WO2007135794A1 - Slurry for chemical mechanical polishing, method of chemical mechanical polishing and process for manufacturing electronic device - Google Patents

Slurry for chemical mechanical polishing, method of chemical mechanical polishing and process for manufacturing electronic device Download PDF

Info

Publication number
WO2007135794A1
WO2007135794A1 PCT/JP2007/053629 JP2007053629W WO2007135794A1 WO 2007135794 A1 WO2007135794 A1 WO 2007135794A1 JP 2007053629 W JP2007053629 W JP 2007053629W WO 2007135794 A1 WO2007135794 A1 WO 2007135794A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
chemical mechanical
mechanical polishing
slurry
ceria
Prior art date
Application number
PCT/JP2007/053629
Other languages
French (fr)
Japanese (ja)
Inventor
Ryo Ota
Takayuki Nakakawaji
Toranosuke Ashizawa
Naoyuki Koyama
Original Assignee
Hitachi Chemical Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Company, Ltd. filed Critical Hitachi Chemical Company, Ltd.
Publication of WO2007135794A1 publication Critical patent/WO2007135794A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step

Definitions

  • the present invention relates to a CMP slurry used in a chemical mechanical polishing (CMP) process indispensable for a shallow trench isolation (STI) method applied to a semiconductor device manufacturing process, and a process using the slurry.
  • CMP chemical mechanical polishing
  • STI shallow trench isolation
  • the present invention relates to a mechanical polishing method and a method for manufacturing an electronic device using the method, and enables both low scratching property of the object to be polished and high processing efficiency by high-speed polishing. This also enables high flatness of the workpiece surface.
  • the element isolation method has been developed from LOCOS (Local Oxidation of Silicon) technology, which removes the nitride film by oxidizing part of the silicon surface.
  • LOCOS Local Oxidation of Silicon
  • STI Integrated Circuit
  • CMP Chemical mechanical polishing
  • SiO 2 silica
  • ceria (oxy-cerium CeO) abrasive grains have excellent polishing ability for silicon oxide films.
  • flattening additive an additive intended to flatten the surface to be carburized by polishing
  • the electrostatic action between the particles is weakened and the composite iron is removed.
  • a method using a mixture of organic particles and inorganic particles as an abrasive grain has also been proposed, but the organic particles are complex so that they act as hindering polishing, thereby obtaining a sufficient polishing rate.
  • a common ceria-based slurry used in STI-CMP is known to contain a leveling additive.
  • a leveling additive a water-based high-molecular compound is used. However, it is preferred because it has less adhesion to the material to be polished and piping.
  • the planarizing additive By blending the planarizing additive, the polishing selectivity between the silicon oxide film and the silicon nitride film as the polishing stagger film is increased, and the flatness and uniformity of the work surface to be polished can be obtained.
  • the polishing rate decreases because the flattening additive has a protective action against polishing.
  • inorganic particle-coated composite particles in addition to the electrostatic composite method, There is a method of manufacturing by applying mechanical energy.
  • a composite particle is produced by locally and intermittently melting the surface layer of a particle using a pressing force, a shearing force, and a frictional force.
  • the inorganic particle-coated composite particles produced by this method have high adhesion strength between the particles, so that the inorganic particles are not detached by shearing force or contact stress during polishing, and a planarizing additive is not used. Even when blended, the inorganic particles are not detached by electrostatic action.
  • this method has a problem in that the V selectivity and the polishing selectivity are not developed at all when the planarizing additive is not blended, and when the planarizing additive is blended, the polishing rate is greatly reduced.
  • Patent Document 1 JP 2001-152135 A
  • the present invention obtains a low scratch property of the surface to be polished to be polished in the CMP process, realizes a high polishing rate and enables a high processing efficiency, and further improves the processing surface.
  • An object of the present invention is to provide a chemical mechanical polishing slurry capable of obtaining flatness, a mechanical mechanical polishing method using the slurry, and an electronic device manufacturing method using the method.
  • the organic mother particles constituting the composite particles of the abrasive grains (A) according to the present invention include polymethyl methacrylate (PMMA) particles into which carboxyl groups or sulfonyl groups have been introduced to make the zeta potential negative. , Polystyrene particles, and copolymer particles thereof.
  • PMMA polymethyl methacrylate
  • the organic mother particles according to the present invention require a certain heat resistant temperature and hardness, crosslinked organic mother particles are preferable. Therefore, for example, monodisperse particles produced by a production method such as a soap-free emulsion polymerization method or a dispersion polymerization method are more preferred.
  • the particle size of the organic mother particles is required to be 0.3 to LO / z m.
  • the reason for this is that if the particle size of the organic mother particles does not reach 0.3 ⁇ m, problems such as a significant decrease in the polishing rate, which makes it difficult to combine with the inorganic particles, occur. If the diameter exceeds 10 m, the dispersion state of the slurry becomes very bad, and there is also a problem that it is not possible to supply a slurry having a uniform particle size to the polished surface.
  • the particle diameter of the organic mother particles is most preferably in the range of 1 to 7111.
  • the inorganic particles constituting the composite particles used in the abrasive grains (A) according to the present invention include cerium oxide (CeO), manganese trioxide (MnO), cerium hydroxide (Ce (OH)).
  • ceria particles which are cerium oxide
  • STI CMP process staggered silicon nitride (Si N) film and silicon nitride
  • Polishing selectivity (SiO 2 / Si N polishing rate ratio) of the base film is easily obtained by the flattening additive
  • the inorganic particles according to the present invention have an average particle size in the range of 10 to 500 nm. The reason is that if the average particle size of the inorganic particles does not reach 10 nm, the polishing speed decreases, and if the average particle size of the inorganic particles exceeds 500 nm, scratches on the object to be polished will occur. This is because there arises a problem that the property becomes large.
  • There are a gas phase method, a liquid phase method, and the like as methods for producing inorganic particles but since the composite particles according to the present invention are produced by a dry composite method, the inorganic particles according to the present invention are produced. In consideration of the properties and the like, it is preferable to use particles that can also generate a gas phase method. Further, since the surface coverage of the organic mother particles by the inorganic particles is higher as the rate is higher, the surface coverage according to the present invention is preferably 20% or more.
  • the composite particles (gunlets) are in contact with water (B).
  • the concentration should be 2 to 10% by weight. The reason is that if the numerical value does not reach 0.2% by weight, a sufficient polishing speed cannot be obtained, and if it exceeds 10% by weight, the dispersion state of the slurry becomes very bad. This is because.
  • a slurry in which the numerical value is 0.5 to 5% by weight is more preferable.
  • the flatness additive (C) according to the present invention is adsorbed on the inorganic insulating film when the CMP slurry comes into contact with the inorganic insulating film to be polished, for example, the silicon oxide film or the silicon nitride film.
  • the slurry for CMP is a silicon oxide film or silicon nitride to be polished.
  • a material that adsorbs to the film when it contacts the film and desorbs from the film due to an increase in polishing surface pressure is preferable.
  • flattening additives (C) include poly (meth) acrylic acid, poly (meth) acrylic acid derivatives, poly (meth) acrylic acid ammonium salt, polybutyropyrrolidone, poly (bi) acetal. , Polyvinyl formal, polyvinyl butyral, polyvinyl pyrrolidone iodine complex, polybule (5-methyl-2 pyrrolidinone), polybule (2 piberidinone), polyvinyl (3, 3, 5 trimethyl 2 pyrrolidinone), poly (N bullcarbazole), poly (N— Alkyl-pyrcarbazole), poly (N-alkyl 3-vinylcarba) Sol), poly (N-alkyl-4 bulcarbazole), poly (N beluo 3, 6- dib mouth mocarbazole), polybureol ketone, polyburacetophenone, poly (4 bulupyridine), poly (4 ⁇ -Hydroxyethylpyridine), poly (2 butyl formal
  • the upper limit of the weight of the flat wrinkle additive is preferably 500 or more, but it is preferably 1 million or less in view of solubility.
  • a nonionic surfactant and an anionic surfactant can be mentioned, but it is preferable to use a surfactant that does not contain alkali metal.
  • these surfactants in particular, polyethylene glycol type nonionic surfactants, glycols, glycerin fatty acid esters, sorbit fatty acid esters, fatty acid alcohol amides, alcohol sulfate salts, alkyl ether sulfate salts And at least one selected from alkylbenzene sulfonate and alkyl phosphate ester.
  • the addition amount of the planarizing additive is preferably in the range of 0.05 to 5% by weight with respect to 100 parts by weight of the slurry for CMP. The reason is that if the addition amount of the planarization additive is less than the lower limit than this range, the effect of addition may not appear, and if it exceeds the upper limit, the polishing rate may decrease.
  • a dispersant, a pH adjuster, and the like may be added to the chemical mechanical polishing slurry according to the present invention.
  • the dispersant needs to be selected depending on the inorganic particles constituting the organic particles. For example, in the case where cerium oxide is used as the inorganic particles, a polyacrylic acid ammonium salt or a copolymer component is used.
  • a polymer dispersant containing an acrylic acid ammonium salt is preferred.
  • Other dispersants include triethanolamine lauryl sulfate, ammonium lauryl sulfate, polyoxyethylene alkyl ether triethanolamine sulfate, special polycarboxylic acid type polymer, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether.
  • the amount of the above-mentioned dispersant added is determined based on the dispersibility of particles in the slurry for CMP and sedimentation prevention, and in addition to the relationship between polishing scratches and the amount of dispersant added, ceria particles (acid cerium particles) 100
  • the amount is preferably in the range of 0.01 to 2.0 parts by weight with respect to parts by weight.
  • the molecular weight of the dispersant is preferably in the range of 100-50,000, and more preferably in the range of 1,000,000 to 10,000.
  • the molecular weight of the dispersing agent is less than 100, a sufficient polishing rate may not be obtained when polishing the silicon oxide film or the silicon nitride film, while the molecular weight of the dispersing agent is 50 , Over 000 In some cases, the viscosity increases and the storage stability of the CMP slurry may decrease.
  • the slurry for chemical mechanical polishing according to the present invention uses a composite particle having a negative zeta potential for the abrasive grains, thereby increasing the polishing rate even when the flattening additive (C) is not blended. It is possible to maintain high speed and to obtain sufficient polishing selectivity for obtaining flatness of the work surface.
  • the slurry for chemical mechanical polishing according to the present invention can be obtained by adding the flattening additive (C) when the zeta potential of the composite particle abrasive grains is positive even when the flattening additive (C) is blended. When the adsorbed amount increases, the polishing rate decreases significantly.
  • composite particles with a negative zeta potential for the abrasive grains the adsorbed amount of the leveling additive (C) is suppressed and a high polishing rate is achieved. And sufficient polishing selectivity can be obtained.
  • the chemical mechanical polishing slurry, the mechanical mechanical polishing method using the slurry, and the electronic device manufacturing method using the method according to the present invention include abrasive grains (A), water (B),
  • the abrasive grains (A) are made of ceria particle-coated composite particles of organic mother particles and ceria particles, and the composite grains have a zeta potential of a negative potential (A ), It is possible to obtain a low scratch property of the surface to be polished in the CMP process and to obtain a high processing efficiency based on a high-speed polishing process.
  • the chemical mechanical polishing slurry, the mechanical mechanical polishing method using the slurry, and the electronic device manufacturing method using the method according to the present invention are flat on the chemical mechanical polishing slurry.
  • the addition of the additive (C) also has an effect that the flatness of the work surface to be polished can be obtained.
  • FIG. 1 is a schematic cross-sectional view of an inorganic particle-coated composite particle according to the present invention.
  • FIG. 2 is a schematic cross-sectional view of polishing using composite particles.
  • a method for producing dry composite particles of organic mother particles and inorganic particles there are, for example, a composite method using a mechano-fusion system manufactured by Hosoka Micron Corporation and a hybridization system manufactured by Nara Machinery Co., Ltd. These composite methods are technologies that produce composite particles by mechanically bonding them at a molecular level by applying frictional pressure and shearing force based on mechanical energy to multiple different material particles. . These methods are characterized by a simple process and a high degree of freedom in combination as compared with a method for producing wet composite particles.
  • the polishing test is to measure the polishing rate for silicon dioxide (SiO 2) film using a polishing device (IMRTECH10DVT) manufactured by Engis Co., Ltd.
  • a polishing pad (IC1000 / Suba400 manufactured by Yutta Noose Co., Ltd.) is pasted on the top, and the same pad is also pasted on the bottom of the guide ring.
  • the polishing load was adjusted by the number of polishing weights, the load was 30 kPa, the number of rotations of the surface plate was 150 / min, and the polishing time was 2 minutes.
  • the slurry was continuously dripped (15 ml / min) with a tube pump and supplied.
  • the polished silicon dioxide silicon wafer was subjected to ultrasonic cleaning with pure water for 10 minutes and dried.
  • the film thickness of the silicon dioxide film was measured by measuring the difference in film thickness before and after polishing using an optical interference type film thickness measuring device and calculating the polishing rate.
  • Examples 1 to 3 of the slurry for chemical mechanical polishing according to the present invention are all made of polymethyl methacrylate (PMMA) monodisperse particles (5) as organic mother particles and ceria (CeO) particles as inorganic particles.
  • PMMA polymethyl methacrylate
  • CeO ceria
  • the composite particles are produced so that the zeta potential of the composite particles becomes a negative potential by using composite particle abrasive particles obtained by combining double particles (14 nm) by the dry composite particle manufacturing method.
  • the zeta potential of the produced composite particle abrasive grains is difficult to measure for high-concentration slurry, large-diameter particles, composite particles, etc. with the ordinary laser Doppler method. This was measured using ESA-9800 manufactured by Matec Applied Sciences. composite
  • the zeta potential of the particles was ⁇ 40 mV in Example 1, ⁇ 20 mV in Example 2, and 5 mV in Example 3.
  • the slurries of these examples are obtained by introducing the carboxyl group into the organic mother particles and changing the concentration to obtain the negative potential composite particles in which the zeta potential is adjusted.
  • the above polishing test was carried out at an abrasive concentration (weight ratio of abrasive grains to water) of 1% by weight.
  • SiO polishing selectivity of the workpiece to be polished
  • a Si N film wafer is taken up as a polishing stagger film, and the polishing rate ratio
  • Comparative Examples 1 and 2 were prepared using conventional polymethyl methacrylate to obtain positive-potential composite particles.
  • Comparative Example 3 is a single nanoceria used as an inorganic particle for comparison of polishing rate.
  • Table 1 shows the evaluation results of the chemical mechanical polishing slurries of Examples 1 to 3 and Comparative Examples 1 to 3.
  • the same effect can be obtained by using organic mother particles obtained by introducing functional groups into force polystyrene particles using PMMA as a base material for the organic mother particles of Examples 1 to 3.
  • the dry composite particles described above were used. However, even when wet composite particles obtained by heteroaggregation were used, higher speed polishing was possible, and a large polishing selectivity was obtained. I helped.
  • the barrel used in the examples is described as if it was a composite particle alone. However, in the dry composite particle manufacturing method, it is not 100% composite, so it is actually composite. This includes nanoceria that has not been treated. If the surface coverage of the composite particles is the same, the higher the amount of non-composited nanoceria, the higher the polishing rate of the SiO film.
  • a thermal oxide film using HDP—TEOS High Density Plasma-Tetra Ethoxy Silane
  • HDP—TEOS High Density Plasma-Tetra Ethoxy Silane
  • SOG Spin on Glass
  • the polishing test was performed under the same conditions as in Examples 1 to 3.
  • the slurry for chemical mechanical polishing of Examples 4 to 7 is a composite particle abrasive of PMMA monodispersed particles (5), inorganic particles and CeO particles (14 nm) used in Example 2, and has a zeta potential. -20mV
  • the barrel concentration which is the weight ratio of the barrel to water, was 0.2% by weight in Example 4, 1.5% by weight in Example 5, 5% by weight in Example 6, and 10% by weight in Example 7. did.
  • Comparative Examples 4 and 5 both use the composite particles of the granule used in Example 2, but Comparative Example 4 has an abrasive concentration of 0. 1% by weight, and Comparative Example 5 was also 20% by weight, and the same polishing test as in Examples 1 to 3 was performed.
  • the evaluation results of Examples 4 to 7 and Comparative Examples 4 and 5 are shown in Table 2.
  • each of the chemical mechanical polishing slurries of Examples 4 to 7 has an excellent polishing ability that the SiO film polishing rate is very high as compared with Comparative Example 4.
  • Comparative Example 4 having a grain concentration of 0.1% by weight, the polishing rate is greatly reduced, and a practically sufficient polishing rate cannot be obtained.
  • Comparative Example 5 with the 20% by weight of the granule concentration is almost saturated with no difference in polishing rate as compared with Example 7 having the 10% by weight of the barrel density. Further, although Comparative Example 5 is not described in the table, it has been found that the dispersion state of the barrel is very bad.
  • the slurry for chemical mechanical polishing of Examples 8 to 11 is composed of PMMA monodispersed particles as organic matrix particles and CeO particles (as inorganic particles) (
  • the average particle diameter of the PMMA monodispersed particles used as the organic mother particles is 0 in Example 8.
  • Example 9 1.5 m, in Example 10, 5 ⁇ m, and in Example 11, 10 ⁇ m. Since the average particle size of the inorganic particles is 14 nm, which is sufficiently smaller than the mother particle, the average particle size of the above-mentioned PMMA monodispersed particles should be the average particle size of the composite particles that are abrasive grains as they are. Can do. Since PMMA has a carboxyl group introduced, the produced composite particles have a negative zeta potential. In addition to the polishing rate, the scratches on the polished wafer were observed.
  • Comparative Examples 6 and 7 use composite particle abrasive grains of PMMA monodisperse particles as organic mother particles and Ce02 particles (14 nm) as inorganic particles, the abrasive concentration is 1% by weight, and the zeta of the composite particles.
  • the negative potential was the same as in Examples 8 to 11.
  • the particle size of the PMMA monodispersed particles of the organic mother particles that is, the particle size of the composite particles was 0.15 m in Comparative Example 6. In Comparative Example 7, it is 20 ⁇ m.
  • Table 3 shows the evaluation results of Examples 8 to 11 and Comparative Examples 6 and 7, which were carried out under the same conditions as the polishing test method described above.
  • the slurry for chemical mechanical polishing in Examples 8 to 11 is the polishing rate of the SiO film.
  • Example 9 where the average particle size of the composite particles was 1.5 m, the fastest polishing rate was obtained.
  • Comparative Example 6 in which the average particle size of the composite particles was 0.15 m, the polishing rate was greatly reduced, and it was difficult to obtain a sufficient polishing rate.
  • Comparative Example 7 in which the average particle size of the composite particles was 20 m, a sufficient polishing rate was obtained, but many scratches were observed on the polished work surface, and the dispersion state of the slurry was very bad. .
  • the average particle size of the organic mother particle is less than m: 1 Most preferred is about ⁇ 7 / ⁇ ⁇ .
  • the average particle size of composite particle abrasive grains is largely related to the type of polishing pad, especially the pattern of the polishing pad made of porous urethane resin and its surface roughness, so it is suitable for the polishing pad used. It is necessary to select the diameter.
  • each of the chemical mechanical polishing slurries of Examples 1 to 3 is blended with poly (meth) acrylic acid ammonium salt as a planarizing additive.
  • the amount thereof for water 0.3 wt 0/0, Roita value of the slurry is 5 with ammonia, the abrasive concentration is the weight ratio cannon particle of water 1. obtained by a 0% Yes, the zeta potential before compounding the leveling additive is ⁇ 40 mV in Example 12, ⁇ 20 mV in Example 13 and 5 mV in Example 14.
  • Comparative Example 8 to LO The slurry of Comparative Examples 1 to 3 is blended with poly (meth) acrylate ammonium salt as a planarizing additive. The blending amount is 0.3% by weight with respect to water, the pH value of the slurry is 5 with ammonia, and the barrel concentration, which is the weight ratio of the barrel to water, is 1.0% by weight. .
  • Table 4 shows the evaluation results of Examples 12 to 14 and Comparative Examples 8 to 10 which were carried out under the same conditions as the polishing test method described above.
  • each of the chemical mechanical polishing slurries of Examples 12 to 14 has excellent polishing ability with a very high polishing rate of the SiO film compared to Nanoceria alone of Comparative Example 10.
  • Comparative Examples 8 and 9 used composite particles having a positive zeta potential. However, if a leveling additive having a protective action for polishing is blended, the polishing rate is greatly reduced. On the other hand, the chemical mechanical polishing slurries of Examples 12 to 14 using composite particles having a negative zeta potential showed a significant speed although a slight decrease in the polishing rate was observed even when a planarizing additive was added. There is no decrease, and polishing selectivity can be maintained.
  • Examples 12 to 14 since the zeta potential of the composite particles is set to a negative potential, the sulfonyl group becomes a negative potential in the functional group using the organic mother particles in which a carboxyl group is introduced into PMMA. Organic mother particles into which other functional groups are introduced may be used. In addition, the same effect can be obtained by using organic mother particles in which a functional group is introduced into force polystyrene particles using PMMA as a base material for the organic mother particles of Example 12 having a force of 14.
  • the pH value of the slurry containing the flat koji additive was set to 5. However, if the pH value is within the range of 4 to 8, the same results as in Examples 12 to 14 can be obtained. .
  • the planarizing additive is not limited to poly (meth) acrylic acid ammonium salt, but is added to an inorganic insulating film such as a SiO film or a SiN film placed as a workpiece to be polished when blended. Adsorbed when contacted, polished surface
  • Any type that desorbs due to an increase in pressure may be used.
  • Examples 15 to 18 are composite particles of PMMA monodispersed particles (5 ⁇ ) used in Examples 2 and 13 and inorganic particles with CeO particles (14 nm).
  • Comparative Examples 11 and 12 both use the composite particles of the above-mentioned composite particles used in Examples 2 and 13, but the comparative example 11 has a particle concentration that is a weight ratio to water. 1% by weight and 20% by weight in Comparative Example 2.
  • each of the chemical mechanical polishing slurries of Examples 15 to 18 has an excellent polishing ability with a very high SiO film polishing rate as compared with Comparative Example 11.
  • Abrasive grain concentration As Table 5 shows, each of the chemical mechanical polishing slurries of Examples 15 to 18 has an excellent polishing ability with a very high SiO film polishing rate as compared with Comparative Example 11. Abrasive grain concentration
  • the average particle size of the composite particle granules did not reach 0.3 m.
  • the polishing speed was greatly reduced, and it was difficult to obtain a practical polishing speed.
  • the average particle size of the composite particles was 20 ⁇ m, the polishing rate was sufficient, but many scratches were observed, and the dispersion state of the slurry became very poor. From the above results, it was found that the average particle size of the composite particle can be in the range of 0.3 to 10 ⁇ m.
  • the type of polishing pad especially the polishing pad made of porous urethane resin
  • the polishing rate was compared by taking a Si N film wafer as the stock film.
  • the slurry for chemical mechanical polishing used in 9-22 is a composite particle of PMMA monodispersed particles (5 ⁇ m) with zeta potential of ⁇ 20 mV used in Example 13 and CeO particles (14 nm) on inorganic particles.
  • the abrasive concentration which is the weight ratio of the abrasive grains to water
  • poly (meth) acrylic acid ammonium salt added as a leveling agent is added.
  • the pH value of the slurry is adjusted to 5 by using ammonia.
  • the leveling agent concentration which is the ratio of poly (meth) acrylic acid ammonium salt as a leveling agent to water, 0.05% by weight in Example 19 and 0.3% by weight in Example 20 In Example 21, 1.0% by weight, and in Example 22, 5.0% by weight.
  • Comparative Examples 13 and 14 use the same composite particle abrasive as in Examples 19 to 22 with a leveling agent concentration of 1.0% by weight.
  • the strength of the flattening agent concentration which is the ratio of the poly (meth) acrylic acid ammonium salt as a leveling agent to water, is 0.001% by weight for Comparative Example 13 and 10% by weight for Comparative Example 14
  • the pH value of the slurry was adjusted to 5 with ammonia.
  • Examples 19 to 22 and Comparative Examples 13 and 14 were carried out under the same conditions as in the above polishing test method for confirming the effects of the examples. Table 6 shows the results.
  • Comparative Example 13 in which the leveling agent concentration is 0.01% by weight is the SiO film polishing rate.
  • the speed is very fast, it is sufficiently flat because it polishes even the SiN film, which is a staggered film.
  • the present invention is also used as an abrasive in a process that requires reduction of scratches such as CMP in an interlayer dielectric (ILD). Is also applicable.
  • the present invention can be applied to an abrasive used in a process in which scratch reduction is required in CMP (STI—CMP in addition to STI-CMP, etc.) in a semiconductor device which is an electronic device. .

Abstract

A slurry for chemical mechanical polishing that in the CMP step of semiconductor device, not only attains low scratch on a surface to be polished of SiO2 film, etc. but also realizes high polishing velocity to thereby achieve high processing efficiency; a method of chemical mechanical polishing by the use of the slurry; and a process for manufacturing an electronic device by the use of the method. There is provided a slurry for chemical mechanical polishing comprising abrasive grains and water, wherein the abrasive grains consist of ceria particle coated composite grains each composed of an organic base grain and ceria particles, and wherein the composite grains exhibit a negative zeta potential. Further, there are provided slurries wherein the abrasive grains consist of ceria particle coated composite grains each composed of a carboxylated polymethyl methacrylate grain and ceria particles, and wherein a planarizing additive is mixed, and wherein the planarizing additive is ammonium poly(meth)acrylate.

Description

明 細 書  Specification
化学機械研磨用スラリー、化学機械研磨方法及び電子デバイスの製造 方法  Chemical mechanical polishing slurry, chemical mechanical polishing method, and electronic device manufacturing method
技術分野  Technical field
[0001] 本発明は、半導体デバイスの製造プロセスに適用される STI (Shallow Trench Isolat ion)法に不可欠の化学機械研磨 (CMP)工程において使用される CMP用スラリー、 該スラリーを用いたィヒ学機械研磨方法、及び該方法を用いた電子デバイスの製造方 法に関し、被研磨物の低スクラッチ性と高速研磨による高い加工能率の両者を可能 とするものであり、更に、研磨される被カ卩ェ物の被カ卩工面の高い平坦性も可能とする ものである。  [0001] The present invention relates to a CMP slurry used in a chemical mechanical polishing (CMP) process indispensable for a shallow trench isolation (STI) method applied to a semiconductor device manufacturing process, and a process using the slurry. The present invention relates to a mechanical polishing method and a method for manufacturing an electronic device using the method, and enables both low scratching property of the object to be polished and high processing efficiency by high-speed polishing. This also enables high flatness of the workpiece surface.
背景技術  Background art
[0002] 近年の半導体デバイスの微細化と多層配線化に伴!、、素子分離法は、シリコン表 面の一部を酸化させて窒化膜を除去する LOCOS (Local Oxidation of Silicon)技術 から、高集積ィ匕が可能な STI技術へと移行している状況である。この STI技術は、基 板上にパターユングにより窒化膜マスクを形成し、次にトレンチを形成し、その上に酸 化ケィ素 (SiO )の層間絶縁膜を形成し、化学機械研磨工程において上面の構造物  [0002] With the recent miniaturization of semiconductor devices and multilayer wiring !, the element isolation method has been developed from LOCOS (Local Oxidation of Silicon) technology, which removes the nitride film by oxidizing part of the silicon surface. The situation is shifting to STI technology that enables integration. In this STI technology, a nitride film mask is formed on a substrate by patterning, then a trench is formed, an interlayer insulating film of oxide silicon (SiO 2) is formed thereon, and an upper surface is formed in a chemical mechanical polishing process. Structure
2  2
を研磨除去し、残留した窒化膜を除去する工程を経る電子デバイス (半導体素子)の 製造方法である。化学機械研磨(Chemical Mechanical Polishing;以下「CMP」と略 す。)は、この STI技術の主要な工程の一つとなっており、電子デバイス(半導体素子 )の製造に大きく貢献するものであるから、単に加工能率や被加工面の平坦性のみ ならず、異なる材料の研磨選択性、スラリーの洗浄性、取扱いやすさ等が要求される ところである。 CMPに用いられるスラリーは、一般的にはコロイダルシリカやフューム ドシリカ砲粒をアルカリベースの溶液に分散し、シリカ(SiO )による機械的研磨と同  This is a method of manufacturing an electronic device (semiconductor element) that undergoes a step of polishing and removing the remaining nitride film. Chemical mechanical polishing (hereinafter abbreviated as “CMP”) is one of the main processes of this STI technology and contributes greatly to the manufacture of electronic devices (semiconductor elements). Not only processing efficiency and flatness of the surface to be processed, but also polishing selectivity of different materials, slurry cleaning properties, ease of handling, etc. are required. The slurry used for CMP is generally the same as mechanical polishing with silica (SiO 2), in which colloidal silica or fumed silica particles are dispersed in an alkali-based solution.
2  2
時に化学的なエッチング効果を用いて研磨するものである力 被加工面の平坦性、 スクラッチ性、研磨の終点管理等についての問題点が多いものである。これに対し、 セリア (酸ィ匕セリウム CeO )砥粒は、酸化珪素膜に対する研磨能力が優れることから  Forces that sometimes polish using chemical etching effects There are many problems with the flatness of the work surface, scratch properties, and management of the end point of polishing. In contrast, ceria (oxy-cerium CeO) abrasive grains have excellent polishing ability for silicon oxide films.
2  2
アルカリ溶媒によるエッチング作用を必要とせず、使用済スラリーの廃棄性、低スクラ ツチ性、粒度分布も厳しく管理されな 、等の利点の多 、ものである。 Does not require an etching action with an alkaline solvent. There are many advantages such as tightness and particle size distribution that are not strictly controlled.
[0003] 最先端の半導体デバイスの製造工程では、更なる低スクラッチ性が要求される状況 の下、研磨工程に使用する砲粒を微細化する傾向にあるが、そのため研磨加工能 率が低下するという問題が生じる。これを改善する手法の一つとして、 CMPスラリー 用の砥粒として複合粒子を用いる手法が提案されている。これは弾性に富む有機母 粒子にスクラッチを発生させ難 ヽ微細化された無機粒子を複合化 (無機子粒子被覆 型複合粒子)することにより、低スクラッチ性を得ると共に、接触応力を高めることを可 能として十分な研磨速度を維持すると ヽぅものである。  [0003] In the manufacturing process of the most advanced semiconductor devices, there is a tendency to reduce the size of the barrels used in the polishing process under a situation where further low scratch properties are required, which decreases the polishing efficiency. The problem arises. As one method for improving this, a method using composite particles as abrasive grains for CMP slurry has been proposed. This is because it is difficult to generate scratches on organic mother particles rich in elasticity. By combining finely divided inorganic particles (inorganic particle coated composite particles), it is possible to obtain low scratch properties and increase contact stress. It should be possible to maintain a sufficient polishing rate as possible.
[0004] 一般的な無機子粒子被覆型複合粒子は、特許文献 1に開示されて!ヽるような湿式 の複合化方法を用いて製造される。この方法は、有機粒子と無機粒子を含有する水 系分散体の pHを、有機粒子のゼータ電位と無機粒子のゼータ電位が逆符号となる ように pH調整することにより、有機粒子と無機粒子を静電的に付着して複合粒子を 製造する方法である。この方法で製造された砥粒は、静電的に複合化されているの で有機粒子に対する無機粒子の接着強度が弱ぐ研磨過程で無機粒子が脱落して しまい、十分な研磨速度を維持できないという問題点がある。さらに、研磨による被カロ 工面の平坦ィ匕を目的とする添加剤(以下、「平坦化添加剤」と記す。)を配合すると、 粒子間の静電作用が弱まって複合ィ匕が外れてしまうという問題点もある。他方、有機 粒子と無機粒子との混合物を砥粒として用いる方法も提案されて ヽるが、有機粒子 が複合化されて ヽな ヽので研磨を阻害するように作用し、十分な研磨速度を得ること ができな!/、と 、う問題点があった。  [0004] General inorganic particle-coated composite particles are produced using a wet composite method as disclosed in Patent Document 1. In this method, the pH of an aqueous dispersion containing organic particles and inorganic particles is adjusted so that the zeta potential of the organic particles and the zeta potential of the inorganic particles are opposite to each other. This is a method for producing composite particles by electrostatic adhesion. Since the abrasive grains produced by this method are electrostatically combined, the inorganic particles fall off during the polishing process when the adhesion strength of the inorganic particles to the organic particles is weak, and a sufficient polishing rate cannot be maintained. There is a problem. Furthermore, if an additive intended to flatten the surface to be carburized by polishing (hereinafter referred to as “flattening additive”) is blended, the electrostatic action between the particles is weakened and the composite iron is removed. There is also a problem. On the other hand, a method using a mixture of organic particles and inorganic particles as an abrasive grain has also been proposed, but the organic particles are complex so that they act as hindering polishing, thereby obtaining a sufficient polishing rate. There was a problem that I couldn't!
[0005] STI— CMPで用いられる一般的なセリア系スラリーは、平坦化添加剤が配合され たものが知られており、この平坦ィ匕添加剤として、ァ-オン系の水溶性高分子化合物 が被研磨材や配管等への残着が少ないので好まれて使用されている。平坦化添カロ 剤を配合することにより、酸ィ匕珪素膜と研磨のストツバ膜である窒化珪素膜との研磨 選択性が大きくなり、研磨される被加工面の平坦性や均一性が得られやすくなるとい う利点があるが、他方、平坦ィ匕添加剤には研磨の保護作用があるので、研磨速度が 低下してしまうという問題点もある。  [0005] A common ceria-based slurry used in STI-CMP is known to contain a leveling additive. As this leveling additive, a water-based high-molecular compound is used. However, it is preferred because it has less adhesion to the material to be polished and piping. By blending the planarizing additive, the polishing selectivity between the silicon oxide film and the silicon nitride film as the polishing stagger film is increased, and the flatness and uniformity of the work surface to be polished can be obtained. On the other hand, there is also a problem that the polishing rate decreases because the flattening additive has a protective action against polishing.
[0006] 無機子粒子被覆型複合粒子を製造するには、静電的に複合化する手法の外に、 機械的なエネルギーを付与して製造する方法がある。この方法では、加圧力、せん 断力、摩擦力を利用して局所的かつ断続的に粒子の表面層を溶融して複合粒子を 製造するものである。この手法によって製造された無機子粒子被覆型複合粒子は、 粒子間の接着強度が高 ヽので、研磨時のせん断力や接触応力によって無機子粒子 が脱離することはないし、平坦化添加剤を配合しても、静電的な作用により無機子粒 子が脱離することもないものである。しかし、この方法には、平坦化添加剤を配合しな Vヽと研磨選択性が全く発現せず、平坦化添加剤を配合すると研磨速度が大幅に低 下してしまう問題点があった。 [0006] In order to produce inorganic particle-coated composite particles, in addition to the electrostatic composite method, There is a method of manufacturing by applying mechanical energy. In this method, a composite particle is produced by locally and intermittently melting the surface layer of a particle using a pressing force, a shearing force, and a frictional force. The inorganic particle-coated composite particles produced by this method have high adhesion strength between the particles, so that the inorganic particles are not detached by shearing force or contact stress during polishing, and a planarizing additive is not used. Even when blended, the inorganic particles are not detached by electrostatic action. However, this method has a problem in that the V selectivity and the polishing selectivity are not developed at all when the planarizing additive is not blended, and when the planarizing additive is blended, the polishing rate is greatly reduced.
特許文献 1 :特開 2001— 152135号公報  Patent Document 1: JP 2001-152135 A
発明の開示  Disclosure of the invention
[0007] 本発明は、上記に鑑み、 CMP工程において、研磨される被カ卩工面の低スクラッチ 性を得ると共に、高い研磨速度を実現して高い加工能率を可能とし、更に、被加工 面の平坦性を得ることができる化学機械研磨用スラリー、該スラリーを用いたィ匕学機 械研磨方法、及び該方法を用いた電子デバイスの製造方法を提供することにある。  In view of the above, the present invention obtains a low scratch property of the surface to be polished to be polished in the CMP process, realizes a high polishing rate and enables a high processing efficiency, and further improves the processing surface. An object of the present invention is to provide a chemical mechanical polishing slurry capable of obtaining flatness, a mechanical mechanical polishing method using the slurry, and an electronic device manufacturing method using the method.
[0008] 本発明に係る砥粒 (A)の複合粒子を構成する有機母粒子としては、ゼータ電位を 負電位とするためカルボキシル基またはスルホニル基が導入されたポリメタクリル酸メ チル (PMMA)粒子、ポリスチレン粒子、及びその共重合体粒子が挙げられる。また 、本発明に係る有機母粒子は、耐熱温度及び硬度がある程度必要であるため、架橋 された有機母粒子が好ましい。そのため、例えば、ソープフリー乳化重合法や分散重 合法等の製造方法により製造された単分散粒子がより好ま 、。有機母粒子の粒径 は 0. 3〜: LO /z mとすることが求められる。その理由は、有機母粒子の粒径が 0. 3 μ mに達しないと、無機子粒子と複合化が難しぐ研磨速度が大幅に低下する等の問 題点が生じ、有機母粒子の粒径が 10 mを超えると、スラリーの分散状態が非常に 悪くなり、研磨面に砲粒濃度が均一なスラリーを供給できないという問題点が生じる 力もである。有機母粒子の粒径としては、 1〜7 111の範囲のものが最も好ましい。  [0008] The organic mother particles constituting the composite particles of the abrasive grains (A) according to the present invention include polymethyl methacrylate (PMMA) particles into which carboxyl groups or sulfonyl groups have been introduced to make the zeta potential negative. , Polystyrene particles, and copolymer particles thereof. In addition, since the organic mother particles according to the present invention require a certain heat resistant temperature and hardness, crosslinked organic mother particles are preferable. Therefore, for example, monodisperse particles produced by a production method such as a soap-free emulsion polymerization method or a dispersion polymerization method are more preferred. The particle size of the organic mother particles is required to be 0.3 to LO / z m. The reason for this is that if the particle size of the organic mother particles does not reach 0.3 μm, problems such as a significant decrease in the polishing rate, which makes it difficult to combine with the inorganic particles, occur. If the diameter exceeds 10 m, the dispersion state of the slurry becomes very bad, and there is also a problem that it is not possible to supply a slurry having a uniform particle size to the polished surface. The particle diameter of the organic mother particles is most preferably in the range of 1 to 7111.
[0009] 本発明に係る砥粒 (A)に用いられる複合粒子を構成する無機子粒子としては、酸 化セリウム(CeO )、三二酸化マンガン(Mn O )、水酸化セリウム(Ce(OH) )が挙げ  [0009] The inorganic particles constituting the composite particles used in the abrasive grains (A) according to the present invention include cerium oxide (CeO), manganese trioxide (MnO), cerium hydroxide (Ce (OH)). Raised
2 2 3 4 られる力 酸ィ匕セリウムであるセリア粒子の砥粒は、酸化珪素膜に対する研磨能力が 優れていることや、 STI— CMP工程のストツバ膜である窒化珪素(Si N )膜と酸ィ匕珪 2 2 3 4 The strength of ceria particles, which are cerium oxide, have the ability to polish silicon oxide films. STI—CMP process staggered silicon nitride (Si N) film and silicon nitride
3 4  3 4
素膜の研磨選択性 (SiO /Si N研磨速度比)が平坦ィ匕添加剤によって得られ易い  Polishing selectivity (SiO 2 / Si N polishing rate ratio) of the base film is easily obtained by the flattening additive
2 3 4  2 3 4
といった特長がある。本発明に係る無機子粒子は、その平均粒径が 10〜500nmの 範囲のものである。その理由は、無機子粒子の平均粒径が 10nmに達しないと、研 磨速度が低下するという問題点が生ずるし、無機子粒子の平均粒径が 500nmを超 えると、被研磨物に対するスクラッチ性が大きくなつてしまうという問題点が生ずるから である。無機子粒子の製造方法には気相法、液相法等があるが、本発明に係る複合 粒子は、乾式複合法による製造方法によるものであるため、本発明に係る無機子粒 子は、生産性等を考慮して、気相法力も生成される粒子を用いることが好ましい。ま た、無機子粒子による有機母粒子の表面被覆率は、その率が高いほど高速研磨を 可能とするから、本発明に係る該表面被覆率は、 20%以上とすることが好ましい。  It has the following features. The inorganic particles according to the present invention have an average particle size in the range of 10 to 500 nm. The reason is that if the average particle size of the inorganic particles does not reach 10 nm, the polishing speed decreases, and if the average particle size of the inorganic particles exceeds 500 nm, scratches on the object to be polished will occur. This is because there arises a problem that the property becomes large. There are a gas phase method, a liquid phase method, and the like as methods for producing inorganic particles, but since the composite particles according to the present invention are produced by a dry composite method, the inorganic particles according to the present invention are produced. In consideration of the properties and the like, it is preferable to use particles that can also generate a gas phase method. Further, since the surface coverage of the organic mother particles by the inorganic particles is higher as the rate is higher, the surface coverage according to the present invention is preferably 20% or more.
[0010] 本発明に係る砥粒 (A)に用いられる複合粒子と水 (B)とから構成される化学機械 研磨用スラリーにおいて、該複合粒子 (砲粒)は、水(B)に対して 0. 2〜10重量%と なる濃度とされる。その理由は、当該数値が 0. 2重量%に達しないと、十分な研磨速 度を得ることができないし、また、 10重量%を超えると、スラリーの分散状態が非常に 悪くなる問題という問題が生じるからである。当該数値が 0. 5〜5重量%となるスラリ 一がより好ましい。 [0010] In the chemical mechanical polishing slurry composed of the composite particles used for the abrasive grains (A) according to the present invention and water (B), the composite particles (gunlets) are in contact with water (B). The concentration should be 2 to 10% by weight. The reason is that if the numerical value does not reach 0.2% by weight, a sufficient polishing speed cannot be obtained, and if it exceeds 10% by weight, the dispersion state of the slurry becomes very bad. This is because. A slurry in which the numerical value is 0.5 to 5% by weight is more preferable.
[0011] 本発明に係る平坦ィ匕添加剤 (C)は、 CMP用スラリーが被研磨材の無機絶縁膜、 例えば酸ィ匕珪素膜ゃ窒化珪素膜に接触したときに、無機絶縁膜に吸着 (加着)する ものであれば特に制約はなぐ例えば、水溶性高分子又は界面活性剤が好適に用 いられるものであるが、 CMP用スラリーが被研磨材の酸ィ匕珪素膜ゃ窒化珪素膜に接 触したときに、該膜に吸着し、かつ研磨面圧の増加によって該膜から脱離するものが 好ましい。このような平坦ィ匕添加剤(C)の例として、ポリ (メタ)アクリル酸、ポリ (メタ)ァ クリル酸誘導体、ポリ(メタ)アクリル酸アンモ-ゥム塩、ポリビュルピロリドン、ポリビ- ルァセタール、ポリビニルホルマール、ポリビニルブチラール、ポリビニルピロリドン ヨウ素錯体、ポリビュル(5—メチルー 2 ピロリジノン)、ポリビュル(2 ピベリジノン) 、ポリビニル(3, 3, 5 トリメチル 2 ピロリジノン)、ポリ(N ビュルカルバゾール) 、ポリ(N—アルキルーピ-ルカルバゾール)、ポリ(N—アルキル 3—ビ-ルカルバ ゾール)、ポリ(N—アルキルー4 ビュルカルバゾール)、ポリ(N ビ-ルー 3, 6— ジブ口モカルバゾール)、ポリビュルフエ-ルケトン、ポリビュルァセトフエノン、ポリ(4 ビュルピリジン)、ポリ(4 βーヒドロキシェチルピリジン)、ポリ(2 ビュルピリジン )、ポリ(2— j8—ビュルピリジン)、ポリ(4 ビュルピリジン)、ポリ(4ーヒドロキシェチ ルビリジン)、ポリ(4—ビュルピリジ-ゥム塩)、ポリ( α—メチルスチレン一 co— 4—ビ -ルピリジ-ゥム塩酸塩)、ポリ(1— (3—スルホ -ル) 2—ビュルピリジ-ゥムべタイ ン一 co— p—スチレンスノレホン酸カリウム)、ポリ(N ビニノレイミダゾーノレ)、ポリ(4— ビュルイミダゾール)、ポリ(5 ビュルイミダゾール)、ポリ(1 ビュル 4ーメチルォ キサゾリジノン)、ポリビュルァセトアミド、ポリビュルメチルァセトアミド、ポリビュルェチ ルァセトアミド、ポリビュルフエ-ルァセトアミド、ポリビュルメチルプロピオンアミド、ポ リビュルェチルプロピオンアミド、ポリビュルメチルイソブチルアミド、ポリビュルメチル ベンジルアミド、ポリビュルアルコール、ポリビュルアルコール誘導体、ポリアクロレイ ン、ポリアクリロニトリル、ポリ酢酸ビュル、ポリ(酢酸ビュル—co—メタクリル酸メチル) 、ポリ(酢酸ビュル—co—ピロリジン)、ポリ(酢酸ビュル—co ァセトニトリル)、ポリ( 酢酸ビュル co— N, N ジァリルシア-ド)、ポリ(酢酸ビュル co— N, N ジァリ ルァミン)、ポリ(酢酸ビニル co エチレン)等の化合物が挙げられる。 [0011] The flatness additive (C) according to the present invention is adsorbed on the inorganic insulating film when the CMP slurry comes into contact with the inorganic insulating film to be polished, for example, the silicon oxide film or the silicon nitride film. For example, a water-soluble polymer or a surfactant is preferably used, but the slurry for CMP is a silicon oxide film or silicon nitride to be polished. A material that adsorbs to the film when it contacts the film and desorbs from the film due to an increase in polishing surface pressure is preferable. Examples of such flattening additives (C) include poly (meth) acrylic acid, poly (meth) acrylic acid derivatives, poly (meth) acrylic acid ammonium salt, polybutyropyrrolidone, poly (bi) acetal. , Polyvinyl formal, polyvinyl butyral, polyvinyl pyrrolidone iodine complex, polybule (5-methyl-2 pyrrolidinone), polybule (2 piberidinone), polyvinyl (3, 3, 5 trimethyl 2 pyrrolidinone), poly (N bullcarbazole), poly (N— Alkyl-pyrcarbazole), poly (N-alkyl 3-vinylcarba) Sol), poly (N-alkyl-4 bulcarbazole), poly (N beluo 3, 6- dib mouth mocarbazole), polybureol ketone, polyburacetophenone, poly (4 bulupyridine), poly (4 β -Hydroxyethylpyridine), poly (2 butylpyridine), poly (2-j8-bulupyridine), poly (4 butylpyridine), poly (4-hydroxyethylpyridine), poly (4-butylpyridinum salt), poly (Α-methylstyrene mono-co-4-vinylpyridyl-dihydrochloride), poly (1- (3-sulfol) 2-burpyridyl-umbetaine co-p-potassium styrene sulphonate ), Poly (N vinylinoremidazolene), poly (4-bulimidazole), poly (5-bulimidazole), poly (1bule 4-methyloxazolidinone), polybulucate Amides, polybutymethylacetamide, polybutylucacetamide, polybutel-fulacetamide, polybutymethylpropionamide, polybutyrylpropionamide, polybutymethylisobutyramide, polybutymethylbenzylamide, polybutal alcohol, polybutal alcohol derivatives , Polyacrylene, polyacrylonitrile, poly (vinyl acetate), poly (butyrate acetate-co-methyl methacrylate), poly (butyrate acetate-co-pyrrolidine), poly (butyrate acetate-coacetonitrile), poly (butyrate acetate co-N, N (diallyl cyanide), poly (butyl acetate co-N, N diallylamine), poly (vinyl acetate co ethylene) and the like.
平坦ィ匕添加剤は、その重量平均分子量が 500以上のものが好ましぐその上限は 特にないが、 100万以下のものであることが溶解性の面で好ましい。界面活性剤とし ては非イオン性界面活性剤、陰イオン性界面活性剤が挙げられることができるが、ァ ルカリ金属を含まな 、ものを用いることが好ま U、。このような界面活性剤の中でも、 特に、ポリエチレングリコール型非イオン性界面活性剤、グリコール類、グリセリン脂 肪酸エステル、ソルビット脂肪酸エステル、脂肪酸アル力ノールアミド、アルコール硫 酸エステル塩、アルキルエーテル硫酸エステル塩、アルキルベンゼンスルホン酸塩、 アルキルリン酸エステルカゝら選ばれる少なくとも 1種がより好ましい。平坦化添加剤の 添加量は、 CMP用スラリー 100重量部に対して 0. 05〜5重量%の範囲が好ましい 。その理由は、平坦化添加剤の添加量は、この範囲より下限より少ないと添加効果が 現れない場合があり、上限を超えると研磨速度が低下してしまう場合があるからであ る。 [0013] 本発明に係る化学機械研磨用スラリーには、分散剤、 pH調整剤等を添加してもよ い。該分散剤は、有機粒子を構成する無機子粒子によって選択される必要があり、 例えば、無機子粒子として酸ィ匕セリウムを用いる場合では、ポリアクリル酸アンモ-ゥ ム塩や、共重合成分としてアクリル酸アンモ-ゥム塩を含む高分子分散剤等が好まし い。その他の分散剤として、ラウリル硫酸トリエタノールァミン、ラウリル硫酸アンモ-ゥ ム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールァミン、特殊ポリカルボン 酸型高分子、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテ ル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンォレイルエーテル、 ポリオキシエチレン高級アルコールエーテル、ポリオキシエチレンォクチルフエ-ルェ 一テル、ポリオキシエチレンノニルフエニルエーテル、ポリオキシアルキレンアルキル エーテル、ポリオキシエチレン誘導体、ポリオキシエチレンソルビタンモノラウレート、 ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステ アレート、ポリオキシエチレンソルビタントリステアレート、ポリオキシエチレンソルビタ ンモノォレエート、ポリオキシエチレンソルビタントリオレエート、テトラオレイン酸ポリオ キシエチレンソルビット、ポリエチレングリコーノレモノラウレート、ポリエチレングリコー ノレモノステアレート、ポリエチレングリコーノレジステアレート、ポリエチレングリコーノレモ ノォレエート、ポリオキシエチレンアルキルァミン、ポリオキシエチレン硬化ヒマシ油、 アルキルアル力ノールアミド、ポリビュルピロリドン、ココナットァミンアセテート、ステア リルアミンアセテート、ラウリルべタイン、ステアリルべタイン、ラウリルジメチルアミンォ キサイド、 2 -アルキル -N-カルボキシメチル -N-ヒドロキシェチルイミダゾリ-ゥ ムべタイン等が挙げられる。 The upper limit of the weight of the flat wrinkle additive is preferably 500 or more, but it is preferably 1 million or less in view of solubility. As the surfactant, a nonionic surfactant and an anionic surfactant can be mentioned, but it is preferable to use a surfactant that does not contain alkali metal. Among these surfactants, in particular, polyethylene glycol type nonionic surfactants, glycols, glycerin fatty acid esters, sorbit fatty acid esters, fatty acid alcohol amides, alcohol sulfate salts, alkyl ether sulfate salts And at least one selected from alkylbenzene sulfonate and alkyl phosphate ester. The addition amount of the planarizing additive is preferably in the range of 0.05 to 5% by weight with respect to 100 parts by weight of the slurry for CMP. The reason is that if the addition amount of the planarization additive is less than the lower limit than this range, the effect of addition may not appear, and if it exceeds the upper limit, the polishing rate may decrease. [0013] A dispersant, a pH adjuster, and the like may be added to the chemical mechanical polishing slurry according to the present invention. The dispersant needs to be selected depending on the inorganic particles constituting the organic particles. For example, in the case where cerium oxide is used as the inorganic particles, a polyacrylic acid ammonium salt or a copolymer component is used. A polymer dispersant containing an acrylic acid ammonium salt is preferred. Other dispersants include triethanolamine lauryl sulfate, ammonium lauryl sulfate, polyoxyethylene alkyl ether triethanolamine sulfate, special polycarboxylic acid type polymer, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether. , Polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene higher alcohol ether, polyoxyethylene octylphenol ether, polyoxyethylene nonylphenyl ether, polyoxyalkylene alkyl ether, polyoxyethylene Derivatives, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sol Vitan tristearate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbite tetraoleate, polyethylene glycol nore monolaurate, polyethylene glycol nore monostearate, polyethylene glyconorestearate, polyethylene glycol Noremo noreate, polyoxyethylene alkylamine, polyoxyethylene hydrogenated castor oil, alkyl aranol amide, polybutylpyrrolidone, coconutamine acetate, stearylamine acetate, laurylbetaine, stearylbetaine, lauryldimethylamine Xoxide, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolium methine and the like.
[0014] 上記の分散剤の添加量は、 CMP用スラリー中の粒子の分散性と沈降防止、更に 研磨傷と分散剤添加量との関係に照らして、セリア粒子 (酸ィ匕セリウム粒子) 100重量 部に対して、 0. 01重量部以上 2. 0重量部以下の範囲のものであることが好ましい。 また、上記の分散剤の分子量は、 100-50, 000の範囲のものであることが好ましく 、更に、 1, 000〜10, 000の範囲のものであることが一層好ましい。その理由は、分 散剤の分子量が 100未満の場合は、酸ィ匕珪素膜ゃ窒化珪素膜を研磨するときに、 十分な研磨速度が得られないことがあり、他方、分散剤の分子量が 50, 000を超える 場合では、粘度が高くなり、 CMP用スラリーの保存安定性が低下することがあるから である。 [0014] The amount of the above-mentioned dispersant added is determined based on the dispersibility of particles in the slurry for CMP and sedimentation prevention, and in addition to the relationship between polishing scratches and the amount of dispersant added, ceria particles (acid cerium particles) 100 The amount is preferably in the range of 0.01 to 2.0 parts by weight with respect to parts by weight. The molecular weight of the dispersant is preferably in the range of 100-50,000, and more preferably in the range of 1,000,000 to 10,000. The reason is that if the molecular weight of the dispersing agent is less than 100, a sufficient polishing rate may not be obtained when polishing the silicon oxide film or the silicon nitride film, while the molecular weight of the dispersing agent is 50 , Over 000 In some cases, the viscosity increases and the storage stability of the CMP slurry may decrease.
[0015] 本発明に係る化学機械研磨用スラリーは、ゼータ電位が負電位の複合粒子を砥粒 に用いることにより、平坦ィ匕添加剤 (C)が配合されていない場合でも、研磨速度を高 速に維持し、かつ被加工面の平坦性を得る上で十分な研磨選択性を得ることを可能 とすることができる。また、本発明に係る化学機械研磨用スラリーは、平坦化添加剤( C)が配合される場合でも、複合粒子砥粒のゼータ電位が正電位であると平坦ィ匕添 加剤 (C)の吸着量が多くなつて研磨速度が大幅に低下するところ、ゼータ電位が負 電位の複合粒子を砥粒に用いることにより、平坦化添加剤(C)の吸着量を抑制して、 高速の研磨速度と十分な研磨選択性の両者を得ることを可能とすることができる。  [0015] The slurry for chemical mechanical polishing according to the present invention uses a composite particle having a negative zeta potential for the abrasive grains, thereby increasing the polishing rate even when the flattening additive (C) is not blended. It is possible to maintain high speed and to obtain sufficient polishing selectivity for obtaining flatness of the work surface. In addition, the slurry for chemical mechanical polishing according to the present invention can be obtained by adding the flattening additive (C) when the zeta potential of the composite particle abrasive grains is positive even when the flattening additive (C) is blended. When the adsorbed amount increases, the polishing rate decreases significantly. By using composite particles with a negative zeta potential for the abrasive grains, the adsorbed amount of the leveling additive (C) is suppressed and a high polishing rate is achieved. And sufficient polishing selectivity can be obtained.
[0016] 本発明に係る化学機械研磨用スラリー、該スラリーを用いたィ匕学機械研磨方法及 び該方法を用いた電子デバイスの製造方法は、砥粒 (A)と、水 (B)とから構成される 化学機械研磨用スラリーにおいて、該砥粒 (A)に有機母粒子とセリア粒子とのセリア 粒子被覆型複合粒子を用い、該複合粒子のゼータ電位が負電位である砥粒 (A)を 用いることにより、 CMP工程において研磨される被カ卩工面の低スクラッチ性を得ると 共に、高速による研磨加工に基づく高い加工能率を得ることができるという効果を奏 する。  The chemical mechanical polishing slurry, the mechanical mechanical polishing method using the slurry, and the electronic device manufacturing method using the method according to the present invention include abrasive grains (A), water (B), In the slurry for chemical mechanical polishing comprising the abrasive grains (A), the abrasive grains (A) are made of ceria particle-coated composite particles of organic mother particles and ceria particles, and the composite grains have a zeta potential of a negative potential (A ), It is possible to obtain a low scratch property of the surface to be polished in the CMP process and to obtain a high processing efficiency based on a high-speed polishing process.
[0017] また、本発明に係る化学機械研磨用スラリー、該スラリーを用いたィ匕学機械研磨方 法及び該方法を用いた電子デバイスの製造方法は、上記の化学機械研磨用スラリ 一に平坦ィ匕添加剤(C)を配合することにより、上記の効果に加えて、研磨される被加 工面の平坦性を得ることができるという効果も奏する。  [0017] Further, the chemical mechanical polishing slurry, the mechanical mechanical polishing method using the slurry, and the electronic device manufacturing method using the method according to the present invention are flat on the chemical mechanical polishing slurry. In addition to the above effect, the addition of the additive (C) also has an effect that the flatness of the work surface to be polished can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]本発明による無機粒子被覆型複合粒子の模式的断面図。 FIG. 1 is a schematic cross-sectional view of an inorganic particle-coated composite particle according to the present invention.
[図 2]複合粒子を用いた研磨の模式的断面図。  FIG. 2 is a schematic cross-sectional view of polishing using composite particles.
符号の説明  Explanation of symbols
[0019] 1…セリア粒子、 2…有機母粒子、 3…複合粒子、 4· "スラリー、 5〜Siウェハ、 6…パッ ド、。  [0019] 1 ... ceria particles, 2 ... organic mother particles, 3 ... composite particles, 4 "slurry, 5-Si wafer, 6 ... pad.
発明を実施するための最良の形態 [0020] 以下、本発明の実施例を詳細に説明するが、本発明は本実施例に限定されるもの ではない。有機母粒子と無機子粒子との乾式複合粒子の製造方法は、例えばホソカ ヮミクロン株式会社のメカノフュージョンシステム、並びに株式会社奈良機械製作所 のハイブリダィゼーシヨンシステムによる複合ィ匕方法がある。これらの複合化方法は、 複数の異なる素材粒子に対し、機械的エネルギーに基づく摩擦'圧力 ·せん断力を 加えることにより、メカノケミカル的に分子レベルで結合させて複合粒子を製造する技 術である。これらの方法は、湿式複合粒子の製造方法と比べて、プロセスがシンプル であり、組み合わせに自由度が高いことが特徴である。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, examples of the present invention will be described in detail, but the present invention is not limited to the examples. As a method for producing dry composite particles of organic mother particles and inorganic particles, there are, for example, a composite method using a mechano-fusion system manufactured by Hosoka Micron Corporation and a hybridization system manufactured by Nara Machinery Co., Ltd. These composite methods are technologies that produce composite particles by mechanically bonding them at a molecular level by applying frictional pressure and shearing force based on mechanical energy to multiple different material particles. . These methods are characterized by a simple process and a high degree of freedom in combination as compared with a method for producing wet composite particles.
[0021] 次に、本発明に係る実施例の作用効果を確認するために実施した研磨試験方法 について説明する。研磨試験は、ェンギス社製研磨装置 (IMRTECH10DVT)を用い 、二酸化珪素(SiO )膜に対する研磨速度を測定するもので、研磨定盤 (直径 200m Next, a polishing test method performed for confirming the operation and effect of the example according to the present invention will be described. The polishing test is to measure the polishing rate for silicon dioxide (SiO 2) film using a polishing device (IMRTECH10DVT) manufactured by Engis Co., Ltd.
2  2
m)上に研磨パッド(ユッタ'ノヽース社製 IC1000/Suba400)を貼付けし、ガイドリング の底部にも同じパッドを貼付けている。研磨される被加工材のニ酸ィ匕珪素膜ウェハを 研磨錘の底部にセットし、ガイドリング内で研磨パッド上に置き、定盤の回転に合せて 接触面の摩擦抵抗によりガイドリング及び研磨錘が定盤の回転と同じ方向に自転す ることで研磨を行う。研磨荷重は研磨錘の個数で調整し、荷重を 30kPa、定盤の回 転数を 150/分とし、研磨時間を 2分とした。研磨中はスラリーをチューブポンプにお いて連続的に滴下(15 ml/min)し供給した。研磨後の二酸ィ匕珪素膜ウェハは純水で 10分間の超音波洗浄を行 ヽ乾燥した。二酸化珪素膜の膜厚は光干渉式膜厚測定 装置を用いて、研磨前後の膜厚差を測定し、研磨速度を計算した。  m) A polishing pad (IC1000 / Suba400 manufactured by Yutta Noose Co., Ltd.) is pasted on the top, and the same pad is also pasted on the bottom of the guide ring. Set the silicon dioxide silicate film wafer of the workpiece to be polished on the bottom of the polishing weight, place it on the polishing pad in the guide ring, and guide ring and polish by frictional resistance of the contact surface as the surface plate rotates Polishing is performed by rotating the weight in the same direction as the rotation of the surface plate. The polishing load was adjusted by the number of polishing weights, the load was 30 kPa, the number of rotations of the surface plate was 150 / min, and the polishing time was 2 minutes. During polishing, the slurry was continuously dripped (15 ml / min) with a tube pump and supplied. The polished silicon dioxide silicon wafer was subjected to ultrasonic cleaning with pure water for 10 minutes and dried. The film thickness of the silicon dioxide film was measured by measuring the difference in film thickness before and after polishing using an optical interference type film thickness measuring device and calculating the polishing rate.
[実施例 1〜3]  [Examples 1 to 3]
[0022] 本発明に係る化学機械研磨用スラリーの実施例 1〜3は、いずれも有機母粒子に ポリメタクリル酸メチル (PMMA)単分散粒子(5 )と無機子粒子にセリア (CeO )粒  Examples 1 to 3 of the slurry for chemical mechanical polishing according to the present invention are all made of polymethyl methacrylate (PMMA) monodisperse particles (5) as organic mother particles and ceria (CeO) particles as inorganic particles.
2 子(14nm)を乾式複合粒子製造方法にて複合ィ匕した複合粒子砥粒を用いて、複合 粒子のゼータ電位が負電位となるように製造されたものである。製造された複合粒子 砥粒のゼータ電位は、通常のレーザードップラー法では高濃度スラリー、大粒径粒 子、複合粒子等が測定し難いため、高周波の電気泳動による振動を圧力振幅値から ゼータ電位を求める Matec Applied Sciences社製 ESA-9800を用い測定した。複合 粒子のゼータ電位は、実施例 1では— 40mV、実施例 2では— 20mV、実施例 3で は 5mVであった。これらの実施例のスラリーは、有機母粒子にカルボキシル基を 導入して濃度を変化させることにより、上記のゼータ電位を調整した負電位の複合粒 子を得たものである。砥粒濃度 (水に対する砥粒の重量割合)を 1重量%として、上記 の研磨試験を実施した。研磨される被加工材には研磨選択性を調べるために、 SiO The composite particles are produced so that the zeta potential of the composite particles becomes a negative potential by using composite particle abrasive particles obtained by combining double particles (14 nm) by the dry composite particle manufacturing method. The zeta potential of the produced composite particle abrasive grains is difficult to measure for high-concentration slurry, large-diameter particles, composite particles, etc. with the ordinary laser Doppler method. This was measured using ESA-9800 manufactured by Matec Applied Sciences. composite The zeta potential of the particles was −40 mV in Example 1, −20 mV in Example 2, and 5 mV in Example 3. The slurries of these examples are obtained by introducing the carboxyl group into the organic mother particles and changing the concentration to obtain the negative potential composite particles in which the zeta potential is adjusted. The above polishing test was carried out at an abrasive concentration (weight ratio of abrasive grains to water) of 1% by weight. In order to investigate the polishing selectivity of the workpiece to be polished, SiO
2 膜ウエノ、に加えて、研磨のストツバ膜として Si N膜ウェハを取り上げ、研磨速度の比  2 In addition to the film weno, a Si N film wafer is taken up as a polishing stagger film, and the polishing rate ratio
3 4  3 4
較を行った。測定項目は、研磨速度と研磨選択性 (SiO膜と Si N膜との研磨速度  A comparison was made. Measurement items are polishing rate and polishing selectivity (Polishing rate of SiO film and Si N film)
2 3 4  2 3 4
比)を評価した。  Ratio).
[0023] 比較例 1及び 2は、正電位の複合粒子を得るために、通常のポリメタクリル酸メチル  [0023] Comparative Examples 1 and 2 were prepared using conventional polymethyl methacrylate to obtain positive-potential composite particles.
(PMMA)単分散粒子及び PMMA単分散粒子にヒドロキシル基を導入した複合粒 子を用いたものである。また、比較例 3は、研磨速度比較のために、無機子粒子とし て使用しているナノセリア単独のものである。  (PMMA) monodisperse particles and composite particles in which hydroxyl groups are introduced into PMMA monodisperse particles. Comparative Example 3 is a single nanoceria used as an inorganic particle for comparison of polishing rate.
[0024] 実施例 1から 3、及び比較例 1から 3の各化学機械研磨用スラリーの評価結果を表 1 に示す。  Table 1 shows the evaluation results of the chemical mechanical polishing slurries of Examples 1 to 3 and Comparative Examples 1 to 3.
[表 1] [table 1]
Figure imgf000012_0001
表 1が示すとおり、実施例 1から 3の化学機械研磨用スラリーは、比較例 3のナノセリ ァ単独のものと比較して、 SiO膜研磨速度が非常に速ぐ優れた研磨能力を有して
Figure imgf000012_0001
As shown in Table 1, the chemical mechanical polishing slurries of Examples 1 to 3 have excellent polishing ability with a very high SiO film polishing rate as compared with the nano-ceramic alone of Comparative Example 3.
2  2
おり、更に複合粒子のゼータ電位の負電位の絶対値がより大きくなると、研磨選択性 がより大きくなる結果が得られた。比較例 1及び 2では、複合粒子のゼータ電位が正 電位であるために、研磨速度は非常に速いが、研磨選択性が得られない結果となつ [0026] なお、実施例 1から 3は、複合粒子のゼータ電位を負電位とするため、有機母粒子と して PMMAにカルボキシル基を導入したものを用いた力 官能基にスルホ -ル基や 負電位となるような他の官能基を導入した有機母粒子を使用してもよい。また、実施 例 1から 3の有機母粒子には PMMAを基材として用いた力 ポリスチレン粒子に官 能基を導入した有機母粒子を用いても同様な効果が得られる。実施例 1から 3は、前 記した乾式複合粒子を用いたものであるが、ヘテロ凝集による湿式複合粒子を用い ても、より高速の研磨が可能となり、大きな研磨選択性が得られることもわ力つた。本 明細書中には便宜上、実施例が用いた砲粒が複合粒子単独であるかのように記載 したが、乾式複合粒子製造方法では 100%複合化されることはないので、実際には 複合ィ匕されていないナノセリアも含まれるものである。複合粒子の表面被覆率が同じ であれば、複合ィ匕されていないナノセリアの量が多くなるほど、 SiO膜の研磨速度が In addition, when the absolute value of the negative zeta potential of the composite particles was further increased, the polishing selectivity was increased. In Comparative Examples 1 and 2, since the zeta potential of the composite particles is positive, the polishing rate is very fast, but the polishing selectivity cannot be obtained. [0026] In Examples 1 to 3, since the zeta potential of the composite particles is set to a negative potential, a force group using a PMMA introduced with a carboxyl group as an organic mother particle has a sulfo group or You may use the organic mother particle which introduce | transduced the other functional group which becomes a negative potential. Further, the same effect can be obtained by using organic mother particles obtained by introducing functional groups into force polystyrene particles using PMMA as a base material for the organic mother particles of Examples 1 to 3. In Examples 1 to 3, the dry composite particles described above were used. However, even when wet composite particles obtained by heteroaggregation were used, higher speed polishing was possible, and a large polishing selectivity was obtained. I helped. In the present specification, for convenience, the barrel used in the examples is described as if it was a composite particle alone. However, in the dry composite particle manufacturing method, it is not 100% composite, so it is actually composite. This includes nanoceria that has not been treated. If the surface coverage of the composite particles is the same, the higher the amount of non-composited nanoceria, the higher the polishing rate of the SiO film.
2  2
速くなる傾向がある。したがって、複合粒子にナノセリアをカ卩えた砲粒を用いたスラリ 一でも、同様の効果が得られる。本実施例では研磨される被加工材である SiO膜に  Tend to be faster. Therefore, the same effect can be obtained even with a slurry that uses nanoceria-encapsulated particles. In this example, the SiO film that is the workpiece to be polished
2 2
、軟化温度を下げゲッタリング作用がある HDP—TEOS (High Density Plasma-Tetr a Ethoxy Silane)を用いた力 熱酸化膜や 03— TEOS、 SOG (Spin on Glass)等とい つた酸ィ匕珪素膜を使用することもできる。 , A thermal oxide film using HDP—TEOS (High Density Plasma-Tetra Ethoxy Silane), which has a gettering action by lowering the softening temperature, and an oxide silicon film such as 03—TEOS, SOG (Spin on Glass), etc. It can also be used.
[実施例 4〜7]  [Examples 4 to 7]
[0027] 次に、化学機械研磨用スラリーにおける、複合粒子の砥粒の濃度と研磨速度の関 係を評価した。研磨試験は実施例 1ないし 3と同様の条件で実施した。実施例 4から 7 の化学機械用研磨用スラリーは、実施例 2で用いた PMMA単分散粒子(5 )と無 機子粒子に CeO粒子(14nm)との複合粒子砥粒であって、ゼータ電位が— 20mV  [0027] Next, the relationship between the abrasive concentration of the composite particles and the polishing rate in the chemical mechanical polishing slurry was evaluated. The polishing test was performed under the same conditions as in Examples 1 to 3. The slurry for chemical mechanical polishing of Examples 4 to 7 is a composite particle abrasive of PMMA monodispersed particles (5), inorganic particles and CeO particles (14 nm) used in Example 2, and has a zeta potential. -20mV
2  2
のものを用いた。砲粒の水に対する重量割合である砲粒濃度は、実施例 4では 0. 2 重量%、実施例 5では 1. 5重量%、実施例 6では 5重量%、実施例 7では 10重量% とした。  The thing of was used. The barrel concentration, which is the weight ratio of the barrel to water, was 0.2% by weight in Example 4, 1.5% by weight in Example 5, 5% by weight in Example 6, and 10% by weight in Example 7. did.
[0028] 比較例 4及び 5は、共に実施例 2で用いた複合粒子の砲粒を用いたものであるが、 比較例 4は、砥粒の水に対する重量割合を示す砥粒濃度が 0. 1重量%とし、比較例 5は、同じく 20重量%としたものであり、実施例 1ないし 3と同様の研磨試験を行った。 実施例 4から 7並びに比較例 4及び 5の評価結果を表 2に示す。
Figure imgf000014_0001
[0028] Comparative Examples 4 and 5 both use the composite particles of the granule used in Example 2, but Comparative Example 4 has an abrasive concentration of 0. 1% by weight, and Comparative Example 5 was also 20% by weight, and the same polishing test as in Examples 1 to 3 was performed. The evaluation results of Examples 4 to 7 and Comparative Examples 4 and 5 are shown in Table 2.
Figure imgf000014_0001
[0029] 表 2が示すように、実施例 4から 7の各化学機械研磨用スラリーは、比較例 4と比較 すると SiO膜研磨速度が非常に速ぐ優れた研磨能力を有している。これに対し、砥  [0029] As shown in Table 2, each of the chemical mechanical polishing slurries of Examples 4 to 7 has an excellent polishing ability that the SiO film polishing rate is very high as compared with Comparative Example 4. On the other hand, abrasive
2  2
粒濃度が 0. 1重量%の比較例 4は、研磨速度が大幅に低下してしまい、実用上十分 な研磨速度を得ることができない。また、砲粒濃度が 20重量%の比較例 5は、砲粒 濃度 10重量%の実施例 7と比較しても、研磨速度には差がみられずほぼ飽和状態と なっている。さらに、比較例 5は、表には記載されていないが、砲粒の分散状態が非 常に悪くなつていることがわかった。  In Comparative Example 4 having a grain concentration of 0.1% by weight, the polishing rate is greatly reduced, and a practically sufficient polishing rate cannot be obtained. In addition, Comparative Example 5 with the 20% by weight of the granule concentration is almost saturated with no difference in polishing rate as compared with Example 7 having the 10% by weight of the barrel density. Further, although Comparative Example 5 is not described in the table, it has been found that the dispersion state of the barrel is very bad.
[実施例 8 11]  [Example 8 11]
[0030] 次に、化学機械研磨用スラリーにおける、複合粒子の砥粒の粒径と研磨速度の関 係を評価する。研磨試験は前記と同様の条件で実施した。実施例 8〜11の化学機 械研磨用スラリーは、有機母粒子に PMMA単分散粒子と無機子粒子に CeO粒子 ( [0030] Next, in the chemical mechanical polishing slurry, the relationship between the abrasive grain size and the polishing rate of the composite particles. Evaluate the clerk. The polishing test was performed under the same conditions as described above. The slurry for chemical mechanical polishing of Examples 8 to 11 is composed of PMMA monodispersed particles as organic matrix particles and CeO particles (as inorganic particles) (
2 2
14nm)との複合粒子砥粒を用い、砥粒濃度を 1重量%としたものである力 有機母 粒子として用いた PMMA単分散粒子の平均粒径について、実施例 8では 0. The average particle diameter of the PMMA monodispersed particles used as the organic mother particles is 0 in Example 8.
、実施例 9では 1. 5 m、実施例 10では 5 μ m、実施例 11では 10 μ mとしたもので ある。なお、無機子粒子の平均粒径は 14nmと、母粒子と比較して十分に小さいので 、上記した PMMA単分散粒子の平均粒径は、そのまま砥粒である複合粒子の平均 粒径とすることができる。 PMMAはカルボキシル基を導入しているため、製造した複 合粒子のゼータ電位は 、ずれも負電位である。研磨速度の外に研磨後のウェハの 傷観察を行った。  In Example 9, 1.5 m, in Example 10, 5 μm, and in Example 11, 10 μm. Since the average particle size of the inorganic particles is 14 nm, which is sufficiently smaller than the mother particle, the average particle size of the above-mentioned PMMA monodispersed particles should be the average particle size of the composite particles that are abrasive grains as they are. Can do. Since PMMA has a carboxyl group introduced, the produced composite particles have a negative zeta potential. In addition to the polishing rate, the scratches on the polished wafer were observed.
[0031] 比較例 6及び 7は、有機母粒子に PMMA単分散粒子と無機子粒子に Ce02粒子( 14nm)との複合粒子砥粒を用い、砥粒濃度を 1重量%とし、複合粒子のゼータ電位 を負電位とした点は、実施例 8から 11と同じであるが、有機母粒子の PMMA単分散 粒子の粒径、すなわち、複合粒子の粒径について、比較例 6では 0. 15 m、比較 例 7では 20 μ mとしたものである。  [0031] Comparative Examples 6 and 7 use composite particle abrasive grains of PMMA monodisperse particles as organic mother particles and Ce02 particles (14 nm) as inorganic particles, the abrasive concentration is 1% by weight, and the zeta of the composite particles. The negative potential was the same as in Examples 8 to 11. However, the particle size of the PMMA monodispersed particles of the organic mother particles, that is, the particle size of the composite particles was 0.15 m in Comparative Example 6. In Comparative Example 7, it is 20 μm.
[0032] 実施例 8から 11並びに比較例 6及び 7について、前記した研磨試験方法と同じ条 件で実施した評価結果を、表 3に示す。  [0032] Table 3 shows the evaluation results of Examples 8 to 11 and Comparative Examples 6 and 7, which were carried out under the same conditions as the polishing test method described above.
[表 3] [Table 3]
Figure imgf000016_0001
表 3が示すように、実施例 8〜11の化学機械研磨用スラリーは、 SiO膜の研磨速
Figure imgf000016_0001
As Table 3 shows, the slurry for chemical mechanical polishing in Examples 8 to 11 is the polishing rate of the SiO film.
2  2
度が非常に速ぐかつ研磨後のウェハにも傷が確認されず優れた性能を示した。複 合粒子の平均粒径が 1. 5 mの実施例 9において、研磨速度の最速値が得られた。 これに対し、複合粒子の平均粒径が 0. 15 mの比較例 6では、研磨速度が大幅に 低下し、十分な研磨速度を得ることができな力つた。また、複合粒子の平均粒径が 20 mの比較例 7では、十分な研磨速度が得られたものの、研磨された被加工面に傷 が多く観察され、スラリーの分散状態も非常に悪力つた。乾式複合粒子製造方法で は、有機母粒子の平均粒径が: m未満となると複合ィ匕することが容易ではなぐ 1 〜7 /ζ πι程度が最も好ましい。複合粒子砥粒の平均粒径は、研磨パッドの種類、特 に多孔質ウレタン榭脂製である研磨パッドのパターンとその表面粗さに大きく関与し ているため、使用する研磨パッドに適した粒径を選定する必要がある。 The wafer was extremely fast, and the polished wafer was not damaged and showed excellent performance. In Example 9 where the average particle size of the composite particles was 1.5 m, the fastest polishing rate was obtained. On the other hand, in Comparative Example 6 in which the average particle size of the composite particles was 0.15 m, the polishing rate was greatly reduced, and it was difficult to obtain a sufficient polishing rate. Further, in Comparative Example 7 in which the average particle size of the composite particles was 20 m, a sufficient polishing rate was obtained, but many scratches were observed on the polished work surface, and the dispersion state of the slurry was very bad. . In the dry composite particle manufacturing method, it is not easy to composite when the average particle size of the organic mother particle is less than m: 1 Most preferred is about ~ 7 / ζ πι. The average particle size of composite particle abrasive grains is largely related to the type of polishing pad, especially the pattern of the polishing pad made of porous urethane resin and its surface roughness, so it is suitable for the polishing pad used. It is necessary to select the diameter.
[実施例 12〜14]  [Examples 12 to 14]
[0034] ここでは、平坦化添加剤が加えられた化学機械研磨用スラリーを評価する。実施例 12から 14の各実施例は、実施例 1〜3の化学機械研磨用スラリーに、平坦化添加剤 として、ポリ (メタ)アクリル酸アンモ-ゥム塩を配合したものである。その配合量は水に 対して 0. 3重量0 /0、スラリーの ρΗ値はアンモニアを用いて 5とし、砲粒の水に対する 重量割合である砥粒濃度を 1. 0重量%としたものであり、平坦化添加剤を配合する 前のゼータ電位は、実施例 12では— 40mV、実施例 13では— 20mV、実施例 14で は 5mVである。 Here, the slurry for chemical mechanical polishing to which the leveling additive is added is evaluated. In Examples 12 to 14, each of the chemical mechanical polishing slurries of Examples 1 to 3 is blended with poly (meth) acrylic acid ammonium salt as a planarizing additive. The amount thereof for water 0.3 wt 0/0, Roita value of the slurry is 5 with ammonia, the abrasive concentration is the weight ratio cannon particle of water 1. obtained by a 0% Yes, the zeta potential before compounding the leveling additive is −40 mV in Example 12, −20 mV in Example 13 and 5 mV in Example 14.
[0035] 比較例 8〜: LOは、比較例 1〜3のスラリーに、平坦化添加剤として、ポリ (メタ)アタリ ル酸アンモ-ゥム塩を配合したものである。その配合量は水に対して 0. 3重量%、ス ラリーの pH値はアンモニアを用いて 5とし、砲粒の水に対する重量割合である砲粒 濃度を 1. 0重量%としたものである。  [0035] Comparative Example 8 to LO: The slurry of Comparative Examples 1 to 3 is blended with poly (meth) acrylate ammonium salt as a planarizing additive. The blending amount is 0.3% by weight with respect to water, the pH value of the slurry is 5 with ammonia, and the barrel concentration, which is the weight ratio of the barrel to water, is 1.0% by weight. .
[0036] 実施例 12から 14及び比較例 8から 10について、前記した研磨試験方法と同じ条 件で実施した評価結果を表 4に示す。  [0036] Table 4 shows the evaluation results of Examples 12 to 14 and Comparative Examples 8 to 10 which were carried out under the same conditions as the polishing test method described above.
[表 4] [Table 4]
Figure imgf000018_0001
Figure imgf000018_0001
表 4が示すように、実施例 12から 14の各化学機械研磨用スラリーは、比較例 10の ナノセリア単独のものと比較して、 SiO膜の研磨速度が非常に速ぐ優れた研磨能  As shown in Table 4, each of the chemical mechanical polishing slurries of Examples 12 to 14 has excellent polishing ability with a very high polishing rate of the SiO film compared to Nanoceria alone of Comparative Example 10.
2  2
力を有している。また、比較例 8及び 9は、ゼータ電位が正電位の複合粒子を用いた ものであるが、研磨の保護作用を持つ平坦化添加剤を配合すると、研磨速度が大幅 に低下してしまう。これに対し、ゼータ電位が負電位の複合粒子を用いた実施例 12 〜14の化学機械研磨用スラリーは、平坦化添加剤を配合しても若干の研磨速度低 下はみられるものの大幅な速度低下はな 、し、研磨選択性も維持することができるも のである。 Have power. Comparative Examples 8 and 9 used composite particles having a positive zeta potential. However, if a leveling additive having a protective action for polishing is blended, the polishing rate is greatly reduced. On the other hand, the chemical mechanical polishing slurries of Examples 12 to 14 using composite particles having a negative zeta potential showed a significant speed although a slight decrease in the polishing rate was observed even when a planarizing additive was added. There is no decrease, and polishing selectivity can be maintained.
[0038] なお、実施例 12から 14は、複合粒子のゼータ電位を負電位とするため、 PMMA にカルボキシル基を導入した有機母粒子を用いた力 官能基にスルホニル基ゃ負電 位となるような他の官能基を導入した有機母粒子を使用してもよい。また、実施例 12 力も 14の有機母粒子には、 PMMAを基材として用いた力 ポリスチレン粒子に官能 基を導入した有機母粒子を用いても同様な効果が得られる。実施例 12から 14は、平 坦ィ匕添加剤を配合したスラリーの pH値を 5としたものであるが、 pH4〜8の範囲内で あれば実施例 12〜14と同様な結果が得られる。平坦化添加剤は、ポリ (メタ)アクリル 酸アンモ-ゥム塩に限定されるものではなぐ配合した際に研磨される被加工材とし て置かれる無機絶縁膜、例えば SiO膜や Si N膜に接触したときに吸着し、研磨面  [0038] In Examples 12 to 14, since the zeta potential of the composite particles is set to a negative potential, the sulfonyl group becomes a negative potential in the functional group using the organic mother particles in which a carboxyl group is introduced into PMMA. Organic mother particles into which other functional groups are introduced may be used. In addition, the same effect can be obtained by using organic mother particles in which a functional group is introduced into force polystyrene particles using PMMA as a base material for the organic mother particles of Example 12 having a force of 14. In Examples 12 to 14, the pH value of the slurry containing the flat koji additive was set to 5. However, if the pH value is within the range of 4 to 8, the same results as in Examples 12 to 14 can be obtained. . The planarizing additive is not limited to poly (meth) acrylic acid ammonium salt, but is added to an inorganic insulating film such as a SiO film or a SiN film placed as a workpiece to be polished when blended. Adsorbed when contacted, polished surface
2 3 4  2 3 4
圧の増加によって脱離する種類のものであればよい。  Any type that desorbs due to an increase in pressure may be used.
[実施例 15〜18]  [Examples 15 to 18]
[0039] ここでは、平坦ィ匕添加剤が加えられたィ匕学機械研磨用スラリーにおける、複合粒子 の砥粒の濃度と研磨速度の関係を評価する。実施例 15から 18は、実施例 2及び 13 で用いた PMMA単分散粒子(5 μ )と無機子粒子に CeO粒子(14nm)との複合粒  [0039] Here, the relationship between the abrasive concentration of the composite particles and the polishing rate in the slurry for mechanical mechanical polishing to which the flat additive is added is evaluated. Examples 15 to 18 are composite particles of PMMA monodispersed particles (5 μ) used in Examples 2 and 13 and inorganic particles with CeO particles (14 nm).
2  2
子砲粒であってそのゼータ電位が 20mVのものを用いて、平坦ィ匕添加剤としてポリ (メタ)アクリル酸アンモ-ゥム塩を配合したものである。その配合量は水に対して 0. 3 重量0 /0、スラリーの pH値はアンモニアを用いて 5としたものであり、砲粒の水に対する 重量割合を示す砥粒濃度について、実施例 15では 0. 2重量%、実施例 16では 1. 0重量%、実施例 17では 5重量%、実施例 18では 10重量%としたものである。 This is an oval granule with a zeta potential of 20 mV, and is blended with poly (meth) acrylic acid ammonium salt as a flattening additive. Its amount is 0.3 wt 0/0 in water, pH value of the slurry is obtained by a 5 with ammonia, the abrasive concentration indicating the weight ratio cannon particle of water, in Example 15 0.2% by weight, 1.0% in Example 16, 5% in Example 17, and 10% in Example 18.
[0040] 比較例 11及び 12は、共に実施例 2及び 13で用いた上記複合粒子の砲粒を用いる ものであるが、その水に対する重量割合である砲粒濃度について、比較例 11では 0 . 1重量%、比較例 2では 20重量%としたものである。  [0040] Comparative Examples 11 and 12 both use the composite particles of the above-mentioned composite particles used in Examples 2 and 13, but the comparative example 11 has a particle concentration that is a weight ratio to water. 1% by weight and 20% by weight in Comparative Example 2.
[0041] 上記の実施例 15から 18並びに比較例 11及び 12について、前記した研磨試験方 法と同じ条件で実施した評価結果を表 5に示す。 [0041] For the above Examples 15 to 18 and Comparative Examples 11 and 12, the above-mentioned polishing test method Table 5 shows the results of evaluation conducted under the same conditions as the method.
[表 5] [Table 5]
Figure imgf000020_0001
表 5が示すように、実施例 15から 18の各化学機械研磨用スラリーは、比較例 11と 比較して、 SiO膜研磨速度が非常に速ぐ優れた研磨能力を有している。砥粒濃度
Figure imgf000020_0001
As Table 5 shows, each of the chemical mechanical polishing slurries of Examples 15 to 18 has an excellent polishing ability with a very high SiO film polishing rate as compared with Comparative Example 11. Abrasive grain concentration
2  2
が 0. 2重量%に満たないと、比較例 11が示すように、研磨速度が急激に低下して、 実用上の十分な速度を得ることができない。他方、比較例 12のように ί氐粒濃度が 20 重量%となると、砥粒濃度 10重量%である比較例 12と比べてみても、研磨速度は差 がみられないでほぼ飽和状態となっている。さらに、砲粒濃度が 20重量%の比較例 12では、表には記載されていないが、砲粒の分散状態が非常に悪くなる結果となつ た。また、平坦ィ匕添加剤を配合したスラリーについて、その複合粒子の砥粒の平均粒 径を評価した結果によれば、複合粒子砲粒の平均粒径が 0. 3 mに達しないと、研 磨速度が大幅に低下し、実用上の十分な研磨速度を得ることができな力つた。また、 複合粒子砲粒の平均粒径が 20 μ mでは研磨速度は十分であるが傷が多く観察され 、スラリーの分散状態も非常に悪くなつた。以上の結果から、複合粒子砲粒の平均粒 径は、 0. 3〜10 μ mの範囲が良いことがわかった力 更に、研磨パッドの種類、特に 多孔質ウレタン榭脂製である研磨パッドのパターンや表面粗さに応じて、これに合致 する最適の粒径の複合粒子の砥粒を用いたィ匕学機械研磨用スラリーを選択すること が好ましい。 If it is less than 0.2% by weight, as shown in Comparative Example 11, the polishing rate rapidly decreases, and a practically sufficient rate cannot be obtained. On the other hand, when the 氐 氐 grain concentration is 20 wt% as in Comparative Example 12, the polishing rate is different from that in Comparative Example 12 where the abrasive concentration is 10 wt%. It is almost saturated without being seen. Further, in Comparative Example 12 in which the barrel concentration was 20% by weight, although not shown in the table, the dispersion state of the barrel was extremely deteriorated. In addition, according to the result of evaluating the average particle size of the abrasive grains of the composite particles with respect to the slurry containing the flattening additive, it was found that the average particle size of the composite particle granules did not reach 0.3 m. The polishing speed was greatly reduced, and it was difficult to obtain a practical polishing speed. Moreover, when the average particle size of the composite particles was 20 μm, the polishing rate was sufficient, but many scratches were observed, and the dispersion state of the slurry became very poor. From the above results, it was found that the average particle size of the composite particle can be in the range of 0.3 to 10 μm. Further, the type of polishing pad, especially the polishing pad made of porous urethane resin Depending on the pattern and surface roughness, it is preferable to select a slurry for mechanical mechanical polishing using abrasive grains of composite particles having an optimum particle size that matches this.
[実施例 19〜22]  [Examples 19 to 22]
[0043] 次に、化学機械研磨用スラリーの平坦ィ匕添加剤の濃度と研磨選択性との関係を評 価した。研磨選択性を調べるために、研磨される被加工材に SiO膜ウェハを、研磨  [0043] Next, the relationship between the concentration of the leveling additive in the slurry for chemical mechanical polishing and the polishing selectivity was evaluated. To examine the polishing selectivity, polish the SiO film wafer to the workpiece to be polished.
2  2
のストツバ膜として Si N膜ウェハを取り上げて、研磨速度の比較を行った。実施例 1  The polishing rate was compared by taking a Si N film wafer as the stock film. Example 1
3 4  3 4
9〜22で用いた化学機械研磨用スラリーは、実施例 13が用いたゼータ電位が― 20 mVの PMMA単分散粒子(5 μ m)と無機子粒子に CeO粒子(14nm)との複合粒  The slurry for chemical mechanical polishing used in 9-22 is a composite particle of PMMA monodispersed particles (5 μm) with zeta potential of −20 mV used in Example 13 and CeO particles (14 nm) on inorganic particles.
2  2
子砥粒を用いて、砥粒の水に対する重量割合である砥粒濃度を 1. 0重量%とし、平 坦化剤として加えたポリ (メタ)アクリル酸アンモ-ゥム塩を添加して、スラリーの pH値 をアンモニアの使用により 5に調整したものである。しかし、平坦化剤であるポリ(メタ) アクリル酸アンモ-ゥム塩の水に対する割合である平坦化剤濃度について、実施例 1 9では 0. 05重量%、実施例 20では 0. 3重量%、実施例 21では 1. 0重量%、実施 例 22では 5. 0重量%としたものである。  Using the abrasive grains, the abrasive concentration, which is the weight ratio of the abrasive grains to water, is set to 1.0% by weight, and poly (meth) acrylic acid ammonium salt added as a leveling agent is added. The pH value of the slurry is adjusted to 5 by using ammonia. However, regarding the leveling agent concentration, which is the ratio of poly (meth) acrylic acid ammonium salt as a leveling agent to water, 0.05% by weight in Example 19 and 0.3% by weight in Example 20 In Example 21, 1.0% by weight, and in Example 22, 5.0% by weight.
[0044] 比較例 13及び 14は、平坦化剤濃度を実施例 19から 22と同じ複合粒子砥粒を用 いて、砲粒の水に対する重量割合である砲粒濃度を 1. 0重量%としたものである力 平坦化剤であるポリ(メタ)アクリル酸アンモ-ゥム塩の水に対する割合である平坦ィ匕 剤濃度について、比較例 13は 0. 001重量%、比較例 14は 10重量%とし、スラリー の pH値をアンモニアにより 5に調整したものである。 [0045] 実施例 19から 22並びに比較例 13及び 14について、実施例の作用効果を確認す るための前記の研磨試験方法と同じ条件で実施した。表 6は、その結果を示したもの である。 [0044] Comparative Examples 13 and 14 use the same composite particle abrasive as in Examples 19 to 22 with a leveling agent concentration of 1.0% by weight. The strength of the flattening agent concentration, which is the ratio of the poly (meth) acrylic acid ammonium salt as a leveling agent to water, is 0.001% by weight for Comparative Example 13 and 10% by weight for Comparative Example 14 The pH value of the slurry was adjusted to 5 with ammonia. [0045] Examples 19 to 22 and Comparative Examples 13 and 14 were carried out under the same conditions as in the above polishing test method for confirming the effects of the examples. Table 6 shows the results.
[表 6]  [Table 6]
Figure imgf000022_0001
Figure imgf000022_0001
[0046] 表 6が示すように、実施例 19〜22の化学機械研磨用スラリーは、 SiO膜に対する 研磨速度が非常に速ぐストツバ膜である Si N膜に対する研磨速度が遅いために研 [0046] As Table 6 shows, the chemical mechanical polishing slurries of Examples 19 to 22 were applied to the SiO film. Since the polishing rate for the SiN film, which is a staggered film with a very high polishing rate, is low.
3 4  3 4
磨選択性が大きいから、化学機械研磨において高平坦性が得られることがわ力つた 。これに対して、平坦化剤濃度が 0. 01重量%である比較例 13は、 SiO膜の研磨速  Because of the high polishing selectivity, it was clear that high flatness was obtained in chemical mechanical polishing. On the other hand, Comparative Example 13 in which the leveling agent concentration is 0.01% by weight is the SiO film polishing rate.
2  2
度は非常に速いが、ストツバ膜である Si N膜まで研磨してしまうため十分な平坦性  Although the speed is very fast, it is sufficiently flat because it polishes even the SiN film, which is a staggered film.
3 4  3 4
が得られない欠点があることがわ力つた。また、平坦化剤濃度が 10重量%である比 較例 14は、研磨選択性が大きく優れた高平坦性が得られるが、 SiO膜の研磨速度  There was a shortcoming that cannot be obtained. In Comparative Example 14 where the leveling agent concentration is 10% by weight, the polishing selectivity is large and excellent high flatness can be obtained.
2  2
が非常に遅くなつて、加工能率が大幅に低下するという問題が発生することもわかつ た。  It has also been found that when the process becomes very slow, there is a problem that the machining efficiency is greatly reduced.
[0047] 以上の実施例の研磨試験方法の結果から、本願の請求の範囲に記載した化学機 械研磨用スラリー、該スラリーを用いたィ匕学機械研磨方法、及び該方法を用いた電 子デバイスの製造方法は、 SiO膜に対する研磨能力が優れ、かつ低スクラッチ性、  [0047] From the results of the polishing test methods of the above examples, the chemical mechanical polishing slurry described in the claims of this application, the mechanical mechanical polishing method using the slurry, and the electron using the method The device manufacturing method has excellent polishing ability for SiO film and low scratch resistance.
2  2
研磨選択性を十分に満足する効果を得ることができる。本実施例では STI法におけ る CMPに関して説明を行った力 本発明は、その他、例えば、層間絶縁膜 (ILD : Int er Layer Dielectrics)における CMP等の傷低減が要求される工程の研磨剤にも適用 できるものである。  An effect that sufficiently satisfies the polishing selectivity can be obtained. In this example, the power explained in connection with CMP in the STI method. The present invention is also used as an abrasive in a process that requires reduction of scratches such as CMP in an interlayer dielectric (ILD). Is also applicable.
産業上の利用の可能性  Industrial applicability
[0048] 本発明は、電子デバイスである半導体デバイスにおける CMP (STI— CMPの外に 層間絶縁膜 (ILD) CMPなど)における傷低減が要求される工程で用いられる研磨 剤に適用できるものである。 [0048] The present invention can be applied to an abrasive used in a process in which scratch reduction is required in CMP (STI—CMP in addition to STI-CMP, etc.) in a semiconductor device which is an electronic device. .

Claims

請求の範囲 The scope of the claims
[1] 砲粒 (A)と、水 (B)とから構成される化学機械研磨用スラリーにおいて、該砲粒 (A) に有機母粒子とセリア粒子とのセリア粒子被覆型複合粒子を用い、該複合粒子のゼ ータ電位が負電位であることを特徴とする化学機械研磨用スラリー。  [1] In the slurry for chemical mechanical polishing composed of the cannonball (A) and water (B), the cantilever (A) is made of ceria particle-coated composite particles of organic mother particles and ceria particles, A slurry for chemical mechanical polishing, wherein the composite particles have a negative zeta potential.
[2] 前記セリア粒子被覆型複合粒子を構成する前記有機母粒子にカルボキシル基ま たはスルホニル基が導入された有機母粒子を用いたことを特徴とする請求項 1に記 載の化学機械研磨用スラリー。 [2] The chemical mechanical polishing according to claim 1, wherein the organic mother particles in which a carboxyl group or a sulfonyl group is introduced are used for the organic mother particles constituting the ceria particle-coated composite particles. Slurry.
[3] 砲粒 (A)と、水 (B)とから構成される化学機械研磨用スラリーにおいて、該砲粒 (A) にカルボキシル基導入ポリメタクリル酸メチル粒子とセリア粒子とのセリア粒子被覆型 複合粒子を用いたことを特徴とする化学機械研磨用スラリー。 [3] In a slurry for chemical mechanical polishing composed of a cannonball (A) and water (B), a ceria particle-coated type comprising carboxyl group-introduced polymethyl methacrylate particles and ceria particles in the cannonball (A) A slurry for chemical mechanical polishing characterized by using composite particles.
[4] 前記砲粒 (A)がカルボキシル基導入ポリメタクリル酸メチル粒子とセリア粒子との混 合粉体に加圧力とせん断力とを付与して局所的且つ断続的に前記粒子の表面層を 溶融して生成されるセリア粒子被覆型複合粒子を用いることを特徴とする請求項 3に 記載の化学機械研磨用スラリー。 [4] The particle (A) applies a pressure force and a shearing force to the mixed powder of carboxyl group-introduced polymethyl methacrylate particles and ceria particles to locally and intermittently form the surface layer of the particles. 4. The slurry for chemical mechanical polishing according to claim 3, wherein ceria particle-coated composite particles produced by melting are used.
[5] 前記砲粒 (A)が水(B)に対して 0. 2から 10重量%の濃度であることを特徴とする 請求項 3に記載の化学機械研磨用スラリー。 5. The slurry for chemical mechanical polishing according to claim 3, wherein the particle (A) has a concentration of 0.2 to 10% by weight with respect to water (B).
[6] 前記砲粒 (A)が平均粒径 0. 3から 10 μ mの複合粒子であることを特徴とする請求 項 3に記載の化学機械研磨用スラリー。 6. The slurry for chemical mechanical polishing according to claim 3, wherein the bullet (A) is a composite particle having an average particle size of 0.3 to 10 μm.
[7] 砥粒 (A)と、水 (B)と、平坦化添加剤 (C)とから構成される化学機械研磨用スラリー において、該砥粒 (A)に有機母粒子とセリア粒子とのセリア粒子被覆型複合粒子を 用い、該複合粒子のゼータ電位が負電位であることを特徴とする化学機械研磨用ス ラリー。 [7] In a chemical mechanical polishing slurry composed of the abrasive grains (A), water (B), and the planarizing additive (C), the abrasive grains (A) contain organic matrix particles and ceria particles. A slurry for chemical mechanical polishing, wherein ceria particle-coated composite particles are used, and the zeta potential of the composite particles is a negative potential.
[8] 前記セリア粒子被覆型複合粒子を構成する前記有機母粒子にカルボキシル基ま たはスルホニル基が導入された有機母粒子を用いたことを特徴とする請求項 7に記 載の化学機械研磨用スラリー。  [8] The chemical mechanical polishing according to [7], wherein the organic mother particles in which a carboxyl group or a sulfonyl group is introduced are used for the organic mother particles constituting the ceria particle-coated composite particles. Slurry.
[9] 砥粒 (A)と、水 (B)と、平坦化添加剤 (C)とから構成される化学機械研磨用スラリー において、該砥粒 (A)にカルボキシル基導入ポリメタクリル酸メチル粒子とセリア粒子 とのセリア粒子被覆型複合粒子を用いることを特徴とする化学機械研磨用スラリー。 [9] In a chemical mechanical polishing slurry composed of abrasive grains (A), water (B), and a planarizing additive (C), carboxyl group-introduced polymethyl methacrylate particles are added to the abrasive grains (A). A slurry for chemical mechanical polishing characterized by using ceria particle-coated composite particles of selenium and ceria.
[10] 前記セリア粒子被覆型複合粒子に、カルボキシル基導入ポリメタクリル酸メチル粒 子とセリア粒子との混合粉体に加圧力とせん断力とを付与して局所的且つ断続的に 前記粒子の表面層を溶融して生成されるセリア粒子被覆型複合粒子を用いることを 特徴とする請求項 9に記載の化学機械研磨用スラリー。 [10] The surface of the particles is locally and intermittently applied to the ceria particle-coated composite particles by applying pressure and shearing force to a mixed powder of carboxyl group-introduced polymethyl methacrylate particles and ceria particles. 10. The slurry for chemical mechanical polishing according to claim 9, wherein ceria particle-coated composite particles produced by melting the layer are used.
[11] 前記砲粒 (A)が水(B)に対して 0. 2から 10重量%の濃度であることを特徴とする 請求項 9に記載の化学機械研磨用スラリー。 11. The chemical mechanical polishing slurry according to claim 9, wherein the particle (A) has a concentration of 0.2 to 10% by weight with respect to water (B).
[12] 前記砲粒 (A)が平均粒径 0. 3から 10 μ mの複合粒子であることを特徴とする請求 項 9に記載の化学機械研磨用スラリー。 12. The slurry for chemical mechanical polishing according to claim 9, wherein the bullet (A) is a composite particle having an average particle size of 0.3 to 10 μm.
[13] 前記平坦化添加剤(C)が水(B)に対して 0. 05から 5重量%の濃度であることを特 徴とする請求項 9に記載の化学機械研磨用スラリー。 13. The chemical mechanical polishing slurry according to claim 9, wherein the leveling additive (C) has a concentration of 0.05 to 5% by weight with respect to water (B).
[14] 前記平坦化添加剤(C)がポリ(メタ)アクリル酸アンモ-ゥム塩であることを特徴とす る請求項 9に記載の化学機械研磨用スラリー。 14. The chemical mechanical polishing slurry according to claim 9, wherein the planarizing additive (C) is a poly (meth) acrylic acid ammonium salt.
[15] 砲粒 (A)と、水 (B)とから構成される化学機械研磨用スラリーにおいて、該砲粒 (A) に有機母粒子とセリア粒子とのセリア粒子被覆型複合粒子を用い、該複合粒子のゼ ータ電位が負電位である化学機械研磨用スラリーと被研磨材とを接触'研磨すること を特徴とする化学機械研磨方法。 [15] In a chemical mechanical polishing slurry composed of the cannonball (A) and water (B), the cantilever (A) is made of ceria particle-coated composite particles of organic mother particles and ceria particles, A chemical mechanical polishing method comprising: contacting and polishing a chemical mechanical polishing slurry in which a zeta potential of the composite particles is negative and a material to be polished.
[16] 前記セリア粒子被覆型複合粒子を構成する有機母粒子にカルボキシル基またはス ルホニル基が導入された有機母粒子を用いた化学機械研磨用スラリーと被研磨材と を接触'研磨することを特徴とする請求項 15に記載の化学機械研磨方法。 [16] The chemical mechanical polishing slurry using the organic mother particles in which a carboxyl group or a sulfonyl group is introduced into the organic mother particles constituting the ceria particle-coated composite particles is contacted and polished. The chemical mechanical polishing method according to claim 15, wherein:
[17] 砲粒 (A)と、水 (B)とから構成される化学機械研磨用スラリーにおいて、該砲粒 (A) がカルボキシル基導入ポリメタクリル酸メチル粒子とセリア粒子とのセリア粒子被覆型 複合粒子であり、化学機械研磨用スラリーと被研磨材とを接触'研磨することを特徴と する化学機械研磨方法。 [17] In a slurry for chemical mechanical polishing composed of the cannonball (A) and water (B), the cantilever (A) is a ceria particle-coated type composed of carboxyl group-introduced polymethyl methacrylate particles and ceria particles. A chemical mechanical polishing method, comprising composite particles, wherein a chemical mechanical polishing slurry and a material to be polished are contacted and polished.
[18] 砥粒 (A)と、水 (B)と、平坦化添加剤 (C)とから構成される化学機械研磨用スラリー において、該砥粒 (A)に有機母粒子とセリア粒子とのセリア粒子被覆型複合粒子を 用い、該複合粒子のゼータ電位が負電位である化学機械研磨用スラリーと被研磨材 とを接触'研磨することを特徴とする化学機械研磨方法。 [18] In a chemical mechanical polishing slurry comprising an abrasive grain (A), water (B), and a planarizing additive (C), the abrasive grain (A) comprises organic matrix particles and ceria particles. A chemical mechanical polishing method comprising using a ceria particle-coated composite particle, and contacting and polishing a slurry for chemical mechanical polishing in which the composite particle has a negative zeta potential and a material to be polished.
[19] 前記セリア粒子被覆型複合粒子を構成する有機母粒子にカルボキシル基またはス ルホニル基が導入された有機母粒子を用いた化学機械研磨用スラリーと被研磨材と を接触'研磨することを特徴とする請求項 18に記載の化学機械研磨方法。 [19] The organic mother particles constituting the ceria particle-coated composite particles are bonded to carboxyl groups or residues. 19. The chemical mechanical polishing method according to claim 18, wherein the slurry for chemical mechanical polishing using the organic mother particles into which the sulfonyl group is introduced and the material to be polished are contacted and polished.
[20] 砥粒 (A)と、水 (B)と、平坦化添加剤 (C)とから構成される化学機械研磨用スラリー において、該砥粒 (A)がカルボキシル基導入ポリメタクリル酸メチル粒子とセリア粒子 とのセリア粒子被覆型複合粒子であり、化学機械研磨用スラリーと被研磨材とを接触[20] In a chemical mechanical polishing slurry comprising abrasive grains (A), water (B), and a planarizing additive (C), the abrasive grains (A) are carboxyl group-introduced polymethyl methacrylate particles. Is a ceria particle-coated composite particle consisting of a ceria particle and a slurry for chemical mechanical polishing.
'研磨することを特徴とする化学機械研磨方法。 'Chemical mechanical polishing method characterized by polishing.
[21] 砲粒 (A)と、水 (B)とから構成される化学機械研磨用スラリーにおいて、該砲粒 (A) に有機母粒子とセリア粒子とのセリア粒子被覆型複合粒子を用い、該複合粒子のゼ ータ電位が負電位である化学機械研磨用スラリーと被研磨材とを接触'研磨するェ 程を含むことを特徴とする電子デバイスの製造方法。 [21] In the slurry for chemical mechanical polishing composed of the cannonball (A) and water (B), the cantilever (A) is made of ceria particle-coated composite particles of organic mother particles and ceria particles. A method of manufacturing an electronic device, comprising: contacting and polishing a chemical mechanical polishing slurry having a zeta potential of the composite particles being negative and a material to be polished.
[22] 前記セリア粒子被覆型複合粒子を構成する有機母粒子にカルボキシル基またはス ルホニル基が導入された有機母粒子を用いた化学機械研磨用スラリーと被研磨材と を接触'研磨する工程を含むことを特徴とする請求項 21に記載の電子デバイスの製 造方法。 [22] A step of contacting and polishing the slurry for chemical mechanical polishing using the organic mother particles in which carboxyl groups or sulfonyl groups are introduced into the organic mother particles constituting the ceria particle-coated composite particles, and the material to be polished. 22. The method for manufacturing an electronic device according to claim 21, wherein the method is included.
[23] 砲粒 (A)と、水 (B)とから構成される化学機械研磨用スラリーにおいて、該砲粒 (A) がカルボキシル基導入ポリメタクリル酸メチル粒子とセリア粒子とのセリア粒子被覆型 複合粒子であり、化学機械研磨用スラリーと被研磨材とを接触'研磨する工程を含む ことを特徴とする電子デバイスの製造方法。  [23] In a slurry for chemical mechanical polishing composed of the cannonball (A) and water (B), the cantilever (A) is a ceria particle-coated type composed of carboxyl group-introduced polymethyl methacrylate particles and ceria particles. A method for producing an electronic device, comprising a step of contacting and polishing a slurry for chemical mechanical polishing and a material to be polished, which are composite particles.
[24] 砥粒 (A)と、水 (B)と、平坦化添加剤 (C)とから構成される化学機械研磨用スラリー において、該砥粒 (A)に有機母粒子とセリア粒子とのセリア粒子被覆型複合粒子を 用い、該複合粒子のゼータ電位が負電位である化学機械研磨用スラリーと被研磨材 とを接触'研磨する工程を含むことを特徴とする電子デバイスの製造方法。  [24] In a chemical mechanical polishing slurry comprising an abrasive grain (A), water (B), and a planarizing additive (C), the abrasive grain (A) comprises organic matrix particles and ceria particles. A method for producing an electronic device, comprising using a ceria particle-coated composite particle, and contacting and polishing a chemical mechanical polishing slurry having a negative zeta potential of the composite particle and a material to be polished.
[25] 前記セリア粒子被覆型複合粒子を構成する有機母粒子にカルボキシル基またはス ルホニル基が導入された有機母粒子を用いた化学機械研磨用スラリーと被研磨材と を接触'研磨する工程を含むことを特徴とする請求項 24に記載の電子デバイスの製 造方法。  [25] A step of contacting and polishing a slurry for chemical mechanical polishing using an organic mother particle in which a carboxyl group or a sulfonyl group is introduced into the organic mother particle constituting the ceria particle-coated composite particle, and the material to be polished. 25. The method for manufacturing an electronic device according to claim 24, further comprising:
[26] 砥粒 (A)と、水 (B)と、平坦化添加剤 (C)とから構成される化学機械研磨用スラリー において、該砥粒 (A)がカルボキシル基導入ポリメタクリル酸メチル粒子とセリア粒子 とのセリア粒子被覆型複合粒子であり、化学機械研磨用スラリーと被研磨材とを接触 '研磨する工程を含むことを特徴とする電子デバイスの製造方法。 [26] In a chemical mechanical polishing slurry comprising abrasive grains (A), water (B), and a planarizing additive (C), the abrasive grains (A) are carboxyl group-introduced polymethyl methacrylate particles. And ceria particles A method for producing an electronic device, comprising a step of contacting and polishing a slurry for chemical mechanical polishing and a material to be polished.
PCT/JP2007/053629 2006-05-19 2007-02-27 Slurry for chemical mechanical polishing, method of chemical mechanical polishing and process for manufacturing electronic device WO2007135794A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-139787 2006-05-19
JP2006139787 2006-05-19

Publications (1)

Publication Number Publication Date
WO2007135794A1 true WO2007135794A1 (en) 2007-11-29

Family

ID=38712540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053629 WO2007135794A1 (en) 2006-05-19 2007-02-27 Slurry for chemical mechanical polishing, method of chemical mechanical polishing and process for manufacturing electronic device

Country Status (3)

Country Link
US (1) US20070270085A1 (en)
TW (1) TW200743666A (en)
WO (1) WO2007135794A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218558A (en) * 2008-02-12 2009-09-24 Hitachi Chem Co Ltd Polishing solution for cmp, method of polishing substrate and electronic components
WO2013191139A1 (en) * 2012-06-19 2013-12-27 株式会社 フジミインコーポレーテッド Polishing composition and substrate fabrication method using same
US9281210B2 (en) 2013-10-10 2016-03-08 Cabot Microelectronics Corporation Wet-process ceria compositions for polishing substrates, and methods related thereto
US9279067B2 (en) 2013-10-10 2016-03-08 Cabot Microelectronics Corporation Wet-process ceria compositions for polishing substrates, and methods related thereto
JP2017071753A (en) * 2015-06-05 2017-04-13 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Barrier chemical mechanical planarization slurry using ceria-coated silica abrasives

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123880A (en) * 2007-11-14 2009-06-04 Showa Denko Kk Polishing composition
WO2012102187A1 (en) * 2011-01-25 2012-08-02 日立化成工業株式会社 Cmp polishing fluid, method for manufacturing same, method for manufacturing composite particle, and method for polishing base material
KR20140024634A (en) * 2012-08-20 2014-03-03 삼성전자주식회사 Method of fabricating of semiconductor device
US11718767B2 (en) 2018-08-09 2023-08-08 Versum Materials Us, Llc Chemical mechanical planarization composition for polishing oxide materials and method of use thereof
US20200270479A1 (en) * 2019-02-26 2020-08-27 Versum Materials Us, Llc Shallow Trench Isolation Chemical And Mechanical Polishing Slurry
CN113774390B (en) * 2021-08-12 2023-08-04 上海新阳半导体材料股份有限公司 Cleaning liquid for chemical mechanical polishing and preparation method thereof
CN115011254B (en) * 2022-06-09 2024-03-12 纳芯微电子(河南)有限公司 Chemical mechanical polishing solution for glass wafer and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030271A (en) * 2000-07-14 2002-01-31 Toshiba Corp Slurry for cmp, method for producing the same and method of producing semiconductor device
JP2003282498A (en) * 2002-03-27 2003-10-03 Yasuhiro Tani Abrasive and carrier particle
JP2005251996A (en) * 2004-03-04 2005-09-15 Sony Corp Polishing method, and manufacturing method of semiconductor device using the same
JP2006041252A (en) * 2004-07-28 2006-02-09 Hitachi Chem Co Ltd Cmp abrasive, its manufacturing method, and method for polishing substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030271A (en) * 2000-07-14 2002-01-31 Toshiba Corp Slurry for cmp, method for producing the same and method of producing semiconductor device
JP2003282498A (en) * 2002-03-27 2003-10-03 Yasuhiro Tani Abrasive and carrier particle
JP2005251996A (en) * 2004-03-04 2005-09-15 Sony Corp Polishing method, and manufacturing method of semiconductor device using the same
JP2006041252A (en) * 2004-07-28 2006-02-09 Hitachi Chem Co Ltd Cmp abrasive, its manufacturing method, and method for polishing substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218558A (en) * 2008-02-12 2009-09-24 Hitachi Chem Co Ltd Polishing solution for cmp, method of polishing substrate and electronic components
WO2013191139A1 (en) * 2012-06-19 2013-12-27 株式会社 フジミインコーポレーテッド Polishing composition and substrate fabrication method using same
US9281210B2 (en) 2013-10-10 2016-03-08 Cabot Microelectronics Corporation Wet-process ceria compositions for polishing substrates, and methods related thereto
US9279067B2 (en) 2013-10-10 2016-03-08 Cabot Microelectronics Corporation Wet-process ceria compositions for polishing substrates, and methods related thereto
JP2017071753A (en) * 2015-06-05 2017-04-13 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Barrier chemical mechanical planarization slurry using ceria-coated silica abrasives

Also Published As

Publication number Publication date
US20070270085A1 (en) 2007-11-22
TW200743666A (en) 2007-12-01

Similar Documents

Publication Publication Date Title
WO2007135794A1 (en) Slurry for chemical mechanical polishing, method of chemical mechanical polishing and process for manufacturing electronic device
JP5444625B2 (en) CMP polishing liquid, substrate polishing method, and electronic component
JP4952745B2 (en) CMP abrasive and substrate polishing method
JP4123685B2 (en) Aqueous dispersion for chemical mechanical polishing
JP4983603B2 (en) Cerium oxide slurry, cerium oxide polishing liquid, and substrate polishing method using the same
US7252782B2 (en) Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
WO2016006553A1 (en) Cmp polishing liquid, and polishing method
JP2004349426A (en) Chemical mechanical polishing method for sti
JP2005236275A (en) Water disperse form for chemical mechanical polishing and chemical mechanical polishing method
KR20120102792A (en) Polishing liquid for cmp and polishing method using the same
JP2010153781A (en) Polishing method for substrate
WO2007088868A1 (en) Cmp abrasive for polishing insulating film, polishing method and semiconductor electronic component polished by such polishing method
WO2007086665A9 (en) Cmp slurry and method for polishing semiconductor wafer using the same
JP4972829B2 (en) CMP polishing agent and substrate polishing method
TW201910480A (en) Polishing liquid, polishing liquid set and polishing method
JP2011518098A (en) Cerium oxide production method, cerium oxide obtained therefrom and CMP slurry containing the same
TW201435070A (en) Aqueous dispersion for chemical mechanical polishing, and chemical mechanical polishing method
Katoh et al. Effects of abrasive morphology and surfactant concentration on polishing rate of ceria slurry
JP4637464B2 (en) Aqueous dispersion for chemical mechanical polishing
JP5375025B2 (en) Polishing liquid
JP4784614B2 (en) Aqueous dispersion for chemical mechanical polishing
WO2006059627A1 (en) Slurry for chemical mechanical polishing, composite particle having inorganic particle coating, method for preparation thereof, chemical mechanical polishing method and method for manufacturing electronic device
JP2006041252A (en) Cmp abrasive, its manufacturing method, and method for polishing substrate
KR20090057249A (en) Cmp polishing agent, additive solution for cmp polishing agent, and method for polishing substrate by using the polishing agent and the additive solution
JP2010034497A (en) Aqueous dispersion for chemo-mechanical polishing and manufacturing method thereof, and chemo-mechanical polishing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07737431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP