WO2008007110A1 - Methods useful for controlling fluid loss in subterranean formations - Google Patents

Methods useful for controlling fluid loss in subterranean formations Download PDF

Info

Publication number
WO2008007110A1
WO2008007110A1 PCT/GB2007/002633 GB2007002633W WO2008007110A1 WO 2008007110 A1 WO2008007110 A1 WO 2008007110A1 GB 2007002633 W GB2007002633 W GB 2007002633W WO 2008007110 A1 WO2008007110 A1 WO 2008007110A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
well bore
polymer
interval
hydrophilic
Prior art date
Application number
PCT/GB2007/002633
Other languages
French (fr)
Inventor
Leopoldo Sierra
Larry Steven Eoff
Original Assignee
Halliburton Energy Services, Inc
Curtis, Philip Anthony
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services, Inc, Curtis, Philip Anthony filed Critical Halliburton Energy Services, Inc
Publication of WO2008007110A1 publication Critical patent/WO2008007110A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/5083Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/56Compositions for consolidating loose sand or the like around wells without excessively decreasing the permeability thereof
    • C09K8/57Compositions based on water or polar solvents
    • C09K8/575Compositions based on water or polar solvents containing organic compounds
    • C09K8/5751Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/72Eroding chemicals, e.g. acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds

Definitions

  • the present invention provides improvements in the production of hydrocarbons from subterranean formations. More particularly, the present invention provides improved solutions and methods for fracture stimulation in a subterranean formation while using a relative permeability modifier to reduce fluid leak off therefrom.
  • Fracture stimulation comprises pumping a fracturing fluid into a well bore at a certain pressure and against a selected surface of a subterranean formation intersected by the well bore to create or enhance a fracture therein.
  • Fracture stimulation may be used in both vertical and horizontal wells. Fracturing horizontal wells may be undertaken in several situations, including situations where the formation has: (1) restricted flow caused by low vertical permeability, the presence of shale streaks or formation damage; (2) low productivity due to low formation permeability; (3) natural fractures in a direction different from that of induced fractures, thus induced fractures have a high chance of intercepting the natural fractures; or (4) low stress contrast between the pay zone and the surrounding layers. In the fourth case, a large fracturing treatment of a vertical well likely would not be an acceptable option since the fracture would grow in height as well as length.
  • Drilling a horizontal well and creating either several transverse or longitudinal fractures may be preferable as they may allow rapid depletion of the reservoir through one or more fractures.
  • "Zone" as used herein simply refers to a portion of the formation and does not imply a particular geological strata or composition.
  • Selective or pinpoint fracture stimulation of horizontal open hole wells may be performed if desired using coiled tubing or normal tubing and a specialized fracture-jetting tool located at the end.
  • the normal selective or pinpoint fracture stimulation involves pumping stimulation fluids through the tubing and the annular space, both at rates and pressures sufficient to create or enhance a fracture in the formation.
  • a "reactive" fluid (as judged by the composition of the formation) such as acid is pumped through the tubing side and at the same time a "nonreactive" fluid (as judged by the composition of the formation) is pumped through the annular space.
  • a water-based fluid may be the nonreactive fluid. Both fluids are mixed downhole and are responsible for the fracture creation or enhancement.
  • the fracturing process may terminate prematurely, for a variety of reasons.
  • the "nonreactive" portion of the stimulation fluid which usually is intended to advance as the fracture progresses, may undesirably completely leak off into the formation and result in an inefficient fracture stimulation of the well. This undesired loss or leak off is commonly referred to as "fluid loss.”
  • fluid loss into the formation may result in a reduction in fluid efficiency, such that the fracturing fluid cannot propagate the fracture(s) as desired.
  • the term “treatment,” or “treating,” refers to any subterranean treatment that uses a fluid in conjunction with a desired function and/or for a desired purpose.
  • the term “treatment,” or “treating,” does not imply any particular action by the fluid or any particular component thereof.
  • viscosified or crosslinked fluids may be used. Additional fluid loss control may be provided by crosslinking the gelling agent or by including fluid loss control materials, such as sized solids (e.g., calcium carbonate), silica particles, oil-soluble resins, and degradable particles, in the treatment fluids.
  • fluid loss control materials such as sized solids (e.g., calcium carbonate), silica particles, oil-soluble resins, and degradable particles, in the treatment fluids.
  • fluid loss control materials such as sized solids (e.g., calcium carbonate), silica particles, oil-soluble resins, and degradable particles, in the treatment fluids.
  • fluid loss control additives may be included in the treatment fluids.
  • Examples of commonly used fluid loss control additives include, but are not limited to, gelling agents, such as hydroxyethylcellulose and xanthan.
  • the fluid loss control materials may be used in combination with or separately from the conventional fluid loss control additives.
  • Chemical fluid loss control pills also may be used to combat fluid loss.
  • Conventional chemical fluid loss control pills may be characterized as either solids- containing pills or solids-free pills.
  • solids-containing pills include sized-salt pills and sized-carbonate pills.
  • These solids-containing pills often are not optimized for the particular downhole hardware and conditions that may be encountered. For instance, the particle sizes of the solids may not be optimized for a particular application and, as a result, may increase the risk of invasion into the interior of the formation matrix, which may greatly increase the difficulty of removal by subsequent remedial treatments. Additionally, high- solids loading in the pills, in conjunction with the large volumes of these pills needed to control fluid losses, may greatly increase the complexity of subsequent cleanup.
  • Solids- free fluid loss control pills commonly comprise hydrated polymer gels that may not be effective without some invasion into the formation matrix. These pills typically require large volumes to control fluid loss and remedial treatments to remove.
  • remedial treatments may be required to remove the previously placed pills, for example, so that the wells may be placed into production.
  • a chemical breaker such as an acid, oxidizer, or enzyme may be used to either dissolve the solids or reduce the viscosity of the pill.
  • use of a chemical breaker to remove the pill from inside the well bore and/or the formation matrix may be either ineffective or not a viable economic option.
  • the chemical breakers may be corrosive to downhole tools. Additionally, as the chemical breakers leak off into the formation, they may carry undissolved fines that may plug and/or damage the formation or may produce undesirable reactions with the formation.
  • the present invention provides improvements in the production of hydrocarbons from subterranean formations. More particularly, the present invention provides improved solutions and methods for fracture stimulation in a subterranean formation while using a relative permeability modifier to reduce fluid leak off therefrom.
  • the present invention provides a method comprising: providing a treatment fluid comprising an aqueous base fluid and a relative permeability modifier, wherein the relative permeability modifier comprises a water-soluble polymer having hydrophobic or hydrophilic modification; introducing the treatment fluid into an interval of a well bore penetrating the subterranean formation; creating one or more perforations through a hydrajetting tool in the interval of the well bore, wherein the perforations extend from the well bore and into the subterranean formation; and allowing the treatment fluid to contact a portion of the subterranean formation.
  • Figure 1 is a schematic diagram illustrating a stimulation system in a horizontal well bore in a portion of a subterranean formation in accordance with a method of the present invention.
  • the present invention provides improvements in the production of hydrocarbons from subterranean formations. More particularly, the present invention provides improved solutions and methods for fracture stimulation of open hole completion in a subterranean formation while using a relative permeability modifier to reduce fluid leak off along the open hole section therefrom.
  • a “relative permeability modifier” refers to a fluid loss control additive that comprises a water-soluble polymer having hydrophobic or hydrophilic modification.
  • water-soluble refers to at least about 0.01 weight percent soluble in distilled water.
  • hydrophobically modified refers to the incorporation into the hydrophilic polymer structure of hydrophobic groups, wherein the alkyl chain length is from about 4 to about 22 carbons.
  • hydrophilically modified refers to the incorporation into the hydrophilic polymer structure of hydrophilic groups, such as to introduce branching or to increase the degree of branching in the hydrophilic polymer.
  • the methods and compositions of the present invention may be utilized in horizontal, vertical, inclined, or otherwise formed portions of wells.
  • compositions and methods of the current invention are applicable in both newly drilled formations and in formations requiring re-stimulation.
  • the compositions and methods of the current invention are particularly useful for formations where hydrocarbons will be present in the formation zones.
  • the compositions of the present invention retain their effectiveness while satisfying well completions limitations.
  • the compositions of the present invention are non-damaging to hydrocarbon- bearing zones and have the potential to reduce water production from water-bearing zones.
  • the methods of the present invention comprise providing a treatment fluid comprising an aqueous base fluid and a relative permeability modifier, placing the treatment fluid into an interval of a subterranean formation, and creating or enhancing at least one fracture therein.
  • the at least one fracture may be created or enhanced through fracture stimulation while a stimulation fluid is being pumped into the interval of the subterranean formation through coiled tubing and/or the annular space.
  • the methods of the present invention may comprise: providing a treatment fluid comprising a base fluid, providing a supplemental treatment fluid comprising an aqueous base fluid and a relative permeability modifier, introducing the treatment fluid through coiled tubing into a well bore penetrating a subterranean formation, introducing the supplemental treatment fluid through the annular space into the well bore, allowing the treatment fluid and supplemental treatment fluid to mix in the well bore, creating one or more perforations in an interval of the well bore, wherein the perforations extend from the well bore and into the subterranean formation, and allowing the mixture of treatment fluids to contact a portion of the subterranean formation through the one or more perforations.
  • perforation may refer to any fracture, crack, split, or division in the subterranean formation. These perforations may be created by a hydrajetting tool, for instance.
  • the treatment fluids of the present invention may comprise an aqueous base fluid and a relative permeability modifier to reduce fluid loss into at least a portion of the subterranean formation from the treatment fluid or another aqueous fluid (e.g. supplemental treatment fluid) introduced into the well bore subsequent to the treatment fluid.
  • a relative permeability modifier should attach to formation's surface(s), and thereby affect the permeability of the portion of the subterranean formation.
  • the presence of the water-soluble polymers therein should reduce the permeability of the treated portion of the subterranean formation to aqueous or non-aqueous fluids without substantially changing the permeability thereof to subsequently produced or injected hydrocarbon fluids.
  • aqueous fluids e.g., fracturing fluids, drilling fluids, isolation fluids, etc.
  • the methods of the present invention may be useful to control fluid loss during subsequent entry and/or removal of completion equipment into the well bore.
  • the water-soluble polymers also may reduce subsequent problems associated with water flowing into the well bore from the treated portion of the subterranean formation.
  • oxidizers may be used to remove the water-soluble polymer.
  • oxidizers include, but are not limited to, alkali, alkaline earth, and transition metal salts of periodate, hypochlorite, perbromate, chlorite, chlorate; hydrogen peroxide; manganese peroxide; peracetic acid; and combinations thereof.
  • the volume of oxidizer used to remove the water-soluble polymer may be equal to the volume of relative permeability modifier in the system.
  • the treatment fluids of the present invention generally .comprise an aqueous base fluid and a fluid loss control additive that comprises a water-soluble polymer having hydrophobic or hydrophilic modification.
  • a variety of additional additives suitable for use in the chosen treatment may be included in the treatment fluids as desired.
  • the aqueous base fluid of the treatment fluids of the present invention may include freshwater, saltwater, brine (e.g. , saturated saltwater), or seawater.
  • the aqueous base fluid may be from any source, provided that it does not contain components that may adversely affect other components in the treatment fluid.
  • the fluid loss control additives used in the treatment fluids of the present invention comprise a water-soluble polymer having hydrophobic or hydrophilic modification.
  • a water-soluble polymer with hydrophobic modification is referred to herein as “hydrophobically modified.”
  • a water-soluble polymer with hydrophilic modification is referred to herein as “hydrophilically modified.”
  • the fluid loss control additives should reduce fluid loss from the treatment fluid or any other aqueous fluids subsequently introduced into the well bore.
  • the fluid loss control additive of the present invention is described in U.S. Application Serial Nos. 11/360,215; 11/102,062; 10/881,198; 10/760,443; 10/440,337; and 10/612,271, the disclosures of which are incorporated herein by reference.
  • the hydrophobically modified polymers useful in the present invention typically have molecular weights in the range of from about 100,000 to about 10,000,000. While these hydrophobically modified polymers have hydrophobic groups incorporated into the hydrophilic polymer structure, they should remain water-soluble.
  • a mole ratio of a hydrophilic monomer to the hydrophobic compound in the hydrophobically modified polymer is in the range of from about 99.98:0.02 to about 90:10, wherein the hydrophilic monomer is a calculated amount present in the hydrophilic polymer,
  • the hydrophobically modified polymers may comprise a polymer backbone that comprises polar heteroatoms.
  • the polar heteroatoms present within the polymer backbone of the hydrophobically modified polymers may include, but are not limited to, oxygen, nitrogen, sulfur, or phosphorous.
  • the hydrophobically modified polymers may be synthesized utilizing any suitable method, hi one example, the hydrophobically modified polymers may be a reaction product of a hydrophilic polymer and a hydrophobic compound. In another example, the hydrophobically modified polymers may be prepared from a polymerization reaction comprising a hydrophilic monomer and a hydrophobically modified hydrophilic monomer. Those of ordinary skill in the art, with the benefit of this disclosure, will be able to determine other suitable methods for the synthesis of suitable hydrophobically modified polymers.
  • suitable hydrophobically modified polymers may be synthesized by the hydrophobic modification of a hydrophilic polymer.
  • the hydrophilic polymers suitable for forming the hydrophobically modified polymers used in the present invention should be capable of reacting with hydrophobic compounds.
  • Suitable hydrophilic polymers include, homo-, co-, or terpolymers such as, but not limited to, polyacrylamides, polyvinylamines, poly(vinylamines/vinyl alcohols), alkyl acrylate polymers in general, and derivatives thereof.
  • alkyl acrylate polymers include, but are not limited to, polydimethylaminoethyl methacrylate, polydimethylaminopropyl methacrylamide, poly(acrylamide/dimethylaminoethyl methacrylate), poly(methacrylic acid/dimethylaminoethyl methacrylate), poly(2-acrylamido-2-methyl propane sulfonic acid/dimethylaminoethyl methacrylate), poly(acrylamide/dimethylaminopropyl methacrylamide), poly (acrylic acid/dimethylaminopropyl methacrylamide), and poly(methacrylic acid/dimethylaminopropyl methacrylamide).
  • the hydrophilic polymers comprise a polymer backbone and reactive amino groups in the polymer backbone or as pendant groups, the reactive amino groups capable of reacting with hydrophobic compounds.
  • the hydrophilic polymers comprise dialkyl amino pendant groups.
  • the hydrophilic polymers comprise a dimethyl amino pendant group and a monomer comprising dimethylaminoethyl methacrylate or dimethylaminopropyl methacrylamide.
  • the hydrophilic polymers comprise a polymer backbone that comprises polar heteroatoms, wherein the polar heteroatoms present within the polymer backbone of the hydrophilic polymers include, but are not limited to, oxygen, nitrogen, sulfur, or phosphorous.
  • Suitable hydrophilic polymers that comprise polar heteroatoms within the polymer backbone include homo-, CO-, or terpolymers, such as, but not limited to, celluloses, chitosans, polyamides, polyetheramines, polyethyleneimines, polyhydroxyetheramines, polylysines, polysulfones, gums, starches, and derivatives thereof, hi one embodiment, the starch is a cationic starch.
  • a suitable cationic starch may be formed by reacting a starch, such as corn, maize, waxy maize, potato, and tapioca, and the like, with the reaction product of epichlorohydrin and trialkylamine.
  • the hydrophobic compounds that are capable of reacting with the hydrophilic polymers of the present invention include, but are not limited to, alkyl halides, sulfonates, sulfates, organic acids, and organic acid derivatives.
  • suitable organic acids and derivatives thereof include, but are not limited to, octenyl succinic acid; dodecenyl succinic acid; and anhydrides, esters, imides, and amides of octenyl succinic acid or dodecenyl succinic acid, hi certain embodiments, the hydrophobic compounds may have an alkyl chain length of from about 4 to about 22 carbons.
  • the hydrophobic compounds may have an alkyl chain length of from about 7 to about 22 carbons, hi another embodiment, the hydrophobic compounds may have an alkyl chain length of from about 12 to about 18 carbons.
  • the hydrophobic compound is an alkyl halide
  • the reaction between the hydrophobic compound and hydrophilic polymer may result in the quaternization of at least some of the hydrophilic polymer amino groups with an alkyl halide, wherein the alkyl chain length is from about 4 to about 22 carbons.
  • suitable hydrophobically modified polymers also may be prepared from a polymerization reaction comprising a hydrophilic monomer and a hydrophobically modified hydrophilic monomer. Examples of suitable methods of their preparation are described in U.S. Patent Number 6,476,169, the relevant disclosure of which is incorporated herein by reference.
  • the hydrophobically modified polymers synthesized from the polymerization reactions may have estimated molecular weights in the range of from about 100,000 to about 10,000,000 and mole ratios of the hydrophilic monomer(s) to the hydrophobically modified hydrophilic monomer(s) in the range of from about 99.98:0.02 to about 90:10.
  • hydrophilic monomers may be used to form the hydrophobically modified polymers useful in the present invention.
  • suitable hydrophilic monomers include, but are not limited to acrylamide, 2-acrylamido-2-methyl propane sulfonic acid, N,N-dimethylacrylamide, vinyl pyrrolidone, dimethylaminoethyl methacrylate, acrylic acid, dimethylaminopropylmethacrylamide, vinyl amine, vinyl acetate, trimethylammoniumethyl methacrylate chloride, methacrylamide, hydroxyethyl acrylate, vinyl sulfonic acid, vinyl phosphonic acid, methacrylic acid, vinyl caprolactam, N- vinylformamide, N,N-diallylacetamide, dimethyldiallyl ammonium halide, itaconic acid, styrene sulfonic acid, methacrylamidoethyltrimethyl ammonium halide, quaternary salt derivatives of acrylamide,
  • hydrophobically modified hydrophilic monomers also may be used to form the hydrophobically modified polymers useful in the present invention.
  • suitable hydrophobically modified hydrophilic monomers include, but are not limited to, alkyl acrylates, alkyl methacrylates, alkyl acrylamides, alkyl methacrylamides alkyl dimethylammoniumethyl methacrylate halides, and alkyl dimethylammoniumpropyl methacrylamide halides, wherein the alkyl groups have from about 4 to about 22 carbon atoms, hi another embodiment, the alkyl groups have from about 7 to about 22 carbons, hi another embodiment, the alkyl groups have from about 12 to about 18 carbons, hi certain embodiments, the hydrophobically modified hydrophilic monomer comprises octadecyldimethylamrnoniumethyl methacrylate bromide, hexadecyldimethylammoniumethyl methacrylate bromide, hexade
  • Suitable hydrophobically modified polymers that may be formed from the above-described reactions include, but are not limited to, acrylamide/octadecyldimethylammoniumethyl methacrylate bromide copolymer, dimethylaminoethyl methacrylate/vinyl pyrrolidone/hexadecyldimethylammoniumethyl methacrylate bromide terpolymer, and acrylamide/2-acrylamido-2-methyl propane sulfonic acid/2-ethylhexyl methacrylate terpolymer.
  • Another suitable hydrophobically modified polymer formed from the above-described reaction comprises an amino methacrylate/alkylarnrnonium methacrylate copolymer.
  • a suitable dimethlyaminoethyl methacrylate/alkyl-dimethylammoniumethyl methacrylate copolymer is a dimethylaminoethyl methacrylate/hexadecyl-dimethylammoniumethyl methacrylate copolymer.
  • these copolymers may be formed by reactions with a variety of alkyl halides.
  • the hydrophobically modified polymer may comprise a dimethylaminoethyl methacrylate/hexadecyl- dimethylammoniumethyl methacrylate bromide copolymer.
  • the fluid loss control additives of the present invention may comprise a water-soluble hydrophilically modified polymer.
  • the hydrophilically modified polymers of the present invention typically have molecular weights in the range of from about 100,000 to about 10,000,000. hi certain embodiments, the hydrophilically modified polymers comprise a polymer backbone that comprises polar heteroatoms.
  • the polar heteroatoms present within the polymer backbone of the hydrophilically modified polymers include, but are not limited to, oxygen, nitrogen, sulfur, or phosphorous.
  • the hydrophilically modified polymers may be synthesized utilizing any suitable method, hi one example, the hydrophilically modified polymers may be a reaction product of a hydrophilic polymer and a hydrophilic compound. Those of ordinary skill in the art, with the benefit of this disclosure, will be able to determine other suitable methods for the preparation of suitable hydrophilically modified polymers.
  • suitable hydrophilically modified polymers may be formed by additional hydrophilic modification, for example, to introduce branching or to increase the degree of branching, of a hydrophilic polymer.
  • the hydrophilic polymers suitable for forming the hydrophilically modified polymers used in the present invention should be capable of reacting with hydrophilic compounds, hi certain embodiments, suitable hydrophilic polymers include, homo-, co-, or terpolymers, such as, but not limited to, polyacrylamides, polyvinylamines, poly(vinylamines/vinyl alcohols), and alkyl acrylate polymers in general.
  • alkyl acrylate polymers include, but are not limited to, polydimethylaminoethyl methacrylate, polydimethylaminopropyl methacrylamide, poly(acrylamide/dimethylaminoethyl methacrylate), poly(methacrylic acid/dimethylaminoethyl methacrylate), poly(2-acrylamido-2-methyl propane sulfonic acid/dimethylaminoethyl methacrylate), poly(acrylamide/dimethylaminopropyl methacrylamide), poly (acrylic acid/dimethylaminopropyl methacrylamide), and poly(methacrylic acid/dimethylaminopropyl methacrylamide).
  • the hydrophilic polymers comprise a polymer backbone and reactive amino groups in the polymer backbone or as pendant groups, the reactive amino groups capable of reacting with hydrophilic compounds.
  • the hydrophilic polymers comprise dialkyl amino pendant groups.
  • the hydrophilic polymers comprise a dimethyl amino pendant group and at least one monomer comprising dimethylaminoethyl methacrylate or dimethylaminopropyl methacrylamide.
  • the hydrophilic polymers comprise a polymer backbone that comprises polar heteroatoms, wherein the polar heteroatoms present within the polymer backbone of the hydrophilic polymers include, but are not limited to, oxygen, nitrogen, sulfur, or phosphorous.
  • Suitable hydrophilic polymers that comprise polar heteroatoms within the polymer backbone include homo-, co-, or terpolymers, such as, but not limited to, celluloses, chitosans, polyamides, polyetheramines, polyethyleneimines, polyhydroxyetheramines, polylysines, polysulfones, gums, starches, and derivatives thereof.
  • the starch is a cationic starch.
  • a suitable cationic starch may be formed by reacting a starch, such as corn, maize, waxy maize, potato, tapioca, and the like, with the reaction product of epichlorohydrin and trialkylamine.
  • the hydrophilic compounds suitable for reaction with the hydrophilic polymers include polyethers that comprise halogens, sulfonates, sulfates, organic acids, and organic acid derivatives.
  • suitable polyethers include, but are not limited to, polyethylene oxides, polypropylene oxides, and polybutylene oxides, and copolymers, terpolymers, and mixtures thereof.
  • the polyether comprises an epichlorohydrin-terminated polyethylene oxide methyl ether.
  • the hydrophilically modified polymers formed from the reaction of a hydrophilic polymer with a hydrophilic compound may have estimated molecular weights in the range of from about 100,000 to about 10,000,000 and may have weight ratios of the hydrophilic polymers to the polyethers in the range of from about 1:1 to about 10:1.
  • Suitable hydrophilically modified polymers having molecular weights and weight ratios in the ranges set forth above include, but are not limited to, the reaction product of polydimethylaminoethyl methacrylate and epichlorohydrin-terminated polyethyleneoxide methyl ether; the reaction product of polydimethylaminopropyl methacrylamide.
  • the hydrophilically modified polymer comprises the reaction product of a polydimethylaminoethyl methacrylate and epichlorohydrin-terminated polyethyleneoxide methyl ether having a weight ratio of polydimethylaminoethyl methacrylate to epichlorohydrin-terminated polyethyleneoxide methyl ether of about 3:1.
  • the fluid loss control additives of the present invention should be present in the treatment fluids of the present invention to provide the desired level of fluid loss control, hi some embodiments, the fluid loss control additives should be present in the treatment fluids of the present invention in an amount in the range of from about 0.02% to about 10% by weight of the treatment fluid. In another embodiment, the fluid loss control additive should be present in the treatment fluids of the present invention in an amount in the range of from about 0.05% to about 1.0% by weight of the treatment fluid. In certain embodiments of the present invention, the fluid loss control additive may be provided in a concentrated aqueous solution prior to its combination with the other components necessary to form the treatment fluids of the present invention.
  • Additional additives may be added to the treatment fluids of the present invention as deemed appropriate for a particular application by one skilled in the art with the benefit of this disclosure.
  • additives include, but are not limited to, weighting agents, surfactants, scale inhibitors, antifoaming agents, bactericides, salts, foaming agents, acids, conventional fluid loss control additives, viscosifying agents, crosslinking agents, gel breakers, shale swelling inhibitors, combinations thereof, and the like.
  • compositions of the present invention may be used in subterranean formations where it is desirable to provide fluid loss control.
  • the fluid loss control additives may be used at any stage of a subterranean treatment.
  • the treatment fluid may be a drilling fluid, a fracturing fluid, an isolation fluid, or any other suitable aqueous fluid used in subterranean treatments.
  • the treatment fluids may be a fluid loss control pill that is introduced into the well bore at any stage of the subterranean treatment.
  • the treatment fluid may be a preflush that is introduced into the well bore prior to the subterranean treatment.
  • compositions of the present invention may be used in conjunction with a hydrajet perforating, jetting while fracturing, and co-injection down the annulus technique.
  • a hydrajet perforating, jetting while fracturing, and co-injection down the annulus technique is generally referred to by Halliburton Energy Services, Inc. as the tradenamed "SURGIFRAC" process or stimulation method and is described in U.S. Patent No. 5,765,642, the disclosure of which is incorporated herein by reference.
  • compositions of the present invention may be used in conjunction with a SURGIFRAC process.
  • SURGIFRAC processes have been applied mostly to horizontal or highly deviated well bores, for example, where casing the hole is difficult and expensive.
  • a hydrajetting tool such as that used in the SURGIFRAC process, may be placed into the wellbore at a location of interest, e.g., adjacent to a first zone in the subterranean formation, hi one exemplary embodiment, the hydrajetting tool is attached to a coil tubing, which lowers the hydrajetting tool into the wellbore and supplies it with jetting fluid.
  • the hydrajetting tool then operates to form perforation tunnels in the first zone.
  • the perforation fluid being pumped through the hydrajetting tool contains a base fluid, which is commonly water and abrasives (commonly sand), and may also comprise a relative permeability modifier.
  • the fluid is then injected into the first zone of the subterranean formation.
  • the pressure of the fluid exiting the hydrajetting tool is sufficient to fracture the formation in the first zone.
  • the jetted fluid forms cracks or fractures along perforation tunnels.
  • an acidizing fluid may be injected into the formation through the hydrajetting tool.
  • the acidizing fluid may comprise a relative permeability modifier.
  • the acidizing fluid etches the formation along the cracks thereby widening them.
  • the hydrajetting tool may have any number of jets, configured in a variety of combinations along and around the tool.
  • hydrajetting By using a hydrajetting technique, it is possible to generate one or more independent, single plane hydraulic fractures; and therefore, highly deviated or horizontal wells may be often completed without having to case the wellbore. Furthermore, even when highly deviated or horizontal wells are cased, hydrajetting the perforations and fractures in such wells generally may result in a more effective fracturing method than using traditional explosive charge perforation and fracturing techniques.
  • each of the fractures typically formed is believed to have a narrow opening that extends laterally from the well bore.
  • the fracturing fluid may carry granular or particulate materials, often referred to as "proppant,” into the opening of the fracture and deep into the fracture. This material remains in each of the fractures after the fracturing process is finished.
  • the proppant in each of the fractures holds apart the separated earthen walls of the formation to keep the fracture open and to provide flow paths through which hydrocarbons from the formation may flow into the well bore at increased rates relative to the flow rates through the unfractured formation.
  • the proppant material may include natural and man-made proppant agents, such as sand, bauxite, ceramic materials, glass materials (e.g., glass beads), polymer materials, Teflon® materials, nut shell pieces, seed shell pieces, cured resinous particulates comprising nut shell pieces, cured resinous particulates comprising seed shell pieces, fruit pit pieces, cured resinous particulates comprising fruit pit pieces, wood, composite particulates, and combinations thereof.
  • natural and man-made proppant agents such as sand, bauxite, ceramic materials, glass materials (e.g., glass beads), polymer materials, Teflon® materials, nut shell pieces, seed shell pieces, cured resinous particulates comprising nut shell pieces, cured resinous particulates comprising seed shell pieces, fruit pit pieces, cured resinous particulates comprising fruit pit pieces, wood, composite particulates, and combinations thereof.
  • suitable composite materials may comprise a binder and a filler material wherein suitable filler materials include silica, alumina, fumed carbon, carbon black, graphite, mica, titanium dioxide, meta-silicate, calcium silicate, kaolin, talc, zirconia, boron, fly ash, hollow glass microspheres, solid glass, ground nut/seed shells or husks, saw dust, ground cellulose fiber, and combinations thereof.
  • the proppant material may include paraffin, encapsulated acid or other chemical, or resin beads.
  • the present invention provides for isolating the first zone, so that subsequent well operations, such as the fracturing of additional zones, may be carried out without the loss of significant amounts of fluid.
  • This isolation step may be carried out in a number of ways.
  • the isolation step may be carried out by injecting into the wellbore an isolation fluid, which may comprise a relative permeability modifier.
  • the isolation fluid may be injected into the wellbore by pumping it from the surface down the annulus.
  • the isolation fluid may not be pumped into the wellbore until after the hydrajetting tool has moved up hole.
  • the isolation fluid may be pumped into the wellbore, possibly at a reduced injection rate than the fracturing operation, moving the hydrajetting tool along the wellbore before the fracturing process or before the hydrajetting tool has moved up hole.
  • the isolation fluid is mixed with a proppant material.
  • a second zone in the subterranean formation may be fractured. If the hydrajetting tool has not already been moved within the portion of the wellbore adjacent to the second zone, then it is moved there after the first zone has been plugged or partially sealed by the isolation fluid. Once adjacent to the second zone, the hydrajetting tool operates to perforate the subterranean formation in the second zone thereby forming perforation tunnels. Next, the subterranean formation is fractured to form fractures either using conventional techniques or more preferably the hydrajetting tool.
  • the fractures are extended by continued fluid injection and using either proppant agents or acidizing fluids, or any other known technique for holding the fractures open and conductive to fluid flow at a later time.
  • the fractures may then be plugged or partially sealed by the isolation fluid using the same techniques discussed above with respect to the fractures.
  • the method may be repeated where it is desired to fracture additional zones within the subterranean formation. Once all of the desired zones have been fractured, the isolation fluid may be recovered thereby unplugging the fractures for subsequent use in the recovery of hydrocarbons from the subterranean formation.
  • a wellbore may be drilled in a subterranean formation.
  • a first zone in the subterranean formation may be perforated by injecting a pressurized fluid through the hydrajetting tool into the subterranean formation, so as to form one or more perforation tunnels.
  • the hydrajetting tool may be kept stationary. Alternatively, however, the hydrajetting tool may be fully or partially rotated so as to cut slots into the formation.
  • the hydrajetting tool may be axially moved or a combination of rotated and axially moved within the wellbore so as to form a straight or helical cut or slot.
  • one or more fractures may be initiated in the first zone of the subterranean formation by injecting a fracturing fluid into the one or more perforation tunnels through the hydrajetting tool.
  • the fracturing fluid may comprise a relative permeability modifier. Initiating the fracture with the hydrajetting tool is advantageous over conventional initiating techniques because this technique may allow for a lower breakdown pressure on the formation. Furthermore, it may result in a more accurate and better quality perforation.
  • Additional fracturing fluid may be pumped down the annulus simultaneous with or as soon as the one or more fractures are initiated, so as to propagate the fractures.
  • the additional fracturing fluid may comprise a relative permeability modifier.
  • the hydrajetting tool may be moved up hole. This step may be performed while the fracturing fluid is being pumped down through the annulus to propagate the fractures.
  • the rate of fluid being discharged through the hydrajetting tool may be decreased and even may be halted altogether once the fractures have been initiated.
  • the annulus injection rate may or may not be increased at this juncture in the process.
  • the isolation fluid in accordance with the present invention may be pumped into the wellbore adjacent to the first zone. Over time the isolation fluid may plug the one or more fractures in the first zone. Those of skill in the art will appreciate that the isolation fluid may permeate into the fractures. The steps of perforating the formation, initiating the fractures, propagating the fractures and plugging or partially sealing the fractures are repeated for as many additional zones as desired. After all of the desired fractures have been formed, the isolation fluid may be removed from the subterranean formation.
  • the hydrajetting tool comprises a main body, which is cylindrical in shape and formed of a ferrous metal.
  • the main body has a top end and a bottom end. The top end may connect to coil tubing for operation within the wellbore.
  • the main body may have a plurality of nozzles, which are adapted to direct the high pressure fluid out of the main body.
  • the nozzles may be disposed, and in one certain embodiment are disposed, at an angle to the main body, so as to eject the pressurized fluid out of the main body at an angle other than 90°.
  • the hydrajetting tool may further comprise a means for opening the hydrajetting tool to fluid flow from the wellbore.
  • Such fluid opening means includes a fluid-permeable plate, which is mounted to the inside surface of the main body.
  • the fluid-permeable plate traps a ball, which sits in seat when the pressurized fluid is being ejected from the nozzles.
  • the wellbore fluid is able to be circulated up to the surface via opening means. More specifically, the wellbore fluid lifts the ball up against fluid-permeable plate, which in turn allows the wellbore fluid to flow up the hydrajetting tool and ultimately up through the coil tubing to the surface.
  • valves may be used in place of the ball and seat arrangement.
  • Darts, poppets, and even flappers such as a balcomp valves
  • a balcomp valves may be used.
  • valves may be placed both at the top and the bottom, as desired.
  • a positioning device such as a gamma ray detector or casing collar locator may be included in the bottom hole assembly to improve the positioning accuracy of the perforations.
  • Figure 1 depicts an example of a stimulation system 100 installed in well bore 102 that penetrates subterranean formation 104 in accordance with an embodiment of the present invention.
  • Well bore 102 includes generally vertical portion 110, which extends to the ground surface (not shown), and generally horizontal portion 112, which extends into subterranean formation 104.
  • Figure 1 depicts well bore 102 as a deviated well bore with generally horizontal portion 112
  • the methods of the present invention may be performed in generally vertical, inclined, or otherwise formed portions of wells
  • well bore 102 may include multilaterals, wherein well bore 102 may be a primary well bore having one or more branch well bores extending therefrom, or well bore 102 may be a branch well bore extending laterally from a primary well bore.
  • well bore 102 may be openhole (not shown) or lined with casing 120 as shown in Figure 1.
  • casing 120 extends from the ground surface (not shown) into well bore 102 that penetrates subterranean formation 104.
  • Casing 120 may or may not be cemented to subterranean formation 104 with a cement sheath.
  • Stimulation system 100 includes work string 200, in the form of piping or coiled tubing, jetting tool 202 coupled at an end thereof, and an optional valve subassembly (not shown) coupled above jetting tool 202.
  • Annulus 204 is formed between subterranean formation 104 and work string 200, and jetting tool 202.
  • Completion tubing 206 and isolation packer 208 may also be placed to isolate a portion of subterranean formation 104.

Abstract

Methods that include a method comprising: providing a treatment fluid comprising an aqueous base fluid and a relative permeability modifier, wherein the relative permeability comprises a water-soluble polymer having hydrophobic or hydrophilic modification; introducing the treatment fluid into an interval of a well bore penetrating the subterranean formation; creating one or more perforations through a hydrajetting tool in the interval of the well bore, wherein the perforations extend from the well bore and into the subterranean formation; and allowing the treatment fluid to contact a portion of the subterranean formation.

Description

METHODS USEFUL FOR CONTROLLING FLUID LOSS IN SUBTERRANEAN FORMATIONS
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application is a continuation-in-part of U.S. Application Serial No. 11/360,215 filed on February 22, 2006, which is a continuation-in-part of U.S. Application Serial No. 11/102,062 filed on April 8, 2005, which is a continuation-in-part of U.S. Application Serial No. 10/881,198 filed on June 29, 2004 and U.S. Patent Application Serial No. 10/760,443 filed on January 20, 2004, which is a continuation-in-part of U.S. Application Serial No. 10/440,337 filed on May 16, 2003, and U.S. Application Serial No. 10/612,271 filed on July 2, 2003, the entire disclosures of which are incorporated by reference.
BACKGROUND
[0002] The present invention provides improvements in the production of hydrocarbons from subterranean formations. More particularly, the present invention provides improved solutions and methods for fracture stimulation in a subterranean formation while using a relative permeability modifier to reduce fluid leak off therefrom.
[0003] One method typically used to increase the effective drainage area of well bores penetrating subterranean formations is fracture stimulation. Fracture stimulation, or "fracturing," comprises pumping a fracturing fluid into a well bore at a certain pressure and against a selected surface of a subterranean formation intersected by the well bore to create or enhance a fracture therein.
[0004] Fracture stimulation may be used in both vertical and horizontal wells. Fracturing horizontal wells may be undertaken in several situations, including situations where the formation has: (1) restricted flow caused by low vertical permeability, the presence of shale streaks or formation damage; (2) low productivity due to low formation permeability; (3) natural fractures in a direction different from that of induced fractures, thus induced fractures have a high chance of intercepting the natural fractures; or (4) low stress contrast between the pay zone and the surrounding layers. In the fourth case, a large fracturing treatment of a vertical well likely would not be an acceptable option since the fracture would grow in height as well as length. Drilling a horizontal well and creating either several transverse or longitudinal fractures may be preferable as they may allow rapid depletion of the reservoir through one or more fractures. "Zone" as used herein simply refers to a portion of the formation and does not imply a particular geological strata or composition.
[0005] Selective or pinpoint fracture stimulation of horizontal open hole wells may be performed if desired using coiled tubing or normal tubing and a specialized fracture-jetting tool located at the end. The normal selective or pinpoint fracture stimulation involves pumping stimulation fluids through the tubing and the annular space, both at rates and pressures sufficient to create or enhance a fracture in the formation. For example, for carbonate formations, a "reactive" fluid (as judged by the composition of the formation) such as acid is pumped through the tubing side and at the same time a "nonreactive" fluid (as judged by the composition of the formation) is pumped through the annular space. In the case of a carbonate formation, a water-based fluid may be the nonreactive fluid. Both fluids are mixed downhole and are responsible for the fracture creation or enhancement.
[0006] In some circumstances, however, the fracturing process may terminate prematurely, for a variety of reasons. For example, the "nonreactive" portion of the stimulation fluid, which usually is intended to advance as the fracture progresses, may undesirably completely leak off into the formation and result in an inefficient fracture stimulation of the well. This undesired loss or leak off is commonly referred to as "fluid loss." hi fracturing treatments, fluid loss into the formation may result in a reduction in fluid efficiency, such that the fracturing fluid cannot propagate the fracture(s) as desired. As used herein, the term "treatment," or "treating," refers to any subterranean treatment that uses a fluid in conjunction with a desired function and/or for a desired purpose. The term "treatment," or "treating," does not imply any particular action by the fluid or any particular component thereof.
[0007] To overcome the problem of such fluid loss into the formation, viscosified or crosslinked fluids may be used. Additional fluid loss control may be provided by crosslinking the gelling agent or by including fluid loss control materials, such as sized solids (e.g., calcium carbonate), silica particles, oil-soluble resins, and degradable particles, in the treatment fluids. However, there are a number of limitations associated with the use of these viscous fluids. For example, their high viscosity may result in higher friction pressures at high rates, which in turn may result in high annular treatment pressures. Well completions dictate the required treatment pressures and rates for the annular space. In most of the cases, to satisfy the completion limitations of the annular space, it is not possible to pump the fluids at high rates to minimize fluid leak off.
[0008] In some instances, to prevent fluid loss from occurring, fluid loss control additives may be included in the treatment fluids. Examples of commonly used fluid loss control additives include, but are not limited to, gelling agents, such as hydroxyethylcellulose and xanthan. The fluid loss control materials may be used in combination with or separately from the conventional fluid loss control additives.
[0009] Chemical fluid loss control pills also may be used to combat fluid loss. Conventional chemical fluid loss control pills may be characterized as either solids- containing pills or solids-free pills. Examples of solids-containing pills include sized-salt pills and sized-carbonate pills. These solids-containing pills often are not optimized for the particular downhole hardware and conditions that may be encountered. For instance, the particle sizes of the solids may not be optimized for a particular application and, as a result, may increase the risk of invasion into the interior of the formation matrix, which may greatly increase the difficulty of removal by subsequent remedial treatments. Additionally, high- solids loading in the pills, in conjunction with the large volumes of these pills needed to control fluid losses, may greatly increase the complexity of subsequent cleanup. Furthermore, high loading of starches and biopolymers in the sized salt pills may add to the difficulty of cleanup either by flow back or remedial treatments. Solids- free fluid loss control pills commonly comprise hydrated polymer gels that may not be effective without some invasion into the formation matrix. These pills typically require large volumes to control fluid loss and remedial treatments to remove.
[0010] Once fluid loss control is no longer required, for example, after completing a fracturing treatment, remedial treatments may be required to remove the previously placed pills, for example, so that the wells may be placed into production. For example, a chemical breaker, such as an acid, oxidizer, or enzyme may be used to either dissolve the solids or reduce the viscosity of the pill. In many instances, however, use of a chemical breaker to remove the pill from inside the well bore and/or the formation matrix may be either ineffective or not a viable economic option. For example, due to production equipment in the well bore, uniform placement of the breaker into the portion of the formation treated with the pill may not be possible. Furthermore, the chemical breakers may be corrosive to downhole tools. Additionally, as the chemical breakers leak off into the formation, they may carry undissolved fines that may plug and/or damage the formation or may produce undesirable reactions with the formation.
SUMMARY
[0011] The present invention provides improvements in the production of hydrocarbons from subterranean formations. More particularly, the present invention provides improved solutions and methods for fracture stimulation in a subterranean formation while using a relative permeability modifier to reduce fluid leak off therefrom.
[0012] In one embodiment, the present invention provides a method comprising: providing a treatment fluid comprising an aqueous base fluid and a relative permeability modifier, wherein the relative permeability modifier comprises a water-soluble polymer having hydrophobic or hydrophilic modification; introducing the treatment fluid into an interval of a well bore penetrating the subterranean formation; creating one or more perforations through a hydrajetting tool in the interval of the well bore, wherein the perforations extend from the well bore and into the subterranean formation; and allowing the treatment fluid to contact a portion of the subterranean formation.
[0013] The features and advantages of the present invention will be apparent to those skilled in the art. While numerous changes may be made by those skilled in the art, such changes are within the spirit of the invention.
BRIEF DESCRIPTION OF DRAWINGS
[0014] These drawings illustrate certain aspects of some of the embodiments of the present invention, and should not be used to limit or define the invention.
[0015] Figure 1 is a schematic diagram illustrating a stimulation system in a horizontal well bore in a portion of a subterranean formation in accordance with a method of the present invention.
[0016] While the present invention is susceptible to various modifications and alternative forms, a specific exemplary embodiment thereof has been shown by way of example in the drawing and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
DESCRIPTION OF PREFERRED EMBODIMENTS
[0017] The present invention provides improvements in the production of hydrocarbons from subterranean formations. More particularly, the present invention provides improved solutions and methods for fracture stimulation of open hole completion in a subterranean formation while using a relative permeability modifier to reduce fluid leak off along the open hole section therefrom.
[0018] As used herein, a "relative permeability modifier" refers to a fluid loss control additive that comprises a water-soluble polymer having hydrophobic or hydrophilic modification. As used herein, "water-soluble" refers to at least about 0.01 weight percent soluble in distilled water. As used herein, the phrase "hydrophobically modified," or "hydrophobic modification," refers to the incorporation into the hydrophilic polymer structure of hydrophobic groups, wherein the alkyl chain length is from about 4 to about 22 carbons. As used herein, the phrase "hydrophilically modified," or "hydrophilic modification," refers to the incorporation into the hydrophilic polymer structure of hydrophilic groups, such as to introduce branching or to increase the degree of branching in the hydrophilic polymer. The methods and compositions of the present invention may be utilized in horizontal, vertical, inclined, or otherwise formed portions of wells.
[0019] The compositions and methods of the current invention are applicable in both newly drilled formations and in formations requiring re-stimulation. The compositions and methods of the current invention are particularly useful for formations where hydrocarbons will be present in the formation zones. In contrast to other viscosified or crosslinked compositions currently used to overcome annular fluid leak off, the compositions of the present invention retain their effectiveness while satisfying well completions limitations. Furthermore, the compositions of the present invention are non-damaging to hydrocarbon- bearing zones and have the potential to reduce water production from water-bearing zones.
[0020] In some embodiments, the methods of the present invention comprise providing a treatment fluid comprising an aqueous base fluid and a relative permeability modifier, placing the treatment fluid into an interval of a subterranean formation, and creating or enhancing at least one fracture therein. In some embodiments, the at least one fracture may be created or enhanced through fracture stimulation while a stimulation fluid is being pumped into the interval of the subterranean formation through coiled tubing and/or the annular space. In some embodiments, the methods of the present invention may comprise: providing a treatment fluid comprising a base fluid, providing a supplemental treatment fluid comprising an aqueous base fluid and a relative permeability modifier, introducing the treatment fluid through coiled tubing into a well bore penetrating a subterranean formation, introducing the supplemental treatment fluid through the annular space into the well bore, allowing the treatment fluid and supplemental treatment fluid to mix in the well bore, creating one or more perforations in an interval of the well bore, wherein the perforations extend from the well bore and into the subterranean formation, and allowing the mixture of treatment fluids to contact a portion of the subterranean formation through the one or more perforations. As used herein, the term "perforation" may refer to any fracture, crack, split, or division in the subterranean formation. These perforations may be created by a hydrajetting tool, for instance.
[0021] The treatment fluids of the present invention may comprise an aqueous base fluid and a relative permeability modifier to reduce fluid loss into at least a portion of the subterranean formation from the treatment fluid or another aqueous fluid (e.g. supplemental treatment fluid) introduced into the well bore subsequent to the treatment fluid. It is believed that the relative permeability modifier should attach to formation's surface(s), and thereby affect the permeability of the portion of the subterranean formation. The presence of the water-soluble polymers therein should reduce the permeability of the treated portion of the subterranean formation to aqueous or non-aqueous fluids without substantially changing the permeability thereof to subsequently produced or injected hydrocarbon fluids. This should reduce fluid loss into the treated portion from the treatment fluid and/or any other aqueous fluids (e.g., fracturing fluids, drilling fluids, isolation fluids, etc.) subsequently introduced into the well bore. For example, the methods of the present invention may be useful to control fluid loss during subsequent entry and/or removal of completion equipment into the well bore. In addition, the water-soluble polymers also may reduce subsequent problems associated with water flowing into the well bore from the treated portion of the subterranean formation.
[0022] Among other things, subsequent remedial treatments should not be required to remove the water-soluble polymers prior to placing the well into production. If desired, however, oxidizers may be used to remove the water-soluble polymer. For example, it may be desired, in some instances, to remove the water-soluble polymers so that fluids subsequently introduced into the formation can enter the formation. Examples of suitable oxidizers include, but are not limited to, alkali, alkaline earth, and transition metal salts of periodate, hypochlorite, perbromate, chlorite, chlorate; hydrogen peroxide; manganese peroxide; peracetic acid; and combinations thereof. In some embodiments, the volume of oxidizer used to remove the water-soluble polymer may be equal to the volume of relative permeability modifier in the system.
[0023] The treatment fluids of the present invention generally .comprise an aqueous base fluid and a fluid loss control additive that comprises a water-soluble polymer having hydrophobic or hydrophilic modification. A variety of additional additives suitable for use in the chosen treatment may be included in the treatment fluids as desired. The aqueous base fluid of the treatment fluids of the present invention may include freshwater, saltwater, brine (e.g. , saturated saltwater), or seawater. Generally, the aqueous base fluid may be from any source, provided that it does not contain components that may adversely affect other components in the treatment fluid.
[0024] Generally, the fluid loss control additives used in the treatment fluids of the present invention comprise a water-soluble polymer having hydrophobic or hydrophilic modification. A water-soluble polymer with hydrophobic modification is referred to herein as "hydrophobically modified." A water-soluble polymer with hydrophilic modification is referred to herein as "hydrophilically modified." Among other things the fluid loss control additives should reduce fluid loss from the treatment fluid or any other aqueous fluids subsequently introduced into the well bore. It is believed that after contact with surfaces within the formation's flow paths, at least a portion of the water-soluble polymer should attach to the surfaces, thereby reducing the permeability of the subterranean formation to aqueous fluids without substantially changing its permeability to hydrocarbons. Generally, the fluid loss control additive of the present invention is described in U.S. Application Serial Nos. 11/360,215; 11/102,062; 10/881,198; 10/760,443; 10/440,337; and 10/612,271, the disclosures of which are incorporated herein by reference.
[0025] The hydrophobically modified polymers useful in the present invention typically have molecular weights in the range of from about 100,000 to about 10,000,000. While these hydrophobically modified polymers have hydrophobic groups incorporated into the hydrophilic polymer structure, they should remain water-soluble. In some embodiments, a mole ratio of a hydrophilic monomer to the hydrophobic compound in the hydrophobically modified polymer is in the range of from about 99.98:0.02 to about 90:10, wherein the hydrophilic monomer is a calculated amount present in the hydrophilic polymer, hi certain embodiments, the hydrophobically modified polymers may comprise a polymer backbone that comprises polar heteroatoms. The polar heteroatoms present within the polymer backbone of the hydrophobically modified polymers may include, but are not limited to, oxygen, nitrogen, sulfur, or phosphorous.
[0026] The hydrophobically modified polymers may be synthesized utilizing any suitable method, hi one example, the hydrophobically modified polymers may be a reaction product of a hydrophilic polymer and a hydrophobic compound. In another example, the hydrophobically modified polymers may be prepared from a polymerization reaction comprising a hydrophilic monomer and a hydrophobically modified hydrophilic monomer. Those of ordinary skill in the art, with the benefit of this disclosure, will be able to determine other suitable methods for the synthesis of suitable hydrophobically modified polymers.
[0027] hi certain embodiments, suitable hydrophobically modified polymers may be synthesized by the hydrophobic modification of a hydrophilic polymer. The hydrophilic polymers suitable for forming the hydrophobically modified polymers used in the present invention should be capable of reacting with hydrophobic compounds. Suitable hydrophilic polymers include, homo-, co-, or terpolymers such as, but not limited to, polyacrylamides, polyvinylamines, poly(vinylamines/vinyl alcohols), alkyl acrylate polymers in general, and derivatives thereof. Additional examples of alkyl acrylate polymers include, but are not limited to, polydimethylaminoethyl methacrylate, polydimethylaminopropyl methacrylamide, poly(acrylamide/dimethylaminoethyl methacrylate), poly(methacrylic acid/dimethylaminoethyl methacrylate), poly(2-acrylamido-2-methyl propane sulfonic acid/dimethylaminoethyl methacrylate), poly(acrylamide/dimethylaminopropyl methacrylamide), poly (acrylic acid/dimethylaminopropyl methacrylamide), and poly(methacrylic acid/dimethylaminopropyl methacrylamide). In certain embodiments, the hydrophilic polymers comprise a polymer backbone and reactive amino groups in the polymer backbone or as pendant groups, the reactive amino groups capable of reacting with hydrophobic compounds. In some embodiments, the hydrophilic polymers comprise dialkyl amino pendant groups. In some embodiments, the hydrophilic polymers comprise a dimethyl amino pendant group and a monomer comprising dimethylaminoethyl methacrylate or dimethylaminopropyl methacrylamide. In certain embodiments of the present invention, the hydrophilic polymers comprise a polymer backbone that comprises polar heteroatoms, wherein the polar heteroatoms present within the polymer backbone of the hydrophilic polymers include, but are not limited to, oxygen, nitrogen, sulfur, or phosphorous. Suitable hydrophilic polymers that comprise polar heteroatoms within the polymer backbone include homo-, CO-, or terpolymers, such as, but not limited to, celluloses, chitosans, polyamides, polyetheramines, polyethyleneimines, polyhydroxyetheramines, polylysines, polysulfones, gums, starches, and derivatives thereof, hi one embodiment, the starch is a cationic starch. A suitable cationic starch may be formed by reacting a starch, such as corn, maize, waxy maize, potato, and tapioca, and the like, with the reaction product of epichlorohydrin and trialkylamine.
[0028] The hydrophobic compounds that are capable of reacting with the hydrophilic polymers of the present invention include, but are not limited to, alkyl halides, sulfonates, sulfates, organic acids, and organic acid derivatives. Examples of suitable organic acids and derivatives thereof include, but are not limited to, octenyl succinic acid; dodecenyl succinic acid; and anhydrides, esters, imides, and amides of octenyl succinic acid or dodecenyl succinic acid, hi certain embodiments, the hydrophobic compounds may have an alkyl chain length of from about 4 to about 22 carbons. In another embodiment, the hydrophobic compounds may have an alkyl chain length of from about 7 to about 22 carbons, hi another embodiment, the hydrophobic compounds may have an alkyl chain length of from about 12 to about 18 carbons. For example, where the hydrophobic compound is an alkyl halide, the reaction between the hydrophobic compound and hydrophilic polymer may result in the quaternization of at least some of the hydrophilic polymer amino groups with an alkyl halide, wherein the alkyl chain length is from about 4 to about 22 carbons.
[0029] As previously mentioned, in certain embodiments, suitable hydrophobically modified polymers also may be prepared from a polymerization reaction comprising a hydrophilic monomer and a hydrophobically modified hydrophilic monomer. Examples of suitable methods of their preparation are described in U.S. Patent Number 6,476,169, the relevant disclosure of which is incorporated herein by reference. The hydrophobically modified polymers synthesized from the polymerization reactions may have estimated molecular weights in the range of from about 100,000 to about 10,000,000 and mole ratios of the hydrophilic monomer(s) to the hydrophobically modified hydrophilic monomer(s) in the range of from about 99.98:0.02 to about 90:10.
[0030] A variety of hydrophilic monomers may be used to form the hydrophobically modified polymers useful in the present invention. Examples of suitable hydrophilic monomers include, but are not limited to acrylamide, 2-acrylamido-2-methyl propane sulfonic acid, N,N-dimethylacrylamide, vinyl pyrrolidone, dimethylaminoethyl methacrylate, acrylic acid, dimethylaminopropylmethacrylamide, vinyl amine, vinyl acetate, trimethylammoniumethyl methacrylate chloride, methacrylamide, hydroxyethyl acrylate, vinyl sulfonic acid, vinyl phosphonic acid, methacrylic acid, vinyl caprolactam, N- vinylformamide, N,N-diallylacetamide, dimethyldiallyl ammonium halide, itaconic acid, styrene sulfonic acid, methacrylamidoethyltrimethyl ammonium halide, quaternary salt derivatives of acrylamide, and quaternary salt derivatives of acrylic acid.
[0031] A variety of hydrophobically modified hydrophilic monomers also may be used to form the hydrophobically modified polymers useful in the present invention. Examples of suitable hydrophobically modified hydrophilic monomers include, but are not limited to, alkyl acrylates, alkyl methacrylates, alkyl acrylamides, alkyl methacrylamides alkyl dimethylammoniumethyl methacrylate halides, and alkyl dimethylammoniumpropyl methacrylamide halides, wherein the alkyl groups have from about 4 to about 22 carbon atoms, hi another embodiment, the alkyl groups have from about 7 to about 22 carbons, hi another embodiment, the alkyl groups have from about 12 to about 18 carbons, hi certain embodiments, the hydrophobically modified hydrophilic monomer comprises octadecyldimethylamrnoniumethyl methacrylate bromide, hexadecyldimethylammoniumethyl methacrylate bromide, hexadecyldimethylammoniumpropyl methacrylamide bromide, 2- ethylhexyl methacrylate, or hexadecyl methacrylamide.
[0032] Suitable hydrophobically modified polymers that may be formed from the above-described reactions include, but are not limited to, acrylamide/octadecyldimethylammoniumethyl methacrylate bromide copolymer, dimethylaminoethyl methacrylate/vinyl pyrrolidone/hexadecyldimethylammoniumethyl methacrylate bromide terpolymer, and acrylamide/2-acrylamido-2-methyl propane sulfonic acid/2-ethylhexyl methacrylate terpolymer. Another suitable hydrophobically modified polymer formed from the above-described reaction comprises an amino methacrylate/alkylarnrnonium methacrylate copolymer. A suitable dimethlyaminoethyl methacrylate/alkyl-dimethylammoniumethyl methacrylate copolymer is a dimethylaminoethyl methacrylate/hexadecyl-dimethylammoniumethyl methacrylate copolymer. As previously discussed, these copolymers may be formed by reactions with a variety of alkyl halides. For example, in some embodiments, the hydrophobically modified polymer may comprise a dimethylaminoethyl methacrylate/hexadecyl- dimethylammoniumethyl methacrylate bromide copolymer.
[0033] In another embodiment of the present invention, the fluid loss control additives of the present invention may comprise a water-soluble hydrophilically modified polymer. The hydrophilically modified polymers of the present invention typically have molecular weights in the range of from about 100,000 to about 10,000,000. hi certain embodiments, the hydrophilically modified polymers comprise a polymer backbone that comprises polar heteroatoms. Generally, the polar heteroatoms present within the polymer backbone of the hydrophilically modified polymers include, but are not limited to, oxygen, nitrogen, sulfur, or phosphorous.
[0034] The hydrophilically modified polymers may be synthesized utilizing any suitable method, hi one example, the hydrophilically modified polymers may be a reaction product of a hydrophilic polymer and a hydrophilic compound. Those of ordinary skill in the art, with the benefit of this disclosure, will be able to determine other suitable methods for the preparation of suitable hydrophilically modified polymers.
[0035] hi certain embodiments, suitable hydrophilically modified polymers may be formed by additional hydrophilic modification, for example, to introduce branching or to increase the degree of branching, of a hydrophilic polymer. The hydrophilic polymers suitable for forming the hydrophilically modified polymers used in the present invention should be capable of reacting with hydrophilic compounds, hi certain embodiments, suitable hydrophilic polymers include, homo-, co-, or terpolymers, such as, but not limited to, polyacrylamides, polyvinylamines, poly(vinylamines/vinyl alcohols), and alkyl acrylate polymers in general. Additional examples of alkyl acrylate polymers include, but are not limited to, polydimethylaminoethyl methacrylate, polydimethylaminopropyl methacrylamide, poly(acrylamide/dimethylaminoethyl methacrylate), poly(methacrylic acid/dimethylaminoethyl methacrylate), poly(2-acrylamido-2-methyl propane sulfonic acid/dimethylaminoethyl methacrylate), poly(acrylamide/dimethylaminopropyl methacrylamide), poly (acrylic acid/dimethylaminopropyl methacrylamide), and poly(methacrylic acid/dimethylaminopropyl methacrylamide). In certain embodiments, the hydrophilic polymers comprise a polymer backbone and reactive amino groups in the polymer backbone or as pendant groups, the reactive amino groups capable of reacting with hydrophilic compounds. In some embodiments, the hydrophilic polymers comprise dialkyl amino pendant groups. In some embodiments, the hydrophilic polymers comprise a dimethyl amino pendant group and at least one monomer comprising dimethylaminoethyl methacrylate or dimethylaminopropyl methacrylamide. In other embodiments, the hydrophilic polymers comprise a polymer backbone that comprises polar heteroatoms, wherein the polar heteroatoms present within the polymer backbone of the hydrophilic polymers include, but are not limited to, oxygen, nitrogen, sulfur, or phosphorous. Suitable hydrophilic polymers that comprise polar heteroatoms within the polymer backbone include homo-, co-, or terpolymers, such as, but not limited to, celluloses, chitosans, polyamides, polyetheramines, polyethyleneimines, polyhydroxyetheramines, polylysines, polysulfones, gums, starches, and derivatives thereof. Pn one embodiment, the starch is a cationic starch. A suitable cationic starch may be formed by reacting a starch, such as corn, maize, waxy maize, potato, tapioca, and the like, with the reaction product of epichlorohydrin and trialkylamine.
[0036] The hydrophilic compounds suitable for reaction with the hydrophilic polymers include polyethers that comprise halogens, sulfonates, sulfates, organic acids, and organic acid derivatives. Examples of suitable polyethers include, but are not limited to, polyethylene oxides, polypropylene oxides, and polybutylene oxides, and copolymers, terpolymers, and mixtures thereof. In some embodiments, the polyether comprises an epichlorohydrin-terminated polyethylene oxide methyl ether.
[0037] The hydrophilically modified polymers formed from the reaction of a hydrophilic polymer with a hydrophilic compound may have estimated molecular weights in the range of from about 100,000 to about 10,000,000 and may have weight ratios of the hydrophilic polymers to the polyethers in the range of from about 1:1 to about 10:1. Suitable hydrophilically modified polymers having molecular weights and weight ratios in the ranges set forth above include, but are not limited to, the reaction product of polydimethylaminoethyl methacrylate and epichlorohydrin-terminated polyethyleneoxide methyl ether; the reaction product of polydimethylaminopropyl methacrylamide. and epichlorohydrin-terminated polyethyleneoxide methyl ether; and the reaction product of poly(acrylamide/dimethylaminopropyl methacrylamide) and epichlorohydrin-terminated polyethyleneoxide methyl ether. In some embodiments, the hydrophilically modified polymer comprises the reaction product of a polydimethylaminoethyl methacrylate and epichlorohydrin-terminated polyethyleneoxide methyl ether having a weight ratio of polydimethylaminoethyl methacrylate to epichlorohydrin-terminated polyethyleneoxide methyl ether of about 3:1.
[0038] Sufficient concentrations of the fluid loss control additives of the present invention should be present in the treatment fluids of the present invention to provide the desired level of fluid loss control, hi some embodiments, the fluid loss control additives should be present in the treatment fluids of the present invention in an amount in the range of from about 0.02% to about 10% by weight of the treatment fluid. In another embodiment, the fluid loss control additive should be present in the treatment fluids of the present invention in an amount in the range of from about 0.05% to about 1.0% by weight of the treatment fluid. In certain embodiments of the present invention, the fluid loss control additive may be provided in a concentrated aqueous solution prior to its combination with the other components necessary to form the treatment fluids of the present invention.
[0039] Additional additives may be added to the treatment fluids of the present invention as deemed appropriate for a particular application by one skilled in the art with the benefit of this disclosure. Examples of such additives include, but are not limited to, weighting agents, surfactants, scale inhibitors, antifoaming agents, bactericides, salts, foaming agents, acids, conventional fluid loss control additives, viscosifying agents, crosslinking agents, gel breakers, shale swelling inhibitors, combinations thereof, and the like.
[0040] The compositions of the present invention may be used in subterranean formations where it is desirable to provide fluid loss control. Generally, the fluid loss control additives may be used at any stage of a subterranean treatment. In certain embodiments, the treatment fluid may be a drilling fluid, a fracturing fluid, an isolation fluid, or any other suitable aqueous fluid used in subterranean treatments. In another embodiment, the treatment fluids may be a fluid loss control pill that is introduced into the well bore at any stage of the subterranean treatment. For example, the treatment fluid may be a preflush that is introduced into the well bore prior to the subterranean treatment.
[0041] In some embodiments, the compositions of the present invention may be used in conjunction with a hydrajet perforating, jetting while fracturing, and co-injection down the annulus technique. An example of such a process is generally referred to by Halliburton Energy Services, Inc. as the tradenamed "SURGIFRAC" process or stimulation method and is described in U.S. Patent No. 5,765,642, the disclosure of which is incorporated herein by reference. Although this description is provided, it should be understood that the relative permeability modifier of the present invention is not limited to use with such methods, but may be used with any suitable fracture stimulation method in which it is desirable to control leak off of stimulation fluids. Thus, this description should not be found to limit the scope of the invention. A description of such preferred embodiments follows.
[0042] In preferred embodiments, the compositions of the present invention may be used in conjunction with a SURGIFRAC process. SURGIFRAC processes have been applied mostly to horizontal or highly deviated well bores, for example, where casing the hole is difficult and expensive. Once a wellbore is drilled, and if deemed necessary cased, a hydrajetting tool, such as that used in the SURGIFRAC process, may be placed into the wellbore at a location of interest, e.g., adjacent to a first zone in the subterranean formation, hi one exemplary embodiment, the hydrajetting tool is attached to a coil tubing, which lowers the hydrajetting tool into the wellbore and supplies it with jetting fluid. An annulus is formed between the coil tubing and the wellbore. The hydrajetting tool then operates to form perforation tunnels in the first zone. The perforation fluid being pumped through the hydrajetting tool contains a base fluid, which is commonly water and abrasives (commonly sand), and may also comprise a relative permeability modifier. The fluid is then injected into the first zone of the subterranean formation. As those of ordinary skill in the art will appreciate, the pressure of the fluid exiting the hydrajetting tool is sufficient to fracture the formation in the first zone. Using this technique, the jetted fluid forms cracks or fractures along perforation tunnels. In a subsequent step, an acidizing fluid may be injected into the formation through the hydrajetting tool. The acidizing fluid may comprise a relative permeability modifier. The acidizing fluid etches the formation along the cracks thereby widening them. As those of ordinary skill in the art will recognize, the hydrajetting tool may have any number of jets, configured in a variety of combinations along and around the tool.
[0043] By using a hydrajetting technique, it is possible to generate one or more independent, single plane hydraulic fractures; and therefore, highly deviated or horizontal wells may be often completed without having to case the wellbore. Furthermore, even when highly deviated or horizontal wells are cased, hydrajetting the perforations and fractures in such wells generally may result in a more effective fracturing method than using traditional explosive charge perforation and fracturing techniques.
[0044] Each of the fractures typically formed is believed to have a narrow opening that extends laterally from the well bore. In some embodiments, to prevent such an opening from closing completely when the fracturing pressure is relieved, the fracturing fluid may carry granular or particulate materials, often referred to as "proppant," into the opening of the fracture and deep into the fracture. This material remains in each of the fractures after the fracturing process is finished. Ideally, the proppant in each of the fractures holds apart the separated earthen walls of the formation to keep the fracture open and to provide flow paths through which hydrocarbons from the formation may flow into the well bore at increased rates relative to the flow rates through the unfractured formation. The proppant material may include natural and man-made proppant agents, such as sand, bauxite, ceramic materials, glass materials (e.g., glass beads), polymer materials, Teflon® materials, nut shell pieces, seed shell pieces, cured resinous particulates comprising nut shell pieces, cured resinous particulates comprising seed shell pieces, fruit pit pieces, cured resinous particulates comprising fruit pit pieces, wood, composite particulates, and combinations thereof. Composite particulates also may be used, wherein suitable composite materials may comprise a binder and a filler material wherein suitable filler materials include silica, alumina, fumed carbon, carbon black, graphite, mica, titanium dioxide, meta-silicate, calcium silicate, kaolin, talc, zirconia, boron, fly ash, hollow glass microspheres, solid glass, ground nut/seed shells or husks, saw dust, ground cellulose fiber, and combinations thereof. Alternatively, the proppant material may include paraffin, encapsulated acid or other chemical, or resin beads.
[0045] Once the first zone has been fractured, the present invention provides for isolating the first zone, so that subsequent well operations, such as the fracturing of additional zones, may be carried out without the loss of significant amounts of fluid. This isolation step may be carried out in a number of ways. In one exemplary embodiment, the isolation step may be carried out by injecting into the wellbore an isolation fluid, which may comprise a relative permeability modifier. In one embodiment, the isolation fluid may be injected into the wellbore by pumping it from the surface down the annulus. In one implementation of this embodiment, the isolation fluid may not be pumped into the wellbore until after the hydrajetting tool has moved up hole. In another implementation of this embodiment, the isolation fluid may be pumped into the wellbore, possibly at a reduced injection rate than the fracturing operation, moving the hydrajetting tool along the wellbore before the fracturing process or before the hydrajetting tool has moved up hole. In one exemplary embodiment, the isolation fluid is mixed with a proppant material.
[0046] After an isolation fluid is pumped in the wellbore or delivered into the wellbore adjacent fractures, a second zone in the subterranean formation may be fractured. If the hydrajetting tool has not already been moved within the portion of the wellbore adjacent to the second zone, then it is moved there after the first zone has been plugged or partially sealed by the isolation fluid. Once adjacent to the second zone, the hydrajetting tool operates to perforate the subterranean formation in the second zone thereby forming perforation tunnels. Next, the subterranean formation is fractured to form fractures either using conventional techniques or more preferably the hydrajetting tool. Next, the fractures are extended by continued fluid injection and using either proppant agents or acidizing fluids, or any other known technique for holding the fractures open and conductive to fluid flow at a later time. The fractures may then be plugged or partially sealed by the isolation fluid using the same techniques discussed above with respect to the fractures. The method may be repeated where it is desired to fracture additional zones within the subterranean formation. Once all of the desired zones have been fractured, the isolation fluid may be recovered thereby unplugging the fractures for subsequent use in the recovery of hydrocarbons from the subterranean formation.
[0047] The following is an another method of completing a well in a subterranean formation in accordance with the present invention. First, a wellbore may be drilled in a subterranean formation. Next, a first zone in the subterranean formation may be perforated by injecting a pressurized fluid through the hydrajetting tool into the subterranean formation, so as to form one or more perforation tunnels. During the performance of this step, the hydrajetting tool may be kept stationary. Alternatively, however, the hydrajetting tool may be fully or partially rotated so as to cut slots into the formation. Alternatively, the hydrajetting tool may be axially moved or a combination of rotated and axially moved within the wellbore so as to form a straight or helical cut or slot. Next, one or more fractures may be initiated in the first zone of the subterranean formation by injecting a fracturing fluid into the one or more perforation tunnels through the hydrajetting tool. The fracturing fluid may comprise a relative permeability modifier. Initiating the fracture with the hydrajetting tool is advantageous over conventional initiating techniques because this technique may allow for a lower breakdown pressure on the formation. Furthermore, it may result in a more accurate and better quality perforation.
[0048] Additional fracturing fluid may be pumped down the annulus simultaneous with or as soon as the one or more fractures are initiated, so as to propagate the fractures. The additional fracturing fluid may comprise a relative permeability modifier. After the fractures have been initiated, the hydrajetting tool may be moved up hole. This step may be performed while the fracturing fluid is being pumped down through the annulus to propagate the fractures. The rate of fluid being discharged through the hydrajetting tool may be decreased and even may be halted altogether once the fractures have been initiated. The annulus injection rate may or may not be increased at this juncture in the process.
[0049] After fractures have been propagated and the hydrajetting tool has been moved up hole, the isolation fluid in accordance with the present invention may be pumped into the wellbore adjacent to the first zone. Over time the isolation fluid may plug the one or more fractures in the first zone. Those of skill in the art will appreciate that the isolation fluid may permeate into the fractures. The steps of perforating the formation, initiating the fractures, propagating the fractures and plugging or partially sealing the fractures are repeated for as many additional zones as desired. After all of the desired fractures have been formed, the isolation fluid may be removed from the subterranean formation.
[0050] The hydrajetting tool comprises a main body, which is cylindrical in shape and formed of a ferrous metal. The main body has a top end and a bottom end. The top end may connect to coil tubing for operation within the wellbore. The main body may have a plurality of nozzles, which are adapted to direct the high pressure fluid out of the main body. The nozzles may be disposed, and in one certain embodiment are disposed, at an angle to the main body, so as to eject the pressurized fluid out of the main body at an angle other than 90°. The hydrajetting tool may further comprise a means for opening the hydrajetting tool to fluid flow from the wellbore. Such fluid opening means includes a fluid-permeable plate, which is mounted to the inside surface of the main body. The fluid-permeable plate traps a ball, which sits in seat when the pressurized fluid is being ejected from the nozzles. When the pressurized fluid is not being pumped down the coil tubing into the hydrajetting tool, the wellbore fluid is able to be circulated up to the surface via opening means. More specifically, the wellbore fluid lifts the ball up against fluid-permeable plate, which in turn allows the wellbore fluid to flow up the hydrajetting tool and ultimately up through the coil tubing to the surface. As those of ordinary skill in the art will recognize other valves may be used in place of the ball and seat arrangement. Darts, poppets, and even flappers, such as a balcomp valves, may be used. Furthermore, such valves may be placed both at the top and the bottom, as desired. As is well known in the art, a positioning device, such as a gamma ray detector or casing collar locator may be included in the bottom hole assembly to improve the positioning accuracy of the perforations.
[0051] Figure 1 depicts an example of a stimulation system 100 installed in well bore 102 that penetrates subterranean formation 104 in accordance with an embodiment of the present invention. Well bore 102 includes generally vertical portion 110, which extends to the ground surface (not shown), and generally horizontal portion 112, which extends into subterranean formation 104. Even though Figure 1 depicts well bore 102 as a deviated well bore with generally horizontal portion 112, the methods of the present invention may be performed in generally vertical, inclined, or otherwise formed portions of wells, hi addition, well bore 102 may include multilaterals, wherein well bore 102 may be a primary well bore having one or more branch well bores extending therefrom, or well bore 102 may be a branch well bore extending laterally from a primary well bore. Furthermore, well bore 102 may be openhole (not shown) or lined with casing 120 as shown in Figure 1. hi Figure 1, casing 120 extends from the ground surface (not shown) into well bore 102 that penetrates subterranean formation 104. Casing 120 may or may not be cemented to subterranean formation 104 with a cement sheath. Stimulation system 100 includes work string 200, in the form of piping or coiled tubing, jetting tool 202 coupled at an end thereof, and an optional valve subassembly (not shown) coupled above jetting tool 202. Annulus 204 is formed between subterranean formation 104 and work string 200, and jetting tool 202. Completion tubing 206 and isolation packer 208 may also be placed to isolate a portion of subterranean formation 104.
[0052] Therefore, the present invention is well-adapted to carry out the objects and attain the ends and advantages mentioned as well as those which are inherent therein. While the invention has been depicted, described, and is defined by reference to exemplary embodiments of the invention, such a reference does not imply a limitation on the invention, and no such limitation is to be inferred. The invention is capable of considerable modification, alteration, and equivalents in form and function, as will occur to those ordinarily skilled in the pertinent arts and having the benefit of this disclosure. In particular, as those of skill in the art will appreciate, steps from the different methods disclosed herein may be combined in a different manner and order. The depicted and described embodiments of the invention are exemplary only, and are not exhaustive of the scope of the invention. Consequently, the invention is intended to be limited only by the spirit and scope of the appended claims, giving full cognizance to equivalents in all respects.

Claims

What is claimed is:
1. A method comprising: providing a treatment fluid comprising an aqueous base fluid and a relative permeability modifier, wherein the relative permeability modifier comprises a water-soluble polymer having hydrophobic or hydrophilic modification; introducing the treatment fluid into an interval of a well bore penetrating the subterranean formation; creating one or more perforations through a hydrajetting tool in the interval of the well bore, wherein the perforations extend from the well bore and into the subterranean formation; and allowing the treatment fluid to contact a portion of the subterranean formation.
2. The method of claim 1 further comprising the step of: introducing an aqueous fluid into the interval of the well bore subsequent to the step of introducing the treatment fluid into the interval of the well bore.
3. The method of claim 1 wherein the step of introducing the treatment fluid into the interval of the well bore occurs after the step of creating the one or more perforations.
4. The method of claim 1 wherein the hydrajetting tool is kept stationary during the step of creating the one or more perforations in the interval of the well bore.
5. The method of claim 1 further comprising the step subsequent to the step of allowing the treatment fluid to contact the portion of the subterranean formation of: introducing an oxidizer into the interval of well bore so as to contact the portion of the subterranean formation.
6. The method of claim 1 further comprising the step of: introducing an acidizing fluid into the one or more perforations through the hydrajetting tool so as to widen the one or more perforations in the interval.
7. The method of claim 1 further comprising the step subsequent to the step of creating one or more perforations through a hydrajetting tool in the interval of the well bore of: depositing proppant into the one or more perforations in the interval so as to prevent the perforations from closing completely.
8. The method of claim 1 further comprising the steps of: plugging at least partially the one or more perforations in the interval with an isolation fluid; creating one or more perforations through a hydrajetting tool in a second interval of the well bore; and introducing the treatment fluid into the second interval of the well bore penetrating the subterranean formation.
9. The method of claim 1 wherein the relative permeability modifier is present in the treatment fluid in an amount up to about 10% by weight of the treatment fluid
10. The method of claim 1 wherein the water-soluble polymer comprises a polymer backbone that comprises polar heteroatoms.
11. The method of claim 1 wherein the water-soluble polymer is a hydrophobically modified polymer or a hydrophilically modified polymer.
12. The method of claim 11 wherein the hydrophobically modified polymer comprises an amino methacrylate/alkylammoniumalkyl methacrylate copolymer.
13. The method of claim 11 wherein the hydrophobically modified polymer is a reaction product of a hydrophobic compound and a hydrophilic polymer, or is synthesized from a polymerization reaction that comprises a hydrophilic monomer and a hydrophobically modified hydrophilic monomer.
14. The method of claim 13 wherein the hydrophilic polymer comprises a polymer backbone and a reactive amino group in the polymer backbone or as a pendant group, the reactive amino group capable of reacting with the hydrophobic compound.
15. The method of claim 13 wherein the hydrophilic polymer is selected from the group consisting of: a polyacrylamide; a polyvinylamine; a poly(vinylamine/vinyl alcohol); an alkyl acrylate polymer; a cellulose; a chitosan; a polyamide; a polyetheramine; a polyethyleneimine; a polyhydroxyetheramine; a polylysine; a polysulfone; a gum; a starch; and derivatives thereof.
16. The method of claim 13 wherein the hydrophobic compound is selected from the group consisting of: an alkyl halide; a sulfonate; a sulfate; an organic acid; and an organic acid derivative.
17. The method of claim 13 wherein the hydrophilic monomer is selected from the group consisting of: acrylamide; 2-acrylamido-2-methyl propane sulfonic acid; N,N- dimethylacrylamide; vinyl pyrrolidone; dimethylaminoethyl methacrylate; acrylic acid; dimethylaminopropylmethacrylamide; vinyl amine; vinyl acetate; trimethylammoniumethyl methacrylate chloride; methacrylamide; hydroxyethyl acrylate; vinyl sulfonic acid; vinyl phosphonic acid; methacrylic acid; vinyl caprolactam; N-vinylformamide; N,N- diallylacetamide; dimethyldiallyl ammonium halide; itaconic acid; styrene sulfonic acid; methacrylamidoethyltrimethyl ammonium halide; a quaternary salt derivative of acrylamide; and a quaternary salt derivative of acrylic acid.
18. The method of claim 13 wherein the hydrophobically modified hydrophilic monomer is selected from the group consisting of: an alkyl acrylate; an alkyl methacrylate; an alkyl acrylamide; an alkyl methacrylamide; an alkyl dimethylammoniumethyl methacrylate halide; and an alkyl dimethylammoniumpropyl methacrylamide halide; wherein the alkyl groups have from about 4 to about 22 carbon atoms.
19. The method of claim 11 wherein the hydrophilically modified polymer is a reaction product of a hydrophilic polymer and a hydrophilic compound.
20. The method of claim 19 wherein the hydrophilic polymer comprises a polymer backbone and a reactive amino group in the polymer backbone or as a pendant group, the reactive amino group capable of reacting with the hydrophobic compound.
21. The method of claim 19 wherein the hydrophilic polymer is selected from the group consisting of: a polyacrylamide; a polyvinylamine; a poly(vinylamine/vinyl alcohol); an alkyl acrylate polymer; a cellulose; a chitosan; a polyamide; a polyetheramine; a polyethyleneimine; a polyhydroxyetheramine; a polylysine; a polysulfone; a gum; a starch; and derivatives thereof.
PCT/GB2007/002633 2006-07-12 2007-07-12 Methods useful for controlling fluid loss in subterranean formations WO2008007110A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/485,199 2006-07-12
US11/485,199 US8181703B2 (en) 2003-05-16 2006-07-12 Method useful for controlling fluid loss in subterranean formations

Publications (1)

Publication Number Publication Date
WO2008007110A1 true WO2008007110A1 (en) 2008-01-17

Family

ID=38603429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2007/002633 WO2008007110A1 (en) 2006-07-12 2007-07-12 Methods useful for controlling fluid loss in subterranean formations

Country Status (3)

Country Link
US (1) US8181703B2 (en)
AR (1) AR061979A1 (en)
WO (1) WO2008007110A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122120A1 (en) * 2008-04-04 2009-10-08 Halliburton Energy Services, Inc. Methods for placement of sealant in subterranean intervals
US7934557B2 (en) 2007-02-15 2011-05-03 Halliburton Energy Services, Inc. Methods of completing wells for controlling water and particulate production
CN103642483A (en) * 2013-12-17 2014-03-19 北京希涛技术开发有限公司 High temperature gelatinizing agent used in acidizing and fracturing and synthetic method thereof
US11448027B2 (en) 2020-08-14 2022-09-20 Saudi Arabian Oil Company Acid wash system for wireline and slickline

Families Citing this family (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
US9079246B2 (en) 2009-12-08 2015-07-14 Baker Hughes Incorporated Method of making a nanomatrix powder metal compact
US8327931B2 (en) 2009-12-08 2012-12-11 Baker Hughes Incorporated Multi-component disappearing tripping ball and method for making the same
US9101978B2 (en) 2002-12-08 2015-08-11 Baker Hughes Incorporated Nanomatrix powder metal compact
US8403037B2 (en) 2009-12-08 2013-03-26 Baker Hughes Incorporated Dissolvable tool and method
US9109429B2 (en) 2002-12-08 2015-08-18 Baker Hughes Incorporated Engineered powder compact composite material
US7759292B2 (en) 2003-05-16 2010-07-20 Halliburton Energy Services, Inc. Methods and compositions for reducing the production of water and stimulating hydrocarbon production from a subterranean formation
US8278250B2 (en) 2003-05-16 2012-10-02 Halliburton Energy Services, Inc. Methods useful for diverting aqueous fluids in subterranean operations
US8962535B2 (en) 2003-05-16 2015-02-24 Halliburton Energy Services, Inc. Methods of diverting chelating agents in subterranean treatments
US8091638B2 (en) 2003-05-16 2012-01-10 Halliburton Energy Services, Inc. Methods useful for controlling fluid loss in subterranean formations
US8631869B2 (en) 2003-05-16 2014-01-21 Leopoldo Sierra Methods useful for controlling fluid loss in subterranean treatments
US8251141B2 (en) 2003-05-16 2012-08-28 Halliburton Energy Services, Inc. Methods useful for controlling fluid loss during sand control operations
US8167045B2 (en) 2003-08-26 2012-05-01 Halliburton Energy Services, Inc. Methods and compositions for stabilizing formation fines and sand
US7766099B2 (en) 2003-08-26 2010-08-03 Halliburton Energy Services, Inc. Methods of drilling and consolidating subterranean formation particulates
US20050173116A1 (en) 2004-02-10 2005-08-11 Nguyen Philip D. Resin compositions and methods of using resin compositions to control proppant flow-back
US7211547B2 (en) 2004-03-03 2007-05-01 Halliburton Energy Services, Inc. Resin compositions and methods of using such resin compositions in subterranean applications
US7299875B2 (en) 2004-06-08 2007-11-27 Halliburton Energy Services, Inc. Methods for controlling particulate migration
US7318474B2 (en) 2005-07-11 2008-01-15 Halliburton Energy Services, Inc. Methods and compositions for controlling formation fines and reducing proppant flow-back
US7493957B2 (en) * 2005-07-15 2009-02-24 Halliburton Energy Services, Inc. Methods for controlling water and sand production in subterranean wells
US7819192B2 (en) 2006-02-10 2010-10-26 Halliburton Energy Services, Inc. Consolidating agent emulsions and associated methods
US8613320B2 (en) 2006-02-10 2013-12-24 Halliburton Energy Services, Inc. Compositions and applications of resins in treating subterranean formations
US7926591B2 (en) 2006-02-10 2011-04-19 Halliburton Energy Services, Inc. Aqueous-based emulsified consolidating agents suitable for use in drill-in applications
US7730950B2 (en) * 2007-01-19 2010-06-08 Halliburton Energy Services, Inc. Methods for treating intervals of a subterranean formation having variable permeability
US20100099585A1 (en) * 2007-03-23 2010-04-22 Ahmadi Tehrani Aqueous base wellbore fluids for high temperature-high pressure applications and methods of use
US7841396B2 (en) * 2007-05-14 2010-11-30 Halliburton Energy Services Inc. Hydrajet tool for ultra high erosive environment
US7612021B2 (en) * 2007-08-24 2009-11-03 Halliburton Energy Services, Inc. Methods and compositions utilizing lost-circulation materials comprising composite particulates
US8598094B2 (en) 2007-11-30 2013-12-03 Halliburton Energy Services, Inc. Methods and compostions for preventing scale and diageneous reactions in subterranean formations
US8114818B2 (en) * 2008-01-16 2012-02-14 Halliburton Energy Services, Inc. Methods and compositions for altering the viscosity of treatment fluids used in subterranean operations
US20090203555A1 (en) * 2008-02-08 2009-08-13 Arthur Milne Use of Relative Permeability Modifiers in Treating Subterranean Formations
US7748452B2 (en) * 2008-02-19 2010-07-06 Schlumberger Technology Corporation Polymeric microspheres as degradable fluid loss additives in oilfield applications
US9360631B2 (en) 2008-08-20 2016-06-07 Foro Energy, Inc. Optics assembly for high power laser tools
US9267330B2 (en) 2008-08-20 2016-02-23 Foro Energy, Inc. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods
US9242309B2 (en) 2012-03-01 2016-01-26 Foro Energy Inc. Total internal reflection laser tools and methods
US9027668B2 (en) 2008-08-20 2015-05-12 Foro Energy, Inc. Control system for high power laser drilling workover and completion unit
US10301912B2 (en) * 2008-08-20 2019-05-28 Foro Energy, Inc. High power laser flow assurance systems, tools and methods
US9244235B2 (en) 2008-10-17 2016-01-26 Foro Energy, Inc. Systems and assemblies for transferring high power laser energy through a rotating junction
US9719302B2 (en) 2008-08-20 2017-08-01 Foro Energy, Inc. High power laser perforating and laser fracturing tools and methods of use
US9089928B2 (en) 2008-08-20 2015-07-28 Foro Energy, Inc. Laser systems and methods for the removal of structures
US9347271B2 (en) 2008-10-17 2016-05-24 Foro Energy, Inc. Optical fiber cable for transmission of high power laser energy over great distances
US8627901B1 (en) 2009-10-01 2014-01-14 Foro Energy, Inc. Laser bottom hole assembly
US9664012B2 (en) 2008-08-20 2017-05-30 Foro Energy, Inc. High power laser decomissioning of multistring and damaged wells
US9080425B2 (en) 2008-10-17 2015-07-14 Foro Energy, Inc. High power laser photo-conversion assemblies, apparatuses and methods of use
US9669492B2 (en) 2008-08-20 2017-06-06 Foro Energy, Inc. High power laser offshore decommissioning tool, system and methods of use
US9074422B2 (en) 2011-02-24 2015-07-07 Foro Energy, Inc. Electric motor for laser-mechanical drilling
US8826973B2 (en) 2008-08-20 2014-09-09 Foro Energy, Inc. Method and system for advancement of a borehole using a high power laser
US9138786B2 (en) 2008-10-17 2015-09-22 Foro Energy, Inc. High power laser pipeline tool and methods of use
US8571368B2 (en) 2010-07-21 2013-10-29 Foro Energy, Inc. Optical fiber configurations for transmission of laser energy over great distances
WO2010036729A2 (en) * 2008-09-26 2010-04-01 Bp Corporation North America Inc. Wellbore treatment compositions
US8794322B2 (en) 2008-10-10 2014-08-05 Halliburton Energy Services, Inc. Additives to suppress silica scale build-up
US8881811B2 (en) 2008-10-10 2014-11-11 Halliburton Energy Services, Inc. Additives to suppress silica scale build-up and methods of use thereof
US8424606B2 (en) * 2008-12-27 2013-04-23 Schlumberger Technology Corporation Method and apparatus for perforating with reduced debris in wellbore
US7762329B1 (en) 2009-01-27 2010-07-27 Halliburton Energy Services, Inc. Methods for servicing well bores with hardenable resin compositions
US7998910B2 (en) 2009-02-24 2011-08-16 Halliburton Energy Services, Inc. Treatment fluids comprising relative permeability modifiers and methods of use
WO2010099055A2 (en) * 2009-02-27 2010-09-02 Fmc Corporation Peracid oil-field viscosity breaker and method
US7992656B2 (en) * 2009-07-09 2011-08-09 Halliburton Energy Services, Inc. Self healing filter-cake removal system for open hole completions
US8420576B2 (en) 2009-08-10 2013-04-16 Halliburton Energy Services, Inc. Hydrophobically and cationically modified relative permeability modifiers and associated methods
US9227243B2 (en) 2009-12-08 2016-01-05 Baker Hughes Incorporated Method of making a powder metal compact
US9127515B2 (en) 2010-10-27 2015-09-08 Baker Hughes Incorporated Nanomatrix carbon composite
US8528633B2 (en) 2009-12-08 2013-09-10 Baker Hughes Incorporated Dissolvable tool and method
US9243475B2 (en) 2009-12-08 2016-01-26 Baker Hughes Incorporated Extruded powder metal compact
US8573295B2 (en) 2010-11-16 2013-11-05 Baker Hughes Incorporated Plug and method of unplugging a seat
US8425651B2 (en) 2010-07-30 2013-04-23 Baker Hughes Incorporated Nanomatrix metal composite
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
US8424610B2 (en) 2010-03-05 2013-04-23 Baker Hughes Incorporated Flow control arrangement and method
US8776884B2 (en) 2010-08-09 2014-07-15 Baker Hughes Incorporated Formation treatment system and method
CA2808214C (en) 2010-08-17 2016-02-23 Foro Energy Inc. Systems and conveyance structures for high power long distance laser transmission
US9090955B2 (en) 2010-10-27 2015-07-28 Baker Hughes Incorporated Nanomatrix powder metal composite
US8470746B2 (en) 2010-11-30 2013-06-25 Halliburton Energy Services, Inc. Methods relating to the stabilization of hydrophobically modified hydrophilic polymer treatment fluids under alkaline conditions
US8727002B2 (en) 2010-12-14 2014-05-20 Halliburton Energy Services, Inc. Acidic treatment fluids containing non-polymeric silica scale control additives and methods related thereto
WO2012116153A1 (en) 2011-02-24 2012-08-30 Foro Energy, Inc. High power laser-mechanical drilling bit and methods of use
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US8631876B2 (en) 2011-04-28 2014-01-21 Baker Hughes Incorporated Method of making and using a functionally gradient composite tool
US8596362B2 (en) * 2011-05-19 2013-12-03 Baker Hughes Incorporated Hydraulic fracturing methods and well casing plugs
EP2715887A4 (en) 2011-06-03 2016-11-23 Foro Energy Inc Rugged passively cooled high power laser fiber optic connectors and methods of use
US9139928B2 (en) 2011-06-17 2015-09-22 Baker Hughes Incorporated Corrodible downhole article and method of removing the article from downhole environment
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US8783365B2 (en) 2011-07-28 2014-07-22 Baker Hughes Incorporated Selective hydraulic fracturing tool and method thereof
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9643250B2 (en) 2011-07-29 2017-05-09 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9057242B2 (en) 2011-08-05 2015-06-16 Baker Hughes Incorporated Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate
US9033055B2 (en) 2011-08-17 2015-05-19 Baker Hughes Incorporated Selectively degradable passage restriction and method
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9187990B2 (en) 2011-09-03 2015-11-17 Baker Hughes Incorporated Method of using a degradable shaped charge and perforating gun system
US9347119B2 (en) 2011-09-03 2016-05-24 Baker Hughes Incorporated Degradable high shock impedance material
US9133695B2 (en) 2011-09-03 2015-09-15 Baker Hughes Incorporated Degradable shaped charge and perforating gun system
US9284812B2 (en) 2011-11-21 2016-03-15 Baker Hughes Incorporated System for increasing swelling efficiency
US9163173B2 (en) 2011-12-15 2015-10-20 Halliburton Energy Services, Inc. Wellbore servicing compositions and methods of making and using same
US9010416B2 (en) 2012-01-25 2015-04-21 Baker Hughes Incorporated Tubular anchoring system and a seat for use in the same
US9068428B2 (en) 2012-02-13 2015-06-30 Baker Hughes Incorporated Selectively corrodible downhole article and method of use
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
US9018140B2 (en) 2012-05-18 2015-04-28 Halliburton Energy Services, Inc. Methods for stabilizing water-sensitive clays
US9816025B2 (en) 2012-07-09 2017-11-14 Tucc Technology, Llc Methods and compositions for the controlled crosslinking and viscosifying of well servicing fluids utilizing mixed borate hydrocarbon-based suspensions
US9598927B2 (en) 2012-11-15 2017-03-21 Halliburton Energy Services, Inc. Expandable coating for solid particles and associated methods of use in subterranean treatments
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
GB2535026A (en) * 2013-09-23 2016-08-10 Halliburton Energy Services Inc Enhancing fracturing and complex fracturing networks in tight formations
WO2015047211A1 (en) * 2013-09-24 2015-04-02 Halliburton Energy Services, Inc. Wettability altering fluids during downhole operations
US10150713B2 (en) 2014-02-21 2018-12-11 Terves, Inc. Fluid activated disintegrating metal system
US10865465B2 (en) 2017-07-27 2020-12-15 Terves, Llc Degradable metal matrix composite
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US9394779B2 (en) 2014-07-03 2016-07-19 Baker Hughes Incorporated Hydraulic fracturing isolation methods and well casing plugs for re-fracturing horizontal multizone wellbores
CN104293325A (en) * 2014-09-09 2015-01-21 中国石油集团渤海钻探工程有限公司 Viscosity reducer for drilling fluid and preparation method thereof
US9470078B2 (en) * 2014-09-29 2016-10-18 Baker Hughes Incorporated Fluid diversion through selective fracture extension
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
US9869170B2 (en) * 2015-03-17 2018-01-16 Halliburton Energy Services, Inc. Methods of controlling water production in horizontal wells with multistage fractures
US10563115B2 (en) 2015-05-05 2020-02-18 Halliburton Energy Services, Inc. Activators for inorganic oxide breakers
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
US10221687B2 (en) 2015-11-26 2019-03-05 Merger Mines Corporation Method of mining using a laser
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
WO2017176952A1 (en) 2016-04-08 2017-10-12 Schlumberger Technology Corporation Polymer gel for water control applications
CN106675533A (en) * 2016-12-23 2017-05-17 北京奥凯立科技发展股份有限公司 Grafted starch filtration loss reduction agent used for drilling fluid and preparation method thereof
WO2020081621A1 (en) * 2018-10-18 2020-04-23 Terves Llc Degradable deformable diverters and seals
US11781413B2 (en) 2020-02-04 2023-10-10 Halliburton Energy Services, Inc. Downhole acid injection to stimulate formation production
US11408240B2 (en) 2020-02-04 2022-08-09 Halliburton Energy Services, Inc. Downhole acid injection to stimulate formation production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040229757A1 (en) * 2003-05-16 2004-11-18 Eoff Larry S. Methods and compositions for reducing the production of water and stimulating hydrocarbon production from a subterranean formation
US20050164894A1 (en) * 2004-01-24 2005-07-28 Eoff Larry S. Methods and compositions for the diversion of aqueous injection fluids in injection operations
US20050194140A1 (en) * 2003-05-16 2005-09-08 Halliburton Energy Services, Inc. Methods useful for diverting aqueous fluids in subterranean operations
US20050211439A1 (en) * 2004-03-24 2005-09-29 Willett Ronald M Methods of isolating hydrajet stimulated zones

