiving element and display unit equipped with the same
JP2009139565A (en) Display device and its manufacturing method
JP4675580B2 (en) Display device
JP5154182B2 (en) Liquid crystal display device and electronic device
JP2008294137A (en) Light sensor, and display unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07767175

Country of ref document: EP

Kind code of ref document: A1