WO2007145671A2 - Band stop filter employing a capacitor and an inductor tank circuit to enhance mri compatibility of active medical devices - Google Patents

Band stop filter employing a capacitor and an inductor tank circuit to enhance mri compatibility of active medical devices Download PDF

Info

Publication number
WO2007145671A2
WO2007145671A2 PCT/US2006/060659 US2006060659W WO2007145671A2 WO 2007145671 A2 WO2007145671 A2 WO 2007145671A2 US 2006060659 W US2006060659 W US 2006060659W WO 2007145671 A2 WO2007145671 A2 WO 2007145671A2
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
clai
band stop
lead wire
inductor
Prior art date
Application number
PCT/US2006/060659
Other languages
French (fr)
Other versions
WO2007145671A3 (en
Inventor
Henry R. Halperin
Robert A. Stevenson
Original Assignee
Greatbatch Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Greatbatch Ltd. filed Critical Greatbatch Ltd.
Priority to JP2009512001A priority Critical patent/JP2009537276A/en
Priority to CN2006800464796A priority patent/CN101325985B/en
Priority to EP06850120A priority patent/EP2026870A4/en
Publication of WO2007145671A2 publication Critical patent/WO2007145671A2/en
Publication of WO2007145671A3 publication Critical patent/WO2007145671A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/37Monitoring; Protecting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/285Invasive instruments, e.g. catheters or biopsy needles, specially adapted for tracking, guiding or visualization by NMR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/285Invasive instruments, e.g. catheters or biopsy needles, specially adapted for tracking, guiding or visualization by NMR
    • G01R33/287Invasive instruments, e.g. catheters or biopsy needles, specially adapted for tracking, guiding or visualization by NMR involving active visualization of interventional instruments, e.g. using active tracking RF coils or coils for intentionally creating magnetic field inhomogeneities
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H1/0007Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network of radio frequency interference filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00839Bioelectrical parameters, e.g. ECG, EEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/374NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/08Arrangements or circuits for monitoring, protecting, controlling or indicating
    • A61N1/086Magnetic resonance imaging [MRI] compatible leads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/37Monitoring; Protecting
    • A61N1/3718Monitoring of or protection against external electromagnetic fields or currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/288Provisions within MR facilities for enhancing safety during MR, e.g. reduction of the specific absorption rate [SAR], detection of ferromagnetic objects in the scanner room
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H2007/013Notch or bandstop filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1766Parallel LC in series path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49169Assembling electrical component directly to terminal or elongated conductor

Definitions

  • This invention relates generally to novel EMI tank filter assemblies, particularly of the type used in active medical devices (AMDs) such as cardiac pacemakers, cardioverter defibrillators, neurostimulators, externally worn Holter monitors and the like, which decouple lead wires and/or electronic components of the medical device from undesirable electromagnetic interference (EMI) signals at a selected frequency or frequencies, such as the RF pulsed fields of Magnetic Resonance Imaging (MRI) equipment.
  • AMDs active medical devices
  • MRI Magnetic Resonance Imaging
  • Compatibility of cardiac pacemakers, implantable defibrillators and other types of active implantable medical devices with magnetic resonance imaging (MRI) and other types of hospital diagnostic equipment has become a major issue. If one goes to the websites of the major cardiac pacemaker manufacturers in the United States, which include St. Jude Medical, Medtronic and Boston Scientific (formerly Guidant), one will see that the use of MRI is generally contra-indicated with pacemakers and implantable defibrillators. See also:
  • Multifunctional Interventional Devices for MRI A Combined Electrophysiology/MRI Catheter, by, Robert C. Susil, Henry R. Halperin , ChristopherJ. Yeung, Albert C. Lardo and Ergin Atalar, MRI in Medicine, 2002; and
  • MRI Magnetic resonance Imaging
  • ICD wearers are excluded from MRI. This is particularly true of scans of the thorax and abdominal areas. Because of MRI's tremendous value as a diagnostic tool for imaging organs and other body tissues, many physicians simply take the risk and go ahead and perform MRI on a pacemaker patient.
  • the literature indicates a number of precautions that physicians should take in this case, including limiting the power of the MRI RF Pulsed field (Specific Absorption Rate - SAR level), programming the pacemaker to fixed or asynchronous pacing mode, and then careful reprogramming and evaluation of the pacemaker and patient after the procedure is complete.
  • MRI RF Pulsed field Specific Absorption Rate - SAR level
  • the SAR level is not entirely predictive of the heating that would be found in implanted lead wires or devices. For example, for magnetic resonance imaging devices operating at the same magnetic field strength and also at the same SAR level, considerable variations have been found relative to heating of implanted lead wires.
  • a static magnetic field can induce powerful mechanical forces and torque on any magnetic materials implanted within the patient. This would include certain components within the cardiac pacemaker itself and or lead wire systems. It is not likely (other than sudden system shut down) that the static MRI magnetic field can induce currents into the pacemaker lead wire system and hence into the pacemaker itself. It is a basic principle of physics that a magnetic field must either be time-varying as it cuts across the conductor, or the conductor itself must move within the magnetic field for currents to be induced.
  • the second type of field produced by magnetic resonance imaging is the pulsed RF field which is generated by the body coil or head coil. This is used to change the energy state of the protons and illicit MRI signals from tissue.
  • the RF field is homogeneous in the central region and has two main components: (1 ) the magnetic field is circularly polarized in the actual plane; and (2) the electric field is related to the magnetic field by Maxwell's equations.
  • the RF field is switched on and off during measurements and usually has a frequency of 21 MHz to 64 MHz to 1 28 MHz depending upon the static magnetic field strength.
  • RF PULSED FREQUENCY in MHz (42.56) (STATIC FIELD STRENGTH IN TESLA).
  • Bi time-varying magnetic gradient fields designated Bi which are used for spatial localization. These change their strength along different orientations and operating frequencies on the order of 1 kHz.
  • the vectors of the magnetic field gradients in the X, Y and Z directions are produced by three sets of orthogonally positioned coils and are switched on only during the measurements. In some cases, the gradient field has been shown to elevate natural heart rhythms (heart beat). This is not completely understood, but it is a repeatable phenomenon.
  • VLF very low frequency
  • TIP electrode voltage drop across the resistance of body tissues may be sensed due to Ohms Law and the circulating current of the RF signal.
  • the implanted lead wire systems actually act as antennas where currents are induced along their length.
  • Magnetic field coupling into an implanted lead wire system is based on loop areas. For example, in a cardiac pacemaker, there is a loop formed by the lead wire as it comes from the cardiac pacemaker housing to its distal TIP, for example, located in the right ventricle.
  • the return path is through body fluid and tissue generally straight from the TIP electrode in the right ventricle back up to the pacemaker case or housing.
  • the average loop area is 200 to 225 square centimeters. This is an average and is subject to great statistical variation. For example, in a large adult patient with an abdominal implant, the implanted loop area is much larger (greater than 450 square centimeters).
  • the magnetic gradient fields would be induced through enclosed loop areas.
  • the pulsed RF fields which are generated by the body coil, would be primarily induced into the lead wire system by antenna action.
  • a pacemaker reed switch which can also be a Hall Effect device, is designed to detect a permanent magnet held close to the patient's chest. This magnet placement allows a physician or even the patient to put the implantable medical device into what is known as the "magnet mode response.”
  • the "magnet mode response” varies from one manufacturer to another, however, in general, this puts the pacemaker into a fixed rate or asynchronous pacing mode. This is normally done for short times and is very useful for diagnostic and clinical purposes.
  • the MRI static field can make the pacemaker's internal reed switch close, which puts the pacemaker into a fixed rate or asynchronous pacing mode.
  • the reed switch may bounce or oscillate.
  • Asynchronous pacing may compete with the patient's underlying cardiac rhythm. This is one reason why patients have generally been advised not to undergo MRI. Fixed rate or asynchronous pacing for most patients is not an issue.
  • the magnetic reed switch or Hall Effect device
  • Pacemaker displacement Some parts of pacemakers, such as the batteries and reed switch, contain ferrous magnetic materials and are thus subject to mechanical forces during MRI. Pacemaker displacement may occur in response to magnetic force or magnetic torque. There are several recent reports on modern pacemakers and ICDs that force and torque are not of concern for MRI systems up to 3 Tesla.
  • Radio frequency field At the frequencies of interest in MRI, RF energy can be absorbed and converted to heat.
  • the power deposited by RF pulses during MRI is complex and is dependent upon the power (Specific Absorption Rate (SAR) Level) and duration of the RF pulse, the transmitted frequency, the number of RF pulses applied per unit time, and the type of configuration of the RF transmitter coil used.
  • SAR Specific Absorption Rate
  • the amount of heating also depends upon the volume of tissue imaged, the electrical resistivity of tissue and the configuration of the anatomical region imaged. There are also a number of other variables that depend on the placement in the human body of the AIMD and its associated lead wire(s).
  • distal TIP design is very important as the distal TIP itself can act as its own antenna wherein eddy currents can create heating.
  • the cause of heating in an MRI environment is two fold: (a) RF field coupling to the lead can occur which induces significant local heating; and (b) currents induced between the distal TIP and tissue during MRI RF pulse transmission sequences can cause local Ohms Law heating in tissue next to the distal TIP electrode of the implanted lead.
  • the RF field of an MRI scanner can produce enough energy to induce lead wire currents sufficient to destroy some of the adjacent myocardial tissue. Tissue ablation has also been observed. The effects of this heating are not readily detectable by monitoring during the MRI. Indications that heating has occurred would include an increase in pacing threshold, venous ablation, Larynx or esophageal ablation, myocardial perforation and lead penetration, or even arrhythmias caused by scar tissue. Such long term heating effects of MRI have not been well studied yet for all types of AIMD lead wire geometries. There can also be localized heating problems associated with various types of electrodes in addition to TIP electrodes. This includes RING electrodes or PAD electrodes.
  • RING electrodes are commonly used with a wide variety of implanted devices including cardiac pacemakers, neurostimulators, probes, catheters and the like. PAD electrodes are very common in neurostimulator applications. For example, spinal cord stimulators or deep brain stimulators can include a plurality of PAD electrodes to make contact with nerve tissue. A good example of this also occurs in a cochlear implant. In a typical cochlear implant there would be sixteen RING electrodes that the position places by pushing the electrode up into the cochlea. Several of these RING electrodes make contact with auditory nerves. (5) Alterations of pacing rate due to the applied radio frequency field. It has been observed that the RF field may induce undesirable fast pacing (QRS complex) rates.
  • QRS complex undesirable fast pacing
  • Time-varying magnetic gradient fields The contribution of the time-varying gradient to the total strength of the MRI magnetic field is negligible, however, pacemaker systems could be affected because these fields are rapidly applied and removed.
  • the time rate of change of the magnetic field is directly related to how much electromagnetic force and hence current can be induced into a lead wire system. Luchinger reports that even using today's gradient systems with a time-varying field up to 50 Tesla per second, the induced currents are likely to stay below the biological thresholds for cardiac fibrillation.
  • a theoretical upper limit for the induced voltage by the time-varying magnetic gradient field is 20 volts. Such a voltage during more than 0.1 milliseconds could be enough energy to directly pace the heart.
  • Heating Currents induced by time-varying magnetic gradient fields may lead to local heating. researchers feel that the calculated heating effect of the gradient field is much less as compared to that caused by the RF field and therefore for the purposes herein may be neglected.
  • ICDs implantable cardioverter defibrillators
  • ICDs use different and larger batteries which could cause higher magnetic forces.
  • the programmable sensitivity in ICDs is normally much higher (more sensitive) than it is for pacemakers, therefore, ICDs may falsely detect a ventricular tachyarrhythmia and inappropriately deliver therapy.
  • therapy might include anti-tacchycardia pacing, cardio version or defibrillation (high voltage shock) therapies.
  • MRI magnetic fields may prevent detection of a dangerous ventricular arrhythmia or fibrillation.
  • There can also be heating problems of ICD leads which are expected to be comparable to those of pacemaker leads. Ablation of vascular walls is another concern.
  • ICDs have a sort of built-in fail-safe mechanism. That is, during an MRI procedure, if they inadvertently sense the MRI fields as a dangerous ventricular arrhythmia, the ICD will attempt to charge up and deliver a high voltage shock.
  • a transformer contained within the ICD that is necessary to function in order to charge up the high-energy storage capacitor contained within the ICD. In the presence of the main static field of the MRI the core of this transformer tends to saturate thereby preventing the high voltage capacitor from charging up. This makes it highly unlikely that an ICD patient undergoing an MRI would receive an inappropriate high voltage shock therapy.
  • the relatively short antenna on the cell phone is designed to efficiently couple with the very high frequency wavelengths (approximately 950 MHz) of cellular telephone signals. In a typical AM and FM radio in an automobile, these wavelength signals would not efficiently couple to the relatively short antenna of a cell phone. This is why the antenna on the automobile is relatively longer.
  • implanted lead lengths that would couple efficiently as fractions of the 1 28 MHz wavelength. It is typical that a hospital will maintain an inventory of various leads and that the implanting physician will make a selection depending on the size of the patient, implant location and other factors. Accordingly, the implanted or effective lead wire length can vary considerably. There are certain implanted lead wire lengths that just do not couple efficiently with the MRI frequency and there are others that would couple very efficiently and thereby produce the worst case for heating.
  • Insulin drug pump systems do not seem to be of a major current concern due to the fact that they have no significant antenna components (such as implanted lead wires). However, some implantable pumps work on magneto-peristaltic systems, and must be deactivated prior to MRI. There are newer (unreleased) systems that would be based on solenoid systems which will have similar problems.
  • the present invention comprises resonant tank circuits/band stop filters to be placed at one or more locations along the active medical device (AMD) lead wire system, including its distal Tip. These band stop filters prevent current from circulating at selected frequencies of the medical therapeutic device. For example, for an MRI system operating at 1 .5 Tesla, the pulse RF frequency is 64 MHz.
  • the novel band stop filters of the present invention can be designed to resonate at 64 MHz and thus create an open circuit in the lead wire system at that selected frequency.
  • the band stop filter of the present invention when placed at the distal TIP, will prevent currents from flowing through the distal TIP, prevent currents from flowing in the lead wires and also prevent currents from flowing into body tissue.
  • EMF electromagnetic forces
  • This current system is largely decoupled from the currents that are induced near the active implantable medical device, for example, near the cardiac pacemaker.
  • the MRI may set up a separate loop with its associated currents. Accordingly, one or more band stop filters may be required to completely control all of the various induced EMI and associated currents in a lead wire system.
  • the present invention which resides in band stop filters is also designed to work in concert with the EMI filter which is typically used at the point of lead wire ingress and egress of the active implantable medical device.
  • EMI filter which is typically used at the point of lead wire ingress and egress of the active implantable medical device.
  • the present invention is also applicable to probes and catheters.
  • ablation probes are used to selectively cauterize or ablate tissue on the inside or outside of the heart to control erratic electrical pulses. These procedures are best performed during real time fluoroscopy or MRI imaging. However, a major concern is the overheating of the distal TIP at inappropriate times because of the induced currents from the MRI system.
  • novel band stop filters of the present invention can be adapted to any probe, TIP or catheter that is used in the human body.
  • the present invention is also applicable to a number of external leads that might be placed on a patient during MRI.
  • patients frequently wear Holter monitors to monitor their cardiac activity over a period of days. It is an aggravation to physicians to have a patient sent up to the MRI Department and have all these carefully placed electrodes removed from the patient's body.
  • the MRI technicians are concerned about leaving these leads on during an MRI because they don't want them to overheat and cause surface burns on the patient's skin.
  • the problem is that after the MRI procedure, the MRI technicians often replace these electrodes or skin patches in different or even in the wrong locations. This greatly confounds the cardiac physician because now the Holter monitor results are no longer consistent.
  • the tank filters could be placed in any externally worn lead wires by the patient during an MRI procedure such that they do not need to be removed.
  • the invention provides a medical therapeutic device comprising an active medical device (AMD), a lead wire extending from the AMD to a distal TIP thereof, and a band stop filter associated with the lead wire for attenuating current flow through the lead wire at a selected frequency.
  • AMD active medical device
  • a lead wire extending from the AMD to a distal TIP thereof
  • a band stop filter associated with the lead wire for attenuating current flow through the lead wire at a selected frequency.
  • the AMD may comprise cochlear implants, piezoelectric sound bridge transducers, neurostimulators, brain stimulators, cardiac pacemakers, ventricular assist devices, artificial hearts, drug pumps, bone growth stimulators, bone fusion stimulators, urinary incontinence devices, pain relief spinal cord stimulators, anti-tremor stimulators, gastric stimulators, implantable cardioverter defibrillators, pH probes, congestive heart failure devices, pill cameras, neuromodulators, cardiovascular stents, orthopedic implants, external insulin pumps, external drug pumps, external neurostimulators, and external probes or catheters.
  • the band stop filter itself comprises a capacitor (and its resistance or an added resistance) in parallel with an inductor (and its parasitic resistance), said parallel capacitor and inductor combination being placed in series with the medical device lead wire(s) wherein the values of capacitance and inductance have been selected such that the band stop filter is resonant at a selected frequency (such as the MRI pulsed frequency).
  • a selected frequency such as the MRI pulsed frequency.
  • the Q of the inductor is relatively maximized by minimizing the parasitic resistive loss in the inductor, and the Q of the capacitor is relatively minimized by raising its equivalent series resistance (ESR) of the capacitor (or by adding resistance or a resistive element in series with the capacitor element of the bank stop tank filter).
  • ESR equivalent series resistance
  • the range of selected frequencies includes a plurality of MRI pulsed frequencies.
  • the equivalent series resistance of the capacitor is raised by any of the following: reducing thickness of electrode plates in the capacitor; using higher resistivity capacitor electrode materials, providing apertures, gaps, slits or spokes in the electrode plates of the capacitor; providing separate discrete resistors in series with the capacitor; utilizing resistive electrical attachment materials to the capacitor; or utilizing capacitor dielectric materials that have high dielectric loss tangents at the selected frequency.
  • Methods of using higher resistivity capacitor electrode materials include, for example, using platinum instead of silver electrodes. Platinum has a higher volume resistivity as compared to pure silver. Another way of reducing capacitor electrode plate resistivity is to add ceramic powders to the electrode ink before it is silk screened down and fired.
  • raising the capacitor ESR includes any or all of the above described methods of adding resistance in series with the capacitive element of the band stop filter. It should be noted that deliberately raising the capacitor ESR runs counter to conventional/prior art capacitor technologies. In fact, capacitor manufacturers generally strive to build capacitors with as low an ESR as possible. This is to minimize energy loss, etc. It is a feature of the present invention that capacitor Q is raised in a controlled manner in the tank filter circuit in order to adjust its Q and adjust the band stop frequency width in the range of MRI pulsed frequencies.
  • the band stop filter is disposed adjacent to the distal tip of the lead wire and is integrated into a TIP electrode. It may also be integrated into one or more RING electrodes.
  • the lead wire may also comprise an externally worn lead wire, or it may come from an externally worn electronics module wherein said lead penetrates through the skin surface to an implanted distal electrode.
  • the present invention also provides a novel process for attenuating current flow through a lead wire for an active medical device at a selected frequency, comprising the steps of: selecting a capacitor which is resonant at the selected frequency; selecting an inductor which is resonant at the selected frequency; using the capacitor and the inductor to form a tank filter circuit; and placing the tank filter circuit in series with the lead wire.
  • the overall Q of the tank filter circuit may be reduced by increasing the Q of the inductor and reducing the Q of the capacitor. In this regard, minimizing resistive loss in the inductor maximizes the Q of the inductor, and raising the equivalent series resistance of the capacitor minimizes the Q of the capacitor.
  • the net effect is to reduce the overall Q of the tank filter circuit which widens the band stop width to attenuate current flow through the lead wire along a range of selected frequencies.
  • the range of selected frequencies may include a plurality of MRI pulse frequencies.
  • FIGURE 1 is a wire-formed diagram of a generic human body showing a number of active implantable medical devices (AIMDs);
  • FIGURE 2 is a perspective and somewhat schematic view of a prior art active implantable medical device (AIMD) including a lead wire directed to the heart of a patient;
  • AIMD active implantable medical device
  • FIGURE 3 is an enlarged sectional view taken generally along the line 3-3 of FIG.
  • FIGURE 4 is a view taken generally along the line 4-4 of FIG. 3;
  • FIGURE 5 is a perspective/isometric view of a prior art rectangular quadpolar feedthrough capacitor of the type shown in FIGS. 3 and 4;
  • FIGURE 6 is sectional view taken generally along the line 6-6 of FIG. 5;
  • FIGURE 7 is a sectional view taken generally along the line 7-7 of FIG. 5;
  • FIGURE 8 is a diagram of a unipolar active implantable medical device
  • FIGURE 9 is a diagram similar to FIG. 8, illustrating a bipolar AIMD system
  • FIGURE 1 0 is a diagram similar to FIGS. 8 and 9, illustrating a biopolar lead wire system with a distal TIP and RING, typically used in a cardiac pacemaker;
  • FIGURE 1 1 is a schematic diagram showing a parallel combination of an inductor L and a capacitor C placed in series with the lead wire systems of FIGS. 8-1 0;
  • FIGURE 1 2 is a chart illustrating calculation of frequency of resonance for the parallel tank circuit of FIG. 1 1 ;
  • FIGURE 1 3 is a graph showing impedance versus frequency for the parallel tank band stop circuit of FIG. 1 1 ;
  • FIGURE 1 4 is an equation for the impedance of an inductor in parallel with a capacitor
  • FIGURE 1 5 is a chart illustrating reactance equations for the inductor and the capacitor of the parallel tank circuit of FIG. 1 1 ;
  • FIGURE 1 6 is a schematic diagram illustrating the parallel tank circuit of FIG. 1 1 , except in this case the inductor and the capacitor have series resistive losses;
  • FIGURE 1 7 is a diagram similar to FIG. 8, illustrating the tank circuit/band stop filter added near a distal electrode;
  • FIGURE 1 8 is a schematic representation of the novel band stop tank filter of the present invention, using switches to illustrate its function at various frequencies;
  • FIGURE 1 9 is a schematic diagram similar to FIG. 1 8, illustrating the low frequency model of the band stop filter;
  • FIGURE 20 is a schematic diagram similar to FIGS. 1 8 and 1 9, illustrating the model of the band stop filter of the present invention at its resonant frequency;
  • FIGURE 21 is a schematic diagram similar to FIGS. 1 8-20, illustrating a model of the band stop filter at high frequencies well above the resonant frequency;
  • FIGURE 22 is a decision tree block diagram illustrating a process for designing the band stop filters of the present invention.
  • FIGURE 23 is graph of insertion loss versus frequency for band stop filters having high Q inductors and differing quality "Q" factors;
  • FIGURE 24 is a tracing of an exemplary patient x-ray showing an implanted pacemaker and cardioverter defibrillator and corresponding lead wire system;
  • FIGURE 25 is a line drawings of an exemplary patent cardiac x-ray of a biventricular lead wire system;
  • FIGURE 26 illustrates a bipolar cardiac pacemaker lead wire showing the distal TIP and the distal RING electrodes
  • FIGURE 27 is an enlarged, fragmented schematic illustration of the area illustrated by the line 27-27 in FIG. 26.
  • FIGURE 1 illustrates of various types of active implantable and external medical devices 1 00 that are currently in use.
  • FIG. 1 is a wire formed diagram of a generic human body showing a number of implanted medical devices.
  • 10OA is a family of external and implantable hearing devices which can include the group of hearing aids, cochlear implants, piezoelectric sound bridge transducers and the like.
  • 1 0OB includes an entire variety of neurostimulators and brain stimulators. Neurostimulators are used to stimulate the Vagus nerve, for example, to treat epilepsy, obesity and depression.
  • Brain stimulators are similar to a pacemaker-like device and include electrodes implanted deep into the brain for sensing the onset of the seizure and also providing electrical stimulation to brain tissue to prevent the seizure from actually happening.
  • the lead wires that come from a deep brain stimulator are often placed using real time imaging. Most commonly such lead wires are placed during real time MRI.
  • 1 0OC shows a cardiac pacemaker which is well-known in the art.
  • 1 0OD includes the family of left ventricular assist devices (LVAD's), and artificial hearts, including the recently introduced artificial heart known as the Abiocor.
  • 1 0OE includes an entire family of drug pumps which can be used for dispensing of insulin, chemotherapy drugs, pain medications and the like. Insulin pumps are evolving from passive devices to ones that have sensors and closed loop systems.
  • 1 0OF includes a variety of external or implantable bone growth stimulators for rapid healing of fractures.
  • 1 0OG includes urinary incontinence devices.
  • 10OH includes the family of pain relief spinal cord stimulators and anti-tremor stimulators.
  • 1 0OH also includes an entire family of other types of neurostimulators used to block pain.
  • 1 001 includes a family of implantable cardioverter defibrillators (ICD) devices and also includes the family of congestive heart failure devices (CHF). This is also known in the art as cardio resynchronization therapy devices, otherwise knows as CRT devices.
  • ICD implantable cardioverter defibrillators
  • CHF congestive heart failure devices
  • 1 0OJ illustrates an externally worn pack.
  • This pack could be an external insulin pump, an external drug pump, an external neurostimulator, a Holter monitor with skin electrodes or even a ventricular assist device power pack.
  • 1 0OK illustrates the insertion of an external probe or catheter. These probes can be inserted into the femoral artery, for example, or in any other number of locations in the human body.
  • FIGURE 2 a prior art active implantable medical device (AIMD) 100 is illustrated.
  • the AIMD 1 00 could, for example, be a cardiac pacemaker 1 0OC which is enclosed by a titanium housing 102 as indicated.
  • the titanium housing is hermetically sealed, however there is a point where lead wires 1 04 must ingress and egress the hermetic seal. This is accomplished by providing a hermetic terminal assembly 1 06.
  • Hermetic terminal assemblies are well known and generally consist of a ferrule 1 08 which is laser welded to the titanium housing 1 02 of the AIMD 1 00.
  • the hermetic terminal assembly 1 06 with its associated EMI filter is better shown in FIG. 3.
  • four lead wires are shown consisting of lead wire pair 1 04a and 104b and lead wire pair 1 04c and 1 04d. This is typical of what's known as a dual chamber bipolar cardiac pacemaker.
  • the ISl connectors 1 1 0 that are designed to plug into the header block 1 1 2 are low voltage (pacemaker) connectors covered by an ANSI/AAMI standard IS-I .
  • Higher voltage devices such as implantable cardioverter defibrillators, are covered by a standard known as the ANSI/AAMI DF-I .
  • IS-4 series There is a new standard under development which will integrate both high voltage and low voltage connectors into a new miniature connector series known as the IS-4 series. These connectors are typically routed in a pacemaker application down into the right ventricle and right atrium of the heart 1 14.
  • CTR cardiac resynchronization therapy
  • CHF congestive heart failure
  • ICDs implantable cardioverter defibrillators
  • neurostimulators including deep brain stimulators, spinal cord stimulators, cochlear implants, incontinence stimulators and the like, and drug pumps.
  • ICDs implantable cardioverter defibrillators
  • the present invention is also applicable to a wide variety of minimally invasive AIMDs. For example, in certain hospital cath lab procedures, one can insert an AIMD for temporary use such as an ICD. Ventricular assist devices also can fall into this type of category. This list is not meant to be limiting, but is only example of the applications of the novel technology currently described herein.
  • FIGURE 3 is an enlarged, fragmented cross-sectional view taken generally along line 3-3 of FIG. 2.
  • the RF telemetry pin 1 1 6 and the bipolar lead wires 1 04a and 1 04c which would be routed to the cardiac chambers by connecting these lead wires to the internal connectors 1 1 8 of the IS-I header block 1 1 2 (FIG. 2).
  • These connectors are designed to receive the plug 1 10 which allows the physicians to thread lead wires through the venous system down into the appropriate chambers of the heart 1 1 4. It will be obvious to those skilled in the art that tunneling of deep brain electrodes or neurostimulators are equivalent.
  • a rectangular quadpolar feedthrough capacitor 1 20 which has an external metallized termination surface 1 22. It includes embedded electrode plate sets 1 24 and 1 26. Electrode plate set 1 24 is known as the ground electrode plate set and is terminated at the outside of the capacitor 1 20 at the termination surface 1 22. These ground electrode plates 1 24 are electrically and mechanically connected to the ferrule 1 08 of the hermetic terminal assembly 1 06 using a thermosetting conductive polyimide or equivalent material 1 28 (equivalent materials will include solders, brazes, conductive epoxies and the like). In turn, the hermetic seal terminal assembly 1 06 is designed to have its titanium ferrule 108 laser welded 1 30 to the overall housing 1 02 of the AIMD 1 00. This forms a continuous hermetic seal thereby preventing body fluids from penetrating into and causing damage to the electronics of the AIMD.
  • the lead wires 1 04 and insulator 1 36 be hermetically sealed, such as by the gold brazes or glass sealsl 32 and 1 34.
  • the gold braze 1 32 wets from the titanium ferrule 108 to the alumina ceramic insulator 1 36.
  • the ceramic alumina insulator 1 36 is also gold brazed at 1 34 to each of the lead wires 1 04.
  • the RF telemetry pin 1 1 6 is also gold brazed at 1 38 to the alumina ceramic insulator 1 36. It will be obvious to those skilled in the art that there are a variety of other ways of making such a hermetic terminal. This would include glass sealing the leads into the ferrule directly without the need for the gold brazes.
  • FIGURE 4 is a bottom view taken generally along line 4-4 in FIG. 3.
  • FIGURE 5 is an isometric view of the feedthrough capacitor 1 20.
  • the termination surface 1 22 connects to the capacitor's internal ground plate set 1 24.
  • ground plate set 1 24 which is typically silk-screened onto ceramic layers, is brought out and exposed to the termination surface 1 22.
  • the capacitor's four (quadpolar) active electrode plate sets 1 26 are illustrated in FIG. 7.
  • the lead wires 1 04 are in non-electrical communication with the ground electrode plate set 1 24.
  • each one of the lead wires 1 04 is in electrical contact with its corresponding active electrode plate set 1 26.
  • the amount of capacitance is determined by the overlap of the active electrode plate area 1 26 over the ground electrode plate area.
  • the capacitance value is also related to the dielectric thickness or spacing between the ground electrode set 1 24 and the active electrode set 1 26. Reducing the dielectric thickness increases the capacitance significantly while at the same time reducing its voltage rating. This gives the designer many degrees of freedom in selecting the capacitance value.
  • FIGURE 8 is a general diagram of a unipolar active implantable medical device system 1 00.
  • FIG. 8 could also be representative of an externally worn medical device such as a Holter monitor.
  • the distal electrode 1 40 would typically be a scan or patch electrode.
  • the housing 1 02 of the active implantable medical device 1 00 is typically titanium, ceramic, stainless steel or the like.
  • AIMD electronic circuits Inside of the device housing are the AIMD electronic circuits.
  • AIMDs include a battery, but that is not always the case. For example, for a Bion, it can receive its energy from an external pulsing magnetic field.
  • a lead wire 1 04 is routed from the AIMD 1 00 to a point 1 40 where it is embedded in or affixed to body tissue.
  • the distal TIP 140 could be in the spinal cord.
  • the distal electrode 1 40 would be placed deep into the brain, etc.
  • the distal electrode 1 40 would typically be placed in the cardiac right ventricle.
  • FIGURE 9 is very similar to FIG. 8 except that it is a bipolar system. In this case, the electric circuit return path is between the two distal electrodes 1 40 and 140'.
  • a cardiac pacemaker 1 0OC this would be known as a bipolar lead wire system with one of the electrodes known as the distal TIP 1 42 and the other electrode which would float in the blood pool known as the RING 144 (see FIG. 1 0).
  • the electrical return path in FIG. 8 is between the distal electrode 140 through body tissue to the conductive housing 102 of the implantable medical device 1 00.
  • FIGURE 1 0 illustrates a bipolar lead wire system with a distal TIP 1 42 and RING 1 44 typically as used in a cardiac pacemaker 1 0OC.
  • the patient could be exposed to the fields of an MRI scanner or other powerful emitter used during a medical diagnostic procedure.
  • Currents that are directly induced in the lead wire system 1 04 can cause heating by I 2 R losses in the lead wire system or by heating caused by current flowing in body tissue. If these currents become excessive, the associated heating can cause damage or even destructive ablation to body tissue.
  • the distal TIP 142 is designed to be implanted into or affixed to the actual myocardial tissue of the heart.
  • the RING 144 is designed to float in the blood pool. Because the blood is flowing and is thermally conductive, the RING 144 structure is substantially cooled. In theory, however, if the lead curves, the RING 1 44 could also touch and become encapsulated by body tissue.
  • the distal TIP 1 42 is always thermally insulated by surrounding body tissue and can readily heat up due to the RF pulse currents of an MRI field.
  • FIGURE 1 1 is a schematic diagram showing a parallel combination of an inductor L and a capacitor C to be placed in the lead wire systems 104 previously described. This combination forms a parallel tank circuit or band stop filter 1 46 which will resonate at a particular frequency (f r ).
  • FIGURE 1 2 gives the frequency of resonance equation f r for the parallel tank circuit 1 46 of FIG. 1 1 : where f r is the frequency of resonance in hertz, L is the inductance in henries and C is the capacitance in farads.
  • MRI systems vary in static field strength from 0.5 Tesla all the way up to 3 Tesla with newer research machines going much higher. This is the force of the main static magnetic field.
  • the frequency of the pulsed RF field associated with MRI is found by multiplying the static field in Teslas times 42.45. Accordingly, a 3 Tesla MRI system has a pulsed RF field of approximately 1 28 MHz.
  • the inductor value L is equal to one nanohenry. The one nanohenry comes from the fact that given the small geometries involved inside of the human body, a very large inductor will not be possible.
  • FIGURE 1 3 is a graph showing impedance versus frequency for the parallel tank, band stop filter circuit 1 46 of FIG. 1 1 .
  • the impedance measured between points A and B for the parallel tank circuit 1 46 shown in FIG. 1 1 is very low (zero) until one approaches the resonant frequency f r .
  • these ideal components combine together to look like a very high or, ideally, an infinite impedance. The reason for this comes from the denominator of the equation Z a b for the impedance for the inductor in parallel with the capacitor shown as FIG. 1 4.
  • the inductive reactance is equal to the capacitive reactance, the two imaginary vectors cancel each other and go to zero.
  • a cardiac pacemaker for compatibility with one single popular MRI system.
  • the pacemaker lead wire system has been designed to be compatible with 3 Tesla MRI systems.
  • a distal TIP band stop filter 1 46 would be incorporated where the L and the C values have been carefully selected to be resonant at 1 28 MHz, presenting a high or almost infinite impedance at the MRI pulse frequency.
  • FIGURE 1 6 is a schematic drawing of the parallel tank circuit 146 of FIG. 1 1 , except in this case the inductor L and the capacitor C are not ideal. That is, the capacitor C has its own internal resistance Rc, which is otherwise known in the industry as dissipation factor or equivalent series resistance (ESR).
  • the inductor L also has a resistance RL. For those that are experienced in passive components, one would realize that the inductor L would also have some parallel capacitance. This parasitic capacitance comes from the capacitance associated with adjacent turns. However, the inductance value contemplated is so low that one can assume that at MRI pulse frequencies, the inductor's parallel capacitance is negligible.
  • the capacitor C also has some internal inductance which would appear in series.
  • the novel capacitors described below are very small or coaxial and have negligible series inductance. Accordingly, the circuit shown in FIG. 1 6 is a very good approximation model for the novel parallel tank circuits 1 46 as described herein.
  • the impedance between points A and B in FIG. 1 6 will equal to RL-
  • the resistance of the inductor (RL) should be kept as small as possible to minimize attenuation of biologic signals or attenuation of stimulation pulses to body tissues. This will allow biologic signals to pass through the band stop filter 1 46 freely. It also indicates that the amount of capacitive loss Rc is not particularly important.
  • FIGURE 1 7 is a drawing of the unipolar AIMD lead wire system, previously shown in FIG. 8, with the band stop filter 1 46 of the present invention added near the distal electrode 1 40.
  • the presence of the tank circuit 146 will present a very high impedance at one or more specific MRI RF pulse frequencies. This will prevent currents from circulating through the distal electrode 1 40 into body tissue at this selected frequency(s). This will provide a very high degree of important protection to the patient so that overheating does not cause tissue damage.
  • FIGURE 1 8 is a representation of the novel band stop tank filter 1 46 using switches that open and close at various frequencies to illustrate its function.
  • Inductor L has been replaced with a switch SL.
  • the switch SL When the impedance of the inductor is quite low, the switch SL will be closed.
  • the impedance or inductive reactance of the inductor When the impedance or inductive reactance of the inductor is high, the switch SL will be shown open.
  • the capacitor element C When the capacitive reactance looks like a very low impedance, the capacitor switch Sc will be shown closed. When the capacitive reactance is shown as a very high impedance, the switch Sc will be shown open. This analogy is best understood by referring to FIGS. 1 9, 20 and 21 .
  • FIGURE 1 9 is the low frequency model of the band stop filter 1 46.
  • capacitors tend to look like open circuits and inductors tend to look like short circuits. Accordingly, switch SL is closed and switch Sc is open. This is an indication that at frequencies below the resonant frequency of the band stop filter 146 that currents will flow only through the inductor element and its corresponding resistance RL. This is an important consideration for the present invention that low frequency biological signals not be attenuated. For example, in a cardiac pacemaker, frequencies of interest generally fall between 1 0 Hz and 1 000 Hz. Pacemaker pacing pulses fall within this general frequency range. In addition, the implantable medical device is also sensing biological frequencies in the same frequency range.
  • FIGURE 20 is a model of the novel band stop filter 146 at its resonant frequency.
  • both switches SL and Sc are shown open.
  • FIGURE 21 is a model of the band stop filter 1 46 at high frequency. At high frequencies, inductors tend to look like open circuits. Accordingly, switch SL is shown open. At high frequencies, ideal capacitors tend to look like short circuits, hence switch Sc is closed.
  • FIGURE 22 is a decision tree block diagram that better illustrates the design process herein.
  • Block 1 48 is an initial decision step the designer must make.
  • capacitance is generally going to relate to the amount of space available in the AIMD lead wire system and other factors. These values for practical purposes generally range in capacitance value from a few tens of picofarads up to about 1 0,000 picofarads. This puts practical boundaries on the amount of capacitance that can be effectively packaged within the scope of the present invention. However, that is not intended to limit the general principles of the present invention, but just describe a preferred embodiment.
  • block 1 50 one does an assessment of the overall packaging requirements of a distal TIP 1 42 band stop filter 146 and then assumes a realizable capacitance value. So, in decision block 1 50, we assume a capacitor value.
  • step 1 60 If the capacitance value that is determined in step 1 60 is realizable, then one goes on and finalizes the design. However, if it is not realizable, then one can go back up to step 1 56, assume a different value of L and go through the decision tree again. This is done over and over until one finds combinations of L and C that are practical for the overall design.
  • L the inductor element
  • n the capacitor element that appears in the parallel tank filter 1 46.
  • f r is the resonance frequency
  • ⁇ f3dB shown as points a and b in FIG. 23 is the bandwidth of the band stop filter 1 46.
  • Bandwidth is typically taken as the difference between the two measured frequencies, fi and £, at the 3dB loss points as measured on an insertion loss chart, and the resonance frequency is the average between fi and £. As can be seen in this relationship, higher Q values result in a narrower 3dB bandwidth.
  • Material and application parameters must be taken into consideration when designing tank filters. Most capacitor dielectric materials age l %-5% in capacitance values per decade of time elapsed, which can result in a shift of the resonance frequency of upwards of 2.5%.
  • the "Q" or quality factor of the tank circuit is very important. As mentioned, it is desirable to have a very low loss circuit at low frequencies such that the biological signals not be undesirably attenuated.
  • the quality factor not only determines the loss of the filter, but also affects its 3 dB bandwidth. If one does a plot of the filter response curve (Bode plot), the 3 dB bandwidth determines how sharply the filter will rise and fall. With reference to curve 1 66 of FIG. 23, for a tank that is resonant at 1 28 MHz, an ideal response would be one that had infinite attenuation at 1 28 MHz, but had zero attenuation at low frequencies below 1 KHz.
  • the effect of lower Q in the tank circuit is to broaden the resonance peak about the resonance frequency.
  • a high impedance high attenuation
  • curve 1 64 wherein a low resistive loss high Q inductor has been used in combination with a relatively high ESR low Q capacitor. This has a very desirable effect in that at very low frequencies, the impedance of the tank circuit 146 is essentially zero ohms (or zero dB loss). This means that biologic frequencies are not undesirably attenuated. However, one can see that the 3 db bandwidth is much larger. This is desirable as it will block multiple RF frequencies. As one goes even higher in frequency, curvel 64 will desirably attenuate other high frequency EMI signals, such as those from cellular telephones, microwave ovens and the like.
  • FIGURE 24 is a tracing of an actual patient X-ray. This particular patient required both a cardiac pacemaker 1 0OC and an implantable cardioverter defibrillator 1001.
  • the corresponding lead wire system 1 04 makes for a very complicated antenna and loop coupling situation. The reader is referred to the article entitled, "Estimation of Effective Lead Loop Area for Implantable Pulse Generator and Implantable Cardioverter Defibrillators" provided by the AAMI Pacemaker EMC Task Force.
  • the pacemaker 1 0OC there is an electrode in both the right atrium and in the right ventricle. Both these involve a TIP and RING electrode.
  • the band stop filters 1 46 of the present invention would need to be placed at least in the distal TIP in the right atrium and the distal TIP in the right ventricle from the cardiac pacemaker.
  • ICD implantable cardioverter defibrillator
  • SVC super vena cava
  • SVC super vena cava
  • Modern implantable cardioverter defibrillators (ICDs) incorporate both pacing and cardioverting (shock) features.
  • FIGURE 25 is a line drawing of an actual patient cardiac X-ray of one of the newer bi-ventricular lead wire systems with various types of electrode TIPS shown.
  • the new bi-ventricular systems are being used to treat congestive heart failure, and make it possible to implant leads outside of the left ventricle. This makes for a very efficient pacing system; however, the lead wire system 1 04 is quite complex.
  • band stop filters 146 would be required at each of the three distal TIPs and optionally at RING and SVC locations.
  • FIGURE 26 illustrates a single chamber bipolar cardiac pacemaker lead wire showing the distal TIP 1 42 and the distal RING 1 44 electrodes. This is a spiral wound system where the RING coil 1 04 is wrapped around the TIP coil 1 04'. There are other types of pacemaker lead wire systems in which these two leads lay parallel to one another (known as a bifilar lead system).
  • FIGURE 27 is a schematic illustration of the area 27-27 in FIG. 26.
  • band stop filters 146 and 1 46' have been placed in series with each of the respective TIP and RING circuits. Accordingly, at MRI pulsed frequencies, an open circuit will be presented thereby stopping the flow of undesirable RF current.

Abstract

A band stop filter is provided for a lead wire of an active medical device (AMD). The band stop filter includes a capacitor in parallel with an inductor. The parallel capacitor and inductor are placed in series with the lead wire of the AMD, wherein values of capacitance and inductance are selected such that the band stop filter is resonant at a selected frequency. The Q of the inductor may be relatively maximized and the Q of the capacitor may be relatively minimized to reduce the overall Q of the band stop filter to attenuate current flow through the lead wire along a range of selected frequencies. In a preferred form, the band stop filter is integrated into a TIP and/or RING electrode for an active implantable medical device.

Description

BAND STOP FILTER EMPLOYING A CAPACITOR AND AN INDUCTOR TANK CIRCUIT TO ENHANCE MRI COMPATIBILITY OF ACTIVE MEDICAL DEVICES
DESCRI PTION
BACKGROUND OF THE INVENTION
[Para 1 ] This invention relates generally to novel EMI tank filter assemblies, particularly of the type used in active medical devices (AMDs) such as cardiac pacemakers, cardioverter defibrillators, neurostimulators, externally worn Holter monitors and the like, which decouple lead wires and/or electronic components of the medical device from undesirable electromagnetic interference (EMI) signals at a selected frequency or frequencies, such as the RF pulsed fields of Magnetic Resonance Imaging (MRI) equipment. [Para 2] Compatibility of cardiac pacemakers, implantable defibrillators and other types of active implantable medical devices with magnetic resonance imaging (MRI) and other types of hospital diagnostic equipment has become a major issue. If one goes to the websites of the major cardiac pacemaker manufacturers in the United States, which include St. Jude Medical, Medtronic and Boston Scientific (formerly Guidant), one will see that the use of MRI is generally contra-indicated with pacemakers and implantable defibrillators. See also:
(1 ) "Safety Aspects of Cardiac Pacemakers in Magnetic Resonance Imaging", a dissertation submitted to the Swiss Federal Institute of Technology Zurich presented by Roger Christoph Lϋchinger, Zurich 2002;
(2) "I. Dielectric Properties of Biological Tissues: Literature Survey", by C. Gabriel, S. Gabriel and E. Cortout; (3) "II. Dielectric Properties of Biological Tissues: Measurements and the Frequency Range 0 Hz to 20 GHz", by S. Gabriel, R.W. Lau and C. Gabriel;
(4) "III. Dielectric Properties of Biological Tissues: Parametric Models for the Dielectric Spectrum of Tissues", by S. Gabriel, R.W. Lau and C. Gabriel; and
(5) "Advanced Engineering Electromagnetics, C.A. Balanis, Wiley, 1 989;
(6) Systems and Methods for Magnetic-Resonance-Guided Interventional Procedures, Patent Application Publication US 2003/0050557, Susil and Halperin et. al, published March 1 3, 2003;
(7) Multifunctional Interventional Devices for MRI: A Combined Electrophysiology/MRI Catheter, by, Robert C. Susil, Henry R. Halperin , ChristopherJ. Yeung, Albert C. Lardo and Ergin Atalar, MRI in Medicine, 2002; and
(8) Multifunctional Interventional Devices for Use in MRI, U.S. Patent Application Serial No. 60/283,725, filed April 1 3, 2001 .
The contents of the foregoing are all incorporated herein by reference. [Para 3] However, an extensive review of the literature indicates that MRI is indeed often used with pacemaker, neurostimulator and other active implantable medical device (AIMD) patients. The safety and feasibility of MRI in patients with cardiac pacemakers is an issue of gaining significance. The effects of MRI on patients' pacemaker systems have only been analyzed retrospectively in some case reports. There are a number of papers that indicate that MRI on new generation pacemakers can be conducted up to 0.5 Tesla (T). MRI is one of medicine's most valuable diagnostic tools. MRI is, of course, extensively used for imaging, but is also used for interventional medicine (surgery). In addition, MRI is used in real time to guide ablation catheters, neurostimulator tips, deep brain probes and the like. An absolute contra-indication for pacemaker patients means that pacemaker and ICD wearers are excluded from MRI. This is particularly true of scans of the thorax and abdominal areas. Because of MRI's incredible value as a diagnostic tool for imaging organs and other body tissues, many physicians simply take the risk and go ahead and perform MRI on a pacemaker patient. The literature indicates a number of precautions that physicians should take in this case, including limiting the power of the MRI RF Pulsed field (Specific Absorption Rate - SAR level), programming the pacemaker to fixed or asynchronous pacing mode, and then careful reprogramming and evaluation of the pacemaker and patient after the procedure is complete. There have been reports of latent problems with cardiac pacemakers or other AIMDs after an MRI procedure sometimes occurring many days later. Moreover, there are a number of recent papers that indicate that the SAR level is not entirely predictive of the heating that would be found in implanted lead wires or devices. For example, for magnetic resonance imaging devices operating at the same magnetic field strength and also at the same SAR level, considerable variations have been found relative to heating of implanted lead wires. It is speculated that SAR level alone is not a good predictor of whether or not an implanted device or its associated lead wire system will overheat. [Para 4] There are three types of electromagnetic fields used in an MRI unit. The first type is the main static magnetic field designated Bo which is used to align protons in body tissue. The field strength varies from 0.5 to 3.0 Tesla in most of the currently available MRI units in clinical use. Some of the newer MRI system fields can go as high as 4 to 5 Tesla. At the recent International Society for Magnetic Resonance in Medicine (ISMRM), which was held on 5 and 6 November 2005, it was reported that certain research systems are going up as high as 1 1 .7 Tesla and will be ready sometime in 2006. This is over 100,000 times the magnetic field strength of the earth. A static magnetic field can induce powerful mechanical forces and torque on any magnetic materials implanted within the patient. This would include certain components within the cardiac pacemaker itself and or lead wire systems. It is not likely (other than sudden system shut down) that the static MRI magnetic field can induce currents into the pacemaker lead wire system and hence into the pacemaker itself. It is a basic principle of physics that a magnetic field must either be time-varying as it cuts across the conductor, or the conductor itself must move within the magnetic field for currents to be induced.
[Para 5] The second type of field produced by magnetic resonance imaging is the pulsed RF field which is generated by the body coil or head coil. This is used to change the energy state of the protons and illicit MRI signals from tissue. The RF field is homogeneous in the central region and has two main components: (1 ) the magnetic field is circularly polarized in the actual plane; and (2) the electric field is related to the magnetic field by Maxwell's equations. In general, the RF field is switched on and off during measurements and usually has a frequency of 21 MHz to 64 MHz to 1 28 MHz depending upon the static magnetic field strength. The frequency of the RF pulse varies with the field strength of the main static field where: RF PULSED FREQUENCY in MHz = (42.56) (STATIC FIELD STRENGTH IN TESLA). [Para 6] The third type of electromagnetic field is the time-varying magnetic gradient fields designated Bi which are used for spatial localization. These change their strength along different orientations and operating frequencies on the order of 1 kHz. The vectors of the magnetic field gradients in the X, Y and Z directions are produced by three sets of orthogonally positioned coils and are switched on only during the measurements. In some cases, the gradient field has been shown to elevate natural heart rhythms (heart beat). This is not completely understood, but it is a repeatable phenomenon. The gradient field is not considered by many researchers to create any other adverse effects. [Para 7] It is instructive to note how voltages and EMI are induced into an implanted lead wire system. At very low frequency (VLF), voltages are induced at the input to the cardiac pacemaker as currents circulate throughout the patient's body and create voltage drops. Because of the vector displacement between the pacemaker housing and, for example, the TIP electrode, voltage drop across the resistance of body tissues may be sensed due to Ohms Law and the circulating current of the RF signal. At higher frequencies, the implanted lead wire systems actually act as antennas where currents are induced along their length. These antennas are not very efficient due to the damping effects of body tissue; however, this can often be offset by extremely high power fields (such as MRI pulsed fields) and/or body resonances. At very high frequencies (such as cellular telephone frequencies), EMI signals are induced only into the first area of the lead wire system (for example, at the header block of a cardiac pacemaker). This has to do with the wavelength of the signals involved and where they couple efficiently into the system. [Para 8] Magnetic field coupling into an implanted lead wire system is based on loop areas. For example, in a cardiac pacemaker, there is a loop formed by the lead wire as it comes from the cardiac pacemaker housing to its distal TIP, for example, located in the right ventricle. The return path is through body fluid and tissue generally straight from the TIP electrode in the right ventricle back up to the pacemaker case or housing. This forms an enclosed area which can be measured from patient X-rays in square centimeters. The average loop area is 200 to 225 square centimeters. This is an average and is subject to great statistical variation. For example, in a large adult patient with an abdominal implant, the implanted loop area is much larger (greater than 450 square centimeters). [Para 9] Relating now to the specific case of MRI, the magnetic gradient fields would be induced through enclosed loop areas. However, the pulsed RF fields, which are generated by the body coil, would be primarily induced into the lead wire system by antenna action. [Para 1 0] There are a number of potential problems with MRI, including:
(1 ) Closure of the pacemaker reed switch. A pacemaker reed switch, which can also be a Hall Effect device, is designed to detect a permanent magnet held close to the patient's chest. This magnet placement allows a physician or even the patient to put the implantable medical device into what is known as the "magnet mode response." The "magnet mode response" varies from one manufacturer to another, however, in general, this puts the pacemaker into a fixed rate or asynchronous pacing mode. This is normally done for short times and is very useful for diagnostic and clinical purposes. However, in some cases, when a pacemaker is brought into the bore or close to the MRI scanner, the MRI static field can make the pacemaker's internal reed switch close, which puts the pacemaker into a fixed rate or asynchronous pacing mode. Worse yet, the reed switch may bounce or oscillate. Asynchronous pacing may compete with the patient's underlying cardiac rhythm. This is one reason why patients have generally been advised not to undergo MRI. Fixed rate or asynchronous pacing for most patients is not an issue. However, in patients with unstable conditions, such as myocardial ischemia, there is a substantial risk for ventricular fibrillation during asynchronous pacing. In most modern pacemakers the magnetic reed switch (or Hall Effect device) function is programmable. If the magnetic reed switch response is switched off, then synchronous pacing is still possible even in strong magnetic fields. The possibility to open and re-close the reed switch in the main magnetic field by the gradient field cannot be excluded. However, it is generally felt that the reed switch will remain closed due to the powerful static magnetic field. It is theoretically possible for certain reed switch orientations at the gradient field to be capable of repeatedly closing and re-opening the reed switch.
(2) Reed switch damage. Direct damage to the reed switch is theoretically possible, but has not been reported in any of the known literature. In an article written by Roger Christoph Lϋchinger of Zurich, he reports on testing in which reed switches were exposed to the static magnetic field of MRI equipment. After extended exposure to these static magnetic fields, the reed switches functioned normally at close to the same field strength as before the test.
(3) Pacemaker displacement. Some parts of pacemakers, such as the batteries and reed switch, contain ferrous magnetic materials and are thus subject to mechanical forces during MRI. Pacemaker displacement may occur in response to magnetic force or magnetic torque. There are several recent reports on modern pacemakers and ICDs that force and torque are not of concern for MRI systems up to 3 Tesla.
(4) Radio frequency field. At the frequencies of interest in MRI, RF energy can be absorbed and converted to heat. The power deposited by RF pulses during MRI is complex and is dependent upon the power (Specific Absorption Rate (SAR) Level) and duration of the RF pulse, the transmitted frequency, the number of RF pulses applied per unit time, and the type of configuration of the RF transmitter coil used. The amount of heating also depends upon the volume of tissue imaged, the electrical resistivity of tissue and the configuration of the anatomical region imaged. There are also a number of other variables that depend on the placement in the human body of the AIMD and its associated lead wire(s). For example, it will make a difference how much current is induced into a pacemaker lead wire system as to whether it is a left or right pectoral implant. In addition, the routing of the lead and the lead length are also very critical as to the amount of induced current and heating that would occur. Also, distal TIP design is very important as the distal TIP itself can act as its own antenna wherein eddy currents can create heating. The cause of heating in an MRI environment is two fold: (a) RF field coupling to the lead can occur which induces significant local heating; and (b) currents induced between the distal TIP and tissue during MRI RF pulse transmission sequences can cause local Ohms Law heating in tissue next to the distal TIP electrode of the implanted lead. The RF field of an MRI scanner can produce enough energy to induce lead wire currents sufficient to destroy some of the adjacent myocardial tissue. Tissue ablation has also been observed. The effects of this heating are not readily detectable by monitoring during the MRI. Indications that heating has occurred would include an increase in pacing threshold, venous ablation, Larynx or esophageal ablation, myocardial perforation and lead penetration, or even arrhythmias caused by scar tissue. Such long term heating effects of MRI have not been well studied yet for all types of AIMD lead wire geometries. There can also be localized heating problems associated with various types of electrodes in addition to TIP electrodes. This includes RING electrodes or PAD electrodes. RING electrodes are commonly used with a wide variety of implanted devices including cardiac pacemakers, neurostimulators, probes, catheters and the like. PAD electrodes are very common in neurostimulator applications. For example, spinal cord stimulators or deep brain stimulators can include a plurality of PAD electrodes to make contact with nerve tissue. A good example of this also occurs in a cochlear implant. In a typical cochlear implant there would be sixteen RING electrodes that the position places by pushing the electrode up into the cochlea. Several of these RING electrodes make contact with auditory nerves. (5) Alterations of pacing rate due to the applied radio frequency field. It has been observed that the RF field may induce undesirable fast pacing (QRS complex) rates. There are various mechanisms which have been proposed to explain rapid pacing: direct tissue stimulation, interference with pacemaker electronics or pacemaker reprogramming (or reset). In all of these cases, it is very desirable to raise the lead system impedance (at the MRI RF pulsed frequency) to make an EMI filter feedthrough capacitor more effective and thereby provide a higher degree of protection to AIMD electronics. This will make alterations in pacemaker pacing rate and/or pacemaker reprogramming much more unlikely.
(6) Time-varying magnetic gradient fields. The contribution of the time-varying gradient to the total strength of the MRI magnetic field is negligible, however, pacemaker systems could be affected because these fields are rapidly applied and removed. The time rate of change of the magnetic field is directly related to how much electromagnetic force and hence current can be induced into a lead wire system. Luchinger reports that even using today's gradient systems with a time-varying field up to 50 Tesla per second, the induced currents are likely to stay below the biological thresholds for cardiac fibrillation. A theoretical upper limit for the induced voltage by the time-varying magnetic gradient field is 20 volts. Such a voltage during more than 0.1 milliseconds could be enough energy to directly pace the heart.
(7) Heating. Currents induced by time-varying magnetic gradient fields may lead to local heating. Researchers feel that the calculated heating effect of the gradient field is much less as compared to that caused by the RF field and therefore for the purposes herein may be neglected.
[Para 1 1 ] There are additional problems possible with implantable cardioverter defibrillators (ICDs). ICDs use different and larger batteries which could cause higher magnetic forces. The programmable sensitivity in ICDs is normally much higher (more sensitive) than it is for pacemakers, therefore, ICDs may falsely detect a ventricular tachyarrhythmia and inappropriately deliver therapy. In this case, therapy might include anti-tacchycardia pacing, cardio version or defibrillation (high voltage shock) therapies. MRI magnetic fields may prevent detection of a dangerous ventricular arrhythmia or fibrillation. There can also be heating problems of ICD leads which are expected to be comparable to those of pacemaker leads. Ablation of vascular walls is another concern. Fortunately, ICDs have a sort of built-in fail-safe mechanism. That is, during an MRI procedure, if they inadvertently sense the MRI fields as a dangerous ventricular arrhythmia, the ICD will attempt to charge up and deliver a high voltage shock. However, there is a transformer contained within the ICD that is necessary to function in order to charge up the high-energy storage capacitor contained within the ICD. In the presence of the main static field of the MRI the core of this transformer tends to saturate thereby preventing the high voltage capacitor from charging up. This makes it highly unlikely that an ICD patient undergoing an MRI would receive an inappropriate high voltage shock therapy. While ICDs cannot charge during MRI due to the saturation of their ferro-magnetic transformers, the battery will be effectively shorted and lose life. This is a highly undesirable condition. [Para 1 2] In summary, there are a number of studies that have shown that MRI patients with active implantable medical devices, such as cardiac pacemakers, can be at risk for potential hazardous effects. However, there are a number of reports in the literature that MRI can be safe for imaging of pacemaker patients when a number of precautions are taken (only when an MRI is thought to be an absolute diagnostic necessity). These anecdotal reports are of interest, however, they are certainly not scientifically convincing that all MRI can be safe. As previously mentioned, just variations in the pacemaker lead wire length can significantly effect how much heat is generated. From the layman's point of view, this can be easily explained by observing the typical length of the antenna on a cellular telephone compared to the vertical rod antenna more common on older automobiles. The relatively short antenna on the cell phone is designed to efficiently couple with the very high frequency wavelengths (approximately 950 MHz) of cellular telephone signals. In a typical AM and FM radio in an automobile, these wavelength signals would not efficiently couple to the relatively short antenna of a cell phone. This is why the antenna on the automobile is relatively longer. An analogous situation exists with an AIMD patient in an MRI system. If one assumes, for example, a 3.0 Tesla MRI system, which would have an RF pulsed frequency of 1 28 MHz, there are certain implanted lead lengths that would couple efficiently as fractions of the 1 28 MHz wavelength. It is typical that a hospital will maintain an inventory of various leads and that the implanting physician will make a selection depending on the size of the patient, implant location and other factors. Accordingly, the implanted or effective lead wire length can vary considerably. There are certain implanted lead wire lengths that just do not couple efficiently with the MRI frequency and there are others that would couple very efficiently and thereby produce the worst case for heating. [Para 1 3] The effect of an MRI system on the function of pacemakers, ICDs and neurostimulators depends on various factors, including the strength of the static magnetic field, the pulse sequence (gradient and RF field used), the anatomic region being imaged, and many other factors. Further complicating this is the fact that each patient's condition and physiology is different and each manufacturer's pacemaker and ICD designs also are designed and behave differently. Most experts still conclude that MRI for the pacemaker patient should not be considered safe. Paradoxically, this also does not mean that the patient should not receive MRI. The physician must make an evaluation given the pacemaker patient's condition and weigh the potential risks of MRI against the benefits of this powerful diagnostic tool. As MRI technology progresses, including higher field gradient changes over time applied to thinner tissue slices at more rapid imagery, the situation will continue to evolve and become more complex. An example of this paradox is a pacemaker patient who is suspected to have a cancer of the lung. RF ablation treatment of such a tumor may require stereotactic imaging only made possible through real time fine focus MRI. With the patient's life literally at risk, the physician with patient informed consent may make the decision to perform MRI in spite of all of the previously described attendant risks to the pacemaker system. [Para 14] Insulin drug pump systems do not seem to be of a major current concern due to the fact that they have no significant antenna components (such as implanted lead wires). However, some implantable pumps work on magneto-peristaltic systems, and must be deactivated prior to MRI. There are newer (unreleased) systems that would be based on solenoid systems which will have similar problems.
[Para 1 5] It is clear that MRI will continue to be used in patients with both external and active implantable medical devices. There are a number of other hospital procedures, including electrocautery surgery, lithotripsy, etc., to which a pacemaker patient may also be exposed. Accordingly, there is a need for AIMD system and/or circuit protection devices which will improve the immunity of active implantable medical device systems to diagnostic procedures such as MRI.
[Para 1 6] As one can see, many of the undesirable effects in an implanted lead wire system from MRI and other medical diagnostic procedures are related to undesirable induced currents in the lead wire system and/or its distal TIP (or RING). This can lead to overheating either in the lead wire or at the body tissue at the distal TIP. For a pacemaker application, these currents can also directly stimulate the heart into sometimes dangerous arrhythmias.
[Para 1 7] Accordingly, there is a need for a novel resonant tank band stop filter assembly which can be placed at various locations along the active implantable medical device lead wire system, which also prevents current from circulating at selected frequencies of the medical therapeutic device. Preferably, such novel tank filters would be designed to resonate at 64 MHz for use in an MRI system operating at 1 .5 Tesla (or 1 28 MHz for a 3 Tesla system). The present invention fulfills these needs and provides other related advantages. SUMMARY OF THE INVENTION
[Para 1 8] The present invention comprises resonant tank circuits/band stop filters to be placed at one or more locations along the active medical device (AMD) lead wire system, including its distal Tip. These band stop filters prevent current from circulating at selected frequencies of the medical therapeutic device. For example, for an MRI system operating at 1 .5 Tesla, the pulse RF frequency is 64 MHz. The novel band stop filters of the present invention can be designed to resonate at 64 MHz and thus create an open circuit in the lead wire system at that selected frequency. For example, the band stop filter of the present invention, when placed at the distal TIP, will prevent currents from flowing through the distal TIP, prevent currents from flowing in the lead wires and also prevent currents from flowing into body tissue. It will be obvious to those skilled in the art that all of the embodiments described herein are equally applicable to a wide range of other active implantable or external medical devices, including deep brain stimulators, spinal cord stimulators, cochlear implants, ventricular assist devices, artificial hearts, drug pumps, Holter monitors and the like. The present invention fulfills all of the needs regarding reduction or elimination of undesirable currents and associated heating in implanted lead wire systems. The band stop filter structures as described herein also have a broad application to other fields, including telecommunications, military, space and the like. [Para 1 9] Electrically engineering a capacitor in parallel with an inductor is known as a tank filter. It is also well known that when the tank filter is at its resonant frequency, it will present a very high impedance. This is a basic principle of all radio receivers. In fact, multiple tank filters are often used to improve the selectivity of a radio receiver. One can adjust the resonant frequency of the tank circuit by either adjusting the capacitor value or the inductor value or both. Since medical diagnostic equipment which is capable of producing very large fields operates at discrete frequencies, this is an ideal situation for a specific tank or band stop filter. Band stop filters are more efficient for eliminating one single frequency than broadband filters. Because the band stop filter is targeted at this one frequency or range of frequencies, it can be much smaller and volumetrically efficient. In addition, the way MRI RF pulse fields couple with lead wire systems, various loops and associated loop currents result along various sections of the lead wire. For example, at the distal TIP of a cardiac pacemaker, direct electromagnetic forces (EMF) can be produced which result in current loops through the distal TIP and into the associated myocardial tissue. This current system is largely decoupled from the currents that are induced near the active implantable medical device, for example, near the cardiac pacemaker. There the MRI may set up a separate loop with its associated currents. Accordingly, one or more band stop filters may be required to completely control all of the various induced EMI and associated currents in a lead wire system.
[Para 20] The present invention which resides in band stop filters is also designed to work in concert with the EMI filter which is typically used at the point of lead wire ingress and egress of the active implantable medical device. For example, see U. S. Patent Nos. 5,333,095, entitled FEEDTHROUGH FILTER CAPACITOR ASSEMBLY FOR HUMAN IMPLANT; 6,999,81 8, entitled INDUCTOR CAPACITOR EMI FILTER FOR HUMAN IMPLANT APPLICATIONS; U.S. Patent Application Serial No. 1 1 /097,999 filed March 31 , 2005, entitled APPARATUS AND PROCESS FOR REDUCING THE SUSCEPTIBILITY OF ACTIVE IMPLANTABLE MEDICAL DEVICES TO MEDICAL PROCEDURES SUCH AS MAGNETIC RESONANCE IMAGING; and U. S. Patent Application Serial No. 1 1 / 1 63,91 5 filed November 3, 2005, entitled PROCESS FOR TUNING AN EMI FILTER TO REDUCE THE AMOUNT OF HEAT GENERATED IN IMPLANTED LEAD WIRES DURING MEDICAL PROCEDURES SUCH AS MAGNETIC RESONANCE IMAGING; the contents of all being incorporated herein by reference. All of these patent documents describe novel inductor capacitor combinations for low pass EMI filter circuits. It is of particular interest that by increasing the number of circuit elements, one can reduce the overall capacitance value which is at the input to the implantable medical device. It is important to reduce the capacitance value to raise the input impedance of the active implantable medical device such that this also reduces the amount of current that would flow in lead wire systems associated with medical procedures such as MRI. Accordingly, it is a feature of the present invention that the novel band stop filters are designed to be used in concert with the structures described in the above mentioned three patent applications. [Para 21 ] As described in U.S. Patent Publication No. 2003 /0050557 and U.S. Patent Application Serial No. 60/283,725, the present invention is also applicable to probes and catheters. For example, ablation probes are used to selectively cauterize or ablate tissue on the inside or outside of the heart to control erratic electrical pulses. These procedures are best performed during real time fluoroscopy or MRI imaging. However, a major concern is the overheating of the distal TIP at inappropriate times because of the induced currents from the MRI system. It will be obvious to one skilled in the art that the novel band stop filters of the present invention can be adapted to any probe, TIP or catheter that is used in the human body.
[Para 22] Moreover, the present invention is also applicable to a number of external leads that might be placed on a patient during MRI. For example, patients frequently wear Holter monitors to monitor their cardiac activity over a period of days. It is an aggravation to physicians to have a patient sent up to the MRI Department and have all these carefully placed electrodes removed from the patient's body. Typically the MRI technicians are concerned about leaving these leads on during an MRI because they don't want them to overheat and cause surface burns on the patient's skin. The problem is that after the MRI procedure, the MRI technicians often replace these electrodes or skin patches in different or even in the wrong locations. This greatly confounds the cardiac physician because now the Holter monitor results are no longer consistent. It is a feature of the present invention that the tank filters could be placed in any externally worn lead wires by the patient during an MRI procedure such that they do not need to be removed.
[Para 23] In one embodiment, the invention provides a medical therapeutic device comprising an active medical device (AMD), a lead wire extending from the AMD to a distal TIP thereof, and a band stop filter associated with the lead wire for attenuating current flow through the lead wire at a selected frequency.
[Para 24] The AMD may comprise cochlear implants, piezoelectric sound bridge transducers, neurostimulators, brain stimulators, cardiac pacemakers, ventricular assist devices, artificial hearts, drug pumps, bone growth stimulators, bone fusion stimulators, urinary incontinence devices, pain relief spinal cord stimulators, anti-tremor stimulators, gastric stimulators, implantable cardioverter defibrillators, pH probes, congestive heart failure devices, pill cameras, neuromodulators, cardiovascular stents, orthopedic implants, external insulin pumps, external drug pumps, external neurostimulators, and external probes or catheters.
[Para 25] The band stop filter itself comprises a capacitor (and its resistance or an added resistance) in parallel with an inductor (and its parasitic resistance), said parallel capacitor and inductor combination being placed in series with the medical device lead wire(s) wherein the values of capacitance and inductance have been selected such that the band stop filter is resonant at a selected frequency (such as the MRI pulsed frequency). [Para 26] In the preferred embodiment, the Q of the inductor is relatively maximized and the Q of the capacitor is relatively minimized to reduce the overall Q of the band stop filter. The Q of the inductor is relatively maximized by minimizing the parasitic resistive loss in the inductor, and the Q of the capacitor is relatively minimized by raising its equivalent series resistance (ESR) of the capacitor (or by adding resistance or a resistive element in series with the capacitor element of the bank stop tank filter). This reduces the overall Q of the band stop filter in order to broaden its 3 dB points and thereby attenuate current flow through the lead wire along a range of selected frequencies. In AIMD or external medical device applications, the range of selected frequencies includes a plurality of MRI pulsed frequencies.
[Para 27] The equivalent series resistance of the capacitor is raised by any of the following: reducing thickness of electrode plates in the capacitor; using higher resistivity capacitor electrode materials, providing apertures, gaps, slits or spokes in the electrode plates of the capacitor; providing separate discrete resistors in series with the capacitor; utilizing resistive electrical attachment materials to the capacitor; or utilizing capacitor dielectric materials that have high dielectric loss tangents at the selected frequency. Methods of using higher resistivity capacitor electrode materials include, for example, using platinum instead of silver electrodes. Platinum has a higher volume resistivity as compared to pure silver. Another way of reducing capacitor electrode plate resistivity is to add ceramic powders to the electrode ink before it is silk screened down and fired. After firing, this has the effect of separating the conductive electrode portions by insulative dielectric areas which increases the overall resistivity of the electrode plate. [Para 28] As defined herein, raising the capacitor ESR includes any or all of the above described methods of adding resistance in series with the capacitive element of the band stop filter. It should be noted that deliberately raising the capacitor ESR runs counter to conventional/prior art capacitor technologies. In fact, capacitor manufacturers generally strive to build capacitors with as low an ESR as possible. This is to minimize energy loss, etc. It is a feature of the present invention that capacitor Q is raised in a controlled manner in the tank filter circuit in order to adjust its Q and adjust the band stop frequency width in the range of MRI pulsed frequencies. [Para 29] Preferably, the band stop filter is disposed adjacent to the distal tip of the lead wire and is integrated into a TIP electrode. It may also be integrated into one or more RING electrodes. The lead wire may also comprise an externally worn lead wire, or it may come from an externally worn electronics module wherein said lead penetrates through the skin surface to an implanted distal electrode.
[Para 30] The present invention also provides a novel process for attenuating current flow through a lead wire for an active medical device at a selected frequency, comprising the steps of: selecting a capacitor which is resonant at the selected frequency; selecting an inductor which is resonant at the selected frequency; using the capacitor and the inductor to form a tank filter circuit; and placing the tank filter circuit in series with the lead wire. [Para 31 ] The overall Q of the tank filter circuit may be reduced by increasing the Q of the inductor and reducing the Q of the capacitor. In this regard, minimizing resistive loss in the inductor maximizes the Q of the inductor, and raising the equivalent series resistance of the capacitor minimizes the Q of the capacitor.
[Para 32] The net effect is to reduce the overall Q of the tank filter circuit which widens the band stop width to attenuate current flow through the lead wire along a range of selected frequencies. As discussed herein, the range of selected frequencies may include a plurality of MRI pulse frequencies.
[Para 33] Other features and advantages of the present invention will become apparent from the following more detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[Para 34] The accompanying drawings illustrate the invention. In such drawings: [Para 35] FIGURE 1 is a wire-formed diagram of a generic human body showing a number of active implantable medical devices (AIMDs);
[Para 36] FIGURE 2 is a perspective and somewhat schematic view of a prior art active implantable medical device (AIMD) including a lead wire directed to the heart of a patient;
[Para 37] FIGURE 3 is an enlarged sectional view taken generally along the line 3-3 of FIG.
2;
[Para 38] FIGURE 4 is a view taken generally along the line 4-4 of FIG. 3;
[Para 39] FIGURE 5 is a perspective/isometric view of a prior art rectangular quadpolar feedthrough capacitor of the type shown in FIGS. 3 and 4;
[Para 40] FIGURE 6 is sectional view taken generally along the line 6-6 of FIG. 5;
[Para 41 ] FIGURE 7 is a sectional view taken generally along the line 7-7 of FIG. 5;
[Para 42] FIGURE 8 is a diagram of a unipolar active implantable medical device;
[Para 43] FIGURE 9 is a diagram similar to FIG. 8, illustrating a bipolar AIMD system;
[Para 44] FIGURE 1 0 is a diagram similar to FIGS. 8 and 9, illustrating a biopolar lead wire system with a distal TIP and RING, typically used in a cardiac pacemaker;
[Para 45] FIGURE 1 1 is a schematic diagram showing a parallel combination of an inductor L and a capacitor C placed in series with the lead wire systems of FIGS. 8-1 0;
[Para 46] FIGURE 1 2 is a chart illustrating calculation of frequency of resonance for the parallel tank circuit of FIG. 1 1 ;
[Para 47] FIGURE 1 3 is a graph showing impedance versus frequency for the parallel tank band stop circuit of FIG. 1 1 ;
[Para 48] FIGURE 1 4 is an equation for the impedance of an inductor in parallel with a capacitor;
[Para 49] FIGURE 1 5 is a chart illustrating reactance equations for the inductor and the capacitor of the parallel tank circuit of FIG. 1 1 ; [Para 50] FIGURE 1 6 is a schematic diagram illustrating the parallel tank circuit of FIG. 1 1 , except in this case the inductor and the capacitor have series resistive losses; [Para 51 ] FIGURE 1 7 is a diagram similar to FIG. 8, illustrating the tank circuit/band stop filter added near a distal electrode;
[Para 52] FIGURE 1 8 is a schematic representation of the novel band stop tank filter of the present invention, using switches to illustrate its function at various frequencies; [Para 53] FIGURE 1 9 is a schematic diagram similar to FIG. 1 8, illustrating the low frequency model of the band stop filter;
[Para 54] FIGURE 20 is a schematic diagram similar to FIGS. 1 8 and 1 9, illustrating the model of the band stop filter of the present invention at its resonant frequency; [Para 55] FIGURE 21 is a schematic diagram similar to FIGS. 1 8-20, illustrating a model of the band stop filter at high frequencies well above the resonant frequency; [Para 56] FIGURE 22 is a decision tree block diagram illustrating a process for designing the band stop filters of the present invention;
[Para 57] FIGURE 23 is graph of insertion loss versus frequency for band stop filters having high Q inductors and differing quality "Q" factors;
[Para 58] FIGURE 24 is a tracing of an exemplary patient x-ray showing an implanted pacemaker and cardioverter defibrillator and corresponding lead wire system; [Para 59] FIGURE 25 is a line drawings of an exemplary patent cardiac x-ray of a biventricular lead wire system;
[Para 60] FIGURE 26 illustrates a bipolar cardiac pacemaker lead wire showing the distal TIP and the distal RING electrodes; and
[Para 61 ] FIGURE 27 is an enlarged, fragmented schematic illustration of the area illustrated by the line 27-27 in FIG. 26. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[Para 62] FIGURE 1 illustrates of various types of active implantable and external medical devices 1 00 that are currently in use. FIG. 1 is a wire formed diagram of a generic human body showing a number of implanted medical devices. 10OA is a family of external and implantable hearing devices which can include the group of hearing aids, cochlear implants, piezoelectric sound bridge transducers and the like. 1 0OB includes an entire variety of neurostimulators and brain stimulators. Neurostimulators are used to stimulate the Vagus nerve, for example, to treat epilepsy, obesity and depression. Brain stimulators are similar to a pacemaker-like device and include electrodes implanted deep into the brain for sensing the onset of the seizure and also providing electrical stimulation to brain tissue to prevent the seizure from actually happening. The lead wires that come from a deep brain stimulator are often placed using real time imaging. Most commonly such lead wires are placed during real time MRI. 1 0OC shows a cardiac pacemaker which is well-known in the art. 1 0OD includes the family of left ventricular assist devices (LVAD's), and artificial hearts, including the recently introduced artificial heart known as the Abiocor. 1 0OE includes an entire family of drug pumps which can be used for dispensing of insulin, chemotherapy drugs, pain medications and the like. Insulin pumps are evolving from passive devices to ones that have sensors and closed loop systems. That is, real time monitoring of blood sugar levels will occur. These devices tend to be more sensitive to EMI than passive pumps that have no sense circuitry or externally implanted lead wires. 1 0OF includes a variety of external or implantable bone growth stimulators for rapid healing of fractures. 1 0OG includes urinary incontinence devices. 10OH includes the family of pain relief spinal cord stimulators and anti-tremor stimulators. 1 0OH also includes an entire family of other types of neurostimulators used to block pain. 1 001 includes a family of implantable cardioverter defibrillators (ICD) devices and also includes the family of congestive heart failure devices (CHF). This is also known in the art as cardio resynchronization therapy devices, otherwise knows as CRT devices. 1 0OJ illustrates an externally worn pack. This pack could be an external insulin pump, an external drug pump, an external neurostimulator, a Holter monitor with skin electrodes or even a ventricular assist device power pack. 1 0OK illustrates the insertion of an external probe or catheter. These probes can be inserted into the femoral artery, for example, or in any other number of locations in the human body. [Para 63] Referring now to FIGURE 2, a prior art active implantable medical device (AIMD) 100 is illustrated. In general, the AIMD 1 00 could, for example, be a cardiac pacemaker 1 0OC which is enclosed by a titanium housing 102 as indicated. The titanium housing is hermetically sealed, however there is a point where lead wires 1 04 must ingress and egress the hermetic seal. This is accomplished by providing a hermetic terminal assembly 1 06. Hermetic terminal assemblies are well known and generally consist of a ferrule 1 08 which is laser welded to the titanium housing 1 02 of the AIMD 1 00. The hermetic terminal assembly 1 06 with its associated EMI filter is better shown in FIG. 3. Referring once again to FIG. 2, four lead wires are shown consisting of lead wire pair 1 04a and 104b and lead wire pair 1 04c and 1 04d. This is typical of what's known as a dual chamber bipolar cardiac pacemaker.
[Para 64] The ISl connectors 1 1 0 that are designed to plug into the header block 1 1 2 are low voltage (pacemaker) connectors covered by an ANSI/AAMI standard IS-I . Higher voltage devices, such as implantable cardioverter defibrillators, are covered by a standard known as the ANSI/AAMI DF-I . There is a new standard under development which will integrate both high voltage and low voltage connectors into a new miniature connector series known as the IS-4 series. These connectors are typically routed in a pacemaker application down into the right ventricle and right atrium of the heart 1 14. There are also new generation devices that have been introduced to the market that couple lead wires to the outside of the left ventricle. These are known as biventricular devices and are very effective in cardiac resynchronization therapy (CRT) and treating congestive heart failure (CHF).
[Para 65] Referring once again to FIG. 2, one can see, for example, the bipolar lead wires 104a and 1 04b that could be routed, for example, to the distal TIP and RING into the right ventricle. The bipolar lead wires 104c and 1 04d could be routed to a distal TIP and RING in the right atrium. There is also an RF telemetry pin antenna 1 1 6 which is not connected to the IS-I or DS-I connector block. This acts as a short stub antenna for picking up telemetry signals that are transmitted from the outside of the device 1 00. [Para 66] It should also be obvious to those skilled in the art that all of the descriptions herein are equally applicable to other types of AIMDs. These include implantable cardioverter defibrillators (ICDs), neurostimulators, including deep brain stimulators, spinal cord stimulators, cochlear implants, incontinence stimulators and the like, and drug pumps. The present invention is also applicable to a wide variety of minimally invasive AIMDs. For example, in certain hospital cath lab procedures, one can insert an AIMD for temporary use such as an ICD. Ventricular assist devices also can fall into this type of category. This list is not meant to be limiting, but is only example of the applications of the novel technology currently described herein.
[Para 67] FIGURE 3 is an enlarged, fragmented cross-sectional view taken generally along line 3-3 of FIG. 2. Here one can see in cross-section the RF telemetry pin 1 1 6 and the bipolar lead wires 1 04a and 1 04c which would be routed to the cardiac chambers by connecting these lead wires to the internal connectors 1 1 8 of the IS-I header block 1 1 2 (FIG. 2). These connectors are designed to receive the plug 1 10 which allows the physicians to thread lead wires through the venous system down into the appropriate chambers of the heart 1 1 4. It will be obvious to those skilled in the art that tunneling of deep brain electrodes or neurostimulators are equivalent.
[Para 68] Referring back to FIG. 3, one can see a prior art feedthrough capacitor 1 20 which has been bonded to the hermetic terminal assembly 1 06. These feedthrough capacitors are well known in the art and are described and illustrated in U. S. Patent Nos. 5,333,095, 5,751 ,539, 5,978,204, 5,905,627, 5,959,829, 5,973,906, 5,978,204, 6,008,980, 6, 1 59,560, 6,275,369, 6,424,234, 6,456,481 , 6,473,291 , 6,529,1 03, 6,566,978, 6,567,259, 6,643,903, 6,675,779, 6,765,780 and 6,882,248. In this case, a rectangular quadpolar feedthrough capacitor 1 20 is illustrated which has an external metallized termination surface 1 22. It includes embedded electrode plate sets 1 24 and 1 26. Electrode plate set 1 24 is known as the ground electrode plate set and is terminated at the outside of the capacitor 1 20 at the termination surface 1 22. These ground electrode plates 1 24 are electrically and mechanically connected to the ferrule 1 08 of the hermetic terminal assembly 1 06 using a thermosetting conductive polyimide or equivalent material 1 28 (equivalent materials will include solders, brazes, conductive epoxies and the like). In turn, the hermetic seal terminal assembly 1 06 is designed to have its titanium ferrule 108 laser welded 1 30 to the overall housing 1 02 of the AIMD 1 00. This forms a continuous hermetic seal thereby preventing body fluids from penetrating into and causing damage to the electronics of the AIMD.
[Para 69] It is also essential that the lead wires 1 04 and insulator 1 36 be hermetically sealed, such as by the gold brazes or glass sealsl 32 and 1 34. The gold braze 1 32 wets from the titanium ferrule 108 to the alumina ceramic insulator 1 36. In turn, the ceramic alumina insulator 1 36 is also gold brazed at 1 34 to each of the lead wires 1 04. The RF telemetry pin 1 1 6 is also gold brazed at 1 38 to the alumina ceramic insulator 1 36. It will be obvious to those skilled in the art that there are a variety of other ways of making such a hermetic terminal. This would include glass sealing the leads into the ferrule directly without the need for the gold brazes.
[Para 70] As shown in FIG. 3, the RF telemetry pin 1 1 6 has not been included in the area of the feedthrough capacitor 1 20. The reason for this is the feedthrough capacitor 1 20 is a very broadband single element EMI filter which would eliminate the desirable telemetry frequency.
[Para 71 ] FIGURE 4 is a bottom view taken generally along line 4-4 in FIG. 3. One can see the gold braze 1 32 which completely seals the hermetic terminal insulator 1 36 into the overall titanium ferrule 108. One can also see the overlap of the capacitor attachment materials, shown as a thermosetting conductive adhesive 1 28, which makes contact to the gold braze 1 32 that forms the hermetic terminal 106.
[Para 72] FIGURE 5 is an isometric view of the feedthrough capacitor 1 20. As one can see, the termination surface 1 22 connects to the capacitor's internal ground plate set 1 24. This is best seen in FIG. 6 where ground plate set 1 24, which is typically silk-screened onto ceramic layers, is brought out and exposed to the termination surface 1 22. The capacitor's four (quadpolar) active electrode plate sets 1 26 are illustrated in FIG. 7. In FIG. 6 one can see that the lead wires 1 04 are in non-electrical communication with the ground electrode plate set 1 24. However, in FIG. 7 one can see that each one of the lead wires 1 04 is in electrical contact with its corresponding active electrode plate set 1 26. The amount of capacitance is determined by the overlap of the active electrode plate area 1 26 over the ground electrode plate area. One can increase the amount of capacitance by increasing the area of the active electrode plate set 1 26. One can also increase the capacitance by adding additional layers. In this particular application, we are only showing six electrode layers: three ground plates 1 24 and three active electrode plate sets 1 26 (FIG. 3). However, 1 0, 60 or even more than 100 such sets can be placed in parallel thereby greatly increasing the capacitance value. The capacitance value is also related to the dielectric thickness or spacing between the ground electrode set 1 24 and the active electrode set 1 26. Reducing the dielectric thickness increases the capacitance significantly while at the same time reducing its voltage rating. This gives the designer many degrees of freedom in selecting the capacitance value.
[Para 73] In the following description, functionally equivalent elements shown in various embodiments will often be referred to utilizing the same reference number. [Para 74] FIGURE 8 is a general diagram of a unipolar active implantable medical device system 1 00. FIG. 8 could also be representative of an externally worn medical device such as a Holter monitor. In the case of a Holter monitor, the distal electrode 1 40 would typically be a scan or patch electrode. The housing 1 02 of the active implantable medical device 1 00 is typically titanium, ceramic, stainless steel or the like. Inside of the device housing are the AIMD electronic circuits. Usually AIMDs include a battery, but that is not always the case. For example, for a Bion, it can receive its energy from an external pulsing magnetic field. A lead wire 1 04 is routed from the AIMD 1 00 to a point 1 40 where it is embedded in or affixed to body tissue. In the case of a spinal cord stimulator 1 00H, the distal TIP 140 could be in the spinal cord. In the case of a deep brain stimulator 100B, the distal electrode 1 40 would be placed deep into the brain, etc. In the case of a cardiac pacemaker 1 0OC, the distal electrode 1 40 would typically be placed in the cardiac right ventricle. [Para 75] FIGURE 9 is very similar to FIG. 8 except that it is a bipolar system. In this case, the electric circuit return path is between the two distal electrodes 1 40 and 140'. In the case of a cardiac pacemaker 1 0OC, this would be known as a bipolar lead wire system with one of the electrodes known as the distal TIP 1 42 and the other electrode which would float in the blood pool known as the RING 144 (see FIG. 1 0). In contrast, the electrical return path in FIG. 8 is between the distal electrode 140 through body tissue to the conductive housing 102 of the implantable medical device 1 00.
[Para 76] FIGURE 1 0 illustrates a bipolar lead wire system with a distal TIP 1 42 and RING 1 44 typically as used in a cardiac pacemaker 1 0OC. In all of these applications, the patient could be exposed to the fields of an MRI scanner or other powerful emitter used during a medical diagnostic procedure. Currents that are directly induced in the lead wire system 1 04 can cause heating by I2R losses in the lead wire system or by heating caused by current flowing in body tissue. If these currents become excessive, the associated heating can cause damage or even destructive ablation to body tissue.
[Para 77] The distal TIP 142 is designed to be implanted into or affixed to the actual myocardial tissue of the heart. The RING 144 is designed to float in the blood pool. Because the blood is flowing and is thermally conductive, the RING 144 structure is substantially cooled. In theory, however, if the lead curves, the RING 1 44 could also touch and become encapsulated by body tissue. The distal TIP 1 42, on the other hand, is always thermally insulated by surrounding body tissue and can readily heat up due to the RF pulse currents of an MRI field.
[Para 78] FIGURE 1 1 is a schematic diagram showing a parallel combination of an inductor L and a capacitor C to be placed in the lead wire systems 104 previously described. This combination forms a parallel tank circuit or band stop filter 1 46 which will resonate at a particular frequency (fr).
[Para 79] FIGURE 1 2 gives the frequency of resonance equation fr for the parallel tank circuit 1 46 of FIG. 1 1 : where fr is the frequency of resonance in hertz, L is the inductance in henries and C is the capacitance in farads. MRI systems vary in static field strength from 0.5 Tesla all the way up to 3 Tesla with newer research machines going much higher. This is the force of the main static magnetic field. The frequency of the pulsed RF field associated with MRI is found by multiplying the static field in Teslas times 42.45. Accordingly, a 3 Tesla MRI system has a pulsed RF field of approximately 1 28 MHz. [Para 80] Referring once again to FIG. 1 1 , one can see that if the values of the inductor and the capacitor are selected properly, one could obtain a parallel tank resonant frequency of 1 28 MHz. For a 1 .5 Tesla MRI system, the RF pulse frequency is 64 MHz. Referring to FIG. 1 2, one can see the calculations assuming that the inductor value L is equal to one nanohenry. The one nanohenry comes from the fact that given the small geometries involved inside of the human body, a very large inductor will not be possible. This is in addition to the fact that the use of ferrite materials or iron cores for such an inductor are not practical for two reasons: 1 ) the static magnetic field from the MRI scanner would align the magnetic dipoles (saturate) in such a ferrite and therefore make the inductor ineffective; and 2) the presence of ferrite materials will cause severe MRI image artifacts. What this means is that if one were imaging the right ventricle of the heart, for example, a fairly large area of the image would be blacked out or image distorted due to the presence of these ferrite materials and the way it interacts with the MRI field. It is also important that the inductance value not vary while in the presence of the main static field. [Para 81 ] The relationship between the parallel inductor L and capacitor C is also very important. One could use, for example, a very large value of inductance which would result in a very small value of capacitance to be resonant, for example, at the MRI frequency of 64 MHz. However, using a very high value of inductor results in a high number of turns of very small wire. Using a high number of turns of very small diameter wire is contraindicated for two reasons. The first reason is that the long length of relatively small diameter wire results in a very high DC resistance for the inductor. This resistance is very undesirable because low frequency pacing or neurostimulator pulses would lose energy passing through the relatively high series resistance. This is also undesirable where the AIMD is sensing biologic signals. For example, in the case of a pacemaker or deep brain stimulator, continuous sensing of low frequency biological signals is required. Too much series resistance in a lead wire system will attenuate such signals thereby making the AIMD less efficient. Accordingly, it is a preferred feature of the present invention that a relatively large value of capacitance will be used in parallel with a relatively small value of inductance, for example, employing highly volumetrically efficient ceramic dielectric capacitors that can create a great deal of capacitance in a very small space.
[Para 82] It should be also noted that below resonance, particularly at very low frequencies, the current in the parallel L-C band width stop filter passes through the inductor element. Accordingly, it is important that the parasitic resistance of the inductor element be quite low. Conversely, at very low frequencies, no current passes through the capacitor element. At high frequencies, the reactance of the capacitor element drops to a very low value. However, as there is no case where it is actually desirable to have high frequencies pass through the tank filter, the parasitic resistive loss of the capacitor is not particularly important. This is also known as the capacitor's equivalent series resistance (ESR). A component of capacitor ESR is the dissipation factor of the capacitor (a low frequency phenomena). Off of resonance, it is not particularly important how high the capacitor's dissipation factor or overall ESR is when used as a component of a parallel tank circuit 146 as described herein. Accordingly, an air wound inductor is the ideal choice because it is not affected by MRI signals or fields. Because of the space limitations, however, the inductor will not be very volumetrically efficient. For this reason, it is preferable to keep the inductance value relatively low (in the order of 1 to 1 00 nanohenries). [Para 83] Referring once again to FIG. 1 2, one can see the calculations for capacitance by algebraically solving the resonant frequency fr equation shown for C. Assuming an inductance value of one nanohenry, one can see that 6 nano-farads of capacitance would be required. Six nano-farads of capacitance is a relatively high value of capacitance. However, ceramic dielectrics that provide a very high dielectric constant are well known in the art and are very volumetrically efficient. They can also be made of biocompatible materials making them an ideal choice for use in the present invention.
[Para 84] FIGURE 1 3 is a graph showing impedance versus frequency for the parallel tank, band stop filter circuit 1 46 of FIG. 1 1 . As one can see, using ideal circuit components, the impedance measured between points A and B for the parallel tank circuit 1 46 shown in FIG. 1 1 is very low (zero) until one approaches the resonant frequency fr. At the frequency of resonance, these ideal components combine together to look like a very high or, ideally, an infinite impedance. The reason for this comes from the denominator of the equation Zab for the impedance for the inductor in parallel with the capacitor shown as FIG. 1 4. When the inductive reactance is equal to the capacitive reactance, the two imaginary vectors cancel each other and go to zero. Referring to the equations in FIGS. 1 4 and 1 5, one can see in the impedance equation for Zab, that a zero will appear in the denominator when XL = Xc- This has the effect of making the impedance approach infinity as the denominator approaches zero. As a practical matter, one does not really achieve an infinite impedance. However, tests have shown that several hundred ohms can be realized which offers a great deal of attenuation and protection to RF pulsed currents from MRI. What this means is that at one particular unique frequency, the impedance between points A and B in FIG. 1 1 will appear very high (analogous to opening a switch). Accordingly, it would be possible, for example, in the case of a cardiac pacemaker, to design the cardiac pacemaker for compatibility with one single popular MRI system. For example, in the AIMD patient literature and physician manual it could be noted that the pacemaker lead wire system has been designed to be compatible with 3 Tesla MRI systems. Accordingly, with this particular device, a distal TIP band stop filter 1 46 would be incorporated where the L and the C values have been carefully selected to be resonant at 1 28 MHz, presenting a high or almost infinite impedance at the MRI pulse frequency.
[Para 85] FIGURE 1 6 is a schematic drawing of the parallel tank circuit 146 of FIG. 1 1 , except in this case the inductor L and the capacitor C are not ideal. That is, the capacitor C has its own internal resistance Rc, which is otherwise known in the industry as dissipation factor or equivalent series resistance (ESR). The inductor L also has a resistance RL. For those that are experienced in passive components, one would realize that the inductor L would also have some parallel capacitance. This parasitic capacitance comes from the capacitance associated with adjacent turns. However, the inductance value contemplated is so low that one can assume that at MRI pulse frequencies, the inductor's parallel capacitance is negligible. One could also state that the capacitor C also has some internal inductance which would appear in series. However, the novel capacitors described below are very small or coaxial and have negligible series inductance. Accordingly, the circuit shown in FIG. 1 6 is a very good approximation model for the novel parallel tank circuits 1 46 as described herein.
[Para 86] This is best understood by looking at the FIG. 1 6 circuit 1 46 at the frequency extremes. At very low frequency, the inductor reactance equation is XL=2πfL (reference FIG. 1 5). When the frequency f is close to zero (DC), this means that the inductor looks like a short circuit. It is generally the case that biologic signals are low frequency, typically between 1 O Hz and 1 000 Hz. For example, in a cardiac pacemaker 1 0OC, all of the frequencies of interest appear between 10 Hz and 1 000 Hz. At these low frequencies, the inductive reactance XL will be very close to zero ohms. Over this range, on the other hand, the capacitive reactance Xc which has the equation Xc = 1 /(2πfc) will look like an infinite or open circuit (reference FIG. 1 5). As such, at low frequencies, the impedance between points A and B in FIG. 1 6 will equal to RL- Accordingly, the resistance of the inductor (RL) should be kept as small as possible to minimize attenuation of biologic signals or attenuation of stimulation pulses to body tissues. This will allow biologic signals to pass through the band stop filter 1 46 freely. It also indicates that the amount of capacitive loss Rc is not particularly important. As a matter of fact, it would be desirable if that loss were fairly high so as to not freely pass very high frequency signals (such as undesirable EMI from cellular phones). It is also desirable to have the Q of the circuit shown in FIG. 1 6 relatively low so that the band stop frequency bandwidth can be a little wider. In other words, in a preferred embodiment, it would be possible to have a band stop wide enough to block both 64 MHz and 1 28 MHz frequencies thereby making the medical device compatible for use in both 1 .5 Tesla and 3 Tesla MRI systems.
[Para 87] FIGURE 1 7 is a drawing of the unipolar AIMD lead wire system, previously shown in FIG. 8, with the band stop filter 1 46 of the present invention added near the distal electrode 1 40. As previously described, the presence of the tank circuit 146 will present a very high impedance at one or more specific MRI RF pulse frequencies. This will prevent currents from circulating through the distal electrode 1 40 into body tissue at this selected frequency(s). This will provide a very high degree of important protection to the patient so that overheating does not cause tissue damage.
[Para 88] FIGURE 1 8 is a representation of the novel band stop tank filter 1 46 using switches that open and close at various frequencies to illustrate its function. Inductor L has been replaced with a switch SL. When the impedance of the inductor is quite low, the switch SL will be closed. When the impedance or inductive reactance of the inductor is high, the switch SL will be shown open. There is a corresponding analogy for the capacitor element C. When the capacitive reactance looks like a very low impedance, the capacitor switch Sc will be shown closed. When the capacitive reactance is shown as a very high impedance, the switch Sc will be shown open. This analogy is best understood by referring to FIGS. 1 9, 20 and 21 .
[Para 89] FIGURE 1 9 is the low frequency model of the band stop filter 1 46. At low frequencies, capacitors tend to look like open circuits and inductors tend to look like short circuits. Accordingly, switch SL is closed and switch Sc is open. This is an indication that at frequencies below the resonant frequency of the band stop filter 146 that currents will flow only through the inductor element and its corresponding resistance RL. This is an important consideration for the present invention that low frequency biological signals not be attenuated. For example, in a cardiac pacemaker, frequencies of interest generally fall between 1 0 Hz and 1 000 Hz. Pacemaker pacing pulses fall within this general frequency range. In addition, the implantable medical device is also sensing biological frequencies in the same frequency range. Accordingly, such signals must be able to flow readily through the band stop filter's inductor element. A great deal of attention should be paid to the inductor design so that it has a very high quality factor (Q) and a very low value of parasitic series resistance RL.
[Para 90] FIGURE 20 is a model of the novel band stop filter 146 at its resonant frequency. By definition, when a parallel tank circuit is at resonance, it presents a very high impedance to the overall circuit. Accordingly, both switches SL and Sc are shown open. For example, this is how the band stop filter 146 prevents the flow of MRI currents through pacemaker lead wires and/or into body tissue at a selected MRI RF pulsed frequency. [Para 91 ] FIGURE 21 is a model of the band stop filter 1 46 at high frequency. At high frequencies, inductors tend to look like open circuits. Accordingly, switch SL is shown open. At high frequencies, ideal capacitors tend to look like short circuits, hence switch Sc is closed. It should be noted that real capacitors are not ideal and tend to degrade in performance at high frequency. This is due to the capacitor's equivalent series inductance and equivalent series resistance. Fortunately, for the present invention, it is not important how lossy (resistive) the capacitor element C gets at high frequency. This will only serve to attenuate unwanted electromagnetic interference from flowing in the lead wire system. Accordingly, in terms of biological signals, the equivalent series resistance Rc and resulting quality factor of the capacitor element C is not nearly as important as the quality factor of the inductor element L. The equation for inductive reactance (XL) is given in FIG. 1 5. The capacitor reactance equation (Xc) is also given in FIG. 1 5. As one can see, when one inserts zero or infinity for the frequency, one derives the fact that at very low frequencies inductors tend to look like short circuits and capacitors tend to look like open circuits. By inserting a very high frequency into the same equations, one can see that at very high frequency ideal inductors look like an infinite or open impedance and ideal capacitors look like a very low or short circuit impedance.
[Para 92] FIGURE 22 is a decision tree block diagram that better illustrates the design process herein. Block 1 48 is an initial decision step the designer must make. For illustrative purposes, we will start with a value of capacitance that is convenient. This value of capacitance is generally going to relate to the amount of space available in the AIMD lead wire system and other factors. These values for practical purposes generally range in capacitance value from a few tens of picofarads up to about 1 0,000 picofarads. This puts practical boundaries on the amount of capacitance that can be effectively packaged within the scope of the present invention. However, that is not intended to limit the general principles of the present invention, but just describe a preferred embodiment. Accordingly, in the preferred embodiment, one will select capacitance values generally ranging from 100 picofarads up to about 4000 picofarads and then solve for a corresponding inductance value required to be self-resonant at the selected telemetry frequency. Referring back to FIG. 22, one makes the decision whether the design was C first or L first. If one makes a decision to assume a capacitance value C first then one is directed to the left to block 1 50. In block 1 50, one does an assessment of the overall packaging requirements of a distal TIP 1 42 band stop filter 146 and then assumes a realizable capacitance value. So, in decision block 1 50, we assume a capacitor value. We then solve the resonant tank equation fr from FIG. 1 2 at block 1 52 for the required value of inductance (L). We then look at a number of inductor designs to see if the inductance value is realizable within the space, parasitic resistance Rc, and other constraints of the design. If the inductance value is realizable, then we go on to block 1 54 and finalize the design. If the inductance value is not realizable within the physical and practical constraints, then we need to go back to block 1 50 and assume a new value of capacitance. One may go around this loop a number of times until one finally comes up with a compatible capacitor and an inductor design. In some cases, one will not be able to achieve a final design using this alone. In other words, one may have to use a custom capacitor value or design in order to achieve a result that meets all of the design criteria. That is, a capacitor design with high enough internal losses Rc and an inductor design with low internal loss RL such that the band stop filter 146 has the required quality factor (Q), that it be small enough in size, that it have sufficient current and high voltage handling capabilities and the like. In other words, one has to consider all of the design criteria in going through this decision tree.
[Para 93] In the case where one has gone through the left hand decision tree consisting of blocks 1 50, 1 52 and 1 54 a number of times and keeps coming up with a "no," then one has to assume a realizable value of inductance and go to the right hand decision tree starting at block 1 56. One then assumes a realizable value of inductance (L) with a low enough series resistance for the inductor RL such that it will work and fit into the design space and guidelines. After one assumes that value of inductance, one then goes to decision block 1 58 and solves the equation C in FIG. 1 2 for the required amount of capacitance. After one finds the desired amount of capacitance C, one then determines whether that custom value of capacitance will fit into the design parameters. If the capacitance value that is determined in step 1 60 is realizable, then one goes on and finalizes the design. However, if it is not realizable, then one can go back up to step 1 56, assume a different value of L and go through the decision tree again. This is done over and over until one finds combinations of L and C that are practical for the overall design. [Para 94] For purposes of the present invention, it is possible to use series discrete inductors or parallel discrete capacitors to achieve the same overall result. For example, in the case of the inductor element L, it would be possible to use two, three or even more (n) individual inductor elements in series. The same is true for the capacitor element that appears in the parallel tank filter 1 46. By adding or subtracting capacitors in parallel, we are also able to adjust the total capacitance that ends up resonating in parallel with the inductance.
[Para 95] It is also possible to use a single inductive component that has significant parasitic capacitance between its adjacent turns. A careful designer using multiple turns could create enough parasitic capacitance such that the coil becomes self-resonant at a predetermined frequency. In this case, the predetermined frequency would be the MRI pulsed frequency.
[Para 96] Efficiency of the overall tank circuit 1 46 is also measured in terms of a quality factor, Q, although this factor is defined differently than the one previously mentioned for discrete capacitors and inductors. The circuit Q is typically expressed using the following equation:
Figure imgf000037_0001
Where fr is the resonance frequency, and Δf3dB shown as points a and b in FIG. 23, is the bandwidth of the band stop filter 1 46. Bandwidth is typically taken as the difference between the two measured frequencies, fi and £, at the 3dB loss points as measured on an insertion loss chart, and the resonance frequency is the average between fi and £. As can be seen in this relationship, higher Q values result in a narrower 3dB bandwidth. [Para 97] Material and application parameters must be taken into consideration when designing tank filters. Most capacitor dielectric materials age l %-5% in capacitance values per decade of time elapsed, which can result in a shift of the resonance frequency of upwards of 2.5%. In a high-Q filter, this could result in a significant and detrimental drop in the band stop filter performance. A lower-Q filter would minimize the effects of resonance shift and would allow a wider frequency band through the filter. However, very low Q filters display lower than desirable attenuation behavior at the desired band stop frequency (see FIG. 23, curve 1 62). For this reason, the optimum Q for the band stop filter of the present invention will embody a high Q inductor L and a relatively low Q capacitor C which will result in a medium Q tank filter as shown in curve 1 64 of FIG. 23.
[Para 98] Accordingly, the "Q" or quality factor of the tank circuit is very important. As mentioned, it is desirable to have a very low loss circuit at low frequencies such that the biological signals not be undesirably attenuated. The quality factor not only determines the loss of the filter, but also affects its 3 dB bandwidth. If one does a plot of the filter response curve (Bode plot), the 3 dB bandwidth determines how sharply the filter will rise and fall. With reference to curve 1 66 of FIG. 23, for a tank that is resonant at 1 28 MHz, an ideal response would be one that had infinite attenuation at 1 28 MHz, but had zero attenuation at low frequencies below 1 KHz. Obviously, this is not possible given the space limitations and the realities of the parasitic losses within components. In other words, it is not possible (other than at cryogenic temperatures) to build an inductor that has zero internal resistance. On the other hand, it is not possible to build a perfect (ideal) capacitor either. Capacitors have internal resistance known as equivalent series resistance and also have small amounts of inductance. Accordingly, the practical realization of a circuit, to accomplish the purposes of the present invention, is a challenging one. [Para 99] The performance of the circuit is directly related to the efficiency of both the inductor and the capacitor; the less efficient each component is, the more heat loss that results, and this can be expressed by the addition of resistor elements to the ideal circuit diagram. The effect of lower Q in the tank circuit is to broaden the resonance peak about the resonance frequency. By deliberately using a low Q capacitor, one can broaden the resonance such that a high impedance (high attenuation) is presented at multiple MRI RF frequencies, for example 64 MHz and 1 28 MHZ.
[Para 1 00] Referring again to FIGURE 23, one can see curve 1 64 wherein a low resistive loss high Q inductor has been used in combination with a relatively high ESR low Q capacitor. This has a very desirable effect in that at very low frequencies, the impedance of the tank circuit 146 is essentially zero ohms (or zero dB loss). This means that biologic frequencies are not undesirably attenuated. However, one can see that the 3 db bandwidth is much larger. This is desirable as it will block multiple RF frequencies. As one goes even higher in frequency, curvel 64 will desirably attenuate other high frequency EMI signals, such as those from cellular telephones, microwave ovens and the like. Accordingly, it is often desirable that very low loss inductors be used in combination with relatively high loss (and/or high inductance) capacitors to achieve a medium or lower Q band stop filter. Again referring to FIG. 23, one can see that if the Q of the overall circuit or of the individual components becomes too low, then we have a serious degradation in the overall attenuation of the band stop filter at the MRI pulse frequencies. Accordingly, a careful balance between component design and tank circuit Q must be achieved.
[Para 1 01 ] Referring once again to FIG. 1 7, one can also increase the value of Rc by adding a separate discrete component in series with the capacitor element. For example, one could install a small capacitor chip that had a very low equivalent series resistance and place it in series with a resistor chip. This would be done to deliberately raise the value of Rc in the circuit as shown in FIG. 1 7. By carefully adjusting this value of Rc, one could then achieve the ideal curve 1 64 as shown in FIG. 23.
[Para 1 02] FIGURE 24 is a tracing of an actual patient X-ray. This particular patient required both a cardiac pacemaker 1 0OC and an implantable cardioverter defibrillator 1001. The corresponding lead wire system 1 04, as one can see, makes for a very complicated antenna and loop coupling situation. The reader is referred to the article entitled, "Estimation of Effective Lead Loop Area for Implantable Pulse Generator and Implantable Cardioverter Defibrillators" provided by the AAMI Pacemaker EMC Task Force. [Para 1 03] Referring again to FIG. 24, one can see that from the pacemaker 1 0OC, there is an electrode in both the right atrium and in the right ventricle. Both these involve a TIP and RING electrode. In the industry, this is known as a dual chamber bipolar lead wire system. Accordingly, the band stop filters 1 46 of the present invention would need to be placed at least in the distal TIP in the right atrium and the distal TIP in the right ventricle from the cardiac pacemaker. One can also see that the implantable cardioverter defibrillator (ICD) 1 001 is implanted directly into the right ventricle. Its shocking TIP and perhaps its super vena cava (SVC) shock coil would also require a band stop filters of the present invention so that MRI exposure cannot induce excessive currents into the associated lead wire system (S). Modern implantable cardioverter defibrillators (ICDs) incorporate both pacing and cardioverting (shock) features. Accordingly, it is becoming quite rare for a patient to have a lead wire layout as shown in the X-ray of FIG. 24. However, the number of electrodes remain the same. There are also newer combined pacemaker/ICD systems which include biventricular pacemaking (pacing of the left ventricle). These systems can have as many as 9 to even 1 2 lead wires. [Para 1 04] FIGURE 25 is a line drawing of an actual patient cardiac X-ray of one of the newer bi-ventricular lead wire systems with various types of electrode TIPS shown. The new bi-ventricular systems are being used to treat congestive heart failure, and make it possible to implant leads outside of the left ventricle. This makes for a very efficient pacing system; however, the lead wire system 1 04 is quite complex. When a lead wire system 104, such as those described in FIGS. 8, 9, 1 0 and 1 1 , are exposed to a time varying electromagnetic field, electric currents can be induced into such lead wire systems. For the bi-ventricular system, band stop filters 146 would be required at each of the three distal TIPs and optionally at RING and SVC locations.
[Para 1 05] FIGURE 26 illustrates a single chamber bipolar cardiac pacemaker lead wire showing the distal TIP 1 42 and the distal RING 1 44 electrodes. This is a spiral wound system where the RING coil 1 04 is wrapped around the TIP coil 1 04'. There are other types of pacemaker lead wire systems in which these two leads lay parallel to one another (known as a bifilar lead system).
[Para 1 06] FIGURE 27 is a schematic illustration of the area 27-27 in FIG. 26. In the area of the distal TIP 1 42 and RING 1 44 electrodes, band stop filters 146 and 1 46' have been placed in series with each of the respective TIP and RING circuits. Accordingly, at MRI pulsed frequencies, an open circuit will be presented thereby stopping the flow of undesirable RF current.
[Para 1 07] Although several embodiments of the invention have been described in detail, for purposes of illustration, various modifications of each may be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be limited, except as by the appended claims.

Claims

What i s clai med is :
[Clai m 1 ] A medical diagnostic or therapeutic device, comprising: a medical device including lead wire extending therefrom and in contact with biological cells; and a band stop filter associated with the lead wire, for attenuating current flow through the lead wire at a selected frequency, wherein the band stop filter comprises a capacitor in parallel with an inductor, said parallel capacitor and inductor placed in series with the lead wire, wherein values of capacitance and inductance are selected such that the band stop filter is resonant at the selected frequency.
[Clai m 2] The device of claim 1 , wherein the AMD comprises cochlear implants, piezoelectric sound bridge transducers, neurostimulators, brain stimulators, cardiac pacemakers, ventricular assist devices, artificial hearts, drug pumps, bone growth stimulators, bone fusion stimulators, urinary incontinence devices, pain relief spinal cord stimulators, anti-tremor stimulators, gastric stimulators, implantable cardioverter defibrillators, pH probes, congestive heart failure devices, pill cameras, neuromodulators, cardiovascular stents, orthopedic implants, external insulin pumps, external drug pumps, external neurostimulators, Holter monitors and external probes or catheters.
[Clai m 3] The device of claim 1 , wherein the Q of the inductor is relatively maximized and the Q of the capacitor is relatively minimized to reduce the overall Q of the band stop filter.
[Clai m 4] The device of claim 3, wherein the Q of the inductor is relatively maximized by minimizing resistive loss in the inductor.
[Clai m 5] Device of claim 3, wherein the Q of the capacitor is relatively minimized by raising equivalent series resistance of the capacitor.
[Clai m 6] The device of claim 3, wherein the overall Q of the band stop filter is reduced to attenuate current flow through the lead wire along a range of selected frequencies.
[Clai m 7] The device of claim 6, wherein the range of selected frequencies includes a plurality of MRI pulsed frequencies.
[Clai m 8] The device of claim 5, wherein the equivalent series resistance of the capacitor is raised by any one or combination of the following: reducing thickness of electrode plates in the capacitor; using high resistivity capacitor electrode materials; adding dielectric powders to electrode ink; providing apertures, gaps, slits or spokes in the electrode plates of the capacitor; providing separate discrete resistors in series with the capacitor; utilizing resistive electrical attachment materials to the capacitor; or utilizing capacitor dielectric materials that have high dielectric loss tangents at the selected frequency.
[Clai m 9] The device of claim 1 , wherein the band stop filter is disposed adjacent to the distal tip of the lead wire.
[Clai m 1 0] The device of claim 9, wherein the band stop filter is integrated into a TIP electrode.
[Clai m 1 1 ] The device of claim 9, wherein the band stop filter is integrated into a RING electrode.
[Clai m 1 2] The device of claim 1 , wherein the lead wire comprises an externally worn lead wire.
[Clai m 1 3] The device of claim 1 , wherein the lead wire comprises an implanted lead wire.
[Clai m 1 4] The device of claim 1 , wherein the medical device comprises a probe or catheter, the band stop filter is associated with the probe or catheter TIP or RING electrodes, and wherein the overall Q of the band stop filter is reduced to attenuate current flow through the lead wire along a range of selected frequencies.
[Clai m 1 5] A band stop filter for a lead wire of an active medical device (AMD), the filter comprising: a capacitor in parallel with an inductor, said parallel capacitor and inductor combination placed in series with the lead wire, wherein values of capacitance and inductance have been selected such that the band stop filter is resonant at a selected frequency.
[Clai m 1 6] The band stop filter of claim 1 5, wherein the AMD comprises cochlear implants, piezoelectric sound bridge transducers, neurostimulators, brain stimulators, cardiac pacemakers, ventricular assist devices, artificial hearts, drug pumps, bone growth stimulators, bone fusion stimulators, urinary incontinence devices, pain relief spinal cord stimulators, anti-tremor stimulators, gastric stimulators, implantable cardioverter defibrillators, pH probes, congestive heart failure devices, pill cameras, neuromodulators, cardiovascular stents, orthopedic implants, external insulin pumps, external drug pumps, external neurostimulators, Holter monitors, and external probes or catheters.
[Clai m 1 7] The band stop filter of claim 1 5, wherein the lead wire comprises an externally worn lead wire.
[Clai m 1 8] The band stop filter of claim 1 5, wherein the band stop filter is disposed adjacent to the distal tip of the lead wire, at a selected location along the length of the lead wire, or inside a housing for the AMD.
[Clai m 1 9] The band stop filter of claim 1 8, wherein the band stop filter is integrated into a TIP electrode.
[Clai m 20] The band stop filter of claim 1 9, wherein the band stop filter is integrated into a RING electrode.
[Clai m 2 1 ] The band stop filter of claim 1 5, wherein the Q of the inductor is relatively maximized and the Q of the capacitor is relatively minimized to reduce the overall Q of the band stop filter.
[Clai m 22] The band stop filter of claim 21 , wherein the Q of the inductor is relatively maximized by minimizing resistive loss in the inductor; and wherein the Q of the capacitor is relatively minimized by raising equivalent series resistance of the capacitor.
[Clai m 23] The band stop filter of claim 22, wherein the overall Q of the band stop filter is reduced to attenuate current flow through the lead wire along a range of selected frequencies.
[Clai m 24] The band stop filter of claim 23, wherein the equivalent series resistance of the capacitor is raised by any one or combination of the following: reducing thickness of electrode plates in the capacitor; using high resistivity capacitor electrode materials: adding dielectric powders to electrode ink; providing apertures, gaps, slits or spokes in the electrode plates of the capacitor; providing separate discrete resistors in series with the capacitor; utilizing resistive electrical attachment materials to the capacitor; or utilizing capacitor dielectric materials that have high dielectric loss tangents at the selected frequency.
[Clai m 25] The band stop filter of claim 23, wherein the range of selected frequencies includes a plurality of MRI pulsed frequencies.
[Clai m 26] A process for attenuating current flow through a lead wire for a medical device at a selected frequency, comprising the steps of: selecting a capacitor which is resonant at the selected frequency; selecting an inductor which is resonant at the selected frequency; using the capacitor and the inductor to form a tank filter circuit; and placing the tank filter circuit in series with the lead wire.
[Clai m 27] The process of claim 26, including the steps of reducing the overall Q of the tank filter circuit by increasing the Q of the inductor and reducing the Q of the capacitor.
[Clai m 28] The process of claim 27, including the step of minimizing resistive loss in the inductor in order to maximize the Q of the inductor.
[Clai m 29] The process of claim 27, including the step of raising equivalent series resistance of the capacitor in order to minimize the Q of the capacitor.
[Clai m 30] The process of claim 27, including the step of reducing the overall Q of the tank filter circuit to attenuate current flow through the lead wire along a range of selected frequencies.
[Clai m 31 ] The process of claim 30, wherein the range of selected frequencies includes a plurality of MRI pulse frequencies.
[Clai m 32] The process of claim 26, including the step of disposing the tank filter circuit at the distal tip of the lead wire.
[Clai m 33] The process of claim 32, including the step of integrating the tank filter circuit into a TIP, RING or PAD electrode.
[Clai m 34] The process of claim 33, wherein the TIP, RING or PAD electrode is associated with a probe or catheter.
[Clai m 35] A process for attenuating current flow through a lead wire for an active medical device (AMD) throughout a range of selected frequencies, comprising the steps of: selecting a capacitor having a Q that is relatively minimized so as to resonate substantially throughout the selected range of frequencies; selecting an inductor having a Q which is relatively maximized so that the inductor will resonate substantially throughout the range of the selected frequencies; utilizing the selected capacitor and the selected inductor to form a tank filter circuit; and placing the tank filter circuit in series with the lead wire, wherein the overall Q of the tank filter circuit is reduced to attenuate current flow through the lead wire throughout the range of selected frequencies.
[Clai m 36] The process of claim 35, wherein the range of selected frequencies includes a plurality of MRI pulsed frequencies.
[Clai m 37] The process of claim 35, including the step of raising equivalent series resistance of the capacitor in order to relatively minimize the Q of the capacitor.
[Clai m 38] The process of claim 36, including the step of minimizing resistive loss in the inductor in order to relatively maximize the Q of the inductor.
[Clai m 39] The process of claim 37, including the step of raising the equivalent series resistance of the capacitor by any one or combination of the following: reducing thickness of electrode plates in the capacitor; using high resistivity capacitor electrode materials; adding dielectric powders to electrode ink; providing apertures, gaps, slits or spokes in the electrode plates of the capacitor; providing separate discrete resistors in series with the capacitor; utilizing resistive electrical attachment materials to the capacitor; or utilizing capacitor dielectric materials that have high dielectric loss tangents at the selected frequency.
[Clai m 40] The process of claim 35, including the step of disposing the tank filter circuit at a distal tip of the lead wire.
[Clai m 41 ] The process of claim 40, including the step of integrating the tank filter circuit into a TIP, RING or PAD electrode.
[Clai m 42] The process of claim 35, wherein the AMD comprises cochlear implants, piezoelectric sound bridge transducers, neurostimulators, brain stimulators, cardiac pacemakers, ventricular assist devices, artificial hearts, drug pumps, bone growth stimulators, bone fusion stimulators, urinary incontinence devices, pain relief spinal cord stimulators, anti-tremor stimulators, gastric stimulators, implantable cardioverter defibrillators, pH probes, congestive heart failure devices, pill cameras, neuromodulators, cardiovascular stents, orthopedic implants, external insulin pumps, external drug pumps, external neurostimulators, Holter monitors, and external probes or catheters.
[Clai m 43] A medical device, comprising: a probe or catheter having TIP, RING or PAD electrodes in contact with biological cells; and a band stop filter associated with the catheter or probe electrodes, for attenuating current flow through the probe or catheter at a selected frequency, wherein the band stop filter comprises a capacitor in parallel with an inductor, said parallel capacitor and inductor placed in series with the probe or catheter electrode, wherein values of capacitance and inductance are selected such that the band stop filter is resonant at the selected frequency, wherein the overall Q of the band stop filter is reduced to attenuate current flow through the lead wire along a range of selected frequencies.
[Clai m 44] The device of claim 43, wherein the Q of the inductor is relatively maximized and the Q of the capacitor is relatively minimized to reduce the overall Q of the band stop filter.
[Clai m 45] The device of claim 44, wherein the Q of the inductor is relatively maximized by minimizing resistive loss in the inductor.
[Clai m 46] The device of claim 44, wherein the Q of the capacitor is relatively minimized by raising equivalent series resistance of the capacitor.
[Clai m 47] The device of claim 43, wherein the range of selected frequencies includes a plurality of MRI pulsed frequencies.
[Clai m 48] The device of claim 46, wherein the equivalent series resistance of the capacitor is raised by any one or combination of the following: reducing thickness of electrode plates in the capacitor; using high resistivity capacitor electrode materials; providing apertures, gaps, slits or spokes in the electrode plates of the capacitor; utilizing resistive electrical attachment materials to the capacitor; or utilizing capacitor dielectric materials that have high dielectric loss tangents at the selected frequency.
PCT/US2006/060659 2006-06-08 2006-11-08 Band stop filter employing a capacitor and an inductor tank circuit to enhance mri compatibility of active medical devices WO2007145671A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009512001A JP2009537276A (en) 2006-06-08 2006-11-08 Band stop filter using a capacitor and inductor tank circuit to improve MRI compatibility of active medical devices
CN2006800464796A CN101325985B (en) 2006-06-08 2006-11-08 Band stop filter employing a capacitor and an inductor tank circuit to enhance mri compatibility of active medical devices
EP06850120A EP2026870A4 (en) 2006-06-08 2006-11-08 Band stop filter employing a capacitor and an inductor tank circuit to enhance mri compatibility of active medical devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/423,073 2006-06-08
US11/423,073 US8244370B2 (en) 2001-04-13 2006-06-08 Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices

Publications (2)

Publication Number Publication Date
WO2007145671A2 true WO2007145671A2 (en) 2007-12-21
WO2007145671A3 WO2007145671A3 (en) 2008-03-20

Family

ID=38832247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/060659 WO2007145671A2 (en) 2006-06-08 2006-11-08 Band stop filter employing a capacitor and an inductor tank circuit to enhance mri compatibility of active medical devices

Country Status (5)

Country Link
US (11) US8244370B2 (en)
EP (2) EP2026870A4 (en)
JP (1) JP2009537276A (en)
CN (1) CN101325985B (en)
WO (1) WO2007145671A2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8055351B2 (en) 2005-10-21 2011-11-08 Boston Scientific Neuromodulation Corporation MRI-safe high impedance lead systems
US8099171B2 (en) 2009-06-30 2012-01-17 Pacesetter, Inc. Implantable medical lead configured for improved MRI safety and heating reduction performance
US8219208B2 (en) 2001-04-13 2012-07-10 Greatbatch Ltd. Frequency selective passive component networks for active implantable medical devices utilizing an energy dissipating surface
US8275466B2 (en) 2006-06-08 2012-09-25 Greatbatch Ltd. Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices
US8335570B2 (en) 2008-10-09 2012-12-18 Boston Scientific Neuromodulation Corporation Electrical stimulation leads having RF compatibility and methods of use and manufacture
US8571683B2 (en) 2009-09-10 2013-10-29 Pacesetter, Inc. MRI RF rejection module for implantable lead
US9108066B2 (en) 2008-03-20 2015-08-18 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US9248283B2 (en) 2001-04-13 2016-02-02 Greatbatch Ltd. Band stop filter comprising an inductive component disposed in a lead wire in series with an electrode
US9248270B2 (en) 2007-03-19 2016-02-02 Boston Scientific Neuromodulation Corporation Methods and apparatus for fabricating leads with conductors and related flexible
US9295828B2 (en) 2001-04-13 2016-03-29 Greatbatch Ltd. Self-resonant inductor wound portion of an implantable lead for enhanced MRI compatibility of active implantable medical devices
US9427596B2 (en) 2013-01-16 2016-08-30 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US9492651B2 (en) 2007-03-19 2016-11-15 MRI Interventions, Inc. MRI and RF compatible leads and related methods of operating and fabricating leads
USRE46699E1 (en) 2013-01-16 2018-02-06 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US9931514B2 (en) 2013-06-30 2018-04-03 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US10080889B2 (en) 2009-03-19 2018-09-25 Greatbatch Ltd. Low inductance and low resistance hermetically sealed filtered feedthrough for an AIMD
US10350421B2 (en) 2013-06-30 2019-07-16 Greatbatch Ltd. Metallurgically bonded gold pocket pad for grounding an EMI filter to a hermetic terminal for an active implantable medical device
US10559409B2 (en) 2017-01-06 2020-02-11 Greatbatch Ltd. Process for manufacturing a leadless feedthrough for an active implantable medical device
US10561837B2 (en) 2011-03-01 2020-02-18 Greatbatch Ltd. Low equivalent series resistance RF filter for an active implantable medical device utilizing a ceramic reinforced metal composite filled via
US10589107B2 (en) 2016-11-08 2020-03-17 Greatbatch Ltd. Circuit board mounted filtered feedthrough assembly having a composite conductive lead for an AIMD
US10905888B2 (en) 2018-03-22 2021-02-02 Greatbatch Ltd. Electrical connection for an AIMD EMI filter utilizing an anisotropic conductive layer
US10912945B2 (en) 2018-03-22 2021-02-09 Greatbatch Ltd. Hermetic terminal for an active implantable medical device having a feedthrough capacitor partially overhanging a ferrule for high effective capacitance area
US11198014B2 (en) 2011-03-01 2021-12-14 Greatbatch Ltd. Hermetically sealed filtered feedthrough assembly having a capacitor with an oxide resistant electrical connection to an active implantable medical device housing

Families Citing this family (231)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7844319B2 (en) 1998-11-04 2010-11-30 Susil Robert C Systems and methods for magnetic-resonance-guided interventional procedures
US6701176B1 (en) 1998-11-04 2004-03-02 Johns Hopkins University School Of Medicine Magnetic-resonance-guided imaging, electrophysiology, and ablation
US8527046B2 (en) * 2000-04-20 2013-09-03 Medtronic, Inc. MRI-compatible implantable device
WO2002040088A2 (en) * 2000-11-20 2002-05-23 Surgi-Vision, Inc. Connector and guidewire connectable thereto
US20050283167A1 (en) * 2003-08-25 2005-12-22 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288750A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288753A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050283214A1 (en) * 2003-08-25 2005-12-22 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US6949929B2 (en) * 2003-06-24 2005-09-27 Biophan Technologies, Inc. Magnetic resonance imaging interference immune device
US8989870B2 (en) * 2001-04-13 2015-03-24 Greatbatch Ltd. Tuned energy balanced system for minimizing heating and/or to provide EMI protection of implanted leads in a high power electromagnetic field environment
US8977355B2 (en) 2001-04-13 2015-03-10 Greatbatch Ltd. EMI filter employing a capacitor and an inductor tank circuit having optimum component values
US8000801B2 (en) * 2001-04-13 2011-08-16 Greatbatch Ltd. System for terminating abandoned implanted leads to minimize heating in high power electromagnetic field environments
US20090163981A1 (en) 2007-12-21 2009-06-25 Greatbatch Ltd. Multiplexer for selection of an mri compatible band stop filter or switch placed in series with a particular therapy electrode of an active implantable medical device
US8712544B2 (en) 2001-04-13 2014-04-29 Greatbatch Ltd. Electromagnetic shield for a passive electronic component in an active medical device implantable lead
US8155760B2 (en) * 2001-04-13 2012-04-10 Greatbatch Ltd. Medical lead system utilizing electromagnetic bandstop filters
US20070088416A1 (en) * 2001-04-13 2007-04-19 Surgi-Vision, Inc. Mri compatible medical leads
US8509913B2 (en) 2001-04-13 2013-08-13 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment
US8224440B2 (en) 2006-11-09 2012-07-17 Greatbatch Ltd. Electrically isolating electrical components in a medical electrical lead with an active fixation electrode
US8600519B2 (en) * 2001-04-13 2013-12-03 Greatbatch Ltd. Transient voltage/current protection system for electronic circuits associated with implanted leads
US8457760B2 (en) 2001-04-13 2013-06-04 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment
US7917219B2 (en) 2002-02-28 2011-03-29 Greatbatch Ltd. Passive electronic network components designed for direct body fluid exposure
US8660645B2 (en) 2002-02-28 2014-02-25 Greatbatch Ltd. Electronic network components utilizing biocompatible conductive adhesives for direct body fluid exposure
AU2003249665B2 (en) 2002-05-29 2008-04-03 Surgi-Vision, Inc. Magnetic resonance probes
US7388378B2 (en) * 2003-06-24 2008-06-17 Medtronic, Inc. Magnetic resonance imaging interference immune device
US20050288757A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050283213A1 (en) * 2003-08-25 2005-12-22 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288755A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288754A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288756A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US8868212B2 (en) 2003-08-25 2014-10-21 Medtronic, Inc. Medical device with an electrically conductive anti-antenna member
US7877150B2 (en) * 2004-03-30 2011-01-25 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US7844343B2 (en) * 2004-03-30 2010-11-30 Medtronic, Inc. MRI-safe implantable medical device
US8989840B2 (en) 2004-03-30 2015-03-24 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US9155877B2 (en) 2004-03-30 2015-10-13 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US7844344B2 (en) 2004-03-30 2010-11-30 Medtronic, Inc. MRI-safe implantable lead
CA2575313C (en) * 2004-07-27 2013-07-23 Surgivision, Inc. Mri systems having mri compatible universal delivery cannulas with cooperating mri antenna probes and related systems and methods
EP1776040A4 (en) * 2004-08-09 2012-02-15 Univ Johns Hopkins Implantable mri compatible stimulation leads and antennas and related systems and methods
US8041433B2 (en) * 2004-08-20 2011-10-18 Medtronic, Inc. Magnetic resonance imaging interference immune device
US8280526B2 (en) * 2005-02-01 2012-10-02 Medtronic, Inc. Extensible implantable medical lead
US7853332B2 (en) 2005-04-29 2010-12-14 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US8027736B2 (en) * 2005-04-29 2011-09-27 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US7561906B2 (en) 2005-05-04 2009-07-14 Boston Scientific Neuromodulation Corporation Electrical lead for an electronic device such as an implantable device
EP2471451A1 (en) 2005-10-14 2012-07-04 Nanostim, Inc. Leadless cardiac pacemaker and system
US9168383B2 (en) 2005-10-14 2015-10-27 Pacesetter, Inc. Leadless cardiac pacemaker with conducted communication
US7889020B2 (en) * 2005-10-19 2011-02-15 Avx Corporation Asymmetrical filter
US7917213B2 (en) * 2005-11-04 2011-03-29 Kenergy, Inc. MRI compatible implanted electronic medical lead
US8233985B2 (en) * 2005-11-04 2012-07-31 Kenergy, Inc. MRI compatible implanted electronic medical device with power and data communication capability
WO2007102893A2 (en) * 2005-11-11 2007-09-13 Greatbatch Ltd. Tank filters placed in series with the lead wires or circuits of active medical devices to enhance mri compatibility
US8224462B2 (en) 2005-11-11 2012-07-17 Greatbatch Ltd. Medical lead system utilizing electromagnetic bandstop filters
US20100191306A1 (en) 2006-01-25 2010-07-29 Greatbatch Ltd. Transient voltage suppression circuit for an implanted rfid chip
US8115600B2 (en) 2008-11-19 2012-02-14 Greatbatch Ltd. RFID detection and identification system including an RFID reader having a limited transmit time and a time-out period to protect a medical device against RFID-associated electromagnetic interference
US7933662B2 (en) 2006-04-26 2011-04-26 Marshall Mark T Medical electrical lead including an inductance augmenter
US8903505B2 (en) 2006-06-08 2014-12-02 Greatbatch Ltd. Implantable lead bandstop filter employing an inductive coil with parasitic capacitance to enhance MRI compatibility of active medical devices
US9020610B2 (en) 2006-06-23 2015-04-28 Medtronic, Inc. Electrode system with shunt electrode
US20070299490A1 (en) * 2006-06-23 2007-12-27 Zhongping Yang Radiofrequency (rf)-shunted sleeve head and use in electrical stimulation leads
US7734354B1 (en) 2006-08-04 2010-06-08 Advanced Neuromodulation Systems, Inc. Stimulation lead, stimulation system, and method for limiting MRI induced current in a stimulation lead
WO2008022404A1 (en) 2006-08-25 2008-02-28 Cochlear Limited Current leakage detection method and device
US9031670B2 (en) 2006-11-09 2015-05-12 Greatbatch Ltd. Electromagnetic shield for a passive electronic component in an active medical device implantable lead
US8761895B2 (en) * 2008-03-20 2014-06-24 Greatbatch Ltd. RF activated AIMD telemetry transceiver
US8239041B2 (en) 2010-08-02 2012-08-07 Greatbatch Ltd. Multilayer helical wave filter for medical therapeutic or diagnostic applications
US9827415B2 (en) 2006-11-09 2017-11-28 Greatbatch Ltd. Implantable lead having multi-planar spiral inductor filter
US9468750B2 (en) 2006-11-09 2016-10-18 Greatbatch Ltd. Multilayer planar spiral inductor filter for medical therapeutic or diagnostic applications
US7610101B2 (en) 2006-11-30 2009-10-27 Cardiac Pacemakers, Inc. RF rejecting lead
US7962224B1 (en) * 2007-02-05 2011-06-14 Advanced Neuromodulation Systems, Inc. Stimulation lead, stimulation system, and method for limiting MRI-induced current in a stimulation lead
US10537730B2 (en) * 2007-02-14 2020-01-21 Medtronic, Inc. Continuous conductive materials for electromagnetic shielding
US9044593B2 (en) * 2007-02-14 2015-06-02 Medtronic, Inc. Discontinuous conductive filler polymer-matrix composites for electromagnetic shielding
US8260433B2 (en) * 2007-03-07 2012-09-04 Koninklijke Philips Electronics N.V. Apparatus and method for applying energy within an object
US7711436B2 (en) 2007-03-09 2010-05-04 Medtronic, Inc. Medical device electrical lead design for preventing transmittance of unsafe currents to a patient
EP2131393A4 (en) * 2007-03-23 2011-08-31 Fujitsu Ltd Electronic device, electronic apparatus mounting electronic device, article mounting electronic device, and method for manufacturing electronic device
US8483842B2 (en) 2007-04-25 2013-07-09 Medtronic, Inc. Lead or lead extension having a conductive body and conductive body contact
US8103347B2 (en) 2007-04-25 2012-01-24 Advanced Neuromodulation Systems, Inc. Implantable pulse generator comprising MRI current limiting windings in header structure
US7941226B2 (en) 2007-04-27 2011-05-10 Medtronic, Inc. Magnetostrictive electrical stimulation leads
US7941225B2 (en) * 2007-04-27 2011-05-10 Medtronic, Inc. Magnetostrictive electrical stimulation leads
US20080281390A1 (en) * 2007-04-27 2008-11-13 Marshall Mark T Magnetostrictive electrical stimulation leads
US8032230B1 (en) 2007-10-09 2011-10-04 Advanced Neuromodulation Systems, Inc. Stimulation lead, stimulation system, and method for limiting MRI induced current in a stimulation lead
US7804676B2 (en) * 2007-11-20 2010-09-28 Greatbatch Ltd. Hybrid discoidal/tubular capacitor
US8731685B2 (en) 2007-12-06 2014-05-20 Cardiac Pacemakers, Inc. Implantable lead having a variable coil conductor pitch
US20090179716A1 (en) * 2008-01-09 2009-07-16 Anaren, Inc. RF Filter Device
JP5149399B2 (en) 2008-02-06 2013-02-20 カーディアック ペースメイカーズ, インコーポレイテッド Lead with design features compatible with MRI
US8024045B2 (en) * 2008-02-08 2011-09-20 Intelect Medical, Inc. Multi-functional burr hole assembly
US8332045B2 (en) * 2008-03-12 2012-12-11 Medtronic, Inc. System and method for cardiac lead switching
US9037263B2 (en) 2008-03-12 2015-05-19 Medtronic, Inc. System and method for implantable medical device lead shielding
WO2009117069A2 (en) * 2008-03-17 2009-09-24 Surgivision, Inc. Low profile medical devices with internal drive shafts that cooperate with releasably engageable drive tools and related methods
US9463329B2 (en) 2008-03-20 2016-10-11 Greatbatch Ltd. Shielded three-terminal flat-through EMI/energy dissipating filter with co-fired hermetically sealed feedthrough
US11147977B2 (en) 2008-03-20 2021-10-19 Greatbatch Ltd. MLCC filter on an aimd circuit board conductively connected to a ground pin attached to a hermetic feedthrough ferrule
CN102037528A (en) 2008-03-20 2011-04-27 格瑞巴奇有限公司 Shielded three-terminal flat-through EMI/energy dissipating filter
US8103360B2 (en) 2008-05-09 2012-01-24 Foster Arthur J Medical lead coil conductor with spacer element
US20090312835A1 (en) * 2008-06-17 2009-12-17 Greatbatch Ltd. Dielectric fluid filled active implantable medical devices
WO2010008833A1 (en) * 2008-06-23 2010-01-21 Greatbatch Ltd. Frequency selective passive component networks for implantable leads of active implantable medical devices utilizing an energy dissipating surface
US20100106227A1 (en) * 2008-10-23 2010-04-29 Pacesetter, Inc. Systems and Methods for Disconnecting Electrodes of Leads of Implantable Medical Devices During an MRI to Reduce Lead Heating
EP2349453A4 (en) * 2008-10-30 2015-07-01 Greatbatch Ltd Capacitor and inductor elements physically disposed in series whose lumped parameters are electrically connected in parallel to form a bandstop filter
EP2349455B1 (en) * 2008-10-31 2017-01-18 QIG Group, LLC Lead extension
US20100121179A1 (en) * 2008-11-13 2010-05-13 Pacesetter, Inc. Systems and Methods for Reducing RF Power or Adjusting Flip Angles During an MRI for Patients with Implantable Medical Devices
US8442644B2 (en) 2008-11-18 2013-05-14 Greatbatch Ltd. Satellite therapy delivery system for brain neuromodulation
EP2186541B1 (en) 2008-11-18 2012-06-27 Greatbatch Ltd. Satellite therapy delivery system for brain neuromodulation
US8299899B2 (en) * 2008-11-19 2012-10-30 Greatbatch Ltd. AIMD external programmer incorporating a multifunction RFID reader having a limited transmit time and a time-out period
DE102008062319B4 (en) * 2008-12-16 2012-05-31 Dräger Medical GmbH Hose nozzle for a ventilator
US8447414B2 (en) 2008-12-17 2013-05-21 Greatbatch Ltd. Switched safety protection circuit for an AIMD system during exposure to high power electromagnetic fields
US8437863B2 (en) 2008-12-19 2013-05-07 St. Jude Medical Ab Electrode lead
US8285396B2 (en) * 2009-01-05 2012-10-09 Kenergy, Inc. MRI compatible electrical lead for an implanted electronic medical device
US20100198311A1 (en) * 2009-01-30 2010-08-05 Medtronic, Inc. System and method for cardiac lead switching
US8527068B2 (en) 2009-02-02 2013-09-03 Nanostim, Inc. Leadless cardiac pacemaker with secondary fixation capability
US8996126B2 (en) 2009-02-04 2015-03-31 Greatbatch Ltd. Composite RF current attenuator for a medical lead
US8099173B2 (en) * 2009-02-26 2012-01-17 Pacesetter, Inc. Implantable medical lead circuitry and methods for reducing heating and/or induced current
CA2839071C (en) 2009-03-04 2017-10-17 Imricor Medical Systems, Inc. Mri compatible medical device temperature monitoring system and method
EP2403403A4 (en) 2009-03-04 2017-06-28 Imricor Medical Systems, Inc. Combined field location and mri tracking
US8831743B2 (en) 2009-03-04 2014-09-09 Imricor Medical Systems, Inc. MRI compatible electrode circuit
US8805540B2 (en) 2009-03-04 2014-08-12 Imricor Medical Systems, Inc. MRI compatible cable
US8855788B2 (en) 2009-03-04 2014-10-07 Imricor Medical Systems, Inc. MRI compatible electrode circuit
AU2014253481B2 (en) * 2009-03-04 2016-02-25 Imricor Medical Systems, Inc. MRI compatible electrode circuit
AU2013206743B2 (en) * 2009-03-04 2014-10-30 Imricor Medical Systems, Inc. MRI compatible electrode circuit
CN103549952B (en) 2009-03-04 2016-08-17 艾姆瑞科医疗系统有限公司 The method of structure MRI compatible electrode circuit
US8761899B2 (en) 2009-03-04 2014-06-24 Imricor Medical Systems, Inc. MRI compatible conductive wires
US8843213B2 (en) 2009-03-04 2014-09-23 Imricor Medical Systems, Inc. MRI compatible co-radially wound lead assembly
WO2010104643A2 (en) * 2009-03-12 2010-09-16 Cardiac Pacemakers, Inc. Thin profile conductor assembly for medical device leads
US20120256704A1 (en) 2011-03-01 2012-10-11 Greatbatch Ltd. Rf filter for an active medical device (amd) for handling high rf power induced in an associated implanted lead from an external rf field
US8095224B2 (en) 2009-03-19 2012-01-10 Greatbatch Ltd. EMI shielded conduit assembly for an active implantable medical device
US8463407B2 (en) * 2009-03-26 2013-06-11 Kenergy, Inc. MRI compatible implanted lead-electrode interface
WO2010114429A1 (en) * 2009-03-31 2010-10-07 St. Jude Medical Ab A medical implantable lead and a method for manufacturing of such a lead
DE102009002152A1 (en) * 2009-04-02 2010-12-02 Biotronik Crm Patent Ag Stimulation electrode lead
US20100274319A1 (en) * 2009-04-28 2010-10-28 Cochlear Limited Current leakage detection for a medical implant
EP2821097B1 (en) 2009-04-30 2017-10-04 Medtronic Inc. Termination of a shield within an implantable medical lead
EP2258442A1 (en) 2009-06-03 2010-12-08 Greatbatch Ltd. Dielectric fluid filled active implantable medical devices
EP2440131B1 (en) 2009-06-08 2018-04-04 MRI Interventions, Inc. Mri-guided interventional systems that can track and generate dynamic visualizations of flexible intrabody devices in near real time
US8396532B2 (en) 2009-06-16 2013-03-12 MRI Interventions, Inc. MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
JP5542926B2 (en) * 2009-06-26 2014-07-09 カーディアック ペースメイカーズ, インコーポレイテッド Medical instrument lead comprising a conductor assembly consisting of a single wire coil with improved torque transfer performance and reduced heating by MRI
US20100331942A1 (en) * 2009-06-29 2010-12-30 Pacesetter, Inc. Mri compatible implantable medical lead and method of making same
US10286218B2 (en) 2009-07-31 2019-05-14 Medtronic, Inc. Connector enclosure assemblies of medical devices including an angled lead passageway
US8601672B2 (en) * 2009-07-31 2013-12-10 Advanced Neuromodulation Systems, Inc. Method for fabricating a stimulation lead to reduce MRI heating
US20110077708A1 (en) * 2009-09-28 2011-03-31 Alan Ostroff MRI Compatible Leadless Cardiac Pacemaker
US8335572B2 (en) 2009-10-08 2012-12-18 Cardiac Pacemakers, Inc. Medical device lead including a flared conductive coil
WO2011043898A2 (en) * 2009-10-09 2011-04-14 Cardiac Pacemakers, Inc. Mri compatible medical device lead including transmission line notch filters
US20110092799A1 (en) * 2009-10-16 2011-04-21 Kabushiki Kaisha Toshiba Active implant medical device (AMID) and medical imaging scanner communications involving patient-specific AIMD configuration
US9254380B2 (en) 2009-10-19 2016-02-09 Cardiac Pacemakers, Inc. MRI compatible tachycardia lead
US8761886B2 (en) * 2009-10-30 2014-06-24 Medtronic, Inc. Controlling effects caused by exposure of an implantable medical device to a disruptive energy field
US9014815B2 (en) 2009-11-19 2015-04-21 Medtronic, Inc. Electrode assembly in a medical electrical lead
US8422195B2 (en) * 2009-12-22 2013-04-16 Greatbatch Ltd. Feedthrough flat-through capacitor
US20110160809A1 (en) * 2009-12-30 2011-06-30 Cox Timothy J Pulse charge limiter
JP5551794B2 (en) 2009-12-30 2014-07-16 カーディアック ペースメイカーズ, インコーポレイテッド Medical device leads safe under MRI conditions
US8391994B2 (en) 2009-12-31 2013-03-05 Cardiac Pacemakers, Inc. MRI conditionally safe lead with low-profile multi-layer conductor for longitudinal expansion
EP2519305B1 (en) 2009-12-31 2017-07-05 Cardiac Pacemakers, Inc. Mri conditionally safe lead with multi-layer conductor
US8882763B2 (en) 2010-01-12 2014-11-11 Greatbatch Ltd. Patient attached bonding strap for energy dissipation from a probe or a catheter during magnetic resonance imaging
US8527065B2 (en) 2010-02-11 2013-09-03 Biotronik Se & Co. Kg Electrode device for active medical implant
US8380322B2 (en) * 2010-02-11 2013-02-19 Biotronik Crm Patent Ag Electrode device for active medical implants
US8914096B2 (en) * 2010-02-11 2014-12-16 Biotronik Se & Co. Kg Adaptation probe for insertion into implanted electrode devices of active medical implants and set composed of an implantable electrode device and an adaptation probe
US8818509B2 (en) 2010-02-11 2014-08-26 Biotronik Se & Co. Kg Implantable element and electronic implant
US8260435B2 (en) * 2010-03-17 2012-09-04 Greatbatch Ltd. Implantable lead for an active medical device having an inductor design minimizing eddy current losses
US8975900B2 (en) * 2010-04-08 2015-03-10 Disney Enterprises, Inc. System and method for sensing human activity by monitoring impedance
CN102858403A (en) * 2010-04-30 2013-01-02 美敦力公司 Medical electrical lead with an energy dissipating structure
US8583258B2 (en) 2010-05-05 2013-11-12 Biotronik Se & Co. Kg Electrode lead in particular for use with a medical implant
WO2012023988A1 (en) 2010-08-20 2012-02-23 Kenergy, Inc. Method of manufacturing an mri compatible conductive lead body
US8825181B2 (en) 2010-08-30 2014-09-02 Cardiac Pacemakers, Inc. Lead conductor with pitch and torque control for MRI conditionally safe use
CN103249452A (en) 2010-10-12 2013-08-14 内诺斯蒂姆股份有限公司 Temperature sensor for a leadless cardiac pacemaker
US9060692B2 (en) 2010-10-12 2015-06-23 Pacesetter, Inc. Temperature sensor for a leadless cardiac pacemaker
WO2012051235A1 (en) 2010-10-13 2012-04-19 Nanostim, Inc. Leadless cardiac pacemaker with anti-unscrewing feature
US8831740B2 (en) 2010-11-02 2014-09-09 Pacesetter, Inc. Implantable lead assembly having a plurality of inductors
US8396567B2 (en) 2010-11-29 2013-03-12 Pacsetter, Inc. Implantable medical device lead with inductive-capacitive filters having inductors with parallel capacitors to reduce lead heating during MRI
CN103402578B (en) 2010-12-13 2016-03-02 内诺斯蒂姆股份有限公司 Pacemaker recovery system and method
US8615310B2 (en) 2010-12-13 2013-12-24 Pacesetter, Inc. Delivery catheter systems and methods
US8942825B2 (en) * 2010-12-17 2015-01-27 Biotronik Se & Co. Kg Implantable device with elongated electrical conductor
US8977368B2 (en) * 2010-12-17 2015-03-10 Biotronik Se & Co. Kg Implantable device
US8509915B2 (en) * 2010-12-17 2013-08-13 Biotronik Se & Co. Kg Implantable electrode line device for reducing undesirable effects of electromagnetic fields
US9242102B2 (en) 2010-12-20 2016-01-26 Pacesetter, Inc. Leadless pacemaker with radial fixation mechanism
US9144689B2 (en) 2010-12-28 2015-09-29 Medtronic, Inc. Medical devices including metallic connector enclosures
WO2012096365A1 (en) * 2011-01-14 2012-07-19 株式会社村田製作所 Rfid chip package and rfid tag
US9597518B2 (en) 2011-01-26 2017-03-21 Medtronic, Inc. Implantable medical devices and related connector enclosure assemblies utilizing conductors electrically coupled to feedthrough pins
WO2012103201A2 (en) * 2011-01-26 2012-08-02 Boston Scientific Neuromodulation Corporation Systems and methods for making and using electrical stimulation systems with improved rf compatibility
US8612021B2 (en) 2011-02-10 2013-12-17 Medtronic, Inc. Magnetic resonance imaging compatible medical electrical lead and method of making the same
EP2486952A1 (en) 2011-02-14 2012-08-15 Greatbatch Ltd. Medical lead system utilizing electromagnetic bandstop filters
US9061132B1 (en) 2011-02-18 2015-06-23 Greatbatch Ltd. Positioning of a medical device conductor in an MRI environment to reduce RF induced current
US9757558B2 (en) 2011-03-01 2017-09-12 Greatbatch Ltd. RF filter for an active medical device (AMD) for handling high RF power induced in an associated implanted lead from an external RF field
EP2537553B1 (en) 2011-06-21 2013-08-28 Sorin CRM SAS Probe for implantable cardiac prosthesis, comprising a built-in means for protection against the effects of MRI fields
US9504843B2 (en) 2011-08-19 2016-11-29 Greatbach Ltd. Implantable cardioverter defibrillator designed for use in a magnetic resonance imaging environment
US20130046354A1 (en) 2011-08-19 2013-02-21 Greatbatch Ltd. Implantable cardioverter defibrillator designed for use in a magnetic resonance imaging environment
US20130058004A1 (en) * 2011-09-01 2013-03-07 Medtronic, Inc. Feedthrough assembly including underfill access channel and electrically insulating material
US8588911B2 (en) 2011-09-21 2013-11-19 Cochlear Limited Medical implant with current leakage circuitry
AU2012333113B2 (en) 2011-11-04 2014-11-20 Cardiac Pacemakers, Inc. Implantable medical device lead including inner coil reverse-wound relative to shocking coil
USD736383S1 (en) 2012-11-05 2015-08-11 Nevro Corporation Implantable signal generator
WO2013067496A2 (en) 2011-11-04 2013-05-10 Nanostim, Inc. Leadless cardiac pacemaker with integral battery and redundant welds
EP2773423B1 (en) 2011-11-04 2024-01-10 Nevro Corporation Medical device communication and charding assemblies for use with implantable signal generators
EP2594314A1 (en) 2011-11-17 2013-05-22 Greatbatch Ltd. Composite RF attenuator for a medical lead
EP2814567B1 (en) 2012-02-15 2019-11-06 Cardiac Pacemakers, Inc. Ferrule for implantable medical device
US8565899B1 (en) 2012-04-18 2013-10-22 Cochlear Limited Implantable prosthesis configuration to control heat dissipation from prosthesis components
US8600520B2 (en) 2012-04-18 2013-12-03 Pacesetter, Inc. Implantable lead assembly having a plurality of inductors
US9463317B2 (en) 2012-04-19 2016-10-11 Medtronic, Inc. Paired medical lead bodies with braided conductive shields having different physical parameter values
US8825179B2 (en) 2012-04-20 2014-09-02 Cardiac Pacemakers, Inc. Implantable medical device lead including a unifilar coiled cable
US10285608B2 (en) 2012-05-25 2019-05-14 Koninklijke Philips N.V. Magnetic resonance safe cable for biopotential measurements
US8954168B2 (en) 2012-06-01 2015-02-10 Cardiac Pacemakers, Inc. Implantable device lead including a distal electrode assembly with a coiled component
WO2014022661A1 (en) 2012-08-01 2014-02-06 Nanostim, Inc. Biostimulator circuit with flying cell
US8958889B2 (en) 2012-08-31 2015-02-17 Cardiac Pacemakers, Inc. MRI compatible lead coil
US9093974B2 (en) 2012-09-05 2015-07-28 Avx Corporation Electromagnetic interference filter for implanted electronics
CN104736196B (en) 2012-10-18 2017-06-16 心脏起搏器股份公司 Sensing element for providing Magnetic resonance imaging compatibility in implantable medical device lead
US20150018911A1 (en) 2013-07-02 2015-01-15 Greatbatch Ltd. Apparatus, system, and method for minimized energy in peripheral field stimulation
EP3269419A1 (en) 2013-08-04 2018-01-17 Greatbatch Ltd. Multilayer planar spiral inductor filter for medical, therapeutic or diagnostic applications
US10279172B1 (en) 2013-09-09 2019-05-07 Pinnacle Bionics, Inc. MRI compatible lead
US9406129B2 (en) * 2013-10-10 2016-08-02 Medtronic, Inc. Method and system for ranking instruments
EP2875844B1 (en) 2013-11-25 2018-01-03 BIOTRONIK SE & Co. KG Implantable electrode arrangement, in particular for cardiological devices, such as cardiac pacemakers
US9993638B2 (en) 2013-12-14 2018-06-12 Medtronic, Inc. Devices, systems and methods to reduce coupling of a shield and a conductor within an implantable medical lead
EP3110499B1 (en) 2014-02-26 2018-01-24 Cardiac Pacemakers, Inc. Construction of an mri-safe tachycardia lead
US9579502B2 (en) 2014-04-19 2017-02-28 Medtronic, Inc. Implantable medical leads, systems, and related methods for creating a high impedance within a conduction path in the presence of a magnetic field of a given strength
EP3171931B1 (en) 2014-07-23 2021-11-10 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
US10155111B2 (en) 2014-07-24 2018-12-18 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
US20160059014A1 (en) * 2014-09-02 2016-03-03 Benjamin Peter Johnston Event Detection In An Implantable Auditory Prosthesis
US20160077169A1 (en) * 2014-09-15 2016-03-17 The General Hospital Corporation System and Method for Coordinating Use of An Interventional or Implantable Device With External Magnetic Fields
US9668818B2 (en) 2014-10-15 2017-06-06 Medtronic, Inc. Method and system to select an instrument for lead stabilization
CN104297706B (en) * 2014-10-17 2017-06-16 华中科技大学 A kind of field generator for magnetic and its method for designing based on resonance
US10183162B2 (en) 2015-01-02 2019-01-22 Greatbatch Ltd. Coiled, closed-loop RF current attenuator configured to be placed about an implantable lead conductor
EP3081258A1 (en) 2015-04-16 2016-10-19 Greatbatch Ltd. Rf filter for an active medical device (amd) for handling high rf power induced in an associated implanted lead from an external rf field
US10363425B2 (en) 2015-06-01 2019-07-30 Avx Corporation Discrete cofired feedthrough filter for medical implanted devices
US10232169B2 (en) 2015-07-23 2019-03-19 Boston Scientific Neuromodulation Corporation Burr hole plugs for electrical stimulation systems and methods of making and using
EP3432975B1 (en) 2016-03-21 2024-02-14 Nalu Medical, Inc. Devices for positioning external devices in relation to implanted devices
EP3484577A4 (en) 2016-07-18 2020-03-25 Nalu Medical, Inc. Methods and systems for treating pelvic disorders and pain conditions
US11476584B2 (en) * 2016-08-18 2022-10-18 R.A. Miller Industries, Inc. General aviation dual function antenna
US10589090B2 (en) * 2016-09-10 2020-03-17 Boston Scientific Neuromodulation Corporation Implantable stimulator device with magnetic field sensing circuit
WO2018156953A1 (en) 2017-02-24 2018-08-30 Nalu Medical, Inc. Apparatus with sequentially implanted stimulators
EP3600478A1 (en) 2017-03-29 2020-02-05 Tc1 Llc Pressure sensing ventricular assist devices and methods of use
WO2018183567A1 (en) 2017-03-29 2018-10-04 Tc1 Llc Communication methods and architecture for heart treatment systems
EP3600476B1 (en) 2017-03-29 2021-09-01 Tc1 Llc Adjusting pump protocol based on irregular heart rhythm
CA3070216A1 (en) * 2017-08-07 2019-02-14 Deputy Synthes Products, Inc Folded mri safe coil assembly
US10874865B2 (en) 2017-11-06 2020-12-29 Avx Corporation EMI feedthrough filter terminal assembly containing a resin coating over a hermetically sealing material
EP3710105B1 (en) 2017-11-13 2023-10-04 Boston Scientific Neuromodulation Corporation Systems for making and using a low-profile control module for an electrical stimulation system
WO2019143574A1 (en) 2018-01-16 2019-07-25 Boston Scientific Neuromodulation Corporation An electrical stimulation system with a case-neutral battery and a control module for such a system
EP3762087B1 (en) 2018-03-09 2023-04-26 Boston Scientific Neuromodulation Corporation Burr hole plugs for electrical stimulation systems
EP3765113A1 (en) 2018-03-15 2021-01-20 Tc1 Llc Methods and systems for preventing right heart failure
WO2019178145A1 (en) 2018-03-16 2019-09-19 Boston Scientific Neuromodulation Corporation Kits and methods for securing a burr hole plugs for stimulation systems
EP3768341A1 (en) 2018-03-19 2021-01-27 Tc1 Llc Coordinated ventricular assist and cardiac rhythm management devices and methods
US11253708B2 (en) 2018-05-24 2022-02-22 Medtronic, Inc. Machined features of enclosures for implantable medical devices
CN108921270A (en) * 2018-06-22 2018-11-30 北京无线电测量研究所 A kind of electron marker and underground utilities
US11241570B2 (en) 2018-07-17 2022-02-08 Tc1 Llc Systems and methods for inertial sensing for VAD diagnostics and closed loop control
CN110456291B (en) * 2019-08-28 2021-12-24 创领心律管理医疗器械(上海)有限公司 Filter circuit and electronic device
CN115495921B (en) * 2022-09-29 2023-04-07 东南大学 Power electronic system simulation method based on loop current method decoupling

Family Cites Families (388)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE472818A (en) 1944-05-22
US3871382A (en) * 1973-02-15 1975-03-18 Pacesetter Syst Heart stimulator system for rapid implantation and removal with improved integrity
US3968802A (en) * 1975-01-24 1976-07-13 Medtronic, Inc. Cautery protection circuit for a heart pacemaker
US3980975A (en) * 1975-09-08 1976-09-14 Varian Associates Broadband microwave bias network
US4236127A (en) * 1977-04-13 1980-11-25 Pyrohm, Inc. Electrical frequency responsive structure
US4295467A (en) 1979-05-24 1981-10-20 Inverness International Corp. Electrolysis apparatus with retractable probe
US4431005A (en) 1981-05-07 1984-02-14 Mccormick Laboratories, Inc. Method of and apparatus for determining very accurately the position of a device inside biological tissue
US4445501A (en) 1981-05-07 1984-05-01 Mccormick Laboratories, Inc. Circuits for determining very accurately the position of a device inside biological tissue
US4823023A (en) * 1982-06-01 1989-04-18 Nippon Chemi-Con Corporation Transistor with differentiated control switching circuit
US4437474A (en) * 1982-07-16 1984-03-20 Cordis Corporation Method for making multiconductor coil and the coil made thereby
US4633181A (en) * 1983-08-11 1986-12-30 Regents Of The University Of Calif. Apparatus and method for increasing the sensitivity of a nuclear magnetic resonance probe
CA1226624A (en) 1983-12-09 1987-09-08 Minnesota Mining And Manufacturing Company Signal transmission system
US4654880A (en) * 1983-12-09 1987-03-31 Minnesota Mining And Manufacturing Company Signal transmission system
JPS60141034U (en) 1984-02-29 1985-09-18 カシオ計算機株式会社 keyboard
US4572198A (en) 1984-06-18 1986-02-25 Varian Associates, Inc. Catheter for use with NMR imaging systems
DE3429386A1 (en) 1984-08-09 1986-02-27 Siemens AG, 1000 Berlin und 8000 München MAIN SPIN TOMOGRAPHY UNIT
US4672972A (en) 1984-08-13 1987-06-16 Berke Howard R Solid state NMR probe
NZ213630A (en) 1984-10-19 1990-02-26 Ici Plc Acrylic acid derivatives and fungicidal compositions
US4686988A (en) * 1984-10-19 1987-08-18 Sholder Jason A Pacemaker system and method for measuring and monitoring cardiac activity and for determining and maintaining capture
US5019075A (en) 1984-10-24 1991-05-28 The Beth Israel Hospital Method and apparatus for angioplasty
JPS61181925A (en) 1985-02-06 1986-08-14 Toyo Commun Equip Co Ltd Temperature sensor
JPS61209643A (en) 1985-03-15 1986-09-17 株式会社東芝 Ultrasonic diagnostic and medical treatment apparatus
JPS61181925U (en) 1985-05-07 1986-11-13
US4951672A (en) 1985-07-02 1990-08-28 General Electric Company Controlled impedance monitoring lead wires
US5209233A (en) 1985-08-09 1993-05-11 Picker International, Inc. Temperature sensing and control system for cardiac monitoring electrodes
DE3529578A1 (en) * 1985-08-17 1987-02-19 Bisping Hans Juergen IMPLANTABLE ELECTRODE
US4643186A (en) 1985-10-30 1987-02-17 Rca Corporation Percutaneous transluminal microwave catheter angioplasty
JPH0670902B2 (en) 1986-01-17 1994-09-07 日本電池株式会社 Method for producing cadmium negative electrode plate for alkaline secondary battery
US4682125A (en) 1986-02-10 1987-07-21 The Regents Of The University Of California RF coil coupling for MRI with tuned RF rejection circuit using coax shield choke
US4689621A (en) 1986-03-31 1987-08-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Temperature responsive transmitter
JPH0763455B2 (en) * 1986-03-31 1995-07-12 株式会社東芝 Magnetic resonance imager
IL78755A0 (en) 1986-05-12 1986-08-31 Biodan Medical Systems Ltd Applicator for insertion into a body opening for medical purposes
IL78756A0 (en) 1986-05-12 1986-08-31 Biodan Medical Systems Ltd Catheter and probe
US4788980A (en) 1986-07-18 1988-12-06 Siemens-Pacesetter, Inc. Pacemaker having PVC response and PMT terminating features
US4754752A (en) 1986-07-28 1988-07-05 Robert Ginsburg Vascular catheter
US4960106A (en) 1987-04-28 1990-10-02 Olympus Optical Co., Ltd. Endoscope apparatus
IL82658A (en) 1987-05-26 1990-12-23 Elscint Ltd Balun circuit for radio frequency coils in mr systems
US4832023A (en) 1987-06-03 1989-05-23 Mcm Laboratories, Inc. Method and apparatus for reducing blockage in body channels
US5170789A (en) 1987-06-17 1992-12-15 Perinchery Narayan Insertable NMR coil probe
US4989608A (en) 1987-07-02 1991-02-05 Ratner Adam V Device construction and method facilitating magnetic resonance imaging of foreign objects in a body
US4858623A (en) * 1987-07-13 1989-08-22 Intermedics, Inc. Active fixation mechanism for lead assembly of an implantable cardiac stimulator
US4766381A (en) 1987-08-12 1988-08-23 Vanderbilt University Driven inversion spin echo magnetic resonance imaging
US5372138A (en) 1988-03-21 1994-12-13 Boston Scientific Corporation Acousting imaging catheters and the like
US5588432A (en) 1988-03-21 1996-12-31 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials, and ablating tissue
US5178616A (en) 1988-06-06 1993-01-12 Sumitomo Electric Industries, Ltd. Method and apparatus for intravascular laser surgery
US5178159A (en) 1988-11-02 1993-01-12 Cardiometrics, Inc. Torqueable guide wire assembly with electrical functions, male and female connectors rotatable with respect to one another
US4945912A (en) 1988-11-25 1990-08-07 Sensor Electronics, Inc. Catheter with radiofrequency heating applicator
US4940052A (en) * 1989-01-25 1990-07-10 Siemens-Pacesetter, Inc. Microprocessor controlled rate-responsive pacemaker having automatic rate response threshold adjustment
US5063348A (en) * 1989-02-23 1991-11-05 Kabushiki Kaisha Toshiba Magnetic resonance imaging system
US5348010A (en) 1989-02-24 1994-09-20 Medrea, Inc., Pennsylvania Corp., Pa. Intracavity probe and interface device for MRI imaging and spectroscopy
US5041127A (en) * 1989-02-27 1991-08-20 Troutman Richard C Offset point surgical needle
EP0659385A1 (en) 1989-02-27 1995-06-28 Medrad Inc. Interface network for MRI imaging and spectroscopy
US5052404A (en) * 1989-03-02 1991-10-01 The Microspring Company, Inc. Torque transmitter
US4991580A (en) * 1989-03-30 1991-02-12 Invivo Research, Inc. Method of improving the quality of an electrocardiogram obtained from a patient undergoing magnetic resonance imaging
US4944298A (en) * 1989-05-23 1990-07-31 Siemens-Pacesetter, Inc. Atrial rate based programmable pacemaker with automatic mode switching means
DE3926934A1 (en) 1989-08-16 1991-02-21 Deutsches Krebsforsch HYPERTHERMIC MICROWAVE APPLICATOR FOR WARMING A LIMITED ENVIRONMENT IN A DISSIPATIVE MEDIUM
US5099208A (en) 1989-10-05 1992-03-24 Vanderbilt University Method for magnetic resonance imaging and related apparatus
US5044375A (en) * 1989-12-08 1991-09-03 Cardiac Pacemakers, Inc. Unitary intravascular defibrillating catheter with separate bipolar sensing
US5095911A (en) 1990-05-18 1992-03-17 Cardiovascular Imaging Systems, Inc. Guidewire with imaging capability
US5558093A (en) 1990-05-18 1996-09-24 Cardiovascular Imaging Systems, Inc. Guidewire with imaging capability
JPH0471536A (en) 1990-07-12 1992-03-06 Toshiba Corp Ecg signal cable for mri device
US5167233A (en) 1991-01-07 1992-12-01 Endosonics Corporation Dilating and imaging apparatus
US5178618A (en) 1991-01-16 1993-01-12 Brigham And Womens Hospital Method and device for recanalization of a body passageway
US5353798A (en) 1991-03-13 1994-10-11 Scimed Life Systems, Incorporated Intravascular imaging apparatus and methods for use and manufacture
AU1899292A (en) * 1991-05-24 1993-01-08 Ep Technologies Inc Combination monophasic action potential/ablation catheter and high-performance filter system
US5217010A (en) * 1991-05-28 1993-06-08 The Johns Hopkins University Ecg amplifier and cardiac pacemaker for use during magnetic resonance imaging
US5222506A (en) * 1991-07-29 1993-06-29 Medtronic, Inc. Implantable medical lead with electrical cross-over adaptor
US5211165A (en) 1991-09-03 1993-05-18 General Electric Company Tracking system to follow the position and orientation of a device with radiofrequency field gradients
US5307814A (en) 1991-09-17 1994-05-03 Medrad, Inc. Externally moveable intracavity probe for MRI imaging and spectroscopy
NL9201724A (en) 1991-10-07 1993-05-03 Medrad Inc En The Trustees Of PROBE FOR MRI IMAGING AND SPECTROSCOPY, ESPECIALLY IN THE CERVICAL AREA.
US5323778A (en) 1991-11-05 1994-06-28 Brigham & Women's Hospital Method and apparatus for magnetic resonance imaging and heating tissues
US5445150A (en) 1991-11-18 1995-08-29 General Electric Company Invasive system employing a radiofrequency tracking system
US5437277A (en) 1991-11-18 1995-08-01 General Electric Company Inductively coupled RF tracking system for use in invasive imaging of a living body
US5290233A (en) * 1991-12-13 1994-03-01 Campbell William P Hypodermic injection device
US5498261A (en) 1991-12-20 1996-03-12 Advanced Cardiovascular Systems, Inc. Thermal angioplasty system
US5428337A (en) * 1992-02-21 1995-06-27 Vlt Corporation Conductive winding
US5306291A (en) * 1992-02-26 1994-04-26 Angeion Corporation Optimal energy steering for an implantable defibrillator
US5318025A (en) 1992-04-01 1994-06-07 General Electric Company Tracking system to monitor the position and orientation of a device using multiplexed magnetic resonance detection
US5271400A (en) 1992-04-01 1993-12-21 General Electric Company Tracking system to monitor the position and orientation of a device using magnetic resonance detection of a sample contained within the device
US5307808A (en) 1992-04-01 1994-05-03 General Electric Company Tracking system and pulse sequences to monitor the position of a device using magnetic resonance
US5578008A (en) 1992-04-22 1996-11-26 Japan Crescent, Inc. Heated balloon catheter
US5190046A (en) 1992-05-01 1993-03-02 Shturman Cardiology Systems, Inc. Ultrasound imaging balloon catheter
CN1079408A (en) * 1992-05-27 1993-12-15 哈尔滨工业大学 Medical microwave effector
US5352979A (en) 1992-08-07 1994-10-04 Conturo Thomas E Magnetic resonance imaging with contrast enhanced phase angle reconstruction
IL106779A0 (en) 1992-09-11 1993-12-08 Magna Lab Inc Permanent magnetic structure
US5662108A (en) 1992-09-23 1997-09-02 Endocardial Solutions, Inc. Electrophysiology mapping system
US5647361A (en) 1992-09-28 1997-07-15 Fonar Corporation Magnetic resonance imaging method and apparatus for guiding invasive therapy
WO1994007446A1 (en) 1992-10-05 1994-04-14 Boston Scientific Corporation Device and method for heating tissue
US5323776A (en) 1992-10-15 1994-06-28 Picker International, Inc. MRI compatible pulse oximetry system
NL9201965A (en) 1992-11-10 1994-06-01 Draeger Med Electronics Bv Invasive MRI transducer.
US5334193A (en) 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
US5365928A (en) 1992-11-25 1994-11-22 Medrad, Inc. Endorectal probe with planar moveable MRI coil
US5300108A (en) * 1993-01-05 1994-04-05 Telectronics Pacing Systems, Inc. Active fixation lead with a dual-pitch, free spinning compound screw
US5433717A (en) 1993-03-23 1995-07-18 The Regents Of The University Of California Magnetic resonance imaging assisted cryosurgery
US5333095A (en) * 1993-05-03 1994-07-26 Maxwell Laboratories, Inc., Sierra Capacitor Filter Division Feedthrough filter capacitor assembly for human implant
US5840031A (en) 1993-07-01 1998-11-24 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials and ablating tissue
CA2165829A1 (en) 1993-07-01 1995-01-19 John E. Abele Imaging, electrical potential sensing, and ablation catheters
US5391199A (en) 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5363845A (en) * 1993-08-13 1994-11-15 Medical Advances, Inc. Breast coil for magnetic resonance imaging
US5466254A (en) * 1993-09-22 1995-11-14 Pacesetter, Inc. Coronary sinus lead with atrial sensing capability
DE4333545C1 (en) * 1993-10-01 1995-02-23 Clemens Moll Atraumatic needle for surgical suturing machines
US5404880A (en) * 1993-10-05 1995-04-11 Board Of Regents Of University Of Nebraska Scatter diagram analysis system and method for discriminating ventricular tachyarrhythmias
US5558091A (en) 1993-10-06 1996-09-24 Biosense, Inc. Magnetic determination of position and orientation
US5507743A (en) 1993-11-08 1996-04-16 Zomed International Coiled RF electrode treatment apparatus
US5400787A (en) 1993-11-24 1995-03-28 Magna-Lab, Inc. Inflatable magnetic resonance imaging sensing coil assembly positioning and retaining device and method for using the same
DK0673621T3 (en) 1994-03-18 1998-11-30 Schneider Europ Gmbh Magnetic resonance display system to follow a medical device
US5447156A (en) 1994-04-04 1995-09-05 General Electric Company Magnetic resonance (MR) active invasive devices for the generation of selective MR angiograms
US5476483A (en) * 1994-06-10 1995-12-19 Pacesetter, Inc. System and method for modulating the base rate during sleep for a rate-responsive cardiac pacemaker
US5782891A (en) * 1994-06-16 1998-07-21 Medtronic, Inc. Implantable ceramic enclosure for pacing, neurological, and other medical applications in the human body
US5419325A (en) 1994-06-23 1995-05-30 General Electric Company Magnetic resonance (MR) angiography using a faraday catheter
US5462055A (en) 1994-08-23 1995-10-31 Northrop Grumman Corporation MRI/hyperthermia dual function antenna system
US5827997A (en) 1994-09-30 1998-10-27 Chung; Deborah D. L. Metal filaments for electromagnetic interference shielding
US5735884A (en) * 1994-10-04 1998-04-07 Medtronic, Inc. Filtered feedthrough assembly for implantable medical device
US5512825A (en) 1994-11-25 1996-04-30 The Johns Hopkins University Method of minimizing dead-periods in magnetic resonance imaging pulse sequences and associated apparatus
US6690963B2 (en) 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
US5540959A (en) 1995-02-21 1996-07-30 Howard J. Greenwald Process for preparing a coated substrate
US5630426A (en) 1995-03-03 1997-05-20 Neovision Corporation Apparatus and method for characterization and treatment of tumors
US5769800A (en) 1995-03-15 1998-06-23 The Johns Hopkins University Inc. Vest design for a cardiopulmonary resuscitation system
US5545201A (en) * 1995-03-29 1996-08-13 Pacesetter, Inc. Bipolar active fixation lead for sensing and pacing the heart
US5699801A (en) 1995-06-01 1997-12-23 The Johns Hopkins University Method of internal magnetic resonance imaging and spectroscopic analysis and associated apparatus
US5722998A (en) * 1995-06-07 1998-03-03 Intermedics, Inc. Apparatus and method for the control of an implantable medical device
US5697958A (en) * 1995-06-07 1997-12-16 Intermedics, Inc. Electromagnetic noise detector for implantable medical devices
JPH098506A (en) * 1995-06-21 1997-01-10 Matsushita Electric Ind Co Ltd Band stop filter
US5629622A (en) * 1995-07-11 1997-05-13 Hewlett-Packard Company Magnetic field sense system for the protection of connected electronic devices
JPH0994238A (en) 1995-09-29 1997-04-08 Olympus Optical Co Ltd High-frequency treating apparatus
GB9522403D0 (en) * 1995-11-01 1996-01-03 Hoechst Roussel Ltd Intravaginal drug delivery device
US5590657A (en) 1995-11-06 1997-01-07 The Regents Of The University Of Michigan Phased array ultrasound system and method for cardiac ablation
US5685878A (en) 1995-11-13 1997-11-11 C.R. Bard, Inc. Snap fit distal assembly for an ablation catheter
US5620476A (en) * 1995-11-13 1997-04-15 Pacesetter, Inc. Implantable medical device having shielded and filtered feedthrough assembly and methods for making such assembly
DE69634035T2 (en) 1995-11-24 2005-12-08 Koninklijke Philips Electronics N.V. SYSTEM FOR IMAGING BY MAGNETIC RESONANCE AND CATHETER FOR PROCEDURE PROCEDURE
US5751539A (en) * 1996-04-30 1998-05-12 Maxwell Laboratories, Inc. EMI filter for human implantable heart defibrillators and pacemakers
US5978204A (en) * 1995-11-27 1999-11-02 Maxwell Energy Products, Inc. Capacitor with dual element electrode plates
US5800467A (en) * 1995-12-15 1998-09-01 Pacesetter, Inc. Cardio-synchronous impedance measurement system for an implantable stimulation device
US5741321A (en) * 1996-01-11 1998-04-21 Medtronic, Inc. Active fixation medical electrical lead having improved turning tool
US5814076A (en) 1996-02-09 1998-09-29 Cardiac Control Systems, Inc. Apparatus for improved cardiac pacing and sensing using extracardiac indifferent electrode configurations
ES2212079T3 (en) 1996-02-15 2004-07-16 Biosense, Inc. POSITION MARKER PROBE.
US5938692A (en) 1996-03-26 1999-08-17 Urologix, Inc. Voltage controlled variable tuning antenna
EP0803738B1 (en) 1996-04-24 2003-04-02 Philips Corporate Intellectual Property GmbH Method of synthesizing an image for producing a combination image from input images
US6898454B2 (en) * 1996-04-25 2005-05-24 The Johns Hopkins University Systems and methods for evaluating the urethra and the periurethral tissues
US7236816B2 (en) * 1996-04-25 2007-06-26 Johns Hopkins University Biopsy and sampling needle antennas for magnetic resonance imaging-guided biopsies
US6263229B1 (en) 1998-11-13 2001-07-17 Johns Hopkins University School Of Medicine Miniature magnetic resonance catheter coils and related methods
US5928145A (en) 1996-04-25 1999-07-27 The Johns Hopkins University Method of magnetic resonance imaging and spectroscopic analysis and associated apparatus employing a loopless antenna
US6675033B1 (en) * 1999-04-15 2004-01-06 Johns Hopkins University School Of Medicine Magnetic resonance imaging guidewire probe
US5824026A (en) * 1996-06-12 1998-10-20 The Spectranetics Corporation Catheter for delivery of electric energy and a process for manufacturing same
US5716390A (en) * 1996-08-09 1998-02-10 Pacesetter, Inc. Reduced diameter active fixation pacing lead using concentric interleaved coils
EP0864102B1 (en) 1996-09-02 2005-09-21 Philips Electronics N.V. Invasive device for use in a magnetic resonance imaging apparatus
US5891134A (en) 1996-09-24 1999-04-06 Goble; Colin System and method for applying thermal energy to tissue
US5851226A (en) * 1996-10-22 1998-12-22 Medtronic, Inc. Temporary transvenous endocardial lead
US5779669A (en) 1996-10-28 1998-07-14 C. R. Bard, Inc. Steerable catheter with fixed curve
EP0846959B1 (en) 1996-12-05 2006-10-18 Philips Medical Systems (Cleveland), Inc. Nuclear magnetic resonance radio frequency coils
US5963856A (en) 1997-01-03 1999-10-05 Lucent Technologies Inc Wireless receiver including tunable RF bandpass filter
US5775338A (en) 1997-01-10 1998-07-07 Scimed Life Systems, Inc. Heated perfusion balloon for reduction of restenosis
US5879347A (en) 1997-04-25 1999-03-09 Gynecare, Inc. Apparatus for controlled thermal treatment of tissue
US5759202A (en) * 1997-04-28 1998-06-02 Sulzer Intermedics Inc. Endocardial lead with lateral active fixation
US6198972B1 (en) * 1997-04-30 2001-03-06 Medtronic, Inc. Control of externally induced current in implantable medical devices
US6026316A (en) 1997-05-15 2000-02-15 Regents Of The University Of Minnesota Method and apparatus for use with MR imaging
US6272370B1 (en) 1998-08-07 2001-08-07 The Regents Of University Of Minnesota MR-visible medical device for neurological interventions using nonlinear magnetic stereotaxis and a method imaging
AU7594798A (en) 1997-05-21 1998-12-11 Cardiac M.R.I. Inc. Cardiac mri with an internal receiving coil and an external receiving coil
DE69840444D1 (en) 1997-05-23 2009-02-26 Prorhythm Inc DISMISSABLE FOCUSING ULTRASOUND APPLICATOR OF HIGH INTENSITY
US6171241B1 (en) 1997-06-12 2001-01-09 The Johns Hopkins University School Of Medicine Method for measuring myocardial motion and the like
EP0884024B1 (en) 1997-06-13 2003-08-13 Sulzer Osypka GmbH Multipolar ablation catheter
US5896267A (en) 1997-07-10 1999-04-20 Greatbatch-Hittman, Inc. Substrate mounted filter for feedthrough devices
US5964705A (en) * 1997-08-22 1999-10-12 Image-Guided Drug Delivery System, Inc. MR-compatible medical devices
US5905627A (en) * 1997-09-10 1999-05-18 Maxwell Energy Products, Inc. Internally grounded feedthrough filter capacitor
US6052614A (en) * 1997-09-12 2000-04-18 Magnetic Resonance Equipment Corp. Electrocardiograph sensor and sensor control system for use with magnetic resonance imaging machines
GB2330202A (en) 1997-10-07 1999-04-14 Marconi Gec Ltd Flexible MRI antenna for intra-cavity use
DE19746735C2 (en) 1997-10-13 2003-11-06 Simag Gmbh Systeme Und Instr F NMR imaging method for the display, position determination or functional control of a device inserted into an examination object and device for use in such a method
US6275369B1 (en) * 1997-11-13 2001-08-14 Robert A. Stevenson EMI filter feedthough terminal assembly having a capture flange to facilitate automated assembly
US6008980A (en) * 1997-11-13 1999-12-28 Maxwell Energy Products, Inc. Hermetically sealed EMI feedthrough filter capacitor for human implant and other applications
US6643903B2 (en) * 1997-11-13 2003-11-11 Greatbatch-Sierra, Inc. Process for manufacturing an EMI filter feedthrough terminal assembly
US6129670A (en) 1997-11-24 2000-10-10 Burdette Medical Systems Real time brachytherapy spatial registration and visualization system
US6031375A (en) 1997-11-26 2000-02-29 The Johns Hopkins University Method of magnetic resonance analysis employing cylindrical coordinates and an associated apparatus
KR100279753B1 (en) * 1997-12-03 2001-03-02 정선종 Inductor manufacturing method using semiconductor integrated circuit manufacturing process
DE19755782A1 (en) * 1997-12-16 1999-06-17 Philips Patentverwaltung Magnetic resonance device
US6141594A (en) * 1998-07-22 2000-10-31 Cardiac Pacemakers, Inc. Single pass lead and system with active and passive fixation elements
US6011995A (en) 1997-12-29 2000-01-04 The Regents Of The University Of California Endovascular device for hyperthermia and angioplasty and method for using the same
US5959829A (en) * 1998-02-18 1999-09-28 Maxwell Energy Products, Inc. Chip capacitor electromagnetic interference filter
US6045532A (en) 1998-02-20 2000-04-04 Arthrocare Corporation Systems and methods for electrosurgical treatment of tissue in the brain and spinal cord
US6055457A (en) * 1998-03-13 2000-04-25 Medtronic, Inc. Single pass A-V lead with active fixation device
US5973906A (en) * 1998-03-17 1999-10-26 Maxwell Energy Products, Inc. Chip capacitors and chip capacitor electromagnetic interference filters
US6027500A (en) 1998-05-05 2000-02-22 Buckles; David S. Cardiac ablation system
US6101417A (en) * 1998-05-12 2000-08-08 Pacesetter, Inc. Implantable electrical device incorporating a magnetoresistive magnetic field sensor
US6428537B1 (en) 1998-05-22 2002-08-06 Scimed Life Systems, Inc. Electrophysiological treatment methods and apparatus employing high voltage pulse to render tissue temporarily unresponsive
US6238390B1 (en) 1998-05-27 2001-05-29 Irvine Biomedical, Inc. Ablation catheter system having linear lesion capabilities
WO2000010456A1 (en) 1998-08-02 2000-03-02 Super Dimension Ltd. Intrabody navigation system for medical applications
SE9802928D0 (en) * 1998-08-31 1998-08-31 Pacesetter Ab Device in connection with pacers I
US6424234B1 (en) * 1998-09-18 2002-07-23 Greatbatch-Sierra, Inc. Electromagnetic interference (emi) filter and process for providing electromagnetic compatibility of an electronic device while in the presence of an electromagnetic emitter operating at the same frequency
US6408202B1 (en) 1998-11-03 2002-06-18 The Johns Hopkins University Transesophageal magnetic resonance analysis method and apparatus
US8244370B2 (en) 2001-04-13 2012-08-14 Greatbatch Ltd. Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices
US9061139B2 (en) 1998-11-04 2015-06-23 Greatbatch Ltd. Implantable lead with a band stop filter having a capacitor in parallel with an inductor embedded in a dielectric body
US6701176B1 (en) * 1998-11-04 2004-03-02 Johns Hopkins University School Of Medicine Magnetic-resonance-guided imaging, electrophysiology, and ablation
US7844319B2 (en) * 1998-11-04 2010-11-30 Susil Robert C Systems and methods for magnetic-resonance-guided interventional procedures
US6390996B1 (en) 1998-11-09 2002-05-21 The Johns Hopkins University CPR chest compression monitor
US6284971B1 (en) 1998-11-25 2001-09-04 Johns Hopkins University School Of Medicine Enhanced safety coaxial cables
US6159560A (en) * 1998-11-25 2000-12-12 Stevenson; Robert A. Process for depositing a metal coating on a metallic component of an electrical structure
US6188219B1 (en) 1999-01-22 2001-02-13 The Johns Hopkins University Magnetic resonance imaging method and apparatus and method of calibrating the same
SE9900682D0 (en) * 1999-02-25 1999-02-25 Pacesetter Ab Implantable tissue stimulating device
WO2000055875A1 (en) * 1999-03-16 2000-09-21 Maxwell Energy Products Low inductance four terminal capacitor lead frame
SE9901032D0 (en) * 1999-03-22 1999-03-22 Pacesetter Ab Medical electrode lead
US7848788B2 (en) 1999-04-15 2010-12-07 The Johns Hopkins University Magnetic resonance imaging probe
WO2000062672A1 (en) 1999-04-15 2000-10-26 Surgi-Vision Methods for in vivo magnetic resonance imaging
US6633780B1 (en) 1999-06-07 2003-10-14 The Johns Hopkins University Cardiac shock electrode system and corresponding implantable defibrillator system
US20040015079A1 (en) 1999-06-22 2004-01-22 Teratech Corporation Ultrasound probe with integrated electronics
JP3480384B2 (en) * 1999-09-10 2003-12-15 株式会社村田製作所 Laminated LC resonator and laminated LC filter
CA2398967A1 (en) * 2000-02-01 2001-08-09 Albert C. Lardo Magnetic resonance imaging transseptal needle antenna
SE0000548D0 (en) * 2000-02-18 2000-02-18 Pacesetter Ab Electrode
US6414835B1 (en) * 2000-03-01 2002-07-02 Medtronic, Inc. Capacitive filtered feedthrough array for an implantable medical device
WO2001073461A2 (en) 2000-03-24 2001-10-04 Surgi-Vision Endoluminal mri probe
SE0001112D0 (en) * 2000-03-29 2000-03-29 Pacesetter Ab Implantable heart stimulator
US6925328B2 (en) * 2000-04-20 2005-08-02 Biophan Technologies, Inc. MRI-compatible implantable device
US6795730B2 (en) * 2000-04-20 2004-09-21 Biophan Technologies, Inc. MRI-resistant implantable device
US6459935B1 (en) * 2000-07-13 2002-10-01 Avx Corporation Integrated filter feed-thru
US6493591B1 (en) * 2000-07-19 2002-12-10 Medtronic, Inc. Implantable active fixation lead with guidewire tip
US6868288B2 (en) * 2000-08-26 2005-03-15 Medtronic, Inc. Implanted medical device telemetry using integrated thin film bulk acoustic resonator filtering
US6539253B2 (en) * 2000-08-26 2003-03-25 Medtronic, Inc. Implantable medical device incorporating integrated circuit notch filters
US6535766B1 (en) * 2000-08-26 2003-03-18 Medtronic, Inc. Implanted medical device telemetry using integrated microelectromechanical filtering
US6529103B1 (en) * 2000-09-07 2003-03-04 Greatbatch-Sierra, Inc. Internally grounded feedthrough filter capacitor with improved ground plane design for human implant and other applications
US6882248B2 (en) * 2000-09-07 2005-04-19 Greatbatch-Sierra, Inc. EMI filtered connectors using internally grounded feedthrough capacitors
SE0003341D0 (en) * 2000-09-18 2000-09-18 St Jude Medical A coating method
US6654628B1 (en) 2000-11-03 2003-11-25 The Johns Hopkins University Methods to assess vascular endothelial function
US6567703B1 (en) * 2000-11-08 2003-05-20 Medtronic, Inc. Implantable medical device incorporating miniaturized circuit module
SE0004240D0 (en) * 2000-11-17 2000-11-17 St Jude Medical A cardiac stimulating device
WO2002040088A2 (en) 2000-11-20 2002-05-23 Surgi-Vision, Inc. Connector and guidewire connectable thereto
US6556009B2 (en) 2000-12-11 2003-04-29 The United States Of America As Represented By The Department Of Health And Human Services Accelerated magnetic resonance imaging using a parallel spatial filter
JP2002205966A (en) * 2001-01-11 2002-07-23 Idemitsu Petrochem Co Ltd Method for producing bisphenol a
US6952613B2 (en) * 2001-01-31 2005-10-04 Medtronic, Inc. Implantable gastrointestinal lead with active fixation
US6876885B2 (en) * 2001-01-31 2005-04-05 Medtronic, Inc. Implantable bifurcated gastrointestinal lead with active fixation
US6949929B2 (en) * 2003-06-24 2005-09-27 Biophan Technologies, Inc. Magnetic resonance imaging interference immune device
US6829509B1 (en) 2001-02-20 2004-12-07 Biophan Technologies, Inc. Electromagnetic interference immune tissue invasive system
US20020116029A1 (en) 2001-02-20 2002-08-22 Victor Miller MRI-compatible pacemaker with power carrying photonic catheter and isolated pulse generating electronics providing VOO functionality
US20070168006A1 (en) 2001-02-20 2007-07-19 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US6362012B1 (en) * 2001-03-05 2002-03-26 Taiwan Semiconductor Manufacturing Company Structure of merged vertical capacitor inside spiral conductor for RF and mixed-signal applications
US6771067B2 (en) 2001-04-03 2004-08-03 The United States Of America As Represented By The Department Of Health And Human Services Ghost artifact cancellation using phased array processing
US8600519B2 (en) 2001-04-13 2013-12-03 Greatbatch Ltd. Transient voltage/current protection system for electronic circuits associated with implanted leads
US7916013B2 (en) 2005-03-21 2011-03-29 Greatbatch Ltd. RFID detection and identification system for implantable medical devices
US8224440B2 (en) 2006-11-09 2012-07-17 Greatbatch Ltd. Electrically isolating electrical components in a medical electrical lead with an active fixation electrode
US20090163980A1 (en) 2007-12-21 2009-06-25 Greatbatch Ltd. Switch for turning off therapy delivery of an active implantable medical device during mri scans
US8849403B2 (en) 2001-04-13 2014-09-30 Greatbatch Ltd. Active implantable medical system having EMI shielded lead
US8219208B2 (en) 2001-04-13 2012-07-10 Greatbatch Ltd. Frequency selective passive component networks for active implantable medical devices utilizing an energy dissipating surface
US7787958B2 (en) 2001-04-13 2010-08-31 Greatbatch Ltd. RFID detection and identification system for implantable medical lead systems
US8457760B2 (en) 2001-04-13 2013-06-04 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment
US7899551B2 (en) 2001-04-13 2011-03-01 Greatbatch Ltd. Medical lead system utilizing electromagnetic bandstop filters
US8977355B2 (en) 2001-04-13 2015-03-10 Greatbatch Ltd. EMI filter employing a capacitor and an inductor tank circuit having optimum component values
US8437865B2 (en) 2001-04-13 2013-05-07 Greatbatch Ltd. Shielded network for an active medical device implantable lead
US7853325B2 (en) 2001-04-13 2010-12-14 Greatbatch Ltd. Cylindrical bandstop filters for medical lead systems
US8000801B2 (en) 2001-04-13 2011-08-16 Greatbatch Ltd. System for terminating abandoned implanted leads to minimize heating in high power electromagnetic field environments
US20070088416A1 (en) 2001-04-13 2007-04-19 Surgi-Vision, Inc. Mri compatible medical leads
CA2482202C (en) 2001-04-13 2012-07-03 Surgi-Vision, Inc. Systems and methods for magnetic-resonance-guided interventional procedures
US8509913B2 (en) 2001-04-13 2013-08-13 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment
US8989870B2 (en) 2001-04-13 2015-03-24 Greatbatch Ltd. Tuned energy balanced system for minimizing heating and/or to provide EMI protection of implanted leads in a high power electromagnetic field environment
US20090163981A1 (en) 2007-12-21 2009-06-25 Greatbatch Ltd. Multiplexer for selection of an mri compatible band stop filter or switch placed in series with a particular therapy electrode of an active implantable medical device
US20030028904A1 (en) * 2001-04-19 2003-02-06 Gumienny Tina L. Genes involved in engulfment of dying cells and cell migration
US6417474B1 (en) * 2001-05-15 2002-07-09 Eaton Corporation Electrical switching apparatus having an arc runner with an elongated raised ridge
US6456481B1 (en) * 2001-05-31 2002-09-24 Greatbatch-Sierra, Inc. Integrated EMI filter-DC blocking capacitor
US6567259B2 (en) * 2001-05-31 2003-05-20 Greatbatch-Sierra, Inc. Monolithic ceramic capacitor with barium titinate dielectric curie point optimized for active implantable medical devices operating at 37° C.
US6687550B1 (en) * 2001-06-01 2004-02-03 Pacesetter, Inc. Active fixation electrode lead having an electrical coupling mechanism
US6697675B1 (en) * 2001-06-14 2004-02-24 Pacesetter, Inc. Laser welded joint for implantable lead
US6892086B2 (en) * 2001-07-11 2005-05-10 Michael J. Russell Medical electrode for preventing the passage of harmful current to a patient
US6675036B2 (en) * 2001-07-18 2004-01-06 Ge Medical Systems, Inc. Diagnostic device including a method and apparatus for bio-potential noise cancellation utilizing the patient's respiratory signal
US7039455B1 (en) * 2001-10-09 2006-05-02 Medrad, Inc. Apparatus and method for removing magnetic resonance imaging-induced noise from ECG signals
US6871091B2 (en) 2001-10-31 2005-03-22 Medtronic, Inc. Apparatus and method for shunting induced currents in an electrical lead
US6944489B2 (en) 2001-10-31 2005-09-13 Medtronic, Inc. Method and apparatus for shunting induced currents in an electrical lead
US7076283B2 (en) * 2001-10-31 2006-07-11 Medtronic, Inc. Device for sensing cardiac activity in an implantable medical device in the presence of magnetic resonance imaging interference
US6950696B2 (en) * 2001-11-27 2005-09-27 St. Jude Medical Ab Method and circuit for detecting cardiac rhythm abnormalities by analyzing time differences between unipolar signals from a lead with a multi-electrode tip
US6728575B2 (en) * 2001-11-30 2004-04-27 St. Jude Medical Ab Method and circuit for detecting cardiac rhythm abnormalities using a differential signal from a lead with a multi-electrode tip
US6506972B1 (en) * 2002-01-22 2003-01-14 Nanoset, Llc Magnetically shielded conductor
US7091412B2 (en) * 2002-03-04 2006-08-15 Nanoset, Llc Magnetically shielded assembly
US20040210289A1 (en) 2002-03-04 2004-10-21 Xingwu Wang Novel nanomagnetic particles
US20050247472A1 (en) * 2002-01-22 2005-11-10 Helfer Jeffrey L Magnetically shielded conductor
US7162302B2 (en) * 2002-03-04 2007-01-09 Nanoset Llc Magnetically shielded assembly
US6864418B2 (en) * 2002-12-18 2005-03-08 Nanoset, Llc Nanomagnetically shielded substrate
US20030144706A1 (en) * 2002-01-29 2003-07-31 Funke Hermann D. Method and apparatus for controlling an implantable medical device in response to the presence of a magnetic field and/or high frequency radiation interference signals
JP4326340B2 (en) * 2002-01-29 2009-09-02 メドトロニック・インコーポレーテッド Medical electrical leads
US7082328B2 (en) * 2002-01-29 2006-07-25 Medtronic, Inc. Methods and apparatus for controlling a pacing system in the presence of EMI
US20030144719A1 (en) * 2002-01-29 2003-07-31 Zeijlemaker Volkert A. Method and apparatus for shielding wire for MRI resistant electrode systems
US6985775B2 (en) 2002-01-29 2006-01-10 Medtronic, Inc. Method and apparatus for shunting induced currents in an electrical lead
US20030144718A1 (en) 2002-01-29 2003-07-31 Zeijlemaker Volkert A. Method and apparatus for shielding coating for MRI resistant electrode systems
US6937906B2 (en) * 2002-01-29 2005-08-30 Medtronic, Inc. Method and apparatus for detecting static magnetic fields
US20030144720A1 (en) * 2002-01-29 2003-07-31 Villaseca Eduardo H. Electromagnetic trap for a lead
US7050855B2 (en) 2002-01-29 2006-05-23 Medtronic, Inc. Medical implantable system for reducing magnetic resonance effects
WO2003073449A1 (en) * 2002-02-28 2003-09-04 Greatbatch-Sierra, Inc. Emi feedthrough filter terminal assembly for human implant applications utilizing oxide resistant biostable conductive pads for reliable electrical attachments
US6985347B2 (en) 2002-02-28 2006-01-10 Greatbatch-Sierra, Inc. EMI filter capacitors designed for direct body fluid exposure
US8660645B2 (en) 2002-02-28 2014-02-25 Greatbatch Ltd. Electronic network components utilizing biocompatible conductive adhesives for direct body fluid exposure
US7917219B2 (en) 2002-02-28 2011-03-29 Greatbatch Ltd. Passive electronic network components designed for direct body fluid exposure
US7127294B1 (en) * 2002-12-18 2006-10-24 Nanoset Llc Magnetically shielded assembly
US7422568B2 (en) 2002-04-01 2008-09-09 The Johns Hopkins University Device, systems and methods for localized heating of a vessel and/or in combination with MR/NMR imaging of the vessel and surrounding tissue
US8396568B2 (en) 2002-04-11 2013-03-12 Medtronic, Inc. Medical electrical lead body designs incorporating energy dissipating shunt
US20030204217A1 (en) * 2002-04-25 2003-10-30 Wilson Greatbatch MRI-safe cardiac stimulation device
JP4071536B2 (en) 2002-05-07 2008-04-02 富士通株式会社 Test apparatus for file apparatus and test method in test apparatus for file apparatus
AU2003249665B2 (en) * 2002-05-29 2008-04-03 Surgi-Vision, Inc. Magnetic resonance probes
US6675779B2 (en) * 2002-06-13 2004-01-13 Stant Manufacturing Inc. Dual float valve for fuel tank vent with liquid carryover filter
US20040018773A1 (en) * 2002-07-29 2004-01-29 Fci Americas Technology, Inc. Printed circuit board assembly having a BGA connection
US6675780B1 (en) * 2002-09-24 2004-01-13 Antonius G. Wendels Fuel saving and pollution emission reduction system for internal combustion engines
US7103418B2 (en) * 2002-10-02 2006-09-05 Medtronic, Inc. Active fluid delivery catheter
US7164950B2 (en) * 2002-10-30 2007-01-16 Pacesetter, Inc. Implantable stimulation device with isolating system for minimizing magnetic induction
US7623335B2 (en) 2003-02-27 2009-11-24 Greatbatch-Sierra, Inc Hermetic feedthrough terminal assembly with wire bond pads for human implant applications
US6999818B2 (en) 2003-05-23 2006-02-14 Greatbatch-Sierra, Inc. Inductor capacitor EMI filter for human implant applications
US7038900B2 (en) 2003-02-27 2006-05-02 Greatbatch-Sierra, Inc. EMI filter terminal assembly with wire bond pads for human implant applications
US6987660B2 (en) 2003-02-27 2006-01-17 Greatbatch-Sierra, Inc. Spring contact system for EMI filtered hermetic seals for active implantable medical devices
US20040199069A1 (en) * 2003-04-02 2004-10-07 Connelly Patrick R. Device and method for preventing magnetic resonance imaging induced damage
US7039950B2 (en) 2003-04-21 2006-05-02 Ipolicy Networks, Inc. System and method for network quality of service protection on security breach detection
US7388378B2 (en) * 2003-06-24 2008-06-17 Medtronic, Inc. Magnetic resonance imaging interference immune device
US7839146B2 (en) 2003-06-24 2010-11-23 Medtronic, Inc. Magnetic resonance imaging interference immune device
SE0301980D0 (en) 2003-07-03 2003-07-03 St Jude Medical Implantable medical device
US7092766B1 (en) * 2003-11-19 2006-08-15 Pacesetter, Inc. Active fixation lead with multiple density
US7765005B2 (en) * 2004-02-12 2010-07-27 Greatbatch Ltd. Apparatus and process for reducing the susceptability of active implantable medical devices to medical procedures such as magnetic resonance imaging
US7505814B2 (en) * 2004-03-26 2009-03-17 Pacesetter, Inc. System and method for evaluating heart failure based on ventricular end-diastolic volume using an implantable medical device
US8989840B2 (en) * 2004-03-30 2015-03-24 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US7844343B2 (en) * 2004-03-30 2010-11-30 Medtronic, Inc. MRI-safe implantable medical device
US7877150B2 (en) 2004-03-30 2011-01-25 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US7844344B2 (en) * 2004-03-30 2010-11-30 Medtronic, Inc. MRI-safe implantable lead
WO2005102447A1 (en) 2004-03-30 2005-11-03 Medtronic, Inc. Mri-safe implantable lead
US7174219B2 (en) 2004-03-30 2007-02-06 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US9155877B2 (en) * 2004-03-30 2015-10-13 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US7489495B2 (en) * 2004-04-15 2009-02-10 Greatbatch-Sierra, Inc. Apparatus and process for reducing the susceptibility of active implantable medical devices to medical procedures such as magnetic resonance imaging
US7035076B1 (en) 2005-08-15 2006-04-25 Greatbatch-Sierra, Inc. Feedthrough filter capacitor assembly with internally grounded hermetic insulator
US7253615B2 (en) * 2004-05-05 2007-08-07 General Electric Company Microelectromechanical system sensor and method for using
US7035077B2 (en) 2004-05-10 2006-04-25 Greatbatch-Sierra, Inc. Device to protect an active implantable medical device feedthrough capacitor from stray laser weld strikes, and related manufacturing process
US7912552B2 (en) * 2004-07-12 2011-03-22 Medtronic, Inc. Medical electrical device including novel means for reducing high frequency electromagnetic field-induced tissue heating
WO2006015040A1 (en) * 2004-07-27 2006-02-09 The Cleveland Clinic Foundation Integrated system and method for mri-safe implantable devices
EP1776040A4 (en) 2004-08-09 2012-02-15 Univ Johns Hopkins Implantable mri compatible stimulation leads and antennas and related systems and methods
US8041433B2 (en) * 2004-08-20 2011-10-18 Medtronic, Inc. Magnetic resonance imaging interference immune device
US7148783B2 (en) 2004-11-05 2006-12-12 Harris Corporation Microwave tunable inductor and associated methods
US7369898B1 (en) 2004-12-22 2008-05-06 Pacesetter, Inc. System and method for responding to pulsed gradient magnetic fields using an implantable medical device
US8280526B2 (en) * 2005-02-01 2012-10-02 Medtronic, Inc. Extensible implantable medical lead
US7914437B2 (en) * 2005-02-04 2011-03-29 Ams Research Corporation Transobturator methods for installing sling to treat incontinence, and related devices
US8160705B2 (en) 2005-02-23 2012-04-17 Greatbatch Ltd Shielded RF distance telemetry pin wiring for active implantable medical devices
US7136273B2 (en) 2005-03-30 2006-11-14 Greatbatch-Sierra, Inc. Hybrid spring contact system for EMI filtered hermetic seals for active implantable medical devices
US8825180B2 (en) * 2005-03-31 2014-09-02 Medtronic, Inc. Medical electrical lead with co-radial multi-conductor coil
US7853332B2 (en) * 2005-04-29 2010-12-14 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US8027736B2 (en) * 2005-04-29 2011-09-27 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US7561906B2 (en) * 2005-05-04 2009-07-14 Boston Scientific Neuromodulation Corporation Electrical lead for an electronic device such as an implantable device
US7529590B2 (en) 2005-05-27 2009-05-05 Medtronic, Inc. Electromagnetic interference immune pacing/defibrillation lead
US7555350B2 (en) 2005-05-27 2009-06-30 Medtronic, Inc. Electromagnetic interference immune pacing/defibrillation lead
US7250826B2 (en) * 2005-07-19 2007-07-31 Lctank Llc Mutual inductance in transformer based tank circuitry
US20070083244A1 (en) 2005-10-06 2007-04-12 Greatbatch-Sierra, Inc. Process for tuning an emi filter to reduce the amount of heat generated in implanted lead wires during medical procedures such as magnetic resonance imaging
EP1933933B1 (en) 2005-10-21 2018-11-28 MRI Interventions, Inc. Mri-safe high impedance lead systems
US7917213B2 (en) 2005-11-04 2011-03-29 Kenergy, Inc. MRI compatible implanted electronic medical lead
US8255054B2 (en) 2005-11-04 2012-08-28 Kenergy, Inc. MRI compatible implanted electronic medical device
US8233985B2 (en) 2005-11-04 2012-07-31 Kenergy, Inc. MRI compatible implanted electronic medical device with power and data communication capability
WO2007102893A2 (en) * 2005-11-11 2007-09-13 Greatbatch Ltd. Tank filters placed in series with the lead wires or circuits of active medical devices to enhance mri compatibility
US7853324B2 (en) 2005-11-11 2010-12-14 Greatbatch Ltd. Tank filters utilizing very low K materials, in series with lead wires or circuits of active medical devices to enhance MRI compatibility
WO2007117302A2 (en) 2005-11-11 2007-10-18 Greatbatch Ltd. Low loss band pass filter for rf distance telemetry pin antennas of active implantable medical devices
US8253555B2 (en) 2006-01-25 2012-08-28 Greatbatch Ltd. Miniature hermetically sealed RFID microelectronic chip connected to a biocompatible RFID antenna for use in conjunction with an AIMD
US8115600B2 (en) 2008-11-19 2012-02-14 Greatbatch Ltd. RFID detection and identification system including an RFID reader having a limited transmit time and a time-out period to protect a medical device against RFID-associated electromagnetic interference
US8248232B2 (en) 2006-01-25 2012-08-21 Greatbatch Ltd. Hermetically sealed RFID microelectronic chip connected to a biocompatible RFID antenna
US20100191306A1 (en) 2006-01-25 2010-07-29 Greatbatch Ltd. Transient voltage suppression circuit for an implanted rfid chip
US9901731B2 (en) 2006-01-31 2018-02-27 Medtronic, Inc. Medical electrical lead having improved inductance
US9037257B2 (en) 2006-04-07 2015-05-19 Medtronic, Inc. Resonance tuning module for implantable devices and leads
US7933662B2 (en) 2006-04-26 2011-04-26 Marshall Mark T Medical electrical lead including an inductance augmenter
US7729770B2 (en) 2006-04-26 2010-06-01 Medtronic, Inc. Isolation circuitry and method for gradient field safety in an implantable medical device
US7623336B2 (en) 2006-06-01 2009-11-24 Greatbatch Ltd. Feedthrough capacitor having reduced self resonance insertion loss dip
US7702387B2 (en) 2006-06-08 2010-04-20 Greatbatch Ltd. Tank filters adaptable for placement with a guide wire, in series with the lead wires or circuits of active medical devices to enhance MRI compatibility
US9042999B2 (en) 2006-06-08 2015-05-26 Greatbatch Ltd. Low loss band pass filter for RF distance telemetry pin antennas of active implantable medical devices
US20070299490A1 (en) 2006-06-23 2007-12-27 Zhongping Yang Radiofrequency (rf)-shunted sleeve head and use in electrical stimulation leads
US7801623B2 (en) 2006-06-29 2010-09-21 Medtronic, Inc. Implantable medical device having a conformal coating
US20090131885A1 (en) * 2006-11-08 2009-05-21 Takayuki Akahoshi Curved Irrigation/Aspiration Needle
US8321032B2 (en) 2006-11-09 2012-11-27 Greatbatch Ltd. RFID-enabled AIMD programmer system for identifying MRI compatibility of implanted leads
US8761895B2 (en) 2008-03-20 2014-06-24 Greatbatch Ltd. RF activated AIMD telemetry transceiver
US7610101B2 (en) 2006-11-30 2009-10-27 Cardiac Pacemakers, Inc. RF rejecting lead
US9044593B2 (en) 2007-02-14 2015-06-02 Medtronic, Inc. Discontinuous conductive filler polymer-matrix composites for electromagnetic shielding
US10537730B2 (en) 2007-02-14 2020-01-21 Medtronic, Inc. Continuous conductive materials for electromagnetic shielding
US7711436B2 (en) 2007-03-09 2010-05-04 Medtronic, Inc. Medical device electrical lead design for preventing transmittance of unsafe currents to a patient
WO2008115426A1 (en) 2007-03-19 2008-09-25 Boston Scientific Neuromodulation Corporation Mri and rf compatible leads and related methods of operating and fabricating leads
KR101413677B1 (en) 2007-03-19 2014-07-01 엠알아이 인터벤션즈, 인크. Methods and apparatus for fabricating leads with conductors and related flexible lead configurations
US9578290B2 (en) 2007-08-09 2017-02-21 Gvbb Holdings S.A.R.L. Video data reproduction system
WO2009048652A1 (en) 2007-10-11 2009-04-16 Rentendo Corporation Reduction of rf induced tissue heating using discrete winding patterns
US20090099555A1 (en) 2007-10-11 2009-04-16 Ingmar Viohl Reduction of rf induced tissue heating using conductive surface pattern
US8483840B2 (en) 2008-03-20 2013-07-09 Greatbatch Ltd. Dual function tuned L-C input trap passive EMI filter component network for an active implantable medical device
CN102037528A (en) 2008-03-20 2011-04-27 格瑞巴奇有限公司 Shielded three-terminal flat-through EMI/energy dissipating filter
US20090281592A1 (en) 2008-05-08 2009-11-12 Pacesetter, Inc. Shaft-mounted rf filtering elements for implantable medical device lead to reduce lead heating during mri
WO2010008833A1 (en) 2008-06-23 2010-01-21 Greatbatch Ltd. Frequency selective passive component networks for implantable leads of active implantable medical devices utilizing an energy dissipating surface
JP5523464B2 (en) 2008-09-22 2014-06-18 カーディアック ペースメイカーズ, インコーポレイテッド Styrene-isobutylene copolymer and medical device containing the same
US8301249B2 (en) 2008-10-23 2012-10-30 Pacesetter, Inc. Systems and methods for exploiting the tip or ring conductor of an implantable medical device lead during an MRI to reduce lead heating and the risks of MRI-induced stimulation
EP2349453A4 (en) 2008-10-30 2015-07-01 Greatbatch Ltd Capacitor and inductor elements physically disposed in series whose lumped parameters are electrically connected in parallel to form a bandstop filter
US8634931B2 (en) 2008-10-30 2014-01-21 Pacesetter, Inc. MRI compatible implantable medical lead and method of making same
US9399129B2 (en) 2008-10-30 2016-07-26 Pacesetter, Inc. MRI compatible implantable medical lead and method of making same
US8179658B2 (en) 2008-11-12 2012-05-15 Greatbatch Ltd. Electromagnetic interference filter and method for attaching a lead and/or a ferrule to capacitor electrodes
US8299899B2 (en) 2008-11-19 2012-10-30 Greatbatch Ltd. AIMD external programmer incorporating a multifunction RFID reader having a limited transmit time and a time-out period
US20100138192A1 (en) 2008-12-01 2010-06-03 Pacesetter, Inc. Systems and Methods for Selecting Components for Use in RF Filters Within Implantable Medical Device Leads Based on Inductance, Parasitic Capacitance and Parasitic Resistance
US8447414B2 (en) 2008-12-17 2013-05-21 Greatbatch Ltd. Switched safety protection circuit for an AIMD system during exposure to high power electromagnetic fields
US8285396B2 (en) 2009-01-05 2012-10-09 Kenergy, Inc. MRI compatible electrical lead for an implanted electronic medical device
EP2376184B1 (en) 2009-01-12 2021-06-30 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead in a high power electromagnetic field environment
WO2010107608A1 (en) 2009-03-19 2010-09-23 Greatbatch Ltd. Rf activated aimd telemetry transceiver
US8095224B2 (en) 2009-03-19 2012-01-10 Greatbatch Ltd. EMI shielded conduit assembly for an active implantable medical device
WO2010107926A1 (en) 2009-03-19 2010-09-23 Greatbatch Ltd. Emi shielded conduit assembly for an active implantable medical device
US20110057037A1 (en) 2009-09-09 2011-03-10 Greatbatch Ltd. Process for transferring product information utilizing barcode reader into permanent memory for an implanted medical device
CN103534854B (en) 2011-01-31 2016-07-06 Toto株式会社 Sofc

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2026870A4 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9248283B2 (en) 2001-04-13 2016-02-02 Greatbatch Ltd. Band stop filter comprising an inductive component disposed in a lead wire in series with an electrode
US8219208B2 (en) 2001-04-13 2012-07-10 Greatbatch Ltd. Frequency selective passive component networks for active implantable medical devices utilizing an energy dissipating surface
US9295828B2 (en) 2001-04-13 2016-03-29 Greatbatch Ltd. Self-resonant inductor wound portion of an implantable lead for enhanced MRI compatibility of active implantable medical devices
US8688226B2 (en) 2005-10-21 2014-04-01 Boston Scientific Neuromodulation Corporation MRI-safe high impedance lead systems
US8055351B2 (en) 2005-10-21 2011-11-08 Boston Scientific Neuromodulation Corporation MRI-safe high impedance lead systems
US8433421B2 (en) 2005-10-21 2013-04-30 Boston Scientific Neuromodulation Corporation MRI-safe high impedance lead systems
US8897887B2 (en) 2006-06-08 2014-11-25 Greatbatch Ltd. Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices
US8275466B2 (en) 2006-06-08 2012-09-25 Greatbatch Ltd. Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices
US9119968B2 (en) 2006-06-08 2015-09-01 Greatbatch Ltd. Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices
US9492651B2 (en) 2007-03-19 2016-11-15 MRI Interventions, Inc. MRI and RF compatible leads and related methods of operating and fabricating leads
US9630000B2 (en) 2007-03-19 2017-04-25 Boston Scientific Neuromodulation Corporation Methods and apparatus for fabricating leads with conductors and related flexible lead configurations
US10391307B2 (en) 2007-03-19 2019-08-27 Boston Scientific Neuromodulation Corporation MRI and RF compatible leads and related methods of operating and fabricating leads
US9248270B2 (en) 2007-03-19 2016-02-02 Boston Scientific Neuromodulation Corporation Methods and apparatus for fabricating leads with conductors and related flexible
US9108066B2 (en) 2008-03-20 2015-08-18 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US8774939B2 (en) 2008-10-09 2014-07-08 Boston Scientific Neuromodulation Corporation Electrical stimulation leads having RF compatibility and methods of use and manufacture
US8335570B2 (en) 2008-10-09 2012-12-18 Boston Scientific Neuromodulation Corporation Electrical stimulation leads having RF compatibility and methods of use and manufacture
US10080889B2 (en) 2009-03-19 2018-09-25 Greatbatch Ltd. Low inductance and low resistance hermetically sealed filtered feedthrough for an AIMD
US8099171B2 (en) 2009-06-30 2012-01-17 Pacesetter, Inc. Implantable medical lead configured for improved MRI safety and heating reduction performance
US8571683B2 (en) 2009-09-10 2013-10-29 Pacesetter, Inc. MRI RF rejection module for implantable lead
US10561837B2 (en) 2011-03-01 2020-02-18 Greatbatch Ltd. Low equivalent series resistance RF filter for an active implantable medical device utilizing a ceramic reinforced metal composite filled via
US11071858B2 (en) 2011-03-01 2021-07-27 Greatbatch Ltd. Hermetically sealed filtered feedthrough having platinum sealed directly to the insulator in a via hole
US11198014B2 (en) 2011-03-01 2021-12-14 Greatbatch Ltd. Hermetically sealed filtered feedthrough assembly having a capacitor with an oxide resistant electrical connection to an active implantable medical device housing
US10596369B2 (en) 2011-03-01 2020-03-24 Greatbatch Ltd. Low equivalent series resistance RF filter for an active implantable medical device
USRE46699E1 (en) 2013-01-16 2018-02-06 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US9427596B2 (en) 2013-01-16 2016-08-30 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US10350421B2 (en) 2013-06-30 2019-07-16 Greatbatch Ltd. Metallurgically bonded gold pocket pad for grounding an EMI filter to a hermetic terminal for an active implantable medical device
US9931514B2 (en) 2013-06-30 2018-04-03 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US10589107B2 (en) 2016-11-08 2020-03-17 Greatbatch Ltd. Circuit board mounted filtered feedthrough assembly having a composite conductive lead for an AIMD
US10559409B2 (en) 2017-01-06 2020-02-11 Greatbatch Ltd. Process for manufacturing a leadless feedthrough for an active implantable medical device
US10912945B2 (en) 2018-03-22 2021-02-09 Greatbatch Ltd. Hermetic terminal for an active implantable medical device having a feedthrough capacitor partially overhanging a ferrule for high effective capacitance area
US10905888B2 (en) 2018-03-22 2021-02-02 Greatbatch Ltd. Electrical connection for an AIMD EMI filter utilizing an anisotropic conductive layer
US11712571B2 (en) 2018-03-22 2023-08-01 Greatbatch Ltd. Electrical connection for a hermetic terminal for an active implantable medical device utilizing a ferrule pocket

Also Published As

Publication number Publication date
EP2026870A4 (en) 2010-06-30
US8897887B2 (en) 2014-11-25
US20080269591A1 (en) 2008-10-30
US20120277841A1 (en) 2012-11-01
EP2165734A2 (en) 2010-03-24
CN101325985B (en) 2011-06-08
US20100222856A1 (en) 2010-09-02
US20060247684A1 (en) 2006-11-02
US20070288058A1 (en) 2007-12-13
US20110306860A1 (en) 2011-12-15
US8364283B2 (en) 2013-01-29
US9119968B2 (en) 2015-09-01
US20110208030A1 (en) 2011-08-25
JP2009537276A (en) 2009-10-29
US20120053667A1 (en) 2012-03-01
EP2026870A2 (en) 2009-02-25
US7363090B2 (en) 2008-04-22
US8244370B2 (en) 2012-08-14
US8275466B2 (en) 2012-09-25
WO2007145671A3 (en) 2008-03-20
US20120046723A1 (en) 2012-02-23
CN101325985A (en) 2008-12-17
US20120188027A1 (en) 2012-07-26
EP2165734A3 (en) 2010-06-23
US20100222857A1 (en) 2010-09-02
US8180448B2 (en) 2012-05-15

Similar Documents

Publication Publication Date Title
US9248283B2 (en) Band stop filter comprising an inductive component disposed in a lead wire in series with an electrode
US9008799B2 (en) EMI filter employing a self-resonant inductor bandstop filter having optimum inductance and capacitance values
US9119968B2 (en) Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices
US8145324B1 (en) Implantable lead bandstop filter employing an inductive coil with parasitic capacitance to enhance MRI compatibility of active medical devices
US8483840B2 (en) Dual function tuned L-C input trap passive EMI filter component network for an active implantable medical device
US8903505B2 (en) Implantable lead bandstop filter employing an inductive coil with parasitic capacitance to enhance MRI compatibility of active medical devices
EP2267894B1 (en) Switched safety protection circuit for an AIMD system during exposure to high power electromagnetic fields
US7966075B2 (en) Switched diverter circuits for minimizing heating of an implanted lead in a high power electromagnetic field environment
EP2273675A2 (en) Switched diverter circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment
US9295828B2 (en) Self-resonant inductor wound portion of an implantable lead for enhanced MRI compatibility of active implantable medical devices
CA2601663A1 (en) Tank filters adaptable for placement with a guide wire, in series with the lead wires or circuits of active medical devices to enhance mri compatibility
EP2376184B1 (en) Switched diverter circuits for minimizing heating of an implanted lead in a high power electromagnetic field environment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680046479.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06850120

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 1597/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006850120

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009512001

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: RU