Family Cites Families (245)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2278838A (en) 1940-03-11 1942-04-07 Petrolite Corp Composition of matter and process for preventing water-in-oil type emulsions resulting from acidization of calcareous oil-bearing strata
US2687375A (en) 1949-10-01 1954-08-24 Union Oil Co Drilling fluids
US2689244A (en) 1950-06-23 1954-09-14 Phillips Petroleum Co Process for production of chitin sulfate
US2670329A (en) 1950-08-03 1954-02-23 Phillips Petroleum Co Drilling muds and methods of using same
US2910436A (en) 1953-10-02 1959-10-27 California Research Corp Method of treating wells with acid
US2863832A (en) 1954-05-14 1958-12-09 California Research Corp Method of acidizing petroliferous formations
US2843573A (en) 1955-03-21 1958-07-15 Rohm & Haas New quaternary ammonium compounds in which the nitrogen atom carries an alkoxymethyl group
US3065247A (en) 1955-11-23 1962-11-20 Petrolte Corp Reaction product of epoxidized fatty acid esters of lower alkanols and polyamino compounds
US2877179A (en) 1956-03-26 1959-03-10 Cities Service Res & Dev Co Composition for and method of inhibiting corrosion of metals
US2819278A (en) 1956-05-09 1958-01-07 Petrolite Corp Reaction product of epoxidized glycerides and hydroxylated tertiary monoamines
US3008898A (en) 1959-06-26 1961-11-14 Cities Service Res & Dev Co Method of inhibiting corrosion
US3052298A (en) 1960-03-22 1962-09-04 Shell Oil Co Method and apparatus for cementing wells
US3271307A (en) 1960-08-04 1966-09-06 Petrolite Corp Oil well treatment
US3258428A (en) 1960-08-04 1966-06-28 Petrolite Corp Scale prevention
US3259578A (en) 1960-08-04 1966-07-05 Petrolite Corp Lubricating compositions
US3251778A (en) 1960-08-04 1966-05-17 Petrolite Corp Process of preventing scale
US3138205A (en) 1960-12-14 1964-06-23 Jersey Prod Res Co Hydraulic fracturing method
US3215199A (en) 1963-02-21 1965-11-02 Shell Oil Co Acidizing oil formations
DE1468014A1 (en) 1964-01-29 1969-01-09 Henkel & Cie Gmbh Process for the preparation of hydroxyalkyl ethers of galactomannans
US3297090A (en) 1964-04-24 1967-01-10 Shell Oil Co Acidizing oil formations
US3307630A (en) 1964-06-12 1967-03-07 Shell Oil Co Acidizing oil formations
US3251415A (en) 1965-04-01 1966-05-17 Exxon Production Research Co Acid treating process
US3404114A (en) 1965-06-18 1968-10-01 Dow Chemical Co Method for preparing latexes having improved adhesive properties
US3434971A (en) 1965-08-25 1969-03-25 Dow Chemical Co Composition and method for acidizing wells
US3347789A (en) 1966-03-04 1967-10-17 Petrolite Corp Treatment of oil wells
US3451818A (en) 1966-04-19 1969-06-24 Polaroid Corp Composite rollfilm assembly for use in the diffusion transfer process
US3382924A (en) 1966-09-06 1968-05-14 Dow Chemical Co Treatment of earthen formations comprising argillaceous material
US3336980A (en) 1967-02-09 1967-08-22 Exxon Production Research Co Sand control in wells
US3441085A (en) 1967-09-07 1969-04-29 Exxon Production Research Co Method for acid treating carbonate formations
US3615794A (en) 1968-05-20 1971-10-26 Dow Chemical Co Sealing composition and method
US3637656A (en) 1968-10-28 1972-01-25 Cpc International Inc Preparation of starch derivatives
US3489222A (en) 1968-12-26 1970-01-13 Chevron Res Method of consolidating earth formations without removing tubing from well
US3601194A (en) 1969-07-14 1971-08-24 Union Oil Co Low fluid loss well-treating composition and method
US3647567A (en) 1969-11-28 1972-03-07 Celanese Coatings Co Post-dipping of acidic deposition coatings
US3647507A (en) 1970-01-07 1972-03-07 Johnson & Johnson Resin composition containing a polyacrylic acid-polyacrylamide copolymer and method of using the same to control resin composition
DE2250552A1 (en) 1970-01-30 1974-04-18 Gaf Corp Filmogenic quat ammonium copolymers - use as hair fixatives ,in textile treatments etc
US3910862A (en) 1970-01-30 1975-10-07 Gaf Corp Copolymers of vinyl pyrrolidone containing quarternary ammonium groups
US3689468A (en) 1970-12-14 1972-09-05 Rohm & Haas Unsaturated quaternary monomers and polymers
US3689418A (en) 1971-01-18 1972-09-05 Monsanto Co Detergent formulations
US3708013A (en) 1971-05-03 1973-01-02 Mobil Oil Corp Method and apparatus for obtaining an improved gravel pack
US3818991A (en) 1971-05-20 1974-06-25 Dow Chemical Co Method of treating subterranean formation with a composition of improved viscosity control
US3709298A (en) 1971-05-20 1973-01-09 Shell Oil Co Sand pack-aided formation sand consolidation
US3744566A (en) 1972-03-16 1973-07-10 Calgon Corp Secondary oil recovery process
US4052345A (en) 1973-12-17 1977-10-04 Basf Wyandotte Corporation Process for the preparation of polyurethane foams
US3902557A (en) 1974-03-25 1975-09-02 Exxon Production Research Co Treatment of wells
US3943060A (en) 1974-07-26 1976-03-09 Calgon Corporation Friction reducing
US4029544A (en) 1974-10-24 1977-06-14 National Starch And Chemical Corporation Method of making a novel starch derivative and the product produced thereby
US4299710A (en) 1975-05-30 1981-11-10 Rohm And Haas Company Drilling fluid and method
US3983941A (en) 1975-11-10 1976-10-05 Mobil Oil Corporation Well completion technique for sand control
US4052343A (en) 1975-11-10 1977-10-04 Rohm And Haas Company Crosslinked, macroreticular poly(dimethylaminoethyl methacrylate) ion-exchange resins and method of preparation by aqueous suspension polymerization using trialkylamine phase extender
US4366073A (en) 1976-08-13 1982-12-28 Halliburton Company Oil well treating method and composition
US4366071A (en) 1976-08-13 1982-12-28 Halliburton Company Oil well treating method and composition
US4366074A (en) 1976-08-13 1982-12-28 Halliburton Company Oil well treating method and composition
US4366072A (en) 1976-08-13 1982-12-28 Halliburton Company Oil well treating method and composition
CA1103008A (en) 1976-08-13 1981-06-16 Homer C. Mclaughlin Treatment of clay formations with organic polycationic polymers
US4374739A (en) 1976-08-13 1983-02-22 Halliburton Company Oil well treating method and composition
JPS6024122B2 (en) 1977-01-05 1985-06-11 三菱化学株式会社 Method for producing bead-like polymer
US4142595A (en) 1977-03-09 1979-03-06 Standard Oil Company (Indiana) Shale stabilizing drilling fluid
US4129183A (en) 1977-06-30 1978-12-12 Texaco Inc. Use of organic acid chrome complexes to treat clay containing formations
US4152274A (en) 1978-02-09 1979-05-01 Nalco Chemical Company Method for reducing friction loss in a well fracturing process
US4337828A (en) 1978-06-19 1982-07-06 Magna Corporation Method of recovering petroleum from a subterranean reservoir incorporating polyepoxide condensates of resinous polyalkylene oxide adducts and polyether polyols
US4158521A (en) 1978-06-26 1979-06-19 The Western Company Of North America Method of stabilizing clay formations
US4460627A (en) 1978-09-28 1984-07-17 Halliburton Company Polymeric well treating method
US4532052A (en) * 1978-09-28 1985-07-30 Halliburton Company Polymeric well treating method
US4228277A (en) 1979-02-12 1980-10-14 Hercules Incorporated Modified nonionic cellulose ethers
US4306981A (en) 1979-10-05 1981-12-22 Magna Corporation Method for breaking petroleum emulsions and the like comprising resinous polyalkylene oxide adducts
US4552670A (en) 1979-10-15 1985-11-12 Diamond Shamrock Chemicals Company Amphoteric water-in-oil self-inverting polymer emulsion
US4409110A (en) 1981-01-06 1983-10-11 Halliburton Company Enhanced oil displacement processes and compositions
US4814096A (en) 1981-02-06 1989-03-21 The Dow Chemical Company Enhanced oil recovery process using a hydrophobic associative composition containing a hydrophilic/hydrophobic polymer
US4393939A (en) 1981-04-20 1983-07-19 Halliburton Services Clay stabilization during oil and gas well cementing operations
US4439334A (en) 1981-07-14 1984-03-27 Halliburton Company Enhanced oil recovery methods and systems
US4401789A (en) 1981-07-14 1983-08-30 Halliburton Company Enhanced oil recovery methods and systems
US4395340A (en) 1981-07-14 1983-07-26 Halliburton Company Enhanced oil recovery methods and systems
US4441556A (en) 1981-08-17 1984-04-10 Standard Oil Company Diverter tool and its use
US4440649A (en) 1982-01-28 1984-04-03 Halliburton Company Well drilling and completion fluid composition
US4536297A (en) 1982-01-28 1985-08-20 Halliburton Company Well drilling and completion fluid composition
US4447342A (en) 1982-04-19 1984-05-08 Halliburton Co. Method of clay stabilization in enhanced oil recovery
US4604216A (en) 1982-10-19 1986-08-05 Phillips Petroleum Company Drilling fluids
DE3400164A1 (en) 1983-01-14 1984-07-19 Sandoz-Patent-GmbH, 7850 Lörrach LIQUID LOSS REDUCING ADDITIVES FOR PUNCHING LIQUIDS
US5186257A (en) 1983-01-28 1993-02-16 Phillips Petroleum Company Polymers useful in the recovery and processing of natural resources
US5080809A (en) 1983-01-28 1992-01-14 Phillips Petroleum Company Polymers useful in the recovery and processing of natural resources
US4499214A (en) 1983-05-03 1985-02-12 Diachem Industries, Inc. Method of rapidly dissolving polymers in water
US4554081A (en) 1984-05-21 1985-11-19 Halliburton Company High density well drilling, completion and workover brines, fluid loss reducing additives therefor and methods of use
GB8413716D0 (en) 1984-05-30 1984-07-04 Allied Colloids Ltd Aqueous well fluids
US4536303A (en) 1984-08-02 1985-08-20 Halliburton Company Methods of minimizing fines migration in subterranean formations
US4563292A (en) 1984-08-02 1986-01-07 Halliburton Company Methods for stabilizing fines contained in subterranean formations
US4627926A (en) 1984-09-19 1986-12-09 Exxon Research And Engineering Company Thermally stable borehole fluids
US4536305A (en) 1984-09-21 1985-08-20 Halliburton Company Methods for stabilizing swelling clays or migrating fines in subterranean formations
US4631138A (en) 1985-02-07 1986-12-23 Petrolite Corporation Corrosion inhibitors
US4608139A (en) 1985-06-21 1986-08-26 Scm Corporation Electrocoating process using shear stable cationic latex
US4619776A (en) 1985-07-02 1986-10-28 Texas United Chemical Corp. Crosslinked fracturing fluids
US4992182A (en) 1985-11-21 1991-02-12 Union Oil Company Of California Scale removal treatment
US4730028A (en) 1986-03-28 1988-03-08 Exxon Research And Engineering Company Process for preparing hydrophobically associating terpolymers containing sulfonate functionality
US4662448A (en) 1986-04-25 1987-05-05 Atlantic Richfield Company Well treatment method using sodium silicate to seal formation
US4959432A (en) 1986-05-19 1990-09-25 Union Carbide Chemicals And Plastics Company Inc. Acid viscosifier compositions
US4693639A (en) 1986-06-25 1987-09-15 Halliburton Company Clay stabilizing agent preparation and use
US4737295A (en) 1986-07-21 1988-04-12 Venture Chemicals, Inc. Organophilic polyphenolic acid adducts
US4828725A (en) 1986-10-01 1989-05-09 Air Products And Chemicals, Inc. Completion fluids containing high molecular weight poly(vinylamines)
US4856590A (en) 1986-11-28 1989-08-15 Mike Caillier Process for washing through filter media in a production zone with a pre-packed screen and coil tubing
US4702319A (en) 1986-12-29 1987-10-27 Exxon Research And Engineering Company Enhanced oil recovery with hydrophobically associating polymers containing sulfonate functionality
US4870167A (en) 1987-03-02 1989-09-26 Hi-Tek Polymers, Inc. Hydrophobically modified non-ionic polygalactomannan ethers
US4993448A (en) 1987-05-15 1991-02-19 Ciba-Geigy Corporation Crude oil emulsions containing a compatible fluorochemical surfactant
US4828726A (en) 1987-09-11 1989-05-09 Halliburton Company Stabilizing clayey formations
US5071934A (en) 1987-12-21 1991-12-10 Exxon Research And Engineering Company Cationic hydrophobic monomers and polymers
IT1224421B (en) 1987-12-29 1990-10-04 Lamberti Flli Spa MODIFIED GALATTOMANNANS AND REALIVE PREPARATION PROCEDURE
US4941537A (en) 1988-02-25 1990-07-17 Hi-Tek Polymers, Inc. Method for reducing the viscosity of aqueous fluid
US5248665A (en) 1988-03-14 1993-09-28 Shell Oil Company Drilling fluids comprising polycyclic polyether polyol
US4856588A (en) 1988-05-16 1989-08-15 Shell Oil Company Selective permeability reduction of oil-free zones of subterranean formations
KR910005615B1 (en) * 1988-07-18 1991-07-31 삼성전자 주식회사 Programmable sequential code recognition circuit
NO893150L (en) 1988-08-15 1990-02-16 Baroid Technology Inc PROCEDURE FOR DRILLING A DRILL IN EARTH AND DRILL FOR USE IN THE PROCEDURE.
US4917186A (en) 1989-02-16 1990-04-17 Phillips Petroleum Company Altering subterranean formation permeability
US5160642A (en) 1990-05-25 1992-11-03 Petrolite Corporation Polyimide quaternary salts as clay stabilization agents
US5105886A (en) 1990-10-24 1992-04-21 Mobil Oil Corporation Method for the control of solids accompanying hydrocarbon production from subterranean formations
US5256651A (en) 1991-01-22 1993-10-26 Rhone-Poulenc, Inc. Hydrophilic-hydrophobic derivatives of polygalactomannans containing tertiary amine functionality
US5099923A (en) 1991-02-25 1992-03-31 Nalco Chemical Company Clay stabilizing method for oil and gas well treatment
US5097904A (en) 1991-02-28 1992-03-24 Halliburton Company Method for clay stabilization with quaternary amines
US5197544A (en) 1991-02-28 1993-03-30 Halliburton Company Method for clay stabilization with quaternary amines
US5146986A (en) 1991-03-15 1992-09-15 Halliburton Company Methods of reducing the water permeability of water and oil producing subterranean formations
US5244042A (en) 1991-05-07 1993-09-14 Union Oil Company Of California Lanthanide-crosslinked polymers for subterranean injection
US5208216A (en) 1991-06-13 1993-05-04 Nalco Chemical Company Acrylamide terpolymer shale stabilizing additive for low viscosity oil and gas drilling operations
US5161615A (en) 1991-06-27 1992-11-10 Union Oil Company Of California Method for reducing water production from wells
US5908814A (en) 1991-10-28 1999-06-01 M-I L.L.C. Drilling fluid additive and method for inhibiting hydration
US5424284A (en) 1991-10-28 1995-06-13 M-I Drilling Fluids Company Drilling fluid additive and method for inhibiting hydration
US5728653A (en) 1992-01-31 1998-03-17 Institut Francais Du Petrole Method for inhibiting reactive argillaceous formations and use thereof in a drilling fluid
FR2686892B1 (en) 1992-01-31 1995-01-13 Inst Francais Du Petrole PROCESS FOR INHIBITING REACTIVE CLAY FORMATIONS AND APPLICATION TO A DRILLING FLUID.
EP0577931B1 (en) 1992-04-10 1998-06-24 Clariant GmbH Process for reducing or complete setting of water production during drilling for oil and/or hydrocarbon gas recovery
US5663123A (en) 1992-07-15 1997-09-02 Kb Technologies Ltd. Polymeric earth support fluid compositions and method for their use
US5407909A (en) 1992-07-15 1995-04-18 Kb Technologies, Ltd. Earth support fluid composition and method for its use
US5271466A (en) 1992-10-30 1993-12-21 Halliburton Company Subterranean formation treating with dual delayed crosslinking gelled fluids
US5387675A (en) 1993-03-10 1995-02-07 Rhone-Poulenc Specialty Chemicals Co. Modified hydrophobic cationic thickening compositions
EP0680504B1 (en) 1993-11-19 1999-03-10 Clearwater, Inc. Method of treating shale and clay in hydrocarbon formation drilling
US5482116A (en) * 1993-12-10 1996-01-09 Mobil Oil Corporation Wellbore guided hydraulic fracturing
US5643460A (en) 1994-01-14 1997-07-01 Nalco/Exxon Energy Chemicals, L. P. Method for separating oil from water in petroleum production
FR2716928B1 (en) 1994-03-03 1996-05-03 Inst Francais Du Petrole Water-based process and fluid using hydrophobically modified cellulosic derivatives as a filtrate reducer.
US5445223A (en) 1994-03-15 1995-08-29 Dowell, A Division Of Schlumberger Technology Corporation Delayed borate crosslinked fracturing fluid having increased temperature range
FR2719601B1 (en) 1994-05-04 1996-06-28 Inst Francais Du Petrole Water-based process and fluid for controlling the dispersion of solids. Application to drilling.
FR2719600B1 (en) 1994-05-04 1996-06-14 Inst Francais Du Petrole Process and fluid used in a well - Application to drilling.
US5681796A (en) 1994-07-29 1997-10-28 Schlumberger Technology Corporation Borate crosslinked fracturing fluid and method
US5566760A (en) 1994-09-02 1996-10-22 Halliburton Company Method of using a foamed fracturing fluid
US5646093A (en) 1994-09-13 1997-07-08 Rhone-Poulenc Inc. Modified polygalactomannans as oil field shale inhibitors
FR2729181A1 (en) 1995-01-10 1996-07-12 Inst Francais Du Petrole WATER-BASED PROCESS AND FLUID USING HYDROPHOBICALLY MODIFIED GUARS AS A FILTRATE REDUCER
GB9510396D0 (en) 1995-05-23 1995-07-19 Allied Colloids Ltd Polymers for drilling and reservoir fluids and their use
US5722490A (en) 1995-12-20 1998-03-03 Ely And Associates, Inc. Method of completing and hydraulic fracturing of a well
US5704426A (en) 1996-03-20 1998-01-06 Schlumberger Technology Corporation Zonal isolation method and apparatus
US6047773A (en) * 1996-08-09 2000-04-11 Halliburton Energy Services, Inc. Apparatus and methods for stimulating a subterranean well
US5735349A (en) 1996-08-16 1998-04-07 Bj Services Company Compositions and methods for modifying the permeability of subterranean formations
US6435277B1 (en) 1996-10-09 2002-08-20 Schlumberger Technology Corporation Compositions containing aqueous viscosifying surfactants and methods for applying such compositions in subterranean formations
US5964295A (en) 1996-10-09 1999-10-12 Schlumberger Technology Corporation, Dowell Division Methods and compositions for testing subterranean formations
US6897186B2 (en) 1997-02-12 2005-05-24 Kg International, Llc Composition and method for dual function soil grouting excavating or boring fluid
WO1998034994A1 (en) * 1997-02-12 1998-08-13 Kb Technologies, Ltd. Composition and method for a dual-function soil-grouting excavating or boring fluid
AU736803B2 (en) 1997-08-06 2001-08-02 Halliburton Energy Services, Inc. Well treating fluids and methods
US5944106A (en) 1997-08-06 1999-08-31 Halliburton Energy Services, Inc. Well treating fluids and methods
US6070664A (en) 1998-02-12 2000-06-06 Halliburton Energy Services Well treating fluids and methods
US5887653A (en) 1997-08-15 1999-03-30 Plainsman Technology, Inc. Method for clay stabilization
DE19752093C2 (en) 1997-11-25 2000-10-26 Clariant Gmbh Water-soluble copolymers based on acrylamide and their use as cementation aids
GB2332224B (en) 1997-12-13 2000-01-19 Sofitech Nv Gelling composition for wellbore service fluids
US6516885B1 (en) 1998-02-18 2003-02-11 Lattice Intellectual Property Ltd Reducing water flow
GB2335428B (en) 1998-03-20 2001-03-14 Sofitech Nv Hydrophobically modified polymers for water control
US6162766A (en) * 1998-05-29 2000-12-19 3M Innovative Properties Company Encapsulated breakers, compositions and methods of use
US6242390B1 (en) 1998-07-31 2001-06-05 Schlumberger Technology Corporation Cleanup additive
US6124245A (en) 1998-10-07 2000-09-26 Phillips Petroleum Company Drilling fluid additive and process therewith
US6607035B1 (en) 1998-12-04 2003-08-19 Halliburton Energy Services, Inc. Preventing flow through subterranean zones
US6228812B1 (en) 1998-12-10 2001-05-08 Bj Services Company Compositions and methods for selective modification of subterranean formation permeability
US6872820B2 (en) 1998-12-23 2005-03-29 Wolff Walsrode Ag Finely divided polysaccharide derivatives
US6656885B2 (en) 1998-12-28 2003-12-02 Venture Innovations, Inc. Anhydride-modified chitosan, method of preparation thereof, and fluids containing same
US6358889B2 (en) 1998-12-28 2002-03-19 Venture Innovations, Inc. Viscosified aqueous chitosan-containing well drilling and servicing fluids
US6562762B2 (en) 1998-12-28 2003-05-13 Venture Chemicals, Inc. Method of and composition for reducing the loss of fluid during well drilling, completion or workover operations
US6780822B2 (en) 1998-12-28 2004-08-24 Venture Chemicals, Inc. Anhydride-modified chitosan, method of preparation thereof, and fluids containing same
US6291404B2 (en) 1998-12-28 2001-09-18 Venture Innovations, Inc. Viscosified aqueous chitosan-containing well drilling and servicing fluids
DE19909231C2 (en) 1999-03-03 2001-04-19 Clariant Gmbh Water-soluble copolymers based on AMPS and their use as drilling aids
US6187839B1 (en) 1999-03-03 2001-02-13 Halliburton Energy Services, Inc. Methods of sealing compositions and methods
US6281172B1 (en) 1999-04-07 2001-08-28 Akzo Nobel Nv Quaternary nitrogen containing amphoteric water soluble polymers and their use in drilling fluids
US6209646B1 (en) 1999-04-21 2001-04-03 Halliburton Energy Services, Inc. Controlling the release of chemical additives in well treating fluids
US6237687B1 (en) 1999-06-09 2001-05-29 Eclipse Packer Company Method and apparatus for placing a gravel pack in an oil and gas well
GB2351098B (en) * 1999-06-18 2004-02-04 Sofitech Nv Water based wellbore fluids
ES2223535T3 (en) 1999-07-09 2005-03-01 Dow Global Technologies Inc. HYDROGENATION OF INSATURED POLYMERS USING DIVALENT CATALYSTS BASED ON A GROUP IV METAL AND BISCICLOPENTADIENYL AND CONTAINING DIENO.
US6283210B1 (en) 1999-09-01 2001-09-04 Halliburton Energy Services, Inc. Proactive conformance for oil or gas wells
US6253851B1 (en) 1999-09-20 2001-07-03 Marathon Oil Company Method of completing a well
FR2804953B1 (en) 2000-02-10 2002-07-26 Inst Francais Du Petrole CEMENT DAIRY HAVING HYDROPHOBIC POLYMERS
US6609578B2 (en) 2000-02-11 2003-08-26 Mo M-I Llc Shale hydration inhibition agent and method of use
US6394184B2 (en) * 2000-02-15 2002-05-28 Exxonmobil Upstream Research Company Method and apparatus for stimulation of multiple formation intervals
US6767869B2 (en) 2000-02-29 2004-07-27 Bj Services Company Well service fluid and method of making and using the same
WO2001088334A2 (en) * 2000-05-15 2001-11-22 Bj Services Company Well service composition and method
US6454003B1 (en) 2000-06-14 2002-09-24 Ondeo Nalco Energy Services, L.P. Composition and method for recovering hydrocarbon fluids from a subterranean reservoir
US6476169B1 (en) 2000-09-28 2002-11-05 Halliburton Energy Services, Inc. Methods of reducing subterranean formation water permeability
US6364016B1 (en) 2000-10-26 2002-04-02 Halliburton Energy Services, Inc. Methods of reducing the water permeability of subterranean formations
US6627719B2 (en) 2001-01-31 2003-09-30 Ondeo Nalco Company Cationic latex terpolymers for sludge dewatering
US6933381B2 (en) 2001-02-02 2005-08-23 Charles B. Mallon Method of preparing modified cellulose ether
US6605570B2 (en) 2001-03-01 2003-08-12 Schlumberger Technology Corporation Compositions and methods to control fluid loss in surfactant-based wellbore service fluids
US6359047B1 (en) 2001-03-20 2002-03-19 Isp Investments Inc. Gas hydrate inhibitor
CA2443390C (en) 2001-04-16 2009-12-15 Halliburton Energy Services, Inc. Methods of treating subterranean zones penetrated by well bores
ITMI20011113A1 (en) 2001-05-25 2002-11-25 Eni Spa PROCEDURE FOR DECREASING THE PRODUCTION OF WATER IN OIL WELLS
US7056868B2 (en) 2001-07-30 2006-06-06 Cabot Corporation Hydrophobe associative polymers and compositions and methods employing them
US6723683B2 (en) 2001-08-07 2004-04-20 National Starch And Chemical Investment Holding Corporation Compositions for controlled release
US6662874B2 (en) * 2001-09-28 2003-12-16 Halliburton Energy Services, Inc. System and method for fracturing a subterranean well formation for improving hydrocarbon production
US6601648B2 (en) 2001-10-22 2003-08-05 Charles D. Ebinger Well completion method
US6855672B2 (en) 2001-11-07 2005-02-15 Baker Hughes Incorporated Copolymers useful for gelling acids
US6695055B2 (en) 2001-11-15 2004-02-24 Wm. Marsh Rice University Subterranean formation water permeability reducing methods
US6497283B1 (en) 2001-11-19 2002-12-24 Halliburton Energy Services, Inc. Well cement additives, compositions and methods
US6790812B2 (en) 2001-11-30 2004-09-14 Baker Hughes Incorporated Acid soluble, high fluid loss pill for lost circulation
US6626241B2 (en) 2001-12-06 2003-09-30 Halliburton Energy Services, Inc. Method of frac packing through existing gravel packed screens
US6569983B1 (en) 2001-12-20 2003-05-27 Ondeo Nalco Energy Services, L.P. Method and composition for recovering hydrocarbon fluids from a subterranean reservoir
US6929070B2 (en) 2001-12-21 2005-08-16 Schlumberger Technology Corporation Compositions and methods for treating a subterranean formation
GB2383355A (en) 2001-12-22 2003-06-25 Schlumberger Holdings An aqueous viscoelastic fluid containing hydrophobically modified polymer and viscoelastic surfactant
US6787506B2 (en) 2002-04-03 2004-09-07 Nalco Energy Services, L.P. Use of dispersion polymers as friction reducers in aqueous fracturing fluids
US6702044B2 (en) 2002-06-13 2004-03-09 Halliburton Energy Services, Inc. Methods of consolidating formations or forming chemical casing or both while drilling
US6800593B2 (en) * 2002-06-19 2004-10-05 Texas United Chemical Company, Llc. Hydrophilic polymer concentrates
US7741251B2 (en) 2002-09-06 2010-06-22 Halliburton Energy Services, Inc. Compositions and methods of stabilizing subterranean formations containing reactive shales
US7091159B2 (en) 2002-09-06 2006-08-15 Halliburton Energy Services, Inc. Compositions for and methods of stabilizing subterranean formations containing clays
US7008908B2 (en) 2002-11-22 2006-03-07 Schlumberger Technology Corporation Selective stimulation with selective water reduction
US6846420B2 (en) 2002-12-19 2005-01-25 Halliburton Energy Services, Inc. Process for removing oil from solid materials recovered from a well bore
US7220708B2 (en) 2003-02-27 2007-05-22 Halliburton Energy Services, Inc. Drilling fluid component
US6764981B1 (en) 2003-03-21 2004-07-20 Halliburton Energy Services, Inc. Well treatment fluid and methods with oxidized chitosan-based compound
US7007752B2 (en) 2003-03-21 2006-03-07 Halliburton Energy Services, Inc. Well treatment fluid and methods with oxidized polysaccharide-based polymers
US6981552B2 (en) 2003-03-21 2006-01-03 Halliburton Energy Services, Inc. Well treatment fluid and methods with oxidized polysaccharide-based polymers
US6962203B2 (en) 2003-03-24 2005-11-08 Owen Oil Tools Lp One trip completion process
US7087554B2 (en) 2003-04-10 2006-08-08 Halliburton Energy Services, Inc. Drilling fluids with improved shale inhibition and methods of drilling in subterranean formations
US20040209780A1 (en) * 2003-04-18 2004-10-21 Harris Phillip C. Methods of treating subterranean formations using hydrophobically modified polymers and compositions of the same
US7117942B2 (en) 2004-06-29 2006-10-10 Halliburton Energy Services, Inc. Methods useful for controlling fluid loss during sand control operations
US8251141B2 (en) 2003-05-16 2012-08-28 Halliburton Energy Services, Inc. Methods useful for controlling fluid loss during sand control operations
US7182136B2 (en) 2003-07-02 2007-02-27 Halliburton Energy Services, Inc. Methods of reducing water permeability for acidizing a subterranean formation
US20040229756A1 (en) 2003-05-16 2004-11-18 Eoff Larry S. Method for stimulating hydrocarbon production and reducing the production of water from a subterranean formation
US8091638B2 (en) 2003-05-16 2012-01-10 Halliburton Energy Services, Inc. Methods useful for controlling fluid loss in subterranean formations
US6978836B2 (en) 2003-05-23 2005-12-27 Halliburton Energy Services, Inc. Methods for controlling water and particulate production
US7036587B2 (en) 2003-06-27 2006-05-02 Halliburton Energy Services, Inc. Methods of diverting treating fluids in subterranean zones and degradable diverting materials
US7036589B2 (en) 2003-08-14 2006-05-02 Halliburton Energy Services, Inc. Methods for fracturing stimulation
US7081439B2 (en) 2003-11-13 2006-07-25 Schlumberger Technology Corporation Methods for controlling the fluid loss properties of viscoelastic surfactant based fluids
US7159656B2 (en) 2004-02-18 2007-01-09 Halliburton Energy Services, Inc. Methods of reducing the permeabilities of horizontal well bore sections
US7207387B2 (en) 2004-04-15 2007-04-24 Halliburton Energy Services, Inc. Methods and compositions for use with spacer fluids used in subterranean well bores
US7114568B2 (en) 2004-04-15 2006-10-03 Halliburton Energy Services, Inc. Hydrophobically modified polymers for a well completion spacer fluid
US7216707B2 (en) 2004-06-21 2007-05-15 Halliburton Energy Services, Inc. Cement compositions with improved fluid loss characteristics and methods of cementing using such cement compositions
US7475728B2 (en) 2004-07-23 2009-01-13 Halliburton Energy Services, Inc. Treatment fluids and methods of use in subterranean formations
US7178610B2 (en) 2004-08-11 2007-02-20 Halliburton Energy Services, Inc. Subterranean treatment fluids comprising polyoxazoline compositions and methods of use in subterranean formations
US7273099B2 (en) 2004-12-03 2007-09-25 Halliburton Energy Services, Inc. Methods of stimulating a subterranean formation comprising multiple production intervals
US7398825B2 (en) 2004-12-03 2008-07-15 Halliburton Energy Services, Inc. Methods of controlling sand and water production in subterranean zones
US7493957B2 (en) 2005-07-15 2009-02-24 Halliburton Energy Services, Inc. Methods for controlling water and sand production in subterranean wells
US20080110624A1 (en) 2005-07-15 2008-05-15 Halliburton Energy Services, Inc. Methods for controlling water and particulate production in subterranean wells
US20070114032A1 (en) 2005-11-22 2007-05-24 Stegent Neil A Methods of consolidating unconsolidated particulates in subterranean formations
US7678742B2 (en) 2006-09-20 2010-03-16 Halliburton Energy Services, Inc. Drill-in fluids and associated methods
US7678743B2 (en) 2006-09-20 2010-03-16 Halliburton Energy Services, Inc. Drill-in fluids and associated methods
US7687438B2 (en) 2006-09-20 2010-03-30 Halliburton Energy Services, Inc. Drill-in fluids and associated methods
US20080139411A1 (en) 2006-12-07 2008-06-12 Harris Phillip C Methods of treating subterranean formations using hydrophobically modified polymers and compositions of the same
US7730950B2 (en) 2007-01-19 2010-06-08 Halliburton Energy Services, Inc. Methods for treating intervals of a subterranean formation having variable permeability
US7934557B2 (en) 2007-02-15 2011-05-03 Halliburton Energy Services, Inc. Methods of completing wells for controlling water and particulate production
DK2229423T3 (en) 2008-01-09 2017-08-28 Akzo Nobel Nv APPLICATION OF AN ACID Aqueous SOLUTION CONTAINING A CHELATING AGENT AS AN OIL FIELD CHEMICAL

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040229757A1 (en) * 2003-05-16 2004-11-18 Eoff Larry S. Methods and compositions for reducing the production of water and stimulating hydrocarbon production from a subterranean formation
US20050194140A1 (en) * 2003-05-16 2005-09-08 Halliburton Energy Services, Inc. Methods useful for diverting aqueous fluids in subterranean operations
US20050164894A1 (en) * 2004-01-24 2005-07-28 Eoff Larry S. Methods and compositions for the diversion of aqueous injection fluids in injection operations
US20050211439A1 (en) * 2004-03-24 2005-09-29 Willett Ronald M Methods of isolating hydrajet stimulated zones

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7934557B2 (en) 2007-02-15 2011-05-03 Halliburton Energy Services, Inc. Methods of completing wells for controlling water and particulate production
WO2009122120A1 (en) * 2008-04-04 2009-10-08 Halliburton Energy Services, Inc. Methods for placement of sealant in subterranean intervals
CN103642483A (en) * 2013-12-17 2014-03-19 北京希涛技术开发有限公司 High temperature gelatinizing agent used in acidizing and fracturing and synthetic method thereof
US11448027B2 (en) 2020-08-14 2022-09-20 Saudi Arabian Oil Company Acid wash system for wireline and slickline

Also Published As

Publication number Publication date
AR061979A1 (en) 2008-08-10
US20060283592A1 (en) 2006-12-21
US8181703B2 (en) 2012-05-22

Similar Documents

Publication Publication Date Title
US8181703B2 (en) Method useful for controlling fluid loss in subterranean formations
US8418764B2 (en) Methods useful for controlling fluid loss in subterranean formations
US8631869B2 (en) Methods useful for controlling fluid loss in subterranean treatments
US7117942B2 (en) Methods useful for controlling fluid loss during sand control operations
US7934557B2 (en) Methods of completing wells for controlling water and particulate production
US7595283B2 (en) Methods and compositions for reducing the production of water and stimulating hydrocarbon production from a subterranean formation
US7182136B2 (en) Methods of reducing water permeability for acidizing a subterranean formation
US9896619B2 (en) Enhancing conductivity of microfractures
US8251141B2 (en) Methods useful for controlling fluid loss during sand control operations
RU2351627C2 (en) Method of stimulating hydrocarbon extraction and reduction of water producing level from underground formation
US20140144635A1 (en) Methods of Enhancing Fracture Conductivity of Subterranean Formations Propped with Cement Pillars
US20140144633A1 (en) Methods of Enhancing Fracture Conductivity of Subterranean Formations Propped with Cement Packs
US20140144634A1 (en) Methods of Enhancing the Fracture Conductivity of Multiple Interval Fractures in Subterranean Formations Propped with Cement Packs
AU2006230665A1 (en) Well Drilling Fluids Having Clay Control Properties
US11248167B2 (en) Acid diversion in naturally fractured formations
WO2013059082A1 (en) Hydrophobically modified polymer for thermally stabilizing fracturing fluids
US20190225875A1 (en) Use of polyhedral oligomeric silsesquioxane to increase the viscosity of well treatment fluids
US10337282B2 (en) Methods and compositions for reducing water production in fractures or voids in subterranean formations
US11441406B2 (en) Forming frac packs in high permeability formations
AU2020287847A1 (en) Low temperature diversion in well completion operations using a langbeinite compound
WO2021054982A1 (en) Treating subterranean formations using salt tolerant superabsorbent polymer particles
MXPA05012372A (en) Method for stimulating hydrocarbon production and reducing the production of water from a subterranean formation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07766214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07766214

Country of ref document: EP

Kind code of ref document: A1