WO2008000071B1 - Method, apparatus , signals , and media, for selecting operating conditions of a genset - Google Patents

Method, apparatus , signals , and media, for selecting operating conditions of a genset

Info

Publication number
WO2008000071B1
WO2008000071B1 PCT/CA2007/001135 CA2007001135W WO2008000071B1 WO 2008000071 B1 WO2008000071 B1 WO 2008000071B1 CA 2007001135 W CA2007001135 W CA 2007001135W WO 2008000071 B1 WO2008000071 B1 WO 2008000071B1
Authority
WO
WIPO (PCT)
Prior art keywords
operating
genset
values
power output
operating points
Prior art date
Application number
PCT/CA2007/001135
Other languages
French (fr)
Other versions
WO2008000071A1 (en
Inventor
Wei Liu
Nicolas Louis Bouchon
Original Assignee
Azur Dynamics Inc
Wei Liu
Nicolas Louis Bouchon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azur Dynamics Inc, Wei Liu, Nicolas Louis Bouchon filed Critical Azur Dynamics Inc
Priority to ES07720049T priority Critical patent/ES2433373T3/en
Priority to CA2659087A priority patent/CA2659087C/en
Priority to EP12197542.9A priority patent/EP2620342B1/en
Priority to EP07720049.1A priority patent/EP2035270B1/en
Publication of WO2008000071A1 publication Critical patent/WO2008000071A1/en
Publication of WO2008000071B1 publication Critical patent/WO2008000071B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/30Electric propulsion with power supplied within the vehicle using propulsion power stored mechanically, e.g. in fly-wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F13/00Apparatus for measuring by volume and delivering fluids or fluent solid materials, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/905Combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/906Motor or generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Abstract

A method and apparatus for selecting optimal operating conditions of a genset is disclosed. The genset includes an engine coupled to an electrical power generator, the genset having a plurality of operating points each including an engine speed value and a generator electrical power output value, and having a plurality of cost values associated with operating the genset at respective operating points. The method involves selecting a set of operating points from the plurality of operating points such that a sum of cost values associated with operating points in the set is minimized and such that the engine speed and generator electrical power output values of the operating points in the set increase or decrease monotonically.

