WO2008009812A1 - Heat flow device - Google Patents

Heat flow device Download PDF

Info

Publication number
WO2008009812A1
WO2008009812A1 PCT/FR2007/001223 FR2007001223W WO2008009812A1 WO 2008009812 A1 WO2008009812 A1 WO 2008009812A1 FR 2007001223 W FR2007001223 W FR 2007001223W WO 2008009812 A1 WO2008009812 A1 WO 2008009812A1
Authority
WO
WIPO (PCT)
Prior art keywords
equipment
state
cold part
change
thermal
Prior art date
Application number
PCT/FR2007/001223
Other languages
French (fr)
Inventor
Emile Colongo
Stéphane ORTET
Original Assignee
Airbus France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus France filed Critical Airbus France
Priority to CA2657778A priority Critical patent/CA2657778C/en
Priority to JP2009520012A priority patent/JP2009543998A/en
Priority to BRPI0713191-7A priority patent/BRPI0713191A2/en
Priority to US12/373,988 priority patent/US20100012311A1/en
Priority to EP07823290.7A priority patent/EP2047201B1/en
Priority to CN200780027095.4A priority patent/CN101490497B/en
Publication of WO2008009812A1 publication Critical patent/WO2008009812A1/en
Priority to US13/716,951 priority patent/US9310145B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/005Thermal joints
    • F28F2013/008Variable conductance materials; Thermal switches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/10Safety or protection arrangements; Arrangements for preventing malfunction for preventing overheating, e.g. heat shields
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling

Definitions

  • the invention relates to a heat flow device.
  • thermo energy for example an electrical circuit or an electronic component
  • a quantity of heat flows through the conductive element, with a power inversely proportional to the thermal resistance thereof, which allows to evacuate at least a portion of the heat generated at the equipment and therefore avoid excessive heating of it.
  • the patent application US 2003/0196787 uses this technique and proposes, for reasons related to the operation of the equipment, to reduce this evacuation of the heat at low temperature.
  • the inventors realized that these solutions could present risks in practice, in particular when the cold-source portion is not adapted to all the conditions of temperature and / or heat dissipation, as is the case for example. example when this cold part is formed of a combustible material or sensitive to temperature rises.
  • the invention proposes a device comprising an equipment with a heat source, a cold part relative to the equipment and an element capable of transmitting the heat (in particular by conduction) of the equipment to the cold part, characterized in that the element is such that, under certain thermal conditions located above a given thermal condition, the equipment and the cold part are essentially thermally insulated.
  • the heat generated in the equipment is no longer transmitted to the cold part when these thermal conditions (for example temperature or thermal power through the element) are encountered, that is to say when the given thermal condition is exceeded, and overheating thereof is avoided.
  • the equipment and the cold part can moreover be essentially separated by a gaseous blade, at least in said thermal conditions, in order also to avoid under these conditions the transmission of electrical phenomena (such as electric arcs), in particular propagation.
  • electrical arcs, equipment to the cold source: in this case, the equipment and the cold part are indeed electrically isolated.
  • the element comprises for example a good heat conductor outside said thermal conditions (that is to say, below the given thermal condition).
  • the element is such that its thermal resistance is able to increase under said thermal conditions so that the element becomes essentially insulating.
  • the thermal insulation of the equipment and the cold source is thus permitted by modifying the thermal conduction properties of the element.
  • the element comprises at least one component whose change of state (for example a transition from the liquid state to the gaseous state) in said thermal conditions causes the increase of said thermal resistance.
  • the increase in thermal resistance generally related to such a change of state.
  • the component can then form said blade after said change of state, which is a practical way to obtain this blade.
  • the element is configured to lose contact with the equipment or the cold part in said thermal conditions. It is in this case the rupture of the contact between the different parts that causes the interruption of the thermal path between the equipment and the cold part.
  • the element comprises for example in this case at least one component, a change of state in said thermal conditions causes said loss of contact.
  • said component participates in the conduction of the equipment to the cold part outside said thermal conditions and is erased because of its change of state in said thermal conditions, thus essentially isolating the equipment and the cold part.
  • the change of a mechanical property of the component during its change of state may cause a movement of a part of the element, thus causing said loss of contact.
  • the element can be configured so that the change of state of the component allows the formation of said gaseous blade.
  • the change of state then makes it possible not only to interrupt the thermal path, but also to avoid the propagation of electrical phenomena.
  • the change of state may be a transition from the solid state to the liquid state, or a transition from the liquid state to the gaseous state.
  • the equipment may be a fuel pump and the cold part a liquid fuel, for example in an aircraft; the invention is particularly interesting in this context, although it naturally has many other applications, such as the protection against overheating of heat sink elements sensitive to temperature rises, such as carbon structures.
  • FIG. 1A to 1C show a first embodiment of the invention
  • FIGS. 2A to 2C show a second embodiment of the invention
  • FIGS. 3A to 3C show a third embodiment of the invention
  • FIG. 4A to 4C show a fourth embodiment of the invention.
  • FIG. 1A represents a first exemplary embodiment of the invention in normal operating mode.
  • a hot plate 101 which comprises a heat source (not shown) is connected to a cold plate 102 (for example a part of the device structure) by means of a solid material 103 at the nominal temperature T no min. corresponding to normal operation.
  • the material 103 is a thermal conductor and its thermal resistance R ma terial is therefore relatively low.
  • the material 103 is also chosen such that its melting temperature Tfusion is less than or equal to the desired maximum operating temperature T max .
  • Such a maximum temperature may be desired for example to avoid degradation of the cold plate 102, or other negative consequences, such as for example a risk of fire when the cold plate is made in the form of a combustible material such as fuel of an aircraft.
  • T of the material 103 reaches, for example because of an output of the normal operating regime, the melting temperature Tf USion of the material 103, the latter changes state: the material 103 passes from the solid state to the liquid state (represented under the reference 103 'in FIG. 1B), which causes it to be erased (here its flow by appropriate means) from its initial position in contact with the hot plate 101 and the cold plate 102.
  • the cold plate 102 is then thermally insulated from the hot plate 101 by means of the air knife 106 which separates them; the latter also plays the role of an electrical insulator, which also prevents the transmission of electrical energy (for example in the form of electric arcs) from the hot plate to the cold plate 102.
  • This last advantage is particularly interesting in the case where the hot plate 101 comprises an electrical or electronic equipment whose possible malfunctions could be dangerous at the cold plate 102 especially when it has reached a temperature above the desired maximum temperature T max .
  • wax material whose heat properties permit a conduction of heat that is much greater than that permitted by the thermal resistance of air 106 is used as material.
  • FIG. 2A shows a second embodiment of the invention in normal operating conditions, that is to say, for example at an operating temperature T a i n ⁇ omi significantly less than a desired maximum temperature.
  • a device 201 comprising a heat source is located at a distance from a cold plate 202 and consequently separated therefrom by an air gap 206.
  • the equipment 201 is moreover linked to the cold plate 202 by means of a heat sink 203 formed in a good heat-conducting material (that is to say of low heat resistance) and which therefore extends partly in the space formed by the blade of air 206.
  • the heat sink 203 is held in contact with the cold plate 202 by interposition between a part of the equipment 201 and the conductive drain 203 of a solid state bonding material 204. Furthermore, a compression spring 205 is interposed between the drain 203 and the cold plate 202, the spring 205 being compressed when the drain 203 is in contact with the cold plate 202.
  • the drain 203 is connected to the equipment 201, firstly through the connecting material 204 and secondly directly to other parts of the equipment 201 than those receiving the connecting material 204, for example at a side wall 208 of the equipment 201.
  • the equipment 201 and the cold plate 202 are separated by the thickness (or blade) of air 206, except the spring 205 whose thermal conductivity is negligible, and these two elements are essentially isolated by means of the air gap 206, as shown in Figure 2C.
  • FIG. 2D represents, in normal operating mode, a variant of the second example which has just been described.
  • a device 211 comprising a heat source is located at a distance from a cold plate 212 and therefore separated therefrom by an air knife 216.
  • the equipment 211 is also linked to the cold plate 212 by means of a drain thermal 213 formed in a material of low thermal resistance and which therefore extends in part in the space formed by the air knife 216.
  • the heat sink 213 is however held in abutment against the cold plate 212 by means of a solid block 214 interposed between the conductive drain 213 and a structural part 210.
  • a spring compression 215 is interposed between the drain 213 and the cold plate 212, the spring 215 being compressed when the drain 213 is in contact with the cold plate 212 due to the presence of the solid block 214.
  • the solid block 214 does not necessarily participate in the flow of heat.
  • the drain 213 is no longer held in contact with the cold plate 212, but instead moves away under the effect of the spring 215. Due to the displacement of the drain 213 and its loss of contact with the plate 212, the equipment 211 and the cold plate 212 are separated by the thickness (or blade) of air 216, except the spring 215 whose thermal conductivity is negligible, and these two elements are essentially isolated by means of the air knife 216. According to the embodiment shown in FIG. 2F, the displacement of the drain 213 then continues until the latter comes into contact with the structural part 210 which could then in this case serve in turn heat sinks.
  • Figure 3A shows a third embodiment of the invention under normal operating conditions.
  • the equipment 301 generating heat and the cold part 302 acting as cold source are respectively located in the upper part and the lower part of an enclosure 305.
  • a space in the enclosure between the equipment 301 and the cold part 302 is filled with a liquid-form bonding material 303 having a low thermal resistance and which forms a heat conduction path between the equipment 301 and the cold part 302.
  • the enclosure 305 receives the equipment 301, the connecting material 303 and the cold part 302 hermetically. Only a safety valve 304 penetrating into the chamber at the space filled by the connecting material 303 possibly allows evacuation of the liquid when the pressure is greater than a threshold as explained below.
  • the bonding material 303 is such that its vaporization temperature corresponds approximately (and is preferably slightly less) to a desired maximum temperature at the cold portion 302.
  • the bonding material 303 passes from the liquid state in the gaseous state during a phase shown in Figure 3B (the gaseous material 303 'naturally occurring in the upper part of the space of the chamber 305 previously occupied by the liquid, in contact with the equipment 301).
  • the change of state in the hermetic enclosure 305 causes a rise in pressure inside thereof until the pressure reaches the tripping threshold of the safety valve 304 and that the liquid part of the material of Link 303 therefore begins to drain as shown in Figure 3B.
  • phase change that is to say the transition from the liquid state to the gaseous state
  • the connecting material has also made it possible to replace the thermal path with a gaseous blade, which makes it possible, in particular, to avoid arcing between the equipment 301 and the cold part 302.
  • FIG. 4A represents a fourth embodiment of the invention under normal operating conditions, that is to say for temperatures (whose nominal operating temperature) that are well below a maximum permitted temperature.
  • an enclosure 405 is formed in the lower extension of a hot plate 401 (which is for example a part of an equipment containing a heat source, such as for example a fuel pump equipping the aircraft) .
  • the enclosure 405 is hermetic and comprises in its lower part, in normal operating mode, a liquid component 403.
  • a heat sink 404 is also partially received inside the enclosure 405: an upper portion 406 (here substantially horizontal) extends over the entire (here horizontal) surface of the enclosure 405 so as to form a piston separating an upper part of the enclosure 405, for example filled with air, from a lower part of the enclosure 405 filled by the liquid component 403 in normal operating mode.
  • the heat sink 404 also comprises a rod (in this case essentially vertical) of which a lower part 407 is, in operation normal as illustrated in Figure 4A, in contact with a cold forming heat sink, here formed by the liquid fuel 402 of the aircraft.
  • the lower portion 407 is precisely in this case immersed in the fuel 402 as shown in Figure 4A.
  • a thermal path is thus formed between the equipment 401 and the cold part 402 by means of materials having a relatively low thermal resistance, namely here the walls the enclosure 405, the liquid component 403 and the heat sink 404.
  • the temperature in the enclosure 405 rises above the nominal operating temperature (for example, because of a malfunction of the equipment 401) and reaches the vaporization temperature of the liquid component 403 (preferably chosen slightly lower than a maximum allowed temperature inside the enclosure 405, which corresponds for example to a temperature beyond which there are risks due to the presence of the fuel 402)
  • the vaporization temperature of the liquid component 403 preferably chosen slightly lower than a maximum allowed temperature inside the enclosure 405, which corresponds for example to a temperature beyond which there are risks due to the presence of the fuel 402
  • a gaseous phase 403 'appears in the lower part of the enclosure 405 and the pressure it exerts tends to move up the heat sink 404 which is recalled that the upper portion 406 piston shape, as shown in Figure 4B.
  • the drain 404 is driven upward until its lower portion 407 emerges from the cold source fuel 402 and ends its travel away from it.
  • the space between the lower part 407 of the drain 404 and the surface of the liquid fuel 402 is filled with a blade of a thermally and electrically insulating gas (such as for example air) in such a way that that the equipment 401 and the liquid fuel 402 forming a cold source are sufficiently thermally and electrically insulated to avoid any risk of fire fuel 402.
  • a thermally and electrically insulating gas such as for example air

Abstract

A device comprises equipment (101) with a heat source, a cold part (102) relative to the equipment, and a thermal conductor element (103) capable of conducting the heat from the equipment to the cold part. The element (103) is such that, under certain thermal conditions above a given thermal condition, the equipment and the cold part are essentially thermally isolated.

Description

Dispositif à écoulement de chaleur Heat flow device
L'invention concerne un dispositif à écoulement de chaleur.The invention relates to a heat flow device.
Dans un tel dispositif, on cherche à évacuer l'énergie thermique (ou chaleur) dissipée au niveau d'un équipement par une quelconque source de chaleur (par exemple un circuit électrique ou un composant électronique).In such a device, it is sought to evacuate the thermal energy (or heat) dissipated at the equipment level by any heat source (for example an electrical circuit or an electronic component).
On relie classiquement pour ce faire l'équipement à une partie froide par rapport à celui-ci, qui joue le rôle d'une source froide, au moyen d'un élément conducteur de la chaleur.Classically connected to do this the equipment to a cold part relative thereto, which plays the role of a cold source, by means of a heat conductive element.
Ainsi, une quantité de chaleur s'écoule à travers l'élément conducteur, avec une puissance inversement proportionnelle à la résistance thermique de celui-ci, ce qui permet d'évacuer une partie au moins de la chaleur générée au niveau de l'équipement et d'éviter par conséquent un échauffement excessif de celui-ci.Thus, a quantity of heat flows through the conductive element, with a power inversely proportional to the thermal resistance thereof, which allows to evacuate at least a portion of the heat generated at the equipment and therefore avoid excessive heating of it.
La demande de brevet US 2003/0196787 utilise par exemple cette technique et propose par ailleurs, pour des motifs liés au fonctionnement de l'équipement, de réduire cette évacuation de la chaleur à basse température. Les inventeurs se sont rendus compte que ces solutions pouvaient présenter des risques en pratique, en particulier lorsque la partie formant source froide n'est pas adaptée à toutes les conditions de température et/ou de puissance thermique dissipée, comme c'est le cas par exemple lorsque cette partie froide est formée d'un matériau combustible ou sensible aux élévations de température.For example, the patent application US 2003/0196787 uses this technique and proposes, for reasons related to the operation of the equipment, to reduce this evacuation of the heat at low temperature. The inventors realized that these solutions could present risks in practice, in particular when the cold-source portion is not adapted to all the conditions of temperature and / or heat dissipation, as is the case for example. example when this cold part is formed of a combustible material or sensitive to temperature rises.
Afin d'éviter de tels problèmes, l'invention propose un dispositif comprenant un équipement avec une source de chaleur, une partie froide relativement à l'équipement et un élément apte à transmettre la chaleur (en particulier par conduction) de l'équipement à la partie froide, caractérisé en ce que l'élément est tel que, sous certaines conditions thermiques situées au- dessus d'une condition thermique donnée, l'équipement et la partie froide sont essentiellement isolés thermiquement. Ainsi, la chaleur générée au sein de l'équipement n'est plus transmise à la partie froide lorsque ces conditions thermiques (par exemple de température ou de puissance thermique à travers l'élément) sont rencontrées, c'est-à-dire lorsque la condition thermique donnée est dépassée, et on évite un échauffement trop important de celle-ci.In order to avoid such problems, the invention proposes a device comprising an equipment with a heat source, a cold part relative to the equipment and an element capable of transmitting the heat (in particular by conduction) of the equipment to the cold part, characterized in that the element is such that, under certain thermal conditions located above a given thermal condition, the equipment and the cold part are essentially thermally insulated. Thus, the heat generated in the equipment is no longer transmitted to the cold part when these thermal conditions (for example temperature or thermal power through the element) are encountered, that is to say when the given thermal condition is exceeded, and overheating thereof is avoided.
L'équipement et la partie froide peuvent en outre être séparés essentiellement par une lame gazeuse, au moins dans lesdites conditions thermiques, afin d'éviter également dans ces conditions la transmission des phénomènes électriques (tels que des arcs électriques), en particulier la propagation des arcs électriques, de l'équipement à la source froide : dans ce cas, l'équipement et la partie froide sont en effet isolés électriquement.The equipment and the cold part can moreover be essentially separated by a gaseous blade, at least in said thermal conditions, in order also to avoid under these conditions the transmission of electrical phenomena (such as electric arcs), in particular propagation. electrical arcs, equipment to the cold source: in this case, the equipment and the cold part are indeed electrically isolated.
En pratique, l'élément comprend par exemple un bon conducteur de la chaleur en dehors desdites conditions thermiques (c'est-à-dire en-deçà de la condition thermique donnée). Selon un mode de réalisation envisageable, l'élément est tel que sa résistance thermique est apte à augmenter sous lesdites conditions thermiques de telle sorte que l'élément devienne essentiellement isolant. L'isolation thermique de l'équipement et de la source froide est ainsi permise par la modification des propriétés de conduction thermique de l'élément. Selon une solution possible, l'élément comprend au moins un composant dont un changement d'état (par exemple un passage de l'état liquide à l'état gazeux) dans lesdites conditions thermiques provoque l'augmentation de ladite résistance thermique. On profite ici de l'augmentation de la résistance thermique généralement liée à un tel changement d'état. Le composant peut alors former ladite lame après ledit changement d'état, ce qui est une manière pratique d'obtenir cette lame.In practice, the element comprises for example a good heat conductor outside said thermal conditions (that is to say, below the given thermal condition). According to one conceivable embodiment, the element is such that its thermal resistance is able to increase under said thermal conditions so that the element becomes essentially insulating. The thermal insulation of the equipment and the cold source is thus permitted by modifying the thermal conduction properties of the element. According to one possible solution, the element comprises at least one component whose change of state (for example a transition from the liquid state to the gaseous state) in said thermal conditions causes the increase of said thermal resistance. Here we take advantage of the increase in thermal resistance generally related to such a change of state. The component can then form said blade after said change of state, which is a practical way to obtain this blade.
Selon un autre mode de réalisation envisageable, l'élément est configuré pour perdre le contact avec l'équipement ou la partie froide dans lesdites conditions thermiques. C'est dans ce cas la rupture du contact entre les différentes pièces qui provoque l'interruption du chemin thermique entre l'équipement et la partie froide. L'élément comprend par exemple dans ce cas au moins un composant dont un changement d'état dans lesdites conditions thermiques provoque ladite perte de contact.According to another conceivable embodiment, the element is configured to lose contact with the equipment or the cold part in said thermal conditions. It is in this case the rupture of the contact between the different parts that causes the interruption of the thermal path between the equipment and the cold part. The element comprises for example in this case at least one component, a change of state in said thermal conditions causes said loss of contact.
On peut prévoir dans ce cadre que ledit composant participe à la conduction de l'équipement à la partie froide en dehors desdites conditions thermiques et s'efface du fait de son changement d'état dans lesdites conditions thermiques, isolant ainsi essentiellement l'équipement et la partie froide.It can be provided in this context that said component participates in the conduction of the equipment to the cold part outside said thermal conditions and is erased because of its change of state in said thermal conditions, thus essentially isolating the equipment and the cold part.
Selon une autre approche, qui peut éventuellement être combinée à la précédente, le changement d'une propriété mécanique du composant lors de son changement d'état peut entraîner un mouvement d'une partie de l'élément, provoquant ainsi ladite perte de contact.According to another approach, which may optionally be combined with the previous one, the change of a mechanical property of the component during its change of state may cause a movement of a part of the element, thus causing said loss of contact.
Dans ces cas également, l'élément peut être configuré de telle sorte que le changement d'état du composant permette la formation de ladite lame gazeuse. Le changement d'état permet alors non seulement d'interrompre le chemin thermique, mais également d'éviter la propagation de phénomènes électriques.In these cases also, the element can be configured so that the change of state of the component allows the formation of said gaseous blade. The change of state then makes it possible not only to interrupt the thermal path, but also to avoid the propagation of electrical phenomena.
Le changement d'état peut être dans ce contexte un passage de l'état solide à l'état liquide, ou un passage de l'état liquide à l'état gazeux. L'équipement peut être une pompe pour carburant et la partie froide un carburant liquide, par exemple dans un aéronef ; l'invention est particulièrement intéressante dans ce contexte, même si elle a naturellement de nombreuses autres applications, telles que la protection contre les surchauffes d'éléments de puits thermique sensibles aux élévations de température, comme par exemple les structures en carbone.In this context, the change of state may be a transition from the solid state to the liquid state, or a transition from the liquid state to the gaseous state. The equipment may be a fuel pump and the cold part a liquid fuel, for example in an aircraft; the invention is particularly interesting in this context, although it naturally has many other applications, such as the protection against overheating of heat sink elements sensitive to temperature rises, such as carbon structures.
Les agencements proposés ci-dessus, de manière optionnelle pour certains, permettent ainsi notamment d'évacuer la chaleur produite par les équipements, par exemple électroniques comme dans le cas des pompes pour carburant, tout en évitant une surchauffe du puits thermique (par exemple le carburant) ainsi que la propagation d'arcs électriques depuis les équipements vers ce puits.The arrangements proposed above, optionally for some, thus allow in particular to evacuate the heat produced by the equipment, for example electronic as in the case of fuel pumps, while avoiding overheating of the heat sink (for example the fuel) as well as the propagation of electric arcs from the equipment to this well.
L'invention propose également un aéronef équipé d'un tel dispositif. D'autres caractéristiques et avantages de l'invention apparaîtront à la lumière de la description qui suit faite en référence aux dessins annexés dans lesquels :The invention also proposes an aircraft equipped with such a device. Other features and advantages of the invention will emerge in the light of the following description given with reference to the appended drawings in which:
- les figures 1A à 1C représentent un premier exemple de réalisation de l'invention ;- Figures 1A to 1C show a first embodiment of the invention;
- les figures 2A à 2C représentent un second exemple de réalisation de l'invention ;FIGS. 2A to 2C show a second embodiment of the invention;
- les figures 2D à 2F représentent une variante du second exemple présenté aux figures 2A à 2C ; - les figures 3A à 3C représentent un troisième exemple de réalisation de l'invention ;- Figures 2D to 2F show a variant of the second example shown in Figures 2A to 2C; FIGS. 3A to 3C show a third embodiment of the invention;
- les figures 4A à 4C représentent un quatrième exemple de réalisation de l'invention.- Figures 4A to 4C show a fourth embodiment of the invention.
La figure 1A représente un premier exemple de réalisation de l'invention en régime de fonctionnement normal.FIG. 1A represents a first exemplary embodiment of the invention in normal operating mode.
Dans cet exemple, une plaque chaude 101 qui comprend une source de chaleur (non représentée) est reliée à une plaque froide 102 (par exemple une partie de structure du dispositif) au moyen d'un matériau 103 solide à la température nominale Tnominaie correspondant au fonctionnement normal. Le matériau 103 est un conducteur thermique et sa résistance thermique Rmatériau est donc relativement faible. Ainsi, la chaleur générée par la source de chaleur au niveau de la plaque chaude 101 est évacuée, dans les conditions normales de fonctionnement, à travers le matériau 103 vers la plaque froide 102 qui joue le rôle d'un puits de chaleur ou source froide. Le matériau 103 est également choisi tel que sa température de fusion Tfusion est inférieure ou égale à la température maximum de fonctionnement souhaité Tmax. Une telle température maximum peut être souhaitée par exemple pour éviter une dégradation de la plaque froide 102, ou d'autres conséquences négatives, comme par exemple un risque d'incendie lorsque la plaque froide est réalisée sous forme d'un matériau combustible comme le carburant d'un aéronef. Ainsi, comme représenté en figure 1B, lorsque la température T du matériau 103 atteint, par exemple du fait d'une sortie du régime de fonctionnement normal, la température de fusion TfUSion du matériau 103, celui-ci change d'état : le matériau 103 passe de l'état solide à l'état liquide (représenté sous la référence 103' en figure 1B), ce qui entraine son effacement (ici son écoulement par des moyens appropriés) de sa position initiale au contact de la plaque chaude 101 et de la plaque froide 102.In this example, a hot plate 101 which comprises a heat source (not shown) is connected to a cold plate 102 (for example a part of the device structure) by means of a solid material 103 at the nominal temperature T no min. corresponding to normal operation. The material 103 is a thermal conductor and its thermal resistance R ma terial is therefore relatively low. Thus, the heat generated by the heat source at the hot plate 101 is removed, under normal operating conditions, through the material 103 to the cold plate 102 which acts as a heat sink or cold source . The material 103 is also chosen such that its melting temperature Tfusion is less than or equal to the desired maximum operating temperature T max . Such a maximum temperature may be desired for example to avoid degradation of the cold plate 102, or other negative consequences, such as for example a risk of fire when the cold plate is made in the form of a combustible material such as fuel of an aircraft. Thus, as shown in FIG. 1B, when the temperature T of the material 103 reaches, for example because of an output of the normal operating regime, the melting temperature Tf USion of the material 103, the latter changes state: the material 103 passes from the solid state to the liquid state (represented under the reference 103 'in FIG. 1B), which causes it to be erased (here its flow by appropriate means) from its initial position in contact with the hot plate 101 and the cold plate 102.
De ce fait, lorsque la température entre les plaques 101 , 102 est supérieure à la température maximale souhaitée TmaXl la plaque chaude 101 et la plaque froide 102 ne sont plus reliées par le matériau mais séparées par une lame d'air 106 dont la résistance thermique Rajr est très supérieure à celle du matériau Rmatériau, comme représenté en figure 1C. Therefore , when the temperature between the plates 101, 102 is greater than the desired maximum temperature T maXl the hot plate 101 and the cold plate 102 are no longer connected by the material but separated by an air knife 106 whose resistance The temperature R a j r is much greater than that of the material Rmaterial as shown in FIG. 1C.
La plaque froide 102 est alors isolée thermiquement de la plaque chaude 101 grâce à la lame d'air 106 qui les sépare ; cette dernière joue également le rôle d'un isolant électrique, ce qui permet d'éviter également la transmission d'énergie électrique (par exemple sous forme d'arcs électriques) de la plaque chaude à la plaque froide 102. Ce dernier avantage est particulièrement intéressant dans le cas où la plaque chaude 101 comporte un équipement électrique ou électronique dont des disfonctionnements éventuels pourraient se révéler dangereux au niveau de la plaque froide 102 en particulier lorsque celle-ci a atteint une température supérieure à la température maximale souhaitée Tmax.The cold plate 102 is then thermally insulated from the hot plate 101 by means of the air knife 106 which separates them; the latter also plays the role of an electrical insulator, which also prevents the transmission of electrical energy (for example in the form of electric arcs) from the hot plate to the cold plate 102. This last advantage is particularly interesting in the case where the hot plate 101 comprises an electrical or electronic equipment whose possible malfunctions could be dangerous at the cold plate 102 especially when it has reached a temperature above the desired maximum temperature T max .
On utilise par exemple comme matériau 103 de la cire dont les propriétés thermiques permettent une conduction de la chaleur nettement supérieure à celle permise par la résistance thermique de l'air 106.For example, wax material whose heat properties permit a conduction of heat that is much greater than that permitted by the thermal resistance of air 106 is used as material.
La figure 2A représente un second exemple de réalisation de l'invention en régime de fonctionnement normal, c'est-à-dire, par exemple à une température de fonctionnement Tπominai nettement inférieure à une température maximale souhaitée. Dans cet exemple, un équipement 201 comprenant une source de chaleur est situé à distance d'une plaque froide 202 et séparé par conséquent de celle-ci par une lame d'air 206. L'équipement 201 est par ailleurs lié à la plaque froide 202 au moyen d'un drain thermique 203 formé dans un matériau bon conducteur de la chaleur (c'est-à-dire de faible résistance thermique) et qui s'étend donc en partie dans l'espace formé par la lame d'air 206.2A shows a second embodiment of the invention in normal operating conditions, that is to say, for example at an operating temperature T a i n πomi significantly less than a desired maximum temperature. In this example, a device 201 comprising a heat source is located at a distance from a cold plate 202 and consequently separated therefrom by an air gap 206. The equipment 201 is moreover linked to the cold plate 202 by means of a heat sink 203 formed in a good heat-conducting material (that is to say of low heat resistance) and which therefore extends partly in the space formed by the blade of air 206.
Le drain thermique 203 est maintenu au contact de Ia plaque froide 202 par interposition entre une partie de l'équipement 201 et le drain conducteur 203 d'un matériau de liaison à l'état solide 204. Par ailleurs, un ressort de compression 205 est interposé entre le drain 203 et la plaque froide 202, le ressort 205 étant comprimé lorsque le drain 203 est au contact de la plaque froide 202. Le drain 203 est relié à l'équipement 201 , d'une part à travers le matériau de liaison 204 et d'autre part directement en d'autres parties de l'équipement 201 que celles recevant le matériau de liaison 204, par exemple au niveau d'une paroi latérale 208 de l'équipement 201.The heat sink 203 is held in contact with the cold plate 202 by interposition between a part of the equipment 201 and the conductive drain 203 of a solid state bonding material 204. Furthermore, a compression spring 205 is interposed between the drain 203 and the cold plate 202, the spring 205 being compressed when the drain 203 is in contact with the cold plate 202. The drain 203 is connected to the equipment 201, firstly through the connecting material 204 and secondly directly to other parts of the equipment 201 than those receiving the connecting material 204, for example at a side wall 208 of the equipment 201.
Lorsque la température au niveau du matériau de liaison 204 augmente au-delà du régime de fonctionnement normal et atteint la température de fusion TfUSion du matériau de liaison 204, ce dernier passe de l'état solide à l'état liquide (comme représenté en figure 2B où le matériau de liaison dans l'état liquide est référencé 204') et s'écoule en dehors du dispositif selon des moyens appropriés. De ce fait, le drain 203 n'est plus retenu au contact de la plaque froide 202 mais s'en éloigne au contraire sous l'effet du ressort 205. Du fait du déplacement du drain 203 et de sa perte de contact avec la plaque froide 202, l'équipement 201 et la plaque froide 202 sont séparés par l'épaisseur (ou lame) d'air 206, exception faite du ressort 205 dont la conductivité thermique est négligeable, et ces deux éléments sont donc essentiellement isolés au moyen de la lame d'air 206, comme représenté en figure 2C.When the temperature at the bonding material 204 increases beyond the normal operating regime and reaches the fusing temperature T fUS ion of the bonding material 204, the latter passes from the solid state to the liquid state (as shown in FIG. in Figure 2B where the bonding material in the liquid state is referenced 204 ') and flows out of the device by appropriate means. As a result, the drain 203 is no longer held in contact with the cold plate 202 but instead moves away under the effect of the spring 205. Due to the displacement of the drain 203 and its loss of contact with the plate cold 202, the equipment 201 and the cold plate 202 are separated by the thickness (or blade) of air 206, except the spring 205 whose thermal conductivity is negligible, and these two elements are essentially isolated by means of the air gap 206, as shown in Figure 2C.
La figure 2D représente, en régime de fonctionnement normal, une variante du second exemple qui vient d'être décrit.FIG. 2D represents, in normal operating mode, a variant of the second example which has just been described.
Comme pour le second exemple précédemment décrit, un équipement 211 comprenant une source de chaleur est situé à distance d'une plaque froide 212 et séparé par conséquent de celle-ci par une lame d'air 216. L'équipement 211 est par ailleurs lié à la plaque froide 212 au moyen d'un drain thermique 213 formé dans un matériau de faible résistance thermique et qui s'étend donc en partie dans l'espace formé par la lame d'air 216.As for the second example previously described, a device 211 comprising a heat source is located at a distance from a cold plate 212 and therefore separated therefrom by an air knife 216. The equipment 211 is also linked to the cold plate 212 by means of a drain thermal 213 formed in a material of low thermal resistance and which therefore extends in part in the space formed by the air knife 216.
Selon cette variante, le drain thermique 213 est toutefois maintenu en appui contre la plaque froide 212 au moyen d'un bloc solide 214 interposé entre le drain conducteur 213 et une partie de structure 210. Par ailleurs, comme pour le second exemple, un ressort de compression 215 est interposé entre le drain 213 et la plaque froide 212, le ressort 215 étant comprimé lorsque le drain 213 est au contact de la plaque froide 212 du fait de la présence du bloc solide 214. Ainsi, selon la présente variante, le bloc solide 214 ne participe pas nécessairement à l'écoulement de la chaleur.According to this variant, the heat sink 213 is however held in abutment against the cold plate 212 by means of a solid block 214 interposed between the conductive drain 213 and a structural part 210. Moreover, as for the second example, a spring compression 215 is interposed between the drain 213 and the cold plate 212, the spring 215 being compressed when the drain 213 is in contact with the cold plate 212 due to the presence of the solid block 214. Thus, according to the present variant, the solid block 214 does not necessarily participate in the flow of heat.
Lorsque la température au niveau du bloc solide 214 augmente au- delà du régime de fonctionnement normal et atteint la température de fusion Tfusion du matériau constituant le bloc 214, ce dernier passe de l'état solide à l'état liquide (comme représenté en figure 2E où le bloc en fusion est représenté sous la référence 214') et s'écoule en dehors du dispositif selon des moyens appropriés.When the temperature at the solid block 214 increases beyond the normal operating regime and reaches the melting temperature T fusi o n of the material constituting the block 214, the latter passes from the solid state to the liquid state (as shown in Figure 2E where the molten block is shown as 214 ') and flows out of the device by appropriate means.
De ce fait, le drain 213 n'est plus retenu au contact de la plaque froide 212 mais s'en éloigne au contraire sous l'effet du ressort 215. Du fait du déplacement du drain 213 et de sa perte de contact avec la plaque froide 212, l'équipement 211 et la plaque froide 212 sont séparés par l'épaisseur (ou lame) d'air 216, exception faite du ressort 215 dont la conductivité thermique est négligeable, et ces deux éléments sont donc essentiellement isolés au moyen de la lame d'air 216. Selon le mode de réalisation représenté en figure 2F, le déplacement du drain 213 se poursuit alors jusqu'à ce que celui-ci entre en contact avec la partie de structure 210 qui pourrait alors dans ce cas faire office à son tour de puits de chaleur.As a result, the drain 213 is no longer held in contact with the cold plate 212, but instead moves away under the effect of the spring 215. Due to the displacement of the drain 213 and its loss of contact with the plate 212, the equipment 211 and the cold plate 212 are separated by the thickness (or blade) of air 216, except the spring 215 whose thermal conductivity is negligible, and these two elements are essentially isolated by means of the air knife 216. According to the embodiment shown in FIG. 2F, the displacement of the drain 213 then continues until the latter comes into contact with the structural part 210 which could then in this case serve in turn heat sinks.
La figure 3A représente un troisième exemple de réalisation de l'invention dans les conditions de fonctionnement normal. Selon cet exemple, l'équipement 301 générant de la chaleur et la partie froide 302 faisant office de source froide sont situés respectivement dans la partie supérieure et la partie inférieure d'une enceinte 305.Figure 3A shows a third embodiment of the invention under normal operating conditions. According to this example, the equipment 301 generating heat and the cold part 302 acting as cold source are respectively located in the upper part and the lower part of an enclosure 305.
Un espace ménagé dans l'enceinte entre l'équipement 301 et la partie froide 302 est rempli d'un matériau de liaison sous forme liquide 303 ayant une résistance thermique faible et qui forme un chemin de conduction de la chaleur entre l'équipement 301 et la partie froide 302.A space in the enclosure between the equipment 301 and the cold part 302 is filled with a liquid-form bonding material 303 having a low thermal resistance and which forms a heat conduction path between the equipment 301 and the cold part 302.
L'enceinte 305 reçoit l'équipement 301 , le matériau de liaison 303 et la partie froide 302 de façon hermétique. Seule une soupape de sécurité 304 pénétrant dans l'enceinte au niveau de l'espace rempli par le matériau de liaison 303 permet éventuellement une évacuation du liquide lorsque la pression est supérieure à un seuil comme expliqué ci-après.The enclosure 305 receives the equipment 301, the connecting material 303 and the cold part 302 hermetically. Only a safety valve 304 penetrating into the chamber at the space filled by the connecting material 303 possibly allows evacuation of the liquid when the pressure is greater than a threshold as explained below.
Le matériau de liaison 303 est tel que sa température de vaporisation correspond approximativement (et est de préférence légèrement inférieure) à une température maximale souhaitée au niveau de la partie froide 302.The bonding material 303 is such that its vaporization temperature corresponds approximately (and is preferably slightly less) to a desired maximum temperature at the cold portion 302.
De ce fait, lorsque, par exemple en raison d'un disfonctionnement de l'équipement 301 , la température du matériau de liaison dépasse la température de vaporisation (et atteint donc la température maximale souhaitée), le matériau de liaison 303 passe de l'état liquide à l'état gazeux au cours d'une phase représentée à la figure 3B (le matériau sous forme gazeuse 303' apparaissant naturellement dans la partie supérieure de l'espace de l'enceinte 305 précédemment occupée par le liquide, au contact de l'équipement 301).Therefore, when, for example due to a malfunction of the equipment 301, the temperature of the bonding material exceeds the vaporization temperature (and thus reaches the desired maximum temperature), the bonding material 303 passes from the liquid state in the gaseous state during a phase shown in Figure 3B (the gaseous material 303 'naturally occurring in the upper part of the space of the chamber 305 previously occupied by the liquid, in contact with the equipment 301).
Le changement d'état dans l'enceinte hermétique 305 provoque une montée en pression à l'intérieur de celle-ci jusqu'à ce que la pression atteigne le seuil de déclenchement de la soupape de sécurité 304 et que la partie liquide du matériau de liaison 303 commence par conséquent à s'évacuer comme représenté en figure 3B.The change of state in the hermetic enclosure 305 causes a rise in pressure inside thereof until the pressure reaches the tripping threshold of the safety valve 304 and that the liquid part of the material of Link 303 therefore begins to drain as shown in Figure 3B.
Si la température continue d'augmenter au-delà de la température de vaporisation du matériau de liaison 303, le phénomène qui vient d'être décrit et représenté à la figure 3B se poursuit jusqu'à ce que l'espace de l'enceinte 305 situé entre l'équipement 301 et la partie froide 302 soit entièrement rempli de la phase gazeuse 303' du matériau de liaison.If the temperature continues to increase beyond the vaporization temperature of the bonding material 303, the phenomenon just described and shown in FIG. 3B continues until the space of the enclosure 305 located between the equipment 301 and the cold part 302 is completely filled with the gas phase 303 'of the connecting material.
Le chemin thermique initialement formé par le matériau de liaisonThe thermal path initially formed by the bonding material
303 sous forme liquide est donc interrompu et la partie froide 302 est de ce fait isolé thermiquement de l'équipement 301, la résistance thermique du matériau de liaison sous forme gazeuse étant bien supérieure à celle du matériau de liaison sous forme liquide.303 in liquid form is therefore interrupted and the cold part 302 is thus thermally isolated from the equipment 301, the thermal resistance of the gaseous connection material being much greater than that of the binding material in liquid form.
On remarque que le changement de phase (c'est-à-dire le passage de l'état liquide à l'état gazeux) du matériau de liaison a également permis de remplacer le chemin thermique par une lame gazeuse, ce qui permet notamment d'éviter la formation d'arcs électriques entre l'équipement 301 et la partie froide 302.It is noted that the phase change (that is to say the transition from the liquid state to the gaseous state) of the connecting material has also made it possible to replace the thermal path with a gaseous blade, which makes it possible, in particular, to avoid arcing between the equipment 301 and the cold part 302.
La figure 4A représente un quatrième exemple de réalisation de l'invention dans les conditions normales de fonctionnement, c'est-à-dire pour des températures (dont la température nominale de fonctionnement) nettement inférieures à une température maximale autorisée.FIG. 4A represents a fourth embodiment of the invention under normal operating conditions, that is to say for temperatures (whose nominal operating temperature) that are well below a maximum permitted temperature.
Dans cet exemple de réalisation, une enceinte 405 est formée dans le prolongement inférieur d'une plaque chaude 401 (qui constitue par exemple une partie d'un équipement contenant une source de chaleur, telle que par exemple une pompe à carburant équipant les aéronefs).In this exemplary embodiment, an enclosure 405 is formed in the lower extension of a hot plate 401 (which is for example a part of an equipment containing a heat source, such as for example a fuel pump equipping the aircraft) .
L'enceinte 405 est hermétique et comprend dans sa partie inférieure, en régime de fonctionnement normal, un composant liquide 403.The enclosure 405 is hermetic and comprises in its lower part, in normal operating mode, a liquid component 403.
Un drain thermique 404 est également reçu pour partie à l'intérieur de l'enceinte 405 : une partie supérieure 406 (ici substantiellement horizontale) s'étend sur toute la superficie (ici horizontale) de l'enceinte 405 de manière à former un piston qui sépare une partie supérieure de l'enceinte 405, par exemple remplie d'air, d'une partie inférieure de l'enceinte 405 remplie par le composant liquide 403 en régime de fonctionnement normal.A heat sink 404 is also partially received inside the enclosure 405: an upper portion 406 (here substantially horizontal) extends over the entire (here horizontal) surface of the enclosure 405 so as to form a piston separating an upper part of the enclosure 405, for example filled with air, from a lower part of the enclosure 405 filled by the liquid component 403 in normal operating mode.
On peut ainsi considérer en fonctionnement normal que le drain flotte sur le composant liquide 403.It can thus be considered in normal operation that the drain floats on the liquid component 403.
Le drain thermique 404 comprend également une tige (ici essentiellement verticale) dont une partie inférieure 407 est, en fonctionnement normal comme illustré sur la figure 4A, au contact d'une partie froide formant puits de chaleur, ici formée par le carburant liquide 402 de l'aéronef. La partie inférieure 407 est précisément dans ce cas plongée dans le carburant 402 comme représenté en figure 4A. Dans la configuration de fonctionnement normal présentée à la figureThe heat sink 404 also comprises a rod (in this case essentially vertical) of which a lower part 407 is, in operation normal as illustrated in Figure 4A, in contact with a cold forming heat sink, here formed by the liquid fuel 402 of the aircraft. The lower portion 407 is precisely in this case immersed in the fuel 402 as shown in Figure 4A. In the normal operating configuration shown in the figure
4A (c'est-à-dire notamment pour la température nominale de fonctionnement), un chemin thermique est ainsi formé entre l'équipement 401 et la partie froide 402 au moyen de matériaux ayant une résistance thermique relativement faible, à savoir ici les parois de l'enceinte 405, le composant liquide 403 et le drain thermique 404.4A (that is to say, especially for the nominal operating temperature), a thermal path is thus formed between the equipment 401 and the cold part 402 by means of materials having a relatively low thermal resistance, namely here the walls the enclosure 405, the liquid component 403 and the heat sink 404.
Lorsque la température dans l'enceinte 405 s'élève au-dessus de la température nominale de fonctionnement (par exemple, à cause d'un disfonctionnement de l'équipement 401) et atteint la température de vaporisation du composant liquide 403 (choisie de préférence légèrement inférieure à une température maximale autorisée à l'intérieur de l'enceinte 405, qui correspond par exemple à une température au-delà de laquelle des risques existent du fait de la présence du carburant 402), une phase gazeuse 403' apparaît dans la partie inférieure de l'enceinte 405 et la pression qu'elle exerce tend à déplacer vers le haut le drain thermique 404 dont on rappelle que la partie supérieure 406 forme piston, comme représenté sur la figure 4B.When the temperature in the enclosure 405 rises above the nominal operating temperature (for example, because of a malfunction of the equipment 401) and reaches the vaporization temperature of the liquid component 403 (preferably chosen slightly lower than a maximum allowed temperature inside the enclosure 405, which corresponds for example to a temperature beyond which there are risks due to the presence of the fuel 402), a gaseous phase 403 'appears in the lower part of the enclosure 405 and the pressure it exerts tends to move up the heat sink 404 which is recalled that the upper portion 406 piston shape, as shown in Figure 4B.
Ainsi, le mouvement du drain thermique 404 produit sous l'effet de la pression, elle-même due au changement d'état du composant liquide 403, entraîne la partie verticale du drain thermique, pour partie au moins, en dehors de la partie froide 402, ce qui limite le transfert de chaleur vers cette partie froide et évite un échauffement trop important de celle-ci.Thus, the movement of the heat sink 404 produced under the effect of the pressure, itself due to the change of state of the liquid component 403, causes the vertical part of the heat sink, at least partly outside the cold part 402, which limits the heat transfer to this cold part and avoids overheating thereof.
Si la température vient toutefois à s'élever encore au-delà de la température de vaporisation du composant liquide 403, l'ensemble de celui-ci se transforme en gaz et la pression exercée dans la partie inférieure de l'enceinte 405 augmente de telle sorte que le drain 404 est entraîné vers le haut jusqu'à ce que sa partie inférieure 407 émerge du carburant formant source froide 402 et finisse sa course à distance de celui-ci. Dans cette position finale, l'espace situé entre la partie inférieure 407 du drain 404 et la surface du carburant liquide 402 est rempli d'une lame d'un gaz isolant thermiquement et électriquement (tel que par exemple l'air) de telle sorte que l'équipement 401 et le carburant liquide 402 formant source froide sont suffisamment isolés thermiquement et électriquement pour éviter tout risque d'incendie du carburant 402.If, however, the temperature is still rising above the vaporization temperature of the liquid component 403, the whole of it becomes gas and the pressure exerted in the lower part of the enclosure 405 increases by so that the drain 404 is driven upward until its lower portion 407 emerges from the cold source fuel 402 and ends its travel away from it. In this final position, the space between the lower part 407 of the drain 404 and the surface of the liquid fuel 402 is filled with a blade of a thermally and electrically insulating gas (such as for example air) in such a way that that the equipment 401 and the liquid fuel 402 forming a cold source are sufficiently thermally and electrically insulated to avoid any risk of fire fuel 402.
Les modes de réalisation qui précèdent ne sont que des exemples possibles de mise en oeuvre l'invention qui ne s'y limite pas. The preceding embodiments are only possible examples of implementation of the invention which is not limited thereto.

Claims

REVENDICATIONS
1. Dispositif comprenant un équipement (101 ; 201 ; 211 ; 301 ; 401) avec une source de chaleur, une partie froide (102 ; 202 ; 212 ; 302 ; 402) relativement à l'équipement et un élément (103 ; 203, 204 ; 213, 214 ; 303 ; 403, 404, 405) apte à transmettre la chaleur de l'équipement à la partie froide, caractérisé en ce que l'élément est tel que, sous certaines conditions thermiques situées au-dessus d'une condition thermique donnée, l'équipement et la partie froide sont essentiellement isolés thermiquement.Apparatus comprising an equipment (101; 201; 211; 301; 401) with a heat source, a cold part (102; 202; 212; 302; 402) relative to the equipment and an element (103; 203; 204, 213, 214, 303, 403, 404, 405) adapted to transmit the heat of the equipment to the cold part, characterized in that the element is such that, under certain thermal conditions located above a given thermal condition, the equipment and the cold part are essentially thermally insulated.
2. Dispositif selon la revendication 1, dans lequel l'équipement et la partie froide sont essentiellement isolés électriquement au moins dans lesdites conditions thermiques.2. Device according to claim 1, wherein the equipment and the cold part are essentially electrically insulated at least in said thermal conditions.
3. Dispositif selon la revendication 1 ou 2, dans lequel l'équipement et la partie froide sont séparés essentiellement par une lame gazeuse (106 ; 206 ; 216 ; 303') au moins dans lesdites conditions thermiques.3. Device according to claim 1 or 2, wherein the equipment and the cold part are essentially separated by a gaseous blade (106; 206; 216; 303 ') at least in said thermal conditions.
4. Dispositif selon l'une des revendications 1 à 3, dans lequel l'élément est tel que sa résistance thermique est apte à augmenter sous lesdites conditions thermiques de telle sorte que l'élément devienne essentiellement isolant.4. Device according to one of claims 1 to 3, wherein the element is such that its thermal resistance is able to increase under said thermal conditions so that the element becomes essentially insulating.
5. Dispositif selon la revendication 4, dans lequel l'élément comprend au moins un composant (303) dont un changement d'état dans lesdites conditions thermiques provoque l'augmentation de ladite résistance thermique.5. Device according to claim 4, wherein the element comprises at least one component (303), a change of state in said thermal conditions causes the increase of said thermal resistance.
6. Dispositif selon la revendication 5, dans lequel ledit changement d'état est un passage de l'état liquide à l'état gazeux. 6. Device according to claim 5, wherein said change of state is a transition from the liquid state to the gaseous state.
7. Dispositif selon la revendication 5 ou 6, la revendication 4 étant prise dans la dépendance de la revendication 3, dans lequel le composant forme ladite lame (303') après ledit changement d'état.7. Device according to claim 5 or 6, claim 4 being taken in dependence on claim 3, wherein the component forms said blade (303 ') after said change of state.
8. Dispositif selon l'une des revendications 1 à 3, dans lequel l'élément (103 ; 203 ; 213 ; 404) est configuré pour perdre le contact avec l'équipement ou la partie froide dans lesdites conditions thermiques.8. Device according to one of claims 1 to 3, wherein the element (103; 203; 213; 404) is configured to lose contact with the equipment or the cold part in said thermal conditions.
9. Dispositif selon la revendication 8, dans lequel l'élément comprend au moins un composant (103 ; 204 ; 214 ; 403) dont un changement d'état dans lesdites conditions thermiques provoque ladite perte de contact.9. Device according to claim 8, wherein the element comprises at least one component (103; 204; 214; 403), a change of state in said thermal conditions causes said loss of contact.
10. Dispositif selon la revendication 9, dans lequel ledit composant (103) participe à la conduction de l'équipement à la partie froide en dehors desdites conditions thermiques et s'efface du fait de son changement d'état dans lesdites conditions thermiques, isolant ainsi essentiellement l'équipement et la partie froide.10. Device according to claim 9, wherein said component (103) participates in the conduction of the equipment to the cold part outside said thermal conditions and fades due to its change of state in said thermal conditions, insulating thus essentially the equipment and the cold part.
11. Dispositif selon la revendication 9, dans lequel le changement d'une propriété mécanique du composant (204 ; 214 ; 403) lors de son changement d'état entraîne un mouvement d'une partie (203 ; 213 ; 404) de l'élément, provoquant ainsi ladite perte de contact.The device of claim 9, wherein changing a mechanical property of the component (204; 214; 403) upon its change of state causes a movement of a portion (203; 213; 404) of the element, thereby causing said loss of contact.
12. Dispositif selon l'une des revendications 9 à 11 , la revendication 8 étant prise dans la dépendance de la revendication 3, dans lequel l'élément est configuré de telle sorte que le changement d'état du composant permette la formation de ladite lame gazeuse.12. Device according to one of claims 9 to 11, claim 8 being taken in accordance with claim 3, wherein the element is configured so that the change of state of the component allows the formation of said blade gas.
13. Dispositif selon l'une des revendications 9 à 12, dans lequel le changement d'état est un passage de l'état solide à l'état liquide. 13. Device according to one of claims 9 to 12, wherein the change of state is a passage from the solid state to the liquid state.
14. Dispositif selon l'une des revendications 9 à 12, dans lequel le changement d'état est un passage de l'état liquide à l'état gazeux.14. Device according to one of claims 9 to 12, wherein the change of state is a transition from the liquid state to the gaseous state.
15. Dispositif selon l'une des revendications 1 à 14, dans lequel l'équipement est une pompe pour carburant.15. Device according to one of claims 1 to 14, wherein the equipment is a fuel pump.
16. Dispositif selon l'une des revendications 1 à 15, dans lequel la partie froide est un carburant liquide.16. Device according to one of claims 1 to 15, wherein the cold part is a liquid fuel.
17. Dispositif selon l'une des revendications 1 à 15, dans lequel la partie froide est un élément sensible aux élévations de température.17. Device according to one of claims 1 to 15, wherein the cold part is an element sensitive to temperature rises.
18. Aéronef équipé d'un dispositif selon l'une quelconque des revendications 1 à 17. Aircraft equipped with a device according to any one of claims 1 to 17.
PCT/FR2007/001223 2006-07-18 2007-07-17 Heat flow device WO2008009812A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2657778A CA2657778C (en) 2006-07-18 2007-07-17 Heat-flow device
JP2009520012A JP2009543998A (en) 2006-07-18 2007-07-17 Heat exhaust device
BRPI0713191-7A BRPI0713191A2 (en) 2006-07-18 2007-07-17 device comprising equipment with a heat source and aircraft
US12/373,988 US20100012311A1 (en) 2006-07-18 2007-07-17 Heat flow device
EP07823290.7A EP2047201B1 (en) 2006-07-18 2007-07-17 Heat flow device
CN200780027095.4A CN101490497B (en) 2006-07-18 2007-07-17 Heat-flow device
US13/716,951 US9310145B2 (en) 2006-07-18 2012-12-17 Heat flow device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0653016 2006-07-18
FR0653016A FR2904103B1 (en) 2006-07-18 2006-07-18 HEAT FLOW DEVICE

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/373,988 A-371-Of-International US20100012311A1 (en) 2006-07-18 2007-07-17 Heat flow device
US13/716,951 Division US9310145B2 (en) 2006-07-18 2012-12-17 Heat flow device

Publications (1)

Publication Number Publication Date
WO2008009812A1 true WO2008009812A1 (en) 2008-01-24

Family

ID=37691806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/001223 WO2008009812A1 (en) 2006-07-18 2007-07-17 Heat flow device

Country Status (9)

Country Link
US (2) US20100012311A1 (en)
EP (1) EP2047201B1 (en)
JP (1) JP2009543998A (en)
CN (1) CN101490497B (en)
BR (1) BRPI0713191A2 (en)
CA (1) CA2657778C (en)
FR (1) FR2904103B1 (en)
RU (1) RU2460955C2 (en)
WO (1) WO2008009812A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9610093B2 (en) 2010-08-06 2017-04-04 Kci Licensing, Inc. Microblister skin grafting
US9597111B2 (en) 2010-08-06 2017-03-21 Kci Licensing, Inc. Methods for applying a skin graft
US8617181B2 (en) 2010-08-06 2013-12-31 MoMelan Technologies, Inc. Methods for preparing a skin graft
US8562626B2 (en) 2010-08-06 2013-10-22 MoMelan Technologies, Inc. Devices for harvesting a skin graft
US8926631B2 (en) 2010-08-06 2015-01-06 MoMelan Technologies, Inc. Methods for preparing a skin graft without culturing or use of biologics
US9173674B2 (en) 2010-08-06 2015-11-03 MoMelan Technologies, Inc. Devices for harvesting a skin graft
US8978234B2 (en) 2011-12-07 2015-03-17 MoMelan Technologies, Inc. Methods of manufacturing devices for generating skin grafts
FR2977121B1 (en) * 2011-06-22 2014-04-25 Commissariat Energie Atomique THERMAL MANAGEMENT SYSTEM WITH VARIABLE VOLUME MATERIAL
US9962254B2 (en) 2013-03-14 2018-05-08 Kci Licensing, Inc. Absorbent substrates for harvesting skin grafts
EP3626188B1 (en) 2013-12-31 2021-08-18 3M Innovative Properties Company Sensor systems for skin graft harvesting
EP3089681B1 (en) 2013-12-31 2021-09-08 3M Innovative Properties Company Fluid-assisted skin graft harvesting
US10912861B2 (en) 2015-04-09 2021-02-09 Kci Licensing, Inc. Soft-tack, porous substrates for harvesting skin grafts
WO2017079439A1 (en) 2015-11-03 2017-05-11 Kci Licensing, Inc. Device for creating an epidermal graft sheet
US10866036B1 (en) 2020-05-18 2020-12-15 Envertic Thermal Systems, Llc Thermal switch
US11493551B2 (en) 2020-06-22 2022-11-08 Advantest Test Solutions, Inc. Integrated test cell using active thermal interposer (ATI) with parallel socket actuation
US11549981B2 (en) 2020-10-01 2023-01-10 Advantest Test Solutions, Inc. Thermal solution for massively parallel testing
US11808812B2 (en) 2020-11-02 2023-11-07 Advantest Test Solutions, Inc. Passive carrier-based device delivery for slot-based high-volume semiconductor test system
US11821913B2 (en) 2020-11-02 2023-11-21 Advantest Test Solutions, Inc. Shielded socket and carrier for high-volume test of semiconductor devices
US20220155364A1 (en) 2020-11-19 2022-05-19 Advantest Test Solutions, Inc. Wafer scale active thermal interposer for device testing
US11609266B2 (en) 2020-12-04 2023-03-21 Advantest Test Solutions, Inc. Active thermal interposer device
US11573262B2 (en) 2020-12-31 2023-02-07 Advantest Test Solutions, Inc. Multi-input multi-zone thermal control for device testing
US11587640B2 (en) 2021-03-08 2023-02-21 Advantest Test Solutions, Inc. Carrier based high volume system level testing of devices with pop structures
US11656273B1 (en) 2021-11-05 2023-05-23 Advantest Test Solutions, Inc. High current device testing apparatus and systems
US11835549B2 (en) 2022-01-26 2023-12-05 Advantest Test Solutions, Inc. Thermal array with gimbal features and enhanced thermal performance

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3463224A (en) * 1966-10-24 1969-08-26 Trw Inc Thermal heat switch
US3519067A (en) * 1967-12-28 1970-07-07 Honeywell Inc Variable thermal conductance devices
US4384610A (en) * 1981-10-19 1983-05-24 Mcdonnell Douglas Corporation Simple thermal joint
US4402358A (en) * 1982-10-15 1983-09-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Heat pipe thermal switch
US4742867A (en) * 1986-12-01 1988-05-10 Cape Cod Research, Inc. Method and apparatuses for heat transfer
US5216580A (en) * 1992-01-14 1993-06-01 Sun Microsystems, Inc. Optimized integral heat pipe and electronic circuit module arrangement
DE10123473A1 (en) * 2001-05-15 2002-11-21 Volkswagen Ag Arrangement for introducing heat into liquid e.g. for fuel cell system for vehicle drive, has heat conductor divided by switch element into one region for transferring heat from surroundings and one for transferring heat to liquid
DE10342425A1 (en) * 2003-09-13 2005-01-05 Daimlerchrysler Ag Heat insulation unit comprises an intermediate layer with a matrix of low thermal conductivity embedding heat conductor elements whose orientation is externally controllable
US20060141308A1 (en) * 2004-12-23 2006-06-29 Becerra Juan J Apparatus and method for variable conductance temperature control

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3391728A (en) * 1964-07-03 1968-07-09 Trw Inc Thermal valve
US3399717A (en) * 1966-12-27 1968-09-03 Trw Inc Thermal switch
GB1356115A (en) * 1970-10-27 1974-06-12 Lucas Industries Ltd Fuel supply arrangements for internal combustion engines
US4212346A (en) * 1977-09-19 1980-07-15 Rockwell International Corporation Variable heat transfer device
US4281708A (en) * 1979-05-30 1981-08-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Automatic thermal switch
JPS63161388A (en) 1986-12-23 1988-07-05 Ishikawajima Harima Heavy Ind Co Ltd Heat pipe
JPH01110245A (en) * 1987-10-23 1989-04-26 Iwatani Internatl Corp Cryogenic temperature tester
US6435454B1 (en) * 1987-12-14 2002-08-20 Northrop Grumman Corporation Heat pipe cooling of aircraft skins for infrared radiation matching
JPH0645177Y2 (en) 1988-07-11 1994-11-16 三菱重工業株式会社 heat pipe
JPH0528721Y2 (en) * 1989-09-06 1993-07-23
US5188909A (en) * 1991-09-12 1993-02-23 Eveready Battery Co., Inc. Electrochemical cell with circuit disconnect device
AT399951B (en) * 1991-11-05 1995-08-25 Grabner Werner METHOD AND DEVICE FOR LIMITING THE TEMPERATURE
US5379601A (en) * 1993-09-15 1995-01-10 International Business Machines Corporation Temperature actuated switch for cryo-coolers
JP3324107B2 (en) * 1996-03-29 2002-09-17 株式会社トヨトミ Fuel pipe structure of pot type oil combustor
RU2110902C1 (en) * 1996-11-13 1998-05-10 Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Экспериментальной Физики Method for cooling radio elements
US6047766A (en) 1998-08-03 2000-04-11 Hewlett-Packard Company Multi-mode heat transfer using a thermal heat pipe valve
RU2161384C1 (en) * 1999-05-13 2000-12-27 Фонд Сертификации "Энергия" Apparatus for temperature stabilization of electronic equipment
US6940716B1 (en) * 2000-07-13 2005-09-06 Intel Corporation Method and apparatus for dissipating heat from an electronic device
RU2183310C1 (en) * 2000-10-31 2002-06-10 Центр КОРТЭС Heat setting device
JP4273680B2 (en) * 2001-06-14 2009-06-03 パナソニック株式会社 Liquefied gas vaporizer
US20030196787A1 (en) * 2002-04-19 2003-10-23 Mahoney William G. Passive thermal regulator for temperature sensitive components
RU2212358C1 (en) * 2002-12-18 2003-09-20 Макаров Игорь Альбертович Flying vehicle
US6768781B1 (en) * 2003-03-31 2004-07-27 The Boeing Company Methods and apparatuses for removing thermal energy from a nuclear reactor
JP4131196B2 (en) * 2003-05-21 2008-08-13 株式会社ノーリツ Combustion device
US6864571B2 (en) 2003-07-07 2005-03-08 Gelcore Llc Electronic devices and methods for making same using nanotube regions to assist in thermal heat-sinking
TWI229789B (en) 2003-12-29 2005-03-21 Li Mei Feng Cooling method and device of micro heat pipe with pressure difference flow shunt
DE10361653B4 (en) 2003-12-30 2008-08-07 Airbus Deutschland Gmbh Cooling device for removing heat from an arranged in the interior of an aircraft heat source
JP4407509B2 (en) 2004-01-20 2010-02-03 三菱マテリアル株式会社 Insulated heat transfer structure and power module substrate
US20060037589A1 (en) * 2004-08-17 2006-02-23 Ramesh Gupta Heat pipe for heating of gasoline for on-board octane segregation
US7268292B2 (en) * 2004-09-20 2007-09-11 International Business Machines Corporation Multi-dimensional compliant thermal cap for an electronic device
JP4410183B2 (en) * 2005-01-27 2010-02-03 愛三工業株式会社 Fuel supply device
DK1979939T3 (en) * 2006-01-18 2013-04-29 Aaac Microtec Ab Miniaturized thermal, high conductivity electrical switch
FR2904102B1 (en) 2006-07-18 2015-03-27 Airbus France HEAT FLOW DEVICE

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3463224A (en) * 1966-10-24 1969-08-26 Trw Inc Thermal heat switch
US3519067A (en) * 1967-12-28 1970-07-07 Honeywell Inc Variable thermal conductance devices
US4384610A (en) * 1981-10-19 1983-05-24 Mcdonnell Douglas Corporation Simple thermal joint
US4402358A (en) * 1982-10-15 1983-09-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Heat pipe thermal switch
US4742867A (en) * 1986-12-01 1988-05-10 Cape Cod Research, Inc. Method and apparatuses for heat transfer
US5216580A (en) * 1992-01-14 1993-06-01 Sun Microsystems, Inc. Optimized integral heat pipe and electronic circuit module arrangement
DE10123473A1 (en) * 2001-05-15 2002-11-21 Volkswagen Ag Arrangement for introducing heat into liquid e.g. for fuel cell system for vehicle drive, has heat conductor divided by switch element into one region for transferring heat from surroundings and one for transferring heat to liquid
DE10342425A1 (en) * 2003-09-13 2005-01-05 Daimlerchrysler Ag Heat insulation unit comprises an intermediate layer with a matrix of low thermal conductivity embedding heat conductor elements whose orientation is externally controllable
US20060141308A1 (en) * 2004-12-23 2006-06-29 Becerra Juan J Apparatus and method for variable conductance temperature control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2047201A1 *

Also Published As

Publication number Publication date
US9310145B2 (en) 2016-04-12
CA2657778C (en) 2015-11-24
JP2009543998A (en) 2009-12-10
US20130098594A1 (en) 2013-04-25
FR2904103B1 (en) 2015-05-15
FR2904103A1 (en) 2008-01-25
BRPI0713191A2 (en) 2012-03-20
RU2009105501A (en) 2010-08-27
EP2047201A1 (en) 2009-04-15
RU2460955C2 (en) 2012-09-10
CA2657778A1 (en) 2008-01-24
CN101490497B (en) 2014-07-23
CN101490497A (en) 2009-07-22
EP2047201B1 (en) 2021-09-01
US20100012311A1 (en) 2010-01-21

Similar Documents

Publication Publication Date Title
EP2047201B1 (en) Heat flow device
EP2044381B1 (en) Heat flow device
EP2375426B1 (en) Varistor including an electrode with jag portion forming a pole and lightning including such a varistor
EP2375424B1 (en) Device for protecting against overvoltages with parallel thermal disconnectors
EP2375425B1 (en) Device for protecting against surge voltages with enhanced thermal disconnector
EP1504887B1 (en) Electrical cable rendered fire-proof by the use of an outer multilayered sheath
EP0239068A1 (en) Gas blast switch
EP0378635B1 (en) Ultrastable oscillator operating at atmospheric pressure and in vacuo
CA1263679A (en) Wall electrode for direct current electric mettallurgical cell
EP0275772B1 (en) Housing for an electric device, particularly for a surge arrester, comprising an insulating moulded envelope
EP2038978B1 (en) Electric feedthrough structure for superconductor element
FR2902938A1 (en) METHOD FOR PRODUCING THE ELECTRICAL CONNECTIONS OF AN ELECTRIC ENERGY STORAGE ASSEMBLY
FR2813662A1 (en) Capillary evaporator, for thermal transfer loop, comprises a housing made of material with low thermal conductivity
FR2982705A1 (en) DEVICE FOR PROTECTING AN ELECTRICAL CIRCUIT POWERED BY AN INTEGRABLE ALTERNATING CURRENT IN A CONTACTOR.
WO1993013556A1 (en) Multichip module cooling system
FR2877154A1 (en) IMPROVED DEVICE FOR PROTECTING ELECTRICAL DEVICES AGAINST OVERVOLTAGES
WO2006131675A1 (en) High-frequency multispark plug
WO2023073298A1 (en) Device for supplying electrical power with thermal protection
EP4006941A1 (en) Electric power supply device comprising a heat-sensitive actuator and associated device
FR2985004A1 (en) THERMAL SWITCH, CRYO-COOLER AND INSTALLATION COMPRISING SUCH A THERMAL SWITCH
FR2961419A1 (en) Sintering electrode assembly for the manufacture of a contact pad for electrical devices e.g. contactors, comprises two electrical electrodes, a matrix containing a volume retention, and first and second cooling units
FR2878581A1 (en) Internal combustion engine fuel injector assembly procedure includes fitting heat transfer resin or metal insert between injector and cylinder head
EP1225672A1 (en) Internal spark control device for a connection module in gas-insulated transmission line
EP3185275A1 (en) Device for joining a bimetal strip and a component forming a support for said bimetal strip, and electrical protection unit comprising same
BE435650A (en)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780027095.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07823290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2657778

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009520012

Country of ref document: JP

Ref document number: 12373988

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007823290

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009105501

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0713191

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090119