WO2008009811A1 - Heat flow device - Google Patents

Heat flow device Download PDF

Info

Publication number
WO2008009811A1
WO2008009811A1 PCT/FR2007/001222 FR2007001222W WO2008009811A1 WO 2008009811 A1 WO2008009811 A1 WO 2008009811A1 FR 2007001222 W FR2007001222 W FR 2007001222W WO 2008009811 A1 WO2008009811 A1 WO 2008009811A1
Authority
WO
WIPO (PCT)
Prior art keywords
equipment
heat
cold
thermal
temperature
Prior art date
Application number
PCT/FR2007/001222
Other languages
French (fr)
Inventor
Emile Colongo
Stéphane ORTET
Original Assignee
Airbus France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus France filed Critical Airbus France
Priority to EP07803878.3A priority Critical patent/EP2044381B1/en
Priority to US12/373,975 priority patent/US20090283251A1/en
Priority to JP2009520011A priority patent/JP2009543997A/en
Priority to CA2657777A priority patent/CA2657777C/en
Priority to BRPI0713193-3A priority patent/BRPI0713193A2/en
Publication of WO2008009811A1 publication Critical patent/WO2008009811A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/005Thermal joints
    • F28F2013/008Variable conductance materials; Thermal switches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/10Safety or protection arrangements; Arrangements for preventing malfunction for preventing overheating, e.g. heat shields
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling

Definitions

  • the invention relates to a heat flow device.
  • thermo energy for example an electrical circuit or an electronic component
  • a quantity of heat flows through the conductive element, with a power inversely proportional to the thermal resistance thereof, which allows to evacuate at least a portion of the heat generated at the equipment and therefore avoid excessive heating of it.
  • patent application US 2003/0196787 uses this technique and proposes, for reasons related to the operation of the equipment, to reduce this evacuation of the heat at low temperature.
  • the invention proposes a device comprising equipment with a heat source having a maximum thermal operating condition, a cold part relative to the equipment and an element able to transmit the heat of the equipment. in the cold part, characterized in that the element is able to cause a limitation of the heat transmitted for thermal conditions greater than a determined threshold below said maximum condition.
  • the heat generated in the equipment is no longer completely transmitted (or almost no longer transmitted) to the cold part when these thermal conditions are encountered (that is to say, for example when the temperature or the thermal power transmitted through the element exceeds said threshold) and overheating thereof is avoided.
  • the thermal conditions correspond for example to a thermal power transmitted through the element.
  • the element can limit the transmitted thermal power to the value of said determined threshold
  • the equipment and the cold part can moreover be essentially separated by a gaseous blade, at least in said thermal conditions, in order also to avoid under these conditions the transmission of electrical phenomena (such as electric arcs), in particular propagation. electric arcs, equipment to the cold source.
  • electrical phenomena such as electric arcs
  • electric arcs equipment to the cold source.
  • the equipment and the cold part are for example separated by said blade whatever the thermal conditions and the element may then comprise at least one heat pipe passing through said blade.
  • the element comprises at least one component of which a change of state (for example a transition from the liquid state to the gaseous state) in said thermal conditions causes the increase of the thermal resistance; which also limits the amount of heat transmitted.
  • a change of state for example a transition from the liquid state to the gaseous state
  • the component can then form said blade after said change of state, which is a practical way to obtain this blade.
  • the element is configured to lose contact with the equipment or the cold part in said thermal conditions. It is in this case the breaking of the contact between the different parts which causes the interruption of the thermal path between the equipment and the cold part, and therefore the limitation of heat transmission.
  • the element comprises for example in this case at least one component, a change of state in said thermal conditions causes said loss of contact.
  • said component participates in the conduction of the equipment to the cold part outside said thermal conditions and is erased because of its change of state in said thermal conditions, thus essentially isolating the equipment and the cold part.
  • the change of a mechanical property of the component during its change of state may cause a movement of a part of the element, thus causing said loss of contact.
  • the element can be configured so that the change of state of the component allows the formation of said gaseous blade.
  • the change of state then makes it possible not only to interrupt the thermal path, but also to avoid the propagation of electrical phenomena.
  • the change of state may be a transition from the solid state to the liquid state, or a transition from the liquid state to the gaseous state.
  • the equipment may be a fuel pump and the cold part a liquid fuel, for example in an aircraft; the invention is particularly interesting in this context, although it naturally has many other applications, such as the protection against overheating of heat sink elements sensitive to temperature rises, such as carbon structures.
  • the invention also proposes an aircraft equipped with such a device.
  • FIG. 1A to 1C show a first embodiment of the invention
  • FIGS. 2A to 2C show a second embodiment of the invention
  • Figures 2D to 2F show a variant of the second example shown in Figures 2A to 2C;
  • FIGS. 3A to 3C show a third embodiment of the invention
  • FIGS. 4A to 4C show a fourth embodiment of the invention
  • FIG. 5A and 5B show a fifth embodiment of the invention.
  • FIG. 1A represents a first exemplary embodiment of the invention in normal operating mode.
  • a hot plate 101 which comprises a heat source (not shown) is connected to a cold plate 102 (for example a part of the device structure) by means of a solid material 103 at the nominal temperature T n 0 min corresponding to normal operation.
  • the material 103 is a thermal conductor and its thermal resistance R mate ri u is therefore relatively low. Thus, the heat generated by the heat source at the hot plate 101 is removed, under normal operating conditions, through the material 103 to the cold plate 102 which acts as a heat sink or cold source .
  • the material 103 is also chosen such that its melting temperature Tfusion is less than or equal to the desired maximum operating temperature T max .
  • T max desired maximum operating temperature
  • Such a maximum temperature can be for example, to avoid a degradation of the cold plate 102, or other negative consequences, such as a fire risk when the cold plate is made in the form of a combustible material such as the fuel of an aircraft.
  • the melting temperature T j was 0n the material 103, it changes state the material 103 passes from the solid state to the liquid state (represented under the reference 103 'in FIG. 1B), which causes it to be erased (here its flow by appropriate means) from its initial position in contact with the plate hot 101 and the cold plate 102.
  • the cold plate 102 is then thermally insulated from the hot plate 101 by means of the air knife 106 which separates them; the latter also plays the role of an electrical insulator, which also prevents the transmission of electrical energy (for example in the form of electric arcs) from the hot plate to the cold plate 102.
  • This last advantage is particularly interesting in the case where the hot plate 101 comprises an electrical or electronic equipment whose possible malfunctions could be dangerous at the cold plate 102 especially when it has reached a temperature above the desired maximum temperature T max .
  • wax material whose heat properties permit a conduction of heat that is much greater than that permitted by the thermal resistance of air 106 is used as material.
  • FIG. 2A represents a second exemplary embodiment of the invention in normal operating mode, that is to say, for example at a operating temperature T n0 minai significantly lower than a desired maximum temperature.
  • a device 201 comprising a heat source is located at a distance from a cold plate 202 and consequently separated therefrom by an air knife 206.
  • the equipment 201 is also linked to the cold plate. 202 by means of a heat sink 203 formed in a material that is a good conductor of heat (that is to say of low thermal resistance) and which therefore extends partly in the space formed by the air space 206
  • the heat sink 203 is held in contact with the cold plate 202 by interposition between a part of the equipment 201 and the conductive drain 203 of a solid state bonding material 204. Furthermore, a compression spring 205 is interposed between the drain 203 and the cold plate 202, the spring 205 being compressed when the drain 203 is in contact with the cold plate 202.