Claims

AMENDED CLAIMS received by the International Bureau on 10 December 2007 810.12.2007)62What is claimed is:
1. A method for selecting operating conditions of a genset, the genset comprising an engine coupled to an electrical power generator, the genset having a plurality of operating points each comprising an engine speed value and a generator electrical power output value, and having a plurality of cost values associated with operating the genset at respective operating points, the method comprising:
selecting a set of operating points from the plurality of operating points such that a sum of cost values associated with operating points in said set is minimized and such that the engine speed and generator electrical power output values of the operating points in said set increase or decrease monotonically.
2. The method of claim 1 further comprising assigning a weight to each of the power output values such that cost values corresponding to more frequently demanded power outputs values are assigned a greater weight in said sum of cost values than cost values corresponding to less frequently demanded electrical power output values.
3. The method of claim 2 wherein assigning said weight comprises assigning greater weight to electrical power output values proximate a midpoint of a range of power outputs that the generator is capable of supplying.
4. The method of claim 2 further comprising generating a record of received demands for power outputs during operation of the genset over a period of time, and wherein assigning said weights comprises assigning greater weight to more frequently used power output values. 63
5. The method of claim 4 wherein generating said record comprises generating said record and updating said weights while operating the genset and wherein selecting further comprises selecting a new set of operating points when said weights have been updated.
6. The method of claim 1 wherein selecting comprises:
successively applying a dynamic programming algorithm to select sets of operating points at successive power output values within a range of power outputs the generator is capable of supplying; and
selecting a set of operating points corresponding to a last power output value in said range as said set of operating points for said genset.
7. The method of claim 6 wherein applying said dynamic programming algorithm comprises:
producing a first plurality of sums of cost values at a first power output value;
memoizing a result of at least one of said first plurality of said sums; and
using at least some of said memoized results for producing a further sum of cost values at a subsequent power output value.
8. The method of claim 7 wherein selecting comprises locating a minimum cost value at each power output value and wherein successively applying said dynamic programming algorithm comprises 64
first producing said sums of cost values corresponding to said minimum cost value at each successive power output value.
9. The method of claim 8 wherein locating said minimum cost value comprises locating an operating point corresponding to said minimum cost value using a golden section search technique.
10. The method of claim 1 further comprising receiving a demand to supply power at a demanded power output value and operating the genset at an operating point in said set of operating points corresponding to said demanded power output value.
11. The method of claim 10 wherein the genset is used to generate electrical energy for use in a hybrid vehicle and wherein receiving said demand comprises receiving a demand to supply power to at least one of a drive motor, a charger operable to charge a storage element, and an accessory associated with the hybrid vehicle.
12. The method of claim 11 wherein receiving said demand to supply power to said charger comprises receiving a demand to supply power to said charger while said hybrid electric vehicle remains stationary.
13. The method of claim 11 wherein receiving said demand to supply power to said drive motor comprises receiving a drive signal from an operator foot pedal representing a desired drive power to be supplied by said drive motor to wheels of said hybrid vehicle.
14. The method of claim 13 wherein said storage element is operable to supply at least a first portion of said desired drive power, and wherein receiving said demand comprises receiving a demand for a second portion of said desired drive power. 65
15. The method of claim 13 wherein receiving said demand to supply power to said charger comprises receiving a charge signal from a storage element controller, said charge signal being produced in response to a state of charge associated with said storage element.
16. The method of claim 1 further comprising receiving a plurality of cost values.
17. The method of claim 16 further comprising selecting a new set of operating points in response to receiving said plurality of cost values.
18. The method of claim 1 wherein selecting comprises selecting said set of genset operating points prior to operating said genset.
19. An apparatus for selecting operating conditions of a genset, the genset comprising an engine coupled to an electrical power generator, the genset having a plurality of operating points each comprising an engine speed value and a generator electrical power output value, and having a plurality of cost values associated with operating the genset at respective operating points, the apparatus comprising:
means for selecting a set of operating points from the plurality of operating points such that a sum of cost values associated with operating points in said set is minimized and such that the engine speed and generator electrical power output values of the operating points in said set increase or decrease monotonically.
20. The apparatus of claim 19 further comprising means for assigning a weight to each of the power output values such that cost values corresponding to more frequently demanded power output values are 66
assigned a greater weight in said sum of cost values than cost values corresponding to less frequently demanded electrical power output values.
21. The apparatus of claim 20 wherein said means for assigning said weight comprises means for assigning greater weight to electrical power output values proximate a midpoint of a range of power outputs that the generator is capable of supplying.
22. The apparatus of claim 20 further comprising means for generating a record of received demands for power outputs during operation of the genset over a period of time, and wherein said means for assigning said weights comprises means for assigning greater weight to more frequently used power output values.
23. The apparatus of claim 22 wherein said means for generating said record comprises means for updating said weights while operating the genset and wherein said means for selecting is operably configured to select a new set of operating points when said weights have been updated.
24. The apparatus of claim 19 wherein said means for selecting comprises:
means for successively applying a dynamic programming algorithm to select sets of operating points at successive power output values within a range of power output values the generator is capable of supplying; and
means for selecting a set of operating points corresponding to a last power output value in said range as said set of operating points for said genset.
25. The apparatus of claim 24 wherein said means for applying said dynamic programming algorithm comprises:
means for producing a first plurality of sums of cost values at a first power output value;
means for memoizing a result of at least one of said first plurality of said sums; and
means for using at least some of said memoized results for producing a further sum of cost values at a subsequent power output value.
26. The apparatus of claim 25 wherein said means for selecting comprises means for locating a minimum cost value at each power output value and wherein said means for successively applying said dynamic programming algorithm comprises means for first producing said sums of cost values corresponding to said minimum cost value at each successive power output value.
27. The apparatus of claim 26 wherein said means for locating said minimum cost value comprises means for implementing a golden section search technique.
28. The apparatus of claim 19 further comprising means for receiving a demand to supply power at a demanded power output value and means for operating the genset at an operating point in said set of operating points corresponding to said demanded power output value.
29. The apparatus of claim 28 wherein the genset is used to generate electrical energy for use in a hybrid vehicle and wherein said means for receiving said demand comprises means for receiving a demand to 68
supply power to at least one of a drive motor, a charger operable to charge a storage element, and an accessory associated with the hybrid vehicle.
30. The apparatus of claim 29 wherein said means for receiving said demand to supply power to said charger comprises means for receiving a demand to supply power to said charger while said hybrid electric vehicle remains stationary.
31. The apparatus of claim 29 wherein said storage element comprises at least one of a storage battery, a capacitor, and an electrically coupled flywheel.
32. The apparatus of claim 29 wherein said means for receiving said demand to supply power to said drive motor comprises means for receiving a drive signal from an operator foot pedal representing a desired drive power to be supplied by said drive motor to wheels of said hybrid vehicle.
33. The apparatus of claim 32 wherein said storage element is operable to supply at least a first portion of said desired drive power, and wherein said demand comprises a demand for a second portion of said desired drive power.
34. The apparatus of claim 32 wherein said means for receiving said demand to supply power to said charger comprises means for receiving a charge signal from a storage element controller, said charge signal being produced in response to a state of charge associated with said storage element. 69
