WO2007145727A2 - Differential signal probing system - Google Patents

Differential signal probing system Download PDF

Info

Publication number
WO2007145727A2
WO2007145727A2 PCT/US2007/010800 US2007010800W WO2007145727A2 WO 2007145727 A2 WO2007145727 A2 WO 2007145727A2 US 2007010800 W US2007010800 W US 2007010800W WO 2007145727 A2 WO2007145727 A2 WO 2007145727A2
Authority
WO
WIPO (PCT)
Prior art keywords
probe
probe tip
differential
signal
test structure
Prior art date
Application number
PCT/US2007/010800
Other languages
French (fr)
Other versions
WO2007145727A3 (en
Inventor
Eric Strid
Richard Campbell
Original Assignee
Cascade Microtech, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cascade Microtech, Inc. filed Critical Cascade Microtech, Inc.
Publication of WO2007145727A2 publication Critical patent/WO2007145727A2/en
Publication of WO2007145727A3 publication Critical patent/WO2007145727A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06772High frequency probes

Definitions

  • the present invention relates to probe measurement systems for testing integrated circuits and other microelectronic devices and, more particularly, probe measurement systems utilizing differential signaling for testing microelectronic devices.
  • Integrated circuits are economically attractive because large numbers of often complex circuits, for example microprocessors, can be inexpensively fabricated on the surface of a wafer or substrate.
  • individual dies including one or more circuits, are separated or singulated and encased in a package that provides for electrical connections between the exterior of the package and the circuit on the enclosed die.
  • the separation and packaging of a die comprises a significant portion of the cost of manufacturing an integrated circuit device and to monitor and control the IC fabrication process and avoid the cost of packaging defective dies, manufacturers commonly add electrical circuits or test structures to the wafer to enable on-wafer testing or "probing" to verify characteristics of the integrated circuits before the dies are singulated.
  • a test structure 20 typically includes a device-under-test
  • the DUT typically comprises a simple circuit that includes a copy of one or more of the basic elements of the integrated circuit, such as a single line of conducting material, a chain of vias or a single transistor.
  • the circuit elements of the DUT are typically produced with the same process and in the same layers of the fabrication as the corresponding elements of the integrated circuit.
  • the marketable ICs are typically evaluated or characterized "on-wafer" by applying a test instrument generated signal to the test structure and measuring the response of the test structure to the signal.
  • Integrated circuits commonly utilize single ended or ground referenced signaling with a ground plane at the lower surface of the substrate on which the active and passive devices of the circuit are fabricated.
  • parasitic interconnections exist between many of the parts of the individual devices and between parts of the devices and the wafer on which the devices are fabricated. These interconnections are commonly capacitive and/or inductive in nature and have frequency dependent impedances.
  • the terminals of transistors fabricated on semi- conductive substrates or wafers are typically capacitively interconnected, through the substrate, to the ground plane.
  • the impedance of this parasitic capacitive interconnection is frequency dependent and at higher frequencies the ground potential and the true nature of ground referenced signals becomes uncertain.
  • a differential gain cell 30 is a balanced device comprising two nominally identical circuit halves 3OA, 3OB.
  • a DC current source 32 When biased, with a DC current source 32, and stimulated with a differential mode signal, comprising, even and odd mode components of equal amplitude and opposite phase (S *1 and Sf 1 ) 34, 36, a virtual ground is established at the symmetrical axis 38 of the two circuit halves. At the virtual ground, the potential at the operating frequency does not change with time regardless of the amplitude of the stimulating signal.
  • the quality of the virtual ground of a balanced device is independent of the physical ground path and, therefore, balanced or differential circuits can tolerate poor RF grounding better than circuits operated with single ended signals.
  • differential devices can operate at lower signal power and higher data rates than single ended devices.
  • noise from external sources such as adjacent conductors, tends to couple, electrically and electromagnetically, in the common mode and cancel in the differential mode.
  • balanced or differential circuits have good immunity to noise, including noise at even-harmonic frequencies since signals that are of opposite phase at the fundamental frequency are in phase at the even harmonics.
  • Improved tolerance to poor RF grounding, increased resistance to noise and reduced power consumption make differential devices attractive for ICs that operate at higher frequencies.
  • a test structure comprising a differential gain cell enables on wafer testing and characterization of differential devices included in the marketable ICs fabricated on the wafer.
  • the network analyzer comprises a source of an AC signal, commonly, a radio frequency (RF) signal, that is used to stimulate the DUT of a test structure.
  • RF radio frequency
  • a forward- reverse switch directs the stimulating signals to one or more of the probe pads of the test structure.
  • Directional couplers or bridges pick off the forward or reverse waves traveling to or from the test structure which are down-converted by intermediate frequency (IF) sections of the network analyzer where the signals are filtered, amplified and digitized for further processing and display.
  • IF intermediate frequency
  • the preferred interconnection for communicating signals between the test structure, the source of the stimulating test signal and the sink for the output signals of the test structure is coaxial cable.
  • the transition between the coaxial cable and the probe pads of the test structure is preferably provided by movable probes having one or more conductive probe tips 44 that are arranged to be co-loca table with respective probe pads of the test structure.
  • the test instrumentation and the test structure can be temporarily interconnected for probing by bringing the probe tips of the probe(s) into contact with the probe pads of the test structure.
  • two probes 46, 48 are utilized when probing a differential or balanced test structure.
  • a differential gain cell requires two input probe pads 50, 52 and two output probe pads 54, 56 for the even and odd mode components of the differential input and output signals and a bias probe pad 58 through which the transistors of the cell are biased.
  • the probe pads of differential test structures are arranged to avoid physical contact and crosstalk between the two probes during simultaneous engagement with the test structure.
  • the probe pads of a differential test structure occupy a significant portion of the useable surface of a wafer and, typically, must be fabricated in an area of the wafer in which one or more dies containing marketable ICs could otherwise be fabricated.
  • test structures serve no purpose after the dies containing the marketable ICs are singulated and manufacturers of ICs are under continuous cost pressure to maximize the number of marketable ICs that are manufactured on each wafer.
  • FIG. 1 is a perspective illustration of a portion of a wafer including a differential test structure having probe pads arranged for engagement by a two probes.
  • FIG. 2 is a perspective illustration of a portion of a wafer including a differential test structure engageable by a single probe having a linear array of probe tips.
  • FIG. 3 is a schematic diagram of a probe system utilizing a two-port network analyzer for testing a differential test structure. - A -
  • FIG. 4 is a schematic diagram of a probe system utilizing a four-port network analyzer for testing a differential test structure.
  • FIG.5 is a schematic diagram of a probe system utilizing a differential test structure as a frequency converter.
  • FIG. 6 is a perspective view of a probe for testing a differential test structure.
  • FIG. 7 is a section view of the probe of FIG.6 along line A-A.
  • FIG. 8 is a top view of a probe head of a probe for engaging a differential test structure.
  • FIG. 9 is an elevation view of the probe head of FIG. 8.
  • FIG. 10 is a bottom view of the probe head of FIG. 8.
  • FIG. 11 is a perspective view of a probe including a linear array of four probe tips and a fifth probe tip.
  • FIG. 12 is a bottom view of a probe head of the probe of FIG. 11.
  • FIG. 13 is a perspective view of an embodiment of a differential signal probe comprising cables including having a plurality of conductors.
  • FIG. 14 is a top view of a probe head of the probe of FIG. 13.
  • FIG. 15 is a top view and an elevation view of a probe head comprising a dielectric membrane plate.
  • FIG. 16 is a top view of an additional embodiment of a probe head.
  • FIG. 17 is an elevation view of the probe head of FIG. 16.
  • FIG. 18 is a bottom view of the probe head of FIG. 16.
  • Circuits utilizing differential signaling are becoming increasingly common for a wide range of higher frequency applications.
  • the benefits of differential signaling or balanced devices include lower power levels, faster state transition for binary devices, good immunity from noise, minimal susceptibility to electromagnetic coupling at higher frequencies, and greater tolerance of poor grounding conditions which are commonly encountered when integrated circuits are operated at high frequencies.
  • the integrity of the process used to manufacture marketable integrated circuits (ICs) is tested by fabricating a plurality of test structures on the wafer using the same process that is used to fabricate the ICs. Characteristics of the marketable ICs are inferred by stimulating the test structure with a test instrument generated signal and capturing the response of the test structure.
  • test structures are typically simple circuits, the response of similar devices included in the more complex marketable ICs is expected to be simitar to the response of the test structure because the devices in the marketable ICs and similar devices in the test structures are fabricated with the same process.
  • differential signaling provides a number of advantages, particularly at higher frequencies and in noisier environments, the use of balanced or differential devices in the DUTs of test structures is limited.
  • the probe pads of differential test structures are arranged so that two probes can simultaneously engage the probe pads while avoiding physical contact and crosstalk between the probe tips. The probe pads are spread over a significant area of the surface of the wafer and, typically, must be fabricated in an area of the wafer that could otherwise accommodate one or more dies containing marketable ICs.
  • test structures serve no purpose after the dies containing the marketable ICs are singulated and manufacturers of ICs are under continuous cost pressure to maximize the number of marketable ICs manufactured on each wafer.
  • the inventors concluded that the number of dies comprising marketable ICs fabricated on a wafer could be increased if the differential test structure could be connected to the test instrumentation with a single probe enabling rearrangement of the probe pads and fabrication of the test structure in a saw street between dies.
  • the test structure 120 comprises a DUT 122 that includes a differential gain cell 124 that is responsive to a differential mode input signal.
  • the differential mode input signal comprises an even mode component (S 1 +1 ) and an odd mode component (S 1 '1 ) that has substantially the same amplitude as the even mode component but which is opposite in phase of the even mode component.
  • the differential gain cell 124 comprises two substantially identical field effect (JFET) transistors 126A and 126B.
  • a DUT typically comprises components corresponding to the components utilized in the marketable integrated circuits fabricated on the wafer and other types of transistors, such as bipolar junction (BJT) transistors or MOSFET transistors can be used in the construction of the differential gain cell of a test structure.
  • BJT bipolar junction
  • MOSFET MOSFET
  • the five probe pads 130, 132, 134, 136 and 138 through which the DUT is biased and through which the components of the differential signals are communicated to and from the test structure are arranged in a substantially linear array reducing the breadth of the probe pad arrangement and enabling placement of the test structure between dies 144 in a saw street 146 (indicated by a bracket) that is only slightly wider that the width of a probe pad.
  • the source terminals of the transistors of the differential gain cell are interconnected as a transistor bias terminal 148.
  • the bias terminal is interconnected to the bias bond or probe pad 130 located in the center of the linear array of probe pads.
  • the gates of the transistors comprise input terminals of the DUT and are connected to respective signal input probe pads 136, 138.
  • the drains of the transistors of the differential gain cell comprise the output signal terminals of the DUT and are interconnected to the output signal probe pads 132, 134.
  • the DUT 122 is relatively small and comprises circuit elements that are fabricated beneath the surface of the wafer.
  • the probe pads are conductively connected to the terminals of the DUT by vias 26 that extend from the probe pads on the surface of the wafer to the subsurface strata in which the circuit elements of the DUT and the corresponding circuit elements of the integrated circuit have been fabricated.
  • the DUT for example the DUT 122, of a differential test structure is typically stimulated with a signal generated by a network analyzer.
  • a typical two-port network analyzer 202 outputs a single ended (ground referenced) modulated signal, which may include a DC offset, at the port of an RF signal source 204.
  • the single ended input signal is conducted to a balun 206 which converts the single ended signal to a balanced or differential signal comprising differential components having substantially the same amplitude but opposite phase.
  • the two components of the differential input signal are transmitted to respective bias tees 208, 210 which separate the modulated portion of the input signal from the DC portion.
  • a bias tee comprises a capacitor 212 in series with an RF port 214 that blocks transmission of the DC component of the input signal from the RF port.
  • An inductor 216 in series with a DC port 210 of the bias tee blocks, the modulated signal but permits transmission of the DC portion of the input signal to the DC port.
  • the modulated components of differential input signal, S 1 +1 and S, '1 are communicated to respective probe tips 156, 158 via interconnections to the RF ports of the respective input signal bias tees.
  • the probe tips 156, 158 are arranged on a probe 160 which is movable relative to the test structure so that the probe tips may be co-located with the respective input signal probe pads 136, 138 connected to the DUT 122 of a test structure.
  • the differential output signal components (S 0 +1 and S 0 "1 ) which are controlled by the input signals at the respective input terminals of the differential gain cell are communicated from the respective probe pads 132, 134 to respective output signal probe tips 152, 154 that are interconnected to respective bias tees 220, 222.
  • the modulated portions of the differential output signal components are transmitted to a balun 224 while DC portions of the differential output signal components are blocked from the network analyzer by the capacitors 214 in series with the RF ports of the bias tees.
  • the balun converts the differential signal components to a single ended signal which is transmitted to a signal sink 226 of the network analyzer.
  • the signal sink typically comprises one or more intermediate frequency (IF) sections where, typically, the signals are filtered, amplified and digitized for further processing and display.
  • IF intermediate frequency
  • the transistors of the differential gain cell of the DUT are biased by a DC current that is communicated between the DC ports of the bias tees and bias probe pad 130 by a bias probe tip 150 of the probe.
  • An alternative embodiment of the test structure 122 includes additional probe pads 140, 142 located distal of the respective ends of the linear array of five probe pads and which are interconnected with the bias probe pad 130. Spatially corresponding additional probe tips 162, 164, interconnected with the centrally located bias probe tip 150, are included in an alternative embodiment of the probe 160 to engage the additional probe pads of the alternative test structure probe pad arrangement.
  • a four port network analyzer 302 can output differential signals directly permitting mixed mode analysis and de-embedding of the DUT at its terminals.
  • the differential input signal components including a DC offset, are output at the ports 306, 308 of the signal source 304 and transmitted to respective bias tees 316, 318.
  • the capacitor 320 in series with the RF port of a bias tee blocks the transmission of the DC component of the input signal from the RF port.
  • the modulated portion of the differential input signal components (S *1 and Sj "1 ) are communicated from the RF port of the respective bias tee 316, 318 to a respective probe tip 156, 158 of the probe 360.
  • Each of the probe tips is co-locatable with a respective one of the probe pads 136, 138 that is interconnected to conduct an input signal component to the DUT.
  • the differential output signal components (S 0 *1 and S 0 '1 ) are transmitted from respective probe pads 132, 134 to respective probe tips 152, 154 and then to respective bias tees 332, 334.
  • FIG. 4 illustrates another alternative arrangement of probe pads and probe tips where the output signals are sourced from the probe pads at the ends of the linear array of five probe pads and the input signals are transmitted to the probe pads immediately adjacent to the central probe pad of the linear array of five probe pads.
  • a network analyzer is expensive and the cost of a probe measurement system that includes a network analyzer substantially impacts the cost of producing high frequency ICs.
  • the inventors realized that the differential gain cell could be utilized as a passive frequency converter enabling parametric RF testing with a less costly probe measurement system that utilizes a low frequency spectrum analyzer rather than a more costly network analyzer.
  • a first signal generator 602 transmits a single ended, modulated signal having a frequency (f,) to a first balun 604.
  • the balun converts the single ended signal to a differential signal comprising even and odd mode components of substantially equal amplitude and opposite phase angle.
  • the differential signal components are conducted to a probe 360 including a plurality of probe tips arranged to be co- locatable with the probe pads of a test structure including a DUT 322 comprising a differential gain cell 325.
  • the components of the differential signals from the first signal generator are conducted by probe tips 152 and 154 to respective probe pads 132 and 134 which are connected to the gates of the transistors of the differential gain cell.
  • the transistors of the differential gain cell are biased by the connection of their source terminals to ground 620 through the probe pad 130 and the contacting probe tip 150.
  • a second signal generator 606 outputs a second single ended, modulated signal having a second frequency (f 2 ) to a second balun 608 which converts the single ended signal to a differential signal comprising components of substantially equal amplitude and opposite phase.
  • the signal is transmitted to the drains of the transistors of the differential gain cell through high pass filter capacitors 616 which block the transmission of low frequency signals.
  • the outputs of the DUT which are controlled by the input signals at the respective gates of the transistors are conducted to the output signal probe pads 136 and 138 and respective contacting probe tips 156, 158.
  • the respective components of the signals from the second signal generator and the output terminals of the DUT, having respective second and first frequencies, are combined producing respective components of a differential combined output signal.
  • the components of the combined output signal comprise an upper frequency (f, + f 2 ) combined output signal band and a lower frequency (f, - f 2 ) combined output signal band.
  • the differential components of the lower frequency combined output signal band are separated from the upper frequency combined output signal band by the low pass filters 614 and converted to a single ended signal by a balun 612.
  • the lower frequency (f, - f 2 ), single ended signal is conducted to a signal sink 610 for analysis, such as comparison with the results obtained by testing other differential gain cells having known characteristics, and display.
  • Utilizing the differential test structure as a frequency converter enables stimulation of the test structure with a high frequency signal but permits analyzing the result with a relatively less expensive, lower frequency capable, signal sink, such as a spectrum analyzer.
  • the probe 500 comprises a support block 502 which is suitably constructed for connection to a movable probe supporting member 504 of a probe station.
  • the support block 502 includes an aperture 506 for engagement by a snugly fitting alignment pin 508 that projects vertically from the probe supporting member.
  • the support block includes a pair of countersunk apertures 510 to accept a pair of fastening screws 512 arranged to engage threaded holes in the probe supporting member and secure the probe to the probe supporting member.
  • the probe includes a plurality of input ports 530, 532, 534, 536, 538 which, in the embodiment depicted, comprise spark-plug type, K connectors.
  • This connector enables the external connection of an ordinary coaxial cable to an input port permitting a well shielded high frequency transmission channel to be established between the probe and the test instrument.
  • other types of connectors can be used, such as a 2.4 mm. connector, a 1.85 mm. connector or a 1 mm. connector.
  • a semi-rigid coaxial cable 514 is connected at its rearward end to each K connector comprising one of the ports of the probe.
  • These coaxial cables preferably include an inner conductor 516, an inner dielectric 518 and an outer conductor 520 and are preferably of phase-stable low-loss type.
  • the coaxial cable may likewise include other layers of materials, as desired. To prepare the rearward ends of the cables for connection to an appropriate K-connector, the rearward end is stripped to expose the inner conductor, and this inner conductor is temporarily held inside a dummy connector while the adjacent outer conductor is soldered within a bore 522 formed in the primary support block.
  • a recess 524 in the support block below this bore provides access to facilitate the soldering process.
  • the dummy connector is then removed and a K-connector is screwed into each of the threaded openings formed in the block above the bore so as to effect electrical connection between the connectors and the coaxial cables.
  • a thread locking compound may be applied to the threads of the K-co ⁇ ectors prior to their installation to ensure a secure physical connection.
  • the forward ends of the cables remain freely suspended and. in this condition, serve as a movable support for a probe head 540 of the probe.
  • the cables Before being connected to the K-connector, the cables are bent along first and second intermediate portions in the manner shown so that a generally upwardly curving 90° bend and a downwardly curving bend, respectively, are formed in the cable.
  • the protruding ends of the coaxial cables may be slidably inserted into a tube 526 comprising semi-flexible microwave-absorbing material.
  • One material used for forming the tube comprises iron and urethane.
  • the semi-flexible tube of microwave absorbing material serves to substantially reduce the levels of microwave energy that travel along the outer conductor of the semi-rigid cable.
  • the probe includes a microstrip style probe head 540 that includes a dielectric plate 560 having generally planar upper and lower surfaces that is affixed to the forward ends of the coaxial cables 550, 552, 554, 556, 558.
  • the underside of each cable is cut away to form a shelf 562, and the dielectric plate is affixed to the shelf.
  • the dielectric plate may be supported by an upwardly facing shelf cut away from the cable or the end of the cable without a shelf.
  • a conductive bias layer 564 comprising a thin, generally planar conductive material is affixed to the bottom of the dielectric plate.
  • a thin, generally planar, bias layer has a low profile that is less likely to interfere with the ability to effectively probe a DUT by accidentally contacting the device.
  • a via 566 electrically couples the bias layer to the center conductor of the coaxial cable 550 connected to the bias input port 530 of the probe.
  • the bias layer may be provided with any DC voltage potential suitable for biasing the transistors of the differential gain cell of the DUT.
  • the bias layer preferably covers substantially all of the lower surface of the dielectric plate. Alternatively, the bias layer may cover a portion greater than 50%, 60%, 70%, 80%, 90% of the surface of the dielectric plate and/or the region directly under a majority (or more) of the length of a conductive signal trace secured to the opposing side of the plate.
  • One or more conductive signal traces are supported by the upper surface of the dielectric plate.
  • the conductive traces may be deposited, using any technique, or otherwise secured on the upper surface of the dielectric plate.
  • a conductive signal trace is electrically interconnected to the inner conductor of each of the coaxial cables 552, 554, 556, 558.
  • the respective interconnected conductive traces 572, 574, 576, 578 normally conduct the components of the differential signals to and from the DUT.
  • each conductive trace, together with the bias layer forms one type of a microstrip transmission structure.
  • Other layers above, below, and/or between the bias layer and the conductive trace(s) may be included, if desired.
  • Conductive vias 568 passing through the dielectric plate enables transference of the signal path from the conductive traces on the upper surface of the plate to the lower surface of the plate.
  • the conductive via substantially reduces the capacitance of the signal path compared to a conductive finger extending over the end of the dielectric plate.
  • the conductive via provides a path from one side of the plate to the other that is free from an air gap between the via and the dielectric for at least a majority of the thickness of the plate.
  • the lower surface of the dielectric plate includes a plurality of contact bumps or probe tips 580, 582, 584, 586, 588 that are respectively electrically connected to the bias layer or to the vias extending from respective conductive traces on the upper surface of the dielectric plate.
  • the probe tips are arranged in a linear array with the centroids of the lower ends of the probe tips being substantially aligned and arranged generally parallel to forward edge of the probe head.
  • the probe tips are spatially arranged proximate the adjacent tip(s) in the linear array so as to be co-tocatable with the respective probe pads that conduct the signals for the test structure that is to be probed.
  • the probe tips may take any suitable form, such as a bump, a patterned structure, or an elongate conductor.
  • the bias layer may laterally encircle one or more of the probe tips or may extend beyond one or more of the probe tips to reduce crosstalk with other probes.
  • a conductive shield 902 which is preferably planar in nature, is affixed to the bottom of a lower dielectric plate 904.
  • the conductive shield may be for example, a thin conductive material (or otherwise) that is affixed to the lower plate 904.
  • a shield of thin generally planar conductive material is less likely to accidentally contact the test structure when the probe tips are contact with the probe pads.
  • the conductive shield is electrically coupled to an outer conductor 520 of at least one of the coaxial cables 550, 552, 554, 556, 558 by a via 910 to form a ground plane.
  • the outer conductor is typically connected to ground, though the outer conductor may be provided with any suitable voltage potential (either DC or AC).
  • the conductive shield 902 preferably covers substantially all of the lower surface of the lower dielectric plate 904. Alternatively, the conductive shield 902 may cover greater than 50%, 60%, 70%, 80%, 90%, and/or the region directly under a majority (or more) of the length of a conductive signal trace on the opposing side of the probe head.
  • the bias voltage for the transistors of the DUT is conducted to the bias probe tip 580 through a middle conductive layer 906 which is conductively connected to the bias probe tip and to the center conductor of the coaxial cable 550 by vias.
  • an upper dielectric plate 908 Overlaying the middle conductive layer, an upper dielectric plate 908 includes an upper surface to which are secured the traces 572, 574, 576, 578 that conduct the components of the differential input and output signals.
  • the traces are in contact with the center conductors of the respective coaxial cables and are connected to the respective probe tips by vias extending from the upper surface of the upper dielectric plate to the probe tips.
  • the probe 600 comprises support block 602 securable to the probe supporting member 504.
  • a plurality of ports 532, 534, 536, 538 are attached to the support block and electrically connected to a plurality of coaxial cables that extend to a probe head 604.
  • the connector of the centrally located port 530 is electrically connected to a coaxial cable 606 which extends to a probe tip 608 supported by an arm 610 attached to the support block 602.
  • the probe head 604 comprises a dielectric plate 612 which supports four probe tips 582, 584,586, 588 arranged in a linear array and which conduct the components of the differential input and output signals to and from the test structure.
  • the bias for the transistors of the test structure is conducted from the port 530 to a probe pad of a test structure by a probe tip 608 which is proximate the third and fourth probe tips of the linear array of probe tips 582, 584, 586, 588 but not in linear alignment with the probe tips included in the linear array through which the components of the differential signals are conducted.
  • the ports 702, 704 of the probe 700 of alternative embodiment are arranged to provide electrical interconnections to a coaxial cable having more than two conductors.
  • the conductors may be triaxial cables having three conductors separated by intervening dielectric layers.
  • the triaxial cables 706, 708 are electrically interconnected to the respective ports, at least one of which is insulated from the support block, at their rearward ends.
  • the freely suspended forward support ends of the triaxial cables support a probe head 710 comprising a dielectric plate 712 secured to a shelf formed in each of the ends of the two triaxial cables.
  • the removal of a portion of the triaxial cable to form the shelf exposes the inner conductor 714, the inner dielectric layer 716, the intermediate conductor 718, the outer dielectric layer 720 and the outer conductor 722 that comprise the cable.
  • the conductors of the triaxial cables are interconnected to respective probe tips formed on the lower surface of the dielectric plate.
  • the central probe tip 150 can be interconnected to the outer conductors by a bias layer 724 supported on the lower surface of the dielectric plate that is electrically interconnected to the central probe tip 150 and electrically interconnected to the outer conductors by vias 726, 728, 730 extending through the dielectric plate.
  • the linear array of probe tips includes probe tips 162 and 164 for engaging probe pads 142 and 140 of an alternative embodiment comprising seven probe pads and are also interconnected to the bias layer.
  • the components of the differential input and output signals are conducted from the respective inner conductors and respective intermediate conductors to the probe tips 152, 154, 156 and 158 by traces 736, 738, 740, 742 on the upper surface of the dielectric plate that are electrically interconnected to the respective conductor exposed at the shelf in the triaxial cable and vias 744, 746, 748, 750 extending between the upper and lower surfaces of the dielectric plate.
  • a flexible dielectric membrane plate 802 may be substituted for a more rigid dielectric plate.
  • membrane material is described in U.S. Pat. No. 5,914,613.
  • membrane based probes are characterized by a flexible (or semi-flexible) plate or substrate with traces supported thereon together with contacting portions or probe tips being supported thereon.
  • the linear array of probe tips 850, 852, 854, 856, 858 are arranged to be co-locatable with the probe pads of the DUT.
  • the traces are normally on the opposing side of the membrane and connected to the probe tips with vias.
  • the membrane technology may be significantly thinner than ceramic based substrates or plates, such as 40, 30, 20, 10, 5, or 3 microns or less.
  • the dielectric constant of the membrane material is 7 or less, sometimes less than 6, 5, or 4 depending on the particular material used. While normally using a membrane substrate with a lower dielectric constant is unsuitable, using a significantly thinner substrate together with a material having a lower dielectric constant raises the theoretical frequency range of effective signal transmission to hundreds of GHz.
  • the significantly thinner substrate material permits positioning the lower bias layer significantly closer to the signal traces than the relatively thick ceramic substrate, and therefore tends to more tightly confine the electromagnetic fields.
  • a probe measurement system including a probe comprising a linear array of probe tips enables testing of a differential or balanced test structure with a single probe facilitating fabrication of the test structure in a saw street between dies on a wafer.

Abstract

A probe measurement system comprises a probe with a linear array of probe tips enabling a single probe to be used when probing a test structure with a differential signal.

Description

DIFFERENTIAL SIGNAL PROBING SYSTEM
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Application No. 60/
813.119, filed June 12, 2006 and U.S. Provisional Application No. 60/ 813,477, filed July 17, 2006.
BACKGROUND OF THE INVENTION
[0002] The present invention relates to probe measurement systems for testing integrated circuits and other microelectronic devices and, more particularly, probe measurement systems utilizing differential signaling for testing microelectronic devices.
[0003] Integrated circuits (ICs) are economically attractive because large numbers of often complex circuits, for example microprocessors, can be inexpensively fabricated on the surface of a wafer or substrate. Following fabrication, individual dies, including one or more circuits, are separated or singulated and encased in a package that provides for electrical connections between the exterior of the package and the circuit on the enclosed die. The separation and packaging of a die comprises a significant portion of the cost of manufacturing an integrated circuit device and to monitor and control the IC fabrication process and avoid the cost of packaging defective dies, manufacturers commonly add electrical circuits or test structures to the wafer to enable on-wafer testing or "probing" to verify characteristics of the integrated circuits before the dies are singulated.
[0004] Referring to FIG. 1, a test structure 20 typically includes a device-under-test
(DUT) 22, a plurality of metallic probe or bond pads 24 that are deposited at the wafer's surface and a plurality of conductive vias 26 that connect the probe pads to the DUT which is typically fabricated beneath the surface of the wafer 28. The DUT typically comprises a simple circuit that includes a copy of one or more of the basic elements of the integrated circuit, such as a single line of conducting material, a chain of vias or a single transistor. The circuit elements of the DUT are typically produced with the same process and in the same layers of the fabrication as the corresponding elements of the integrated circuit. The marketable ICs are typically evaluated or characterized "on-wafer" by applying a test instrument generated signal to the test structure and measuring the response of the test structure to the signal. Since the circuit elements of the DUT are fabricated with the same process as the corresponding elements of the marketable integrated circuit, the electrical properties of the DUT are expected to be representative of the electrical properties of the corresponding components of the ICs. [0005] Integrated circuits commonly utilize single ended or ground referenced signaling with a ground plane at the lower surface of the substrate on which the active and passive devices of the circuit are fabricated. As a result of the physical make up of the devices of an integrated circuit, parasitic interconnections exist between many of the parts of the individual devices and between parts of the devices and the wafer on which the devices are fabricated. These interconnections are commonly capacitive and/or inductive in nature and have frequency dependent impedances. For example, the terminals of transistors fabricated on semi- conductive substrates or wafers are typically capacitively interconnected, through the substrate, to the ground plane. The impedance of this parasitic capacitive interconnection is frequency dependent and at higher frequencies the ground potential and the true nature of ground referenced signals becomes uncertain.
[0006] Balanced devices utilizing differential signals are more tolerant to poor radio frequency (RF) grounding than single ended devices making them attractive for high performance ICs. A differential gain cell 30 is a balanced device comprising two nominally identical circuit halves 3OA, 3OB. When biased, with a DC current source 32, and stimulated with a differential mode signal, comprising, even and odd mode components of equal amplitude and opposite phase (S*1 and Sf1) 34, 36, a virtual ground is established at the symmetrical axis 38 of the two circuit halves. At the virtual ground, the potential at the operating frequency does not change with time regardless of the amplitude of the stimulating signal. The quality of the virtual ground of a balanced device is independent of the physical ground path and, therefore, balanced or differential circuits can tolerate poor RF grounding better than circuits operated with single ended signals.
[0007] In addition, the two waveforms of the differential output signal (S0 +1 and S0 *
1) 40, 42 are mutual references providing faster and more certain transition from one binary value to the other for digital devices and enabling operation with a reduced voltage swing for the signal. Typically, differential devices can operate at lower signal power and higher data rates than single ended devices. Moreover, noise from external sources, such as adjacent conductors, tends to couple, electrically and electromagnetically, in the common mode and cancel in the differential mode. As a result, balanced or differential circuits have good immunity to noise, including noise at even-harmonic frequencies since signals that are of opposite phase at the fundamental frequency are in phase at the even harmonics. Improved tolerance to poor RF grounding, increased resistance to noise and reduced power consumption make differential devices attractive for ICs that operate at higher frequencies. A test structure comprising a differential gain cell enables on wafer testing and characterization of differential devices included in the marketable ICs fabricated on the wafer.
[0008] At higher frequencies, on-wafer characterization is commonly performed with a network analyzer. The network analyzer comprises a source of an AC signal, commonly, a radio frequency (RF) signal, that is used to stimulate the DUT of a test structure. A forward- reverse switch directs the stimulating signals to one or more of the probe pads of the test structure. Directional couplers or bridges pick off the forward or reverse waves traveling to or from the test structure which are down-converted by intermediate frequency (IF) sections of the network analyzer where the signals are filtered, amplified and digitized for further processing and display. The result is a plurality of s-parameters (scattering parameters), the ratio of a normalized power wave comprising the response of the DUT to the normalized power wave comprising the stimulus supplied by the signal source.
[0009] At higher frequencies, the preferred interconnection for communicating signals between the test structure, the source of the stimulating test signal and the sink for the output signals of the test structure is coaxial cable. The transition between the coaxial cable and the probe pads of the test structure is preferably provided by movable probes having one or more conductive probe tips 44 that are arranged to be co-loca table with respective probe pads of the test structure. The test instrumentation and the test structure can be temporarily interconnected for probing by bringing the probe tips of the probe(s) into contact with the probe pads of the test structure. Typically, two probes 46, 48 are utilized when probing a differential or balanced test structure. A differential gain cell requires two input probe pads 50, 52 and two output probe pads 54, 56 for the even and odd mode components of the differential input and output signals and a bias probe pad 58 through which the transistors of the cell are biased. The probe pads of differential test structures are arranged to avoid physical contact and crosstalk between the two probes during simultaneous engagement with the test structure. As a result, the probe pads of a differential test structure occupy a significant portion of the useable surface of a wafer and, typically, must be fabricated in an area of the wafer in which one or more dies containing marketable ICs could otherwise be fabricated. However, test structures serve no purpose after the dies containing the marketable ICs are singulated and manufacturers of ICs are under continuous cost pressure to maximize the number of marketable ICs that are manufactured on each wafer.
[0010] What is desired, therefore, is a compact, simplified probe measurement system for communicating differential signals between a test instrument and a test structure.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011] FIG. 1 is a perspective illustration of a portion of a wafer including a differential test structure having probe pads arranged for engagement by a two probes. [0012] FIG. 2 is a perspective illustration of a portion of a wafer including a differential test structure engageable by a single probe having a linear array of probe tips. [0013] FIG. 3 is a schematic diagram of a probe system utilizing a two-port network analyzer for testing a differential test structure. - A -
[0014] FIG. 4 is a schematic diagram of a probe system utilizing a four-port network analyzer for testing a differential test structure. [0015] FIG.5 is a schematic diagram of a probe system utilizing a differential test structure as a frequency converter.
[0016] FIG. 6 is a perspective view of a probe for testing a differential test structure.
[0017] FIG. 7 is a section view of the probe of FIG.6 along line A-A.
[0018] FIG. 8 is a top view of a probe head of a probe for engaging a differential test structure.
[0019] FIG. 9 is an elevation view of the probe head of FIG. 8.
[0020] FIG. 10 is a bottom view of the probe head of FIG. 8.
[0021] FIG. 11 is a perspective view of a probe including a linear array of four probe tips and a fifth probe tip.
[0022] FIG. 12 is a bottom view of a probe head of the probe of FIG. 11.
[0023] FIG. 13 is a perspective view of an embodiment of a differential signal probe comprising cables including having a plurality of conductors. [0024] FIG. 14 is a top view of a probe head of the probe of FIG. 13.
[0025] FIG. 15 is a top view and an elevation view of a probe head comprising a dielectric membrane plate.
[0026] FIG. 16 is a top view of an additional embodiment of a probe head.
[0027] FIG. 17 is an elevation view of the probe head of FIG. 16.
[0028] FIG. 18 is a bottom view of the probe head of FIG. 16.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
[0029] Circuits utilizing differential signaling are becoming increasingly common for a wide range of higher frequency applications. The benefits of differential signaling or balanced devices include lower power levels, faster state transition for binary devices, good immunity from noise, minimal susceptibility to electromagnetic coupling at higher frequencies, and greater tolerance of poor grounding conditions which are commonly encountered when integrated circuits are operated at high frequencies. The integrity of the process used to manufacture marketable integrated circuits (ICs) is tested by fabricating a plurality of test structures on the wafer using the same process that is used to fabricate the ICs. Characteristics of the marketable ICs are inferred by stimulating the test structure with a test instrument generated signal and capturing the response of the test structure. While test structures are typically simple circuits, the response of similar devices included in the more complex marketable ICs is expected to be simitar to the response of the test structure because the devices in the marketable ICs and similar devices in the test structures are fabricated with the same process. [0030] While differential signaling provides a number of advantages, particularly at higher frequencies and in noisier environments, the use of balanced or differential devices in the DUTs of test structures is limited. The probe pads of differential test structures are arranged so that two probes can simultaneously engage the probe pads while avoiding physical contact and crosstalk between the probe tips. The probe pads are spread over a significant area of the surface of the wafer and, typically, must be fabricated in an area of the wafer that could otherwise accommodate one or more dies containing marketable ICs. However, test structures serve no purpose after the dies containing the marketable ICs are singulated and manufacturers of ICs are under continuous cost pressure to maximize the number of marketable ICs manufactured on each wafer. The inventors concluded that the number of dies comprising marketable ICs fabricated on a wafer could be increased if the differential test structure could be connected to the test instrumentation with a single probe enabling rearrangement of the probe pads and fabrication of the test structure in a saw street between dies.
[0031] Referring in detail to the drawings where similar parts are identified by like reference numerals, and, more particularly to FIG. 2, the test structure 120 comprises a DUT 122 that includes a differential gain cell 124 that is responsive to a differential mode input signal. The differential mode input signal comprises an even mode component (S1 +1) and an odd mode component (S1 '1) that has substantially the same amplitude as the even mode component but which is opposite in phase of the even mode component. The differential gain cell 124 comprises two substantially identical field effect (JFET) transistors 126A and 126B. However, a DUT typically comprises components corresponding to the components utilized in the marketable integrated circuits fabricated on the wafer and other types of transistors, such as bipolar junction (BJT) transistors or MOSFET transistors can be used in the construction of the differential gain cell of a test structure.
[0032] The five probe pads 130, 132, 134, 136 and 138 through which the DUT is biased and through which the components of the differential signals are communicated to and from the test structure are arranged in a substantially linear array reducing the breadth of the probe pad arrangement and enabling placement of the test structure between dies 144 in a saw street 146 (indicated by a bracket) that is only slightly wider that the width of a probe pad. The source terminals of the transistors of the differential gain cell are interconnected as a transistor bias terminal 148. The bias terminal is interconnected to the bias bond or probe pad 130 located in the center of the linear array of probe pads. The gates of the transistors comprise input terminals of the DUT and are connected to respective signal input probe pads 136, 138. The drains of the transistors of the differential gain cell comprise the output signal terminals of the DUT and are interconnected to the output signal probe pads 132, 134. Typically, the DUT 122 is relatively small and comprises circuit elements that are fabricated beneath the surface of the wafer. The probe pads are conductively connected to the terminals of the DUT by vias 26 that extend from the probe pads on the surface of the wafer to the subsurface strata in which the circuit elements of the DUT and the corresponding circuit elements of the integrated circuit have been fabricated.
[0033] Referring to FIG. 3, at higher frequencies the DUT, for example the DUT 122, of a differential test structure is typically stimulated with a signal generated by a network analyzer. A typical two-port network analyzer 202 outputs a single ended (ground referenced) modulated signal, which may include a DC offset, at the port of an RF signal source 204. In the probe measurement system 200, the single ended input signal is conducted to a balun 206 which converts the single ended signal to a balanced or differential signal comprising differential components having substantially the same amplitude but opposite phase. The two components of the differential input signal are transmitted to respective bias tees 208, 210 which separate the modulated portion of the input signal from the DC portion. A bias tee comprises a capacitor 212 in series with an RF port 214 that blocks transmission of the DC component of the input signal from the RF port. An inductor 216, in series with a DC port 210 of the bias tee blocks, the modulated signal but permits transmission of the DC portion of the input signal to the DC port. The modulated components of differential input signal, S1 +1 and S,'1, are communicated to respective probe tips 156, 158 via interconnections to the RF ports of the respective input signal bias tees. The probe tips 156, 158 are arranged on a probe 160 which is movable relative to the test structure so that the probe tips may be co-located with the respective input signal probe pads 136, 138 connected to the DUT 122 of a test structure.
[0034] Similarly, the differential output signal components (S0 +1 and S0 "1) which are controlled by the input signals at the respective input terminals of the differential gain cell are communicated from the respective probe pads 132, 134 to respective output signal probe tips 152, 154 that are interconnected to respective bias tees 220, 222. The modulated portions of the differential output signal components are transmitted to a balun 224 while DC portions of the differential output signal components are blocked from the network analyzer by the capacitors 214 in series with the RF ports of the bias tees. The balun converts the differential signal components to a single ended signal which is transmitted to a signal sink 226 of the network analyzer. The signal sink typically comprises one or more intermediate frequency (IF) sections where, typically, the signals are filtered, amplified and digitized for further processing and display.
[0035] The transistors of the differential gain cell of the DUT are biased by a DC current that is communicated between the DC ports of the bias tees and bias probe pad 130 by a bias probe tip 150 of the probe. An alternative embodiment of the test structure 122 includes additional probe pads 140, 142 located distal of the respective ends of the linear array of five probe pads and which are interconnected with the bias probe pad 130. Spatially corresponding additional probe tips 162, 164, interconnected with the centrally located bias probe tip 150, are included in an alternative embodiment of the probe 160 to engage the additional probe pads of the alternative test structure probe pad arrangement.
[0036] While many network analyzers output only single ended signals, the accuracy of a probe system utilizing single ended signals to probe a differential test structure is limited because the reference plane for de-embedding the test structure is located at the ports of the baluns nearest the DUT. Referring to FIG. 4, a four port network analyzer 302 can output differential signals directly permitting mixed mode analysis and de-embedding of the DUT at its terminals. In the probe measurement system 300. the differential input signal components, including a DC offset, are output at the ports 306, 308 of the signal source 304 and transmitted to respective bias tees 316, 318. The capacitor 320 in series with the RF port of a bias tee blocks the transmission of the DC component of the input signal from the RF port. The modulated portion of the differential input signal components (S*1 and Sj"1) are communicated from the RF port of the respective bias tee 316, 318 to a respective probe tip 156, 158 of the probe 360. Each of the probe tips is co-locatable with a respective one of the probe pads 136, 138 that is interconnected to conduct an input signal component to the DUT. Similarly, the differential output signal components (S0 *1 and S0 '1) are transmitted from respective probe pads 132, 134 to respective probe tips 152, 154 and then to respective bias tees 332, 334. The capacitors of the bias tees in series with the RF port, block the transmission of DC from the bias tees to the two signal input ports 312, 310 of the signal sink 302. The outputs at the DC ports of the bias tees are transmitted to the bias probe tip 150 which is arranged for contact with the bias probe pad 130 of the DUT. FIG. 4 illustrates another alternative arrangement of probe pads and probe tips where the output signals are sourced from the probe pads at the ends of the linear array of five probe pads and the input signals are transmitted to the probe pads immediately adjacent to the central probe pad of the linear array of five probe pads.
[0037] A network analyzer is expensive and the cost of a probe measurement system that includes a network analyzer substantially impacts the cost of producing high frequency ICs. The inventors realized that the differential gain cell could be utilized as a passive frequency converter enabling parametric RF testing with a less costly probe measurement system that utilizes a low frequency spectrum analyzer rather than a more costly network analyzer. Referring to FIG. 5, in the probe measurement system 600 a first signal generator 602 transmits a single ended, modulated signal having a frequency (f,) to a first balun 604. The balun converts the single ended signal to a differential signal comprising even and odd mode components of substantially equal amplitude and opposite phase angle. The differential signal components are conducted to a probe 360 including a plurality of probe tips arranged to be co- locatable with the probe pads of a test structure including a DUT 322 comprising a differential gain cell 325. The components of the differential signals from the first signal generator are conducted by probe tips 152 and 154 to respective probe pads 132 and 134 which are connected to the gates of the transistors of the differential gain cell. The transistors of the differential gain cell are biased by the connection of their source terminals to ground 620 through the probe pad 130 and the contacting probe tip 150.
[0038] A second signal generator 606 outputs a second single ended, modulated signal having a second frequency (f2) to a second balun 608 which converts the single ended signal to a differential signal comprising components of substantially equal amplitude and opposite phase. The signal is transmitted to the drains of the transistors of the differential gain cell through high pass filter capacitors 616 which block the transmission of low frequency signals. The outputs of the DUT which are controlled by the input signals at the respective gates of the transistors are conducted to the output signal probe pads 136 and 138 and respective contacting probe tips 156, 158. The respective components of the signals from the second signal generator and the output terminals of the DUT, having respective second and first frequencies, are combined producing respective components of a differential combined output signal. The components of the combined output signal comprise an upper frequency (f, + f2) combined output signal band and a lower frequency (f, - f2) combined output signal band. The differential components of the lower frequency combined output signal band are separated from the upper frequency combined output signal band by the low pass filters 614 and converted to a single ended signal by a balun 612. The lower frequency (f, - f2), single ended signal is conducted to a signal sink 610 for analysis, such as comparison with the results obtained by testing other differential gain cells having known characteristics, and display. Utilizing the differential test structure as a frequency converter enables stimulation of the test structure with a high frequency signal but permits analyzing the result with a relatively less expensive, lower frequency capable, signal sink, such as a spectrum analyzer.
[0039] Typically, coaxial cable interconnects the network analyzer, other test instrumentation and the probe which provides the transition from the signal paths provided by the coaxial cable to the signal paths comprising the probe pads fabricated on the surface of a wafer. Referring FIGS. 6, 7 and 8, the probe 500 comprises a support block 502 which is suitably constructed for connection to a movable probe supporting member 504 of a probe station. For example, the support block 502 includes an aperture 506 for engagement by a snugly fitting alignment pin 508 that projects vertically from the probe supporting member. In addition, the support block includes a pair of countersunk apertures 510 to accept a pair of fastening screws 512 arranged to engage threaded holes in the probe supporting member and secure the probe to the probe supporting member.
[0040] The probe includes a plurality of input ports 530, 532, 534, 536, 538 which, in the embodiment depicted, comprise spark-plug type, K connectors. This connector enables the external connection of an ordinary coaxial cable to an input port permitting a well shielded high frequency transmission channel to be established between the probe and the test instrument. If desired, other types of connectors can be used, such as a 2.4 mm. connector, a 1.85 mm. connector or a 1 mm. connector.
[0041] In the depicted embodiment, a semi-rigid coaxial cable 514 is connected at its rearward end to each K connector comprising one of the ports of the probe. These coaxial cables preferably include an inner conductor 516, an inner dielectric 518 and an outer conductor 520 and are preferably of phase-stable low-loss type. The coaxial cable may likewise include other layers of materials, as desired. To prepare the rearward ends of the cables for connection to an appropriate K-connector, the rearward end is stripped to expose the inner conductor, and this inner conductor is temporarily held inside a dummy connector while the adjacent outer conductor is soldered within a bore 522 formed in the primary support block. A recess 524 in the support block below this bore provides access to facilitate the soldering process. The dummy connector is then removed and a K-connector is screwed into each of the threaded openings formed in the block above the bore so as to effect electrical connection between the connectors and the coaxial cables. A thread locking compound may be applied to the threads of the K-coππectors prior to their installation to ensure a secure physical connection.
[0042] The forward ends of the cables remain freely suspended and. in this condition, serve as a movable support for a probe head 540 of the probe. Before being connected to the K-connector, the cables are bent along first and second intermediate portions in the manner shown so that a generally upwardly curving 90° bend and a downwardly curving bend, respectively, are formed in the cable. The protruding ends of the coaxial cables may be slidably inserted into a tube 526 comprising semi-flexible microwave-absorbing material. One material used for forming the tube comprises iron and urethane. The semi-flexible tube of microwave absorbing material serves to substantially reduce the levels of microwave energy that travel along the outer conductor of the semi-rigid cable.
[0043] Referring also to FIGS. 9 and 10, the probe includes a microstrip style probe head 540 that includes a dielectric plate 560 having generally planar upper and lower surfaces that is affixed to the forward ends of the coaxial cables 550, 552, 554, 556, 558. The underside of each cable is cut away to form a shelf 562, and the dielectric plate is affixed to the shelf. Alternatively, the dielectric plate may be supported by an upwardly facing shelf cut away from the cable or the end of the cable without a shelf. A conductive bias layer 564 comprising a thin, generally planar conductive material is affixed to the bottom of the dielectric plate. A thin, generally planar, bias layer has a low profile that is less likely to interfere with the ability to effectively probe a DUT by accidentally contacting the device. A via 566, electrically couples the bias layer to the center conductor of the coaxial cable 550 connected to the bias input port 530 of the probe. The bias layer may be provided with any DC voltage potential suitable for biasing the transistors of the differential gain cell of the DUT. The bias layer preferably covers substantially all of the lower surface of the dielectric plate. Alternatively, the bias layer may cover a portion greater than 50%, 60%, 70%, 80%, 90% of the surface of the dielectric plate and/or the region directly under a majority (or more) of the length of a conductive signal trace secured to the opposing side of the plate.
[0044] One or more conductive signal traces are supported by the upper surface of the dielectric plate. The conductive traces may be deposited, using any technique, or otherwise secured on the upper surface of the dielectric plate. A conductive signal trace is electrically interconnected to the inner conductor of each of the coaxial cables 552, 554, 556, 558. The respective interconnected conductive traces 572, 574, 576, 578 normally conduct the components of the differential signals to and from the DUT. Separated by dielectric material, each conductive trace, together with the bias layer, forms one type of a microstrip transmission structure. Other layers above, below, and/or between the bias layer and the conductive trace(s) may be included, if desired.
[0045] Conductive vias 568 passing through the dielectric plate enables transference of the signal path from the conductive traces on the upper surface of the plate to the lower surface of the plate. The conductive via substantially reduces the capacitance of the signal path compared to a conductive finger extending over the end of the dielectric plate. The conductive via provides a path from one side of the plate to the other that is free from an air gap between the via and the dielectric for at least a majority of the thickness of the plate.
[0046] The lower surface of the dielectric plate includes a plurality of contact bumps or probe tips 580, 582, 584, 586, 588 that are respectively electrically connected to the bias layer or to the vias extending from respective conductive traces on the upper surface of the dielectric plate. The probe tips are arranged in a linear array with the centroids of the lower ends of the probe tips being substantially aligned and arranged generally parallel to forward edge of the probe head. The probe tips are spatially arranged proximate the adjacent tip(s) in the linear array so as to be co-tocatable with the respective probe pads that conduct the signals for the test structure that is to be probed. It is to be understood that the probe tips may take any suitable form, such as a bump, a patterned structure, or an elongate conductor. The bias layer may laterally encircle one or more of the probe tips or may extend beyond one or more of the probe tips to reduce crosstalk with other probes.
[0047] Referring to FIGS. 16, 17 and 18, in an additional embodiment of a probe head 900 for testing a differential test structure, a conductive shield 902, which is preferably planar in nature, is affixed to the bottom of a lower dielectric plate 904. The conductive shield, may be for example, a thin conductive material (or otherwise) that is affixed to the lower plate 904. A shield of thin generally planar conductive material is less likely to accidentally contact the test structure when the probe tips are contact with the probe pads. The conductive shield is electrically coupled to an outer conductor 520 of at least one of the coaxial cables 550, 552, 554, 556, 558 by a via 910 to form a ground plane. The outer conductor is typically connected to ground, though the outer conductor may be provided with any suitable voltage potential (either DC or AC). The conductive shield 902 preferably covers substantially all of the lower surface of the lower dielectric plate 904. Alternatively, the conductive shield 902 may cover greater than 50%, 60%, 70%, 80%, 90%, and/or the region directly under a majority (or more) of the length of a conductive signal trace on the opposing side of the probe head. The bias voltage for the transistors of the DUT is conducted to the bias probe tip 580 through a middle conductive layer 906 which is conductively connected to the bias probe tip and to the center conductor of the coaxial cable 550 by vias. Overlaying the middle conductive layer, an upper dielectric plate 908 includes an upper surface to which are secured the traces 572, 574, 576, 578 that conduct the components of the differential input and output signals. The traces are in contact with the center conductors of the respective coaxial cables and are connected to the respective probe tips by vias extending from the upper surface of the upper dielectric plate to the probe tips.
[0048] Referring to FIGS. 11 and 12, in another embodiment of a probe for a testing a differential test structure, the probe 600 comprises support block 602 securable to the probe supporting member 504. A plurality of ports 532, 534, 536, 538 are attached to the support block and electrically connected to a plurality of coaxial cables that extend to a probe head 604. The connector of the centrally located port 530 is electrically connected to a coaxial cable 606 which extends to a probe tip 608 supported by an arm 610 attached to the support block 602. The probe head 604 comprises a dielectric plate 612 which supports four probe tips 582, 584,586, 588 arranged in a linear array and which conduct the components of the differential input and output signals to and from the test structure. The bias for the transistors of the test structure is conducted from the port 530 to a probe pad of a test structure by a probe tip 608 which is proximate the third and fourth probe tips of the linear array of probe tips 582, 584, 586, 588 but not in linear alignment with the probe tips included in the linear array through which the components of the differential signals are conducted.
[0049] Referring to FIGS. 13 and 14, the ports 702, 704 of the probe 700 of alternative embodiment are arranged to provide electrical interconnections to a coaxial cable having more than two conductors. For example, the conductors may be triaxial cables having three conductors separated by intervening dielectric layers. The triaxial cables 706, 708 are electrically interconnected to the respective ports, at least one of which is insulated from the support block, at their rearward ends. The freely suspended forward support ends of the triaxial cables support a probe head 710 comprising a dielectric plate 712 secured to a shelf formed in each of the ends of the two triaxial cables. The removal of a portion of the triaxial cable to form the shelf exposes the inner conductor 714, the inner dielectric layer 716, the intermediate conductor 718, the outer dielectric layer 720 and the outer conductor 722 that comprise the cable. The conductors of the triaxial cables are interconnected to respective probe tips formed on the lower surface of the dielectric plate. For example, if the DC bias is conducted to the probe head through the outer conductors of the triaxial cables, the central probe tip 150 can be interconnected to the outer conductors by a bias layer 724 supported on the lower surface of the dielectric plate that is electrically interconnected to the central probe tip 150 and electrically interconnected to the outer conductors by vias 726, 728, 730 extending through the dielectric plate. In addition, the linear array of probe tips includes probe tips 162 and 164 for engaging probe pads 142 and 140 of an alternative embodiment comprising seven probe pads and are also interconnected to the bias layer. The components of the differential input and output signals are conducted from the respective inner conductors and respective intermediate conductors to the probe tips 152, 154, 156 and 158 by traces 736, 738, 740, 742 on the upper surface of the dielectric plate that are electrically interconnected to the respective conductor exposed at the shelf in the triaxial cable and vias 744, 746, 748, 750 extending between the upper and lower surfaces of the dielectric plate.
[0050] Referring to FIG. 15, in an additional embodiment a flexible dielectric membrane plate 802 may be substituted for a more rigid dielectric plate. An example of membrane material is described in U.S. Pat. No. 5,914,613. In general, membrane based probes are characterized by a flexible (or semi-flexible) plate or substrate with traces supported thereon together with contacting portions or probe tips being supported thereon. The linear array of probe tips 850, 852, 854, 856, 858 are arranged to be co-locatable with the probe pads of the DUT. The traces are normally on the opposing side of the membrane and connected to the probe tips with vias. In many cases, the membrane technology may be significantly thinner than ceramic based substrates or plates, such as 40, 30, 20, 10, 5, or 3 microns or less. Normally the dielectric constant of the membrane material is 7 or less, sometimes less than 6, 5, or 4 depending on the particular material used. While normally using a membrane substrate with a lower dielectric constant is unsuitable, using a significantly thinner substrate together with a material having a lower dielectric constant raises the theoretical frequency range of effective signal transmission to hundreds of GHz. The significantly thinner substrate material permits positioning the lower bias layer significantly closer to the signal traces than the relatively thick ceramic substrate, and therefore tends to more tightly confine the electromagnetic fields.
[0051] When a probe tip of a membrane based probe head comes into contact with a probe pad, as in most probes, it tends to skate across the pad as additional pressure is exerted. This skating is the result of the angled probe and/or co-axial cable flexing while under increasing pressure against the probe pad. A limited amount of skating is useful to "scrub" away oxide layers, or otherwise, that may build up on the probe pad. In many cases the probe pad is typically relatively small and excessive skating from the application of slightly too much pressure results in the probe simply skating off the probe pad. In addition, if excessive pressure is exerted damage to the probe and/or probe pad may result. Accordingly, there is an acceptable range of pressure and skating that should be maintained.
[0052] A probe measurement system including a probe comprising a linear array of probe tips enables testing of a differential or balanced test structure with a single probe facilitating fabrication of the test structure in a saw street between dies on a wafer.
[0053] The detailed description, above, sets forth numerous specific details to provide a thorough understanding of the present invention. However, those skilled in the art will appreciate that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid obscuring the present invention.
[0054] All the references cited herein are incorporated by reference.
[0055] The terms and expressions that have been employed in the foregoing specification are used as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims that follow.

Claims

Claims:I (we) claim:
1. A probe for testing a differential test structure having a plurality of probe pads, said probe comprising:
(a) a first probe tip connectable to conduct a first mode component of a first differential signal;
(b) a second probe tip proximate said first probe tip and connectable to conduct a first mode component of a second differential signal ;
(c) a third probe tip proximate said second probe tip;
(d) a fourth probe tip proximate said third probe tip and connectable to conduct a second mode component of said second differential signal ; and
(e) a fifth probe tip proximate said fourth probe tip and connectable to conduct a second mode component of first differential signal; said first, said second, said fourth and said fifth probe tips being arranged in a substantially linear array and, with said third probe tip, contemporaneously co-locatable with respective probe pads of said test structure.
2. The probe of claim 1 wherein a source of said first differential signal comprises said respective probe pads of said test structure co-locatable with said first and said fifth probe tips.
3. The probe of claim 1 wherein a source of said second differential signal comprises said respective probe pads of said test structure co-locatable with said second and said fourth probe tips.
4. The probe of claim 1 wherein said third probe tip is interconnected to a source of a direct current.
5. The probe of claim 1 wherein said third probe tip is aligned substantially linearly with said linear array of said first, said second, said fourth and said fifth probe tips.
6. The probe of claim 5 further comprising:
(a) a sixth probe tip proximate said first probe tip; and
(b) a seventh probe tip proximate said fifth probe tip; said sixth and said seventh probe tips being arrayed substantially linearly with said first, said second, said third, said fourth and said fifth probe tips; interconnected to said third probe tip and co-locatable with respective probe pads of said test structure.
7. The probe of claim 6 wherein said third probe tip is interconnected to a source of a direct current.
8. A probe for testing a differential test structure having a plurality of probe pads, said probe comprising:
(a) a dielectric plate having a substantially planar first surface and a second surface;
(b) a first probe tip projecting from said first surface and connectable to conduct a first mode component of a first differential signal ;
(c) a second probe tip projecting from said first surface proximate said first probe tip and connectable to conduct a second mode component of a first differential signal;
(d) a third probe tip projecting from said first surface proximate said second probe tip;
(e) a fourth probe tip projecting from said first surface proximate said third probe tip and connectable to conduct a second mode component of said second differential signal; and
(f) a fifth probe tip projecting from said first surface proximate said fourth probe tip and connectable to conduct a second mode component of said first differential signal; said first, said second, said fourth and said fifth probe tips being arranged in a substantially linear array and contemporaneously co-locatable with respective probe pads of said test structure.
9. The probe of claim 8 wherein a source of said first differential signal comprises said respective probe pads of said test structure co-locatable with said first and said fifth probe tips.
10. The probe of claim 8 wherein a source of said second differential signal comprises said respective probe pads of said test structure co-locatable with said second and said fourth probe tips.
11. The probe of claim 8 wherein said third probe tip is interconnected to a source of a direct current.
12. The probe of claim 8 wherein said third probe tip is aligned substantially linearly with said linear array of said first, said second, said fourth and said fifth probe tips.
13. The probe of claim 12 further comprising:
(a) a sixth probe tip proximate said first probe tip; and
(b) a seventh probe tip proximate said fifth probe tip; said sixth and said seventh probe tips being arrayed substantially linearly with said first, said second, said third, said fourth and said fifth probe tips; interconnected to said third probe tip and co-locatable with respective probe pads of said test structure.
14. The probe of claim 8 further comprising:
(a) a first conductor overlaying an area of said first surface and electrically interconnected with said third probe tip;
(b) a second conductor extending from said first surface to said second surface of said dielectric plate and electrically interconnected with said first conductor; and
(c) a conductor of direct current electrically interconnected with said second conductor.
15. The probe of claim 14 further comprising:
(a) a sixth probe tip projecting from said first surface proximate said first probe tip; and
(b) a seventh probe tip projecting from said first surface proximate said fifth probe tip, said sixth and said seventh probe tips being electrically interconnected with said first conductor and arrayed substantially linearly with said first, said second, said third, said fourth and said fifth probe tips and respectively co-locatable with probe pads of said test structure.
16. The probe of claim 8 further comprising:
(a) a first conductor overlaying an area of said second surface; and
(b) a second conductor extending from said second surface of said dielectric plate and electrically interconnecting said first conductor with a ground potential.
17. The probe of claim 8 wherein said dielectric plate is rigid.
18. The probe of claim 8 wherein said dielectric plate is flexible.
19. A system for measuring a performance of a differential test structure having a plurality of probe pads, said system comprising: (a) a source of a modulated differential signal comprising an even mode component and an odd mode component of approximately equal amplitude and opposite phase angle, said differential signal including a direct current component;
(b) a first bias tee interconnected with said source, said first bias tee separating said direct current component from one of said even mode component and said odd mode component of said modulated differential signal;
(c) a second bias tee interconnected with said source, said second bias tee separating said direct current component from the other of said even mode component and said odd mode component of said modulated differential signal;
(d) a probe comprising:
(ii) a first probe tip interconnected to communicate one of said even mode component and said odd mode component of said modulated differential signal from one of said first bias tee and said second bias tee to a first probe pad of said test structure;
(ii) a second probe tip co-locatable with a second probe pad of said test structure;
(iii) a third probe tip interconnected with at least one of said first bias tee and said second bias tee to conduct said direct current component to a third probe pad of said test structure;
(iv) a fourth probe tip co-locatable with a fourth probe pad of said test structure;
(v) a fifth probe tip interconnected to communicate the other of said even mode component and said odd mode component of said modulated differential signal from the other of said first bias tee and said second bias tee to a fifth probe pad of said test structure, said first, said second, said third, said fourth and said fifth probe tips arranged to be contemporaneously co-locatable with said respective probe pads of said test structure and at least said first, said second, said fourth and said fifth probe tips being arranged in a substantially linear array; and
(e) a signal sink interconnected with said second probe tip and said fourth probe tip, said sink receiving a signal conducted from said second probe pad and said fourth probe pad of said test structure.
20. The system for measuring a performance of a differential test structure of claim 19 wherein said source of said modulated differential signal comprising an even mode component and an odd mode component of approximately equal amplitude and opposite phase angle comprises: (a) a source of a single ended signal including a modulated signal component and a direct current component; and
(b) a first balun interconnecting said source and said first and said second bias tees, said first balun converting said single ended signal to a differential signal comprising an even mode component and an odd mode component of approximately equal amplitude and opposite phase angle.
21. The system for measuring a performance of a differential test structure of claim 20 further comprising a second balun interconnecting said second and said fourth probe tips and said sink, said second balun converting a differential signal transmitted from said second probe pad and said fourth probe pad to a single ended signal.
22. The system for measuring a performance of a differential test structure of claim 19 wherein:
(a) said second probe tip is proximate said first probe tip;
(b) said third probe tip is proximate said second probe tip;
(c) said fourth probe tip is proximate said third probe tip; and
(d) said fifth probe tip is proximate said fourth probe tip.
23. The system for measuring a performance of a differential test structure of claim 19 wherein:
(a) said second probe tip is proximate said first probe tip;
(b) said third probe tip is proximate said first probe tip;
(c) said fourth probe tip is proximate said fifth probe tip; and
(d) said fifth probe tip is proximate said third probe tip.
24. A system for measuring a characteristic of a differential gain cell having a first input terminal, a second input terminal, a first output terminal for transmitting a first output signal controllable by a signal at said first input terminal and a second output terminal for transmitting a second output signal controllable by a signal at said second input terminal, said system comprising:
(a) a source of a first differential signal having a first frequency of modulation, said first differential signal comprising a first mode component and a second mode component of approximately equal magnitude and opposite phase angle;
(b) an interconnection of said source and said first input terminal of said differential gain cell enabling communication of said first mode component of said first differential signal to said first input terminal; (c) an interconnection of said source and said second input terminal of said differential gain cell enabling communication of said second mode component of said first differential signal to said second input terminal;
(d) a source of a second differential signal having a second frequency of modulation, said second differential signal comprising a first mode component and a second mode component of approximately equal magnitude and opposite phase angle;
(e) an interconnection of said first output terminal of said differential gain cell and said second source enabling conducting of a first combined signal comprising a combination of said first mode component of said second differential signal and a first mode component of an output signal of said differential gain cell;
(f) an interconnection of said second output terminal of said differential gain cell and said second source enabling conducting of a second combined signal comprising a combination of said second mode component of said second differential signal and a second mode component of an output signal of said differential gain cell;
(g) a first filter selectively permitting transmission of a portion of said first combined signal having a frequency approximately equal to a difference between said first frequency and said second frequency;
(h) a second filter selectively permitting transmission of a portion of said second combined signal having a frequency approximately equal to a difference between said first frequency and said second frequency; and
(i) a signal sink interconnected to said first filter and said second filter, said signal sink enabling analysis of said first and said second combined signals.
25. The system for measuring a characteristic of a differential test structure of claim 24 wherein said source of said first differential signal comprises:
(a) a source of a single ended signal; and
(b) a first balun interconnecting said source and said first and said input terminals of said differential gain cell.
26. The system for measuring a characteristic of a differential test structure of claim 24 wherein said source of said second differential signal comprises:
(a) a source of a single ended signal; and
(b) a balun interconnecting said source and said first and said output terminals of said differential gain cell.
PCT/US2007/010800 2006-06-12 2007-05-03 Differential signal probing system WO2007145727A2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US81311906P 2006-06-12 2006-06-12
US60/813,119 2006-06-12
US83147706P 2006-07-17 2006-07-17
US60/831,477 2006-07-17
US11/710,225 2007-02-22
US11/710,225 US7764072B2 (en) 2006-06-12 2007-02-22 Differential signal probing system

Publications (2)

Publication Number Publication Date
WO2007145727A2 true WO2007145727A2 (en) 2007-12-21
WO2007145727A3 WO2007145727A3 (en) 2009-04-16

Family

ID=38821237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/010800 WO2007145727A2 (en) 2006-06-12 2007-05-03 Differential signal probing system

Country Status (2)

Country Link
US (2) US7764072B2 (en)
WO (1) WO2007145727A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7420381B2 (en) 2004-09-13 2008-09-02 Cascade Microtech, Inc. Double sided probing structures

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7764072B2 (en) * 2006-06-12 2010-07-27 Cascade Microtech, Inc. Differential signal probing system
KR101647302B1 (en) * 2009-11-26 2016-08-10 삼성전자주식회사 Probe card and test apparatus having the same
US8290736B2 (en) * 2010-02-23 2012-10-16 Freescale Semiconductor, Inc. Calibration standards and methods of their fabrication and use
CN102193008A (en) * 2010-03-03 2011-09-21 鸿富锦精密工业(深圳)有限公司 Probe
DE102010033991A1 (en) * 2010-03-11 2011-12-01 Rhode & Schwarz Gmbh & Co. Kg Measuring tip with integrated transducer
US9244145B2 (en) * 2011-06-30 2016-01-26 Amber Precision Instruments, Inc. System and method for measuring near field information of device under test
CN103765227B (en) * 2011-08-30 2016-08-17 李诺工业股份有限公司 Coaxial probe
US20130069680A1 (en) * 2011-09-16 2013-03-21 Cascade Microtech, Inc. Risers including a plurality of high aspect ratio electrical conduits and systems and methods of manufacture and use therof
US9335343B1 (en) * 2012-03-30 2016-05-10 Altera Corporation Contactor for reducing ESD in integrated circuit testing
TWI471570B (en) * 2012-12-26 2015-02-01 Mpi Corp High frequency probe card
US10067163B2 (en) * 2012-12-26 2018-09-04 Mpi Corporation Probe card capable of transmitting high-frequency signals
US9435855B2 (en) 2013-11-19 2016-09-06 Teradyne, Inc. Interconnect for transmitting signals between a device and a tester
US9594114B2 (en) 2014-06-26 2017-03-14 Teradyne, Inc. Structure for transmitting signals in an application space between a device under test and test electronics
TWI684016B (en) 2015-05-14 2020-02-01 德商羅德與舒瓦茲公司 Measuring system and measuring method with power calibration
US10037925B2 (en) * 2016-03-04 2018-07-31 Qorvo Us, Inc. Removable sacrificial connections for semiconductor devices
US9977052B2 (en) 2016-10-04 2018-05-22 Teradyne, Inc. Test fixture
US10481041B2 (en) * 2017-05-23 2019-11-19 Fluke Corporation Measuring optical array polarity, power, and loss using a position sensing detector and photodetector-equipped optical testing device
US10677815B2 (en) 2018-06-08 2020-06-09 Teradyne, Inc. Test system having distributed resources
US10804874B2 (en) 2018-06-12 2020-10-13 International Business Machines Corporation Superconducting combiner or separator of DC-currents and microwave signals
US11317519B2 (en) 2018-10-15 2022-04-26 International Business Machines Corporation Fabrication of superconducting devices that control direct currents and microwave signals
US11363746B2 (en) 2019-09-06 2022-06-14 Teradyne, Inc. EMI shielding for a signal trace
US11862901B2 (en) 2020-12-15 2024-01-02 Teradyne, Inc. Interposer
CN112748326A (en) * 2020-12-30 2021-05-04 上海捷策创电子科技有限公司 Chip test circuit, device and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5996102A (en) * 1996-02-06 1999-11-30 Telefonaktiebolaget L M Ericsson (Publ) Assembly and method for testing integrated circuit devices
US6407542B1 (en) * 2000-03-23 2002-06-18 Avaya Technology Corp. Implementation of a multi-port modal decomposition system
US6812718B1 (en) * 1999-05-27 2004-11-02 Nanonexus, Inc. Massively parallel interface for electronic circuits

Family Cites Families (1069)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US491783A (en) * 1893-02-14 Bolster-plate
US1337866A (en) 1917-09-27 1920-04-20 Griffiths Ethel Grace System for protecting electric cables
US2142625A (en) 1932-07-06 1939-01-03 Hollandsche Draad En Kabelfab High tension cable
US2376101A (en) 1942-04-01 1945-05-15 Ferris Instr Corp Electrical energy transmission
US2389668A (en) 1943-03-04 1945-11-27 Barnes Drill Co Indexing mechanism for machine tables
GB579665A (en) 1943-10-28 1946-08-12 Gen Electric Improvements in and relating to impedance matching transformers
US2545258A (en) 1945-03-22 1951-03-13 Marcel L Cailloux Device for telecontrol of spatial movement
US2762234A (en) 1952-09-08 1956-09-11 Dodd Roy Frank Search-track radar control
US2901696A (en) 1953-11-25 1959-08-25 Ingeniors N Magnetic Ab Fa Arrangement for automatic and continuous measuring of the noise factor of an electric device
US2921276A (en) * 1955-08-30 1960-01-12 Cutler Hammer Inc Microwave circuits
US2947939A (en) 1956-09-24 1960-08-02 Libbey Owens Ford Glass Co Testing electrically conductive articles
US3111699A (en) 1961-10-09 1963-11-26 Joseph E Comeau Wire brush for railroad switches
US3193712A (en) 1962-03-21 1965-07-06 Clarence A Harris High voltage cable
US3230299A (en) 1962-07-18 1966-01-18 Gen Cable Corp Electrical cable with chemically bonded rubber layers
US3176091A (en) 1962-11-07 1965-03-30 Helmer C Hanson Controlled multiple switching unit
US3262593A (en) 1963-07-10 1966-07-26 Gen Mills Inc Wall-mounted support structure
GB1031068A (en) 1963-09-23 1966-05-25 George Vincent Grispo Improvements in or relating to motion reduction mechanisms
US3218584A (en) 1964-01-02 1965-11-16 Sanders Associates Inc Strip line connection
US3401126A (en) 1965-06-18 1968-09-10 Ibm Method of rendering noble metal conductive composition non-wettable by solder
US3429040A (en) * 1965-06-18 1969-02-25 Ibm Method of joining a component to a substrate
US3445770A (en) 1965-12-27 1969-05-20 Philco Ford Corp Microelectronic test probe with defect marker access
US3484679A (en) 1966-10-03 1969-12-16 North American Rockwell Electrical apparatus for changing the effective capacitance of a cable
US3573617A (en) 1967-10-27 1971-04-06 Aai Corp Method and apparatus for testing packaged integrated circuits
GB1240866A (en) * 1968-08-22 1971-07-28 Amf Inc Control device
US3609539A (en) 1968-09-28 1971-09-28 Ibm Self-aligning kelvin probe
US3541222A (en) 1969-01-13 1970-11-17 Bunker Ramo Connector screen for interconnecting adjacent surfaces of laminar circuits and method of making
JPS497756B1 (en) 1969-01-24 1974-02-22
NL7003475A (en) * 1969-03-28 1970-09-30
US3648169A (en) 1969-05-26 1972-03-07 Teledyne Inc Probe and head assembly
US3596228A (en) 1969-05-29 1971-07-27 Ibm Fluid actuated contactor
US3611199A (en) 1969-09-30 1971-10-05 Emerson Electric Co Digital electromagnetic wave phase shifter comprising switchable reflectively terminated power-dividing means
US3686624A (en) 1969-12-15 1972-08-22 Rca Corp Coax line to strip line end launcher
US3654585A (en) 1970-03-11 1972-04-04 Brooks Research And Mfg Inc Coordinate conversion for the testing of printed circuit boards
US3622915A (en) 1970-03-16 1971-11-23 Meca Electronics Inc Electrical coupler
US3740900A (en) 1970-07-01 1973-06-26 Signetics Corp Vacuum chuck assembly for semiconductor manufacture
US3700998A (en) 1970-08-20 1972-10-24 Computer Test Corp Sample and hold circuit with switching isolation
US3714572A (en) 1970-08-21 1973-01-30 Rca Corp Alignment and test fixture apparatus
US4009456A (en) * 1970-10-07 1977-02-22 General Microwave Corporation Variable microwave attenuator
US3680037A (en) 1970-11-05 1972-07-25 Tech Wire Prod Inc Electrical interconnector
US3662318A (en) 1970-12-23 1972-05-09 Comp Generale Electricite Transition device between coaxial and microstrip lines
US3710251A (en) 1971-04-07 1973-01-09 Collins Radio Co Microelectric heat exchanger pedestal
US3705379A (en) 1971-05-14 1972-12-05 Amp Inc Connector for interconnection of symmetrical and asymmetrical transmission lines
US3766470A (en) 1971-05-24 1973-10-16 Unit Process Assemblies Apparatus for testing the integrity of a thru-hole plating in circuit board workpieces or the like by measuring the effective thickness thereof
US3725829A (en) 1971-07-14 1973-04-03 Itek Corp Electrical connector
GB1387587A (en) * 1971-07-22 1975-03-19 Plessey Co Ltd Electrical interconnectors and connector assemblies
US3810016A (en) 1971-12-17 1974-05-07 Western Electric Co Test probe for semiconductor devices
US3882597A (en) 1971-12-17 1975-05-13 Western Electric Co Method for making a test probe for semiconductor devices
US3829076A (en) 1972-06-08 1974-08-13 H Sofy Dial index machine
US3858212A (en) 1972-08-29 1974-12-31 L Tompkins Multi-purpose information gathering and distribution system
US3952156A (en) 1972-09-07 1976-04-20 Xerox Corporation Signal processing system
CA970849A (en) 1972-09-18 1975-07-08 Malcolm P. Macmartin Low leakage isolating transformer for electromedical apparatus
US3806801A (en) 1972-12-26 1974-04-23 Ibm Probe contactor having buckling beam probes
US3839672A (en) 1973-02-05 1974-10-01 Belden Corp Method and apparatus for measuring the effectiveness of the shield in a coaxial cable
US3867698A (en) * 1973-03-01 1975-02-18 Western Electric Co Test probe for integrated circuit chips
US3803709A (en) 1973-03-01 1974-04-16 Western Electric Co Test probe for integrated circuit chips
US3833852A (en) 1973-08-16 1974-09-03 Owens Illinois Inc Inspection head mounting apparatus
US3930809A (en) * 1973-08-21 1976-01-06 Wentworth Laboratories, Inc. Assembly fixture for fixed point probe card
US3849728A (en) 1973-08-21 1974-11-19 Wentworth Labor Inc Fixed point probe card and an assembly and repair fixture therefor
US4001685A (en) * 1974-03-04 1977-01-04 Electroglas, Inc. Micro-circuit test probe
US3936743A (en) * 1974-03-05 1976-02-03 Electroglas, Inc. High speed precision chuck assembly
US3971610A (en) 1974-05-10 1976-07-27 Technical Wire Products, Inc. Conductive elastomeric contacts and connectors
US3976959A (en) 1974-07-22 1976-08-24 Gaspari Russell A Planar balun
US3970934A (en) 1974-08-12 1976-07-20 Akin Aksu Printed circuit board testing means
CH607045A5 (en) 1974-12-05 1978-11-30 Ernst Hedinger Diode test appts. with oscillator
US4038599A (en) 1974-12-30 1977-07-26 International Business Machines Corporation High density wafer contacting and test system
US4123706A (en) 1975-03-03 1978-10-31 Electroglas, Inc. Probe construction
US4038894A (en) 1975-07-18 1977-08-02 Springfield Tool And Die, Inc. Piercing apparatus
US4003253A (en) * 1975-09-08 1977-01-18 Fischer & Porter Co. Multi-range vortex-shedding flowmeter
SE407115B (en) 1975-10-06 1979-03-12 Kabi Ab PROCEDURES AND METAL ELECTRODES FOR THE STUDY OF ENZYMATIC AND OTHER BIOCHEMICAL REACTIONS
US4035723A (en) 1975-10-16 1977-07-12 Xynetics, Inc. Probe arm
US3992073A (en) 1975-11-24 1976-11-16 Technical Wire Products, Inc. Multi-conductor probe
US4116523A (en) 1976-01-23 1978-09-26 James M. Foster High frequency probe
US4049252A (en) 1976-02-04 1977-09-20 Bell Theodore F Index table
US4008900A (en) * 1976-03-15 1977-02-22 John Freedom Indexing chuck
US4063195A (en) 1976-03-26 1977-12-13 Hughes Aircraft Company Parametric frequency converter
US4099120A (en) 1976-04-19 1978-07-04 Akin Aksu Probe head for testing printed circuit boards
US4027935A (en) 1976-06-21 1977-06-07 International Business Machines Corporation Contact for an electrical contactor assembly
US4074201A (en) * 1976-07-26 1978-02-14 Gte Sylvania Incorporated Signal analyzer with noise estimation and signal to noise readout
US4115735A (en) 1976-10-14 1978-09-19 Faultfinders, Inc. Test fixture employing plural platens for advancing some or all of the probes of the test fixture
US4093988A (en) 1976-11-08 1978-06-06 General Electric Company High speed frequency response measurement
US4124787A (en) 1977-03-11 1978-11-07 Atari, Inc. Joystick controller mechanism operating one or plural switches sequentially or simultaneously
US4151465A (en) 1977-05-16 1979-04-24 Lenz Seymour S Variable flexure test probe for microelectronic circuits
US4161692A (en) 1977-07-18 1979-07-17 Cerprobe Corporation Probe device for integrated circuit wafers
US4312117A (en) * 1977-09-01 1982-01-26 Raytheon Company Integrated test and assembly device
US4184729A (en) * 1977-10-13 1980-01-22 Bunker Ramo Corporation Flexible connector cable
US4135131A (en) 1977-10-14 1979-01-16 The United States Of America As Represented By The Secretary Of The Army Microwave time delay spectroscopic methods and apparatus for remote interrogation of biological targets
US4184133A (en) * 1977-11-28 1980-01-15 Rockwell International Corporation Assembly of microwave integrated circuits having a structurally continuous ground plane
US4216467A (en) 1977-12-22 1980-08-05 Westinghouse Electric Corp. Hand controller
GB2094479B (en) 1978-01-30 1983-03-16 Texas Instruments Inc Determining probe contact in testing integrated circuits
US4232398A (en) 1978-02-09 1980-11-04 Motorola, Inc. Radio receiver alignment indicator
US4177421A (en) 1978-02-27 1979-12-04 Xerox Corporation Capacitive transducer
US4302146A (en) 1978-08-23 1981-11-24 Westinghouse Electric Corp. Probe positioner
US4225819A (en) 1978-10-12 1980-09-30 Bell Telephone Laboratories, Incorporated Circuit board contact contamination probe
US4306235A (en) 1978-11-02 1981-12-15 Cbc Corporation Multiple frequency microwave antenna
DE2849119A1 (en) 1978-11-13 1980-05-14 Siemens Ag METHOD AND CIRCUIT FOR DAMPING MEASUREMENT, ESPECIALLY FOR DETERMINING THE DAMPING AND / OR GROUP DISTANCE DISTORTION OF A MEASURED OBJECT
US4251772A (en) * 1978-12-26 1981-02-17 Pacific Western Systems Inc. Probe head for an automatic semiconductive wafer prober
US4383217A (en) 1979-01-02 1983-05-10 Shiell Thomas J Collinear four-point probe head and mount for resistivity measurements
US4280112A (en) 1979-02-21 1981-07-21 Eisenhart Robert L Electrical coupler
US4287473A (en) 1979-05-25 1981-09-01 The United States Of America As Represented By The United States Department Of Energy Nondestructive method for detecting defects in photodetector and solar cell devices
FI58719C (en) * 1979-06-01 1981-04-10 Instrumentarium Oy DIAGNOSTISERINGSANORDNING FOER BROESTKANCER
US4277741A (en) 1979-06-25 1981-07-07 General Motors Corporation Microwave acoustic spectrometer
SU843040A1 (en) 1979-08-06 1981-06-30 Физико-Технический Институт Низкихтемператур Ah Украинской Ccp Straightway rejection filter
US4327180A (en) 1979-09-14 1982-04-27 Board Of Governors, Wayne State Univ. Method and apparatus for electromagnetic radiation of biological material
US4284033A (en) 1979-10-31 1981-08-18 Rca Corporation Means to orbit and rotate target wafers supported on planet member
US4330783A (en) 1979-11-23 1982-05-18 Toia Michael J Coaxially fed dipole antenna
DE2951072C2 (en) 1979-12-19 1985-02-21 ANT Nachrichtentechnik GmbH, 7150 Backnang Transition from a coaxial component to a microwave circuit arranged on a substrate
SE441640B (en) 1980-01-03 1985-10-21 Stiftelsen Inst Mikrovags PROCEDURE AND DEVICE FOR HEATING BY MICROVAGS ENERGY
US4284682A (en) 1980-04-30 1981-08-18 Nasa Heat sealable, flame and abrasion resistant coated fabric
US4340860A (en) 1980-05-19 1982-07-20 Trigon Integrated circuit carrier package test probe
US4357575A (en) 1980-06-17 1982-11-02 Dit-Mco International Corporation Apparatus for use in testing printed circuit process boards having means for positioning such boards in proper juxtaposition with electrical contacting assemblies
US4552033A (en) 1980-07-08 1985-11-12 Gebr. Marzhauser Wetzlar oHG Drive system for a microscope stage or the like
US4346355A (en) 1980-11-17 1982-08-24 Raytheon Company Radio frequency energy launcher
US4376920A (en) 1981-04-01 1983-03-15 Smith Kenneth L Shielded radio frequency transmission cable
US4375631A (en) 1981-04-09 1983-03-01 Ampex Corporation Joystick control
EP0064198B1 (en) * 1981-04-25 1985-12-18 Kabushiki Kaisha Toshiba Apparatus for measuring noise factor and available gain
US4425395A (en) 1981-04-30 1984-01-10 Fujikura Rubber Works, Ltd. Base fabrics for polyurethane-coated fabrics, polyurethane-coated fabrics and processes for their production
US4401945A (en) 1981-04-30 1983-08-30 The Valeron Corporation Apparatus for detecting the position of a probe relative to a workpiece
JPS5943091B2 (en) * 1981-06-03 1984-10-19 義栄 長谷川 Fixed probe board
US4888550A (en) 1981-09-14 1989-12-19 Texas Instruments Incorporated Intelligent multiprobe tip
EP0078339B1 (en) 1981-10-30 1986-07-30 Ibm Deutschland Gmbh Test apparatus for testing runs of a circuit board with at least one test head comprising a plurality of flexible contacts
US4453142A (en) 1981-11-02 1984-06-05 Motorola Inc. Microstrip to waveguide transition
US4480223A (en) 1981-11-25 1984-10-30 Seiichiro Aigo Unitary probe assembly
US4567436A (en) * 1982-01-21 1986-01-28 Linda Koch Magnetic thickness gauge with adjustable probe
DE3202461C1 (en) 1982-01-27 1983-06-09 Fa. Carl Zeiss, 7920 Heidenheim Attachment of microscope objectives
US4528504A (en) 1982-05-27 1985-07-09 Harris Corporation Pulsed linear integrated circuit tester
US4468629A (en) 1982-05-27 1984-08-28 Trw Inc. NPN Operational amplifier
US4502028A (en) * 1982-06-15 1985-02-26 Raytheon Company Programmable two-port microwave network
US4705447A (en) 1983-08-11 1987-11-10 Intest Corporation Electronic test head positioner for test systems
US4527942A (en) 1982-08-25 1985-07-09 Intest Corporation Electronic test head positioner for test systems
US4551747A (en) 1982-10-05 1985-11-05 Mayo Foundation Leadless chip carrier apparatus providing for a transmission line environment and improved heat dissipation
SU1392603A1 (en) 1982-11-19 1988-04-30 Физико-технический институт низких температур АН УССР Band-rejection filter
US4487996A (en) 1982-12-02 1984-12-11 Electric Power Research Institute, Inc. Shielded electrical cable
GB2133649A (en) * 1982-12-23 1984-07-25 Philips Electronic Associated Microwave oscillator
US4558609A (en) 1983-01-06 1985-12-17 Wico Corporation Joystick controller with interchangeable handles
DE3308690A1 (en) 1983-03-11 1984-09-13 Deutsche Thomson-Brandt Gmbh, 7730 Villingen-Schwenningen METHOD FOR TUNING THE VIBRATION CIRCLES OF A MESSAGE RECEIVER
US4581679A (en) 1983-05-31 1986-04-08 Trw Inc. Multi-element circuit construction
JPS59226167A (en) 1983-06-04 1984-12-19 Dainippon Screen Mfg Co Ltd Surface treating device for circuit board
FR2547945B1 (en) 1983-06-21 1986-05-02 Raffinage Cie Francaise NEW STRUCTURE OF ELECTRIC CABLE AND ITS APPLICATIONS
US4553111A (en) 1983-08-30 1985-11-12 Burroughs Corporation Printed circuit board maximizing areas for component utilization
US4588950A (en) 1983-11-15 1986-05-13 Data Probe Corporation Test system for VLSI digital circuit and method of testing
JPS60136006U (en) 1984-02-20 1985-09-10 株式会社 潤工社 flat cable
US4646005A (en) * 1984-03-16 1987-02-24 Motorola, Inc. Signal probe
US4649339A (en) 1984-04-25 1987-03-10 Honeywell Inc. Integrated circuit interface
US4697143A (en) 1984-04-30 1987-09-29 Cascade Microtech, Inc. Wafer probe
US4653174A (en) 1984-05-02 1987-03-31 Gte Products Corporation Method of making packaged IC chip
JPS60235304A (en) 1984-05-08 1985-11-22 株式会社フジクラ Dc power cable
US4636722A (en) * 1984-05-21 1987-01-13 Probe-Rite, Inc. High density probe-head with isolated and shielded transmission lines
US4515133A (en) 1984-05-31 1985-05-07 Frank Roman Fuel economizing device
US4837507A (en) 1984-06-08 1989-06-06 American Telephone And Telegraph Company At&T Technologies, Inc. High frequency in-circuit test fixture
SU1195402A1 (en) 1984-06-11 1985-11-30 Предприятие П/Я В-8117 Detachable coaxial-microstrip junction
DK291184D0 (en) 1984-06-13 1984-06-13 Boeegh Petersen Allan METHOD AND DEVICE FOR TESTING CIRCUIT PLATES
US4755747A (en) 1984-06-15 1988-07-05 Canon Kabushiki Kaisha Wafer prober and a probe card to be used therewith
JPS6113583A (en) 1984-06-27 1986-01-21 日本電気株式会社 High frequency connector
DE3426565A1 (en) 1984-07-19 1986-01-23 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Contact-free connection for planar leads
DE3428087A1 (en) 1984-07-30 1986-01-30 Kraftwerk Union AG, 4330 Mülheim CONCENTRIC THREE-WIRE CABLE
US4593243A (en) 1984-08-29 1986-06-03 Magnavox Government And Industrial Electronics Company Coplanar and stripline probe card apparatus
US4706050A (en) 1984-09-22 1987-11-10 Smiths Industries Public Limited Company Microstrip devices
US4652082A (en) 1984-10-29 1987-03-24 Amp Incorporated Angled electro optic connector
NL8403755A (en) 1984-12-11 1986-07-01 Philips Nv METHOD FOR MANUFACTURING A MULTI-LAYER PRINTED WIRING WITH SEW-THROUGH TRACKS IN DIFFERENT LAYERS AND MULTI-LAYER PRINTED WIRES MADE BY THE METHOD
US4713347A (en) 1985-01-14 1987-12-15 Sensor Diagnostics, Inc. Measurement of ligand/anti-ligand interactions using bulk conductance
US5266963A (en) 1985-01-17 1993-11-30 British Aerospace Public Limited Company Integrated antenna/mixer for the microwave and millimetric wavebands
JPS61164338A (en) * 1985-01-17 1986-07-25 Riken Denshi Kk Multiplex arithmetic type digital-analog converter
US4651115A (en) 1985-01-31 1987-03-17 Rca Corporation Waveguide-to-microstrip transition
US4780670A (en) 1985-03-04 1988-10-25 Xerox Corporation Active probe card for high resolution/low noise wafer level testing
US4744041A (en) 1985-03-04 1988-05-10 International Business Machines Corporation Method for testing DC motors
US4600907A (en) 1985-03-07 1986-07-15 Tektronix, Inc. Coplanar microstrap waveguide interconnector and method of interconnection
US4691163A (en) 1985-03-19 1987-09-01 Elscint Ltd. Dual frequency surface probes
US4755746A (en) 1985-04-24 1988-07-05 Prometrix Corporation Apparatus and methods for semiconductor wafer testing
US4626805A (en) 1985-04-26 1986-12-02 Tektronix, Inc. Surface mountable microwave IC package
US4684883A (en) 1985-05-13 1987-08-04 American Telephone And Telegraph Company, At&T Bell Laboratories Method of manufacturing high-quality semiconductor light-emitting devices
US4684884A (en) 1985-07-02 1987-08-04 Gte Communication Systems Corporation Universal test circuit for integrated circuit packages
FR2585513B1 (en) 1985-07-23 1987-10-09 Thomson Csf COUPLING DEVICE BETWEEN A METAL WAVEGUIDE, A DIELECTRIC WAVEGUIDE AND A SEMICONDUCTOR COMPONENT, AND MIXER USING THE SAME
EP0213825A3 (en) 1985-08-22 1989-04-26 Molecular Devices Corporation Multiple chemically modulated capacitance
GB2179458B (en) 1985-08-23 1988-11-09 Ferranti Plc Microwave noise measuring apparatus
DE3531893A1 (en) * 1985-09-06 1987-03-19 Siemens Ag METHOD FOR DETERMINING THE DISTRIBUTION OF DIELECTRICITY CONSTANTS IN AN EXAMINATION BODY, AND MEASURING ARRANGEMENT FOR IMPLEMENTING THE METHOD
US4746857A (en) 1985-09-13 1988-05-24 Danippon Screen Mfg. Co. Ltd. Probing apparatus for measuring electrical characteristics of semiconductor device formed on wafer
US4749942A (en) 1985-09-26 1988-06-07 Tektronix, Inc. Wafer probe head
JPH0326643Y2 (en) 1985-09-30 1991-06-10
US5829128A (en) * 1993-11-16 1998-11-03 Formfactor, Inc. Method of mounting resilient contact structures to semiconductor devices
US5917707A (en) 1993-11-16 1999-06-29 Formfactor, Inc. Flexible contact structure with an electrically conductive shell
US6330164B1 (en) 1985-10-18 2001-12-11 Formfactor, Inc. Interconnect assemblies and methods including ancillary electronic component connected in immediate proximity of semiconductor device
US6043563A (en) 1997-05-06 2000-03-28 Formfactor, Inc. Electronic components with terminals and spring contact elements extending from areas which are remote from the terminals
US5476211A (en) 1993-11-16 1995-12-19 Form Factor, Inc. Method of manufacturing electrical contacts, using a sacrificial member
US4696544A (en) 1985-11-18 1987-09-29 Olympus Corporation Fiberscopic device for inspection of internal sections of construction, and method for using same
SU1327023A1 (en) 1985-12-04 1987-07-30 Горьковский политехнический институт им.А.А.Жданова Method of measuring spectral density of noise level and noise coefficient of four-terminal network
US4853627A (en) 1985-12-23 1989-08-01 Triquint Semiconductor, Inc. Wafer probes
EP0230766A1 (en) 1985-12-23 1987-08-05 Tektronix, Inc. Wafer probes
US4727319A (en) * 1985-12-24 1988-02-23 Hughes Aircraft Company Apparatus for on-wafer testing of electrical circuits
JPH0833413B2 (en) 1986-01-07 1996-03-29 ヒューレット・パッカード・カンパニー Test probe
US4793814A (en) 1986-07-21 1988-12-27 Rogers Corporation Electrical circuit board interconnect
EP0442543B1 (en) * 1986-01-24 1997-11-19 Fuji Photo Film Co., Ltd. Device for loading sheet films
US4757255A (en) 1986-03-03 1988-07-12 National Semiconductor Corporation Environmental box for automated wafer probing
DE3783639T2 (en) 1986-03-14 1993-05-13 Sumitomo Electric Industries OPTICAL PLUG AND SPLICE.
US5361049A (en) 1986-04-14 1994-11-01 The United States Of America As Represented By The Secretary Of The Navy Transition from double-ridge waveguide to suspended substrate
US4766384A (en) 1986-06-20 1988-08-23 Schlumberger Technology Corp. Well logging apparatus for determining dip, azimuth, and invaded zone conductivity
US5095891A (en) 1986-07-10 1992-03-17 Siemens Aktiengesellschaft Connecting cable for use with a pulse generator and a shock wave generator
DE3625631A1 (en) 1986-07-29 1988-02-04 Gore W L & Co Gmbh ELECTROMAGNETIC SHIELDING
US4739259A (en) 1986-08-01 1988-04-19 Tektronix, Inc. Telescoping pin probe
US4783625A (en) 1986-08-21 1988-11-08 Tektronix, Inc. Wideband high impedance card mountable probe
JP2609232B2 (en) * 1986-09-04 1997-05-14 日本ヒューレット・パッカード株式会社 Floating drive circuit
EP0259163A3 (en) 1986-09-05 1989-07-12 Tektronix, Inc. Semiconductor wafer probe
EP0259183A3 (en) 1986-09-05 1989-06-28 Lifetrac Process for controlling the accuracy and precision of sensitivity assays
US4904933A (en) * 1986-09-08 1990-02-27 Tektronix, Inc. Integrated circuit probe station
US4673839A (en) 1986-09-08 1987-06-16 Tektronix, Inc. Piezoelectric pressure sensing apparatus for integrated circuit testing stations
FR2603954B1 (en) 1986-09-15 1988-12-16 Olaer Ind Sa PRESSURE TANK WITH LIQUID PRESENCE SENSOR IN A GAS CHAMBER
US4690472A (en) 1986-09-26 1987-09-01 E. I. Du Pont De Nemours And Company High density flex connector system
DE3637549A1 (en) 1986-11-04 1988-05-11 Hans Dr Med Rosenberger Measuring device for testing the dielectric properties of biological tissues
US4764723A (en) 1986-11-10 1988-08-16 Cascade Microtech, Inc. Wafer probe
FR2606887B1 (en) 1986-11-18 1989-01-13 Thomson Semiconducteurs CIRCUIT FOR MEASURING THE DYNAMIC CHARACTERISTICS OF A BOX FOR A FAST INTEGRATED CIRCUIT, AND METHOD FOR MEASURING THESE DYNAMIC CHARACTERISTICS
US4754239A (en) 1986-12-19 1988-06-28 The United States Of America As Represented By The Secretary Of The Air Force Waveguide to stripline transition assembly
US4772846A (en) 1986-12-29 1988-09-20 Hughes Aircraft Company Wafer alignment and positioning apparatus for chip testing by voltage contrast electron microscopy
US4812754A (en) 1987-01-07 1989-03-14 Tracy Theodore A Circuit board interfacing apparatus
US4918383A (en) 1987-01-20 1990-04-17 Huff Richard E Membrane probe with automatic contact scrub action
US4727637A (en) 1987-01-20 1988-03-01 The Boeing Company Computer aided connector assembly method and apparatus
US4827211A (en) 1987-01-30 1989-05-02 Cascade Microtech, Inc. Wafer probe
US4711563A (en) 1987-02-11 1987-12-08 Lass Bennett D Portable collapsible darkroom
US4864227A (en) 1987-02-27 1989-09-05 Canon Kabushiki Kaisha Wafer prober
US4734641A (en) 1987-03-09 1988-03-29 Tektronix, Inc. Method for the thermal characterization of semiconductor packaging systems
US5180976A (en) * 1987-04-17 1993-01-19 Everett/Charles Contact Products, Inc. Integrated circuit carrier having built-in circuit verification
US5082627A (en) 1987-05-01 1992-01-21 Biotronic Systems Corporation Three dimensional binding site array for interfering with an electrical field
US4908570A (en) 1987-06-01 1990-03-13 Hughes Aircraft Company Method of measuring FET noise parameters
US4740764A (en) 1987-06-03 1988-04-26 Varian Associates, Inc. Pressure sealed waveguide to coaxial line connection
US4810981A (en) 1987-06-04 1989-03-07 General Microwave Corporation Assembly of microwave components
US4912399A (en) 1987-06-09 1990-03-27 Tektronix, Inc. Multiple lead probe for integrated circuits in wafer form
US4894612A (en) * 1987-08-13 1990-01-16 Hypres, Incorporated Soft probe for providing high speed on-wafer connections to a circuit
US4755874A (en) 1987-08-31 1988-07-05 Kla Instruments Corporation Emission microscopy system
US5198752A (en) 1987-09-02 1993-03-30 Tokyo Electron Limited Electric probing-test machine having a cooling system
US5084671A (en) 1987-09-02 1992-01-28 Tokyo Electron Limited Electric probing-test machine having a cooling system
JPH0660912B2 (en) 1987-09-07 1994-08-10 浜松ホトニクス株式会社 Voltage detector
US4791363A (en) 1987-09-28 1988-12-13 Logan John K Ceramic microstrip probe blade
US4929893A (en) 1987-10-06 1990-05-29 Canon Kabushiki Kaisha Wafer prober
US4922912A (en) 1987-10-21 1990-05-08 Hideto Watanabe MAP catheter
US5062149A (en) 1987-10-23 1991-10-29 General Dynamics Corporation Millimeter wave device and method of making
JP2554669Y2 (en) * 1987-11-10 1997-11-17 博 寺町 Rotary positioning device
US4859989A (en) 1987-12-01 1989-08-22 W. L. Gore & Associates, Inc. Security system and signal carrying member thereof
US4851767A (en) 1988-01-15 1989-07-25 International Business Machines Corporation Detachable high-speed opto-electronic sampling probe
US4891584A (en) * 1988-03-21 1990-01-02 Semitest, Inc. Apparatus for making surface photovoltage measurements of a semiconductor
US4980637A (en) 1988-03-01 1990-12-25 Hewlett-Packard Company Force delivery system for improved precision membrane probe
JPH01133701U (en) * 1988-03-07 1989-09-12
US4988062A (en) * 1988-03-10 1991-01-29 London Robert A Apparatus, system and method for organizing and maintaining a plurality of medical catheters and the like
US4858160A (en) 1988-03-18 1989-08-15 Cascade Microtech, Inc. System for setting reference reactance for vector corrected measurements
US4918373A (en) 1988-03-18 1990-04-17 Hughes Aircraft Company R.F. phase noise test set using fiber optic delay line
US5021186A (en) 1988-03-25 1991-06-04 Nissan Chemical Industries, Ltd. Chloroisocyanuric acid composition having storage stability
US4839587A (en) 1988-03-29 1989-06-13 Digital Equipment Corporation Test fixture for tab circuits and devices
US4835495A (en) 1988-04-11 1989-05-30 Hughes Aircraft Company Diode device packaging arrangement
US4871964A (en) 1988-04-12 1989-10-03 G. G. B. Industries, Inc. Integrated circuit probing apparatus
US5354695A (en) 1992-04-08 1994-10-11 Leedy Glenn J Membrane dielectric isolation IC fabrication
US5323035A (en) 1992-10-13 1994-06-21 Glenn Leedy Interconnection structure for integrated circuits and method for making same
US5020219A (en) 1988-05-16 1991-06-04 Leedy Glenn J Method of making a flexible tester surface for testing integrated circuits
US5003253A (en) 1988-05-20 1991-03-26 The Board Of Trustees Of The Leland Stanford Junior University Millimeter-wave active probe system
US4983910A (en) * 1988-05-20 1991-01-08 Stanford University Millimeter-wave active probe
US4987100A (en) * 1988-05-26 1991-01-22 International Business Machines Corporation Flexible carrier for an electronic device
US4831494A (en) 1988-06-27 1989-05-16 International Business Machines Corporation Multilayer capacitor
US5116180A (en) 1988-07-18 1992-05-26 Spar Aerospace Limited Human-in-the-loop machine control loop
US4991290A (en) * 1988-07-21 1991-02-12 Microelectronics And Computer Technology Flexible electrical interconnect and method of making
US4926172A (en) 1988-09-02 1990-05-15 Dickey-John Corporation Joystick controller
US4906920A (en) 1988-10-11 1990-03-06 Hewlett-Packard Company Self-leveling membrane probe
US4893914A (en) * 1988-10-12 1990-01-16 The Micromanipulator Company, Inc. Test station
US4998062A (en) 1988-10-25 1991-03-05 Tokyo Electron Limited Probe device having micro-strip line structure
CA1278106C (en) 1988-11-02 1990-12-18 Gordon Glen Rabjohn Tunable microwave wafer probe
US4849689A (en) 1988-11-04 1989-07-18 Cascade Microtech, Inc. Microwave wafer probe having replaceable probe tip
US4904935A (en) 1988-11-14 1990-02-27 Eaton Corporation Electrical circuit board text fixture having movable platens
US5142224A (en) 1988-12-13 1992-08-25 Comsat Non-destructive semiconductor wafer probing system using laser pulses to generate and detect millimeter wave signals
US4916398A (en) 1988-12-21 1990-04-10 Spectroscopy Imaging Systems Corp. Efficient remote transmission line probe tuning for NMR apparatus
CA2005070C (en) 1988-12-23 1999-04-27 Henry C. Yuen Apparatus and method for using encoded video recorder/player timer preprogramming information
US5129006A (en) 1989-01-06 1992-07-07 Hill Amel L Electronic audio signal amplifier and loudspeaker system
US4916002A (en) 1989-01-13 1990-04-10 The Board Of Trustees Of The Leland Jr. University Microcasting of microminiature tips
US4922128A (en) 1989-01-13 1990-05-01 Ibm Corporation Boost clock circuit for driving redundant wordlines and sample wordlines
DE8901113U1 (en) 1989-02-02 1990-03-01 Felten & Guilleaume Energietechnik Ag, 5000 Koeln, De
US5232789A (en) 1989-03-09 1993-08-03 Mtu Motoren- Und Turbinen-Union Muenchen Gmbh Structural component with a protective coating having a nickel or cobalt basis and method for making such a coating
US5159752A (en) 1989-03-22 1992-11-03 Texas Instruments Incorporated Scanning electron microscope based parametric testing method and apparatus
US5304924A (en) 1989-03-29 1994-04-19 Canon Kabushiki Kaisha Edge detector
US5030907A (en) 1989-05-19 1991-07-09 Knights Technology, Inc. CAD driven microprobe integrated circuit tester
US4980638A (en) 1989-05-26 1990-12-25 Dermon John A Microcircuit probe and method for manufacturing same
US4965514A (en) 1989-06-05 1990-10-23 Tektronix, Inc. Apparatus for probing a microwave circuit
US5045781A (en) 1989-06-08 1991-09-03 Cascade Microtech, Inc. High-frequency active probe having replaceable contact needles
US4970386A (en) 1989-06-22 1990-11-13 Westinghouse Electric Corp. Vertical FET high speed optical sensor
US5134365A (en) 1989-07-11 1992-07-28 Nihon Denshizairyo Kabushiki Kaisha Probe card in which contact pressure and relative position of each probe end are correctly maintained
US4998063A (en) 1989-07-31 1991-03-05 Abb Power T & D Company, Inc. Fiber optic coupled magneto-optic sensor having a concave reflective focusing surface
US5041782A (en) 1989-09-20 1991-08-20 Design Technique International, Inc. Microstrip probe
US5160883A (en) 1989-11-03 1992-11-03 John H. Blanz Company, Inc. Test station having vibrationally stabilized X, Y and Z movable integrated circuit receiving support
US5166606A (en) 1989-11-03 1992-11-24 John H. Blanz Company, Inc. High efficiency cryogenic test station
US5097207A (en) 1989-11-03 1992-03-17 John H. Blanz Company, Inc. Temperature stable cryogenic probe station
US5267088A (en) 1989-11-10 1993-11-30 Asahi Kogaku Kogyo Kabushiki Kaisha Code plate mounting device
US4975638A (en) 1989-12-18 1990-12-04 Wentworth Laboratories Test probe assembly for testing integrated circuit devices
US5145552A (en) 1989-12-21 1992-09-08 Canon Kabushiki Kaisha Process for preparing electrical connecting member
US5089774A (en) * 1989-12-26 1992-02-18 Sharp Kabushiki Kaisha Apparatus and a method for checking a semiconductor
US5066357A (en) 1990-01-11 1991-11-19 Hewlett-Packard Company Method for making flexible circuit card with laser-contoured vias and machined capacitors
JPH03209737A (en) * 1990-01-11 1991-09-12 Tokyo Electron Ltd Probe equipment
US5298972A (en) 1990-01-22 1994-03-29 Hewlett-Packard Company Method and apparatus for measuring polarization sensitivity of optical devices
US5001423A (en) 1990-01-24 1991-03-19 International Business Machines Corporation Dry interface thermal chuck temperature control system for semiconductor wafer testing
US5069628A (en) 1990-03-13 1991-12-03 Hughes Aircraft Company Flexible electrical cable connector with double sided dots
US5007163A (en) 1990-04-18 1991-04-16 International Business Machines Corporation Non-destructure method of performing electrical burn-in testing of semiconductor chips
US5408189A (en) 1990-05-25 1995-04-18 Everett Charles Technologies, Inc. Test fixture alignment system for printed circuit boards
US5012186A (en) 1990-06-08 1991-04-30 Cascade Microtech, Inc. Electrical probe with contact force protection
US5245292A (en) 1990-06-12 1993-09-14 Iniziative Marittime 1991, S.R.L. Method and apparatus for sensing a fluid handling
US5198753A (en) 1990-06-29 1993-03-30 Digital Equipment Corporation Integrated circuit test fixture and method
US5061823A (en) 1990-07-13 1991-10-29 W. L. Gore & Associates, Inc. Crush-resistant coaxial transmission line
US5187443A (en) 1990-07-24 1993-02-16 Bereskin Alexander B Microwave test fixtures for determining the dielectric properties of a material
US5128612A (en) 1990-07-31 1992-07-07 Texas Instruments Incorporated Disposable high performance test head
US5569591A (en) 1990-08-03 1996-10-29 University College Of Wales Aberystwyth Analytical or monitoring apparatus and method
KR0138754B1 (en) 1990-08-06 1998-06-15 이노우에 아키라 Touch sensor unit of probe for testing electric circuit and electric circuit testing apparatus using the touch sensor unit
US5059898A (en) 1990-08-09 1991-10-22 Tektronix, Inc. Wafer probe with transparent loading member
US5363050A (en) 1990-08-31 1994-11-08 Guo Wendy W Quantitative dielectric imaging system
US5091732A (en) 1990-09-07 1992-02-25 The United States Of America As Represented By The Secretary Of The Navy Lightweight deployable antenna system
US5521518A (en) 1990-09-20 1996-05-28 Higgins; H. Dan Probe card apparatus
US6037785A (en) 1990-09-20 2000-03-14 Higgins; H. Dan Probe card apparatus
US5589781A (en) 1990-09-20 1996-12-31 Higgins; H. Dan Die carrier apparatus
JP3196206B2 (en) 1990-09-25 2001-08-06 東芝ライテック株式会社 Discharge lamp lighting device
US5159267A (en) 1990-09-28 1992-10-27 Sematech, Inc. Pneumatic energy fluxmeter
GB9021448D0 (en) 1990-10-03 1990-11-14 Renishaw Plc Capacitance sensing probe
US5126286A (en) 1990-10-05 1992-06-30 Micron Technology, Inc. Method of manufacturing edge connected semiconductor die
JP2544015Y2 (en) 1990-10-15 1997-08-13 株式会社アドバンテスト IC test equipment
US5207585A (en) 1990-10-31 1993-05-04 International Business Machines Corporation Thin interface pellicle for dense arrays of electrical interconnects
US5148103A (en) 1990-10-31 1992-09-15 Hughes Aircraft Company Apparatus for testing integrated circuits
US5061192A (en) 1990-12-17 1991-10-29 International Business Machines Corporation High density connector
US5138289A (en) 1990-12-21 1992-08-11 California Institute Of Technology Noncontacting waveguide backshort
JP3699349B2 (en) 1990-12-25 2005-09-28 日本碍子株式会社 Wafer adsorption heating device
US5280156A (en) 1990-12-25 1994-01-18 Ngk Insulators, Ltd. Wafer heating apparatus and with ceramic substrate and dielectric layer having electrostatic chucking means
US5107076A (en) 1991-01-08 1992-04-21 W. L. Gore & Associates, Inc. Easy strip composite dielectric coaxial signal cable
US5136237A (en) 1991-01-29 1992-08-04 Tektronix, Inc. Double insulated floating high voltage test probe
US5097101A (en) 1991-02-05 1992-03-17 Tektronix, Inc. Method of forming a conductive contact bump on a flexible substrate and a flexible substrate
US5233306A (en) 1991-02-13 1993-08-03 The Board Of Regents Of The University Of Wisconsin System Method and apparatus for measuring the permittivity of materials
US5172050A (en) 1991-02-15 1992-12-15 Motorola, Inc. Micromachined semiconductor probe card
US5133119A (en) 1991-02-28 1992-07-28 Hewlett-Packard Company Shearing stress interconnection apparatus and method
US6411377B1 (en) 1991-04-02 2002-06-25 Hitachi, Ltd. Optical apparatus for defect and particle size inspection
US5172051A (en) 1991-04-24 1992-12-15 Hewlett-Packard Company Wide bandwidth passive probe
US5317656A (en) 1991-05-17 1994-05-31 Texas Instruments Incorporated Fiber optic network for multi-point emissivity-compensated semiconductor wafer pyrometry
US5686317A (en) 1991-06-04 1997-11-11 Micron Technology, Inc. Method for forming an interconnect having a penetration limited contact structure for establishing a temporary electrical connection with a semiconductor die
US5225037A (en) 1991-06-04 1993-07-06 Texas Instruments Incorporated Method for fabrication of probe card for testing of semiconductor devices
US5487999A (en) * 1991-06-04 1996-01-30 Micron Technology, Inc. Method for fabricating a penetration limited contact having a rough textured surface
US5148131A (en) 1991-06-11 1992-09-15 Hughes Aircraft Company Coaxial-to-waveguide transducer with improved matching
US5101453A (en) 1991-07-05 1992-03-31 Cascade Microtech, Inc. Fiber optic wafer probe
US5233197A (en) 1991-07-15 1993-08-03 University Of Massachusetts Medical Center High speed digital imaging microscope
KR940001809B1 (en) 1991-07-18 1994-03-09 금성일렉트론 주식회사 Tester of semiconductor device
US5229782A (en) 1991-07-19 1993-07-20 Conifer Corporation Stacked dual dipole MMDS feed
US5321352A (en) 1991-08-01 1994-06-14 Tokyo Electron Yamanashi Limited Probe apparatus and method of alignment for the same
US5177438A (en) * 1991-08-02 1993-01-05 Motorola, Inc. Low resistance probe for semiconductor
US5321453A (en) 1991-08-03 1994-06-14 Tokyo Electron Limited Probe apparatus for probing an object held above the probe card
US5404111A (en) 1991-08-03 1995-04-04 Tokyo Electron Limited Probe apparatus with a swinging holder for an object of examination
US5126696A (en) 1991-08-12 1992-06-30 Trw Inc. W-Band waveguide variable controlled oscillator
US5420516A (en) 1991-09-20 1995-05-30 Audio Precision, Inc. Method and apparatus for fast response and distortion measurement
US5159264A (en) 1991-10-02 1992-10-27 Sematech, Inc. Pneumatic energy fluxmeter
US5214243A (en) 1991-10-11 1993-05-25 Endevco Corporation High-temperature, low-noise coaxial cable assembly with high strength reinforcement braid
US5334931A (en) 1991-11-12 1994-08-02 International Business Machines Corporation Molded test probe assembly
US5170930A (en) 1991-11-14 1992-12-15 Microelectronics And Computer Technology Corporation Liquid metal paste for thermal and electrical connections
US5537372A (en) 1991-11-15 1996-07-16 International Business Machines Corporation High density data storage system with topographic contact sensor
US5846708A (en) 1991-11-19 1998-12-08 Massachusetts Institiute Of Technology Optical and electrical methods and apparatus for molecule detection
IL103674A0 (en) 1991-11-19 1993-04-04 Houston Advanced Res Center Method and apparatus for molecule detection
US5414565A (en) 1991-11-27 1995-05-09 Sullivan; Mark T. Tilting kinematic mount
US5180977A (en) * 1991-12-02 1993-01-19 Hoya Corporation Usa Membrane probe contact bump compliancy system
US5202648A (en) 1991-12-09 1993-04-13 The Boeing Company Hermetic waveguide-to-microstrip transition module
US5214374A (en) 1991-12-12 1993-05-25 Everett/Charles Contact Products, Inc. Dual level test fixture
US5274336A (en) 1992-01-14 1993-12-28 Hewlett-Packard Company Capacitively-coupled test probe
US5686960A (en) 1992-01-14 1997-11-11 Michael Sussman Image input device having optical deflection elements for capturing multiple sub-images
US5367165A (en) 1992-01-17 1994-11-22 Olympus Optical Co., Ltd. Cantilever chip for scanning probe microscope
US5374938A (en) 1992-01-21 1994-12-20 Sharp Kabushiki Kaisha Waveguide to microstrip conversion means in a satellite broadcasting adaptor
US5389885A (en) * 1992-01-27 1995-02-14 Everett Charles Technologies, Inc. Expandable diaphragm test modules and connectors
US5584120A (en) 1992-02-14 1996-12-17 Research Organization For Circuit Knowledge Method of manufacturing printed circuits
US5202558A (en) 1992-03-04 1993-04-13 Barker Lynn M Flexible fiber optic probe for high-pressure shock experiments
US5376790A (en) 1992-03-13 1994-12-27 Park Scientific Instruments Scanning probe microscope
US5672816A (en) 1992-03-13 1997-09-30 Park Scientific Instruments Large stage system for scanning probe microscopes and other instruments
US5254939A (en) 1992-03-20 1993-10-19 Xandex, Inc. Probe card system
US5478748A (en) 1992-04-01 1995-12-26 Thomas Jefferson University Protein assay using microwave energy
DE4211362C2 (en) 1992-04-04 1995-04-20 Berthold Lab Prof Dr Device for determining material parameters by microwave measurements
TW212252B (en) 1992-05-01 1993-09-01 Martin Marietta Corp
USRE37130E1 (en) 1992-05-08 2001-04-10 David Fiori, Jr. Signal conditioning apparatus
US5281364A (en) * 1992-05-22 1994-01-25 Finch Limited Liquid metal electrical contact compositions
US5266889A (en) 1992-05-29 1993-11-30 Cascade Microtech, Inc. Wafer probe station with integrated environment control enclosure
US5479109A (en) 1992-06-03 1995-12-26 Trw Inc. Testing device for integrated circuits on wafer
US5345170A (en) 1992-06-11 1994-09-06 Cascade Microtech, Inc. Wafer probe station having integrated guarding, Kelvin connection and shielding systems
US6380751B2 (en) 1992-06-11 2002-04-30 Cascade Microtech, Inc. Wafer probe station having environment control enclosure
JP3228348B2 (en) 1992-07-03 2001-11-12 キヤノン株式会社 Polymer liquid crystal compound, liquid crystal composition and liquid crystal element
JPH0634715A (en) 1992-07-17 1994-02-10 Mitsubishi Electric Corp High-frequency band probe head
US5316435A (en) 1992-07-29 1994-05-31 Case Corporation Three function control system
US5360312A (en) 1992-07-29 1994-11-01 Case Corporation Three function control mechanism
FR2695508B1 (en) 1992-09-08 1994-10-21 Filotex Sa Low noise cable.
US5227730A (en) 1992-09-14 1993-07-13 Kdc Technology Corp. Microwave needle dielectric sensors
US5347204A (en) 1992-10-06 1994-09-13 Honeywell Inc. Position dependent rate dampening in any active hand controller
US5371654A (en) 1992-10-19 1994-12-06 International Business Machines Corporation Three dimensional high performance interconnection package
US6295729B1 (en) 1992-10-19 2001-10-02 International Business Machines Corporation Angled flying lead wire bonding process
US5308250A (en) 1992-10-30 1994-05-03 Hewlett-Packard Company Pressure contact for connecting a coaxial shield to a microstrip ground plane
US5479108A (en) 1992-11-25 1995-12-26 David Cheng Method and apparatus for handling wafers
JPH06151532A (en) 1992-11-13 1994-05-31 Tokyo Electron Yamanashi Kk Prober
US5684669A (en) 1995-06-07 1997-11-04 Applied Materials, Inc. Method for dechucking a workpiece from an electrostatic chuck
US5512835A (en) 1992-12-22 1996-04-30 Hughes Aircraft Company Electrical probe and method for measuring gaps and other discontinuities in enclosures using electrical inductance for RF shielding assessment
US5326412A (en) 1992-12-22 1994-07-05 Hughes Aircraft Company Method for electrodepositing corrosion barrier on isolated circuitry
JP3175367B2 (en) 1992-12-24 2001-06-11 東レ株式会社 Liquid crystalline polyester with improved homogeneity
US5422574A (en) 1993-01-14 1995-06-06 Probe Technology Corporation Large scale protrusion membrane for semiconductor devices under test with very high pin counts
JPH0792479B2 (en) 1993-03-18 1995-10-09 東京エレクトロン株式会社 Parallelism adjustment method for probe device
US5539676A (en) 1993-04-15 1996-07-23 Tokyo Electron Limited Method of identifying probe position and probing method in prober
JPH06302656A (en) * 1993-04-19 1994-10-28 Toshiba Corp Device and method for evaluating semiconductor element characteristic
US5383787A (en) * 1993-04-27 1995-01-24 Aptix Corporation Integrated circuit package with direct access to internal signals
US5395253A (en) 1993-04-29 1995-03-07 Hughes Aircraft Company Membrane connector with stretch induced micro scrub
US6054651A (en) 1996-06-21 2000-04-25 International Business Machines Corporation Foamed elastomers for wafer probing applications and interposer connectors
US6722032B2 (en) 1995-11-27 2004-04-20 International Business Machines Corporation Method of forming a structure for electronic devices contact locations
US5810607A (en) 1995-09-13 1998-09-22 International Business Machines Corporation Interconnector with contact pads having enhanced durability
US5811982A (en) 1995-11-27 1998-09-22 International Business Machines Corporation High density cantilevered probe for electronic devices
US6329827B1 (en) 1997-10-07 2001-12-11 International Business Machines Corporation High density cantilevered probe for electronic devices
US5914614A (en) 1996-03-12 1999-06-22 International Business Machines Corporation High density cantilevered probe for electronic devices
US5357211A (en) 1993-05-03 1994-10-18 Raytheon Company Pin driver amplifier
US5539323A (en) 1993-05-07 1996-07-23 Brooks Automation, Inc. Sensor for articles such as wafers on end effector
US5467021A (en) 1993-05-24 1995-11-14 Atn Microwave, Inc. Calibration method and apparatus
US5657394A (en) 1993-06-04 1997-08-12 Integrated Technology Corporation Integrated circuit probe card inspection system
US5373231A (en) 1993-06-10 1994-12-13 G. G. B. Industries, Inc. Integrated circuit probing apparatus including a capacitor bypass structure
US5412330A (en) 1993-06-16 1995-05-02 Tektronix, Inc. Optical module for an optically based measurement system
JPH0714898A (en) * 1993-06-23 1995-01-17 Mitsubishi Electric Corp Equipment and method for testing and analyzing semiconductor wafer
US6728113B1 (en) 1993-06-24 2004-04-27 Polychip, Inc. Method and apparatus for non-conductively interconnecting integrated circuits
JP3346838B2 (en) * 1993-06-29 2002-11-18 有限会社創造庵 Rotary movement mechanism
US5412866A (en) 1993-07-01 1995-05-09 Hughes Aircraft Company Method of making a cast elastomer/membrane test probe assembly
US5441690A (en) 1993-07-06 1995-08-15 International Business Machines Corporation Process of making pinless connector
JP3395264B2 (en) 1993-07-26 2003-04-07 東京応化工業株式会社 Rotating cup type coating device
JP3442822B2 (en) 1993-07-28 2003-09-02 アジレント・テクノロジー株式会社 Measurement cable and measurement system
US5451884A (en) 1993-08-04 1995-09-19 Transat Corp. Electronic component temperature test system with flat ring revolving carriage
US5792668A (en) 1993-08-06 1998-08-11 Solid State Farms, Inc. Radio frequency spectral analysis for in-vitro or in-vivo environments
US5494030A (en) 1993-08-12 1996-02-27 Trustees Of Dartmouth College Apparatus and methodology for determining oxygen in biological systems
US5594358A (en) * 1993-09-02 1997-01-14 Matsushita Electric Industrial Co., Ltd. Radio frequency probe and probe card including a signal needle and grounding needle coupled to a microstrip transmission line
US5326428A (en) 1993-09-03 1994-07-05 Micron Semiconductor, Inc. Method for testing semiconductor circuitry for operability and method of forming apparatus for testing semiconductor circuitry for operability
DE9313420U1 (en) 1993-09-06 1993-10-28 Ge Elektronik Gmbh Magdeburg Probe
US5600258A (en) 1993-09-15 1997-02-04 Intest Corporation Method and apparatus for automated docking of a test head to a device handler
US5500606A (en) 1993-09-16 1996-03-19 Compaq Computer Corporation Completely wireless dual-access test fixture
JP2710544B2 (en) 1993-09-30 1998-02-10 インターナショナル・ビジネス・マシーンズ・コーポレイション Probe structure, method of forming probe structure
JP3089150B2 (en) 1993-10-19 2000-09-18 キヤノン株式会社 Positioning stage device
US5463324A (en) 1993-10-26 1995-10-31 Hewlett-Packard Company Probe with contacts that interdigitate with and wedge between adjacent legs of an IC or the like
US5467024A (en) 1993-11-01 1995-11-14 Motorola, Inc. Integrated circuit test with programmable source for both AC and DC modes of operation
US6836962B2 (en) * 1993-11-16 2005-01-04 Formfactor, Inc. Method and apparatus for shaping spring elements
US6442831B1 (en) 1993-11-16 2002-09-03 Formfactor, Inc. Method for shaping spring elements
US6064213A (en) 1993-11-16 2000-05-16 Formfactor, Inc. Wafer-level burn-in and test
US5983493A (en) 1993-11-16 1999-11-16 Formfactor, Inc. Method of temporarily, then permanently, connecting to a semiconductor device
US7064566B2 (en) * 1993-11-16 2006-06-20 Formfactor, Inc. Probe card assembly and kit
US6246247B1 (en) 1994-11-15 2001-06-12 Formfactor, Inc. Probe card assembly and kit, and methods of using same
US6741085B1 (en) 1993-11-16 2004-05-25 Formfactor, Inc. Contact carriers (tiles) for populating larger substrates with spring contacts
US6029344A (en) 1993-11-16 2000-02-29 Formfactor, Inc. Composite interconnection element for microelectronic components, and method of making same
US5772451A (en) 1993-11-16 1998-06-30 Form Factor, Inc. Sockets for electronic components and methods of connecting to electronic components
US5878486A (en) 1993-11-16 1999-03-09 Formfactor, Inc. Method of burning-in semiconductor devices
US5974662A (en) 1993-11-16 1999-11-02 Formfactor, Inc. Method of planarizing tips of probe elements of a probe card assembly
US5820014A (en) 1993-11-16 1998-10-13 Form Factor, Inc. Solder preforms
US6336269B1 (en) 1993-11-16 2002-01-08 Benjamin N. Eldridge Method of fabricating an interconnection element
US6525555B1 (en) 1993-11-16 2003-02-25 Formfactor, Inc. Wafer-level burn-in and test
US5601740A (en) 1993-11-16 1997-02-11 Formfactor, Inc. Method and apparatus for wirebonding, for severing bond wires, and for forming balls on the ends of bond wires
US6727580B1 (en) 1993-11-16 2004-04-27 Formfactor, Inc. Microelectronic spring contact elements
US5806181A (en) 1993-11-16 1998-09-15 Formfactor, Inc. Contact carriers (tiles) for populating larger substrates with spring contacts
US6023103A (en) * 1994-11-15 2000-02-08 Formfactor, Inc. Chip-scale carrier for semiconductor devices including mounted spring contacts
US6482013B2 (en) 1993-11-16 2002-11-19 Formfactor, Inc. Microelectronic spring contact element and electronic component having a plurality of spring contact elements
US6624648B2 (en) 1993-11-16 2003-09-23 Formfactor, Inc. Probe card assembly
US6835898B2 (en) 1993-11-16 2004-12-28 Formfactor, Inc. Electrical contact structures formed by configuring a flexible wire to have a springable shape and overcoating the wire with at least one layer of a resilient conductive material, methods of mounting the contact structures to electronic components, and applications for employing the contact structures
US5912046A (en) 1993-11-16 1999-06-15 Form Factor, Inc. Method and apparatus for applying a layer of flowable coating material to a surface of an electronic component
US6184053B1 (en) 1993-11-16 2001-02-06 Formfactor, Inc. Method of making microelectronic spring contact elements
US5832601A (en) 1993-11-16 1998-11-10 Form Factor, Inc. Method of making temporary connections between electronic components
US5669316A (en) 1993-12-10 1997-09-23 Sony Corporation Turntable for rotating a wafer carrier
KR100248569B1 (en) 1993-12-22 2000-03-15 히가시 데쓰로 Probe system
US20020011859A1 (en) * 1993-12-23 2002-01-31 Kenneth R. Smith Method for forming conductive bumps for the purpose of contrructing a fine pitch test device
US6064217A (en) 1993-12-23 2000-05-16 Epi Technologies, Inc. Fine pitch contact device employing a compliant conductive polymer bump
KR950021876A (en) 1993-12-27 1995-07-26 사또 히로시 Anechoic Chambers and Electromagnetic Wave Absorbers
US5475316A (en) 1993-12-27 1995-12-12 Hypervision, Inc. Transportable image emission microscope
US5430813A (en) 1993-12-30 1995-07-04 The United States Of America As Represented By The Secretary Of The Navy Mode-matched, combination taper fiber optic probe
GB9401459D0 (en) 1994-01-26 1994-03-23 Secr Defence Method and apparatus for measurement of unsteady gas temperatures
JP3565893B2 (en) 1994-02-04 2004-09-15 アジレント・テクノロジーズ・インク Probe device and electric circuit element measuring device
US5583445A (en) 1994-02-04 1996-12-10 Hughes Aircraft Company Opto-electronic membrane probe
US5642298A (en) 1994-02-16 1997-06-24 Ade Corporation Wafer testing and self-calibration system
US5611946A (en) 1994-02-18 1997-03-18 New Wave Research Multi-wavelength laser system, probe station and laser cutter system using the same
US5477011A (en) 1994-03-03 1995-12-19 W. L. Gore & Associates, Inc. Low noise signal transmission cable
US5565881A (en) 1994-03-11 1996-10-15 Motorola, Inc. Balun apparatus including impedance transformer having transformation length
JP3578232B2 (en) 1994-04-07 2004-10-20 インターナショナル・ビジネス・マシーンズ・コーポレーション Electrical contact forming method, probe structure and device including the electrical contact
US5523694A (en) 1994-04-08 1996-06-04 Cole, Jr.; Edward I. Integrated circuit failure analysis by low-energy charge-induced voltage alteration
US5528158A (en) 1994-04-11 1996-06-18 Xandex, Inc. Probe card changer system and method
US5530372A (en) 1994-04-15 1996-06-25 Schlumberger Technologies, Inc. Method of probing a net of an IC at an optimal probe-point
IL109492A (en) 1994-05-01 1999-06-20 Sirotech Ltd Method and apparatus for evaluating bacterial populations
US5715819A (en) * 1994-05-26 1998-02-10 The Carolinas Heart Institute Microwave tomographic spectroscopy system and method
JP2940401B2 (en) 1994-06-10 1999-08-25 住友電装株式会社 Connector inspection device
US5511010A (en) 1994-06-10 1996-04-23 Texas Instruments Incorporated Method and apparatus of eliminating interference in an undersettled electrical signal
US5505150A (en) 1994-06-14 1996-04-09 L&P Property Management Company Method and apparatus for facilitating loop take time adjustment in multi-needle quilting machine
EP0694282B1 (en) 1994-07-01 2004-01-02 Interstitial, LLC Breast cancer detection and imaging by electromagnetic millimeter waves
US5704355A (en) * 1994-07-01 1998-01-06 Bridges; Jack E. Non-invasive system for breast cancer detection
US5829437A (en) 1994-07-01 1998-11-03 Interstitial, Inc. Microwave method and system to detect and locate cancers in heterogenous tissues
US5561378A (en) * 1994-07-05 1996-10-01 Motorola, Inc. Circuit probe for measuring a differential circuit
US5584608A (en) 1994-07-05 1996-12-17 Gillespie; Harvey D. Anchored cable sling system
US5506515A (en) 1994-07-20 1996-04-09 Cascade Microtech, Inc. High-frequency probe tip assembly
US5565788A (en) 1994-07-20 1996-10-15 Cascade Microtech, Inc. Coaxial wafer probe with tip shielding
US6337479B1 (en) 1994-07-28 2002-01-08 Victor B. Kley Object inspection and/or modification system and method
GB9417450D0 (en) 1994-08-25 1994-10-19 Symmetricom Inc An antenna
US5488954A (en) 1994-09-09 1996-02-06 Georgia Tech Research Corp. Ultrasonic transducer and method for using same
GB9418183D0 (en) 1994-09-09 1994-10-26 Chan Tsing Y A Non-destructive method for determination of polar molecules on rigid and semi-rigid substrates
JPH10505162A (en) 1994-09-09 1998-05-19 マイクロモジュール・システムズ Circuit membrane probe
WO1996008960A1 (en) 1994-09-19 1996-03-28 Terry Lee Mauney Plant growing system
US5469324A (en) 1994-10-07 1995-11-21 Storage Technology Corporation Integrated decoupling capacitive core for a printed circuit board and method of making same
EP0707214A3 (en) 1994-10-14 1997-04-16 Hughes Aircraft Co Multiport membrane probe for full-wafer testing
KR100384265B1 (en) 1994-10-28 2003-08-14 클리크 앤드 소파 홀딩스 인코포레이티드 Programmable high-density electronic device testing
WO1996013728A1 (en) 1994-10-28 1996-05-09 Nitto Denko Corporation Probe structure
US5481196A (en) * 1994-11-08 1996-01-02 Nebraska Electronics, Inc. Process and apparatus for microwave diagnostics and therapy
US6727579B1 (en) 1994-11-16 2004-04-27 Formfactor, Inc. Electrical contact structures formed by configuring a flexible wire to have a springable shape and overcoating the wire with at least one layer of a resilient conductive material, methods of mounting the contact structures to electronic components, and applications for employing the contact structures
US5471185A (en) 1994-12-06 1995-11-28 Eaton Corporation Electrical circuit protection devices comprising conductive liquid compositions
MY112945A (en) 1994-12-20 2001-10-31 Ibm Electronic devices comprising dielectric foamed polymers
US5583733A (en) 1994-12-21 1996-12-10 Polaroid Corporation Electrostatic discharge protection device
US5731920A (en) 1994-12-22 1998-03-24 Canon Kabushiki Kaisha Converting adapter for interchangeable lens assembly
JPH08179008A (en) 1994-12-22 1996-07-12 Advantest Corp Test head cooling device
US5792562A (en) 1995-01-12 1998-08-11 Applied Materials, Inc. Electrostatic chuck with polymeric impregnation and method of making
US5625299A (en) 1995-02-03 1997-04-29 Uhling; Thomas F. Multiple lead analog voltage probe with high signal integrity over a wide band width
US5550481A (en) 1995-02-08 1996-08-27 Semco Machine Corporation Circuit board test fixture apparatus with cam rotably mounted in slidable cam block and method for making
US5507652A (en) 1995-02-17 1996-04-16 Hewlett-Packard Company Wedge connector for integrated circuits
DE19605214A1 (en) 1995-02-23 1996-08-29 Bosch Gmbh Robert Ultrasonic drive element
GB9503953D0 (en) 1995-02-28 1995-04-19 Plessey Semiconductors Ltd An mcm-d probe tip
US5678210A (en) 1995-03-17 1997-10-14 Hughes Electronics Method and apparatus of coupling a transmitter to a waveguide in a remote ground terminal
US5777485A (en) 1995-03-20 1998-07-07 Tokyo Electron Limited Probe method and apparatus with improved probe contact
AU5540596A (en) 1995-04-03 1996-10-23 Gary H. Baker A flexible darkness adapting viewer
US5532608A (en) 1995-04-06 1996-07-02 International Business Machines Corporation Ceramic probe card and method for reducing leakage current
US6232789B1 (en) 1997-05-28 2001-05-15 Cascade Microtech, Inc. Probe holder for low current measurements
US5610529A (en) 1995-04-28 1997-03-11 Cascade Microtech, Inc. Probe station having conductive coating added to thermal chuck insulator
DE19517330C2 (en) 1995-05-11 2002-06-13 Helmuth Heigl handling device
US5720098A (en) * 1995-05-12 1998-02-24 Probe Technology Method for making a probe preserving a uniform stress distribution under deflection
US5621333A (en) 1995-05-19 1997-04-15 Microconnect, Inc. Contact device for making connection to an electronic circuit device
US6685817B1 (en) 1995-05-26 2004-02-03 Formfactor, Inc. Method and apparatus for controlling plating over a face of a substrate
US6033935A (en) 1997-06-30 2000-03-07 Formfactor, Inc. Sockets for "springed" semiconductor devices
US5998864A (en) 1995-05-26 1999-12-07 Formfactor, Inc. Stacking semiconductor devices, particularly memory chips
US6042712A (en) 1995-05-26 2000-03-28 Formfactor, Inc. Apparatus for controlling plating over a face of a substrate
US5804982A (en) 1995-05-26 1998-09-08 International Business Machines Corporation Miniature probe positioning actuator
US6090261A (en) 1995-05-26 2000-07-18 Formfactor, Inc. Method and apparatus for controlling plating over a face of a substrate
US6150186A (en) 1995-05-26 2000-11-21 Formfactor, Inc. Method of making a product with improved material properties by moderate heat-treatment of a metal incorporating a dilute additive
US5728091A (en) 1995-06-07 1998-03-17 Cardiogenesis Corporation Optical fiber for myocardial channel formation
EP0776530A4 (en) 1995-06-21 1998-06-10 Motorola Inc Method and antenna for providing an omnidirectional pattern
DE19522774A1 (en) 1995-06-27 1997-01-02 Ifu Gmbh Appliance for spectroscopic examination of specimens taken from human body
US5659421A (en) 1995-07-05 1997-08-19 Neuromedical Systems, Inc. Slide positioning and holding device
US6002109A (en) * 1995-07-10 1999-12-14 Mattson Technology, Inc. System and method for thermal processing of a semiconductor substrate
US5676360A (en) 1995-07-11 1997-10-14 Boucher; John N. Machine tool rotary table locking apparatus
US5656942A (en) 1995-07-21 1997-08-12 Electroglas, Inc. Prober and tester with contact interface for integrated circuits-containing wafer held docked in a vertical plane
JP3458586B2 (en) 1995-08-21 2003-10-20 松下電器産業株式会社 Microwave mixer circuit and down converter
US5621400A (en) 1995-09-07 1997-04-15 Corbi; Ronald W. Ice detection method and apparatus for an aircraft
DE19536837B4 (en) 1995-10-02 2006-01-26 Alstom Apparatus and method for injecting fuels into compressed gaseous media
US5841342A (en) 1995-10-13 1998-11-24 Com Dev Ltd. Voltage controlled superconducting microwave switch and method of operation thereof
US5807107A (en) 1995-10-20 1998-09-15 Barrier Supply Dental infection control system
US6006002A (en) 1995-10-25 1999-12-21 Olympus Optical Co., Ltd. Rigid sleeve device fitted over a flexible insertion section of an endoscope for inspecting industrial equipment
US5742174A (en) 1995-11-03 1998-04-21 Probe Technology Membrane for holding a probe tip in proper location
US5892539A (en) 1995-11-08 1999-04-06 Alpha Innotech Corporation Portable emission microscope workstation for failure analysis
US6483328B1 (en) 1995-11-09 2002-11-19 Formfactor, Inc. Probe card for probing wafers with raised contact elements
DE19542955C2 (en) 1995-11-17 1999-02-18 Schwind Gmbh & Co Kg Herbert endoscope
US5953477A (en) 1995-11-20 1999-09-14 Visionex, Inc. Method and apparatus for improved fiber optic light management
JP2970505B2 (en) 1995-11-21 1999-11-02 日本電気株式会社 Semiconductor device wiring current observation method, inspection method and apparatus
JP3838381B2 (en) * 1995-11-22 2006-10-25 株式会社アドバンテスト Probe card
US5785538A (en) 1995-11-27 1998-07-28 International Business Machines Corporation High density test probe with rigid surface structure
US5910727A (en) 1995-11-30 1999-06-08 Tokyo Electron Limited Electrical inspecting apparatus with ventilation system
US5729150A (en) 1995-12-01 1998-03-17 Cascade Microtech, Inc. Low-current probe card with reduced triboelectric current generating cables
US5611008A (en) 1996-01-26 1997-03-11 Hughes Aircraft Company Substrate system for optoelectronic/microwave circuits
US5814847A (en) 1996-02-02 1998-09-29 National Semiconductor Corp. General purpose assembly programmable multi-chip package substrate
US5841288A (en) 1996-02-12 1998-11-24 Microwave Imaging System Technologies, Inc. Two-dimensional microwave imaging apparatus and methods
DE19605598C1 (en) 1996-02-15 1996-10-31 Singulus Technologies Gmbh Substrate hold and release mechanism for vacuum chamber
US5994152A (en) 1996-02-21 1999-11-30 Formfactor, Inc. Fabricating interconnects and tips using sacrificial substrates
US6327034B1 (en) 1999-09-20 2001-12-04 Rex Hoover Apparatus for aligning two objects
US5628057A (en) 1996-03-05 1997-05-06 Motorola, Inc. Multi-port radio frequency signal transformation network
US5804607A (en) 1996-03-21 1998-09-08 International Business Machines Corporation Process for making a foamed elastomeric polymer
US5726211A (en) 1996-03-21 1998-03-10 International Business Machines Corporation Process for making a foamed elastometric polymer
JP2900877B2 (en) 1996-03-22 1999-06-02 日本電気株式会社 Semiconductor device wiring current observation method, wiring system defect inspection method, and apparatus therefor
JP3457495B2 (en) 1996-03-29 2003-10-20 日本碍子株式会社 Aluminum nitride sintered body, metal buried product, electronic functional material and electrostatic chuck
US5869974A (en) * 1996-04-01 1999-02-09 Micron Technology, Inc. Micromachined probe card having compliant contact members for testing semiconductor wafers
US5631571A (en) 1996-04-03 1997-05-20 The United States Of America As Represented By The Secretary Of The Air Force Infrared receiver wafer level probe testing
US5700844A (en) 1996-04-09 1997-12-23 International Business Machines Corporation Process for making a foamed polymer
JP3022312B2 (en) 1996-04-15 2000-03-21 日本電気株式会社 Method of manufacturing probe card
US5808874A (en) 1996-05-02 1998-09-15 Tessera, Inc. Microelectronic connections with liquid conductive elements
DE19618717C1 (en) 1996-05-09 1998-01-15 Multitest Elektronische Syst Electrical connection device
US5818084A (en) 1996-05-15 1998-10-06 Siliconix Incorporated Pseudo-Schottky diode
US6046599A (en) 1996-05-20 2000-04-04 Microconnect, Inc. Method and device for making connection
KR100471341B1 (en) 1996-05-23 2005-07-21 제네시스 테크놀로지 가부시키가이샤 Contact Probe and Probe Device with It
US5748506A (en) 1996-05-28 1998-05-05 Motorola, Inc. Calibration technique for a network analyzer
US6268016B1 (en) 1996-06-28 2001-07-31 International Business Machines Corporation Manufacturing computer systems with fine line circuitized substrates
US5879289A (en) 1996-07-15 1999-03-09 Universal Technologies International, Inc. Hand-held portable endoscopic camera
US5756908A (en) 1996-07-15 1998-05-26 Framatome Technologies, Inc. Probe positioner
US6822443B1 (en) 2000-09-11 2004-11-23 Albany Instruments, Inc. Sensors and probes for mapping electromagnetic fields
US5793213A (en) 1996-08-01 1998-08-11 Motorola, Inc. Method and apparatus for calibrating a network analyzer
JP2962234B2 (en) 1996-08-07 1999-10-12 日本電気株式会社 Parasitic MIM structure location analysis method for semiconductor device and parasitic MIM structure location analysis method for Si semiconductor device
US5914613A (en) 1996-08-08 1999-06-22 Cascade Microtech, Inc. Membrane probing system with local contact scrub
US5847569A (en) 1996-08-08 1998-12-08 The Board Of Trustees Of The Leland Stanford Junior University Electrical contact probe for sampling high frequency electrical signals
US6050829A (en) 1996-08-28 2000-04-18 Formfactor, Inc. Making discrete power connections to a space transformer of a probe card assembly
US5869326A (en) 1996-09-09 1999-02-09 Genetronics, Inc. Electroporation employing user-configured pulsing scheme
US6307161B1 (en) 1996-09-10 2001-10-23 Formfactor, Inc. Partially-overcoated elongate contact structures
DE19636890C1 (en) 1996-09-11 1998-02-12 Bosch Gmbh Robert Transition from a waveguide to a strip line
WO1998011446A1 (en) 1996-09-13 1998-03-19 International Business Machines Corporation Integrated compliant probe for wafer level test and burn-in
JP2000502810A (en) 1996-09-13 2000-03-07 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Probe structure having a plurality of individual insulated probe tips protruding from a support surface, apparatus and method for using the same
US6181149B1 (en) * 1996-09-26 2001-01-30 Delaware Capital Formation, Inc. Grid array package test contactor
EP0837333A3 (en) 1996-10-18 1999-06-09 Tokyo Electron Limited Apparatus for aligning a semiconductor wafer with an inspection contactor
US5666063A (en) 1996-10-23 1997-09-09 Motorola, Inc. Method and apparatus for testing an integrated circuit
US5945836A (en) 1996-10-29 1999-08-31 Hewlett-Packard Company Loaded-board, guided-probe test fixture
US5883522A (en) 1996-11-07 1999-03-16 National Semiconductor Corporation Apparatus and method for retaining a semiconductor wafer during testing
US6104201A (en) 1996-11-08 2000-08-15 International Business Machines Corporation Method and apparatus for passive characterization of semiconductor substrates subjected to high energy (MEV) ion implementation using high-injection surface photovoltage
US6216704B1 (en) 1997-08-13 2001-04-17 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US5896038A (en) 1996-11-08 1999-04-20 W. L. Gore & Associates, Inc. Method of wafer level burn-in
US5876331A (en) 1996-11-12 1999-03-02 Johnson & Johnson Medical, Inc. Endoscope with improved flexible insertion tube
US6184845B1 (en) 1996-11-27 2001-02-06 Symmetricom, Inc. Dielectric-loaded antenna
JPH10165522A (en) 1996-12-09 1998-06-23 Tokyo Iken Kk Physical treatment optical fiber device and optical fiber arm device
US6603322B1 (en) 1996-12-12 2003-08-05 Ggb Industries, Inc. Probe card for high speed testing
JP3364401B2 (en) 1996-12-27 2003-01-08 東京エレクトロン株式会社 Probe card clamp mechanism and probe device
US6307672B1 (en) 1996-12-31 2001-10-23 The United States Of America As Represented By The Department Of Energy Microscope collision protection apparatus
US5852232A (en) 1997-01-02 1998-12-22 Kla-Tencor Corporation Acoustic sensor as proximity detector
US5848500A (en) 1997-01-07 1998-12-15 Eastman Kodak Company Light-tight enclosure and joint connectors for enclosure framework
US6826422B1 (en) 1997-01-13 2004-11-30 Medispectra, Inc. Spectral volume microprobe arrays
US6551844B1 (en) 1997-01-15 2003-04-22 Formfactor, Inc. Test assembly including a test die for testing a semiconductor product die
US6690185B1 (en) 1997-01-15 2004-02-10 Formfactor, Inc. Large contactor with multiple, aligned contactor units
US6429029B1 (en) 1997-01-15 2002-08-06 Formfactor, Inc. Concurrent design and subsequent partitioning of product and test die
JPH10204102A (en) 1997-01-27 1998-08-04 Mitsubishi Gas Chem Co Inc Production of water-soluble tricarboxy polysaccharide
US5982166A (en) 1997-01-27 1999-11-09 Motorola, Inc. Method for measuring a characteristic of a semiconductor wafer using cylindrical control
US5923180A (en) 1997-02-04 1999-07-13 Hewlett-Packard Company Compliant wafer prober docking adapter
US6019612A (en) 1997-02-10 2000-02-01 Kabushiki Kaisha Nihon Micronics Electrical connecting apparatus for electrically connecting a device to be tested
US5888075A (en) 1997-02-10 1999-03-30 Kabushiki Kaisha Nihon Micronics Auxiliary apparatus for testing device
US6060891A (en) 1997-02-11 2000-05-09 Micron Technology, Inc. Probe card for semiconductor wafers and method and system for testing wafers
US6798224B1 (en) 1997-02-11 2004-09-28 Micron Technology, Inc. Method for testing semiconductor wafers
US6520778B1 (en) 1997-02-18 2003-02-18 Formfactor, Inc. Microelectronic contact structures, and methods of making same
US5905421A (en) 1997-02-18 1999-05-18 Wiltron Company Apparatus for measuring and/or injecting high frequency signals in integrated systems
JP2934202B2 (en) 1997-03-06 1999-08-16 山一電機株式会社 Method for forming conductive bumps on wiring board
US6064218A (en) 1997-03-11 2000-05-16 Primeyield Systems, Inc. Peripherally leaded package test contactor
US6127831A (en) 1997-04-21 2000-10-03 Motorola, Inc. Method of testing a semiconductor device by automatically measuring probe tip parameters
US6091236A (en) 1997-04-28 2000-07-18 Csi Technology, Inc. System and method for measuring and analyzing electrical signals on the shaft of a machine
US5883523A (en) 1997-04-29 1999-03-16 Credence Systems Corporation Coherent switching power for an analog circuit tester
CN1261259A (en) 1997-05-23 2000-07-26 卡罗莱纳心脏研究所 Electromagnetical imaging and therpeutic (Emit) systems
US5926029A (en) 1997-05-27 1999-07-20 International Business Machines Corporation Ultra fine probe contacts
JPH10335395A (en) 1997-05-28 1998-12-18 Advantest Corp Contact position detecting method for probe card
US6229327B1 (en) 1997-05-30 2001-05-08 Gregory G. Boll Broadband impedance matching probe
US5981268A (en) 1997-05-30 1999-11-09 Board Of Trustees, Leland Stanford, Jr. University Hybrid biosensors
US5966645A (en) 1997-06-03 1999-10-12 Garmin Corporation Transmitter with low-level modulation and minimal harmonic emissions
US6034533A (en) 1997-06-10 2000-03-07 Tervo; Paul A. Low-current pogo probe card
SE9702235L (en) 1997-06-11 1998-06-22 Saab Marine Electronics Horn Antenna
US6215196B1 (en) 1997-06-30 2001-04-10 Formfactor, Inc. Electronic component with terminals and spring contact elements extending from areas which are remote from the terminals
US6002426A (en) 1997-07-02 1999-12-14 Cerprobe Corporation Inverted alignment station and method for calibrating needles of probe card for probe testing of integrated circuits
US6052653A (en) 1997-07-11 2000-04-18 Solid State Measurements, Inc. Spreading resistance profiling system
US5959461A (en) 1997-07-14 1999-09-28 Wentworth Laboratories, Inc. Probe station adapter for backside emission inspection
WO1999004273A1 (en) 1997-07-15 1999-01-28 Wentworth Laboratories, Inc. Probe station with multiple adjustable probe supports
US6828566B2 (en) 1997-07-22 2004-12-07 Hitachi Ltd Method and apparatus for specimen fabrication
US6215295B1 (en) 1997-07-25 2001-04-10 Smith, Iii Richard S. Photonic field probe and calibration means thereof
US6104206A (en) 1997-08-05 2000-08-15 Verkuil; Roger L. Product wafer junction leakage measurement using corona and a kelvin probe
US5998768A (en) 1997-08-07 1999-12-07 Massachusetts Institute Of Technology Active thermal control of surfaces by steering heating beam in response to sensed thermal radiation
US5970429A (en) 1997-08-08 1999-10-19 Lucent Technologies, Inc. Method and apparatus for measuring electrical noise in devices
US6292760B1 (en) 1997-08-11 2001-09-18 Texas Instruments Incorporated Method and apparatus to measure non-coherent signals
US6233613B1 (en) 1997-08-18 2001-05-15 3Com Corporation High impedance probe for monitoring fast ethernet LAN links
US6573702B2 (en) 1997-09-12 2003-06-03 New Wave Research Method and apparatus for cleaning electronic test contacts
US5993611A (en) 1997-09-24 1999-11-30 Sarnoff Corporation Capacitive denaturation of nucleic acid
JP3616236B2 (en) 1997-09-26 2005-02-02 株式会社ルネサステクノロジ Probe card and wafer test method using the same
US6059982A (en) 1997-09-30 2000-05-09 International Business Machines Corporation Micro probe assembly and method of fabrication
US6071009A (en) 1997-10-03 2000-06-06 Micron Technology, Inc. Semiconductor wirebond machine leadframe thermal map system
US6278051B1 (en) 1997-10-09 2001-08-21 Vatell Corporation Differential thermopile heat flux transducer
US6013586A (en) 1997-10-09 2000-01-11 Dimension Polyant Sailcloth, Inc. Tent material product and method of making tent material product
US5949383A (en) 1997-10-20 1999-09-07 Ericsson Inc. Compact antenna structures including baluns
JPH11125646A (en) 1997-10-21 1999-05-11 Mitsubishi Electric Corp Vertical needle type probe card, and its manufacture and exchange method for defective probe of the same
US6049216A (en) 1997-10-27 2000-04-11 Industrial Technology Research Institute Contact type prober automatic alignment
JP3112873B2 (en) 1997-10-31 2000-11-27 日本電気株式会社 High frequency probe
JPH11142433A (en) 1997-11-10 1999-05-28 Mitsubishi Electric Corp Probe for vertical needle type probe card and manufacture thereof
DE19822123C2 (en) 1997-11-21 2003-02-06 Meinhard Knoll Method and device for the detection of analytes
JPH11163066A (en) 1997-11-29 1999-06-18 Tokyo Electron Ltd Wafer tester
US6096567A (en) 1997-12-01 2000-08-01 Electroglas, Inc. Method and apparatus for direct probe sensing
US6118287A (en) 1997-12-09 2000-09-12 Boll; Gregory George Probe tip structure
US6100815A (en) 1997-12-24 2000-08-08 Electro Scientific Industries, Inc. Compound switching matrix for probing and interconnecting devices under test to measurement equipment
US5944093A (en) 1997-12-30 1999-08-31 Intel Corporation Pickup chuck with an integral heat pipe
US6415858B1 (en) 1997-12-31 2002-07-09 Temptronic Corporation Temperature control system for a workpiece chuck
US6287874B1 (en) 1998-02-02 2001-09-11 Signature Bioscience, Inc. Methods for analyzing protein binding events
US6395480B1 (en) 1999-02-01 2002-05-28 Signature Bioscience, Inc. Computer program and database structure for detecting molecular binding events
US7083985B2 (en) 1998-02-02 2006-08-01 Hefti John J Coplanar waveguide biosensor for detecting molecular or cellular events
US6287776B1 (en) 1998-02-02 2001-09-11 Signature Bioscience, Inc. Method for detecting and classifying nucleic acid hybridization
US6338968B1 (en) 1998-02-02 2002-01-15 Signature Bioscience, Inc. Method and apparatus for detecting molecular binding events
JP3862845B2 (en) 1998-02-05 2006-12-27 セイコーインスツル株式会社 Near-field optical probe
US6807734B2 (en) 1998-02-13 2004-10-26 Formfactor, Inc. Microelectronic contact structures, and methods of making same
US6181144B1 (en) * 1998-02-25 2001-01-30 Micron Technology, Inc. Semiconductor probe card having resistance measuring circuitry and method fabrication
US6078183A (en) 1998-03-03 2000-06-20 Sandia Corporation Thermally-induced voltage alteration for integrated circuit analysis
US6054869A (en) 1998-03-19 2000-04-25 H+W Test Products, Inc. Bi-level test fixture for testing printed circuit boards
DE29805631U1 (en) 1998-03-27 1998-06-25 Ebinger Klaus Magnetometer
JPH11281675A (en) 1998-03-31 1999-10-15 Hewlett Packard Japan Ltd Signal measuring probe
JP3553791B2 (en) 1998-04-03 2004-08-11 株式会社ルネサステクノロジ CONNECTION DEVICE AND ITS MANUFACTURING METHOD, INSPECTION DEVICE, AND SEMICONDUCTOR ELEMENT MANUFACTURING METHOD
US6147502A (en) 1998-04-10 2000-11-14 Bechtel Bwxt Idaho, Llc Method and apparatus for measuring butterfat and protein content using microwave absorption techniques
US6181416B1 (en) * 1998-04-14 2001-01-30 Optometrix, Inc. Schlieren method for imaging semiconductor device properties
US6720501B1 (en) 1998-04-14 2004-04-13 Formfactor, Inc. PC board having clustered blind vias
US6060888A (en) 1998-04-24 2000-05-09 Hewlett-Packard Company Error correction method for reflection measurements of reciprocal devices in vector network analyzers
US6032714A (en) 1998-05-01 2000-03-07 Fenton; Jay Thomas Repeatably positionable nozzle assembly
US6121836A (en) 1998-05-08 2000-09-19 Lucent Technologies Differential amplifier
US6091255A (en) 1998-05-08 2000-07-18 Advanced Micro Devices, Inc. System and method for tasking processing modules based upon temperature
US6078500A (en) 1998-05-12 2000-06-20 International Business Machines Inc. Pluggable chip scale package
US6257564B1 (en) 1998-05-15 2001-07-10 Applied Materials, Inc Vacuum chuck having vacuum-nipples wafer support
TW440699B (en) * 1998-06-09 2001-06-16 Advantest Corp Test apparatus for electronic parts
US6281691B1 (en) 1998-06-09 2001-08-28 Nec Corporation Tip portion structure of high-frequency probe and method for fabrication probe tip portion composed by coaxial cable
US6251595B1 (en) 1998-06-18 2001-06-26 Agilent Technologies, Inc. Methods and devices for carrying out chemical reactions
US6307363B1 (en) 1998-06-22 2001-10-23 Bruce Michael Anderson Ultrahigh-frequency high-impedance passive voltage probe
US6194720B1 (en) 1998-06-24 2001-02-27 Micron Technology, Inc. Preparation of transmission electron microscope samples
US6166553A (en) 1998-06-29 2000-12-26 Xandex, Inc. Prober-tester electrical interface for semiconductor test
US7304486B2 (en) 1998-07-08 2007-12-04 Capres A/S Nano-drive for high resolution positioning and for positioning of a multi-point probe
US6664628B2 (en) 1998-07-13 2003-12-16 Formfactor, Inc. Electronic component overlapping dice of unsingulated semiconductor wafer
US6130536A (en) 1998-07-14 2000-10-10 Crown Cork & Seal Technologies Corporation Preform test fixture and method of measuring a wall thickness
US6256882B1 (en) 1998-07-14 2001-07-10 Cascade Microtech, Inc. Membrane probing system
US6259260B1 (en) 1998-07-30 2001-07-10 Intest Ip Corporation Apparatus for coupling a test head and probe card in a wafer testing system
WO2000011485A1 (en) 1998-08-21 2000-03-02 Koninklijke Philips Electronics N.V. Test device for testing a module for a data carrier intended for contactless communication
US6744268B2 (en) 1998-08-27 2004-06-01 The Micromanipulator Company, Inc. High resolution analytical probe station
US6529844B1 (en) 1998-09-02 2003-03-04 Anritsu Company Vector network measurement system
US6040739A (en) 1998-09-02 2000-03-21 Trw Inc. Waveguide to microstrip backshort with external spring compression
US6937341B1 (en) 1998-09-29 2005-08-30 J. A. Woollam Co. Inc. System and method enabling simultaneous investigation of sample with two beams of electromagnetic radiation
US6816840B1 (en) 1998-10-07 2004-11-09 Ncr Corporation System and method of sending messages to a group of electronic price labels
US6175228B1 (en) * 1998-10-30 2001-01-16 Agilent Technologies Electronic probe for measuring high impedance tri-state logic circuits
JP2000137120A (en) 1998-11-02 2000-05-16 Sony Corp Tool for fixing optical fiber
US6236223B1 (en) 1998-11-09 2001-05-22 Intermec Ip Corp. Method and apparatus for wireless radio frequency testing of RFID integrated circuits
US6169410B1 (en) * 1998-11-09 2001-01-02 Anritsu Company Wafer probe with built in RF frequency conversion module
US6441315B1 (en) 1998-11-10 2002-08-27 Formfactor, Inc. Contact structures with blades having a wiping motion
US6201453B1 (en) 1998-11-19 2001-03-13 Trw Inc. H-plane hermetic sealed waveguide probe
US6332270B2 (en) 1998-11-23 2001-12-25 International Business Machines Corporation Method of making high density integral test probe
US6420884B1 (en) 1999-01-29 2002-07-16 Advantest Corp. Contact structure formed by photolithography process
US6476913B1 (en) 1998-11-30 2002-11-05 Hitachi, Ltd. Inspection method, apparatus and system for circuit pattern
US6491968B1 (en) 1998-12-02 2002-12-10 Formfactor, Inc. Methods for making spring interconnect structures
US6255126B1 (en) 1998-12-02 2001-07-03 Formfactor, Inc. Lithographic contact elements
US6672875B1 (en) * 1998-12-02 2004-01-06 Formfactor, Inc. Spring interconnect structures
US6268015B1 (en) 1998-12-02 2001-07-31 Formfactor Method of making and using lithographic contact springs
US6887723B1 (en) 1998-12-04 2005-05-03 Formfactor, Inc. Method for processing an integrated circuit including placing dice into a carrier and testing
US6608494B1 (en) 1998-12-04 2003-08-19 Advanced Micro Devices, Inc. Single point high resolution time resolved photoemission microscopy system and method
US6456099B1 (en) 1998-12-31 2002-09-24 Formfactor, Inc. Special contact points for accessing internal circuitry of an integrated circuit
US6232787B1 (en) 1999-01-08 2001-05-15 Schlumberger Technologies, Inc. Microstructure defect detection
US6388455B1 (en) 1999-01-13 2002-05-14 Qc Solutions, Inc. Method and apparatus for simulating a surface photo-voltage in a substrate
JP2000206146A (en) 1999-01-19 2000-07-28 Mitsubishi Electric Corp Probe needle
US6583638B2 (en) 1999-01-26 2003-06-24 Trio-Tech International Temperature-controlled semiconductor wafer chuck system
US6300775B1 (en) 1999-02-02 2001-10-09 Com Dev Limited Scattering parameter calibration system and method
US6147851A (en) 1999-02-05 2000-11-14 Anderson; Karl F. Method for guarding electrical regions having potential gradients
GB9902765D0 (en) 1999-02-08 1999-03-31 Symmetricom Inc An antenna
US6206273B1 (en) 1999-02-17 2001-03-27 International Business Machines Corporation Structures and processes to create a desired probetip contact geometry on a wafer test probe
FR2790097B1 (en) 1999-02-18 2001-04-27 St Microelectronics Sa METHOD FOR CALIBRATING AN INTEGRATED RF CIRCUIT PROBE
US6335625B1 (en) 1999-02-22 2002-01-01 Paul Bryant Programmable active microwave ultrafine resonance spectrometer (PAMURS) method and systems
US6459343B1 (en) 1999-02-25 2002-10-01 Formfactor, Inc. Integrated circuit interconnect system forming a multi-pole filter
US6218910B1 (en) 1999-02-25 2001-04-17 Formfactor, Inc. High bandwidth passive integrated circuit tester probe card assembly
US6539531B2 (en) 1999-02-25 2003-03-25 Formfactor, Inc. Method of designing, fabricating, testing and interconnecting an IC to external circuit nodes
US6208225B1 (en) 1999-02-25 2001-03-27 Formfactor, Inc. Filter structures for integrated circuit interfaces
US6448865B1 (en) * 1999-02-25 2002-09-10 Formfactor, Inc. Integrated circuit interconnect system
US6538538B2 (en) 1999-02-25 2003-03-25 Formfactor, Inc. High frequency printed circuit board via
US6499121B1 (en) 1999-03-01 2002-12-24 Formfactor, Inc. Distributed interface for parallel testing of multiple devices using a single tester channel
US6452411B1 (en) 1999-03-01 2002-09-17 Formfactor, Inc. Efficient parallel testing of integrated circuit devices using a known good device to generate expected responses
US6480978B1 (en) 1999-03-01 2002-11-12 Formfactor, Inc. Parallel testing of integrated circuit devices using cross-DUT and within-DUT comparisons
US20010043073A1 (en) 1999-03-09 2001-11-22 Thomas T. Montoya Prober interface plate
US6710798B1 (en) 1999-03-09 2004-03-23 Applied Precision Llc Methods and apparatus for determining the relative positions of probe tips on a printed circuit board probe card
US6211837B1 (en) 1999-03-10 2001-04-03 Raytheon Company Dual-window high-power conical horn antenna
FR2790842B1 (en) 1999-03-12 2001-04-20 St Microelectronics Sa METHOD FOR MANUFACTURING A TEST CIRCUIT ON A SILICON WAFER
US6225816B1 (en) 1999-04-08 2001-05-01 Agilent Technologies, Inc. Split resistor probe and method
EP1083839B2 (en) 1999-04-08 2015-11-04 Synergetics, Inc. Directional laser probe
US6400166B2 (en) * 1999-04-15 2002-06-04 International Business Machines Corporation Micro probe and method of fabricating same
US6114865A (en) 1999-04-21 2000-09-05 Semiconductor Diagnostics, Inc. Device for electrically contacting a floating semiconductor wafer having an insulating film
US6456152B1 (en) 1999-05-17 2002-09-24 Hitachi, Ltd. Charge pump with improved reliability
JP2000329664A (en) 1999-05-18 2000-11-30 Nkk Corp Observation method of transmission electron microscope and holding jig
US6448788B1 (en) 1999-05-26 2002-09-10 Microwave Imaging System Technologies, Inc. Fixed array microwave imaging apparatus and method
US6917525B2 (en) 2001-11-27 2005-07-12 Nanonexus, Inc. Construction structures and manufacturing processes for probe card assemblies and packages having wafer level springs
US6409724B1 (en) 1999-05-28 2002-06-25 Gyrus Medical Limited Electrosurgical instrument
US6211663B1 (en) 1999-05-28 2001-04-03 The Aerospace Corporation Baseband time-domain waveform measurement method
US6578264B1 (en) 1999-06-04 2003-06-17 Cascade Microtech, Inc. Method for constructing a membrane probe using a depression
US7215131B1 (en) 1999-06-07 2007-05-08 Formfactor, Inc. Segmented contactor
US6445202B1 (en) 1999-06-30 2002-09-03 Cascade Microtech, Inc. Probe station thermal chuck with shielding for capacitive current
JP4104099B2 (en) 1999-07-09 2008-06-18 東京エレクトロン株式会社 Probe card transport mechanism
US6320372B1 (en) 1999-07-09 2001-11-20 Electroglas, Inc. Apparatus and method for testing a substrate having a plurality of terminals
US6340895B1 (en) * 1999-07-14 2002-01-22 Aehr Test Systems, Inc. Wafer-level burn-in and test cartridge
US6580283B1 (en) 1999-07-14 2003-06-17 Aehr Test Systems Wafer level burn-in and test methods
US7013221B1 (en) 1999-07-16 2006-03-14 Rosetta Inpharmatics Llc Iterative probe design and detailed expression profiling with flexible in-situ synthesis arrays
US6407562B1 (en) 1999-07-29 2002-06-18 Agilent Technologies, Inc. Probe tip terminating device providing an easily changeable feed-through termination
US6713374B2 (en) 1999-07-30 2004-03-30 Formfactor, Inc. Interconnect assemblies and methods
US6888362B2 (en) 2000-11-09 2005-05-03 Formfactor, Inc. Test head assembly for electronic components with plurality of contoured microelectronic spring contacts
US6780001B2 (en) 1999-07-30 2004-08-24 Formfactor, Inc. Forming tool for forming a contoured microelectronic spring mold
JP2001053517A (en) 1999-08-06 2001-02-23 Sony Corp Antenna system and portable radio device
KR20010021204A (en) 1999-08-06 2001-03-15 이데이 노부유끼 Antenna apparatus and portable radio communication apparatus
US6468098B1 (en) 1999-08-17 2002-10-22 Formfactor, Inc. Electrical contactor especially wafer level contactor using fluid pressure
US6275738B1 (en) 1999-08-19 2001-08-14 Kai Technologies, Inc. Microwave devices for medical hyperthermia, thermotherapy and diagnosis
CN1083975C (en) 1999-09-10 2002-05-01 北京航空工艺研究所 Method and apparatus for arc-light sensing the working of plasma arc welding small hole
US6809533B1 (en) 1999-09-10 2004-10-26 University Of Maryland, College Park Quantitative imaging of dielectric permittivity and tunability
US6545492B1 (en) 1999-09-20 2003-04-08 Europaisches Laboratorium Fur Molekularbiologie (Embl) Multiple local probe measuring device and method
US6483327B1 (en) 1999-09-30 2002-11-19 Advanced Micro Devices, Inc. Quadrant avalanche photodiode time-resolved detection
US7009415B2 (en) 1999-10-06 2006-03-07 Tokyo Electron Limited Probing method and probing apparatus
US6352454B1 (en) 1999-10-20 2002-03-05 Xerox Corporation Wear-resistant spring contacts
JP2001124676A (en) 1999-10-25 2001-05-11 Hitachi Ltd Sample support member for electron microscopic observation
US6245692B1 (en) 1999-11-23 2001-06-12 Agere Systems Guardian Corp. Method to selectively heat semiconductor wafers
US6528993B1 (en) 1999-11-29 2003-03-04 Korea Advanced Institute Of Science & Technology Magneto-optical microscope magnetometer
US6724928B1 (en) 1999-12-02 2004-04-20 Advanced Micro Devices, Inc. Real-time photoemission detection system
US6771806B1 (en) 1999-12-14 2004-08-03 Kla-Tencor Multi-pixel methods and apparatus for analysis of defect information from test structures on semiconductor devices
US6633174B1 (en) 1999-12-14 2003-10-14 Kla-Tencor Stepper type test structures and methods for inspection of semiconductor integrated circuits
JP2001174482A (en) 1999-12-21 2001-06-29 Toshiba Corp Contact needle for evaluating electric characteristic, probe structure, probe card and manufacturing method of contact needle for evaluating electric characteristic
US6827584B2 (en) 1999-12-28 2004-12-07 Formfactor, Inc. Interconnect for microelectronic structures with enhanced spring characteristics
US6459739B1 (en) 1999-12-30 2002-10-01 Tioga Technologies Inc. Method and apparatus for RF common-mode noise rejection in a DSL receiver
DE10000324A1 (en) 2000-01-07 2001-07-19 Roesler Hans Joachim Analysis apparatus for use in clinical-chemical analysis and laboratory diagnosis methods comprises equipment for simultaneous FIR- and microwave spectroscopy of vaporized liquid sample
US6657455B2 (en) 2000-01-18 2003-12-02 Formfactor, Inc. Predictive, adaptive power supply for an integrated circuit under test
US6339338B1 (en) 2000-01-18 2002-01-15 Formfactor, Inc. Apparatus for reducing power supply noise in an integrated circuit
KR100755106B1 (en) 2000-02-02 2007-09-04 레이던 컴퍼니 Microelectromechanical micro-relay with liquid metal contacts
US6384614B1 (en) 2000-02-05 2002-05-07 Fluke Corporation Single tip Kelvin probe
EP1193233A1 (en) 2000-02-07 2002-04-03 Ibiden Co., Ltd. Ceramic substrate for semiconductor production/inspection device
DE60043268D1 (en) 2000-02-25 2009-12-17 Hitachi Ltd APPARATUS FOR TRACKING ERRORS IN AN ARRANGEMENT AND METHOD FOR FINDING ERRORS
DE60104985T2 (en) 2000-02-25 2005-08-18 Biotage Ab microwave heating
US6838890B2 (en) 2000-02-25 2005-01-04 Cascade Microtech, Inc. Membrane probing system
JP3389914B2 (en) 2000-03-03 2003-03-24 日本電気株式会社 Sampling method and device for power supply current value of integrated circuit, and storage medium storing control program therefor
US6927586B2 (en) 2000-03-06 2005-08-09 Wentworth Laboratories, Inc. Temperature compensated vertical pin probing device
WO2001066488A1 (en) 2000-03-07 2001-09-13 Ibiden Co., Ltd. Ceramic substrate for manufacture/inspection of semiconductor
US6488405B1 (en) 2000-03-08 2002-12-03 Advanced Micro Devices, Inc. Flip chip defect analysis using liquid crystal
US6509751B1 (en) * 2000-03-17 2003-01-21 Formfactor, Inc. Planarizer for a semiconductor contactor
JP2001266317A (en) 2000-03-23 2001-09-28 Toshiba Corp Magnetic recording head measuring device and measuring method applied for this device
JP4953184B2 (en) 2000-03-24 2012-06-13 エムアールアイ インターベンションズ, インク. Apparatus for biomagnetic resonance imaging
US6640432B1 (en) 2000-04-12 2003-11-04 Formfactor, Inc. Method of fabricating shaped springs
US6677744B1 (en) * 2000-04-13 2004-01-13 Formfactor, Inc. System for measuring signal path resistance for an integrated circuit tester interconnect structure
US6476630B1 (en) 2000-04-13 2002-11-05 Formfactor, Inc. Method for testing signal paths between an integrated circuit wafer and a wafer tester
US20020050828A1 (en) 2000-04-14 2002-05-02 General Dielectric, Inc. Multi-feed microwave reflective resonant sensors
US6396298B1 (en) 2000-04-14 2002-05-28 The Aerospace Corporation Active feedback pulsed measurement method
US20020070745A1 (en) 2000-04-27 2002-06-13 Johnson James E. Cooling system for burn-in unit
JP4684461B2 (en) 2000-04-28 2011-05-18 パナソニック株式会社 Method for manufacturing magnetic element
US6711283B1 (en) 2000-05-03 2004-03-23 Aperio Technologies, Inc. Fully automatic rapid microscope slide scanner
US6396296B1 (en) 2000-05-15 2002-05-28 Advanced Micro Devices, Inc. Method and apparatus for electrical characterization of an integrated circuit package using a vertical probe station
US20010044152A1 (en) 2000-05-18 2001-11-22 Gale Burnett Dual beam, pulse propagation analyzer, medical profiler interferometer
US6420722B2 (en) 2000-05-22 2002-07-16 Omniprobe, Inc. Method for sample separation and lift-out with one cut
US20050068054A1 (en) 2000-05-23 2005-03-31 Sammy Mok Standardized layout patterns and routing structures for integrated circuit wafer probe card assemblies
EP1296360A1 (en) 2000-05-26 2003-03-26 Ibiden Co., Ltd. Semiconductor manufacturing and inspecting device
US6549022B1 (en) 2000-06-02 2003-04-15 Sandia Corporation Apparatus and method for analyzing functional failures in integrated circuits
US6379130B1 (en) * 2000-06-09 2002-04-30 Tecumseh Products Company Motor cover retention
US6622103B1 (en) 2000-06-20 2003-09-16 Formfactor, Inc. System for calibrating timing of an integrated circuit wafer tester
JP2002005960A (en) 2000-06-21 2002-01-09 Ando Electric Co Ltd Probe card and its manufacturing method
US6768110B2 (en) 2000-06-21 2004-07-27 Gatan, Inc. Ion beam milling system and method for electron microscopy specimen preparation
JP2002022775A (en) * 2000-07-05 2002-01-23 Ando Electric Co Ltd Electro-optical probe and magneto-optical probe
US6603323B1 (en) 2000-07-10 2003-08-05 Formfactor, Inc. Closed-grid bus architecture for wafer interconnect structure
US6731128B2 (en) 2000-07-13 2004-05-04 International Business Machines Corporation TFI probe I/O wrap test method
US6424141B1 (en) 2000-07-13 2002-07-23 The Micromanipulator Company, Inc. Wafer probe station
US6906539B2 (en) 2000-07-19 2005-06-14 Texas Instruments Incorporated High density, area array probe card apparatus
JP2002039091A (en) * 2000-07-21 2002-02-06 Minebea Co Ltd Blower
JP4408538B2 (en) 2000-07-24 2010-02-03 株式会社日立製作所 Probe device
DE10036127B4 (en) 2000-07-25 2007-03-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for supply voltage decoupling for RF amplifier circuits
IT1318734B1 (en) 2000-08-04 2003-09-10 Technoprobe S R L VERTICAL PROBE MEASUREMENT HEAD.
DE10039928B4 (en) 2000-08-16 2004-07-15 Infineon Technologies Ag Device for automated testing, calibration and characterization of test adapters
DE10040988A1 (en) 2000-08-22 2002-03-21 Evotec Biosystems Ag Measurement of chemical and/or biological samples, useful for screening interactions between two bio-molecules, comprises excitement of a marker with electromagnetic radiation of one wavelength or polarization from a pulsed transmitter
US6970005B2 (en) 2000-08-24 2005-11-29 Texas Instruments Incorporated Multiple-chip probe and universal tester contact assemblage
US20030179184A1 (en) 2000-08-31 2003-09-25 Manfred Bromba Fingerprint mouse with line sensor
GB0021975D0 (en) 2000-09-07 2000-10-25 Optomed As Filter optic probes
US6920407B2 (en) 2000-09-18 2005-07-19 Agilent Technologies, Inc. Method and apparatus for calibrating a multiport test system for measurement of a DUT
US6418009B1 (en) 2000-09-28 2002-07-09 Nortel Networks Limited Broadband multi-layer capacitor
US6731804B1 (en) 2000-09-28 2004-05-04 The United States Of America As Represented By The Secretary Of The Army Thermal luminescence liquid monitoring system and method
US20030072549A1 (en) 2000-10-26 2003-04-17 The Trustees Of Princeton University Method and apparatus for dielectric spectroscopy of biological solutions
DE10151288B4 (en) 2000-11-02 2004-10-07 Eads Deutschland Gmbh Structure antenna for aircraft or aircraft
US6586946B2 (en) 2000-11-13 2003-07-01 Signature Bioscience, Inc. System and method for detecting and identifying molecular events in a test sample using a resonant test structure
US6753699B2 (en) 2000-11-13 2004-06-22 Standard Microsystems Corporation Integrated circuit and method of controlling output impedance
US6582979B2 (en) 2000-11-15 2003-06-24 Skyworks Solutions, Inc. Structure and method for fabrication of a leadless chip carrier with embedded antenna
US7088981B2 (en) 2000-11-29 2006-08-08 Broadcom Corporation Apparatus for reducing flicker noise in a mixer circuit
DE10143173A1 (en) 2000-12-04 2002-06-06 Cascade Microtech Inc Wafer probe has contact finger array with impedance matching network suitable for wide band
US6927079B1 (en) 2000-12-06 2005-08-09 Lsi Logic Corporation Method for probing a semiconductor wafer
US6605951B1 (en) 2000-12-11 2003-08-12 Lsi Logic Corporation Interconnector and method of connecting probes to a die for functional analysis
DE20021685U1 (en) 2000-12-21 2001-03-15 Rosenberger Hochfrequenztech High frequency probe tip
EP1346431A1 (en) 2000-12-21 2003-09-24 Paratek Microwave, Inc. Waveguide to microstrip transition
US7005842B2 (en) 2000-12-22 2006-02-28 Tokyo Electron Limited Probe cartridge assembly and multi-probe assembly
US6541993B2 (en) 2000-12-26 2003-04-01 Ericsson, Inc. Transistor device testing employing virtual device fixturing
JP3543765B2 (en) 2000-12-28 2004-07-21 Jsr株式会社 Probe device for wafer inspection
EP1353199A4 (en) 2001-01-16 2005-08-17 Japan Science & Tech Agency Optical fiber for transmitting ultraviolet ray, optical fiber probe, and method of manufacturing the optical fiber and optical fiber probe
GB2371618B (en) 2001-01-30 2004-11-17 Teraprobe Ltd A probe, apparatus and method for examining a sample
US6707548B2 (en) 2001-02-08 2004-03-16 Array Bioscience Corporation Systems and methods for filter based spectrographic analysis
JP2002243502A (en) 2001-02-09 2002-08-28 Olympus Optical Co Ltd Encoder device
US7102366B2 (en) 2001-02-09 2006-09-05 Georgia-Pacific Corporation Proximity detection circuit and method of detecting capacitance changes
US20020168659A1 (en) 2001-02-12 2002-11-14 Signature Bioscience Inc. System and method for characterizing the permittivity of molecular events
US7006046B2 (en) 2001-02-15 2006-02-28 Integral Technologies, Inc. Low cost electronic probe devices manufactured from conductive loaded resin-based materials
US6946864B2 (en) 2001-02-19 2005-09-20 Osram Gmbh Method for measuring product parameters of components formed on a wafer and device for performing the method
US6628503B2 (en) 2001-03-13 2003-09-30 Nikon Corporation Gas cooled electrostatic pin chuck for vacuum applications
GB0106245D0 (en) 2001-03-14 2001-05-02 Renishaw Plc Calibration of an analogue probe
JP4721247B2 (en) 2001-03-16 2011-07-13 東京エレクトロン株式会社 PROBE METHOD AND PROBE DEVICE
US6512482B1 (en) 2001-03-20 2003-01-28 Xilinx, Inc. Method and apparatus using a semiconductor die integrated antenna structure
US6611417B2 (en) 2001-03-22 2003-08-26 Winbond Electronics Corporation Wafer chuck system
US6910268B2 (en) 2001-03-27 2005-06-28 Formfactor, Inc. Method for fabricating an IC interconnect system including an in-street integrated circuit wafer via
JP2002296508A (en) 2001-03-30 2002-10-09 Nikon Corp Microscopic system
US6856150B2 (en) 2001-04-10 2005-02-15 Formfactor, Inc. Probe card with coplanar daughter card
US6627980B2 (en) 2001-04-12 2003-09-30 Formfactor, Inc. Stacked semiconductor device assembly with microelectronic spring contacts
US6811406B2 (en) 2001-04-12 2004-11-02 Formfactor, Inc. Microelectronic spring with additional protruding member
JP2002311052A (en) 2001-04-13 2002-10-23 Agilent Technologies Japan Ltd Blade-like connecting needle
US6627461B2 (en) 2001-04-18 2003-09-30 Signature Bioscience, Inc. Method and apparatus for detection of molecular events using temperature control of detection environment
DE20106745U1 (en) 2001-04-19 2002-08-29 Bosch Gmbh Robert Small coupling connector, especially for a planar broadband lamda probe with loss protection for single wire seals
US6549396B2 (en) 2001-04-19 2003-04-15 Gennum Corporation Multiple terminal capacitor structure
US6943563B2 (en) 2001-05-02 2005-09-13 Anritsu Company Probe tone S-parameter measurements
DE20220754U1 (en) 2001-05-04 2004-04-01 Cascade Microtech, Inc., Beaverton Fiber optic wafer probe for measuring the parameters of photodetectors and other optoelectronic devices in situ on a wafer, whereby the probe has a probe body with a tip from which an optical fiber extends towards a test object
US6882239B2 (en) 2001-05-08 2005-04-19 Formfactor, Inc. Electromagnetically coupled interconnect system
JP2002343879A (en) 2001-05-15 2002-11-29 Nec Corp Semiconductor device and method of manufacturing the same
JP3979793B2 (en) 2001-05-29 2007-09-19 日立ソフトウエアエンジニアリング株式会社 Probe design apparatus and probe design method
WO2002097411A1 (en) 2001-05-31 2002-12-05 Orbylgjutaekni Ehf. Apparatus and method for microwave determination of at least one physical parameter of a substance
WO2002101816A1 (en) 2001-06-06 2002-12-19 Ibiden Co., Ltd. Wafer prober
US6906506B1 (en) 2001-06-08 2005-06-14 The Regents Of The University Of Michigan Method and apparatus for simultaneous measurement of electric field and temperature using an electrooptic semiconductor probe
US6911826B2 (en) 2001-06-12 2005-06-28 General Electric Company Pulsed eddy current sensor probes and inspection methods
JP4610798B2 (en) 2001-06-19 2011-01-12 エスアイアイ・ナノテクノロジー株式会社 Scanning electron microscope with laser defect detection function and its autofocus method
US6649402B2 (en) 2001-06-22 2003-11-18 Wisconsin Alumni Research Foundation Microfabricated microbial growth assay method and apparatus
WO2003003907A2 (en) 2001-07-06 2003-01-16 Wisconsin Alumni Research Foundation Space-time microwave imaging for cancer detection
US6729019B2 (en) 2001-07-11 2004-05-04 Formfactor, Inc. Method of manufacturing a probe card
CA2353024C (en) * 2001-07-12 2005-12-06 Ibm Canada Limited-Ibm Canada Limitee Anti-vibration and anti-tilt microscope stand
GB0117715D0 (en) 2001-07-19 2001-09-12 Mrbp Res Ltd Microwave biochemical analysis
US6908364B2 (en) 2001-08-02 2005-06-21 Kulicke & Soffa Industries, Inc. Method and apparatus for probe tip cleaning and shaping pad
US6617866B1 (en) 2001-08-02 2003-09-09 Lsi Logic Corporation Apparatus and method of protecting a probe card during a sort sequence
US20030076585A1 (en) 2001-08-07 2003-04-24 Ledley Robert S. Optical system for enhancing the image from a microscope's high power objective lens
IL144806A (en) 2001-08-08 2005-11-20 Nova Measuring Instr Ltd Method and apparatus for process control in semiconductor manufacturing
JP4064921B2 (en) 2001-08-10 2008-03-19 株式会社アドバンテスト Probe module and test apparatus
US20030032000A1 (en) 2001-08-13 2003-02-13 Signature Bioscience Inc. Method for analyzing cellular events
US20040147034A1 (en) 2001-08-14 2004-07-29 Gore Jay Prabhakar Method and apparatus for measuring a substance in a biological sample
WO2003052435A1 (en) 2001-08-21 2003-06-26 Cascade Microtech, Inc. Membrane probing system
US6643597B1 (en) 2001-08-24 2003-11-04 Agilent Technologies, Inc. Calibrating a test system using unknown standards
US6678876B2 (en) * 2001-08-24 2004-01-13 Formfactor, Inc. Process and apparatus for finding paths through a routing space
US6862727B2 (en) 2001-08-24 2005-03-01 Formfactor, Inc. Process and apparatus for adjusting traces
US6481939B1 (en) 2001-08-24 2002-11-19 Robb S. Gillespie Tool tip conductivity contact sensor and method
US6639461B1 (en) 2001-08-30 2003-10-28 Sierra Monolithics, Inc. Ultra-wideband power amplifier module apparatus and method for optical and electronic communications
US6549106B2 (en) 2001-09-06 2003-04-15 Cascade Microtech, Inc. Waveguide with adjustable backshort
WO2003023358A2 (en) 2001-09-10 2003-03-20 University Of North Carolina At Charlotte Methods and apparatus for testing electronic circuits
US6764869B2 (en) 2001-09-12 2004-07-20 Formfactor, Inc. Method of assembling and testing an electronics module
US6714828B2 (en) 2001-09-17 2004-03-30 Formfactor, Inc. Method and system for designing a probe card
JP4044042B2 (en) 2001-09-24 2008-02-06 ヨットペーカー、インストルメンツ、アクチエンゲゼルシャフト Apparatus and method for scanning probe microscope
US6636063B2 (en) 2001-10-02 2003-10-21 Texas Instruments Incorporated Probe card with contact apparatus and method of manufacture
US6882546B2 (en) 2001-10-03 2005-04-19 Formfactor, Inc. Multiple die interconnect system
US20030139662A1 (en) 2001-10-16 2003-07-24 Seidman Abraham Neil Method and apparatus for detecting, identifying and performing operations on microstructures including, anthrax spores, brain cells, cancer cells, living tissue cells, and macro-objects including stereotactic neurosurgery instruments, weapons and explosives
KR100442822B1 (en) 2001-10-23 2004-08-02 삼성전자주식회사 Methods for detecting binding of biomolecules using shear stress measurements
US6759311B2 (en) 2001-10-31 2004-07-06 Formfactor, Inc. Fan out of interconnect elements attached to semiconductor wafer
US7071714B2 (en) 2001-11-02 2006-07-04 Formfactor, Inc. Method and system for compensating for thermally induced motion of probe cards
US6817052B2 (en) 2001-11-09 2004-11-16 Formfactor, Inc. Apparatuses and methods for cleaning test probes
DE10297428T5 (en) 2001-11-13 2005-01-27 Advantest Corp. Longer wave dispersion probing
US6816031B1 (en) 2001-12-04 2004-11-09 Formfactor, Inc. Adjustable delay transmission line
AU2002360540A1 (en) 2001-12-04 2003-06-17 University Of Southern California Method for intracellular modifications within living cells using pulsed electric fields
US6447339B1 (en) 2001-12-12 2002-09-10 Tektronix, Inc. Adapter for a multi-channel signal probe
JP4123408B2 (en) 2001-12-13 2008-07-23 東京エレクトロン株式会社 Probe card changer
US6870359B1 (en) 2001-12-14 2005-03-22 Le Croy Corporation Self-calibrating electrical test probe
US6794934B2 (en) 2001-12-14 2004-09-21 Iterra Communications, Llc High gain wideband driver amplifier
US6770955B1 (en) 2001-12-15 2004-08-03 Skyworks Solutions, Inc. Shielded antenna in a semiconductor package
US6759859B2 (en) 2001-12-19 2004-07-06 Chung-Shan Institute Of Science And Technology Resilient and rugged multi-layered probe
US6777319B2 (en) 2001-12-19 2004-08-17 Formfactor, Inc. Microelectronic spring contact repair
US20030119057A1 (en) 2001-12-20 2003-06-26 Board Of Regents Forming and modifying dielectrically-engineered microparticles
US6657601B2 (en) 2001-12-21 2003-12-02 Tdk Rf Solutions Metrology antenna system utilizing two-port, sleeve dipole and non-radiating balancing network
US6822463B1 (en) 2001-12-21 2004-11-23 Lecroy Corporation Active differential test probe with a transmission line input structure
US6891385B2 (en) 2001-12-27 2005-05-10 Formfactor, Inc. Probe card cooling assembly with direct cooling of active electronic components
US6479308B1 (en) 2001-12-27 2002-11-12 Formfactor, Inc. Semiconductor fuse covering
US6741092B2 (en) 2001-12-28 2004-05-25 Formfactor, Inc. Method and system for detecting an arc condition
US7020363B2 (en) 2001-12-28 2006-03-28 Intel Corporation Optical probe for wafer testing
US7186990B2 (en) 2002-01-22 2007-03-06 Microbiosystems, Limited Partnership Method and apparatus for detecting and imaging the presence of biological materials
US6911834B2 (en) 2002-01-25 2005-06-28 Texas Instruments Incorporated Multiple contact vertical probe solution enabling Kelvin connection benefits for conductive bump probing
JP2003222654A (en) 2002-01-30 2003-08-08 Tokyo Electron Ltd Probe device
US6907149B2 (en) 2002-02-01 2005-06-14 Kaiser Optical Systems, Inc. Compact optical measurement probe
US6771086B2 (en) 2002-02-19 2004-08-03 Lucas/Signatone Corporation Semiconductor wafer electrical testing with a mobile chiller plate for rapid and precise test temperature control
KR100608521B1 (en) 2002-02-22 2006-08-03 마츠시타 덴끼 산교 가부시키가이샤 Helical antenna apparatus provided with two helical antenna elements, and radio communication apparatus provided with same helical antenna apparatus
US6617862B1 (en) 2002-02-27 2003-09-09 Advanced Micro Devices, Inc. Laser intrusive technique for locating specific integrated circuit current paths
US6701265B2 (en) 2002-03-05 2004-03-02 Tektronix, Inc. Calibration for vector network analyzer
US6828767B2 (en) 2002-03-20 2004-12-07 Santronics, Inc. Hand-held voltage detection probe
US7015707B2 (en) 2002-03-20 2006-03-21 Gabe Cherian Micro probe
DE10213692B4 (en) 2002-03-27 2013-05-23 Weinmann Diagnostics Gmbh & Co. Kg Method for controlling a device and device for measuring ingredients in the blood
US6806697B2 (en) 2002-04-05 2004-10-19 Agilent Technologies, Inc. Apparatus and method for canceling DC errors and noise generated by ground shield current in a probe
US6737920B2 (en) 2002-05-03 2004-05-18 Atheros Communications, Inc. Variable gain amplifier
DE10220343B4 (en) 2002-05-07 2007-04-05 Atg Test Systems Gmbh & Co. Kg Reicholzheim Apparatus and method for testing printed circuit boards and probes
US6911835B2 (en) 2002-05-08 2005-06-28 Formfactor, Inc. High performance probe system
US6784674B2 (en) 2002-05-08 2004-08-31 Formfactor, Inc. Test signal distribution system for IC tester
US6798225B2 (en) 2002-05-08 2004-09-28 Formfactor, Inc. Tester channel to multiple IC terminals
US6909300B2 (en) 2002-05-09 2005-06-21 Taiwan Semiconductor Manufacturing Co., Ltd Method for fabricating microelectronic fabrication electrical test apparatus electrical probe tip having pointed tips
US7259043B2 (en) 2002-05-14 2007-08-21 Texas Instruments Incorporated Circular test pads on scribe street area
AU2003240252A1 (en) 2002-05-16 2003-12-02 Vega Grieshaber Kg Planar antenna and antenna system
EP1506428B1 (en) 2002-05-16 2008-09-10 Nxp B.V. Method for calibrating and de-embedding, set of devices for de-embedding and vector network analyzer
US6587327B1 (en) 2002-05-17 2003-07-01 Daniel Devoe Integrated broadband ceramic capacitor array
KR100435765B1 (en) 2002-05-21 2004-06-10 현대자동차주식회사 piercing pad structure for press device
KR100864916B1 (en) 2002-05-23 2008-10-22 캐스케이드 마이크로테크 인코포레이티드 Probe for testing a device under test
US20030234659A1 (en) 2002-06-20 2003-12-25 Promos Technologies Electrical isolation between pins sharing the same tester channel
US7343185B2 (en) 2002-06-21 2008-03-11 Nir Diagnostics Inc. Measurement of body compounds
KR100470970B1 (en) 2002-07-05 2005-03-10 삼성전자주식회사 Probe needle fixing apparatus and method for semiconductor device test equipment
US6856129B2 (en) 2002-07-09 2005-02-15 Intel Corporation Current probe device having an integrated amplifier
JP4335497B2 (en) 2002-07-12 2009-09-30 エスアイアイ・ナノテクノロジー株式会社 Ion beam apparatus and ion beam processing method
US6812691B2 (en) 2002-07-12 2004-11-02 Formfactor, Inc. Compensation for test signal degradation due to DUT fault
US6937045B2 (en) 2002-07-18 2005-08-30 Aries Electronics, Inc. Shielded integrated circuit probe
US6913476B2 (en) 2002-08-06 2005-07-05 Micron Technology, Inc. Temporary, conformable contacts for microelectronic components
US6788093B2 (en) 2002-08-07 2004-09-07 International Business Machines Corporation Methodology and apparatus using real-time optical signal for wafer-level device dielectrical reliability studies
JP4357813B2 (en) 2002-08-23 2009-11-04 東京エレクトロン株式会社 Probe apparatus and probe method
US6924653B2 (en) 2002-08-26 2005-08-02 Micron Technology, Inc. Selectively configurable microelectronic probes
JP3574444B2 (en) 2002-08-27 2004-10-06 沖電気工業株式会社 Method of measuring contact resistance of probe and method of testing semiconductor device
CN1685240A (en) 2002-08-27 2005-10-19 Jsr株式会社 Anisotropic conductive sheet and probe for measuring impedances
US6902416B2 (en) 2002-08-29 2005-06-07 3M Innovative Properties Company High density probe device
BR0215864A (en) 2002-09-10 2005-07-05 Fractus Sa Antenna device and handheld antenna
JP2004132971A (en) 2002-09-17 2004-04-30 Iwasaki Correspond Industry Co Ltd Probe card
US6784679B2 (en) 2002-09-30 2004-08-31 Teradyne, Inc. Differential coaxial contact array for high-density, high-speed signals
US6881072B2 (en) 2002-10-01 2005-04-19 International Business Machines Corporation Membrane probe with anchored elements
US7038441B2 (en) 2002-10-02 2006-05-02 Suss Microtec Testsystems Gmbh Test apparatus with loading device
US6768328B2 (en) 2002-10-09 2004-07-27 Agilent Technologies, Inc. Single point probe structure and method
US6927598B2 (en) 2002-10-15 2005-08-09 General Electric Company Test probe for electrical devices having low or no wedge depression
JP4659328B2 (en) 2002-10-21 2011-03-30 東京エレクトロン株式会社 Probe device for controlling the temperature of an object to be inspected
US7026832B2 (en) 2002-10-28 2006-04-11 Dainippon Screen Mfg. Co., Ltd. Probe mark reading device and probe mark reading method
JP2004152916A (en) 2002-10-29 2004-05-27 Nec Corp Inspecting device and inspecting method of semiconductor device
US6864694B2 (en) 2002-10-31 2005-03-08 Agilent Technologies, Inc. Voltage probe
JP2004205487A (en) 2002-11-01 2004-07-22 Tokyo Electron Ltd Probe card fixing mechanism
US6724205B1 (en) 2002-11-13 2004-04-20 Cascade Microtech, Inc. Probe for combined signals
US6853198B2 (en) 2002-11-14 2005-02-08 Agilent Technologies, Inc. Method and apparatus for performing multiport through-reflect-line calibration and measurement
US7019895B2 (en) 2002-11-15 2006-03-28 Dmetrix, Inc. Microscope stage providing improved optical performance
US20040100276A1 (en) 2002-11-25 2004-05-27 Myron Fanton Method and apparatus for calibration of a vector network analyzer
EP1726268B1 (en) 2002-11-27 2008-06-25 Medical Device Innovations Limited Coaxial tissue ablation probe and method of making a balun therefor
US6727716B1 (en) 2002-12-16 2004-04-27 Newport Fab, Llc Probe card and probe needle for high frequency testing
US7084650B2 (en) 2002-12-16 2006-08-01 Formfactor, Inc. Apparatus and method for limiting over travel in a probe card assembly
TW594899B (en) 2002-12-18 2004-06-21 Star Techn Inc Detection card for semiconductor measurement
JP2004199796A (en) 2002-12-19 2004-07-15 Shinka Jitsugyo Kk Method for connecting probe pin for measuring characteristics of thin-film magnetic head and method for measuring characteristics of thin-film magnetic head
US6741129B1 (en) 2002-12-19 2004-05-25 Texas Instruments Incorporated Differential amplifier slew rate boosting scheme
DE50312077D1 (en) 2002-12-19 2009-12-10 Oerlikon Trading Ag Apparatus and method for producing electro-magnetic field distributions
US6753679B1 (en) 2002-12-23 2004-06-22 Nortel Networks Limited Test point monitor using embedded passive resistance
JP4133777B2 (en) 2003-01-06 2008-08-13 日本電子株式会社 Nuclear magnetic resonance probe
KR100702003B1 (en) 2003-01-18 2007-03-30 삼성전자주식회사 Probe card
US6856126B2 (en) 2003-01-21 2005-02-15 Agilent Technologies, Inc. Differential voltage probe
JP3827159B2 (en) 2003-01-23 2006-09-27 株式会社ヨコオ In-vehicle antenna device
US6937020B2 (en) 2003-02-04 2005-08-30 The University Of Kansas Solid-state nuclear magnetic resonance probe
US7107170B2 (en) 2003-02-18 2006-09-12 Agilent Technologies, Inc. Multiport network analyzer calibration employing reciprocity of a device
JP2004265942A (en) 2003-02-20 2004-09-24 Okutekku:Kk Method for detecting zero point of probe pin and probe
US6970001B2 (en) 2003-02-20 2005-11-29 Hewlett-Packard Development Company, L.P. Variable impedance test probe
US6987483B2 (en) 2003-02-21 2006-01-17 Kyocera Wireless Corp. Effectively balanced dipole microstrip antenna
US6838885B2 (en) * 2003-03-05 2005-01-04 Murata Manufacturing Co., Ltd. Method of correcting measurement error and electronic component characteristic measurement apparatus
US6778140B1 (en) 2003-03-06 2004-08-17 D-Link Corporation Atch horn antenna of dual frequency
US6902941B2 (en) 2003-03-11 2005-06-07 Taiwan Semiconductor Manufacturing Co., Ltd. Probing of device elements
US6946859B2 (en) 2003-03-12 2005-09-20 Celerity Research, Inc. Probe structures using clamped substrates with compliant interconnectors
US6914427B2 (en) 2003-03-14 2005-07-05 The Boeing Company Eddy current probe having sensing elements defined by first and second elongated coils and an associated inspection method
US6943571B2 (en) 2003-03-18 2005-09-13 International Business Machines Corporation Reduction of positional errors in a four point probe resistance measurement
US6940283B2 (en) 2003-03-20 2005-09-06 Snap-On Incorporated Detecting field from different ignition coils using adjustable probe
US6948391B2 (en) 2003-03-21 2005-09-27 Nuclear Filter Technology Probe with integral vent, sampling port and filter element
US7130756B2 (en) 2003-03-28 2006-10-31 Suss Microtec Test System Gmbh Calibration method for carrying out multiport measurements on semiconductor wafers
GB2399948B (en) 2003-03-28 2006-06-21 Sarantel Ltd A dielectrically-loaded antenna
US7022976B1 (en) 2003-04-02 2006-04-04 Advanced Micro Devices, Inc. Dynamically adjustable probe tips
US6823276B2 (en) 2003-04-04 2004-11-23 Agilent Technologies, Inc. System and method for determining measurement errors of a testing device
US20040201388A1 (en) 2003-04-08 2004-10-14 Barr Andrew Harvey Support for an electronic probe and related methods
US7342402B2 (en) 2003-04-10 2008-03-11 Formfactor, Inc. Method of probing a device using captured image of probe structure in which probe tips comprise alignment features
US7002133B2 (en) 2003-04-11 2006-02-21 Hewlett-Packard Development Company, L.P. Detecting one or more photons from their interactions with probe photons in a matter system
KR20040089244A (en) 2003-04-11 2004-10-21 주식회사 유림하이테크산업 Needle assembly of probe card
US7023225B2 (en) 2003-04-16 2006-04-04 Lsi Logic Corporation Wafer-mounted micro-probing platform
TWI220163B (en) 2003-04-24 2004-08-11 Ind Tech Res Inst Manufacturing method of high-conductivity nanometer thin-film probe card
US7057404B2 (en) 2003-05-23 2006-06-06 Sharp Laboratories Of America, Inc. Shielded probe for testing a device under test
US6882160B2 (en) 2003-06-12 2005-04-19 Anritsu Company Methods and computer program products for full N-port vector network analyzer calibrations
US6900652B2 (en) 2003-06-13 2005-05-31 Solid State Measurements, Inc. Flexible membrane probe and method of use thereof
KR100523139B1 (en) 2003-06-23 2005-10-20 주식회사 하이닉스반도체 Semiconductor device for reducing the number of probing pad used during wafer testing and method for testing the same
US6956388B2 (en) 2003-06-24 2005-10-18 Agilent Technologies, Inc. Multiple two axis floating probe assembly using split probe block
US6870381B2 (en) 2003-06-27 2005-03-22 Formfactor, Inc. Insulative covering of probe tips
US6911814B2 (en) 2003-07-01 2005-06-28 Formfactor, Inc. Apparatus and method for electromechanical testing and validation of probe cards
US7015708B2 (en) 2003-07-11 2006-03-21 Gore Enterprise Holdings, Inc. Method and apparatus for a high frequency, impedance controlled probing device with flexible ground contacts
US20050229053A1 (en) 2003-07-25 2005-10-13 Logicvision, Inc., 101 Metro Drive, 3Rd Floor, San Jose, Ca, 95110 Circuit and method for low frequency testing of high frequency signal waveforms
JP4159043B2 (en) 2003-07-29 2008-10-01 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 Television broadcasting system
US20050026276A1 (en) 2003-07-29 2005-02-03 Northrop Grumman Corporation Remote detection and analysis of chemical and biological aerosols
US7068049B2 (en) 2003-08-05 2006-06-27 Agilent Technologies, Inc. Method and apparatus for measuring a device under test using an improved through-reflect-line measurement calibration
US7015703B2 (en) 2003-08-12 2006-03-21 Scientific Systems Research Limited Radio frequency Langmuir probe
US6859054B1 (en) 2003-08-13 2005-02-22 Advantest Corp. Probe contact system using flexible printed circuit board
US7025628B2 (en) 2003-08-13 2006-04-11 Agilent Technologies, Inc. Electronic probe extender
US6912468B2 (en) 2003-08-14 2005-06-28 Westerngeco, L.L.C. Method and apparatus for contemporaneous utilization of a higher order probe in pre-stack and post-stack seismic domains
US6924655B2 (en) 2003-09-03 2005-08-02 Micron Technology, Inc. Probe card for use with microelectronic components, and methods for making same
US7088189B2 (en) 2003-09-09 2006-08-08 Synergy Microwave Corporation Integrated low noise microwave wideband push-push VCO
JP3812559B2 (en) 2003-09-18 2006-08-23 Tdk株式会社 Eddy current probe
US7286013B2 (en) 2003-09-18 2007-10-23 Avago Technologies Wireless Ip (Singapore) Pte Ltd Coupled-inductance differential amplifier
KR100984608B1 (en) 2003-09-23 2010-09-30 지벡스 인스투르먼츠, 엘엘시 Method, system and device for microscopic examination employing fib-prepared sample grasping element
US6946860B2 (en) 2003-10-08 2005-09-20 Chipmos Technologies (Bermuda) Ltd. Modularized probe head
US7009452B2 (en) 2003-10-16 2006-03-07 Solarflare Communications, Inc. Method and apparatus for increasing the linearity and bandwidth of an amplifier
US7250626B2 (en) 2003-10-22 2007-07-31 Cascade Microtech, Inc. Probe testing structure
US7981362B2 (en) 2003-11-04 2011-07-19 Meso Scale Technologies, Llc Modular assay plates, reader systems and methods for test measurements
US7020506B2 (en) 2003-11-06 2006-03-28 Orsense Ltd. Method and system for non-invasive determination of blood-related parameters
US6897668B1 (en) 2003-11-28 2005-05-24 Premtek International Inc. Double-faced detecting devices for an electronic substrate
US7034553B2 (en) 2003-12-05 2006-04-25 Prodont, Inc. Direct resistance measurement corrosion probe
JP2007517231A (en) 2003-12-24 2007-06-28 カスケード マイクロテック インコーポレイテッド Active wafer probe
US7187188B2 (en) 2003-12-24 2007-03-06 Cascade Microtech, Inc. Chuck with integrated wafer support
KR100751600B1 (en) 2003-12-24 2007-08-22 몰렉스 인코포레이티드 Transmission line having a transforming impedance
US6933725B2 (en) 2004-01-16 2005-08-23 Bruker Biospin Corporation NMR probe circuit for generating close frequency resonances
JP4206930B2 (en) 2004-01-21 2009-01-14 株式会社デンソー Digital filter test apparatus and digital filter test method
US7254425B2 (en) 2004-01-23 2007-08-07 Abbott Laboratories Method for detecting artifacts in data
US6933713B2 (en) 2004-01-26 2005-08-23 Agilent Technologies, Inc. High bandwidth oscilloscope probe with replaceable cable
US6940264B2 (en) 2004-01-29 2005-09-06 The United States Of America As Represented By The Secretary Of The Navy Near field probe
TWI232938B (en) 2004-02-11 2005-05-21 Star Techn Inc Probe card
US7319335B2 (en) * 2004-02-12 2008-01-15 Applied Materials, Inc. Configurable prober for TFT LCD array testing
TWI228597B (en) 2004-02-25 2005-03-01 Nat Applied Res Laboratories Device monitor for RF and DC measurements
JP4130639B2 (en) 2004-03-16 2008-08-06 三洋化成工業株式会社 Method for producing resin dispersion and resin particles
US7009188B2 (en) 2004-05-04 2006-03-07 Micron Technology, Inc. Lift-out probe having an extension tip, methods of making and using, and analytical instruments employing same
US7015709B2 (en) 2004-05-12 2006-03-21 Delphi Technologies, Inc. Ultra-broadband differential voltage probes
US7019541B2 (en) 2004-05-14 2006-03-28 Crown Products, Inc. Electric conductivity water probe
US7023231B2 (en) 2004-05-14 2006-04-04 Solid State Measurements, Inc. Work function controlled probe for measuring properties of a semiconductor wafer and method of use thereof
JP2005331298A (en) 2004-05-18 2005-12-02 Mitsubishi Electric Corp Method for measuring characteristics of high-frequency circuit, pattern for calibration, and fixture for calibration
US7091729B2 (en) 2004-07-09 2006-08-15 Micro Probe Cantilever probe with dual plane fixture and probe apparatus therewith
US7015690B2 (en) 2004-05-27 2006-03-21 General Electric Company Omnidirectional eddy current probe and inspection system
US7148716B2 (en) * 2004-06-10 2006-12-12 Texas Instruments Incorporated System and method for the probing of a wafer
TWI252925B (en) 2004-07-05 2006-04-11 Yulim Hitech Inc Probe card for testing a semiconductor device
US7188037B2 (en) 2004-08-20 2007-03-06 Microcraft Method and apparatus for testing circuit boards
US20060052075A1 (en) 2004-09-07 2006-03-09 Rajeshwar Galivanche Testing integrated circuits using high bandwidth wireless technology
US7315715B2 (en) * 2004-09-08 2008-01-01 Ricoh Co. Ltd. Apparatus, method, and program for image forming
US7001785B1 (en) 2004-12-06 2006-02-21 Veeco Instruments, Inc. Capacitance probe for thin dielectric film characterization
US7030328B1 (en) 2004-12-22 2006-04-18 Agilent Technologies, Inc. Liquid metal switch employing micro-electromechanical system (MEMS) structures for actuation
US7656172B2 (en) 2005-01-31 2010-02-02 Cascade Microtech, Inc. System for testing semiconductors
JP2006237378A (en) * 2005-02-25 2006-09-07 Elpida Memory Inc Wafer prober and method of testing wafer
US7005879B1 (en) 2005-03-01 2006-02-28 International Business Machines Corporation Device for probe card power bus noise reduction
JP4340248B2 (en) 2005-03-17 2009-10-07 富士通マイクロエレクトロニクス株式会社 Method for manufacturing a semiconductor imaging device
JP2006258667A (en) 2005-03-17 2006-09-28 Nec Electronics Corp Rf impedance measuring device of package substrate
US7279920B2 (en) 2005-04-06 2007-10-09 Texas Instruments Incoporated Expeditious and low cost testing of RFID ICs
JP4611788B2 (en) * 2005-04-12 2011-01-12 サンテック株式会社 Optical deflection probe and optical deflection probe apparatus
US7096133B1 (en) 2005-05-17 2006-08-22 National Semiconductor Corporation Method of establishing benchmark for figure of merit indicative of amplifier flicker noise
US7733287B2 (en) 2005-07-29 2010-06-08 Sony Corporation Systems and methods for high frequency parallel transmissions
US7327153B2 (en) 2005-11-02 2008-02-05 Texas Instruments Incorporated Analog built-in self-test module
DE102005053146A1 (en) 2005-11-04 2007-05-10 Suss Microtec Test Systems Gmbh Test prod for e.g. electrical characteristics measurement, during electrical circuitry testing, has support unit with U-shaped section, where all or part of contact units of support unit overlap on sides facing high frequency wave guides
US20070145989A1 (en) 2005-12-27 2007-06-28 Hua Zhu Probe card with improved transient power delivery
US7764072B2 (en) * 2006-06-12 2010-07-27 Cascade Microtech, Inc. Differential signal probing system
US7403028B2 (en) 2006-06-12 2008-07-22 Cascade Microtech, Inc. Test structure and probe for differential signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5996102A (en) * 1996-02-06 1999-11-30 Telefonaktiebolaget L M Ericsson (Publ) Assembly and method for testing integrated circuit devices
US6812718B1 (en) * 1999-05-27 2004-11-02 Nanonexus, Inc. Massively parallel interface for electronic circuits
US6407542B1 (en) * 2000-03-23 2002-06-18 Avaya Technology Corp. Implementation of a multi-port modal decomposition system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7420381B2 (en) 2004-09-13 2008-09-02 Cascade Microtech, Inc. Double sided probing structures

Also Published As

Publication number Publication date
WO2007145727A3 (en) 2009-04-16
US7764072B2 (en) 2010-07-27
US20100264948A1 (en) 2010-10-21
US20070285085A1 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
US7764072B2 (en) Differential signal probing system
US7609077B2 (en) Differential signal probe with integral balun
US7876114B2 (en) Differential waveguide probe
US7403028B2 (en) Test structure and probe for differential signals
US7443186B2 (en) On-wafer test structures for differential signals
US6194739B1 (en) Inline ground-signal-ground (GSG) RF tester
US6911835B2 (en) High performance probe system
US7417446B2 (en) Probe for combined signals
US7723999B2 (en) Calibration structures for differential signal probing
US7388424B2 (en) Apparatus for providing a high frequency loop back with a DC path for a parametric test
JP4870211B2 (en) Differential signal test structure and probe
WO2004113935A3 (en) Test fixture for impedance measurements
JP2003249534A (en) High-frequency circuit and high-frequency circuit device
JPH0541416A (en) Probe card and frog ring

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07776723

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07776723

Country of ref document: EP

Kind code of ref document: A2