  • the drain 203 is connected to the equipment 201, on the one hand through the connecting material 204 and on the other hand directly to other parts of the equipment 201 that those receiving the connecting material 204, for example to the level of a side wall 208 of the equipment 201.
  • FIG. 2D represents, in normal operating mode, a variant of the second example which has just been described.
  • a device 211 comprising a heat source is located at a distance from a cold plate 212 and therefore separated therefrom by an air knife 216.
  • the equipment 211 is also linked to the cold plate 212 by means of a heat sink 213 formed in a material of low thermal resistance and which therefore extends in part in the space formed by the air knife 216
  • the heat sink 213 is however held in abutment against the cold plate 212 by means of a solid block 214 interposed between the conductive drain 213 and a structural part 210.
  • a spring compression 215 is interposed between the drain 213 and the cold plate 212, the spring 215 being compressed when the drain 213 is in contact with the cold plate 212 due to the presence of the solid block 214.
  • the solid block 214 does not necessarily participate in the flow of heat.
  • the drain 213 is no longer held in contact with the cold plate 212, but instead moves away under the effect of the spring 215. Due to the displacement of the drain 213 and its loss of contact with the plate 212, the equipment 211 and the cold plate 212 are separated by the thickness (or blade) of air 216, except the spring 215 whose thermal conductivity is negligible, and these two elements are essentially isolated by means of there air slide 216.
  • the displacement of the drain 213 then continues until it comes into contact with the part of structure 210 which could then in this case in turn function as a heat sink.
  • Figure 3A shows a third embodiment of the invention under normal operating conditions.
  • the equipment 301 generating heat and the cold part 302 acting as cold source are respectively located in the upper part and the lower part of an enclosure 305.
  • a space in the enclosure between the equipment 301 and the cold part 302 is filled with a liquid-form bonding material 303 having a low thermal resistance and which forms a heat conduction path between the equipment 301 and the cold part 302.
  • the enclosure 305 receives the equipment 301, the connecting material 303 and the cold part 302 hermetically. Only a safety valve 304 penetrating into the chamber at the space filled by the connecting material 303 possibly allows evacuation of the liquid when the pressure is greater than a threshold as explained below.
  • the bonding material 303 is such that its vaporization temperature corresponds approximately (and is preferably slightly less) to a desired maximum temperature at the cold portion 302.
  • the bonding material 303 passes from the liquid state in the gaseous state during a phase shown in Figure 3B (the gaseous material 303 'naturally occurring in the upper part of the space of the chamber 305 previously occupied by the liquid, in contact with the equipment 301).
  • the change of state in the hermetic enclosure 305 causes a rise in pressure inside thereof until the pressure reaches the tripping threshold of the safety valve 304 and that the liquid part of the material of Link 303 therefore begins to drain as shown in Figure 3B. If the temperature continues to increase beyond the vaporization temperature of the bonding material 303, the phenomenon just described and shown in FIG. 3B continues until the space of the enclosure 305 located between the equipment 301 and the cold part 302 is completely filled with the gas phase 303 'of the connecting material.
  • the thermal path initially formed by the bonding material 303 in liquid form is therefore interrupted and the cold part 302 is thereby thermally insulated from the equipment 301, the thermal resistance of the gaseous bonding material being much greater than that of the binding material in liquid form.
  • phase change that is to say the transition from the liquid state to the gaseous state
  • the connecting material has also made it possible to replace the thermal path with a gaseous blade, which makes it possible, in particular, to avoid arcing between the equipment 301 and the cold part 302.
  • FIG. 4A represents a fourth embodiment of the invention under normal operating conditions, that is to say for temperatures (whose nominal operating temperature) that are well below a maximum permitted temperature.
  • an enclosure 405 is formed in the lower extension of a hot plate 401 (which is for example a part of an equipment containing a heat source, such as for example a fuel pump equipping the aircraft) .
  • the enclosure 405 is hermetic and comprises in its lower part, in normal operating mode, a liquid component 403.
  • a heat sink 404 is also partially received inside the enclosure 405: an upper portion 406 (here substantially horizontal) extends over the entire (here horizontal) surface of the enclosure 405 so as to form a piston separating an upper part of the enclosure 405, for example filled with air, from a lower part of the enclosure 405 filled by the liquid component 403 in normal operating mode. It can thus be considered in normal operation that the drain floats on the liquid component 403.
  • the heat sink 404 also comprises a rod (here essentially vertical), a lower part 407 of which, in normal operation as illustrated in FIG. 4A, is in contact with a cold part forming a heat sink, here formed by the liquid fuel 402 of the aircraft.
  • the lower portion 407 is precisely in this case immersed in the fuel 402 as shown in Figure 4A.
  • a thermal path is thus formed between the equipment 401 and the cold part 402 by means of materials having a relatively low thermal resistance, namely here the walls of the enclosure 405, the liquid component 403 and the heat sink 404.
  • the temperature in the enclosure 405 rises above the nominal operating temperature (for example, because of a malfunction of the equipment 401) and reaches the vaporization temperature of the liquid component 403 (preferably chosen slightly lower than a maximum allowed temperature inside the enclosure 405, which corresponds for example to a temperature beyond which there are risks due to the presence of the fuel 402)
  • the vaporization temperature of the liquid component 403 preferably chosen slightly lower than a maximum allowed temperature inside the enclosure 405, which corresponds for example to a temperature beyond which there are risks due to the presence of the fuel 402
  • a gaseous phase 403 'appears in the lower part of the enclosure 405 and the pressure it exerts tends to move up the heat sink 404 which is recalled that the upper portion 406 piston shape, as shown in Figure 4B.
  • the enclosure 405 increases so that the drain 404 is driven upward until its lower portion 407 emerges from the cold source fuel 402 and ends its travel away from it.
  • the space between the lower part 407 of the drain 404 and the surface of the liquid fuel 402 is filled with a blade of a thermally and electrically insulating gas (such as for example air) in such a way that that the equipment 401 and the liquid fuel 402 forming a cold source are sufficiently thermally and electrically insulated to avoid any risk of fire fuel 402.
  • a thermally and electrically insulating gas such as for example air
  • FIG. 5A represents a fifth example of implementation of the invention.
  • an equipment comprising a heat source (or hot plate) 501 is separated from a cold plate 502 (for example a structural element of an aircraft) by means of an air knife 504 in order to avoid the propagation of arcing between the equipment 501 and the cold plate 502.
  • a plurality of heat pipes (or heat pipes) 503 (two of them in FIG. 5A) pass through the air gap 504, each heat pipe 503 being at one end. in contact with the equipment 501 and at the other end in contact with the cold plate 502.
  • the heat pipes made for example in the form of two-phase tubes, make it possible to evacuate to the cold plate 502 the heat generated within the equipment 501, and this in normal operation, that is to say when the power transmitted by the heat pipes (or alternatively the temperature thereof) does not exceed a power threshold P seU ii (temperature respectively).
  • a power threshold is an absolute value of temperature or a relative value, for example with respect to the temperature outside the heat pipe.
  • the heat resistance R th of the heat pipes 503 is therefore relatively low as long as the thermal power that flows through them is below the threshold Pseu ⁇ (respectively as long as the temperature is below the temperature threshold).
  • the heat pipes 503 are, however, such that, when the thermal power therethrough is greater than this threshold P seU ii (respectively when the temperature is greater than the temperature threshold), their thermal resistance R th increases sharply, as illustrated in FIG. 5B.
  • the equipment even if the equipment generates a thermal power greater than the power threshold of the heat pipe, the latter saturates and therefore transmits to the cold plate a limited thermal power, which avoids overheating thereof. In this way, the heat evacuation is continued in part, but without risk for the cold plate.

Abstract

A device comprises equipment (501) with a heat source having a maximum thermal operation condition, a cold part (502) relative to the equipment and an element (503) capable of transmitting the heat from the equipment to the cold part. The element (503) is capable of causing the transmitted heat to be limited for thermal conditions above a specified threshold below said maximum condition.

Description

t t
Dispositif à écoulement de chaleurHeat flow device
L'invention concerne un dispositif à écoulement de chaleur.The invention relates to a heat flow device.
Dans un tel dispositif, on cherche à évacuer l'énergie thermique (ou chaleur) dissipée au niveau d'un équipement par une quelconque source de chaleur (par exemple un circuit électrique ou un composant électronique).In such a device, it is sought to evacuate the thermal energy (or heat) dissipated at the equipment level by any heat source (for example an electrical circuit or an electronic component).
On relie classiquement pour ce faire l'équipement à une partie froide par rapport à celui-ci, qui joue le rôle d'une source froide, au moyen d'un élément conducteur de la chaleur.Classically connected to do this the equipment to a cold part relative thereto, which plays the role of a cold source, by means of a heat conductive element.
Ainsi, une quantité de chaleur s'écoule à travers l'élément conducteur, avec une puissance inversement proportionnelle à la résistance thermique de celui-ci, ce qui permet d'évacuer une partie au moins de la chaleur générée au niveau de l'équipement et d'éviter par conséquent un échauffement excessif de celui-ci.Thus, a quantity of heat flows through the conductive element, with a power inversely proportional to the thermal resistance thereof, which allows to evacuate at least a portion of the heat generated at the equipment and therefore avoid excessive heating of it.
La demande de brevet US 2003/0196787 utilise par exemple cette technique et propose par ailleurs, pour des motifs liés au fonctionnement de l'équipement, de réduire cette évacuation de la chaleur à basse température.For example, the patent application US 2003/0196787 uses this technique and proposes, for reasons related to the operation of the equipment, to reduce this evacuation of the heat at low temperature.
Les inventeurs se sont rendus compte que ces solutions pouvaient présenter des risques en pratique, en particulier lorsque la partie formant source froide n'est pas adaptée à toutes les conditions de température et/ou de puissance thermique dissipée, comme c'est le cas par exemple lorsque cette partie froide est formée d'un matériau combustible ou sensible aux élévations de température.The inventors realized that these solutions could present risks in practice, in particular when the cold-source portion is not adapted to all the conditions of temperature and / or heat dissipation, as is the case for example. example when this cold part is formed of a combustible material or sensitive to temperature rises.
Afin d'éviter de tels problèmes, l'invention propose un dispositif comprenant un équipement avec une source de chaleur ayant une condition thermique de fonctionnement maximum, une partie froide relativement à l'équipement et un élément apte à transmettre la chaleur de l'équipement à la partie froide, caractérisé en ce que l'élément est apte à provoquer une limitation de la chaleur transmise pour des conditions thermiques supérieures à un seuil déterminé inférieur à ladite condition maximum. Ainsi, la chaleur générée au sein de l'équipement n'est plus totalement transmise (voire quasiment plus transmise) à la partie froide lorsque ces conditions thermiques sont rencontrées (c'est-à-dire par exemple lorsque la température ou la puissance thermique transmise à travers l'élément dépasse ledit seuil) et on évite un échauffement trop important de celle-ci.In order to avoid such problems, the invention proposes a device comprising equipment with a heat source having a maximum thermal operating condition, a cold part relative to the equipment and an element able to transmit the heat of the equipment. in the cold part, characterized in that the element is able to cause a limitation of the heat transmitted for thermal conditions greater than a determined threshold below said maximum condition. Thus, the heat generated in the equipment is no longer completely transmitted (or almost no longer transmitted) to the cold part when these thermal conditions are encountered (that is to say, for example when the temperature or the thermal power transmitted through the element exceeds said threshold) and overheating thereof is avoided.
Les conditions thermiques correspondent par exemple à une puissance thermique transmise à travers l'élément. Dans ce cas, l'élément peut limiter la puissance thermique transmise à la valeur dudit seuil déterminéThe thermal conditions correspond for example to a thermal power transmitted through the element. In this case, the element can limit the transmitted thermal power to the value of said determined threshold
L'équipement et la partie froide peuvent en outre être séparés essentiellement par une lame gazeuse, au moins dans lesdites conditions thermiques, afin d'éviter également dans ces conditions la transmission des phénomènes électriques (tels que des arcs électriques), en particulier la propagation des arcs électriques, de l'équipement à la source froide.The equipment and the cold part can moreover be essentially separated by a gaseous blade, at least in said thermal conditions, in order also to avoid under these conditions the transmission of electrical phenomena (such as electric arcs), in particular propagation. electric arcs, equipment to the cold source.
L'équipement et la partie froide sont par exemple séparés par ladite lame quelles que soient les conditions thermiques et l'élément peut alors comprendre au moins un caloduc traversant ladite lame.The equipment and the cold part are for example separated by said blade whatever the thermal conditions and the element may then comprise at least one heat pipe passing through said blade.
Dans ce cadre, on profite de la limitation de la puissance thermique que peuvent transmettre les caloducs, passé un certain seuil, afin de limiter la puissance thermique transmise par l'élément à ce seuil.In this context, we take advantage of the limitation of the thermal power that can transmit the heat pipes, past a certain threshold, to limit the thermal power transmitted by the element to this threshold.
Selon une autre solution possible, l'élément comprend au moins un composant dont un changement d'état (par exemple un passage de l'état liquide à l'état gazeux) dans lesdites conditions thermiques provoque l'augmentation de la résistance thermique, ce qui permet également de limiter la quantité de chaleur transmise. On profite ici de l'augmentation de la résistance thermique généralement liée à un tel changement d'état. Le composant peut alors former ladite lame après ledit changement d'état, ce qui est une manière pratique d'obtenir cette lame.According to another possible solution, the element comprises at least one component of which a change of state (for example a transition from the liquid state to the gaseous state) in said thermal conditions causes the increase of the thermal resistance; which also limits the amount of heat transmitted. Here we take advantage of the increase in thermal resistance generally related to such a change of state. The component can then form said blade after said change of state, which is a practical way to obtain this blade.
Selon un autre mode de réalisation envisageable, l'élément est configuré pour perdre le contact avec l'équipement ou la partie froide dans lesdites conditions thermiques. C'est dans ce cas la rupture du contact entre les différentes pièces qui provoque l'interruption du chemin thermique entre l'équipement et la partie froide, et par conséquent la limitation de la transmission de la chaleur.According to another conceivable embodiment, the element is configured to lose contact with the equipment or the cold part in said thermal conditions. It is in this case the breaking of the contact between the different parts which causes the interruption of the thermal path between the equipment and the cold part, and therefore the limitation of heat transmission.
L'élément comprend par exemple dans ce cas au moins un composant dont un changement d'état dans lesdites conditions thermiques provoque ladite perte de contact.The element comprises for example in this case at least one component, a change of state in said thermal conditions causes said loss of contact.
On peut prévoir dans ce cadre que ledit composant participe à la conduction de l'équipement à la partie froide en dehors desdites conditions thermiques et s'efface du fait de son changement d'état dans lesdites conditions thermiques, isolant ainsi essentiellement l'équipement et la partie froide.It can be provided in this context that said component participates in the conduction of the equipment to the cold part outside said thermal conditions and is erased because of its change of state in said thermal conditions, thus essentially isolating the equipment and the cold part.
Selon une autre approche, qui peut éventuellement être combinée à la précédente, le changement d'une propriété mécanique du composant lors de son changement d'état peut entraîner un mouvement d'une partie de l'élément, provoquant ainsi ladite perte de contact.According to another approach, which may optionally be combined with the previous one, the change of a mechanical property of the component during its change of state may cause a movement of a part of the element, thus causing said loss of contact.
Dans ces cas également, l'élément peut être configuré de telle sorte que le changement d'état du composant permette la formation de ladite lame gazeuse. Le changement d'état permet alors non seulement d'interrompre le chemin thermique, mais également d'éviter la propagation de phénomènes électriques.In these cases also, the element can be configured so that the change of state of the component allows the formation of said gaseous blade. The change of state then makes it possible not only to interrupt the thermal path, but also to avoid the propagation of electrical phenomena.
Le changement d'état peut être dans ce contexte un passage de l'état solide à l'état liquide, ou un passage de l'état liquide à l'état gazeux.In this context, the change of state may be a transition from the solid state to the liquid state, or a transition from the liquid state to the gaseous state.
L'équipement peut être une pompe pour carburant et la partie froide un carburant liquide, par exemple dans un aéronef ; l'invention est particulièrement intéressante dans ce contexte, même si elle a naturellement de nombreuses autres applications, telles que la protection contre les surchauffes d'éléments de puits thermique sensibles aux élévations de température, comme par exemple les structures en carbone.The equipment may be a fuel pump and the cold part a liquid fuel, for example in an aircraft; the invention is particularly interesting in this context, although it naturally has many other applications, such as the protection against overheating of heat sink elements sensitive to temperature rises, such as carbon structures.
Les agencements proposés ci-dessus, de manière optionnelle pour certains, permettent ainsi notamment d'évacuer la chaleur produite par les équipements, par exemple électroniques comme dans le cas des pompes pour carburant, tout en évitant une surchauffe du puits thermique (par exemple le carburant), grâce à la limitation de la chaleur transmise, ainsi que la propagation d'arcs électriques depuis les équipements vers ce puits.The arrangements proposed above, optionally for some, thus allow in particular to evacuate the heat produced by the equipment, for example electronic as in the case of fuel pumps, while avoiding overheating of the heat sink (for example the fuel), thanks to the limitation of the transmitted heat, as well as the propagation of electric arcs from the equipment to this well.
L'invention propose également un aéronef équipé d'un tel dispositif.The invention also proposes an aircraft equipped with such a device.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lumière de la description qui suit faite en référence aux dessins annexés dans lesquels :Other features and advantages of the invention will emerge in the light of the following description given with reference to the appended drawings in which:
- les figures 1A à 1C représentent un premier exemple de réalisation de l'invention ;- Figures 1A to 1C show a first embodiment of the invention;
- les figures 2A à 2C représentent un second exemple de réalisation de l'invention ;FIGS. 2A to 2C show a second embodiment of the invention;
- les figures 2D à 2F représentent une variante du second exemple présenté aux figures 2A à 2C ;- Figures 2D to 2F show a variant of the second example shown in Figures 2A to 2C;
- les figures 3A à 3C représentent un troisième exemple de réalisation de l'invention ;FIGS. 3A to 3C show a third embodiment of the invention;
- les figures 4A à 4C représentent un quatrième exemple de réalisation de l'invention ;FIGS. 4A to 4C show a fourth embodiment of the invention;
- les figures 5A et 5B représentent un cinquième exemple de réalisation de l'invention.- Figures 5A and 5B show a fifth embodiment of the invention.
La figure 1A représente un premier exemple de réalisation de l'invention en régime de fonctionnement normal.FIG. 1A represents a first exemplary embodiment of the invention in normal operating mode.
Dans cet exemple, une plaque chaude 101 qui comprend une source de chaleur (non représentée) est reliée à une plaque froide 102 (par exemple une partie de structure du dispositif) au moyen d'un matériau 103 solide à la température nominale Tn0minaie correspondant au fonctionnement normal.In this example, a hot plate 101 which comprises a heat source (not shown) is connected to a cold plate 102 (for example a part of the device structure) by means of a solid material 103 at the nominal temperature T n 0 min corresponding to normal operation.
Le matériau 103 est un conducteur thermique et sa résistance thermique Rmatériau est donc relativement faible. Ainsi, la chaleur générée par la source de chaleur au niveau de la plaque chaude 101 est évacuée, dans les conditions normales de fonctionnement, à travers le matériau 103 vers la plaque froide 102 qui joue le rôle d'un puits de chaleur ou source froide.The material 103 is a thermal conductor and its thermal resistance R mate ri u is therefore relatively low. Thus, the heat generated by the heat source at the hot plate 101 is removed, under normal operating conditions, through the material 103 to the cold plate 102 which acts as a heat sink or cold source .
Le matériau 103 est également choisi tel que sa température de fusion Tfusion est inférieure ou égale à la température maximum de fonctionnement souhaité Tmax. Une telle température maximum peut être souhaitée par exemple pour éviter une dégradation de la plaque froide 102, ou d'autres conséquences négatives, comme par exemple un risque d'incendie lorsque la plaque froide est réalisée sous forme d'un matériau combustible comme le carburant d'un aéronef.The material 103 is also chosen such that its melting temperature Tfusion is less than or equal to the desired maximum operating temperature T max . Such a maximum temperature can be for example, to avoid a degradation of the cold plate 102, or other negative consequences, such as a fire risk when the cold plate is made in the form of a combustible material such as the fuel of an aircraft.
Ainsi, comme représenté en figure 1B, lorsque la température T du matériau 103 atteint, par exemple du fait d'une sortie du régime de fonctionnement normal, la température de fusion TfUSj0n du matériau 103, celui-ci change d'état : le matériau 103 passe de l'état solide à l'état liquide (représenté sous la référence 103' en figure 1B), ce qui entraine son effacement (ici son écoulement par des moyens appropriés) de sa position initiale au contact de la plaque chaude 101 et de la plaque froide 102.Thus, as shown in FIG 1B, when the temperature T of the material reaches 103, for example due to an output of the normal operation, the melting temperature T j was 0n the material 103, it changes state the material 103 passes from the solid state to the liquid state (represented under the reference 103 'in FIG. 1B), which causes it to be erased (here its flow by appropriate means) from its initial position in contact with the plate hot 101 and the cold plate 102.
De ce fait, lorsque la température entre les plaques 101 , 102 est supérieure à la température maximale souhaitée Tmax, la plaque chaude 101 et la plaque froide 102 ne sont plus reliées par le matériau mais séparées par une lame d'air 106 dont la résistance thermique Rair est très supérieure à celle du matériau Rmatériau, comme représenté en figure 1C.Therefore, when the temperature between the plates 101, 102 is greater than the desired maximum temperature T max , the hot plate 101 and the cold plate 102 are no longer connected by the material but separated by an air knife 106 whose The thermal resistance R a ir is much greater than that of the material Rmaterial, as shown in FIG. 1C.
La plaque froide 102 est alors isolée thermiquement de la plaque chaude 101 grâce à la lame d'air 106 qui les sépare ; cette dernière joue également le rôle d'un isolant électrique, ce qui permet d'éviter également la transmission d'énergie électrique (par exemple sous forme d'arcs électriques) de la plaque chaude à la plaque froide 102. Ce dernier avantage est particulièrement intéressant dans le cas où la plaque chaude 101 comporte un équipement électrique ou électronique dont des disfonctionnements éventuels pourraient se révéler dangereux au niveau de la plaque froide 102 en particulier lorsque celle-ci a atteint une température supérieure à la température maximale souhaitée Tmax.The cold plate 102 is then thermally insulated from the hot plate 101 by means of the air knife 106 which separates them; the latter also plays the role of an electrical insulator, which also prevents the transmission of electrical energy (for example in the form of electric arcs) from the hot plate to the cold plate 102. This last advantage is particularly interesting in the case where the hot plate 101 comprises an electrical or electronic equipment whose possible malfunctions could be dangerous at the cold plate 102 especially when it has reached a temperature above the desired maximum temperature T max .
On utilise par exemple comme matériau 103 de la cire dont les propriétés thermiques permettent une conduction de la chaleur nettement supérieure à celle permise par la résistance thermique de l'air 106.For example, wax material whose heat properties permit a conduction of heat that is much greater than that permitted by the thermal resistance of air 106 is used as material.
La figure 2A représente un second exemple de réalisation de l'invention en régime de fonctionnement normal, c'est-à-dire, par exemple à une température de fonctionnement Tn0minai nettement inférieure à une température maximale souhaitée.FIG. 2A represents a second exemplary embodiment of the invention in normal operating mode, that is to say, for example at a operating temperature T n0 minai significantly lower than a desired maximum temperature.
Dans cet exemple, un équipement 201 comprenant une source de chaleur est situé à distance d'une plaque froide 202 et séparé par conséquent de celle-ci par une lame d'air 206. L'équipement 201 est par ailleurs lié à la plaque froide 202 au moyen d'un drain thermique 203 formé dans un matériau bon conducteur de la chaleur (c'est-à-dire de faible résistance thermique) et qui s'étend donc en partie dans l'espace formé par la lame d'air 206In this example, a device 201 comprising a heat source is located at a distance from a cold plate 202 and consequently separated therefrom by an air knife 206. The equipment 201 is also linked to the cold plate. 202 by means of a heat sink 203 formed in a material that is a good conductor of heat (that is to say of low thermal resistance) and which therefore extends partly in the space formed by the air space 206
Le drain thermique 203 est maintenu au contact de la plaque froide 202 par interposition entre une partie de l'équipement 201 et le drain conducteur 203 d'un matériau de liaison à l'état solide 204. Par ailleurs, un ressort de compression 205 est interposé entre le drain 203 et la plaque froide 202, le ressort 205 étant comprimé lorsque le drain 203 est au contact de la plaque froide 202.The heat sink 203 is held in contact with the cold plate 202 by interposition between a part of the equipment 201 and the conductive drain 203 of a solid state bonding material 204. Furthermore, a compression spring 205 is interposed between the drain 203 and the cold plate 202, the spring 205 being compressed when the drain 203 is in contact with the cold plate 202.
Le drain 203 est relié à l'équipement 201 , d'une part à travers le matériau de liaison 204 et d'autre part directement en d'autres parties de l'équipement 201 que celles recevant le matériau de liaison 204, par exemple au niveau d'une paroi latérale 208 de l'équipement 201.The drain 203 is connected to the equipment 201, on the one hand through the connecting material 204 and on the other hand directly to other parts of the equipment 201 that those receiving the connecting material 204, for example to the level of a side wall 208 of the equipment 201.
Lorsque la température au niveau du matériau de liaison 204 augmente au-delà du régime de fonctionnement normal et atteint la température de fusion TfUSion du matériau de liaison 204, ce dernier passe de l'état solide à l'état liquide (comme représenté en figure 2B où le matériau de liaison dans l'état liquide est référencé 204') et s'écoule en dehors du dispositif selon des moyens appropriés.When the temperature at the bonding material 204 increases beyond the normal operating regime and reaches the fusing temperature T fUS ion of the bonding material 204, the latter passes from the solid state to the liquid state (as shown in FIG. in Figure 2B where the bonding material in the liquid state is referenced 204 ') and flows out of the device by appropriate means.
De ce fait, le drain 203 n'est plus retenu au contact de la plaque froide 202 mais s'en éloigne au contraire sous l'effet du ressort 205. Du fait du déplacement du drain 203 et de sa perte de contact avec la plaque froide 202, l'équipement 201 et la plaque froide 202 sont séparés par l'épaisseur (ou lame) d'air 206, exception faite du ressort 205 dont la conductivité thermique est négligeable, et ces deux éléments sont donc essentiellement isolés au moyen de la lame d'air 206, comme représenté en figure 2C. La figure 2D représente, en régime de fonctionnement normal, une variante du second exemple qui vient d'être décrit.As a result, the drain 203 is no longer held in contact with the cold plate 202 but instead moves away under the effect of the spring 205. Due to the displacement of the drain 203 and its loss of contact with the plate cold 202, the equipment 201 and the cold plate 202 are separated by the thickness (or blade) of air 206, except the spring 205 whose thermal conductivity is negligible, and these two elements are essentially isolated by means of the air gap 206, as shown in Figure 2C. FIG. 2D represents, in normal operating mode, a variant of the second example which has just been described.
Comme pour le second exemple précédemment décrit, un équipement 211 comprenant une source de chaleur est situé à distance d'une plaque froide 212 et séparé par conséquent de celle-ci par une lame d'air 216. L'équipement 211 est par ailleurs lié à la plaque froide 212 au moyen d'un drain thermique 213 formé dans un matériau de faible résistance thermique et qui s'étend donc en partie dans l'espace formé par la lame d'air 216As for the second example previously described, a device 211 comprising a heat source is located at a distance from a cold plate 212 and therefore separated therefrom by an air knife 216. The equipment 211 is also linked to the cold plate 212 by means of a heat sink 213 formed in a material of low thermal resistance and which therefore extends in part in the space formed by the air knife 216
Selon cette variante, le drain thermique 213 est toutefois maintenu en appui contre la plaque froide 212 au moyen d'un bloc solide 214 interposé entre le drain conducteur 213 et une partie de structure 210. Par ailleurs, comme pour le second exemple, un ressort de compression 215 est interposé entre le drain 213 et la plaque froide 212, le ressort 215 étant comprimé lorsque le drain 213 est au contact de la plaque froide 212 du fait de la présence du bloc solide 214.According to this variant, the heat sink 213 is however held in abutment against the cold plate 212 by means of a solid block 214 interposed between the conductive drain 213 and a structural part 210. Moreover, as for the second example, a spring compression 215 is interposed between the drain 213 and the cold plate 212, the spring 215 being compressed when the drain 213 is in contact with the cold plate 212 due to the presence of the solid block 214.
Ainsi, selon la présente variante, le bloc solide 214 ne participe pas nécessairement à l'écoulement de la chaleur.Thus, according to the present variant, the solid block 214 does not necessarily participate in the flow of heat.
Lorsque la température au niveau du bloc solide 214 augmente au- delà du régime de fonctionnement normal et atteint la température de fusion Tfusion du matériau constituant le bloc 214, ce dernier passe de l'état solide à l'état liquide (comme représenté en figure 2E où le bloc en fusion est représenté sous la référence 214') et s'écoule en dehors du dispositif selon des moyens appropriés.When the temperature at the solid block 214 increases beyond the normal operating regime and reaches the melting temperature T melt of the material constituting the block 214, the latter passes from the solid state to the liquid state (as shown in FIG. 2E where the molten block is represented as 214 ') and flows out of the device by appropriate means.
De ce fait, le drain 213 n'est plus retenu au contact de la plaque froide 212 mais s'en éloigne au contraire sous l'effet du ressort 215. Du fait du déplacement du drain 213 et de sa perte de contact avec la plaque froide 212, l'équipement 211 et la plaque froide 212 sont séparés par l'épaisseur (ou lame) d'air 216, exception faite du ressort 215 dont la conductivité thermique est négligeable, et ces deux éléments sont donc essentiellement isolés au moyen de là lame d'air 216.As a result, the drain 213 is no longer held in contact with the cold plate 212, but instead moves away under the effect of the spring 215. Due to the displacement of the drain 213 and its loss of contact with the plate 212, the equipment 211 and the cold plate 212 are separated by the thickness (or blade) of air 216, except the spring 215 whose thermal conductivity is negligible, and these two elements are essentially isolated by means of there air slide 216.
Selon le mode de réalisation représenté en figure 2F, le déplacement du drain 213 se poursuit alors jusqu'à ce que celui-ci entre en contact avec la partie de structure 210 qui pourrait alors dans ce cas faire office à son tour de puits de chaleur.According to the embodiment shown in FIG. 2F, the displacement of the drain 213 then continues until it comes into contact with the part of structure 210 which could then in this case in turn function as a heat sink.
La figure 3A représente un troisième exemple de réalisation de l'invention dans les conditions de fonctionnement normal.Figure 3A shows a third embodiment of the invention under normal operating conditions.
Selon cet exemple, l'équipement 301 générant de la chaleur et la partie froide 302 faisant office de source froide sont situés respectivement dans la partie supérieure et la partie inférieure d'une enceinte 305.According to this example, the equipment 301 generating heat and the cold part 302 acting as cold source are respectively located in the upper part and the lower part of an enclosure 305.
Un espace ménagé dans l'enceinte entre l'équipement 301 et la partie froide 302 est rempli d'un matériau de liaison sous forme liquide 303 ayant une résistance thermique faible et qui forme un chemin de conduction de la chaleur entre l'équipement 301 et la partie froide 302.A space in the enclosure between the equipment 301 and the cold part 302 is filled with a liquid-form bonding material 303 having a low thermal resistance and which forms a heat conduction path between the equipment 301 and the cold part 302.
L'enceinte 305 reçoit l'équipement 301, le matériau de liaison 303 et la partie froide 302 de façon hermétique. Seule une soupape de sécurité 304 pénétrant dans l'enceinte au niveau de l'espace rempli par le matériau de liaison 303 permet éventuellement une évacuation du liquide lorsque la pression est supérieure à un seuil comme expliqué ci-après.The enclosure 305 receives the equipment 301, the connecting material 303 and the cold part 302 hermetically. Only a safety valve 304 penetrating into the chamber at the space filled by the connecting material 303 possibly allows evacuation of the liquid when the pressure is greater than a threshold as explained below.
Le matériau de liaison 303 est tel que sa température de vaporisation correspond approximativement (et est de préférence légèrement inférieure) à une température maximale souhaitée au niveau de la partie froide 302.The bonding material 303 is such that its vaporization temperature corresponds approximately (and is preferably slightly less) to a desired maximum temperature at the cold portion 302.
De ce fait, lorsque, par exemple en raison d'un disfonctionnement de l'équipement 301 , la température du matériau de liaison dépasse la température de vaporisation (et atteint donc la température maximale souhaitée), le matériau de liaison 303 passe de l'état liquide à l'état gazeux au cours d'une phase représentée à la figure 3B (le matériau sous forme gazeuse 303' apparaissant naturellement dans la partie supérieure de l'espace de l'enceinte 305 précédemment occupée par le liquide, au contact de l'équipement 301).Therefore, when, for example due to a malfunction of the equipment 301, the temperature of the bonding material exceeds the vaporization temperature (and thus reaches the desired maximum temperature), the bonding material 303 passes from the liquid state in the gaseous state during a phase shown in Figure 3B (the gaseous material 303 'naturally occurring in the upper part of the space of the chamber 305 previously occupied by the liquid, in contact with the equipment 301).
Le changement d'état dans l'enceinte hermétique 305 provoque une montée en pression à l'intérieur de celle-ci jusqu'à ce que la pression atteigne le seuil de déclenchement de la soupape de sécurité 304 et que la partie liquide du matériau de liaison 303 commence par conséquent à s'évacuer comme représenté en figure 3B. Si la température continue d'augmenter au-delà de la température de vaporisation du matériau de liaison 303, le phénomène qui vient d'être décrit et représenté à la figure 3B se poursuit jusqu'à ce que l'espace de l'enceinte 305 situé entre l'équipement 301 et la partie froide 302 soit entièrement rempli de la phase gazeuse 303' du matériau de liaison.The change of state in the hermetic enclosure 305 causes a rise in pressure inside thereof until the pressure reaches the tripping threshold of the safety valve 304 and that the liquid part of the material of Link 303 therefore begins to drain as shown in Figure 3B. If the temperature continues to increase beyond the vaporization temperature of the bonding material 303, the phenomenon just described and shown in FIG. 3B continues until the space of the enclosure 305 located between the equipment 301 and the cold part 302 is completely filled with the gas phase 303 'of the connecting material.
Le chemin thermique initialement formé par le matériau de liaison 303 sous forme liquide est donc interrompu et la partie froide 302 est de ce fait isolée thermiquement de l'équipement 301, la résistance thermique du matériau de liaison sous forme gazeuse étant bien supérieure à celle du matériau de liaison sous forme liquide.The thermal path initially formed by the bonding material 303 in liquid form is therefore interrupted and the cold part 302 is thereby thermally insulated from the equipment 301, the thermal resistance of the gaseous bonding material being much greater than that of the binding material in liquid form.
On remarque que le changement de phase (c'est-à-dire le passage de l'état liquide à l'état gazeux) du matériau de liaison a également permis de remplacer le chemin thermique par une lame gazeuse, ce qui permet notamment d'éviter la formation d'arcs électriques entre l'équipement 301 et la partie froide 302.It is noted that the phase change (that is to say the transition from the liquid state to the gaseous state) of the connecting material has also made it possible to replace the thermal path with a gaseous blade, which makes it possible, in particular, to avoid arcing between the equipment 301 and the cold part 302.
La figure 4A représente un quatrième exemple de réalisation de l'invention dans les conditions normales de fonctionnement, c'est-à-dire pour des températures (dont la température nominale de fonctionnement) nettement inférieures à une température maximale autorisée.FIG. 4A represents a fourth embodiment of the invention under normal operating conditions, that is to say for temperatures (whose nominal operating temperature) that are well below a maximum permitted temperature.
Dans cet exemple de réalisation, une enceinte 405 est formée dans le prolongement inférieur d'une plaque chaude 401 (qui constitue par exemple une partie d'un équipement contenant une source de chaleur, telle que par exemple une pompe à carburant équipant les aéronefs).In this exemplary embodiment, an enclosure 405 is formed in the lower extension of a hot plate 401 (which is for example a part of an equipment containing a heat source, such as for example a fuel pump equipping the aircraft) .
L'enceinte 405 est hermétique et comprend dans sa partie inférieure, en régime de fonctionnement normal, un composant liquide 403.The enclosure 405 is hermetic and comprises in its lower part, in normal operating mode, a liquid component 403.
Un drain thermique 404 est également reçu pour partie à l'intérieur de l'enceinte 405 : une partie supérieure 406 (ici substantiellement horizontale) s'étend sur toute la superficie (ici horizontale) de l'enceinte 405 de manière à former un piston qui sépare une partie supérieure de l'enceinte 405, par exemple remplie d'air, d'une partie inférieure de l'enceinte 405 remplie par le composant liquide 403 en régime de fonctionnement normal. On peut ainsi considérer en fonctionnement normal que le drain flotte sur le composant liquide 403.A heat sink 404 is also partially received inside the enclosure 405: an upper portion 406 (here substantially horizontal) extends over the entire (here horizontal) surface of the enclosure 405 so as to form a piston separating an upper part of the enclosure 405, for example filled with air, from a lower part of the enclosure 405 filled by the liquid component 403 in normal operating mode. It can thus be considered in normal operation that the drain floats on the liquid component 403.
Le drain thermique 404 comprend également une tige (ici essentiellement verticale) dont une partie inférieure 407 est, en fonctionnement normal comme illustré sur la figure 4A, au contact d'une partie froide formant puits de chaleur, ici formée par le carburant liquide 402 de l'aéronef. La partie inférieure 407 est précisément dans ce cas plongée dans le carburant 402 comme représenté en figure 4A.The heat sink 404 also comprises a rod (here essentially vertical), a lower part 407 of which, in normal operation as illustrated in FIG. 4A, is in contact with a cold part forming a heat sink, here formed by the liquid fuel 402 of the aircraft. The lower portion 407 is precisely in this case immersed in the fuel 402 as shown in Figure 4A.
Dans la configuration de fonctionnement normal présentée à la figure 4A (c'est-à-dire notamment pour la température nominale de fonctionnement), un chemin thermique est ainsi formé entre l'équipement 401 et la partie froide 402 au moyen de matériaux ayant une résistance thermique relativement faible, à savoir ici les parois de l'enceinte 405, le composant liquide 403 et le drain thermique 404.In the normal operating configuration shown in FIG. 4A (that is to say, in particular for the nominal operating temperature), a thermal path is thus formed between the equipment 401 and the cold part 402 by means of materials having a relatively low thermal resistance, namely here the walls of the enclosure 405, the liquid component 403 and the heat sink 404.
Lorsque la température dans l'enceinte 405 s'élève au-dessus de la température nominale de fonctionnement (par exemple, à cause d'un disfonctionnement de l'équipement 401) et atteint la température de vaporisation du composant liquide 403 (choisie de préférence légèrement inférieure à une température maximale autorisée à l'intérieur de l'enceinte 405, qui correspond par exemple à une température au-delà de laquelle des risques existent du fait de la présence du carburant 402), une phase gazeuse 403' apparaît dans la partie inférieure de l'enceinte 405 et la pression qu'elle exerce tend à déplacer vers le haut le drain thermique 404 dont on rappelle que la partie supérieure 406 forme piston, comme représenté sur la figure 4B.When the temperature in the enclosure 405 rises above the nominal operating temperature (for example, because of a malfunction of the equipment 401) and reaches the vaporization temperature of the liquid component 403 (preferably chosen slightly lower than a maximum allowed temperature inside the enclosure 405, which corresponds for example to a temperature beyond which there are risks due to the presence of the fuel 402), a gaseous phase 403 'appears in the lower part of the enclosure 405 and the pressure it exerts tends to move up the heat sink 404 which is recalled that the upper portion 406 piston shape, as shown in Figure 4B.
Ainsi, le mouvement du drain thermique 404 produit sous l'effet de la pression, elle-même due au changement d'état du composant liquide 403, entraîne la partie verticale du drain thermique, pour partie au moins, en dehors de la partie froide 402, ce qui limite le transfert de chaleur vers cette partie froide et évite un échauffement trop important de celle-ci.Thus, the movement of the heat sink 404 produced under the effect of the pressure, itself due to the change of state of the liquid component 403, causes the vertical part of the heat sink, at least partly outside the cold part 402, which limits the heat transfer to this cold part and avoids overheating thereof.
Si la température vient toutefois à s'élever encore au-delà de la température de vaporisation du composant liquide 403, l'ensemble de celui-ci se transforme en gaz et la pression exercée dans la partie inférieure de ^If, however, the temperature still rises above the vaporization temperature of the liquid component 403, the whole of it becomes gas and the pressure exerted in the lower part of ^
l'enceinte 405 augmente de telle sorte que le drain 404 est entraîné vers le haut jusqu'à ce que sa partie inférieure 407 émerge du carburant formant source froide 402 et finisse sa course à distance de celui-ci.the enclosure 405 increases so that the drain 404 is driven upward until its lower portion 407 emerges from the cold source fuel 402 and ends its travel away from it.
Dans cette position finale, l'espace situé entre la partie inférieure 407 du drain 404 et la surface du carburant liquide 402 est rempli d'une lame d'un gaz isolant thermiquement et électriquement (tel que par exemple l'air) de telle sorte que l'équipement 401 et le carburant liquide 402 formant source froide sont suffisamment isolés thermiquement et électriquement pour éviter tout risque d'incendie du carburant 402.In this final position, the space between the lower part 407 of the drain 404 and the surface of the liquid fuel 402 is filled with a blade of a thermally and electrically insulating gas (such as for example air) in such a way that that the equipment 401 and the liquid fuel 402 forming a cold source are sufficiently thermally and electrically insulated to avoid any risk of fire fuel 402.
La figure 5A représente un cinquième exemple de mise en œuvre de l'invention.FIG. 5A represents a fifth example of implementation of the invention.
Selon ce cinquième exemple, un équipement comprenant une source de chaleur (ou plaque chaude) 501 est séparé d'une plaque froide 502 (par exemple un élément de structure d'un aéronef) au moyen d'une lame d'air 504 afin d'éviter la propagation d'arcs électriques entre l'équipement 501 et la plaque froide 502.According to this fifth example, an equipment comprising a heat source (or hot plate) 501 is separated from a cold plate 502 (for example a structural element of an aircraft) by means of an air knife 504 in order to avoid the propagation of arcing between the equipment 501 and the cold plate 502.
Une pluralité de caloducs (ou tubes de chaleur, plus proche de la formulation anglo-saxonne "heat-pipe") 503 (au nombre de deux sur la figure 5A) traversent la lame d'air 504, chaque caloduc 503 étant à une extrémité au contact de l'équipement 501 et à l'autre extrémité au contact de la plaque froide 502. En variante, on peut utiliser un seul caloduc lorsque le dimensionnement des flux de chaleur dans le dispositif le permet.A plurality of heat pipes (or heat pipes) 503 (two of them in FIG. 5A) pass through the air gap 504, each heat pipe 503 being at one end. in contact with the equipment 501 and at the other end in contact with the cold plate 502. Alternatively, it is possible to use a single heat pipe when the dimensioning of the heat flows in the device allows it.
Les caloducs, réalisés par exemple sous forme de tubes diphasiques, permettent d'évacuer vers la plaque froide 502 la chaleur générée au sein de l'équipement 501 , et ce en fonctionnement normal, c'est-à-dire lorsque la puissance transmise par les caloducs (ou en variante la température de ceux-ci) ne dépasse pas un seuil de puissance PseUii (respectivement de température). (On entend ici par seuil de température soit une valeur absolue de température, soit une valeur relative, par exemple par rapport à la température extérieure au caloduc.)The heat pipes, made for example in the form of two-phase tubes, make it possible to evacuate to the cold plate 502 the heat generated within the equipment 501, and this in normal operation, that is to say when the power transmitted by the heat pipes (or alternatively the temperature thereof) does not exceed a power threshold P seU ii (temperature respectively). (Here, the term temperature threshold is an absolute value of temperature or a relative value, for example with respect to the temperature outside the heat pipe.)
La résistance thermique Rth des caloducs 503 est donc relativement faible tant que la puissance thermique qui les parcourt est inférieure au seuil Pseuϋ (respectivement tant que la température est inférieure au seuil de température).The heat resistance R th of the heat pipes 503 is therefore relatively low as long as the thermal power that flows through them is below the threshold Pseuϋ (respectively as long as the temperature is below the temperature threshold).
Les caloducs 503 sont toutefois tels que, lorsque la puissance thermique qui les traverse est supérieure à ce seuil PseUii (respectivement lorsque la température est supérieure au seuil de température), leur résistance thermique Rth augmente fortement, comme illustré en figure 5B.The heat pipes 503 are, however, such that, when the thermal power therethrough is greater than this threshold P seU ii (respectively when the temperature is greater than the temperature threshold), their thermal resistance R th increases sharply, as illustrated in FIG. 5B.
Dans ces conditions thermiques (qui correspondent à des conditions de fonctionnement des caloducs différentes des conditions usuelles), c'est-à- dire lorsque ce seuil de puissance thermique transmise est atteint (sortie du fonctionnement normal du caloduc), la puissance transmise par le caloduc est limitée à cette valeur seuil.In these thermal conditions (which correspond to operating conditions of the heat pipes different from the usual conditions), that is to say when this threshold of transmitted thermal power is reached (output of the normal operation of the heat pipe), the power transmitted by the heat pipe is limited to this threshold value.
Ainsi, même si l'équipement génère une puissance thermique supérieure au seuil de puissance du caloduc, ce dernier sature et ne transmet donc à la plaque froide qu'une puissance thermique limitée, ce qui évite un échauffement trop important de celle-ci. On continue ainsi en partie l'évacuation de la chaleur, sans entraîner toutefois de risque pour la plaque froide.Thus, even if the equipment generates a thermal power greater than the power threshold of the heat pipe, the latter saturates and therefore transmits to the cold plate a limited thermal power, which avoids overheating thereof. In this way, the heat evacuation is continued in part, but without risk for the cold plate.
Les modes de réalisation qui précèdent ne sont que des exemples possibles de mise en œuvre l'invention qui ne s'y limite pas. The above embodiments are only possible examples of implementation of the invention which is not limited thereto.

Claims

REVENDICATIONS
1. Dispositif comprenant un équipement avec une source de chaleur ayant une condition thermique de fonctionnement maximum, une partie froide relativement à l'équipement et un élément apte à transmettre la chaleur de l'équipement à la partie froide, caractérisé en ce que l'élément est apte à provoquer une limitation de la chaleur transmise pour des conditions thermiques supérieures à un seuil déterminé inférieur à ladite condition maximum.Device comprising an equipment with a heat source having a maximum thermal operating condition, a cold part relative to the equipment and an element capable of transmitting the heat of the equipment to the cold part, characterized in that the element is capable of causing a limitation of the heat transmitted for thermal conditions greater than a determined threshold lower than said maximum condition.
2. Dispositif selon la revendication 1 , dans lequel les conditions thermiques correspondent à une puissance thermique transmise à travers l'élément.2. Device according to claim 1, wherein the thermal conditions correspond to a thermal power transmitted through the element.
3. Dispositif selon la revendication 2, dans lequel l'élément est apte à limiter la puissance thermique transmise à la valeur dudit seuil déterminé.3. Device according to claim 2, wherein the element is adapted to limit the transmitted thermal power to the value of said determined threshold.
4. Dispositif selon l'une des revendications 1 à 3, dans lequel l'équipement et la partie froide sont séparés essentiellement par une lame gazeuse au moins dans lesdites conditions thermiques.4. Device according to one of claims 1 to 3, wherein the equipment and the cold part are essentially separated by a gaseous blade at least in said thermal conditions.
5. Dispositif selon la revendication 4, dans lequel l'équipement et la partie froide sont séparés par ladite lame quelles que soient les conditions thermiques et dans lequel l'élément comprend au moins un caloduc traversant ladite lame.5. Device according to claim 4, wherein the equipment and the cold part are separated by said blade regardless of the thermal conditions and wherein the element comprises at least one heat pipe passing through said blade.
6. Dispositif selon l'une des revendications 1 à 5, dans lequel l'équipement est une pompe pour carburant.6. Device according to one of claims 1 to 5, wherein the equipment is a fuel pump.
7. Dispositif selon l'une des revendications 1 à 6, dans lequel la partie froide est un carburant liquide. 7. Device according to one of claims 1 to 6, wherein the cold part is a liquid fuel.
8. Dispositif selon l'une des revendications 1 à 6, dans lequel la partie froide est un élément sensible aux élévations de température.8. Device according to one of claims 1 to 6, wherein the cold part is an element sensitive to temperature rises.
9. Aéronef équipé d'un dispositif selon l'une quelconque des revendications 1 à 8. 9. Aircraft equipped with a device according to any one of claims 1 to 8.
PCT/FR2007/001222 2006-07-18 2007-07-17 Heat flow device WO2008009811A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07803878.3A EP2044381B1 (en) 2006-07-18 2007-07-17 Heat flow device
US12/373,975 US20090283251A1 (en) 2006-07-18 2007-07-17 Heat flow device
JP2009520011A JP2009543997A (en) 2006-07-18 2007-07-17 Heat exhaust device
CA2657777A CA2657777C (en) 2006-07-18 2007-07-17 Heat-flow device
BRPI0713193-3A BRPI0713193A2 (en) 2006-07-18 2007-07-17 device comprising equipment with a heat source and aircraft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0653014 2006-07-18
FR0653014A FR2904102B1 (en) 2006-07-18 2006-07-18 HEAT FLOW DEVICE

Publications (1)

Publication Number Publication Date
WO2008009811A1 true WO2008009811A1 (en) 2008-01-24

Family

ID=37691785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/001222 WO2008009811A1 (en) 2006-07-18 2007-07-17 Heat flow device

Country Status (9)

Country Link
US (1) US20090283251A1 (en)
EP (1) EP2044381B1 (en)
JP (1) JP2009543997A (en)
CN (1) CN101490496A (en)
BR (1) BRPI0713193A2 (en)
CA (1) CA2657777C (en)
FR (1) FR2904102B1 (en)
RU (1) RU2465531C2 (en)
WO (1) WO2008009811A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010133502A2 (en) * 2009-05-22 2010-11-25 Arcelik Anonim Sirketi A household appliance
FR2977121A1 (en) * 2011-06-22 2012-12-28 Commissariat Energie Atomique THERMAL MANAGEMENT SYSTEM WITH VARIABLE VOLUME MATERIAL
RU2608053C1 (en) * 2015-10-06 2017-01-13 Общество с ограниченной ответственностью "Уральская производственная компания" Module of removal and distribution of heat energy of power plant on solid oxide fuel cells

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2904103B1 (en) 2006-07-18 2015-05-15 Airbus France HEAT FLOW DEVICE
CN103376025A (en) * 2012-04-24 2013-10-30 上海首太工业装备有限公司 Switch capable of controlling heat
US10866036B1 (en) * 2020-05-18 2020-12-15 Envertic Thermal Systems, Llc Thermal switch

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3463224A (en) * 1966-10-24 1969-08-26 Trw Inc Thermal heat switch
US3519067A (en) * 1967-12-28 1970-07-07 Honeywell Inc Variable thermal conductance devices
US4384610A (en) * 1981-10-19 1983-05-24 Mcdonnell Douglas Corporation Simple thermal joint
US4402358A (en) * 1982-10-15 1983-09-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Heat pipe thermal switch
US4742867A (en) * 1986-12-01 1988-05-10 Cape Cod Research, Inc. Method and apparatuses for heat transfer
US5216580A (en) * 1992-01-14 1993-06-01 Sun Microsystems, Inc. Optimized integral heat pipe and electronic circuit module arrangement
DE10123473A1 (en) * 2001-05-15 2002-11-21 Volkswagen Ag Arrangement for introducing heat into liquid e.g. for fuel cell system for vehicle drive, has heat conductor divided by switch element into one region for transferring heat from surroundings and one for transferring heat to liquid
DE10342425A1 (en) * 2003-09-13 2005-01-05 Daimlerchrysler Ag Heat insulation unit comprises an intermediate layer with a matrix of low thermal conductivity embedding heat conductor elements whose orientation is externally controllable
US20060141308A1 (en) * 2004-12-23 2006-06-29 Becerra Juan J Apparatus and method for variable conductance temperature control

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161388A (en) * 1986-12-23 1988-07-05 Ishikawajima Harima Heavy Ind Co Ltd Heat pipe
JPH01110245A (en) * 1987-10-23 1989-04-26 Iwatani Internatl Corp Cryogenic temperature tester
US6435454B1 (en) * 1987-12-14 2002-08-20 Northrop Grumman Corporation Heat pipe cooling of aircraft skins for infrared radiation matching
JPH0645177Y2 (en) * 1988-07-11 1994-11-16 三菱重工業株式会社 heat pipe
US5188909A (en) * 1991-09-12 1993-02-23 Eveready Battery Co., Inc. Electrochemical cell with circuit disconnect device
AT399951B (en) * 1991-11-05 1995-08-25 Grabner Werner METHOD AND DEVICE FOR LIMITING THE TEMPERATURE
US5379601A (en) * 1993-09-15 1995-01-10 International Business Machines Corporation Temperature actuated switch for cryo-coolers
RU2110902C1 (en) * 1996-11-13 1998-05-10 Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Экспериментальной Физики Method for cooling radio elements
US6047766A (en) * 1998-08-03 2000-04-11 Hewlett-Packard Company Multi-mode heat transfer using a thermal heat pipe valve
RU2161384C1 (en) * 1999-05-13 2000-12-27 Фонд Сертификации "Энергия" Apparatus for temperature stabilization of electronic equipment
US6940716B1 (en) * 2000-07-13 2005-09-06 Intel Corporation Method and apparatus for dissipating heat from an electronic device
RU2183310C1 (en) * 2000-10-31 2002-06-10 Центр КОРТЭС Heat setting device
US20030196787A1 (en) * 2002-04-19 2003-10-23 Mahoney William G. Passive thermal regulator for temperature sensitive components
US6768781B1 (en) * 2003-03-31 2004-07-27 The Boeing Company Methods and apparatuses for removing thermal energy from a nuclear reactor
US20060037589A1 (en) * 2004-08-17 2006-02-23 Ramesh Gupta Heat pipe for heating of gasoline for on-board octane segregation
US7268292B2 (en) * 2004-09-20 2007-09-11 International Business Machines Corporation Multi-dimensional compliant thermal cap for an electronic device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3463224A (en) * 1966-10-24 1969-08-26 Trw Inc Thermal heat switch
US3519067A (en) * 1967-12-28 1970-07-07 Honeywell Inc Variable thermal conductance devices
US4384610A (en) * 1981-10-19 1983-05-24 Mcdonnell Douglas Corporation Simple thermal joint
US4402358A (en) * 1982-10-15 1983-09-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Heat pipe thermal switch
US4742867A (en) * 1986-12-01 1988-05-10 Cape Cod Research, Inc. Method and apparatuses for heat transfer
US5216580A (en) * 1992-01-14 1993-06-01 Sun Microsystems, Inc. Optimized integral heat pipe and electronic circuit module arrangement
DE10123473A1 (en) * 2001-05-15 2002-11-21 Volkswagen Ag Arrangement for introducing heat into liquid e.g. for fuel cell system for vehicle drive, has heat conductor divided by switch element into one region for transferring heat from surroundings and one for transferring heat to liquid
DE10342425A1 (en) * 2003-09-13 2005-01-05 Daimlerchrysler Ag Heat insulation unit comprises an intermediate layer with a matrix of low thermal conductivity embedding heat conductor elements whose orientation is externally controllable
US20060141308A1 (en) * 2004-12-23 2006-06-29 Becerra Juan J Apparatus and method for variable conductance temperature control

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010133502A2 (en) * 2009-05-22 2010-11-25 Arcelik Anonim Sirketi A household appliance
WO2010133502A3 (en) * 2009-05-22 2011-04-14 Arcelik Anonim Sirketi A household appliance
FR2977121A1 (en) * 2011-06-22 2012-12-28 Commissariat Energie Atomique THERMAL MANAGEMENT SYSTEM WITH VARIABLE VOLUME MATERIAL
WO2012175627A3 (en) * 2011-06-22 2013-02-21 Commissariat à l'énergie atomique et aux énergies alternatives Thermal management system with variable-volume material
RU2608053C1 (en) * 2015-10-06 2017-01-13 Общество с ограниченной ответственностью "Уральская производственная компания" Module of removal and distribution of heat energy of power plant on solid oxide fuel cells

Also Published As

Publication number Publication date
CA2657777C (en) 2016-06-14
US20090283251A1 (en) 2009-11-19
RU2009105499A (en) 2010-08-27
FR2904102B1 (en) 2015-03-27
CN101490496A (en) 2009-07-22
JP2009543997A (en) 2009-12-10
CA2657777A1 (en) 2008-01-24
EP2044381A1 (en) 2009-04-08
BRPI0713193A2 (en) 2012-03-20
EP2044381B1 (en) 2017-11-01
FR2904102A1 (en) 2008-01-25
RU2465531C2 (en) 2012-10-27

Similar Documents

Publication Publication Date Title
EP2047201B1 (en) Heat flow device
EP2044381B1 (en) Heat flow device
EP2375426B1 (en) Varistor including an electrode with jag portion forming a pole and lightning including such a varistor
EP2375424B1 (en) Device for protecting against overvoltages with parallel thermal disconnectors
EP2375425B1 (en) Device for protecting against surge voltages with enhanced thermal disconnector
FR2953324A1 (en) ELECTRIC SWITCH WITH SLIDING DRAWER FORMING CIRCUIT BREAKER OR SWITCH
EP0283414A2 (en) Fuse with high density ceramic casing and method of fabrication of that fuse
CA1259367A (en) Electric connection device for wall mounting on a direct current metallurgical furnace
FR2911719A1 (en) DEVICE FOR INTERRUPTING / INITIATING AN ELECTRICAL CIRCUIT
EP1504887A1 (en) Electrical cable rendered fire-proof by the use of an outer multilayered sheath
FR2921996A1 (en) JUNCTION DEVICE INSULATED BETWEEN TWO TRUNCTIONS OF DOUBLE ENVELOPE PIPE
CA1263679A (en) Wall electrode for direct current electric mettallurgical cell
EP0275772B1 (en) Housing for an electric device, particularly for a surge arrester, comprising an insulating moulded envelope
FR2813662A1 (en) Capillary evaporator, for thermal transfer loop, comprises a housing made of material with low thermal conductivity
FR2982705A1 (en) DEVICE FOR PROTECTING AN ELECTRICAL CIRCUIT POWERED BY AN INTEGRABLE ALTERNATING CURRENT IN A CONTACTOR.
EP0494811B1 (en) Remote opening and closing device for a pressurised container for long-term storage
EP2554529B1 (en) Security detonator
EP1225672B1 (en) Internal spark control device for a connection module in gas-insulated transmission line
WO2006131675A1 (en) High-frequency multispark plug
FR2902232A1 (en) Electrical component e.g. defective battery element, by-pass device for spacecraft, has switch with line providing continuity between studs, and shaft including prong with thread and retained by release made of phase change material
EP4006941A1 (en) Electric power supply device comprising a heat-sensitive actuator and associated device
FR2985004A1 (en) THERMAL SWITCH, CRYO-COOLER AND INSTALLATION COMPRISING SUCH A THERMAL SWITCH
FR2878581A1 (en) Internal combustion engine fuel injector assembly procedure includes fitting heat transfer resin or metal insert between injector and cylinder head
BE501418A (en)
BE435650A (en)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780027085.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07803878

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2657777

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009520011

Country of ref document: JP

Ref document number: 12373975

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007803878

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007803878

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009105499

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0713193

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090119