35. The apparatus of claim 19 further comprising means for receiving a plurality of cost values.
36. The apparatus of claim 35 further comprising means for selecting a new set of operating points in response to receiving said plurality of cost values.
37. The apparatus of claim 19 wherein said means for selecting comprises means for selecting said set of genset operating points prior to operating said genset.
38. An apparatus for selecting operating conditions of a genset, the genset comprising an engine coupled to an electrical power generator, the genset having a plurality of operating points each comprising an engine speed value and a generator electrical power output value, and having a plurality of cost values associated with operating the genset at respective operating points, the apparatus comprising:
a processor circuit operable to select a set of operating points from the plurality of operating points such that a sum of cost values associated with operating points in said set is minimized and such that the engine speed and generator electrical power output values of the operating points in said set increase or decrease monotonically.
39. The apparatus of claim 38 wherein said processor circuit is operably configured to assign a weight to each of the power output values such that cost values corresponding to more frequently demanded power outputs are assigned a greater weight in said sum of cost values than cost values corresponding to less frequently demanded electrical power output values. 70
40. The apparatus of claim 39 wherein said processor circuit is operably configured to assign greater weight to electrical power output values proximate a midpoint of a range of power outputs that the generator is capable of supplying.
41. The apparatus of claim 39 wherein said processor circuit is operably configured to generate a record of received demands for power outputs during operation of the genset over a period of time and to assign greater weight to more frequently used power output values.
42. The apparatus of claim 41 wherein said processor circuit is operably configured to update said weights while operating the genset and to select a new set of operating points when said weights have been updated.
43. The apparatus of claim 38 wherein said processor circuit is operably configured to:
successively apply a dynamic programming algorithm to select sets of operating points at successive power output values within a range of power outputs the generator is capable of supplying; and
select a set of operating points corresponding to a last power output value in said range as said set of operating points for said genset.
44. The apparatus of claim 43 wherein said processor circuit is operably configured to:
produce a first plurality of sums of cost values at a first power output value; 71
memoize a result of at least one of said first plurality of said sums; and
use at least some of said memoized results for producing a further sum of cost values at a subsequent power output value.
45. The apparatus of claim 44 wherein said processor circuit is operably configured to locate a minimum cost value at each power output value and to apply said dynamic programming algorithm to first produce said sums of cost values corresponding to said minimum cost value at each successive power output value.
46. The apparatus of claim 45 wherein said processor circuit is operably configured to locate said minimum cost value using a golden section search technique.
47. The apparatus of claim 38 wherein said processor circuit is operably configured to receive a demand to supply power at a demanded power output value and to operate the genset at an operating point in said set of operating points corresponding to said demanded power output value.
48. The apparatus of claim 47 wherein the genset is used to generate electrical energy for use in a hybrid vehicle and wherein said processor circuit is operably configured to receive a demand to supply power to at least one of a drive motor, a charger operable to charge a storage element, and an accessory associated with the hybrid vehicle.
49. The apparatus of claim 48 wherein said processor circuit is operably configured to receive said demand to supply power to said charger while said hybrid electric vehicle remains stationary. 72
50. The apparatus of claim 48 wherein said storage element comprises at least one of a storage battery, a capacitor, and an electrically coupled flywheel.
51. The apparatus of claim 48 wherein said processor circuit is operably configured to receive a drive signal from an operator foot pedal representing a desired drive power to be supplied by said drive motor to wheels of said hybrid vehicle.
52. The apparatus of claim 51 wherein said storage element is operable to supply at least a first portion of said desired drive power, and wherein said demand comprises a demand for a second portion of said desired drive power.
53. The apparatus of claim 51 wherein said processor circuit is operably configured to receive a charge signal from a storage element controller, said charge signal being produced in response to a state of charge associated with said storage element.
54. The apparatus of claim 38 wherein said processor circuit is operably configured to receive a plurality of cost values.
55. The apparatus of claim 54 wherein said processor circuit is operably configured to select a new set of operating points in response to receiving said plurality of cost values.
56. The apparatus of claim 38 wherein said processor circuit is operably configured to select said set of genset operating points prior to operating the genset.
57. A computer readable medium encoded with codes for directing a processor circuit to perform a method for selecting optimal operating 73
conditions of a gensβt, the genset comprising an engine coupled to an electrical power generator, the genset having a plurality of operating points each comprising an engine speed value and a generator electrical power output value, and having a plurality of cost values associated with operating the genset at respective operating points, the method comprising:
selecting a set of operating points from the plurality of operating points such that a sum of cost values associated with operating points in said set is minimized and such that the engine speed and generator electrical power output values of the operating points in said set increase or decrease monotonically.
58. A computer readable signal encoded with codes for directing a processor circuit to perform a method for selecting optimal operating conditions of a genset, the genset comprising an engine coupled to an electrical power generator, the genset having a plurality of operating points each comprising an engine speed value and a generator electrical power output value, and having a plurality of cost values associated with operating the genset at respective operating points, the method comprising:
selecting a set of operating points from the plurality of operating points such that a sum of cost values associated with operating points in said set is minimized and such that the engine speed and generator electrical power output values of the operating points in said set increase or decrease monotonically.
59. A data structure for facilitating transfer of a set of operating points used in operating a genset, the genset comprising an engine coupled to an electrical power generator, the genset having a plurality of operating 74
points each comprising an engine speed value and a generator electrical power output value, and having a plurality of cost values associated with operating the genset at respective operating points, the data structure comprising:
a set of operating points, each operating point comprising an engine speed data element and a linked power output data element, said engine speed data element and said power output data elements in said set having monotonically increasing or decreasing values, said data elements in said set having values that minimize a sum of the cost values associated with operating the genset at respective operating points.
60. A method for producing a plurality of cost values associated with operating a genset at respective operating points, the genset comprising an engine coupled to an electrical power generator, the method comprising:
assigning weights to each of a plurality of operating conditions associated with operating the genset, said weights representing a desired trade-off between said plurality of operating conditions;
receiving operating condition values corresponding to each of said plurality of operating conditions, said operating condition values associated with operating the genset at each of a plurality of operating points, said operating points each comprising an engine speed value and a generator electrical power output value, at least one generator electrical power output value having more than one possible operating point; and 75
producing the cost values for each operating point by combining said operating condition values in accordance with said weights for each respective operating point.
61. The method of claim 60 wherein receiving said operating condition values comprises one of:
receiving a computer readable signal encoded with codes representing said operating condition values; and
reading a computer readable medium encoded with codes representing said operating condition values.
62. The method of claim 60 wherein receiving comprises receiving a set of data values representing expected values of said operating conditions.
63. The method of claim 60 further comprising producing a signal representing a real-time value of at least one of said operating condition values and wherein receiving comprises receiving said signal.
64. The method of claim 60 wherein receiving said operating condition values comprises receiving values representing at least one of:
a fuel consumption level;
a nitrogen-oxide emission level ;
a carbon monoxide emission level;
a hydrocarbon emission level; and
a particulate matter emission level. 76
65. The method of claim 60 wherein receiving said operating condition values comprises receiving a fuel consumption level and a level of at least one engine emission.
66. The method of claim 60 wherein assigning said weights comprises receiving user input at a user interface associated with the genset and updating said weights in accordance with said user input.
67. The method of claim 60 wherein producing said cost values comprises calculating a weighted sum of said operating condition values for each of said plurality of genset operating points.
68. The method of claim 60 further comprising normalizing said operating condition values and wherein combining said operating condition values comprises combining said normalized operating condition values.
69. An apparatus for producing a plurality of cost values associated with operating a genset at respective operating points, the genset comprising an engine coupled to an electrical power generator, the apparatus comprising:
means for assigning weights to each of a plurality of operating conditions associated with operating the genset, said weights representing a desired trade-off between said plurality of operating conditions;
means for receiving operating condition values corresponding to each of said plurality of operating conditions, said operating condition values associated with operating the genset at each of a plurality of operating points, said operating points each 77
comprising an engine speed value and a generator electrical power output value, at least one generator electrical power output value having more than one possible operating point; and
means for producing the cost values for each operating point by combining said operating condition values in accordance with said weights for each respective operating point.
70. The apparatus of claim 69 wherein said means for receiving said operating condition values comprises one of:
means for receiving a computer readable signal encoded with codes representing said operating condition values; and
means for reading a computer readable medium encoded with codes representing said operating condition values.
71. The apparatus of claim 69 wherein said means for receiving comprises means for receiving a set of data values representing expected values of said operating conditions.
72. The apparatus of claim 69 further comprising means for producing a signal representing a real-time value of at least one of said operating condition values, and further comprising means for receiving said signal.
73. The apparatus of claim 69 wherein said means for receiving said operating condition values comprises means for receiving values representing at least one of:
a fuel consumption level; 78
a nitrogen-oxide emission level ;
a carbon monoxide emission level;
a hydrocarbon emission level; and
a particulate matter emission level.
74. The apparatus of claim 69 wherein said means for receiving said plurality of operating condition values comprises means for receiving a fuel consumption level and a level of at least one engine emission.
75. The apparatus of claim 69 wherein said means for assigning said weights comprises means for receiving user input at a user interface associated with the genset and means for updating said weights in accordance with said user input.
76. The apparatus of claim 69 wherein said means for producing the cost values comprises means for calculating a weighted sum of said operating condition values for each of the plurality of genset operating points.
77. The apparatus of claim 69 further comprising means for normalizing said operating condition values prior to combining said operating condition values.
78. An apparatus for producing a plurality of cost values associated with operating a genset at respective operating points, the genset comprising an engine coupled to an electrical power generator, the apparatus comprising: 79
a processor circuit, operably configured to assign weights to each of a plurality of operating conditions associated with operating the genset, said weights representing a desired tradeoff between said plurality of operating conditions;
said processor circuit being operably configured to receive operating condition values corresponding to each of the plurality of operating conditions, said operating condition values associated with operating the genset at each of a plurality of operating points, said operating points each comprising an engine speed value and a generator electrical power output value, at least one generator electrical power output value having more than one possible operating point; and
said processor circuit being operably configured to produce the cost values for each operating point by combining said operating condition values in accordance with said weights for each respective operating point.
79. The apparatus of claim 78 wherein said processor circuit is operabfy configured to receive one of:
a computer readable signal encoded with codes representing said operating condition values; and
a computer readable medium encoded with codes representing said operating condition values.
80. The apparatus of claim 78 wherein said processor circuit is operably configured to receive a set of data values representing expected values of said operating conditions. 80
81. The apparatus of claim 78 further comprising a sensor operably configured to produce a signal representing a real-time value of at least one of said operating condition values and wherein said processor circuit is operably configured to receive said signal.
82. The apparatus of claim 78 wherein the processor circuit is operably configured to receive operating condition values representing at least one of:
a fuel consumption level;
a nitrogen-oxide emission level ;
a carbon monoxide emission level;
a hydrocarbon emission level; and
a particulate matter emission level.
83. The apparatus of claim 78 wherein said processor circuit is configured to receive operating condition values representing a fuel consumption level and a level of at least one engine emission.
84. The apparatus of claim 78 wherein said processor circuit is operably configured to receive user input at a user interface associated with the genset and to update said weights in accordance with said user input.
85. The apparatus of claim 78 wherein said processor circuit is operably configured to calculate a weighted sum of said operating conditions for each of said plurality of genset operating points. 81
86. The apparatus of claim 78 wherein said processor circuit is operably configured to normalize said operating condition values prior to combining said operating condition values.
87. A computer readable medium encoded with codes for directing a processor circuit to carry out a method for producing a plurality of cost values associated with operating a genset at respective operating points, the genset comprising an engine coupled to an electrical power generator, the method comprising:
assigning weights to each of a plurality of operating conditions associated with operating the genset, said weights representing a desired trade-off between said plurality of operating conditions;
receiving operating condition values corresponding to each of said plurality of operating conditions, said operating condition values associated with operating the genset at each of a plurality of operating points, said operating points each comprising an engine speed value and a generator electrical power output value, at least one generator electrical power output value having more than one possible operating point; and
producing the cost values for each operating point by combining said operating condition values in accordance with said weights for each respective operating point.
88. A computer readable signal encoded with codes for directing a processor circuit to carry out a method for producing a plurality of cost values associated with operating a genset at respective operating 82
points, the genset comprising an engine coupled to an electrical power generator, the method comprising:
assigning weights to each of a plurality of operating conditions associated with operating the genset, said weights representing a desired trade-off between said plurality of operating conditions;
receiving operating condition values corresponding to each of said plurality of operating conditions, said operating condition values associated with operating the genset at each of a plurality of operating points, said operating points each comprising an engine speed value and a generator electrical power output value, at least one generator electrical power output value having more than one possible operating point; and
producing the cost values for each operating point by combining said operating condition values in accordance with said weights for each respective operating point.
89. A data structure for facilitating transfer of cost value data for use in operating a genset at respective operating points, the genset comprising an engine coupled to an electrical power generator, the data structure comprising:
a collection of linked data elements, said data elements comprising:
a plurality of operating points each comprising an engine speed value and a generator electrical power output 83
value, at least one generator electrical power output value having more than one possible operating point; and
a cost value corresponding to each of said operating points, each cost value representing a weighted combination of a plurality of operating conditions associated with operating the genset at said operating point.
PCT/CA2007/001135 2006-06-26 2007-06-26 Method, apparatus , signals , and media, for selecting operating conditions of a genset WO2008000071A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES07720049T ES2433373T3 (en) 2006-06-26 2007-06-26 Procedure, devices, signals and means, for the selection of the operating conditions of a generator set
CA2659087A CA2659087C (en) 2006-06-26 2007-06-26 Method, apparatus, signals, and media, for selecting operating conditions of a genset
EP12197542.9A EP2620342B1 (en) 2006-06-26 2007-06-26 Method, apparatus, signals, and media, for selecting operating conditions of a genset
EP07720049.1A EP2035270B1 (en) 2006-06-26 2007-06-26 Method, apparatus, signals, and media, for selecting operating conditions of a genset

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US81650306P 2006-06-26 2006-06-26
US60/816,503 2006-06-26

Publications (2)

Publication Number Publication Date
WO2008000071A1 WO2008000071A1 (en) 2008-01-03
WO2008000071B1 true WO2008000071B1 (en) 2008-02-21

Family

ID=38845070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2007/001135 WO2008000071A1 (en) 2006-06-26 2007-06-26 Method, apparatus , signals , and media, for selecting operating conditions of a genset

Country Status (5)

Country Link
US (5) US8346416B2 (en)
EP (3) EP2620342B1 (en)
CA (1) CA2659087C (en)
ES (1) ES2433373T3 (en)
WO (1) WO2008000071A1 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4479488B2 (en) * 2004-12-01 2010-06-09 株式会社デンソー Exhaust power generator
JP4449882B2 (en) * 2005-10-14 2010-04-14 株式会社デンソー Vehicle power generation control device
EP2591964B1 (en) 2006-05-09 2018-09-05 GE Hybrid Technologies, LLC Process and apparatus for reducing nitrogen oxide emissions in genset systems
EP2620342B1 (en) 2006-06-26 2019-09-04 GE Hybrid Technologies, LLC Method, apparatus, signals, and media, for selecting operating conditions of a genset
JP4780402B2 (en) * 2006-06-27 2011-09-28 株式会社デンソー Vehicle power supply
US7826939B2 (en) * 2006-09-01 2010-11-02 Azure Dynamics, Inc. Method, apparatus, signals, and medium for managing power in a hybrid vehicle
US8010247B2 (en) * 2007-11-03 2011-08-30 GM Global Technology Operations LLC Method for operating an engine in a hybrid powertrain system
US8897975B2 (en) * 2007-11-04 2014-11-25 GM Global Technology Operations LLC Method for controlling a powertrain system based on penalty costs
JP4726966B2 (en) * 2009-01-30 2011-07-20 エンパイア テクノロジー ディベロップメント エルエルシー Hybrid vehicle drive device, hybrid vehicle, and drive method
DE102010007632A1 (en) * 2010-02-05 2011-08-11 Dr. Ing. h.c. F. Porsche Aktiengesellschaft, 70435 hybrid vehicle
US8590330B2 (en) 2010-06-03 2013-11-26 Thermo King Corporation Electric transport refrigeration unit with temperature-based diesel operation
GB201014680D0 (en) * 2010-09-04 2010-10-20 Jaguar Cars Controller and method of control of a hybrid electric vehicle
GB201107280D0 (en) * 2011-04-28 2011-06-15 Imp Innovations Ltd A drive train for a hybrid electric vehicle and a method of operating such a vehicle
AT512023B1 (en) 2011-10-13 2015-06-15 Avl List Gmbh METHOD FOR OPERATING A POWER GENERATING AGGREGATE
DE102012201270A1 (en) * 2012-01-30 2013-08-01 Bayerische Motoren Werke Aktiengesellschaft Method for determining operating point of range extender in electric car, involves selecting speed stage for operation of extender from discrete target rotation speed stages of electric machine in dependence of nominal output of extender
GB201208519D0 (en) * 2012-05-15 2012-06-27 Passivsystems Ltd Predictive temperature management system controller
US9584055B2 (en) 2012-07-17 2017-02-28 Caterpillar (Ni) Limited Voltage regulator system for a genset
CN103847729B (en) * 2012-12-05 2016-05-18 上海汽车集团股份有限公司 In new-energy automobile hybrid power system, control the method and apparatus of interfering moment of torsion
US9099882B2 (en) * 2013-01-18 2015-08-04 Caterpillar Inc. Turbine engine hybrid power supply
US10609328B2 (en) 2013-05-13 2020-03-31 Grass Valley Limited Video processing using a one-dimensional control function to control processing time and error
GB2514120B (en) * 2013-05-13 2020-05-27 Grass Valley Ltd Video processing
JP5876442B2 (en) * 2013-05-17 2016-03-02 トヨタ自動車株式会社 Hybrid vehicle
US9067587B1 (en) * 2014-01-17 2015-06-30 Ford Global Technologies, Llc Torque based energy management in hybrid vehicle
US9500151B2 (en) * 2014-02-06 2016-11-22 Ford Global Technologies, Llc Non-intrusive exhaust gas sensor monitoring
US10514928B2 (en) * 2014-04-17 2019-12-24 Arm Limited Preventing duplicate execution by sharing a result between different processing lanes assigned micro-operations that generate the same result
US9817466B2 (en) 2014-04-17 2017-11-14 Arm Limited Power saving by reusing results of identical micro-operations
US9933841B2 (en) * 2014-04-17 2018-04-03 Arm Limited Reuse of results of back-to-back micro-operations
US9246425B2 (en) * 2014-04-29 2016-01-26 Gulfstream Aerospace Corporation Apparatus and systems for engine and generator control within an aircraft
US10351124B2 (en) * 2014-10-02 2019-07-16 Volvo Truck Corporation Method performed by a control unit for controlling energy flows of a vehicle
EP3215405A1 (en) * 2014-11-06 2017-09-13 Volvo Truck Corporation A hybrid vehicle and a method for energy management of a hybrid vehicle
US10205322B1 (en) 2015-03-09 2019-02-12 Cummins Power Generation Ip, Inc. Economically efficient operation of a power generator
JP6758368B2 (en) * 2015-05-08 2020-09-23 フロージョー エルエルシーFlowJo, LLC Data discovery node
KR101704266B1 (en) * 2015-10-02 2017-02-07 현대자동차주식회사 Method for controlling battery soc of hybrid vehicle
EP3601773A1 (en) 2017-03-31 2020-02-05 Generac Power Systems, Inc. Carbon monoxide detecting system for internal combustion engine-based machines
US10578040B2 (en) 2017-09-15 2020-03-03 Toyota Motor Engineering & Manufacturing North America, Inc. Smoothed and regularized Fischer-Burmeister solver for embedded real-time constrained optimal control problems in automotive systems
EP3505379B1 (en) 2017-12-26 2021-02-17 Ikerlan, S. Coop. Method for obtaining and storing the optimal operating points of a generator set comprising a heat engine coupled to an electric generator
US10739768B2 (en) 2018-08-08 2020-08-11 Toyota Motor Engineering & Manufacturing North America, Inc. Smoothed and regularized Fischer-Burmeister solver for embedded real-time constrained optimal control problems in autonomous systems
US11188045B2 (en) 2019-03-18 2021-11-30 Caterpillar Inc. Energy management system with gensets and energy storage
US10998732B2 (en) 2019-03-20 2021-05-04 Caterpillar Inc. System and method for diverse multi-source energy management
US11267364B2 (en) * 2019-04-24 2022-03-08 Hyundai Motor Company SOC control method and apparatus for improving fuel efficiency of hybrid vehicle
EP3944977A1 (en) * 2020-07-31 2022-02-02 Volvo Car Corporation Operating point controller
US20220058042A1 (en) * 2020-08-24 2022-02-24 Juniper Networks, Inc. Intent-based telemetry collection service
CN116505700B (en) * 2023-06-25 2023-09-12 江苏国蓉控股有限公司 Steady flow pipeline structure of water-cooled generator set

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2916635A (en) 1956-05-29 1959-12-08 Specialties Dev Corp Means for controlling the speed of turbines
US3261007A (en) 1963-04-24 1966-07-12 Continental Elektro Ind Ag Measuring device for determining angular position
US3225542A (en) 1964-03-16 1965-12-28 Oilgear Co Speed control system
US4905544A (en) 1975-09-25 1990-03-06 Ganoung David P Powertrain control apparatus for improving fuel economy
US4083052A (en) 1976-06-16 1978-04-04 Sangamo Electric Company Electronic tachograph
US4407132A (en) 1980-02-20 1983-10-04 Daihatsu Motor Co., Ltd. Control apparatus and method for engine/electric hybrid vehicle
JPS5954917A (en) 1982-09-24 1984-03-29 Toshiba Corp Digital movement detecting device
JPH01144101A (en) 1987-11-30 1989-06-06 Mitsubishi Heavy Ind Ltd Fuel cost minimum operation controller for co-generation plant
DE4217668C1 (en) 1992-05-28 1993-05-06 Daimler Benz Ag Method for controlling a hybrid drive that drives a vehicle
US5343970A (en) * 1992-09-21 1994-09-06 Severinsky Alex J Hybrid electric vehicle
US5345761A (en) 1993-12-02 1994-09-13 Ford Motor Company Energy management system for hybrid vehicle
US6054844A (en) * 1998-04-21 2000-04-25 The Regents Of The University Of California Control method and apparatus for internal combustion engine electric hybrid vehicles
JPH0998515A (en) 1995-07-25 1997-04-08 Nippon Soken Inc Engine controller for hybrid vehicle
US5547433A (en) 1996-05-09 1996-08-20 Yang; Tai-Her Distributed differential coupling combined power system
JPH09327103A (en) 1996-06-06 1997-12-16 Isuzu Ceramics Kenkyusho:Kk Control apparatus for hybrid vehicle
CA2182630C (en) 1996-08-02 2003-02-11 Piotr Drozdz A control system for a hybrid vehicle
DE69707704T3 (en) * 1996-12-20 2013-07-11 Manuel Dos Santos Da Ponte HYBRID GENERATOR DEVICE
JP3211751B2 (en) 1997-03-24 2001-09-25 トヨタ自動車株式会社 Power output device and control method thereof
JP3536581B2 (en) * 1997-04-16 2004-06-14 日産自動車株式会社 Power generation control device for hybrid electric vehicle
JP3286572B2 (en) 1997-08-25 2002-05-27 本田技研工業株式会社 Torque shock mitigation device for hybrid vehicle
JPH11148387A (en) 1997-09-15 1999-06-02 Honda Motor Co Ltd Hybrid vehicle controlling device
US7688074B2 (en) 1997-11-03 2010-03-30 Midtronics, Inc. Energy management system for automotive vehicle
EP1065362B1 (en) 1998-03-19 2010-06-02 Hitachi, Ltd. Hybrid car
JPH11270668A (en) 1998-03-20 1999-10-05 Nissan Motor Co Ltd Drive control device for hybrid vehicle
US6554088B2 (en) 1998-09-14 2003-04-29 Paice Corporation Hybrid vehicles
JP3300295B2 (en) 1998-12-07 2002-07-08 本田技研工業株式会社 Control device for hybrid vehicle
JP3454174B2 (en) 1998-12-22 2003-10-06 トヨタ自動車株式会社 Exhaust gas purification system for hybrid vehicles
US6242873B1 (en) 2000-01-31 2001-06-05 Azure Dynamics Inc. Method and apparatus for adaptive hybrid vehicle control
US6319168B1 (en) 2000-04-25 2001-11-20 General Motors Corporation Apparatus and method for active transmission synchronization and shifting
US6574535B1 (en) 2000-05-31 2003-06-03 General Motors Corporation Apparatus and method for active driveline damping with clunk control
US6335610B1 (en) 2000-06-30 2002-01-01 Ford Global Technologies, Inc. Method and apparatus for determining the operational energy cost of a hybrid vehicle
JP3832237B2 (en) 2000-09-22 2006-10-11 日産自動車株式会社 Control device for hybrid vehicle
US6500089B2 (en) 2000-10-31 2002-12-31 Ford Global Technologies, Inc. Method and arrangement in a hybrid vehicle for maximizing efficiency by operating the engine at sub-optimum conditions
GB0028598D0 (en) * 2000-11-23 2001-01-10 Ricardo Consulting Eng Improvements in hybrid power sources
US20040174125A1 (en) 2000-12-27 2004-09-09 Transportation Techniques Llc Method and apparatus for adaptive control of hybrid electric vehicle components
US6573675B2 (en) * 2000-12-27 2003-06-03 Transportation Techniques Llc Method and apparatus for adaptive energy control of hybrid electric vehicle propulsion
JP3624831B2 (en) * 2000-12-28 2005-03-02 株式会社デンソー Vehicle power supply device and engine drive regulation support device
DE60236844D1 (en) 2001-01-03 2010-08-12 Univ California PROCESS FOR CONTROLLING THE OPERATING PROPERTIES
US6622804B2 (en) * 2001-01-19 2003-09-23 Transportation Techniques, Llc. Hybrid electric vehicle and method of selectively operating the hybrid electric vehicle
JP3580260B2 (en) 2001-03-01 2004-10-20 日産自動車株式会社 Vehicle control device
JP3721088B2 (en) 2001-03-01 2005-11-30 株式会社日立製作所 Control device for hybrid vehicle
JP3624841B2 (en) * 2001-03-06 2005-03-02 日産自動車株式会社 Vehicle control device
US7137344B2 (en) * 2001-03-27 2006-11-21 General Electric Company Hybrid energy off highway vehicle load control system and method
WO2002090747A2 (en) 2001-05-07 2002-11-14 Battelle Memorial Institute Heat energy utilization system
JP3712684B2 (en) 2001-06-01 2005-11-02 本田技研工業株式会社 Control device for hybrid vehicle
US6421599B1 (en) 2001-08-09 2002-07-16 Ford Global Technologies, Inc. Control strategy for an internal combustion engine in a hybrid vehicle
JP3744414B2 (en) 2001-11-29 2006-02-08 トヨタ自動車株式会社 Vehicle control device
US20040015255A1 (en) * 2002-01-16 2004-01-22 Ballard Power Systems Corporation Process for the optimization of the design of an electric power train
US6768621B2 (en) 2002-01-18 2004-07-27 Solectria Corporation Contactor feedback and precharge/discharge circuit
US6555991B1 (en) 2002-02-05 2003-04-29 Andrew Michael Zettel Battery operating condition dependent method and apparatus for controlling energy transfer between an energy bus and a system of batteries
US6909200B2 (en) 2002-02-28 2005-06-21 Azure Dynamics Inc. Methods of supplying energy to an energy bus in a hybrid electric vehicle, and apparatuses, media and signals for the same
US6879054B2 (en) 2002-03-15 2005-04-12 Azure Dynamics Inc. Process, apparatus, media and signals for controlling operating conditions of a hybrid electric vehicle to optimize operating characteristics of the vehicle
JP2003327013A (en) 2002-05-16 2003-11-19 Nissan Motor Co Ltd Driving force controller for vehicle
US7383902B2 (en) * 2002-12-20 2008-06-10 Hitachi, Ltd. Hybrid car and control apparatus therefor, and hybrid four-wheel-drive car and control apparatus therefor
WO2004071800A1 (en) 2003-02-06 2004-08-26 Wavecrest Laboratories Llc Adaptive electric vehicle
US7324902B2 (en) * 2003-02-18 2008-01-29 General Motors Corporation Method and apparatus for generalized recursive least-squares process for battery state of charge and state of health
JP3896973B2 (en) 2003-02-25 2007-03-22 株式会社デンソー Management method of electric system for vehicle
JP4131188B2 (en) 2003-04-09 2008-08-13 アイシン・エィ・ダブリュ株式会社 Control device for hybrid vehicle
US6889126B2 (en) * 2003-04-22 2005-05-03 Nissan Motor Co., Ltd. Drive force control for hybrid electric vehicle
KR101102802B1 (en) * 2003-06-02 2012-01-05 마그네틱 애플리케이션 인크. Controller for permanent magnet alternator
JP4062264B2 (en) * 2003-06-06 2008-03-19 アイシン・エィ・ダブリュ株式会社 Vehicle drive control device, vehicle drive control method, and program
US7200476B2 (en) 2003-10-14 2007-04-03 General Motors Corporation Optimal selection of input torque considering battery utilization for a hybrid electric vehicle
US7295902B2 (en) 2004-04-30 2007-11-13 General Motors Corporation Torque management algorithm for hybrid electric vehicles
US7024290B2 (en) 2004-07-30 2006-04-04 Ford Global Technologies, Llc Active motor damping to mitigate electric vehicle driveline oscillations
US7223203B2 (en) 2004-09-01 2007-05-29 Ford Global Technologies, Llc Method of detecting torque disturbances in a hybrid vehicle
JP4254693B2 (en) * 2004-11-08 2009-04-15 トヨタ自動車株式会社 Driving device and automobile equipped with the same
US8061463B2 (en) 2004-11-25 2011-11-22 Honda Motor Co., Ltd. Control system for hybrid vehicle
JP4622496B2 (en) * 2004-12-08 2011-02-02 株式会社デンソー Electric power control device
US7480555B2 (en) 2004-12-16 2009-01-20 Eaton Corporation Method for controlling centrifugal clutch engagement using engine torque requests
JP4196957B2 (en) 2005-03-03 2008-12-17 トヨタ自動車株式会社 Hybrid vehicle and control method thereof
JP2006248469A (en) * 2005-03-14 2006-09-21 Hitachi Ltd Electric four-wheel drive car and its control system
WO2006132020A1 (en) * 2005-06-07 2006-12-14 Aisin Aw Co., Ltd. Hybrid drive device
JP4241676B2 (en) * 2005-06-27 2009-03-18 トヨタ自動車株式会社 POWER OUTPUT DEVICE, VEHICLE MOUNTING THE SAME, AND METHOD FOR CONTROLLING POWER OUTPUT DEVICE
US7549292B2 (en) 2005-10-03 2009-06-23 General Electric Company Method of controlling bypass air split to gas turbine combustor
JP3927584B2 (en) * 2005-10-26 2007-06-13 三菱電機株式会社 Power control device for automobile
US7601092B2 (en) 2005-12-23 2009-10-13 Gm Global Technology Operations, Inc. Vehicle propulsion system
US7315774B2 (en) 2006-03-22 2008-01-01 Gm Global Technology Operations, Inc. Jerk management using multivariable active driveline damping
US7577507B2 (en) 2006-03-22 2009-08-18 Gm Global Technology Operations, Inc. Driveline lash estimation and clunk management using multivariable active driveline damping
EP2591964B1 (en) 2006-05-09 2018-09-05 GE Hybrid Technologies, LLC Process and apparatus for reducing nitrogen oxide emissions in genset systems
US7491144B2 (en) * 2006-05-11 2009-02-17 Gm Global Technology Operations, Inc. Single mode, compound-split transmission with dual mechanical paths and fixed reduction ratio
EP2620342B1 (en) 2006-06-26 2019-09-04 GE Hybrid Technologies, LLC Method, apparatus, signals, and media, for selecting operating conditions of a genset
US7563730B2 (en) 2006-08-31 2009-07-21 Micron Technology, Inc. Hafnium lanthanide oxynitride films
US7826939B2 (en) 2006-09-01 2010-11-02 Azure Dynamics, Inc. Method, apparatus, signals, and medium for managing power in a hybrid vehicle
JP4197039B2 (en) 2007-03-28 2008-12-17 トヨタ自動車株式会社 POWER OUTPUT DEVICE, VEHICLE MOUNTING THE SAME, AND METHOD FOR CONTROLLING POWER OUTPUT DEVICE

Also Published As

Publication number Publication date
US9403529B2 (en) 2016-08-02
US8655570B2 (en) 2014-02-18
WO2008000071A1 (en) 2008-01-03
EP2620342A3 (en) 2016-08-10
EP2620341A3 (en) 2016-08-10
US20150203101A1 (en) 2015-07-23
EP2035270B1 (en) 2013-08-07
EP2620342A2 (en) 2013-07-31
US9020734B2 (en) 2015-04-28
CA2659087A1 (en) 2008-01-03
US20130090864A1 (en) 2013-04-11
CA2659087C (en) 2014-12-09
EP2035270A1 (en) 2009-03-18
US20140121879A1 (en) 2014-05-01
US20130066503A1 (en) 2013-03-14
EP2620341B1 (en) 2017-11-29
US20080122228A1 (en) 2008-05-29
EP2620341A2 (en) 2013-07-31
US8346416B2 (en) 2013-01-01
EP2620342B1 (en) 2019-09-04
ES2433373T3 (en) 2013-12-10
EP2035270A4 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
WO2008000071B1 (en) Method, apparatus , signals , and media, for selecting operating conditions of a genset
CN1182406C (en) Battery voltage detector
CA2397074C (en) Method and apparatus for adaptive hybrid vehicle control
CN102991365B (en) Power supply control apparatus for electric vehicle
CN101682208B (en) Electric system control device and control method
JP4835383B2 (en) Control device and control method for power supply unit, program for causing computer to realize the method, and recording medium recording the program
KR101071961B1 (en) Process and apparatus for controlling operating conditions of a hybrid electric vehicle to optimize operating characteristics of the vehicle and computer-readable medium encoded with instructions for controlling the operating conditions
CN105142960B (en) On-board charging system and its control method
WO2008099759A1 (en) Electric vehicle control device
CN102608461B (en) A kind of pilot system of distance increasing unit of electric automobile and test method
CN108995642A (en) A kind of vehicle distance increasing unit control method, system and vehicle
JP6410757B2 (en) Power system, transport equipment, and power transmission method
TW201813241A (en) Supercapacitor charge system and method
CN105270381B (en) The control method and device of hybrid vehicle
CN108258880A (en) The electrical system of electromechanical power chain
Bourenane et al. Artificial Neural Networks Based Power Management for a Battery/Supercapacitor and Integrated Photovoltaic Hybrid Storage System for Electric Vehicles.
JPH06121406A (en) Engine-driven generator apparatus
CN107161010A (en) Electric car electricity recovery method
CN104811110B (en) Rotary transformer excitation frequency sequencing for anti-noise
JP2782711B2 (en) Control device for turbocharger with rotating electric machine
US20220393612A1 (en) Power conversion device, method of controlling power conversion device, and storage medium
JP5365492B2 (en) Abnormality diagnosis device for power generation device and electrically driven vehicle
JP3127583B2 (en) Power supply for rotating electric machine for turbocharger
Gragger et al. A full vehicle simulation of an HEV starter-generator concept with the smartelectricdrives library
CN111660829A (en) Motor power control method and system for hybrid vehicle and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07720049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2659087

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007720049

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU