WO2008040687A1 - Vergussmassen auf basis von polyurethan - Google Patents

Vergussmassen auf basis von polyurethan Download PDF

Info

Publication number
WO2008040687A1
WO2008040687A1 PCT/EP2007/060326 EP2007060326W WO2008040687A1 WO 2008040687 A1 WO2008040687 A1 WO 2008040687A1 EP 2007060326 W EP2007060326 W EP 2007060326W WO 2008040687 A1 WO2008040687 A1 WO 2008040687A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
molecular weight
average molecular
polyol
mol
Prior art date
Application number
PCT/EP2007/060326
Other languages
English (en)
French (fr)
Inventor
Hans-Jürgen Reese
Ralf Fritz
Gunther Lukat
Hans Ulrich Schmidt
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to EP07820713A priority Critical patent/EP2081973B1/de
Priority to JP2009530858A priority patent/JP5624318B2/ja
Priority to DK07820713.1T priority patent/DK2081973T3/da
Priority to CA2663855A priority patent/CA2663855C/en
Priority to AT07820713T priority patent/ATE466896T1/de
Priority to DE502007003677T priority patent/DE502007003677D1/de
Priority to US12/444,397 priority patent/US8802808B2/en
Publication of WO2008040687A1 publication Critical patent/WO2008040687A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6696Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/36 or hydroxylated esters of higher fatty acids of C08G18/38
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/022Encapsulating hollow fibres
    • B01D63/023Encapsulating materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/797Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing carbodiimide and/or uretone-imine groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes

Definitions

  • the invention relates to a polyol mixture containing as component a1) at least one fat-based polyol, a2) at least one polyetherol having a number average molecular weight of 500 to 2000 g / mol and a3) optionally one or more crosslinkers having a number average molecular weight of 90 to 400 g / mol,
  • polyol mixtures can be used for the production of potting compounds based on polyurethane.
  • the invention relates to potting compounds based on the polyol mixtures (A) described above and at least one modified isocyanate (B), as well as the use of potting compounds as embedding material.
  • the invention relates to a method for producing the casting compounds described above.
  • the invention relates to dialysis filters, which include the casting compounds described above.
  • the invention relates to the combination of separately present components (A) and (B) for common use.
  • potting compounds based on polyurethane for the production of moldings for medical-technical equipment, in particular as a bedding material for hollow fibers in dialyzers, is also known per se and has, inter alia due to the easy handling of PU potting compounds and their low shrinkage during the curing process advantages.
  • EP-O 538 673 describes transparent, hot steam-sterilizable, non-cytotoxic potting compounds based on polyurethane, which are obtainable by reacting modified diisocyanates with a polyol component.
  • Suitable components of the polyol component are low molecular weight polyether polyols having an average functionality of 3 to 8 and a hydroxyl number of 200 to 1000 mg KOH / g and either castor oil or polyether polyols having a functionality of 2 to 3 and a hydroxyl value of 90 to 200 mg KOH / g disclosed. Although combinations of the latter two components are not excluded, however, no information is given on particularly suitable, especially low-viscosity polyol mixtures.
  • E P-A-1 090 941 also describes transparent, hot steam sterilizable, non-cytotoxic potting compounds based on polyurethane.
  • the polyurethane systems mentioned in this application are based on a modified isocyanate component with specific viscosity and on a polyol component, which i.a. Also may contain castor oil in admixture with low molecular weight polyetherols having a functionality of 3 to 8 and a hydroxyl number of 200 to 1000 mg KOH / g.
  • DE-31 49 527 A1 describes polyurethane compositions for hollow fiber dialysers which contain polyisocyanates and storage-stable polyol mixtures of mainly castor oil.
  • the storage-stable polyol mixture also contains usually not compatible with Rizinusöl, preferably low molecular weight hydroxyl-containing compounds, eg. As low molecular weight alcohols, and their partial esters with long-chain carboxylic acids as a solubilizer.
  • a disadvantage of the polyol mixtures described in the prior art is the high viscosity after mixing the reactive components. As a consequence, the time-efficient potting, especially of dialysis filters with a high number of fibers, is problematic or impossible.
  • E-PA 1 582 544 proposes potting systems based on polyurethane, which have a low viscosity.
  • the proposed compositions are based on the use of a particular diol mixture for the preparation of a low-viscosity polyisocyanate prepolymer, preference being given to using propylene glycols having different molecular weights.
  • polyol component polyether alcohols and / or polyester alcohols are proposed.
  • the potting systems proposed in EP 1 582 544 are still in need of improvement in wet sterilization stability.
  • An object of the present invention was to provide polyol mixtures which have a low viscosity immediately after mixing with an isocyanate component (hereinafter referred to as mixed viscosity) and thus enable casting in dialysis filters with a high number of fibers, preferably more than 12,000 fibers per filter ,
  • the casting compounds produced with the polyol mixtures according to the invention should have a high stability during wet sterilization.
  • One goal was therefore to provide potting compounds with only a slight uptake of water at high temperatures and a high resistance to disinfectants, in particular a slight desorption of peracetic acid after wet sterilization.
  • the potting compounds should have a low fine dust formation when blending and a good Verschneidberry over a long period.
  • favorable adhesion properties between the potting compound and the housing of medical-technical articles should be achieved.
  • the potting compounds should also show no desorption of toxic compounds and be transparent after curing in contact with aqueous media.
  • the abovementioned positive properties in particular low water absorption, high resistance to disinfectants and good processing properties after curing on the one hand and low mixing viscosity on the other hand, can be achieved simultaneously by using the polyol mixtures according to the invention. It has also been found that the casting compounds according to the invention have the described excellent properties in wet sterilization and in processing.
  • a further object was to provide a method for the production of potting compounds and dialysis filters, in particular those with a high number of fibers, in which time-efficient potting of even complex shapes without the formation of cavities is possible.
  • the polyol mixture contains at least one fat-based polyol a1) and at least one polyetherol a2) having a number average molecular weight of 500 to 2000 g / mol, wherein the number average molecular weight of the two polyols to at most 400 g / mol and the OH functionality of the two polyols to is less than 0.5 apart.
  • OH functionality is the number of alcoholic, acylatable OH groups per molecule. If the component in question consists of a compound having a defined molecular structure, the functionality results from the number of OH groups per molecule. Is a compound by ethoxylation or propoxylation produced a starter molecule, the OH functionality results from the number of reactive functional groups, for example OH groups, per starter molecule. If mixtures of compounds with different OH functionality are used, the OH functionality results from the number-weighted average of the OH functionality of the individual compounds.
  • All molecular weights mentioned in this invention denote the number average molecular weight.
  • the molecular weight of a mixture or of a component results here from the number-weighted molecular weights of the compounds contained.
  • a number-average molecular weight shall be understood hereinafter to mean the value which is determined by gel permeation chromatography on an ultrastullary column system with tetrahydrofuran (THF) as eluent and a Rl Detector is determined at 35 ° C.
  • a polyol is to be understood as meaning a compound which contains at least two isocyanate-reactive hydrogen atoms per molecule.
  • the isocyanate-reactive hydrogen atoms preferably originate from hydroxyl groups.
  • the polyol mixture preferably contains components a1) and a2) in a weight ratio of a1) to a2) of from 8 to 2 to 2 to 8. Particular preference is given to a weight ratio of components a1) to a2) of from 7 to 3 to 4 6, for example from 6.5 to 3.5 to 4.5 to 5.5.
  • the proportion of a3) in the polyol mixture is preferably from 1 to 30% by weight, based on the polyol mixture, more preferably from 1 to 21% by weight and most preferably from 5 to 10 wt .-%, each based on the polyol mixture.
  • the polyol mixture contains the following constituents: from 40 to 70 wt .-% of component a1), from 30 to 60 wt .-% of component a2) and from 0 to 30 wt .-% of component a3), wherein the sum of a1), a2) and a3) gives 100% by weight.
  • the polyol mixture particularly preferably contains the following constituents: from 45 to 65% by weight of component a1), from 34 to 54% by weight of component a2) and from 1 to 21% by weight of component a3), the sum from a1), a2) and a3) gives 100% by weight.
  • the polyol mixture according to the invention preferably has a viscosity of up to 1500 mPas; a viscosity of up to 1000 mPa.s is preferred and a viscosity of up to 700 mPa.s is particularly preferred. Finally, very particular preference is given to a viscosity of the polyol mixture of up to 600 mPa ⁇ s. Basically, the lowest possible viscosity of the polyol mixture is desirable, since a low viscosity during later production of a potting compound based on polyurethane too a low mixing viscosity leads. Due to the inventive composition of the polyol mixture, however, results in a practical lower limit for the viscosity. For example, the viscosity of the polyol mixture may be in the range of 200 mPa.s or higher, in particular in the range of 250 to 600 mPa.s.
  • the viscosity can be determined, for example, by means of a rotational viscometer. All viscosities mentioned in this invention relate to the determination according to DIN 53018 at a temperature of 25 ° C. with a rotational viscometer in plate / cone measuring geometry.
  • component a1) contains at least one fat-based polyol.
  • component a1) has an OH functionality of at least 2.
  • Mixtures of fat-based polyols which each have an OH functionality of at least 2, or mixtures of fat-based polyols, are therefore suitable as component a1) an OH functionality of component a1) of at least 2 results.
  • component a1) is preferably in the range from 2 to 3. Particularly preferably, component a1) has an OH functionality of from 2.3 to 3, and very particularly preferably from 2.6 to 3.
  • fat-based polyol is meant a compound based on a fat, an oil, a fatty acid or a fatty acid derivative.
  • a fat-based polyol may be a fat, an oil, a fatty acid or a fatty acid derivative or may be obtained from the aforementioned compounds by physical or chemical modification. Fat-based polyols as defined above are known per se to the person skilled in the art or can be obtained by methods known per se.
  • a fat-based polyol are, for example, vegetable oils or their derivatives into consideration. Vegetable oils can vary in their composition and occur in different degrees of purity. Preferred for the purposes of this invention are vegetable oils which comply with the provisions of the German Pharmacopoeia (DAB). Most preferably, component a1) contains at least one fat-based polyol which is a vegetable oil which corresponds to DAB-10.
  • fat-based polyol it is also possible to use generally known fatty acids, preferably natural fatty acids, particularly preferably vegetable fatty acids, in particular unsaturated vegetable fatty acids, as well as their derivatives, such as the esters with mono- and / or dialcohols, provided that the properties discussed below for molecular weight and OH functionality are met.
  • fatty acids preferably natural fatty acids, particularly preferably vegetable fatty acids, in particular unsaturated vegetable fatty acids, as well as their derivatives, such as the esters with mono- and / or dialcohols, provided that the properties discussed below for molecular weight and OH functionality are met.
  • ring-opened epoxidized or oxidized fatty acid compounds and / or adducts of fatty acid compounds and alkylene oxides can also be used as the fat-based polyol.
  • Preference is given to hydroxylated fatty acids and / or hydroxylated fatty acid derivatives obtainable by the abovementioned processes.
  • adducts of OH-functional fat-based compounds for example castor oil or hydroxylated vegetable oils, and alkylene oxides can be prepared by well-known alkoxylation of compounds having, for example, ethylene oxide, propylene oxide and / or butylene oxide at temperatures of 80 to 130 0 C and pressures of 0.1 to 1 MPa, if appropriate in the presence of customary catalysts such as alkali metal hydroxides or alkali metal alkoxides.
  • a fat-based polyol it is also possible to use hydroxylated fatty acid compounds based on rapeseed oil, soybean oil, rapeseed oil, olive oil and / or sunflower oil and / or those based on oleic and / or linoleic acid.
  • Polyols which are based on hydroxylated soybean oil are particularly suitable as the fat-based polyol.
  • a vegetable oil without chemical modification is used as the fat-based polyol.
  • castor oil Particularly preferred as a fat-based polyol is castor oil, which complies with the provisions of the German Pharmacopoeia according to DAB 10.
  • Particular preference is given to the triglyceride of ricinoleic acid, optionally in admixture with triglycerides which also contain other natural fatty acids, for example linoleic acid and / or palmitic acid.
  • the component a1) preferably has a low water content, for example less than 0.2 wt .-%.
  • a water content of component a1) of less than 0.1% by weight is preferred.
  • cleaning is usually carried out before use, which may include, in particular, the removal of suspended matter and dehydration. Natural oils with above-mentioned water content freed of suspended matter are particularly suitable as component a1).
  • the polyol can be characterized in addition to its molecular weight by means of its hydroxyl number. As is well known to those skilled in the art, an exact conversion of molecular weight to hydroxyl number is possible only with known OH functionality.
  • the hydroxyl number of component a1) is preferably 50 to 350 mg
  • the hydroxyl number of a compound indicates what amount of potassium hydroxide in grams of acetic acid bound by 1 g of the compound in the acetylation is equivalent.
  • the hydroxyl number is a measure of the concentration of hydroxyl groups in a polymer chain. The determination of the hydroxyl number is described in DIN 53240, to which the hydroxyl numbers given in this application relate.
  • component a1) are preferably used fat-based polyols having a number average molecular weight of 500 to 2000 g / mol. Particularly preferred are fat-based polyols having a number average molecular weight of from 700 to
  • the component a1) preferably has a number-average molecular weight of 500 to 200 g / mol, more preferably from 700 to 1400 g / mol, and most preferably from 800 to 1100 g / mol.
  • component a1) to fat-based polyols or mixtures of several fat-based polyols, the number-average molecular weight of component a1) being from 700 to 1400 g / mol and the OH functionality from 2 to 3; Very particular preference is given to a number-average molecular weight of component a1) of from 800 to 1100 g / mol and an OH functionality of from 2.6 to 3.
  • component a2) contains at least one polyetherol having a number-average molecular weight of 500 to 2000 g / mol.
  • the number-average molecular weight of component a2) is preferably in the range from 700 to 1400 g / mol and more preferably from 800 to 1100 g / mol.
  • the component a2) preferably has an OH functionality of 2 to 4 and more preferably of 2.5 to 3.5. Most preferably, component a2) has an OH functionality of 3.
  • component a2) contains from 0 to 200 ppm of alkali metal ions.
  • the component a2) preferably has a low content of alkali ions, for example not more than 20 ppm. More preferably, component a2) has an alkali ion content of not more than 10 ppm.
  • Polyetherols having the abovementioned properties are known per se to the person skilled in the art or can be prepared by methods known per se, for example by anionic polymerization with alkali metal hydroxides, such as sodium or potassium hydroxide or alkali metal alkoxides, such as sodium methylate, sodium or potassium ethylate or potassium isopropylate as catalysts and with the addition of at least one starter molecule which contains 2 to 4 reactive hydrogen atoms bound, or by cationic see polymerization with Lewis acids, such as antimony pentachloride, boron fluoride etherate, inter alia, or bleaching earth as catalysts of one or more alkylene oxides, selected from propylene oxide (PO) and ethylene oxide (EO) produced.
  • alkali metal hydroxides such as sodium or potassium hydroxide or alkali metal alkoxides, such as sodium methylate, sodium or potassium ethylate or potassium isopropylate
  • Lewis acids such as antimony pentachloride,
  • alkylene oxides are incorporated into a polyetherol of component a2), these can be used individually, alternately successively or as mixtures.
  • the use of an EO / PO mixture leads to a polyetherol with random PO / EO unit distribution. It is possible first to use a PO / EO mixture and then to use only PO or EO before termination of the polymerization in order to obtain a polyether polyol with PO or EO endcap.
  • Suitable starter molecules for the preparation of the polyetherols of component a2) are, for example: water, organic dicarboxylic acids, diamines, such as e.g. optionally mono- and dialkyl-substituted ethylenediamine, diethylenetriamine, triethylenetetramine, 1, 3-propylenediamine, and / or 1, 3 or 1, 4-butylenediamine.
  • diamines such as e.g. optionally mono- and dialkyl-substituted ethylenediamine, diethylenetriamine, triethylenetetramine, 1, 3-propylenediamine, and / or 1, 3 or 1, 4-butylenediamine.
  • alkanolamines e.g. Ethanolamine, N-methyl and N-ethylethanolamine
  • dialkanolamines e.g. Diethanolamine, N-methyl and N-ethyldiethanolamine and trialkanolamines such as e.g. Triethanolamine and ammonia
  • starter molecules di-, trihydric or tetrahydric alcohols, such as ethanediol, propanediol-1, 2 and -1, 3, diethylene glycol, dipropylene glycol, butanediol-1, 4, hexanediol-1, 6, glycerol and / or pentaerythritol.
  • Starter molecules or mixtures of starter molecules which lead to polyetherols with the abovementioned preferred OH functionalities are preferred.
  • Component a2) preferably comprises at least one polyetherol based on propoxylated trimethylolpropane or propoxylated glycerol or mixtures of these compounds. Particular preference is given to propoxylated trimethylolpropane and / or propoxylated glycerol having a number average molecular weight of from 700 to 1400 g / mol, very particularly preferably from 800 to 1100 g / mol.
  • the component a2) can in principle contain one or more of the aforementioned polyetherols.
  • the person skilled in the art selects mixtures in such a way that the abovementioned properties of component a2) are established with regard to OH functionality and molecular weight.
  • the number-average molecular weight of component a1) deviates by at most 400 g / mol from the number-average molecular weight of component a2) and the OH functionality of component a1) from the OH functionality of component a2) by at most 0.5.
  • the deviation of the number average molecular weight is preferably at most 200 g / mol, very particularly preferably at most 100 g / mol.
  • the deviation of the OH functionalities is preferably not more than 0.4 and very particularly preferably not more than 0.3.
  • the number average molecular weight of component a1) deviates by at most 200 g / mol from the number average molecular weight of component a2) and the OH functionality of component a1) by at most 0.4 from the OH functionality of component a2).
  • the number average molecular weight of component a1) deviates by at most 100 g / mol of the number average molecular weight of component a2) and the OH functionality of component a1) by at most 0.3 from the OH functionality of component a2).
  • the component a3) if contained in the polyol mixture, is one or more crosslinking compounds having a number-average molecular weight of from 90 to 400 g / mol. Preference is given to those crosslinkers a3) which have a molecular weight of from 90 to 300 g / mol, more preferably from 150 to 300 g / mol.
  • the polyol mixtures according to the invention can be present with or without crosslinker a3).
  • crosslinker a3) having an OH functionality of from 3 to 8 are expediently used.
  • Crosslinkers having an OH functionality of 3 to 4 are preferably used.
  • the content of alkali ions in the crosslinking agent a3) is usually production-related and can vary within a wide range.
  • crosslinkers a3) those with or without alkali ions are generally suitable.
  • the crosslinker a3) has a content of alkali metal ions, preferably potassium ions, of up to 1200 ppm.
  • the content of alkali metal ions, preferably potassium ions, in the crosslinker a3) in this embodiment is preferably up to 1000 ppm and more preferably up to 600 ppm.
  • the crosslinker a3) has a low content of alkali ions, preferably potassium ions.
  • Suitable crosslinking agents which may be mentioned by way of example are: 3-hydric and higher alcohols, e.g. Glycerol, trimethylolpropane, pentaerythritol, 2,2,6,6-tetrahydroxymethyl-4-oxaheptanediol-1, 7 (di-pentaerythritol), tri-pentaerythritol, 3,3,7,7-tetrahydroxymethyl-5-oxanonanes (di-trimethylolpropane) and sorbitol and the low molecular weight polyoxypropylene, polyoxyethylene or polyoxypropylene polyoxyethylene polyols started with these alcohols.
  • the preparation of the alkoxylated alcohols can be carried out by the methods already mentioned above.
  • crosslinkers a3) can also be characterized by their hydroxyl number instead of the molecular weight. As the skilled person is well aware, a conversion calculation of molecular weight in hydroxyl number only take place exactly when the OH functionality is known. Preference is given to crosslinking agents a3) having a hydroxyl number of 400 to 5000 mg KOH / g, particularly preferably those having a hydroxyl number of 500 to 5000 mg KOH / g and very particularly preferably those having a hydroxyl number of 500 to 3000 mg KOH / g.
  • crosslinkers a3) are those having a molecular weight of 90 to 300 g / mol, which have an OH functionality of 3.
  • crosslinking agent a3) polyethylene oxide having a molecular weight of from 90 to 300 g / mol, which has been started with trimethylolpropane.
  • one or more crosslinkers can be used as component a3).
  • the person skilled in the art selects mixtures of a plurality of crosslinkers in such a way that the number-average molecular weight according to the invention and optionally a preferred OH functionality are achieved.
  • the polyol mixtures according to the invention may contain, in addition to the abovementioned components a1), a2) and optionally a3), further additives.
  • Suitable additives are, for example, stabilizers, fillers and / or auxiliaries.
  • the person skilled in the art will select the additives according to the requirements of the intended application.
  • the use of stabilizers, fillers and adjuvants is in amounts that are common for such additives.
  • the polyol mixtures according to the invention preferably contain no fillers in the case of use in casting compounds for dialysis filters.
  • the polyol mixtures according to the invention have versatile uses. Possible applications include synthetic resins and potting compounds and plastics, eg. As polyurethanes, including the hard or soft foams.
  • the polyol mixtures according to the invention can be used as adhesive raw material in adhesive systems and as a constituent of coating formulations and coatings.
  • Particularly suitable are the polyol mixtures for the production of potting compounds based on polyurethane by reaction with a component containing isocyanate nat microscope.
  • Particularly preferred here is the reaction with the modified isocyanates described below.
  • a potting compound in the context of this invention is a mixture of at least two reactive components which is suitable for potting and which is introduced in liquid or viscous form into a body or applied to a body and then cured.
  • a body may be, for example, a Area to act a vessel with at least one opening or a shape with at least one depression.
  • the terms potting compound and casting resin should be understood equivalently.
  • the properties of the potting compound Water absorption, peracetic acid absorption, trimmability, wet sterilizability, migration of cytotoxic compounds refer to the cured state.
  • the potting compounds contain components based on (A) a polyol mixture according to the invention and (B) at least one modified isocyanate based on an isocyanate component b1) and a diol component b2).
  • the potting compounds are obtainable by reacting a polyol mixture (A) according to the invention with at least one modified isocyanate (B) which is obtainable by reacting an isocyanate component b1) with a diol component b2), optionally catalyzed by a catalyst (C).
  • the use ratio between the polyol mixture (A) and the component (B) may vary within a wide range.
  • a and B are preferably reacted in amounts such that the equivalence ratio of NCO groups of component B to the sum of the reactive hydrogen atoms of component A is 0.9: 1 to 1.3: 1, preferably 0.95: 1 to 1 , 2: 1 and more preferably 1: 1 to 1, 1: 1.
  • the person skilled in the art determines the mass ratios to be used accordingly.
  • the casting compounds according to the invention show a low initial mixing viscosity.
  • mixed viscosity is meant that viscosity which is established immediately after mixing of the reactive components.
  • Low mixing viscosity makes it possible to fill in molds that have a complex structure and require low viscosity for complete filling.
  • a low viscosity is advantageous, for example, when casting dialysis filters having a fiber number greater than 12,000.
  • the casting compounds of the invention show immediately after the mixture of the reactive components (A), (B) and optionally (C), usually a mixed viscosity, which is up to 1500 mPa-s; a mixed viscosity of up to 1000 mPa.s is preferred, and a mixed viscosity of up to 600 mPa.s is particularly preferred. Finally, a mixed viscosity of up to 500 mPa.s is most preferred. In principle, the lowest possible mixing viscosity is desired, since a low mixing viscosity enables efficient casting. On the other hand, due to technical conditions, there is a practical lower limit for the mixing viscosity. For example, the mixing viscosity may be in the range of 200 mPa ⁇ s or higher, especially in the range of 250 to 600 mPa ⁇ s. Modified isocyanate (B)
  • the modified isocyanate (B) is obtainable according to the invention by reacting an isocyanate component (b1) with a diol component (b2), resulting in polyisocyanate prepolymers.
  • the reaction takes place in a manner known per se, by reacting isocyanate components (b1) described below, for example at temperatures of about 80 ° C., with diol components (b2) described below, to give a polyisocyanate prepolymer.
  • the modified isocyanate (B) contains further additives. Stabilizers, fillers and / or auxiliaries can be used as additives, for example.
  • the expert uses the additives mentioned according to the requirements of the field of application.
  • component B in casting compounds for dialysis filters preferably contains no fillers.
  • the modified isocyanate (B) usually contains one or more reaction control agents. These are auxiliaries which influence the reaction of components (b1) and (b2) and / or reduce side reactions in the reaction of (b1) and (b2) and / or during later storage after the reaction has taken place.
  • the modified isocyanate (B) contains from 0.1 to 10 g of a reaction control aid per 10 kg (B).
  • the modified isocyanate (B) contains from 0.2 to 8 g of a reaction control aid per 10 kg (B).
  • Diol-bis-chloroformates in particular diethylene glycol bis-chloroformate or benzoyl chloride, are particularly preferably used as reaction-control auxiliaries.
  • isocyanate component b1) the customary aliphatic, cycloaliphatic and in particular aromatic di- and / or polyisocyanates or mixtures thereof are used.
  • TDI tolylene diisocyanate
  • MDI diphenylmethane diisocyanates
  • all 2-core isomers (2,2 ', 2,4' and 4,4 ') can be used.
  • 4,4'-MDI is used.
  • the isocyanate component b1) may additionally be modified, for example by incorporation of uretdione, carbamate, isocyanurate, carbodiimide, allophanate and urethane groups.
  • Component b1) preferably contains from 2 to 10% by weight of a carbodiimide-modified isocyanate. Particular preference is given to a carbodiimide-modified 4,4'-MDI. Most preferably, the isocyanate component b1) contains 3 to 7 wt .-% carbodiimide-modified 4,4'-MDI.
  • the numerical values given in% by weight of carbodiimide-modified isocyanate relate to a carbodiimide modified isocyanate containing 10 wt .-% carbodiimide. If the carbodiimide content deviates, the person skilled in the art converts the stated values accordingly.
  • diol component b2) organic polyhydroxy compounds having an OH functionality of 1, 5 to 2.5 are used.
  • the OH functionality is in the range of 1.8 to 2.2, more preferably a diol compound having an OH functionality of 2 is used.
  • diol component b2) in particular alkoxylated diol compounds are preferred.
  • Particularly preferred diol component b2) are propylene glycols.
  • Suitable propylene glycols include (mono-) propylene glycol and dipropylene glycol, as well as oligo- and polypropylene glycols, the latter being preparable from a diol compound by propoxylation.
  • the diol component b2) contains a mixture of at least two different propylene glycols with different number average molecular weight.
  • the diol component b2) contains at least two different propylene glycols b2x) and b2y) as constituents of different molecular weight, wherein as component b2x) a propylene glycol having a molecular weight of 700 to 1300 g / mol and as component b2y) a propylene glycol with a molecular weight of 50 to 200 g / mol is used.
  • the diol component (b2) contains a mixture which contains at least three different propylene glycols b2x), b2y) and b2z) as constituents of different molecular weight, wherein as component b2x) a propylene glycol having a number average molecular weight of 700 to 1300 g / mol, as component b2y) a propylene glycol having a number average molecular weight of 250 to 650 g / mol and as component b2z) a propylene glycol having a number average molecular weight of 50 to 200 g / mol is used.
  • Particularly preferred as component b2z) is dipropylene glycol.
  • the diol component b2) contains two different propylene glycols b2x) and b2y) with different molecular weights
  • the two components b2x) and b2y) are preferably in the mixing ratio of 40 to 60% by weight b2x) and from 60 to 40% by weight.
  • -% b2y) used.
  • From 45 to 55 wt .-% b2x) and from 55 to 45 wt .-% b2y) are particularly preferably used, the sum of b2x) and b2y) in each case giving 100 wt .-%.
  • the diol component b2) contains at least 3 different propylene glycols according to the properties mentioned under b2x), b2y) and b2z
  • the three Components b2x), b2y) and b2z) are preferably used in the following ratio: from 30 to 40% by weight b2x), from 30 to 40% by weight b2y) and from 20 to 40% by weight b2z). From 32 to 36 wt .-% b2x), from 35 to 39 wt .-% b2y) and from 25 to 33 wt .-% b2z) is particularly preferably used, the sum of b2x), b2y) and b2z) each - because 100% by weight results.
  • the modified isocyanate (B) has an NCO content of 18 to 28 wt .-%, particularly preferably from 20 to 25 wt .-%.
  • the modified isocyanate (B) also has a viscosity of 250 to 1500 mPas; preferred is a viscosity of 250 to 1000 mPa-s and particularly preferred is a viscosity of 250 to 500 mPa-s.
  • the described modified isocyanates show a high storage stability and no unwanted crystallization even at low temperatures.
  • the casting compounds according to the invention can be prepared in the absence or presence of catalysts. However, the preparation of the potting compounds preferably takes place in the presence of catalysts which greatly accelerate the reaction of the modified isocyanate (B) with the polyol mixture (A).
  • Suitable catalysts (C) are organic metal compounds, preferably organic tin compounds, in particular the tin (II) salts of organic carboxylic acids, such as tin (II) diacetate, tin (II) dioctoate, tin (II) ll) -diethylhexoate and tin (II) dilaurate and the dialkyltin (IV) salts of organic carboxylic acids, such as Dibutyltin (IV) diacetate, dibutyltin (IV) dilaurate, dibutyltin (IV) maleate and di-octyltin (IV) diacetate.
  • Such catalysts are e.g. in DE-A-3 048 529.
  • Dialkyltin (IV) -mercapto compounds such as bis-lauryltin (IV) dimercaptide, and compounds of the general formulas R 2 Sn (SR'-O-CO-R ") 2 or R 2 Sn (SR '-CO-OR') 2 , in which R is an alkyl radical having at least 8 carbon atoms, R 'is an alkylene radical having at least two carbon atoms and R' is an alkyl radical having at least four carbon atoms
  • R is an alkyl radical having at least 8 carbon atoms
  • R ' is an alkylene radical having at least two carbon atoms
  • R' is an alkyl radical having at least four carbon atoms
  • catalysts of this type which are described, for example, in DD-A Examples which may be mentioned are: dioctyltin (IV) bis (thioethylene glycol-2-ethylhexoate), dioctyltin (IV) bis (thioethylene glycolo
  • Organotin compounds having tin-oxygen or tin-sulfur bonds have also proven very effective as catalysts , (R 3 Sn) 2 S, R 2 Sn (SR ') 2 or RSn (SR') 3 , where R and R 'represent alkyl groups containing 4 to 8 carbon atoms at R and 4 to 12 carbon atoms at R and R 'may also denote -R 11 COOR "' and -R 11 OCOR '" in which R "are alkyl groups of 1 to 6 carbon atoms and R'" are alkylene groups of 4 to 12 carbon atoms.
  • Examples include: bis (tributyltin) oxide, dibutyltin (IV) sulfide, dioctyltin (IV) sulfide, bis (tributyltin) sulfide, dibutyltin (IV) bis (thioglycolic acid 2-ethylhexyl ester), dioctyltin (IV) bis (thioglycolic acid 2-ethylhexyl ester), octyltin (IV) tris (2-ethylhexyl thioglycolate), dioctyltin (IV) bis (thioethylene glycol 2-ethylhexylate) and dibutyltin (IV) bis (thioethylenglykollaurat).
  • Mono-n-octyltin (2-ethylhexyl thioglycolate) and di-n-octyltin bis (2-ethylhexyl thioglycolate) are preferably used as catalysts. Particular preference is given to catalysts (C) based on dioctyltin (IV) dimercaptide.
  • the catalysts (C) can be used individually or in the form of catalyst combinations.
  • the present invention encompasses both the casting compounds which can be prepared from the described components and the combination of the separately present components from (A) a polyol mixture according to the invention and (B) a modified isocyanate for common use described above.
  • catalysts are used for the preparation of the casting compounds according to the invention, they are preferably mixed with the polyol mixture (A), which is finally mixed with the component (B) and reacted.
  • the catalysts are usually used in an amount of 0.001 to 0.2 parts by weight, preferably 0.005 to 0.015 parts by weight per 100 parts by weight of the polyol mixture (A).
  • the method for producing the casting compounds according to the invention comprises the mixing of a polyol mixture (A) according to the invention, if appropriate containing a catalyst (C), with at least one modified isocyanate (B).
  • the mixing is preferably carried out by means of a polyurethane two-component processing machine.
  • the mixing viscosity which occurs immediately after the mixture is preferably in the range defined above in the process according to the invention.
  • the potting compounds are poured and subjected to curing. Casting is to be understood as any measure which gives the initially flowable potting compound the shape that it has after curing. Casting is to be understood in particular as the introduction into or application to a body.
  • a body may, for example, be a surface, a frame, a vessel with at least one opening or a shape with at least one depression.
  • the potting compound can always remain in contact with the body or be dissolved out of it.
  • the potting compound is not separated from the mold after curing, but forms a unit with this.
  • the curing can in principle be carried out in one or more steps, which differ in the ambient conditions, in particular the temperature.
  • the cure may be in a pre-cure step and a post-cure step.
  • curing in one step is preferred.
  • the curing is generally carried out without further action by reaction of the NCO groups with the reactive hydrogen atoms, in particular the OH groups.
  • the temperature and atmosphere of the environment are controlled and / or controlled during the curing step.
  • a chemical crosslinking reaction generally proceeds. Curing is completed as soon as the potting compound has largely reached its final properties, in particular its final hardness.
  • the curing is usually carried out in a period of minutes to several hours, for example from 0.3 to 4 hours, preferably in a period of 1 to 3 hours.
  • the casting compounds according to the invention After curing, the casting compounds according to the invention generally show a hardness of 50 to 70 degrees Shore-D. However, the casting compounds according to the invention preferably have a hardness of 55 to 65 degrees Shore-D. Particularly preferred, for example for applications as potting compound in dialysis filters, a hardness of 58 to 62 degrees Shore-D. The hardness in degrees Shore-D refers to DIN 53505 at a temperature of 23 ° C. The person skilled in the art selects the composition of the casting compounds, for example the type and amount of crosslinking agent a3), correspondingly. Depending on the field of application, the potting compounds can only be ready for use after a cleaning step, for example a sterilization step in the case of potting compounds in dialysis filters.
  • the casting compounds of the invention have a variety of uses. Among the possible applications is the use as a molding material, for. As in mold making or in the production of prototypes, and as an embedding material, for. B. as a potting compound for components in the electrical and electronics sector or in medical devices. Preferred is the use as embedding material.
  • the casting compounds according to the invention are used as embedding material in the electrical or electronics sector as well as in the filtration of aqueous media. Particularly preferred are medical-technical applications. Very particular preference is given to the use of the casting compounds for embedding hollow fibers, in particular in dialysis filters.
  • a so-called dialysis filter or dialyzer represents that component in a dialysis machine which contains the exchange membrane at which the mass transfer during blood washing is carried out.
  • capillary dialyzers are used, to which the dialysis filters mentioned in the present invention refer.
  • the dialysis filters consist of a bundle of hollow fibers, which usually contains 10,000 to 15,000 fibers, and which is embedded in each case at two ends of a hollow body in a matrix of a potting compound.
  • the hollow body usually consists of a transparent plastic, for example polycarbonate, and is installed in a dialyzer housing such that blood can be passed through the interior of the hollow fibers.
  • the dialysis fluid flows around the hollow fibers through which blood flows.
  • the wall of the hollow fibers forms the actual filter membrane, at which the mass transfer takes place during the dialysis treatment.
  • the method for producing the dialysis filters according to the invention comprises mixing a polyol mixture (A) according to the invention, if appropriate containing a catalyst (C), with a modified isocyanate (B).
  • the mixing of the components described is preferably carried out by means of a polyurethane two-component processing machine.
  • the mixing viscosity which is directly established after the mixture is preferably in the range from 250 to 600 mPa.s in the process according to the invention; more preferably, it is in the range of 300 to 500 mPa ⁇ s.
  • the reaction mixture is then added in a metered amount in the hollow fibers containing form.
  • the entry of the potting compound is preferably carried out in a rotating in a centrifuge hollow body containing hollow fibers, wherein the hollow body is a precursor of a dialysis filter. By centrifugal force, the liquid reaction mixture is transported to the respective two ends of the dialysis filter enclosing the hollow fibers and cures for compact, substantially clear potting.
  • the curing step again takes place without further action by reaction of the NCO groups with reactive hydrogen atoms, in particular the OH groups.
  • the curing step is completed as soon as the potting compound has largely reached its final properties, in particular its hardness and stability during wet sterilization and the absence of the migration of cytotoxic compounds.
  • the dialysis filter is generally ready for use after a cleaning and sterilization process.
  • the hardened potting compounds are resistant to disinfectants.
  • the casting compounds according to the invention show a low absorption of steam or boiling hot water.
  • the potting compounds according to the invention can be cut over a period of two weeks without formation of fine dust, which can otherwise clog the pores.
  • the cured potting compounds of this invention are transparent, non-cytotoxic and have improved adhesion to other materials, e.g. Polycarbonates, at elevated temperatures over a longer period.
  • the potting compounds are stable to percarboxylic acids, so that moldings from such potting compounds can be sterilized with peracetic acid.
  • the casting compounds of the invention show a high hydrophobicity and a sufficient crosslinking density.
  • the still flowable potting compounds can be cast without foaming. At the same time, the casting compounds show a low mixing viscosity immediately after mixing the reactive components.
  • the potting compounds can be cut after only 2 hours, but do not harden so much that they can still be cut after more than 24 hours.
  • a further advantage is that the potting compounds according to the invention based on polyurethane with all conventional types of hollow fibers, such as cuprophan, polysulfone, polycarbonate or cellulose fibers are processable and the polycarbonates prior to processing need no pre-treatment by corona discharge to improve the adhesion.
  • polyol mixtures according to the invention thus lead in combination with suitable modified isocyanates to casting compounds having the abovementioned advantages and, due to the low mixing viscosity resulting, enable the time-efficient casting of complex structures.
  • the viscosity was determined according to DIN 53018 at a temperature of 25 ° C. using a rotary viscometer from Haake (measuring device plate / cone).
  • the mixing viscosity was determined by calculation, since it refers to the time zero, that is, immediately before the start of the reaction.
  • the water uptake was determined by boiling previously weighed round test specimens 68 mm in diameter and 5 mm in thickness for 5 hours in a vessel with water. Then the mass was redetermined and the percentage increase in weight was determined.
  • the Peressigklastedesorptions was determined by 5 g of the potting compound in the form of several 1 mm thick, circular specimens with a diameter of 35 mm 2 hours at 20 0 C in 100 ml of an aqueous solution containing 3.5 wt .-% peracetic acid and 26 wt .-% hydrogen peroxide, were stored. The sample was then rinsed once with distilled water and stored in 100 ml of distilled water with regular stirring. After four hours of storage, the amount of peroxo compound dissolved out was determined iodometrically by back-titration of oxidized iodide with a 0.01 molar thiosulfate solution.
  • Component b1-1) was placed in a laboratory stirred reactor with heating and cooling device. For this purpose, if appropriate, component b1-2) was added and the two isocyanates were mixed. From the components b2-1), b2-2) and b2-3), a mixture was prepared to which was added 0.7 g per 10 kg of modified isocyanate diglycol bis-chloroformate. The glycol mixture was slowly and at rest. ren added to the isocyanate and the incipient reaction of the NCO groups with the reactive hydrogen atoms controlled so that the conversion of the glycol mixture with the excess isocyanate was carried out at 80 0 C in the period of 60 min, followed by a cooling followed.
  • the components described were mixed in the mixing ratio indicated in Table 4 by means of a polyurethane two-component processing machine, and the reaction mixture was introduced in the precisely metered amount into the rotary dialysis filter filled with hollow fibers.

Abstract

Die Erfindung betrifft eine Polyolmischung, die als Komponenten a1) mindestens ein fettbasiertes Polyol, a2) mindestens ein Polyetherol mit einem zahlenmittleren Molekulargewicht von 500 bis 2000 g/mol und a3) gegebenenfalls ein oder mehrere Vernetzer mit einem zahlenmittleren Molekulargewicht von 90 bis 400 g/mol, enthält, wobei x) das zahlenmittlere Molekulargewicht der Komponente a1) um höchstens 400 g/mol vom zahlenmittleren Molekulargewicht der Komponente a2) abweicht und xi) die OH-Funktionalität der Komponenten a1) und a2) um nicht mehr als 0,5 voneinander abweicht. Diese Polyolmischungen können zur Herstellung von Vergussmassen auf Basis von Polyurethan eingesetzt werden. Darüber hinaus betrifft die Erfindung Vergussmassen auf Basis der eingangs beschriebenen Polyolmischungen (A) und mindestens eines modifizierten Isocyanats (B), sowie die Verwendung der Vergussmassen als Einbettungswerkstoff. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung der eingangs beschriebenen Vergussmassen. Außerdem betrifft die Erfindung Dialysefilter, welche die eingangs beschriebenen Vergussmassen umfassen. Schließlich betrifft die Erfindung die Kombination aus getrennt vorliegenden Komponenten (A) und (B) zur gemeinsamen Anwendung.

Description

Vergussmassen auf Basis von Polyurethan
Beschreibung
Die Erfindung betrifft eine Polyolmischung, die als Komponenten a1) mindestens ein fettbasiertes Polyol, a2) mindestens ein Polyetherol mit einem zahlenmittleren Molekulargewicht von 500 bis 2000 g/mol und a3) gegebenenfalls ein oder mehrere Vernetzer mit einem zahlenmittleren Mo- lekulargewicht von 90 bis 400 g/mol,
enthält, wobei
x) das zahlenmittlere Molekulargewicht der Komponente a1) um höchstens 400 g/mol vom zahlenmittleren Molekulargewicht der Komponente a2) abweicht und xi) die OH-Funktionalität der Komponenten a1) und a2) um nicht mehr als 0,5 voneinander abweicht.
Diese Polyolmischungen können zur Herstellung von Vergussmassen auf Basis von Polyurethan eingesetzt werden. Darüber hinaus betrifft die Erfindung Vergussmassen auf Basis der eingangs beschriebenen Polyolmischungen (A) und mindestens eines modifizierten Isocyanats (B), sowie die Verwendung der Vergussmassen als Einbettungswerkstoff. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung der ein- gangs beschriebenen Vergussmassen. Außerdem betrifft die Erfindung Dialysefilter, welche die eingangs beschriebenen Vergussmassen umfassen. Schließlich betrifft die Erfindung die Kombination aus getrennt vorliegenden Komponenten (A) und (B) zur gemeinsamen Anwendung.
Bevorzugte Ausführungsformen sind den Ansprüchen und der Beschreibung zu entnehmen. Kombinationen bevorzugter Ausführungsformen verlassen nicht den Rahmen dieser Erfindung.
Vergussmassen auf Basis von Polyurethan (PU) sind an sich bekannt und werden z.B. zusammenfassend beschrieben im Kunststoff-Handbuch "Polyurethane", Band 7, 3. Auflage, 1993, Seiten 438-454, herausgegeben von Dr. G. Oertel, im Carl Hanser Verlag, München, Wien.
Die Verwendung von Vergussmassen auf Basis von Polyurethan zur Herstellung von Formteilen für medizinisch-technische Geräte, insbesondere als Einbettwerkstoff für Hohlfasern in Dialysatoren, ist ebenfalls an sich bekannt und besitzt unter anderem aufgrund der einfachen Handhabung von PU-Vergussmassen sowie deren geringe Schrumpfung während des Aushärtungsprozesses Vorteile.
EP-O 538 673 beschreibt transparente, heissdampfsterilisierbare, nicht zytotoxische Vergussmassen auf Basis von Polyurethan, die durch Umsetzung von modifizierten Diisocyanaten mit einer Polyolkomponente erhältlich sind. Als geeignete Bestandteile der Polyolkomponente werden niedermolekulare Polyetherpolyole mit einer mittleren Funktionalität von 3 bis 8 und einer Hydroxylzahl von 200 bis 1000 mg KOH/g sowie entweder Rizinusöl oder Polyetherpolyole mit einer Funktionalität von 2 bis 3 und einer Hydroxylzahl von 90 bis 200 mg KOH/g offenbart. Kombinationen aus beiden letztgenannten Komponenten werden zwar nicht ausgeschlossen, jedoch werden keine Angaben über besonders geeignete, insbesondere niedrigviskose Polyolmischungen gemacht.
E P-A- 1 090 941 beschreibt ebenfalls transparente, heissdampfsterilisierbare, nicht zytotoxische Vergussmassen auf Basis von Polyurethan. Die in dieser Anmeldung genannten Polyurethansysteme basieren auf einer modifizierten Isocyanat-Komponente mit spezifischer Viskosität sowie auf einer Polyolkomponente, die u.a. auch Rizinusöl im Gemisch mit niedermolekularen Polyetherolen mit einer Funktionalität von 3 bis 8 und einer Hydroxylzahl von 200 bis 1000 mg KOH/g enthalten kann.
DE-31 49 527 A1 beschreibt Polyurethanmassen für Hohlfaserdialysatoren, welche Polyisocyanate und lagerstabile Polyolmischungen aus hauptsächlich Rizinusöl enthalten. Die lagerstabile Polyolmischung enthält außerdem noch üblicherweise mit Rizi- nusöl nicht verträgliche, möglichst niedermolekulare hydroxylgruppenhaltige Verbindungen, z. B. niedermolekulare Alkohole, sowie deren partielle Ester mit langkettigen Carbonsäuren als Lösungsvermittler.
Ein Nachteil der im Stand der Technik beschriebenen Polyolmischungen ist die hohe Viskosität nach Mischung der Reaktivkomponenten. Als Konsequenz hieraus ist das zeiteffiziente Vergießen insbesondere von Dialysefiltern mit einer hohen Faserzahl problematisch oder unmöglich.
Als Alternative schlägt die E P-A- 1 582 544 Vergusssysteme auf Basis von PoIy- urethan vor, welche eine niedrige Viskosität aufweisen. Die vorgeschlagenen Zusammensetzungen basieren auf dem Einsatz eines besonderen Diolgemisches zur Herstellung eines niederviskosen Polyisocyanat-Präpolymers, wobei bevorzugt Propylenglyko- Ie mit unterschiedlichem Molekulargewicht zum Einsatz kommen. Als Polyolkomponente werden Polyetheralkohole und/oder Polyesteralkohole vorgeschlagen. Die in E P-A- 1 582 544 vorgeschlagenen Vergusssysteme sind jedoch hinsichtlich der Stabilität bei der Nasssterilisation noch verbesserungswürdig. Eine Aufgabe der vorliegenden Erfindung war es, Polyolmischungen bereitzustellen, die eine niedrige Viskosität unmittelbar nach Mischung mit einer Isocyanatkomponente (im folgenden Mischviskosität genannt) aufweisen und so das Vergießen in Dialysefiltern mit einer hohen Faserzahl von bevorzugt mehr als 12000 Fasern pro Filter zu er- möglichen. Gleichzeitig sollten die mit den erfindungsgemäßen Polyolmischungen hergestellten Vergussmassen eine hohe Stabilität bei der Nasssterilisation aufweisen. Ein Ziel war demzufolge, Vergussmassen mit einer lediglich geringfügigen Aufnahme von Wasser bei hohen Temperaturen und einer hohen Resistenz gegenüber Desinfektionsmitteln, insbesondere eine geringfügige Desorption von Peressigsäure nach der Nasssterilisation bereitzustellen. Darüber hinaus sollten die Vergussmassen eine geringe Feinstaubbildung beim Verschneiden sowie eine gute Verschneidbarkeit über einen langen Zeitraum aufweisen. Schließlich sollten günstige Haftungseigenschaften zwischen der Vergussmasse und dem Gehäuse von medizinisch-technischen Artikeln erreicht werden. Die Vergussmassen sollten nach erfolgter Aushärtung in Kontakt mit wässrigen Medien außerdem keine Desorption toxischer Verbindungen zeigen und transparent sein.
Es wurde gefunden, dass sich die oben genannten positiven Eigenschaften, insbesondere eine geringe Wasseraufnahme, eine hohe Resistenz gegenüber Desinfektionsmit- teln und gute Verarbeitungseigenschaften nach dem Aushärten einerseits sowie eine niedrige Mischviskosität andererseits gleichzeitig erreichen lassen, indem die erfindungsgemäßen Polyolmischungen eingesetzt werden. Es wurde außerdem gefunden, dass die erfindungsgemäßen Vergussmassen die beschriebenen vorzüglichen Eigenschaften bei der Nasssterilisation und bei der Verarbeitung haben.
Eine weitere Aufgabe bestand schließlich darin, ein Verfahren zur Herstellung von Vergussmassen und Dialysefiltern, insbesondere solche mit einer hohen Faserzahl, bereitzustellen, bei dem ein zeiteffizientes Vergießen selbst komplexer Formen ohne die Bildung von Hohlräumen möglich ist.
Polyolmischungen
Erfindungsgemäß enthält die Polyolmischung mindestens ein fettbasiertes Polyol a1 ) und mindestens ein Polyetherol a2) mit einem zahlenmittleren Molekulargewicht von 500 bis 2000 g/mol, wobei das zahlenmittlere Molekulargewicht der beiden Polyole um höchstens 400 g/mol und die OH-Funktionalität der beiden Polyole um höchstens 0,5 voneinander abweicht.
Unter OH-Funktionalität ist die Zahl an alkoholischen, acylierbaren OH-Gruppen pro Molekül zu verstehen. Falls die betreffende Komponente aus einer Verbindung mit definierter Molekularstruktur besteht, ergibt sich die Funktionalität aus der Zahl der OH- Gruppen pro Molekül. Wird eine Verbindung durch Ethoxylierung oder Propoxylierung eines Startermoleküls hergestellt, ergibt sich die OH-Funktionalität aus der Anzahl der reaktiven funktionellen Gruppen, beispielsweise OH-Gruppen, pro Startermolekül. Falls Mischungen aus Verbindungen mit unterschiedlicher OH-Funktionalität zum Einsatz kommen, ergibt sich die OH-Funktionalität aus dem zahlengewichteten Mittel der OH- Funktionalität der einzelnen Verbindungen.
Alle in dieser Erfindung genannten Molekulargewichte bezeichnen das zahlenmittlere Molekulargewicht. Das Molekulargewicht einer Mischung oder einer Komponente ergibt sich dabei aus den zahlengewichteten Molekulargewichten der enthaltenen Verbindun- gen. Unter einem zahlenmittleren Molekulargewicht soll im folgenden derjenige Wert verstanden werden, der mittels Gelpermeationschromatographie an einem Ultrastyra- gelsäulensystem mit Tetrahydrofuran (THF) als Laufmittel und einem Rl-Detektor bei 35°C bestimmt wird.
Unter einem Polyol ist eine Verbindung zu verstehen, die pro Molekül mindestens zwei gegenüber Isocyanat-Gruppen reaktive Wasserstoffatome enthält. Bevorzugt stammen die gegenüber Isocyanatgruppen reaktiven H-Atome von Hydroxylgruppen.
Bevorzugt enthält die Polyolmischung die Komponenten a1) und a2) in einem Ge- Wichtsverhältnis von a1) zu a2) von 8 zu 2 bis 2 zu 8. Besonders bevorzugt ist ein Gewichtsverhältnis der Komponenten a1) zu a2) von 7 zu 3 bis 4 zu 6, beispielsweise von 6,5 zu 3,5 bis 4,5 zu 5,5.
Falls die erfindungsgemäße Polyolmischung einen Vernetzer a3) enthält, dann beträgt der Anteil von a3) in der Polyolmischung bevorzugt von 1 bis 30 Gew.-% bezogen auf die Polyolmischung, besonders bevorzugt von 1 bis 21 Gew.-% und ganz besonders bevorzugt von 5 bis 10 Gew.-%, jeweils bezogen auf die Polyolmischung.
Bevorzugt enthält die Polyolmischung folgende Bestandteile: von 40 bis 70 Gew.-% der Komponente a1 ), von 30 bis 60 Gew.-% der Komponente a2) und von 0 bis 30 Gew.-% der Komponente a3), wobei die Summe aus a1 ), a2) und a3) 100 Gew.-% ergibt. Besonders bevorzugt enthält die Polyolmischung folgende Bestandteile: von 45 bis 65 Gew.-% der Komponente a1 ), von 34 bis 54 Gew.-% der Komponente a2) und von 1 bis 21 Gew.-% der Komponente a3), wobei die Summe aus a1 ), a2) und a3) 100 Gew.-% ergibt.
Die erfindungsgemäße Polyolmischung weist bevorzugt eine Viskosität von bis zu 1500 mPa-s auf; bevorzugt ist eine Viskosität von bis zu 1000 mPa-s und besonders bevorzugt ist eine Viskosität von bis zu 700 mPa-s. Ganz besonders bevorzugt ist schließlich eine Viskosität der Polyolmischung von bis zu 600 mPa-s. Grundsätzlich ist eine möglichst geringe Viskosität der Polyolmischung erwünscht, da eine niedrige Viskosität beim späteren Herstellen einer Vergussmasse auf Basis von Polyurethan zu einer niedrigen Mischviskosität führt. Aufgrund der erfindungsgemäßen Zusammensetzung der Polyolmischung ergibt sich jedoch eine praktische untere Grenze für die Viskosität. Beispielsweise kann die Viskosität der Polyolmischung im Bereich von 200 mPa-s oder höher liegen, insbesondere im Bereich von 250 bis 600 mPa-s.
Die Viskosität kann beispielsweise mittels eines Rotationsviskosimeters bestimmt werden. Alle in dieser Erfindung genannten Viskositäten beziehen sich auf die Bestimmung nach DIN 53018 bei einer Temperatur von 25°C mit einem Rotationsviskosimeter in Platte/Kegel-Messgeometrie.
Erfindungsgemäß enthält die Komponente a1 ) mindestens ein fettbasiertes Polyol. Bevorzugt besitzt die Komponente a1 ) eine OH-Funktionalität von mindestens 2. Als Komponente a1 ) geeignet sind somit unter anderem Mischungen aus fettbasierten Po- lyolen, die jeweils eine OH-Funktionalität von mindestens 2 aufweisen, oder Mischun- gen aus fettbasierten Polyolen, wobei sich eine OH-Funktionalität der Komponente a1 ) von mindestens 2 ergibt.
Die OH-Funktionalität der Komponente a1 ) liegt bevorzugt im Bereich von 2 bis 3. Besonders bevorzugt weist die Komponente a1 ) eine OH-Funktionalität von 2,3 bis 3 auf und ganz besonders bevorzugt von 2,6 bis 3.
Unter fettbasiertem Polyol soll eine Verbindung verstanden werden, welche auf einem Fett, einem Öl, einer Fettsäure oder einem Fettsäurederivat basiert. Ein fettbasiertes Polyol kann ein Fett, ein Öl, eine Fettsäure oder ein Fettsäurederivat sein oder aus den vorgenannten Verbindungen durch physikalische oder chemische Modifikation erhalten werden. Fettbasierte Polyole nach oben genannter Definition sind dem Fachmann an sich bekannt oder können nach an sich bekannten Methoden erhalten werden.
Als fettbasiertes Polyol kommen beispielsweise pflanzliche Öle oder deren Derivate in Betracht. Pflanzliche Öle können in ihrer Zusammensetzung schwanken und in unterschiedlichen Reinheitsgraden vorkommen. Bevorzugt im Sinne dieser Erfindung sind pflanzliche Öle, die den Bestimmungen des Deutschen Arzneibuches (DAB) genügen. Ganz besonders bevorzugt enthält die Komponente a1 ) mindestens ein fettbasiertes Polyol, das ein pflanzliches Öl ist, welches DAB-10 entspricht.
Als fettbasiertes Polyol können außerdem allgemein bekannte Fettsäuren, bevorzugt natürliche Fettsäuren, besonders bevorzugt pflanzliche Fettsäuren, insbesondere ungesättigte pflanzliche Fettsäuren, als auch deren Derivate wie die Ester mit Mono- und/oder Dialkoholen verwendet werden, sofern die weiter unten diskutierten Eigen- Schäften hinsichtlich Molekulargewicht und OH-Funktionalität erfüllt sind. Als fettbasiertes Polyol können jedoch beispielsweise auch ringgeöffnete epoxidierte oder oxidierte Fettsäureverbindungen und/oder Addukte von Fettsäureverbindungen und Alkylenoxiden eingesetzt werden. Bevorzugt sind hydroxylierte Fettsäuren und/oder hydroxylierte Fettsäurederivate, die durch die vorgenannten Verfahren erhält- lieh sind.
Die Addukte von OH-funktionellen fettbasierten Verbindungen, beispielsweise Rizinusöl oder hydroxylierte pflanzliche Öle, und Alkylenoxiden können durch allgemein bekannte Alkoxylierung der Verbindungen mit beispielsweise Ethylenoxid, Propylenoxid und/oder Butylenoxid bei Temperaturen von 80 bis 130 0C und Drücken von 0,1 bis 1 MPa, gegebenenfalls in Gegenwart von üblichen Katalysatoren wie Alkalihydroxiden oder Alkalialkoholaten hergestellt werden.
Als fettbasiertes Polyol können des weiteren auch hydroxylierte Fettsäureverbindungen auf der Basis von Rapsöl, Sojaöl, Rüböl, Olivenöl und/oder Sonnenblumenöl und/oder solche auf der Basis von Öl- und/oder Linolsäure eingesetzt werden. Als fettbasiertes Polyol sind insbesondere Polyole geeignet, die auf hydroxyliertem Sojaöl basieren.
Bevorzugt wird als fettbasiertes Polyol jedoch ein pflanzliches Öl ohne chemische Mo- difikation eingesetzt. Besonders bevorzugt ist Rizinusöl. Insbesondere bevorzugt als fettbasiertes Polyol ist Rizinusöl, das den Bestimmungen des Deutschen Arzneibuches gemäß DAB 10 genügt.
Bevorzugt sind außerdem Triglyceride von Fettsäuren, die eine OH-Funktionalität von 2 bis 3 aufweisen. Besonders bevorzugt sind das Triglycerid von Ricinolsäure, gegebenenfalls im Gemisch mit Triglyceriden, die noch weitere natürliche Fettsäuren enthalten, beispielsweise Linolsäure und/oder Palmitinsäure.
Die Komponente a1) weist bevorzugt einen geringen Wassergehalt, beispielsweise kleiner 0,2 Gew.-% auf. Bevorzugt ist ein Wassergehalt der Komponente a1 ) von weniger als 0,1 Gew.-%. Wird als Komponente a1) ein natürliches Öl, beispielsweise Rizinusöl, eingesetzt, dann erfolgt üblicherweise vor dem Einsatz eine Reinigung, die insbesondere die Entfernung von Schwebstoffen und eine Entwässerung einschließen kann. Von Schwebstoffen befreite natürliche Öle mit oben genanntem Wassergehalt sind als Komponente a1 ) besonders geeignet.
Das Polyol kann neben seinem Molekulargewicht auch mittels seiner Hydroxylzahl charakterisiert werden. Wie dem Fachmann hinlänglich bekannt, ist eine exakte Umrechnung von Molekulargewicht in Hydroxylzahl lediglich bei bekannter OH-Funktionalität möglich. Die Hydroxylzahl der Komponente a1 ) beträgt bevorzugt 50 bis 350 mg
KOH/g, besonders bevorzugt 100 bis 300 mg KOH/g, und ganz besonders bevorzugt 100 bis 200 mg KOH/g. Die Hydroxylzahl einer Verbindung gibt an, welche Menge an Kaliumhydroxid in gramm der von 1 g der Verbindung bei der Acetylierung gebundenen Essigsäure äquivalent ist. Die Hydroxylzahl ist ein Maß für die Konzentration von Hydroxylgruppen in einer Polymerkette. Die Bestimmung der Hydroxylzahl ist in der DIN 53240 beschrieben, auf die sich die in dieser Anmeldung angegebenen Hydroxylzahlen beziehen.
In Komponente a1 ) eingesetzt werden bevorzugt fettbasierte Polyole mit einem zahlenmittleren Molekulargewicht von 500 bis 2000 g/mol. Besonders bevorzugt werden fettbasierte Polyole mit einem zahlenmittleren Molekulargewicht von 700 bis
1400 g/mol eingesetzt, ganz besonders bevorzugt von 800 bis 1 100 g/mol. Die Komponente a1 ) hat bevorzugt ein zahlenmittleres Molekulargewicht von 500 bis 200 g/mol, besonders bevorzugt von 700 bis 1400 g/mol, und ganz besonders bevorzugt von 800 bis 1 100 g/mol.
Als Komponente a1) insbesondere bevorzugt werden fettbasierte Polyole oder Mischungen aus mehreren fettbasierten Polyolen, wobei das zahlenmittlere Molekulargewicht der Komponente a1) von 700 bis 1400 g/mol und die OH-Funktionalität von 2 bis 3 beträgt; ganz besonders bevorzugt ist ein zahlenmittleres Molekulargewicht der Komponente a1 ) von 800 bis 1 100 g/mol und eine OH-Funktionalität von 2,6 bis 3.
Erfindungsgemäß enthält die Komponente a2) mindestens ein Polyetherol mit einem zahlenmittleren Molekulargewicht von 500 bis 2000 g/mol. Das zahlenmittlere Molekulargewicht der Komponente a2) liegt bevorzugt im Bereich von 700 bis 1400 g/mol und besonders bevorzugt von 800 bis 1100 g/mol.
Vorzugsweise weist die Komponente a2) eine OH-Funktionalität von 2 bis 4 und besonders bevorzugt von 2,5 bis 3,5 auf. Ganz besonders bevorzugt hat die Komponente a2) eine OH-Funktionalität von 3.
Der Gehalt an Alkaliionen in der Komponente a2) kann herstellungsbedingt in einem weiten Bereich variieren. Üblicherweise enthält die Komponente a2) von 0 bis 200 ppm Alkaliionen. Bevorzugt weist die Komponente a2) einen geringen Gehalt an Alkaliionen auf, beispielsweise nicht mehr als 20 ppm. Besonders bevorzugt weist die Komponente a2) einen Alkaliionengehalt von nicht mehr als 10 ppm auf.
Polyetherole mit den vorgenannten Eigenschaften sind dem Fachmann an sich bekannt oder können mittels an sich bekannter Verfahren hergestellt werden, beispielsweise durch anionische Polymerisation mit Alkalihydroxiden, wie Natrium- oder KaIi- umhydroxid oder Alkalialkoholaten, wie Natriummethylat, Natrium- oder Kaliumethylat oder Kaliumisopropylat als Katalysatoren und unter Zusatz mindestens eines Startermoleküls, das 2 bis 4 reaktive Wasserstoffatome gebunden enthält, oder durch kationi- sehe Polymerisation mit Lewis-Säuren, wie Antimonpentachlorid, Borfluorid-Etherat u.a. oder Bleicherde als Katalysatoren aus einem oder mehreren Alkylenoxiden, ausgewählt aus Propylenoxid (PO) und Ethylenoxid (EO), hergestellt werden.
Falls unterschiedliche Alkylenoxide in ein Polyetherol der Komponente a2) eingebaut werden, können diese einzeln, alternierend nacheinander oder als Mischungen verwendet werden. Der Einsatz eines EO/PO-Gemisches führt zu einem Polyetherol mit statistischer PO/EO-Einheiten-Verteilung. Es ist möglich, zunächst ein PO/EO- Gemisch einzusetzen und dann vor Abbruch der Polymerisation nur noch PO oder EO zu verwenden, um ein Polyetherpolyol mit PO- bzw. EO-Endcap zu erhalten.
Als Startermoleküle zur Herstellung der Polyetherole der Komponente a2) kommen beispielsweise in Betracht: Wasser, organische Dicarbonsäuren, Diamine, wie z.B. gegebenenfalls mono- und dialkylsubstituiertes Ethylendiamin, Diethylentriamin, Triethylentetramin, 1 ,3-Propylendiamin, und/oder 1 ,3- bzw. 1 ,4-Butylendiamin. Als Startermoleküle kommen ferner in Betracht: Alkanolamine, wie z.B. Ethanolamin, N- Methyl- und N-Ethylethanolamin, Dialkanolamine, wie z.B. Diethanolamin, N-Methyl- und N-Ethyldiethanolamin und Trialkanolamine wie z.B. Triethanolamin und Ammoniak. Weiterhin können als Startermoleküle zwei-, drei- oder vierwertige Alkohole, wie E- thandiol, Propandiol-1 ,2 und -1 ,3, Diethylenglykol, Dipropylenglykol, Butandiol-1 ,4, He- xandiol-1 ,6, Glycerin und/oder Pentaerythrit eingesetzt werden.
Bevorzugt sind Startermoleküle oder Mischungen aus Startermolekülen, die zu PoIy- etherolen mit den oben genannten bevorzugten OH-Funktionalitäten führen.
Bevorzugt enthält die Komponente a2) mindestens ein Polyetherol auf Basis von prop- oxyliertem Trimethylolpropan oder propoxyliertem Glycerin oder Mischungen dieser Verbindungen. Besonders bevorzugt sind dabei propoxyliertes Trimethylolpropan und/oder propoxyliertes Glycerin mit einem zahlenmittleren Molekulargewicht von 700 bis 1400 g/mol, ganz besonders bevorzugt von 800 bis 1 100 g/mol.
Die Komponente a2) kann grundsätzlich eine oder mehrere der vorgenannten Polyetherole enthalten. Der Fachmann wählt Mischungen derart, dass sich die vorgenannten Eigenschaften der Komponente a2) hinsichtlich OH-Funktionalität und Molekular- gewicht einstellen.
Erfindungsgemäß weicht das zahlenmittlere Molekulargewicht der Komponente a1) um höchstens 400 g/mol vom zahlenmittleren Molekulargewicht der Komponente a2) und die OH-Funktionalität der Komponente a1 ) von der OH-Funktionalität der Komponente a2) um höchstens 0,5 ab. Bevorzugt beträgt die Abweichung des zahlenmittleren Molekulargewichts höchstens 200 g/mol, ganz besonders bevorzugt höchstens 100 g/mol. Bevorzugt beträgt die Abweichung der OH-Funktionalitäten nicht mehr als 0,4 und ganz besonders bevorzugt nicht mehr als 0,3.
Besonders bevorzugt weicht das zahlenmittlere Molekulargewicht der Komponente a1 ) um höchstens 200 g/mol vom zahlenmittleren Molekulargewicht der Komponente a2) und die OH-Funktionalität der Komponente a1 ) um höchstens 0,4 von der OH-Funk- tionalität der Komponente a2) ab. Ganz besonders bevorzugt weicht das zahlenmittlere Molekulargewicht der Komponente a1 ) um höchstens 100 g/mol vom zahlenmittleren Molekulargewicht der Komponente a2) und die OH-Funktionalität der Komponente a1 ) um höchstens 0,3 von der OH-Funktionalität der Komponente a2) ab.
Erfindungsgemäß handelt es sich bei der Komponente a3), sofern in der Polyolmi- schung enthalten, um ein oder mehrere vernetzend wirkende Verbindungen mit einem zahlenmittleren Molekulargewicht von 90 bis 400 g/mol. Bevorzugt sind dabei solche Vernetzer a3), die ein Molekulargewicht von 90 bis 300 g/mol, besonders bevorzugt von 150 bis 300 g/mol aufweisen.
Die erfindungsgemäßen Polyolmischungen können mit oder ohne Vernetzer a3) vorliegen. Sofern jedoch Vernetzer beispielsweise zur Modifizierung der mechanischen Ei- genschaften eingesetzt werden, werden zweckmäßigerweise Vernetzer a3) mit einer OH-Funktionalität von 3 bis 8 eingesetzt. Vorzugsweise werden Vernetzer mit einer OH-Funktionalität von 3 bis 4 eingesetzt.
Der Gehalt an Alkaliionen im Vernetzer a3) ist in der Regel herstellungsbedingt und kann in einem weiten Bereich variieren. Als Vernetzer a3) sind grundsätzlich solche mit oder ohne Alkaliionen geeignet. In einer Ausführungsform weist der Vernetzer a3) einen Gehalt an Alkaliionen, vorzugsweise Kaliumionen, von bis zu 1200 ppm auf. Vorzugsweise beträgt der Gehalt an Alkaliionen, bevorzugt Kaliumionen, im Vernetzer a3) in dieser Ausführungsform bis zu 1000 ppm und insbesondere bevorzugt bis zu 600 ppm. Gemäß einer anderen Ausführungsform weist der Vernetzer a3) einen geringen Gehalt an Alkaliionen, vorzugsweise Kaliumionen, auf.
Als geeignete Vernetzer seien beispielhaft genannt: 3- und höherwertige Alkohole, wie z.B. Glycerin, Trimethylolpropan, Pentaerythrit, 2,2,6,6-Tetrahydroxymethyl-4- oxaheptandiol-1 ,7(Di-pentaerythrit), Tri pentaerythrit, 3,3,7,7-Tetrahydroxymethyl-5- oxanonane(Di-trimethylolpropan) und Sorbit und die mit diesen Alkoholen gestarteten niedermolekularen Polyoxypropylen-, Polyoxyethylen- oder Polyoxypropylen- polyoxyethylen-polyole. Die Herstellung der alkoxylierten Alkohole kann nach den bereits oben genannten Verfahren erfolgen.
Die Vernetzer a3) können anstatt des Molekulargewichts auch mittels ihrer Hydroxyl- zahl charakterisiert werden. Wie dem Fachmann hinlänglich bekannt, kann eine Um- rechnung von Molekulargewicht in Hydroxylzahl lediglich dann exakt erfolgen, wenn die OH-Funktionalität bekannt ist. Bevorzugt sind Vernetzer a3) mit einer Hydroxylzahl von 400 bis 5000 mg KOH/g, besonders bevorzugt solche mit einer Hydroxylzahl von 500 bis 5000 mg KOH/g und ganz besonders bevorzugt solche mit einer Hydroxylzahl von 500 bis 3000 mg KOH/g.
Als Vernetzer a3) besonders bevorzugt werden solche mit einem Molekulargewicht von 90 bis 300 g/mol, die eine OH-Funktionalität von 3 aufweisen. Ganz besonders bevorzugt werden als Vernetzer a3) mit Trimethylolpropan gestartetes Polyethylenoxid mit einem Molekulargewicht von 90 bis 300 g/mol.
Grundsätzlich können ein oder mehrere Vernetzer als Komponente a3) eingesetzt werden. Der Fachmann wählt Mischungen aus mehreren Vernetzern so, dass das erfindungsgemäße zahlenmittlere Molekulargewicht und gegebenenfalls eine bevorzugte OH-Funktionalität erreicht wird.
Die erfindungsgemäßen Polyolmischungen können neben den genannten Komponenten a1), a2) und gegebenenfalls a3) noch weitere Zusatzstoffe enthalten. Als Zusatzstoffe kommen beispielsweise Stabilisatoren, Füllstoffe und/oder Hilfsmittel in Betracht. Der Fachmann wählt die Zusatzstoffe gemäß den Erfordernissen der geplanten Anwendung. Der Einsatz der Stabilisatoren, Füllstoffe und Hilfsmittel erfolgt in Mengen, die für solche Zusatzstoffe üblich sind. Beispielsweise enthalten die erfindungsgemäßen Polyolmischungen im Falle einer Verwendung in Vergussmassen für Dialysefilter bevorzugt keine Füllstoffe.
Die erfindungsgemäßen Polyolmischungen weisen vielseitige Einsatzmöglichkeiten auf. Mögliche Einsatzgebiete umfassen Kunstharze und Vergussmassen sowie Kunststoffe, z. B. Polyurethane, einschließlich der Hart- oder Weichschäume. Außerdem können die erfindungsgemäßen Polyolmischungen als Klebrohstoff in Klebstoffsyste- men und als Bestandteil von Lackformulierungen und Beschichtungen eingesetzt werden. Besonders geeignet sind die Polyolmischungen zur Herstellung von Vergussmassen auf Basis von Polyurethan durch Umsetzung mit einer Komponente, die Isocya- natgruppen enthält. Besonders bevorzugt ist hierbei die Umsetzung mit den weiter unten beschriebenen modifizierten Isocyanaten. Hierdurch lassen sich erfindungsgemäße Vergussmassen herstellen.
Vergussmassen
Eine Vergussmasse im Sinne dieser Erfindung ist eine Mischung aus mindestens zwei Reaktivkomponenten, die zum Vergießen geeignet ist und die in flüssiger oder viskoser Form in einen Körper eingebracht oder auf einen Körper aufgebracht wird und anschließend aushärtet. Bei einem solchen Körper kann es sich beispielsweise um eine Fläche, um ein Gefäß mit mindestens einer Öffnung oder um eine Form mit mindestens einer Vertiefung handeln. Die Begriffe Vergussmasse und Gießharz sollen äquivalent verstanden werden. Die Eigenschaften der Vergussmasse: Wasseraufnahme, Per- essigsäuredesorption, Verschneidbarkeit, Nasssterilisierbarkeit, Migration von zytotoxi- sehen Verbindungen beziehen sich auf den ausgehärteten Zustand.
Erfindungsgemäß enthalten die Vergussmassen Komponenten auf Basis (A) einer erfindungsgemäßen Polyolmischung und (B) mindestens eines modifizierten Isocyanats auf der Basis einer Isocyanat-Komponente b1) und einer Diol-Komponente b2).
Die Vergussmassen sind erhältlich durch Umsetzung einer erfindungsgemäßen Polyolmischung (A) mit mindestens einem modifizierten Isocyanat (B), das erhältlich ist durch Umsetzung einer Isocyanat-Komponente b1 ) mit einer Diol-Komponente b2), gegebenenfalls katalysiert durch einen Katalysator (C).
Das Einsatz-Verhältnis zwischen der Polyolmischung (A) und der Komponente (B) kann hierbei in einem weiten Bereich variieren. Bevorzugt werden A und B in solchen Mengen zur Reaktion gebracht, dass das Äquivalenzverhältnis von NCO-Gruppen der Komponente B zur Summe der reaktiven Wasserstoffatome der Komponente A 0,9:1 bis 1 ,3:1 , vorzugsweise 0,95:1 bis 1 ,2:1 und besonders bevorzugt 1 :1 bis 1 ,1 :1 beträgt. Der Fachmann bestimmt die einzusetzenden Masseverhältnisse entsprechend.
Die erfindungsgemäßen Vergussmassen zeigen eine niedrige anfängliche Mischviskosität. Unter Mischviskosität ist diejenige Viskosität zu verstehen, die sich unmittelbar nach Mischen der Reaktivkomponenten einstellt. Durch eine geringe Mischviskosität wird das Ausfüllen von Formen möglich, bei denen eine komplexe Struktur vorliegt und die für die vollständige Ausfüllung eine niedrige Viskosität erfordern. Eine niedrige Viskosität ist beispielsweise beim Vergießen von Dialysefiltern mit einer Faserzahl größer 12000 vorteilhaft.
Die erfindungsgemäßen Vergussmassen zeigen unmittelbar nach erfolgter Mischung der reaktiven Komponenten (A), (B) und gegebenenfalls (C) üblicherweise eine Mischviskosität, welche bis zu 1500 mPa-s beträgt; bevorzugt ist eine Mischviskosität von bis zu 1000 mPa-s und besonders bevorzugt ist eine Mischviskosität von bis zu 600 mPa-s. Ganz besonders bevorzugt ist schließlich eine Mischviskosität von bis zu 500 mPa-s. Grundsätzlich ist eine möglichst geringe Mischviskosität erwünscht, da eine geringe Mischviskosität ein effizientes Vergießen ermöglicht. Aufgrund technischer Gegebenheiten ergibt sich jedoch andererseits eine praktische untere Grenze für die Mischviskosität. Beispielsweise kann die Mischviskosität im Bereich von 200 mPa-s oder höher liegen, insbesondere im Bereich von 250 bis 600 mPa-s. Modifiziertes lsocyanat (B)
Das modifizierte lsocyanat (B) ist erfindungsgemäß erhältlich durch Umsetzung einer Isocyanat-Komponente (b1 ) mit einer Diol-Komponente (b2), wobei Polyisocyanat- Prepolymere entstehen. Die Umsetzung erfolgt auf an sich bekannte Weise, indem unten beschriebene Isocyanat-Komponenten (b1), beispielsweise bei Temperaturen von etwa 800C, mit unten beschriebenen Diol-Komponenten (b2) zu einem Polyisocya- nat-Prepolymer zur Reaktion gebracht werden.
Im Rahmen der Erfindung ist es möglich, dass das modifizierte lsocyanat (B) noch weitere Zusatzstoffe enthält. Als Zusatzstoffe können beispielsweise Stabilisatoren, Füllstoffe und/oder Hilfsmittel eingesetzt werden. Der Fachmann setzt die genannten Zusatzstoffe nach den Erfordernissen des Anwendungsgebietes ein. Beispielsweise enthält die Komponente B in Vergussmassen für Dialysefilter bevorzugt keine Füllstoffe. Das modifizierte lsocyanat (B) enthält jedoch üblicherweise ein oder mehrere Hilfsmittel zur Reaktionskontrolle. Hierbei handelt es sich um Hilfsmittel, welche die Umsetzung der Komponenten (b1 ) und (b2) beeinflussen und/oder Nebenreaktionen bei der Reaktion von (b1) und (b2) und/oder während der späteren Lagerung nach erfolgter Umsetzung reduzieren. Bevorzugt enthält das modifizierte lsocyanat (B) von 0,1 bis 10 g eines Hilfsmittels zur Reaktionskontrolle pro 10 kg (B). Besonders bevorzugt enthält das modifizierte lsocyanat (B) von 0,2 bis 8 g eines Hilfsmittels zur Reaktionskontrolle pro 10 kg (B). Besonders bevorzugt kommen als Hilfsmittel zur Reaktionskontrolle Diol- bis-chlorformiate, insbesondere Diethylenglykol-bis-chlorformiat oder Benzoylchlorid zum Einsatz.
Als Isocyanat-Komponente b1) kommen die üblichen aliphatischen, cycloaliphatischen und insbesondere aromatischen Di- und/oder Polyisocyanate oder deren Mischungen zum Einsatz. Insbesondere geeignet sind Diisocyanate, beispielsweise Toluylendiiso- cyanat (TDI). Bevorzugt werden Diphenylmethandiisocyanate (nachfolgend als MDI bezeichnet). Sofern MDI verwendet wird, können alle 2-Kern-lsomere (2,2'; 2,4' und 4,4') verwendet werden. Bevorzugt wird jedoch 4,4'-MDI eingesetzt.
Die Isocyanat-Komponente b1) kann zusätzlich modifiziert vorliegen, beispielsweise durch Einbau von Uretdion-, Carbamat-, Isocyanurat-, Carbodiimid-, Allophanat- und Urethangruppen.
Bevorzugt enthält die Komponente b1) 2 bis 10 Gew.-% eines Carbodiimid- modifizierten Isocyanates. Besonders bevorzugt ist hierbei ein Carbodiimid- modifiziert.es 4,4'-MDI. Ganz besonders bevorzugt enthält die Isocyanat-Komponente b1) 3 bis 7 Gew.-% Carbodiimid-modifiziertes 4,4'-MDI. Die angegebenen Zahlenwerte in Gew.-% Carbodiimid-modifiziertes lsocyanat beziehen sich auf ein Carbodiimid- modifiziertes Isocyanat, welches 10 Gew.-% Carbodiimid enthält. Bei abweichendem Carbodiimidgehalt rechnet der Fachmann die angegebenen Werte entsprechend um.
Als Diol-Komponente b2) kommen organische Polyhydroxyverbindungen mit einer OH- Funktionalität von 1 ,5 bis 2,5 zum Einsatz. Bevorzugt liegt die OH-Funktionalität im Bereich von 1 ,8 bis 2,2, besonders bevorzugt wird eine Diol-Verbindung mit einer OH- Funktionalität von 2 eingesetzt. Als Diol-Komponente b2) bevorzugt werden insbesondere alkoxylierte Diol-Verbindungen. Besonders bevorzugt werden als Diol- Komponente b2) Propylenglykole.
Zu den geeigneten Propylenglykolen zählen (Mono-)Propylenglykol und Dipropylengly- kol sowie Oligo- und Polypropylenglykole, wobei letztere ausgehend von einer Diolver- bindung durch Propoxylierung hergestellt werden können.
Erfindungsgemäß enthält die Diol-Komponente b2) eine Mischung aus mindestens zwei verschiedenen Propylenglykolen mit unterschiedlichem zahlenmittleren Molekulargewicht.
Bevorzugt enthält die Diol-Komponente b2) mindestens zwei verschiedene Propy- lenglykole b2x) und b2y) als Bestandteile mit unterschiedlichem Molekulargewicht, wobei als Bestandteil b2x) ein Propylenglykol mit einem Molekulargewicht von 700 bis 1300 g/mol und als Bestandteil b2y) ein Propylenglykol mit einem Molekulargewicht von 50 bis 200 g/mol eingesetzt wird.
Besonders bevorzugt enthält die Diol-Komponente (b2) eine Mischung, die mindestens drei unterschiedliche Propylenglykole b2x), b2y) und b2z) als Bestandteile mit unterschiedlichem Molekulargewicht enthält, wobei als Bestandteil b2x) ein Propylenglykol mit einem zahlenmittleren Molekulargewicht von 700 bis 1300 g/mol, als Bestandteil b2y) ein Propylenglykol mit einem zahlenmittleren Molekulargewicht von 250 bis 650 g/mol und als Bestandteil b2z) ein Propylenglykol mit einem zahlenmittleren Molekulargewicht von 50 bis 200 g/mol eingesetzt wird. Besonders bevorzugt als Bestandteil b2z) ist Dipropylenglykol.
Falls die Diol-Komponente b2) zwei unterschiedliche Propylenglykole b2x) und b2y) mit unterschiedlichem Molekulargewicht enthält, dann werden die beiden Bestandteile b2x) und b2y) bevorzugt im Mischungsverhältnis von 40 bis 60 Gew.-% b2x) und von 60 bis 40 Gew.-% b2y) eingesetzt. Besonders bevorzugt werden von 45 bis 55 Gew.-% b2x) und von 55 bis 45 Gew.-% b2y) eingesetzt, wobei die Summe aus b2x) und b2y) jeweils 100 Gew.-% ergibt.
Falls die Diol-Komponente b2) mindestens 3 unterschiedliche Propylenglykole gemäß der unter b2x), b2y) und b2z) genannten Eigenschaften enthält, dann werden die drei Komponenten b2x), b2y) und b2z) bevorzugt in folgendem Verhältnis eingesetzt: von 30 bis 40 Gew.-% b2x), von 30 bis 40 Gew.-% b2y) und von 20 bis 40 Gew.-% b2z). Besonders bevorzugt wird von 32 bis 36 Gew.-% b2x), von 35 bis 39 Gew.-% b2y) und von 25 bis 33 Gew.-% b2z) eingesetzt, wobei die Summe aus b2x), b2y) und b2z) je- weils 100 Gew.-% ergibt.
Bevorzugt hat das modifizierte lsocyanat (B) einen NCO-Gehalt von 18 bis 28 Gew.-%, besonders bevorzugt von 20 bis 25 Gew.-%.
Das modifizierte lsocyanat (B) weist außerdem eine Viskosität von 250 bis 1500 mPa-s auf; bevorzugt ist eine Viskosität von 250 bis 1000 mPa-s und besonders bevorzugt ist eine Viskosität von 250 bis 500 mPa-s.
Die beschriebenen modifizierten Isocyanate zeigen auch bei tiefen Temperaturen eine hohe Lagerstabilität und keine unerwünschte Kristallisation.
Katalysator C
Die erfindungsgemäßen Vergussmassen können in Abwesenheit oder in Gegenwart von Katalysatoren hergestellt werden. Die Herstellung der Vergussmassen findet jedoch vorzugsweise in Gegenwart von Katalysatoren statt, welche die Reaktion des modifizierten Isocyanates (B) mit der Polyolmischung (A) stark beschleunigen.
Als Katalysatoren (C) in Betracht kommen organische Metallverbindungen, vorzugs- weise organische Zinnverbindungen, insbesondere die Zinn-(ll)-salze von organischen Carbonsäuren, wie Zinn-(ll)-diacetat, Zinn-(ll)-dioctoat, Zinn-(ll)-diethylhexoat und Zinn-(ll)-dilaurat sowie die Dialkylzinn-(IV)-salze von organischen Carbonsäuren, wie z.B. Dibutylzinn-(IV)-diacetat, Dibutylzinn-(IV)-dilaurat, Dibutylzinn-(IV)-maleat und Di- octylzinn-(IV)-diacetat. Derartige Katalysatoren werden z.B. in der DE-A-3 048 529 beschrieben.
Als gut geeignet haben sich insbesondere Dialkylzinn-(IV)-mercaptoverbindungen erwiesen, wie Bislaurylzinn-(IV)-dimercaptid, sowie Verbindungen der allgemeinen Formeln R2Sn(SR'-O-CO-R")2 oder R2Sn(SR'-CO-OR")2, in denen R einen Alkylrest mit mindestens 8 Kohlenstoffatomen, R' einen Alkylenrest mit mindestens zwei Kohlenstoffatomen und R" einen Alkylrest mit mindestens vier Kohlenstoffatomen bedeuten. Als Katalysatoren dieser Art, die beispielsweise in der DD-A-218 668 beschrieben werden, seien beispielhaft genannt: Dioctylzinn-(IV)-bis(thioethylenglykol-2-ethylhexoat), Dioctylzinn-(IV)-bis(thioethylenglykollaurat), Dioctylzinn-(IV)-bis(thiolatoessigsäure-2- ethylhexylester, Dioctylzinn-(IV)-bis(thiolatoessigsäurehexylester) und Dioctylzinn-(IV)- bis(thiolatoessigsäurelaurylester). Als Katalysatoren sehr gut bewährt haben sich ferner Organozinnverbindungen mit Zinn-Sauerstoff- oder Zinn-Schwefel-Bindungen, wie sie beispielsweise in der DD-A- 255 535 beschrieben werden und die der allgemeinen Formeln (R3Sn)2O, R2SnS, (R3Sn)2S, R2Sn(SR')2 oder RSn(SR')3 entsprechen, wobei R und R' Alkylgruppen dar- stellen, die 4 bis 8 Kohlenstoffatome bei R sowie 4 bis 12 Kohlenstoffatome bei R' enthalten und R' außerdem -R11COOR"' und -R11OCOR'" bedeuten kann, in denen R" Alkylgruppen mit 1 bis 6 Kohlenstoffatomen und R'" Alkylengruppen mit 4 bis 12 Kohlenstoffatomen sind. Als Beispiele hierfür seien genannt: Bis(tributylzinn)oxid, Dibutylzinn- (IV)-sulfid, Dioctylzinn-(IV)-sulfid, Bis(tributylzinn)sulfid, Dibutylzinn-(IV)- bis(thioglykolsäure-2-ethylhexylester), Dioctylzinn-(IV)-bis(thioglykolsäure-2- ethylhexylester), Octylzinn-(IV)-tris(thioglykolsäure-2-ethyl-hexylester), Dioctylzinn-(IV)- bis(thioethylenglykol-2-ethyl-hexoat) und Dibutylzinn-(IV)-bis(thioethylenglykollaurat). Als Katalysatoren vorzugsweise verwendet werden Mono-n-octylzinn-(2-ethylhexyl- thioglykolat) und Di-n-octylzinn-bis-(2-ethylhexylthioglykolat). Besonders bevorzugt sind Katalysatoren (C) auf Basis von Dioctylzinn(IV)-dimercaptid.
Die Katalysatoren (C) können einzeln oder in Form von Katalysatorkombinationen eingesetzt werden.
Die vorliegende Erfindung umfasst sowohl die aus den beschriebenen Komponenten herstellbaren Vergussmassen als auch die Kombination der getrennt vorliegenden Komponenten aus (A) einer erfindungsgemäßen Polyolmischung und (B) einem oben beschriebenen modifizierten Isocyanat zur gemeinsamen Anwendung.
Falls zur Herstellung der erfindungsgemäßen Vergussmassen Katalysatoren zum Einsatz kommen, dann werden diese bevorzugt mit der Polyolmischung (A) vermischt, welche schließlich mit der Komponente (B) vermischt und umgesetzt wird.
Die Katalysatoren werden üblicherweise in einer Menge von 0,001 bis 0,2 Gew.-Teilen, vorzugsweise 0,005 bis 0,015 Gew.-Teilen pro 100 Gew.-Teile der Polyolmischung (A) eingesetzt.
Erfindungsgemäß umfasst das Verfahren zur Herstellung der erfindungsgemäßen Vergussmassen das Mischen einer erfindungsgemäßen Polyolmischung (A), gegebenen- falls enthaltend ein Katalysator (C), mit mindestens einem modifizierten Isocyanat (B).
Das Mischen erfolgt dabei bevorzugt mittels einer Polyurethan-Zweikomponenten- Verarbeitungsmaschine. Die sich unmittelbar nach erfolgter Mischung einstellende Mischviskosität liegt im erfindungsgemäßen Verfahren bevorzugt im weiter oben defi- nierten Bereich. Anschließend werden die Vergussmassen vergossen und der Aushärtung unterzogen. Unter Vergießen soll jede Maßnahme verstanden werden, die der anfänglich fließfähigen Vergussmasse diejenige Gestalt gibt, die sie nach dem Aushärten hat. Unter Vergießen soll insbesondere das Einbringen in oder das Aufbringen auf einen Körper verstanden werden. Bei einem solchen Körper kann es sich beispielsweise um eine Flä- che, ein Rahmen, ein Gefäß mit mindestens einer Öffnung oder um eine Form mit mindestens einer Vertiefung handeln. Die Vergussmasse kann grundsätzlich in Kontakt mit dem Körper bleiben oder aus diesem herausgelöst werden. Bevorzugt wird die Vergussmasse nach erfolgter Aushärtung nicht von der Form getrennt, sondern bildet mit dieser eine Einheit.
Die Vorteile des Verfahrens zeigen sich insbesondere beim Vergießen in eine komplexe Form, die mehrere Ecken und/oder Kanten enthält, die von der Vergussmasse umschlossen werden sollen.
Die Aushärtung kann grundsätzlich in einem oder in mehreren Schritten erfolgen, welche sich in den Umgebungsbedingungen, insbesondere der Temperatur, unterscheiden. Beispielsweise kann die Aushärtung in einem Vorhärtungsschritt und einem Nachhärtungsschritt erfolgen. Bevorzugt ist jedoch die Aushärtung in einem Schritt.
Die Aushärtung erfolgt im allgemeinen ohne weiteres Zutun durch Reaktion der NCO- Gruppen mit den reaktiven Wasserstoffatomen, insbesondere der OH-Gruppen. Gegebenenfalls wird die Temperatur und die Atmosphäre der Umgebung beim Aushärtungsschritt kontrolliert und/oder gesteuert. Während der Aushärtung läuft im allgemeinen eine chemische Vernetzungsreaktion ab. Die Aushärtung ist abgeschlossen, so- bald die Vergussmasse weitgehend ihre endgültigen Eigenschaften, insbesondere ihre endgültige Härte erreicht hat.
Die Aushärtung erfolgt üblicherweise in einem Zeitraum von Minuten bis mehrere Stunden, beispielsweise von 0,3 bis 4 Stunden, bevorzugt in einem Zeitraum von 1 bis 3 Stunden.
Die erfindungsgemäßen Vergussmassen zeigen nach erfolgter Aushärtung im allgemeinen eine Härte von 50 bis 70 Grad Shore-D. Bevorzugt weisen die erfindungsgemäßen Vergussmassen jedoch eine Härte von 55 bis 65 Grad Shore-D auf. Besonders bevorzugt, beispielsweise für Anwendungen als Vergussmasse in Dialysefiltern, ist eine Härte von 58 bis 62 Grad Shore-D. Die Härte in Grad Shore-D bezieht sich auf DIN 53505 bei einer Temperatur von 23°C. Der Fachmann wählt die Zusammensetzung der Vergussmassen, beispielsweise Art und Menge des Vernetzers a3), entsprechend. Je nach Anwendungsgebiet können die Vergussmassen erst nach einem Reinigungsschritt, zum Beispiel einem Sterilisationsschritt im Falle von Vergussmassen in Dialysefiltern, einsatzbereit sein.
Die erfindungsgemäßen Vergussmassen haben vielfältige Einsatzmöglichkeiten. Zu den möglichen Anwendungen zählt der Einsatz als Formmasse, z. B. im Formenbau oder bei der Herstellung von Prototypen, und als Einbettungswerkstoff, z. B. als Vergussmasse für Bauteile im Elektro- und Elektronikbereich oder in Medizinprodukten. Bevorzugt ist die Verwendung als Einbettungswerkstoff. Insbesondere kommen die erfindungsgemäßen Vergussmassen als Einbettungswerkstoff im Elektro- oder Elektronikbereich sowie bei der Filtration wässriger Medien zum Einsatz. Insbesondere bevorzugt sind medizinisch-technische Anwendungen. Ganz besonders bevorzugt ist die Verwendung der Vergussmassen zur Einbettung von Hohlfasern, insbesondere in Dialysefiltern.
Dialysefilter
Ein sogenannter Dialysefilter oder Dialysator stellt jene Komponente in einem Dialysegerät dar, das die Austauschmembran enthält, an welcher der Stoffaustausch bei der Blutwäsche vorgenommen wird. Überwiegend kommen sogenannte Kapillardialysato- ren zum Einsatz, auf die sich die in der vorliegenden Erfindung genannten Dialysefilter beziehen. Die Dialysefilter bestehen aus einem Bündel von Hohlfasern, welches üblicherweise 10000 bis 15000 Fasern enthält, und welches jeweils an zwei Enden eines Hohlkörpers in eine Matrix einer Vergussmasse eingebettet ist. Der Hohlkörper besteht üblicherweise aus einem transparenten Kunststoff, beispielsweise Polycarbonat, und wird derart in ein Dialysatorgehäuse eingebaut, dass Blut durch das Innere der Hohlfasern geleitet werden kann. Im Hohlkörper des Dialysefilters umspült die Dialysierflüs- sigkeit die blutdurchströmten Hohlfasern. Die Wand der Hohlfasern bildet die eigentliche Filtermembran, an welcher der Stoffaustausch während der Dialysebehandlung erfolgt.
Erfindungsgemäß umfasst das Verfahren zur Herstellung der erfindungsgemäßen Dialysefilter das Mischen einer erfindungsgemäßen Polyolmischung (A), gegebenenfalls enthaltend ein Katalysator (C), mit einem modifizierten Isocyanat (B).
Das Mischen der beschriebenen Komponenten erfolgt bevorzugt mittels einer Polyurethan-Zweikomponenten-Verarbeitungsmaschine. Die sich nach erfolgter Mischung unmittelbar einstellende Mischviskosität liegt im erfindungsgemäßen Verfahren bevorzugt im Bereich von 250 bis 600 mPa-s; besonders bevorzugt liegt sie im Bereich von 300 bis 500 mPa-s. Das Reaktionsgemisch wird anschließend in einer dosierten Menge in die Hohlfasern enthaltende Form eingetragen. Der Eintrag der Vergussmasse erfolgt hierbei bevorzugt in einen in einer Zentrifuge rotierenden Hohlkörper, welcher Hohlfasern enthält, wobei der Hohlköper eine Vorstufe eines Dialysefilters ist. Durch Zentrifugalkraft wird das flüssige Reaktionsgemisch an die jeweiligen beiden Enden des Dialysefilters unter Umschließung der Hohlfasern transportiert und härtet zum kompakten, im wesentlichen klaren Verguss aus.
Der Aushärtungsschritt erfolgt wiederum ohne weiteres Zutun durch Reaktion der NCO-Gruppen mit reaktiven Wasserstoffatomen, insbesondere der OH-Gruppen. Der Aushärtungsschritt ist abgeschlossen, sobald die Vergussmasse weitgehend ihre end- gültigen Eigenschaften, insbesondere ihre Härte und ihre Stabilität bei der Nasssterilisation und das Ausbleiben der Migration zytotoxischer Verbindungen erreicht hat.
Durch einen anschließenden Schneidprozess werden üblicherweise die Öffnungen der Hohlfasern freigelegt. Der Dialysefilter ist im allgemeinen nach einem Reinigungs- und Sterilisationsprozess einsatzbereit.
Durch das erfindungsgemäße Verfahren ist es möglich, Vergussmassen herzustellen, die heissdampfsterilisierbar und nicht zytotoxisch sind und so im medizinischtechnischen Bereich eingesetzt werden können, und die gleichzeitig komplexe Struktu- ren, beispielsweise eine hohe Faserzahl in einem Dialysefilter, vollständig umschließen.
Die ausgehärteten Vergussmassen sind resistent gegenüber Desinfektionsmitteln. Insbesondere zeigen die erfindungsgemäßen Vergussmassen eine geringe Aufnahme von Wasserdampf oder kochend heißem Wasser. Die erfindungsgemäßen Vergussmassen lassen sich über einen Zeitraum von zwei Wochen ohne Bildung von Feinstaub schneiden, der andernfalls die Poren verstopfen kann. Die erfindungsgemäßen, gehärteten Vergussmassen sind transparent, nicht zytotoxisch und besitzen eine verbesserte Haftung zu anderen Werkstoffen, z.B. Polycarbonaten, bei erhöhten Tem- peraturen über einen längeren Zeitraum. Die Vergussmassen sind gegen Percarbon- säuren stabil, so dass Formkörper aus solchen Vergussmassen mit Peressigsäure sterilisiert werden können. Die erfindungsgemäßen Vergussmassen zeigen eine hohe Hydrophobie und eine ausreichende Vernetzungsdichte.
Die noch fließfähigen Vergussmassen lassen sich auch ohne Schaumbildung vergießen. Gleichzeitig zeigen die Vergussmassen unmittelbar nach Mischung der Reaktivkomponenten eine niedrige Mischviskosität. Die Vergussmassen sind bereits nach 2 Stunden schneidbar, härten jedoch nicht so stark nach, so dass sie auch nach mehr als 24 Stunden noch schneidfähig sind. Vorteilhaft ist ferner, dass die erfindungsge- mäßen Vergussmassen auf Basis von Polyurethan mit allen üblichen Hohlfaserarten, wie z.B. Cuprophan-, Polysulfon-, Polycarbonat- oder Cellulosefasern verarbeitbar sind und die Polycarbonate vor der Verarbeitung keiner Vorbehandlung durch Corona- Entladung zur Verbesserung der Haftfestigkeit bedürfen.
Die erfindungsgemäßen Polyolmischungen führen somit in Kombination mit geeigneten modifizierten Isocyanaten zu Vergussmassen mit den vorgenannten Vorteilen und ermöglichen durch die geringe resultierende Mischviskosität das zeiteffiziente Vergießen komplexer Strukturen.
Beispiele
1. Bestimmung der Kenngrößen
Die Viskosität wurde nach DIN 53018 bei einer Temperatur von 25°C mit einem Rotati- onsviskosimeter der Firma Haake bestimmt (Messeinrichtung Platte/Kegel). Die Mischviskosität wurde rechnerisch bestimmt, da sie sich auf den Zeitpunkt Null, das heißt unmittelbar vor Beginn der Reaktion bezieht. Es wurde die folgende Formel verwendet: log(Mischviskosität) = {Masseanteil Komponente (A) * log(Viskosität (A)) + Masseanteil Komponente (B) * log(Viskosität (B)}, wobei die Summe der Masseanteile aus Komponente (A) und (B) eins ergibt.
Die Wasseraufnahme wurde bestimmt, indem vorher gewogene, runde Prüfkörper mit 68 mm Durchmesser und 5 mm Dicke 5 Stunden in einem Gefäß mit Wasser gekocht werden. Anschließend wurde die Masse erneut bestimmt und die prozentuale Gewichtszunahme ermittelt.
Die Peressigsäuredesorption wurde bestimmt, indem 5 g der Vergussmasse in Form mehrerer 1 mm dicker, kreisförmiger Probenstücke mit einem Durchmesser von 35 mm 2 Stunden bei 200C in 100 ml einer wässrigen Lösung, welche 3,5 Gew.-% Peressigsäure und 26 Gew.-% Wasserstoffperoxid enthält, gelagert wurden. Anschließend wur- de das Probenstück einmal mit destilliertem Wasser abgespült und in 100 ml destilliertem Wasser unter regelmäßigem Rühren gelagert. Nach vier Stunden Lagerung wurde die herausgelöste Menge an Peroxoverbindung iodometrisch durch Rücktitration von oxidiertem lodid mit einer 0,01 -molaren Thiosulfatlösung bestimmt.
Die OH-Funktionalität wurde rechnerisch nach der Formel Hydroxylzahl [in mg/g KOH] * zahlenmittleres Molekulargewicht / 56100 = OH-Funktionalität bestimmt.
Die Härte wurde nach Shore-D gemäß DIN 53505 bestimmt (Temperatur 23°C). 2. Einsatzstoffe
Tabelle 1 - Polyolmischung (A)
Figure imgf000021_0001
MG = Molekulargewicht
Tabelle 2 -Modifiziertes Isocyanat (B)
Figure imgf000021_0002
MG = Molekulargewicht
3. Herstellung der Komponenten
Polyolmischung
Aus a1 ), a2), a3) und (C) wurde durch Vermischen der in den Tabellen 1 und 3 angegebenen Komponenten und Gewichtsverhältnisse unter Rühren bei Raumtemperatur jeweils 10 kg der Polyolmischung (A) hergestellt.
Modifiziertes Isocyanat
Die Komponente b1-1) wurde in einem Laborrührreaktor mit Heiz- und Kühlvorrichtung vorgelegt. Dazu wurde gegebenenfalls die Komponente b1-2) zugegeben und beide Isocyanate vermischt. Aus den Komponenten b2-1 ), b2-2) und b2-3) wurde ein Gemisch hergestellt, dem noch 0,7g pro 10kg modifiziertem Isocyanat Diglykol-bis- chlorformiat zugesetzt wurde. Das Glykolgemisch wurde dabei langsam und unter Ruh- ren dem Isocyanat zugesetzt und die einsetzende Reaktion der NCO-Gruppen mit den reaktiven Wasserstoffatomen so gesteuert, dass der Umsatz des Glykolgemisches mit dem im Überschuss vorhandenen Isocyanat bei 800C im Zeitraum von 60 min erfolgte, worauf eine Abkühlphase folgte.
4. Herstellung der Vergussmassen und Dialysefilter
Die beschriebenen Komponenten wurden im in der Tabelle 4 angegebenen Mischungsverhältnis mittels einer Polyurethan-Zweikomponenten-Verarbeitungsmaschine gemischt und das Reaktionsgemisch in der genau dosierten Menge in den mit Hohlfasern gefüllten rotierenden Dialysefilter eingetragen.
5. Zusammensetzungen
Tabelle 3 - Zusammensetzung der Polyolmischungen
Figure imgf000022_0001
Tabelle 4 - Zusammensetzung der Vergussmassen
Figure imgf000022_0002
Tabelle 5: Vergleich der Eigenschaften der Vergussmassen
Figure imgf000023_0001
n.b.: nicht bestimmt

Claims

Patentansprüche
1. Polyolmischung, enthaltend als Komponenten
a1) mindestens ein fettbasiertes Polyol, a2) mindestens ein Polyetherol mit einem zahlenmittleren Molekulargewicht von 500 bis 2000 g/mol und a3) gegebenenfalls ein oder mehrere Vernetzer mit einem zahlenmittleren Molekulargewicht von 90 bis 400 g/mol,
dadurch gekennzeichnet, dass
x) das zahlenmittlere Molekulargewicht der Komponente a1) um höchstens
400 g/mol vom zahlenmittleren Molekulargewicht der Komponente a2) ab- weicht und xi) die OH-Funktionalität der Komponenten a1) und a2) um nicht mehr als 0,5 voneinander abweicht.
2. Polyolmischung nach Anspruch 1 , dadurch gekennzeichnet, dass die Kompo- nente a1) mindestens ein Polyol auf Basis von Rizinusöl enthält.
3. Polyolmischung nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass die Komponenten a1 ) und a2) jeweils eine OH-Funktionalität von 2,6 bis 3 aufweisen.
4. Polyolmischung nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die Komponente a2) als Polyetherol propoxyliert.es Trimethylolpropan und/oder propoxyliert.es Glycerin enthält.
5. Polyolmischung nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass sie von 45 bis 65 Gew.-% der Komponente a1), von 35 bis 54 Gew.-% der Komponente a2) und von 1 bis 21 Gew.-% der Komponente a3) enthält, wobei die Summe aus a1 ), a2) und a3) 100 Gew.-% ergibt.
6. Vergussmasse enthaltend Komponenten auf der Basis
(A) einer Polyolmischung gemäß den Ansprüchen 1 bis 5 und
(B) mindestens eines modifizierten Isocyanats auf der Basis einer Isocyanat- Komponente b1) und einer Diol-Komponente b2).
7. Vergussmasse nach Anspruch 6, dadurch gekennzeichnet, dass die Diol- Komponente b2) eine Mischung aus mindestens zwei verschiedenen Propy- lenglykolen mit unterschiedlichem zahlenmittleren Molekulargewicht ist.
8. Vergussmasse nach den Ansprüchen 6 oder 7, dadurch gekennzeichnet, dass die Diol-Komponente b2) eine Mischung ist, die mindestens drei unterschiedliche Propylenglykole mit unterschiedlichem Molekulargewicht enthält, wobei mindestens eines der Propylenglykole ein zahlenmittleres Molekulargewicht von 700 bis 1300 g/mol, mindestens eines der Propylenglykole ein zahlenmittleres Moleku- largewicht von 250 bis 650 g/mol und mindestens eines der Propylenglykole ein zahlenmittleres Molekulargewicht von 50 bis 200 g/mol aufweist.
9. Verwendung von Vergussmassen gemäß den Ansprüchen 6 bis 8 als Einbettungswerkstoff.
10. Verwendung von Vergussmassen nach Anspruch 9 als Einbettungswerkstoff in Dialysefiltern.
1 1. Verfahren zur Herstellung von Vergussmassen gemäß den Ansprüchen 6 bis 8, umfassend das Mischen
(A) einer Polyolmischung gemäß den Ansprüchen 1 bis 5, gegebenenfalls enthaltend ein Katalysator (C), mit
(B) mindestens einem modifizierten Isocyanat auf der Basis einer Isocyanat- Komponente b1) und einer Diol-Komponente b2).
12. Verfahren zur Herstellung von Vergussmassen nach Anspruch 1 1 , dadurch gekennzeichnet, dass sich eine Mischviskosität einstellt, die bis zu 600 mPa-s beträgt.
13. Dialysefilter, umfassend eine Vergussmasse gemäß den Ansprüchen 6 bis 8 oder hergestellt mittels eines Verfahrens gemäß den Ansprüchen 11 oder 12.
14. Kombination umfassend als getrennt vorliegende Komponenten (A) eine Polyolmischung gemäß den Ansprüchen 1 bis 5 und
(B) mindestens ein modifiziertes Isocyanat auf der Basis einer Isocyanat- Komponente b1) und einer Diol-Komponente b2)
zur gemeinsamen Anwendung.
PCT/EP2007/060326 2006-10-04 2007-09-28 Vergussmassen auf basis von polyurethan WO2008040687A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP07820713A EP2081973B1 (de) 2006-10-04 2007-09-28 Vergussmassen auf basis von polyurethan
JP2009530858A JP5624318B2 (ja) 2006-10-04 2007-09-28 ポリウレタンベースの包埋用組成物
DK07820713.1T DK2081973T3 (da) 2006-10-04 2007-09-28 Støbemasser på basis af polyurethan
CA2663855A CA2663855C (en) 2006-10-04 2007-09-28 Casting compounds based on polyurethane
AT07820713T ATE466896T1 (de) 2006-10-04 2007-09-28 Vergussmassen auf basis von polyurethan
DE502007003677T DE502007003677D1 (de) 2006-10-04 2007-09-28 Vergussmassen auf basis von polyurethan
US12/444,397 US8802808B2 (en) 2006-10-04 2007-09-28 Casting compounds based on polyurethane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06121741 2006-10-04
EP06121741.0 2006-10-04

Publications (1)

Publication Number Publication Date
WO2008040687A1 true WO2008040687A1 (de) 2008-04-10

Family

ID=38858063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/060326 WO2008040687A1 (de) 2006-10-04 2007-09-28 Vergussmassen auf basis von polyurethan

Country Status (10)

Country Link
US (1) US8802808B2 (de)
EP (1) EP2081973B1 (de)
JP (1) JP5624318B2 (de)
AT (1) ATE466896T1 (de)
CA (1) CA2663855C (de)
DE (1) DE502007003677D1 (de)
DK (1) DK2081973T3 (de)
ES (1) ES2343916T3 (de)
PT (1) PT2081973E (de)
WO (1) WO2008040687A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2500083A1 (de) * 2009-11-10 2012-09-19 Toray Industries, Inc. Hohlfasermembranenmodul zur verwendung bei der herstellung einer chemischen substanz und verfahren zur herstellung einer chemischen substanz
US20130165543A1 (en) * 2010-07-21 2013-06-27 Andrew James Allen Concrete substitute

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10883067B2 (en) * 2016-06-11 2021-01-05 Battelle Memorial Institute Direct alkoxylation of bio-oil
EP3619249B1 (de) 2017-05-05 2023-03-22 Basf Se Lagerstabile polyurethanvergussmasse zur einbettung von hohlfasern bei der herstellung von filterelementen
US11041040B2 (en) 2017-05-05 2021-06-22 Basf Se Storage-stable polyurethane potting compound for embedding of hollow fibres in the production of filter elements
WO2021083851A1 (de) 2019-10-30 2021-05-06 Basf Se Polyurethanvergussmasse mit gesteigerter reaktivität zur einbettung von hohlfasern bei der herstellung von filterelementen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451615A (en) * 1994-10-20 1995-09-19 The Dow Chemical Company Process for preparing polyurethane foam in the presence of a hydrocarbon blowing agent
EP1088841A1 (de) * 1999-10-01 2001-04-04 Basf Aktiengesellschaft Transparente, heissdampfsterilisierbare, nicht zytotoxische Polyurethan-Vergussmassen, Verfahren zu ihrer Herstellung und ihre Verwendung, insbesondere für medizinisch-technische Artikel
EP1090941A1 (de) * 1999-10-01 2001-04-11 Basf Aktiengesellschaft Transparente, heissdampfsterilisierbare, nicht zytotoxische Polyurethan-Vergussmassen, Verfahren zu ihrer Herstellung und ihre Verwendung, insbesondere für medizinisch-technische Artikel

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4293418A (en) * 1979-03-28 1981-10-06 Toray Industries, Inc. Fluid separation apparatus
US4375521A (en) * 1981-06-01 1983-03-01 Communications Technology Corporation Vegetable oil extended polyurethane systems
DE3149527A1 (de) 1981-12-14 1983-06-23 VEB Synthesewerk Schwarzheide Kombinat SYS, DDR 7817 Schwarzheide Polyurethanmassen fuer hohlfaserdialysatoren
JPS6032857A (ja) * 1983-08-01 1985-02-20 Dainippon Toryo Co Ltd ウレタン樹脂塗料組成物
JPS6058156A (ja) * 1983-09-08 1985-04-04 三洋化成工業株式会社 シ−ル材および人工臓器
JPS6126676A (ja) * 1984-07-16 1986-02-05 Dainippon Toryo Co Ltd ウレタン樹脂塗料組成物
DE4134693A1 (de) * 1991-10-21 1993-04-22 Basf Ag Transparente, heissdampfsterilisierbare, nicht zytotoxische, im wesentlichen kompakte polyurethan-vergussmassen, verfahren zu ihrer herstellung und ihre verwendung, insbesondere fuer medizinisch-technische artikel
JPH07109326A (ja) * 1993-10-08 1995-04-25 Sanyo Chem Ind Ltd 速硬化型エラストマ−
EP0790276A3 (de) * 1996-02-14 1998-05-13 Basf Aktiengesellschaft Verfahren zur Herstellung von flächigen Polyurethan-Formteilen
JP3650989B2 (ja) * 1999-04-15 2005-05-25 日本ポリウレタン工業株式会社 注型用ポリウレタン樹脂形成性組成物を用いたシール材
US6420443B1 (en) * 1999-09-09 2002-07-16 Crompton Corporation Additives for enhanced hydrocarbon compatibility in rigid polyurethane foam systems
US6669407B2 (en) * 2001-03-15 2003-12-30 Bayer Corporation Polyurethane geotextile composite liner with improved water resistance and a process for the production thereof
DE10240186A1 (de) * 2002-08-28 2004-03-11 Basf Ag Verfahren zur Herstellung von emissionsarmen Polyurethan-Weichschaumstoffen
ATE402208T1 (de) 2004-04-01 2008-08-15 Basf Se Polyisocyanatprepolymere und deren verwendung zum verguss von nierenfiltern

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451615A (en) * 1994-10-20 1995-09-19 The Dow Chemical Company Process for preparing polyurethane foam in the presence of a hydrocarbon blowing agent
EP1088841A1 (de) * 1999-10-01 2001-04-04 Basf Aktiengesellschaft Transparente, heissdampfsterilisierbare, nicht zytotoxische Polyurethan-Vergussmassen, Verfahren zu ihrer Herstellung und ihre Verwendung, insbesondere für medizinisch-technische Artikel
EP1090941A1 (de) * 1999-10-01 2001-04-11 Basf Aktiengesellschaft Transparente, heissdampfsterilisierbare, nicht zytotoxische Polyurethan-Vergussmassen, Verfahren zu ihrer Herstellung und ihre Verwendung, insbesondere für medizinisch-technische Artikel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2500083A1 (de) * 2009-11-10 2012-09-19 Toray Industries, Inc. Hohlfasermembranenmodul zur verwendung bei der herstellung einer chemischen substanz und verfahren zur herstellung einer chemischen substanz
EP2500083A4 (de) * 2009-11-10 2014-08-13 Toray Industries Hohlfasermembranenmodul zur verwendung bei der herstellung einer chemischen substanz und verfahren zur herstellung einer chemischen substanz
US20130165543A1 (en) * 2010-07-21 2013-06-27 Andrew James Allen Concrete substitute

Also Published As

Publication number Publication date
DE502007003677D1 (de) 2010-06-17
EP2081973B1 (de) 2010-05-05
EP2081973A1 (de) 2009-07-29
US20100105855A1 (en) 2010-04-29
ES2343916T3 (es) 2010-08-12
JP5624318B2 (ja) 2014-11-12
US8802808B2 (en) 2014-08-12
ATE466896T1 (de) 2010-05-15
CA2663855C (en) 2015-05-26
JP2010505982A (ja) 2010-02-25
CA2663855A1 (en) 2008-04-10
DK2081973T3 (da) 2010-08-16
PT2081973E (pt) 2010-05-25

Similar Documents

Publication Publication Date Title
DE4134693A1 (de) Transparente, heissdampfsterilisierbare, nicht zytotoxische, im wesentlichen kompakte polyurethan-vergussmassen, verfahren zu ihrer herstellung und ihre verwendung, insbesondere fuer medizinisch-technische artikel
EP2081973B1 (de) Vergussmassen auf basis von polyurethan
WO1998021255A1 (de) Verwendung von polyolen für isocyanat-giessharze und -beschichtungsmassen
EP0413265B1 (de) Transparente, heissdampfsterilisierbare, kompakte Polyurethan-Vergussmassen, Verfahren zu ihrer Herstellung und ihre Verwendung, insbesondere für medizinisch technische Artikel
WO2013110512A1 (de) Polyetherester-polyole und verfahren zu deren herstellung
EP0305804B1 (de) Wasserhärtende Polymerzubereitung
EP3619248B1 (de) Lagerstabile polyurethanvergussmasse zur einbettung von hohlfasern bei der herstellung von filterelementen
EP3619249B1 (de) Lagerstabile polyurethanvergussmasse zur einbettung von hohlfasern bei der herstellung von filterelementen
DE3912531C2 (de) Glasklare, heißdampfsterilisierbare, kompakte Polyurethan-Vergußmassen, Verfahren zu ihrer Herstellung und ihre Verwendung, insbesondere für medizinisch technische Artikel
DE3149527A1 (de) Polyurethanmassen fuer hohlfaserdialysatoren
EP1582544B1 (de) Polyisocyanatprepolymere und deren Verwendung zum Verguss von Nierenfiltern
EP1088840B1 (de) Transparente, heissdampfsterilisierbare, nicht zytotoxische Polyurethan-Vergussmassen, Verfahren zu ihrer Herstellung und ihre Verwendung, insbesondere für medizinisch-technische Artikel
EP3635023B1 (de) Verfahren zur herstellung von faserverbundmaterial unter einsatz von hybridpolyol
WO2021083851A1 (de) Polyurethanvergussmasse mit gesteigerter reaktivität zur einbettung von hohlfasern bei der herstellung von filterelementen
EP1088841B1 (de) Polyurethan-Vergussmassen, insbesondere für medizinisch-technische Artikel
DE3812482A1 (de) Wasserhaertende polymerzubereitung
WO1997021748A1 (de) Estergruppenhaltige, langzeithydrolysestabile polyurethane
EP1090941A1 (de) Transparente, heissdampfsterilisierbare, nicht zytotoxische Polyurethan-Vergussmassen, Verfahren zu ihrer Herstellung und ihre Verwendung, insbesondere für medizinisch-technische Artikel
AT274761B (de) Verfahren zur Herstellung von zur Polyurethanbildung befähigten Polyolen
EP1088839A1 (de) Transparente, heissdampfsterilisierbare, nicht zytotoxische Polyurethan-Vergussmassen, Verfahren zu ihrer Herstellung und ihre Verwendung, insbesondere für medizinisch-technische Artikel
DD282231A5 (de) Wasserhaertende polymerzubereitung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07820713

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2663855

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007820713

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009530858

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12444397

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE