WO2007134138A1 - Water-soluble rosin acid esters - Google Patents

Water-soluble rosin acid esters Download PDF

Info

Publication number
WO2007134138A1
WO2007134138A1 PCT/US2007/068611 US2007068611W WO2007134138A1 WO 2007134138 A1 WO2007134138 A1 WO 2007134138A1 US 2007068611 W US2007068611 W US 2007068611W WO 2007134138 A1 WO2007134138 A1 WO 2007134138A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
rosin acid
rosin
acid ester
acid
Prior art date
Application number
PCT/US2007/068611
Other languages
French (fr)
Inventor
Harry Jerrold Miller
Lloyd A. Nelson
Original Assignee
Arizona Chemical Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arizona Chemical Company filed Critical Arizona Chemical Company
Priority to JP2009510165A priority Critical patent/JP5455623B2/en
Priority to EP07783551.0A priority patent/EP2016147B1/en
Publication of WO2007134138A1 publication Critical patent/WO2007134138A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09FNATURAL RESINS; FRENCH POLISH; DRYING-OILS; DRIERS (SICCATIVES); TURPENTINE
    • C09F1/00Obtaining purification, or chemical modification of natural resins, e.g. oleo-resins
    • C09F1/02Purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • C08L93/04Rosin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09FNATURAL RESINS; FRENCH POLISH; DRYING-OILS; DRIERS (SICCATIVES); TURPENTINE
    • C09F1/00Obtaining purification, or chemical modification of natural resins, e.g. oleo-resins
    • C09F1/04Chemical modification, e.g. esterification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/20Rosin acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working

Definitions

  • the present invention relates to a rosin acid ester and compositions containing the same, as well as methods of making and using the same.
  • the inventors have surprisingly found a composition that is relatively low cost and environmental friendly for use as a lubricant in oil-containing formulations, preferably useful in metal-working formulations.
  • This composition is relatively higher in its solubility in water. Further, when used as a lubricant in oil-containing formulations, preferably useful in metal-working formulations, it provides for excellent load carrying properties within a wide range of torques.
  • the present invention relates to a rosin acid ester.
  • the rosin acid ester is soluble in greater than about 20 wt%, more preferably greater than about 30wt%, most preferably greater than about 40wt% of water based upon the total weight of the composition.
  • the amount of water in the composition may be about 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75. 80, 85, 90, 95, and 99wt% based upon the total weight of the composition, including any and all ranges and subranges therein.
  • (he rosm acid csiur of the present invention is soluble in a composition when the water and ester arc present in a weight ratio that is greater than about 1/4, preferably greater than 1 O, more preferably greater than about 1/2, and most preferably greater than about 1 ']
  • the weight ratio of water and ester may be about 1/4. 1/3. 1/2. 1 /L 2/1 , 3/1. 4/1. 5 i , 6- 1, 7/1. 8' 1 , 9' 1. and 10 1, including any and all ranges and subranges therein.
  • the present invention also relates io a composition that is an ester-containing composition, preferably a rosin acid ester and/or a composition containing the same
  • the ester-containing composition is the reaction product of a two-reaction process, although both reactions may be performed simultaneously in one step and/or serially in multiple steps.
  • at least one rosin acid-containing composition is reacted with at least one ⁇ , ⁇ -unsaturated carboxyiic acid or ester thereof to form an intermediate composition containing an adduct therebetween rosin acid and ⁇ , ⁇ -unsaturated carboxyiic acid or ester thereof.
  • the intermediate composition containing the adduct is reacted with an alcohol- containing compound to produce the composition of the present invention.
  • the resultant ester-containing composition is and/or contains at least one rosin acid ester of the present invention,
  • the rosin acid-containing composition may be any rosin-acid containing composition.
  • the rosin acid containing composition comprises biomass and/or byproducts thereof.
  • the rosin acid-containing composition is a renewable resource
  • Biomass products such as those byproducts of refining and processes taking advantage of natural sources arc usually low cost.
  • a biomass product may be the byproducts of paper making from trees.
  • biomass products such as those similar to black liquor solids, soaps, skimmings, as well as tail oil products such as pitch and/or distillate products thereof are examples of such biomass products.
  • biomass products are predominantly environment friendly, especially compared to those traditional antifoammg agents utilized it the above-mentioned mining and/or refining processes.
  • the rosin acid-containing composition contains at least one rosin acid compound.
  • the rosin acid compound may be selected from those natural resin-based acids, such as those obtained from residues of distillation of natural oils.
  • the rosin acid compound may also be derived. Since the rosin compound is an acid, the derivative may be any commonly known derivative of a carbonyl-containing compound known in general Organic Chemistry
  • the rosin acids may include those that may be isolated from black liquor skimmings, crude tall oil, tall oil pitch, and distilled tall oil.
  • rosin acids may be those found in tall oil rosin, gum rosin and wood rosin. These naturally occurring rosins may be suitably mixtures and/or isomers of monocarboxylic tricyclic rosin acids usually containing about 20 carbon atoms.
  • the tricyclic rosin acids differ mainly in the position of the double bonds.
  • the rosin acid may be at least one of levopimaric add, neoabietic acid, pamstric acid, abietic acid, dehydroabietic acid, seco-dehydroabietic acid, tetrahydroabietic acid, dihydroabietic acid, pimaric acid, paulsiric acid, and isopimaric acid, or mixtures, isomers, and/or derivatives thereof.
  • the rosins derived from natural sources also include rosins, i.e. rosin mixtures, modified notably by polymerisation, isomerisation, disproportionation and hydrogenation.
  • the rosin acids may include those mentioned in United States Patents 6,900,274; 6,875,842; 6.S46,941 ; 6,344.573; 6.414. I J 1 , 4,519.952: and 6,623,554. which are all hereby incorporated, in their entirety, herein by reference.
  • the rosin acid-containing composition contains from 0.1 to 100wt% of at least one rosin acid compound selected from the group consisting of natural resin-based acids obtained from residues of distillation of natural oils, amine carboxylates and ester and nitrile compounds of these acids based upon the total weight of the composition.
  • the rosin acid-containing composition contains greater than about 50 wt%, more preferably greater than 60wt%, most preferably greater than 70wt% of at least one rosin acid c ⁇ mrxnmd based upon the total weight of the composition.
  • the amount of the at least one rosin acid compound may be 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, and 100wt% based upon the total weight of the composition
  • the amount of rosin acid compound selected from the group consisting of natural resin-based acids obtained from residues of distillation of natural oils, amine carboxylates and ester and nitrile compounds of these acids present in the composition may be 0.1, 0.2, 03, 0.5 » 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99, 99.1, 99.2, 99.3, 99.4, 99.5, 99.6, 99.?, 99.8, and 99.9 wt% based upon the total weight of the composition, including any and all ranges and subranges therein.
  • the rosin acid-containing composition may contain at least one unsaponifiable material.
  • unsaponifiable materials is found, but not limited to, those described in United States Patents 6,465,665; 6,462,210; and 6,297,353 which are hereby incorporated, in their entirety, herein by reference, Unsaponifiable material may be any neutral material that is not capable of being saponified, or ester thereof.
  • FxampJes of the unsaponifiable components include, but are not limited to, tocopherols, tocot ⁇ enols.
  • Unsaponifiable material may include those mentioned in United Slates Patents 6,875.842; 6,846,941 ; 6.344,573; 6,414,1 1 1 ; 4.519,952; and 6,623,554, which are hereby incorporated, in their entirety, herein by reference.
  • unsapo ⁇ ifiablc materials are those found in plants, such as woody plants, preferably trees.
  • examples of such include, but are not limited to sterols, stands, polycosanols, 3,5-sit ⁇ stadiene-3-ona, 4-stigmasten-3-ona, ⁇ - and/or ⁇ -sitosterols, ⁇ - and/or ⁇ sitostanols, Campestanol, Campesterol, Cycloart ⁇ nol, Docosanol, Eicosanol,
  • Ergosierol Escualene, Fatty alcohol esters, Sterol esters, Hexacosanol, Methylencycloartenol, Pimaral, Pimarol, St ⁇ gmasta-3-ona, Tetracosanol, etc.
  • the rosin acid-containing composition may contain not more than 75wt% of unsaponifiable material based upon the total weight of the composition.
  • the rosin acid-containing composition may contain Jess than about 50wt%, more preferably less than about 25wr%. most preferably less than about 10wt% of unsaponifiable material based upon the total weight of the composition.
  • the amount of unsaponifiable material present in the rosin acid-containing composition may be 0.1 , 0.2, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, and !0.0wi% based upon the total weight of the composition, including any and all ranges and subranges therein.
  • the rosin acid-containing composition may contain at least one saturated or unsaturated, rnonoearboxylic aliphatic hydrocarbon.
  • the saturated or unsaturated, rnonocarboxylic aliphatic hydrocarbon may have from 5 to 30 carbon atoms, preferably from K to 24 carbon atoms.
  • the hydrocarbon may have 5, 6, 7, 8. 9. 10. 1 1, J 2, 13, 14, 15, 16, 17, 1 S, 19, 20. 21 , 22, 23, 24. 25, 26, 27, 28. 29, and 30 carbon atoms, including any and all ranges and subranges therein.
  • the rosin acid-containing composition may contain at least one saturated or unsaturated, rnonocarboxylic aliphatic hydrocarbon or derivative thereof. Since the hydrocarbon is monocarboxylic, the derivative may be any commonly known derivative of a carbonyl-containing compound known in general Organic Chemistry Textbooks, such as "Organic Chemistry", 5th Edition, by Leroy G. Wade, which b which is hereby incorporated, in its entirety, herein by reference.
  • Examples of derivatives of the saturated or unsaturated, rnonocarboxylic aliphatic hydrocarbon may be an ester, mtriie, or amine carboxylate thereof, as well as those commonly found in black liquor solids, soaps, skimmings, as well as tall oil products such as pitch and/or distillate products thereof,
  • the saturated or unsaturated, monocarboxylic aliphatic hydrocarbon may have from 5 to 30 carbon atoms, preferably from 8 to 24 carbon atoms.
  • the hydrocarbon may have 5, 6, 7, 8, 9, 10, 1 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, and 30 carbon atoms, including any and all ranges and subranges therein.
  • the rosin acid-containing composition may contain at least one saturated or unsaturated, monocarboxylic aliphatic hydrocarbon or derivative thereof having a linear, branched, and/or cyclic chain.
  • the saturated or unsaturated, monocarboxylic aliphatic hydrocarbon may have from 5 to 30 carbon atoms, preferably from 8 to 24 carbon atoms.
  • the hydrocarbon may have 5, 6. 7, 8. 9, K), 1 1. 12. 13. 14. 15, 16, 17, 18. 19. 20, 21 , 22, 23, 24, 25, 26. 27, 28, 29, and 30 carbon atoms, including any and all ranges and subranges therein.
  • the rosin acid-containmg composition may contain at least one saturated or unsaturated, monocarboxylic aliphatic hydrocarbon or derivative thereof having a linear, branched, and/or cyclic chain, a dimer thereof, a trimer thereof, or mixtures thereof.
  • the rosm-containing composition may contain less than about 75 wt% saturated or unsaturated, monocarboxylie aliphatic hydrocarbon or derivative thereof having a linear, branched, and/or cyclic chain, a dimer thereof, a trimer thereof, or mixtures thereof based upon the total weight of the composition.
  • the rosin acid-containing composition may contain less than about 50 wt%, more preferably less than about 25wt%, most preferably, less ifaan about 10 wt% saturated or unsaturated, monocarboxylie aliphatic hydrocarbon or derivative thereof having a linear, branched, and/or cyclic chain, a dimer thereof, a trimer thereof, or mixtures thereof based upon the total weight of the composition.
  • the rosin-containing composition may contain less than or equal to about 4 wt% saturated or unsaturated, monocarboxylie aliphatic hydrocarbon or derivative thereof having a linear, branched, and/or cyclic chain, a dimer thereof, a trimer thereof, or mixtures thereof based upon the total weight of the composition.
  • the amount of saturated or unsaturated, monocarboxylie aliphatic hydrocarbon or derivative thereof having a linear, branched, and/or cyclic chain, a dimer thereof, a trimer thereof, or mixtures thereof present in the rosin-containing composition may be 0.1 , 0.2, 0.3, 0,5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0.9,5, 10.0, and 10.0wt% based upon the total weight of the composition, including any and all ranges and subranges therein.
  • the saturated or unsaturated, monocarboxylic aliphatic hydrocarbon or derivative thereof having a linear, branched, and/or cyclic chain, a dimer thereof, a trimer thereof may be any one or more found in biomass products, such as those similar to black liquor soJids, soaps, skimmings, as well as tall oil products such as pitch and/or distillate products such as tall oil fatty acid, distilled tall oil, crude tall oil, and monomer.
  • the saturated or unsaturated, monocarboxylic aliphatic hydrocarbon is a ferry acid.
  • Examples of such include oleic, linoliec and/or stearic acids, including a derivative thereof; a 1 inear, branched, and/or cyclic isomer thereof; a dimer thereof; and/or a trimer thereof.
  • the saturated or unsaturated, monocarboxylic aliphatic hydrocarbon or derivative thereof having a linear, branched, and/or cyclic chain, a dimer thereof, a trimer thereof, may be an acid having linear, branched, and/or cyclic Qg chain.
  • Examples of such may include linoliec and/or oleic acids or derivative thereof.
  • Further examples may be linear, branched, and/or cyclic isomers of linoliec and/or oleic acids.
  • saturated or unsaturated, monocarboxylic aliphatic hydrocarbon or derivative thereof having a linear, branched, and/or cyclic chain, a dimer thereof, a trimer thereof may be those found and described, for example in United States Patents 6,875,842;
  • examples of the saturated or unsaturated, monocarboxylic aliphatic hydrocarbon or derivative thereof having a linear, branched, and/or cyclic chain, a dimer thereof, a lrirner thereof may be caproic. cnthanic. caprylic. capric. lsodecyl. pelargonic, lau ⁇ c. my ⁇ stic, palmitic, oleic, linoleic, linoJenic, siearic, isostearic, behenic, arachidic, arachidoruc, enicic.
  • azelaie coconut, soya, tall oil, tallow, lard, neatsfoot, apncot, wheat serm, corn oil, cotton seed oil, ricinic, ricinoleic, rapcseed, palm kernel fatty acids, dimer acids, trimer acids, ozone acids, diacids, triacids, combinations and mixtures of these.
  • the rosin acid-containing composition has any acid value.
  • the composition has an acid value that include those values less than 200, preferably less than 190, more preferably less than 180, most preferably less than 170.
  • the acid value of the rosin acid containing composition may be 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65. 70. 75, 80, 85, 90, 95, 100, 105, 1 10, 120, 125, 130, 140, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195 and 200, including any and all ranges and subranges therebetween.
  • the acid value is from 10 to 165, although it may be any acid value mentioned above, including any and all ranges and subranges therebetween.
  • flue rosin acid ester of the present invention is a reaction product, in part, of at least one rosin acid-containing composition with an ⁇ , ⁇ -tmsaturated carboxyl compounds or ester thereof.
  • the ⁇ , ⁇ -unsaturated carboxyl compound is reactive with rosin acid to form an adduct therebetween.
  • the ⁇ , ⁇ -unsaturated carboxyl compound is maleic anhydride
  • the adduct between rosin and maleic acid is known as maleated rosin.
  • the ⁇ , ⁇ -unsaturated carboxyl compound is ftunaric acid, or art ester of fiimaric acid
  • fumarated rosin the corresponding adduct formed between rosin and fumaric acid or a fomarate is known as fumarated rosin.
  • Suitable u, ⁇ -unsalurated carboxylic compounds include maleic anhydride, fumaric acid, mono (Ci -C 12 alkyl) ester of fuma ⁇ c acid, di(C ⁇ -Cn alkyl) ester of fuma ⁇ c acid, acrylic acid, Ci -C 12 alkyl ester of acrylic acid, methacryhc acid, Ci -Cn alkyl ester of methacryiic acid, itaconic acid, and Ci -Cn alkyl ester of itaconic acid.
  • Maieic anhydride, fumaric acid and esters of fumaric acid are preferred ⁇ , ⁇ unsa ⁇ urated carboxylic compounds, with fumaric acid and esters of fumaric acid being most preferred.
  • the rosin acid ester of the present invention is a reaction product, in part, of at least one rosin acid-containing composition with an ⁇ , ⁇ -unsaturated carfooxyl compounds or ester thereof to form an intermediate composition that is and/or contains an adduct therebetween.
  • the intermediate composition and/or adduet is then reacted with an alcohol-containing composition to form the composition of the present invention which may be or contain at least one rosin acid ester of the present invention.
  • the alcohol-containing composition may be any alcohol-containing composition.
  • the alcohol-containing composition is and/or contains any at least one polyhydric alcohol.
  • Polyhydric alcohols of the present invention are reactive with acidic moieties via standard esterification reactions, and arc reactive with ester moieties via standard transesterification reactions, to produce crossHnked resinous adducts.
  • Exemplary polyols include, without limitation, alkyl ⁇ ne glycol (such as ethylene glycol and propylene glycol), polyalkylene glycol (such as polyethylene glycol and polypropylene glycol), alkyjene triol (such as glycerol, t ⁇ methylolethane, and trimethylolpropane), tetrafunctional alcohols such as pentaerythritol, pentafunctjonal alcohols such as dimerized trimethylolpropane, or hexafunctional alcohols such as dimerized pentaerythritol, where a preferred polyol of the present invention is polyethylene glycol.
  • alkyl ⁇ ne glycol such as ethylene glycol and propylene glycol
  • polyalkylene glycol such as polyethylene glycol and polypropylene glycol
  • alkyjene triol such as glycerol, t ⁇ methylolethane, and trimethylolpropane
  • the aleohol-contaimng composition is and ' or contains at least one polyethylene glycol and, or polyol
  • the at least one polyethylene glycol (PEG) and/or polyol has a weight average or number average molecular weight of that is less than 5000, more preferably less than 2000, most preferably less than 3000.
  • the weight average or number average molecular weight of the polyethylene glycol and/or polyoi is iess than 5000, 4000, 3000, 2000, 1000, 900, 800, 700, 600, 500, 400, 300, 200, and 100.
  • the most preferred polyol is a polyethylene glycol having a number or weight average molecular weight that is about 400 (e.g. PEG-400).
  • the rosin acid ester of the present invention may have any acid value.
  • Such preferred acid values include those greater than 10 and those less than or equal to 200.
  • the acid value of the rosin acid ester of the present invention is not greater than 150, more preferably not greater than 100, most preferably not greater than 50.
  • the acid value of the rosin acid ester of the present invention may be 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 20, 25, 30 » 35, 40, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 200, 105, 1 JO 5 120, 125, 130, 140, 150, 360 » 170, 180, 190, and 200, including any and all ranges and subranges therebetween.
  • the acid value is from 1 to 50 although it may be any acid value mentioned above, including any and all ranges and subranges therebetween.
  • the rosin acid ester of the present invention is soluble in water.
  • the rosin acid ester is 100% soluble in water.
  • the rosin acid ester may be from 50 to 300wt% soluble in water so long as it contains all of the physical and performance characteristics (when used in oil containing compositions, preferably metal working compositions) as described herein.
  • the rosin acid ester of the present invention has any saponification number.
  • the saponification number is from 25 to 200, more preferably from 50 to 150, most preferably from 75 to 125.
  • the rosin acid ester of the present invention has any hydroxy! value.
  • 5 the hydro.xyl value is from 25 to 150, more preferably from 40 to 120, most preferably from 50 to 100.
  • the rosin acid ester of the present invention has any pour point.
  • the pour point is less than or equal to 25°C, more preferably less than or equal to 10°C, most preferably less than or equal to 0°C.
  • the pour point along with other C cold flow improvement characteristics may be depressed by the use of pour point depressants commonly known in the art and mentioned above.
  • the rosin acid ester of the present invention has an average particle diameter as measured by a Beckman Coulter LS230 particle size analyzer running Window's based "LS" software from Beckman Coulter version 3.29 of from 0.04 to 0.2 microns, preferably from 0.07 to 0. ! 7 microns, more preferably from 0.08 to 0, 16 microns, and most preferably from 0.09 to 0.15 microns.
  • the average particle diameter may be 00.4, 0,05, 0.06, 0.07, 0.08, 0.09, 0.1 1, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, and 0.2 microns, including any and all ranges and subranges therein.
  • the rosin acid ester of the present invention has a kinematic viscosity (in centiStokes), as measured using Cannon Fensk ⁇ viscosity tubes (according to standard ASTM D445) immersed in constant temperature baths at 100"C, at 4O°C, and at 2 ⁇ °C of from 250 to 650 centiStokes, from 4500 to 6000 centiStokes. and from 10000 to i 5000 centiStokes, respectively, including any and all ranges and subranges therein. More preferably in constant temperature baths at 100°C, at 40°C, and at 25°C.
  • the viscosity of the rosin acid ester of the present invention is from 400 to 500 centiStokes, from 5000 to 5500 centiStokes, and from 12000 to 13000 centiStokes, respectively, including any and all ranges and subranges therein.
  • the rosin acid ester and/or composition of the present invention may be made by a two-r ⁇ aetion process, although both reactions may be performed simultaneously in one step and/or serially in multiple steps.
  • the first reaction at least one rosin acid-containing composition is reacted with at least one ⁇ , ⁇ unsaturated carboxylic acid or ester thereof to form an intermediate composition containing an adduct therebetween rosin acid and cx, ⁇ -unsaturated carboxylic acid or ester thereof.
  • the intermediate composition containing the adduct is reacted with an alcohol-containing compound to produce the composition of the present invention.
  • the resultant ester-containing composition is and'or contains at least one rosin acid ester of the present invention.
  • an adduct is formed between the rosin acid-containing compound and the ⁇ , ⁇ -unsat ⁇ rated carboxylic acid or ester thereof.
  • the above-mentioned intermediate composition contains this adduct.
  • the reaction is perfomed so as to complete a Diels Alder reaction between the rosin acid-containing composition and the ⁇ JJ-unsaturated carboxylic acid or ester thereof.
  • the reaction is performed at elevated temperature. More preferably, the temperature of the reaction is about 200°C, of from 180°C to 205°C.
  • the reaction time may be any. However, the preferable reaction time may be from 30 minutes to 90 minutes, more preferably from 45 minutes to 75 minutes including any and all ranges and subranges therein.
  • the rosin acid-containing composition is preferably melted prior to the addition of the ⁇ , ⁇ -unsaturated carboxylic acid or ester thereof.
  • the resultant intermediate composition containing the adduct between the rosin acid-containing compound and the ou ⁇ - unsaturated carboxylic acid or ester thereof is then cooled.
  • the intermediate composition comprises reaction product so that about from 1 to 25 wt %, from 2 to 25 wt %, or from 3 to 25 wt %; or from about 1 to 20 wt %. from 2 to 20 wt %, or from 3 to 20 wt %; or from about 1 to 15 wt %, from 2 to 15 wt %, or from 3 to 15 wt % ⁇ , ⁇ -unsaturated carboxylic acid or ester thereof.
  • the ⁇ » ⁇ -urtsaturated carboxylic acid or ester thereof is ftimaric acid or an ester thereof to create a fumarated rosin acid.
  • the above-mentioned intermediate composition contains at least one fumarated rosin acid.
  • the adduct or the intermediate composition containing the adduct may be contacted with the alcohol-containing composition in any amounts and any conditions necessary to make the rosin acid ester of the present invention.
  • the adduct or the intermediate composition containing the adduct may be contacted with the alcohol-containing composition so as to undergo an esterification and/or a transesterification.
  • the rosin acid ester of the present invention may be made by contacting at least about not less than 25wt%, preferably not less than about 40wt%, more preferably not less than about 50wt% > most preferably not less than about 52wt% of the alcohol-containing compound with not more than about 75wt%, preferably not more than about 60wt%, more preferably not more than about 50wt%, most preferably not more than about 48wt% of the adduct between the rosin acid compound and the ⁇ , ⁇ -un saturated carboxylic acid or ester thereof. More specifically, the amount of alcohol-containing compound added to the reaction may be not kss than about 25, 30, 35. 40, 45, 46, 47, 48.
  • the amount of adduct between the rosin acid compound and the ⁇ , ⁇ -unsaturated carboxylic acid or ester thereof added to the reaction may be not more than about 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 46, 47, 48, 48, 49, 50, 51, 52, 53, 54, 55, 60, 65, 70, and 75wt%, based upon the total weight of the alcohol-containing compound and the adduct between the rosin acid compound and the ⁇ , ⁇ -utisaturated carboxylic acid or ester thereof, including any and all ranges and subranges therein.
  • a catalyst for esterification reactions may be included in the reactant mixture.
  • Esterification/Transesterification catalysts are well known in the art and include sulfuric acid, phosphoric acid and other inorganic acids, meta! hydroxides and, alkoxides such as tin oxide, magnesium oxide (MgO) and titanium isopropoxide, and divalent metal salts such as tin or zinc salts.
  • the catalyst is magnesium oxide (MgO).
  • a cataiyst it should be used in small amounts, e.g., less than about 5 weight percent of the total mass of the reaction mixture, preferably less than about 2% and more preferably less than about 1% of the total mass of the reaction mixture.
  • the catalyst may be present in an amount that is from 0.05 to 0.8, preferably from 0 07 to 0.6, most preferably from 0.09 to 0.4 weight percent of the total mass of the reaction mixture. Excessive amounts of catalyst increase the cost of preparing the rosin acid ester, as well as often leave behind residue thai may be harmful to the environment in which the ester is located.
  • the adduc; between the rosin acid compound and the ⁇ , ⁇ -unsaturated carboxylic acid or ester thereof, the alcohol-containing compound, and the catalyst may be added together simultaneously or serially.
  • the reaction is carried out at elevated temperature.
  • the temperature of the reaction is from 230 to 29O°C, preferably from 240 to 280°C, more preferably from 250 to 270°C, most preferably from 255 to 265°C, including any and all ranges and subranges therebetween,
  • the rosin-containing composition is any rosin-containing composition commercially available from Arizona Chemical Company, such as for example, Sylvaros NCY.
  • the adduct between the rosin acid compound and the ⁇ ,p * -unsaturated carb ⁇ xylic acid or ester thereof is made by contacting, preferably under Diels Alder conditions, Sylvaros NCY with fumaric acid to produce an intermediate composition containing the adduct referred to herein as a fumarated rosin acid.
  • fumarated rosin acids are those available from Arizona Chemical Company such as for example Sylvaprint 8250.
  • the fumarated rosin ester is contacted with the alcohol-containing compound, most preferably polyethylene glycol (e.g. PEG-400), preferably under este ⁇ fication and/or transesterfication conditions so as to produce a specifically embodied rosin acid ester of the present invention.
  • the alcohol-containing compound most preferably polyethylene glycol (e.g. PEG-400), preferably under este ⁇ fication and/or transesterfication conditions so as to produce a specifically embodied rosin acid ester of the present invention.
  • the rosin acid ester may farther be hydrogenated, either fully and/or partially.
  • the optionally hydrogenated rosin acid ester may also be utilized as the rosin acid ester as described herein, preferably as a lubricant in oil-containing compositions such as metal working compositions.
  • the rosin acid ester and/or the composition containing the rosin acid ester of the present invention is made, it is very useful in many capacities.
  • the rosin acid ester is useful as a lubricant for use in any oil-containing composition.
  • the oil- containing composition is a metal working composition.
  • the metal working composition may be synthetic, semi -synthetic, and/or soluble oil and may be fluids used for cutting, grinding, and stamping metals.
  • the rosin acid ester of the present invention are preferably used to improve the load carrying characteristics of lubricating fluids used in metal working fluids where a primary function of the metal working fluid is to provide lubricity between the metal being worked and the machine tool.
  • Lubricating base fluids used as metal working fluids include but are not limited to mineral oiL, esters and polyalkylene glycols.
  • a typical metal working formulation may be as follows: Mineral Oil 68%; Sulfonate 14%; Distilled tall oil 4%; Triethanolamine 2.5%; Ethoxyfated Castor Oil 6.5%; Emulsifier 2.5%; and lubricant 3%.
  • the synthetic, semi-synthetic, and/or soluble metal working oil compositions may contain at least one oil, castor oil, mineral oil, pH buffer, extreme pressure lubricant, extreme pressure additive, bonding lubricant, boundary lubricant, corrosion inhibitor (rust inhibitor), coupler, fungicide/biocide, emulsifier, primary ermilsifier, co-emulsifier, and diluent.
  • Sulfated castor oil-a boundary lubricant examples include, but are not limited to, Sulfated castor oil-a boundary lubricant, Actracor 4000-a rust inhibitor, Triethanolamine-a pH buffer, Actrafos 1 1 OA-an extreme pressure additive, Sulfonate-a rust inhibitor and a emulsifier, Distilled Tall Oil - a co-emulsifier, Ethox TO-8 - a emulsifier, Ethox GMO- a co-emulsifier. and Ethox ("O-36- a boundary lubricant.
  • the diluent is water.
  • the lubricating fluid may contain one or more additives
  • Additives are often included in lubricating fluids, and accordingly one of ordinary skill in the art is well aware of such additives that include but are not limited to antiwear agents, extreme pressure agents, antioxidants, antirust agents, and defoamers.
  • These additives may be included in lubricating fluid formulations of the present invention in their usual amounts, i.e., the amounts in which they are used in compositions that do not include the rosin acid ester of the present invention, where these additives will provide their usual properties.
  • Exemplary additives include:
  • Imidazolines such as 2-methylimidazoiine, and polyaJkyl amines, such as are disclosed in U.S. Pat. No. 4,713,188;
  • P ⁇ lyisobutylene having a number average molecular weight from 400 to 2500, preferably about 950. Poiyisobutylene acts to improve lubricity and anti-scuff activity of the lubricant;
  • Functionalized polyisobutylene having a number average molecular weight from 400 to 2500, preferably about 1300.
  • the functional group for the olefin is typically amine based.
  • This functionalized polyisobutylene is present in an amount up to 15% by weight, preferably up to 10%. more preferably about 5%, by weight.
  • the functionaliiced poiyisobutylene is therefore, a reaction product of the olefin and olefin polymers with amines (mono-or-polyamines).
  • the functionalized poiyisobutylene provides superior detergency performance, particularly in two-stroke cycle engines;
  • Auxiliary extreme pressure agents and corrosion and oxidation inhibiting agents such as a chlorinated aliphatic hydrocarbon, e.g., chlorinated wax and chlorinated aromatic compounds: organic sulfides and polysulfides; sulfuiiz ⁇ d alkyjphenol; phosphosulfurized hydrocarbons; phosphorus esters; including principally dihydrocarbon and trihydrocarbon phosphites, and metal thiocarbamates. Many of these auxiliary extreme pressure agents and corrosion oxidation inhibitors also serve as antfwear agents. Zinc dialkyiphosphorodi ⁇ ioates are a well known example;
  • pour point depressants which serve to improve low temperature properties of lubricating fluid based compositions.
  • useful pour point depressants are polyamid ⁇ s, polymethacrylates; polyacrylates; polyacrylamides; condensation products of haloparaffin waxes and aromatic compounds; vinyl carboxylate polymers; and t ⁇ rpolymers of dtalkylrumarates, vinyl esters of fatty acids and alkyl vinyl ethers.
  • Anti foam agents which function to reduce or prevent the formation of stable foam.
  • Typical anti foam agents include silicones or organic polymers.
  • the rosin acid ester is- preferably a lub ⁇ can! in metal working compositions, the I v * m acid esier of the present im ention may also be used m combination w ith any other oil where it is desired to improve the load carrying properties of ihe oil.
  • oils include, w ithout limitation, automatic transmission fluid (ATF), cylinder lubricant, erankcase lubricating oil.
  • functional fluid such as a power transmission fluid where an exemplary power transmission fluid is hydraulic fluid and hydraulic oil, tractor oil, gear oil, and engine oil.
  • the rosin acid ester of the present invention may be present in the composition at an amount effective to improve the load carrying characteristics of the composition
  • Boundary lubricant 2 4%
  • the lubricity agent is preferably the rosin acid ester of the present invention and/or a composition containing the rosin acid ester of the present invention.
  • the rosin acid ester of the present invention may be added to an oil containing composition, such as a metal working composition/formulation, at any wr% or it may replace any one of the above conventional components of the oil-containing composition, especially the components of metal working fluids.
  • the amount of rosin acid ester added is such to increase the end composition's load carrying property as compared to that of the same composition when not containing the rosin acid ester of the present invention.
  • the amount of the rosin acid ester added may be any amount In general, it is preferable to be present in an amount that is not greater than 50wt%, preferably not greater than 30wt%, based upon the total weight of the composition.
  • the amount of rosin acid ester may range from 1 to 30wt%, preferably from 3 to 15 wt%, based upon the total weight of the composition.
  • the amount of the rosin acid ester of the present invention that may be present in the OJI- contaming composition, preferably a metal working composition may be 1. 2, 3, 4, 5, 6. 6, 7, K, 9, 10, 1 1 , 12, 13, 14. 15. 16, 37. 18, 19, 20, 22, 24, 26, 28, 30. 35. 40. 45. and 50wt%, based upon the total weight of the composition, including any and all ranges and subranges therein.
  • Example 1-production of the rosin acid ester #1 of the present invention (U398).
  • Fumarated rosin ester, Le. Syivapri ⁇ t 8250 was contacted with PEG-400 at 260"C in (he presence of a magnesium oxide catalyst at an amount ranging from 0.1 to 0.3 wt% based upon the total mass of the reaction mixture. A trap was added to collect water from the reaction. The reaction was monitored by the acid value and stopped (i.e. cooled) once the desired acid value (i.e. —10) was reached.
  • the lub ⁇ city agent may be rosin acid ester #1 (i.e. U398), commercially available Umflex 397 available from Arizona Chemical Company (U397), or conventional lubricity agents.
  • lubricity agent may be rosin acid ester #1 (i.e. U398), commercially available
  • Soluble Oil Metalworking Concentrate Formulation** # Mineral Oil ? 1.5wi% Sulfonate 7 wt% rast inhibitor and cmulsifier Distilled Tail Oil 4wr% co-emulsifier T ⁇ ethanolamine 2wt% Ethox TO-8 2.5wt% emulsifier Ethox GMO 3wt% co-emulsifier Ethox CO-36 4wt% Boundary lubricants Lubricity Agent* ⁇ wt%
  • the lubricity agent may be rosin acid ester Ul (i.e. U398), commercially available Umflex 397 available from Arizona Chemical Company (U397), or conventional lubricity agents.
  • the particle diameter of the rosin acid ester # 1 (U398) from Example 1 above of the present invention was measured by a Beckman Coulter LS230 particle size analyzer running Window's based "LS" software from Beckman Coulter version 3.29. The results can be found in Figure 6.

Abstract

The present invention relates to a rosin acid ester and compositions containing the same, as well as methods of making and using the same.

Description

WATER-SO] .UBLF, ROSIN ACID ESTERS
Field of the Invention
The present invention relates to a rosin acid ester and compositions containing the same, as well as methods of making and using the same.
Background of the Invention
Conventional lubricants useful in synthetic, semi-synthetic, and soluble oil-containing formulations, such as those useful in the field of metal working, are very insoluble in water. For example, such conventional lubricants are only soluble in formulations containing up to about 20wt% water. Once the amount of water in the formulation increases beyond this point, the load properties at a given torque for formulations containing conventional lubricants is very much compromised. "Load carrying" is a characteristic used in the related technical field and, for example, can be measured according to an industrial-acceptable standard such as ASTM 3233. The "load carrying" properties of the formulation are dependent, in part, on the level of solubility the conventional lubricants have in water. Conventional lubricants, therefore, must compromise their water solubility to maintain good load carrying properties when utilized in any of the above-mentioned oil-containing formulations. It is therefore desirable lυ provide a formulation that contains a lubricant having enhanced water solubility, while maintaining excellent load carrying properties when used in oil-containing formulations.
DETAILED DESCRIPTION OF THE INVENTION
This application is related to the fields of chemistry and polymer science which is described, for example, in Kirk-Othmεr "Encyclopedia of Chemical Technology", fourth edition (1996), John Wiley & Sons, which is hereby incorporated, in its entirety, herein by reference.
The inventors have surprisingly found a composition that is relatively low cost and environmental friendly for use as a lubricant in oil-containing formulations, preferably useful in metal-working formulations. This composition is relatively higher in its solubility in water. Further, when used as a lubricant in oil-containing formulations, preferably useful in metal-working formulations, it provides for excellent load carrying properties within a wide range of torques.
The present invention relates to a rosin acid ester. Preferably, the rosin acid ester is soluble in greater than about 20 wt%, more preferably greater than about 30wt%, most preferably greater than about 40wt% of water based upon the total weight of the composition. The amount of water in the composition may be about 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75. 80, 85, 90, 95, and 99wt% based upon the total weight of the composition, including any and all ranges and subranges therein. In addition, (he rosm acid csiur of the present invention is soluble in a composition when the water and ester arc present in a weight ratio that is greater than about 1/4, preferably greater than 1 O, more preferably greater than about 1/2, and most preferably greater than about 1 '] The weight ratio of water and ester may be about 1/4. 1/3. 1/2. 1 /L 2/1 , 3/1. 4/1. 5 i , 6- 1, 7/1. 8' 1 , 9' 1. and 10 1, including any and all ranges and subranges therein.
The present invention also relates io a composition that is an ester-containing composition, preferably a rosin acid ester and/or a composition containing the same, The ester-containing composition is the reaction product of a two-reaction process, although both reactions may be performed simultaneously in one step and/or serially in multiple steps. In the first reaction, at least one rosin acid-containing composition is reacted with at least one α, β-unsaturated carboxyiic acid or ester thereof to form an intermediate composition containing an adduct therebetween rosin acid and α,β-unsaturated carboxyiic acid or ester thereof. Subsequently, the intermediate composition containing the adduct is reacted with an alcohol- containing compound to produce the composition of the present invention. The resultant ester-containing composition is and/or contains at least one rosin acid ester of the present invention,
The rosin acid-containing composition may be any rosin-acid containing composition. Preferably, the rosin acid containing composition comprises biomass and/or byproducts thereof. Thus, the rosin acid-containing composition is a renewable resource,
Biomass products, such as those byproducts of refining and processes taking advantage of natural sources arc usually low cost. Examples of a biomass product may be the byproducts of paper making from trees. Accordingly, biomass products, such as those similar to black liquor solids, soaps, skimmings, as well as tail oil products such as pitch and/or distillate products thereof are examples of such biomass products. Further, such biomass products are predominantly environment friendly, especially compared to those traditional antifoammg agents utilized it the above-mentioned mining and/or refining processes.
The rosin acid-containing composition contains at least one rosin acid compound. The rosin acid compound may be selected from those natural resin-based acids, such as those obtained from residues of distillation of natural oils. The rosin acid compound may also be derived. Since the rosin compound is an acid, the derivative may be any commonly known derivative of a carbonyl-containing compound known in general Organic Chemistry
Textbooks, such as "Organic Chemistry", 5th Edition, by Leroy G. Wade. Examples of such derivatives include, but are not limited to esters, amine carboxylates, and nitrite derivative of the rosin acid compound.
The rosin acids may include those that may be isolated from black liquor skimmings, crude tall oil, tall oil pitch, and distilled tall oil. In addition rosin acids may be those found in tall oil rosin, gum rosin and wood rosin. These naturally occurring rosins may be suitably mixtures and/or isomers of monocarboxylic tricyclic rosin acids usually containing about 20 carbon atoms. The tricyclic rosin acids differ mainly in the position of the double bonds. The rosin acid may be at least one of levopimaric add, neoabietic acid, pamstric acid, abietic acid, dehydroabietic acid, seco-dehydroabietic acid, tetrahydroabietic acid, dihydroabietic acid, pimaric acid, paulsiric acid, and isopimaric acid, or mixtures, isomers, and/or derivatives thereof. The rosins derived from natural sources also include rosins, i.e. rosin mixtures, modified notably by polymerisation, isomerisation, disproportionation and hydrogenation. The rosin acids may include those mentioned in United States Patents 6,900,274; 6,875,842; 6.S46,941 ; 6,344.573; 6.414. I J 1 , 4,519.952: and 6,623,554. which are all hereby incorporated, in their entirety, herein by reference.
The rosin acid-containing composition contains from 0.1 to 100wt% of at least one rosin acid compound selected from the group consisting of natural resin-based acids obtained from residues of distillation of natural oils, amine carboxylates and ester and nitrile compounds of these acids based upon the total weight of the composition. Preferably, the rosin acid-containing composition contains greater than about 50 wt%, more preferably greater than 60wt%, most preferably greater than 70wt% of at least one rosin acid cαmrxnmd based upon the total weight of the composition. The amount of the at least one rosin acid compound may be 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, and 100wt% based upon the total weight of the composition
The amount of rosin acid compound selected from the group consisting of natural resin-based acids obtained from residues of distillation of natural oils, amine carboxylates and ester and nitrile compounds of these acids present in the composition may be 0.1, 0.2, 03, 0.5» 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99, 99.1, 99.2, 99.3, 99.4, 99.5, 99.6, 99.?, 99.8, and 99.9 wt% based upon the total weight of the composition, including any and all ranges and subranges therein.
The rosin acid-containing composition may contain at least one unsaponifiable material. Examples of unsaponifiable materials is found, but not limited to, those described in United States Patents 6,465,665; 6,462,210; and 6,297,353 which are hereby incorporated, in their entirety, herein by reference, Unsaponifiable material may be any neutral material that is not capable of being saponified, or ester thereof. FxampJes of the unsaponifiable components include, but are not limited to, tocopherols, tocotπenols. carotenoids, vitamin A, vitamin K, vitamin D, lipoproteins, cholesterol, provitamins, growth factors, flavonoids, sterols, stilbenes, squalane, oryzanol and lycopene, Unsaponifiable material may include those mentioned in United Slates Patents 6,875.842; 6,846,941 ; 6.344,573; 6,414,1 1 1 ; 4.519,952; and 6,623,554, which are hereby incorporated, in their entirety, herein by reference.
Further examples of such unsapoπifiablc materials are those found in plants, such as woody plants, preferably trees. Examples of such include, but are not limited to sterols, stands, polycosanols, 3,5-sitøstadiene-3-ona, 4-stigmasten-3-ona, α- and/or β-sitosterols, α- and/or β sitostanols, Campestanol, Campesterol, Cycloartεnol, Docosanol, Eicosanol,
Ergosierol, Escualene, Fatty alcohol esters, Sterol esters, Hexacosanol, Methylencycloartenol, Pimaral, Pimarol, Stϊgmasta-3-ona, Tetracosanol, etc.
The rosin acid-containing composition may contain not more than 75wt% of unsaponifiable material based upon the total weight of the composition. Preferably, the rosin acid-containing composition may contain Jess than about 50wt%, more preferably less than about 25wr%. most preferably less than about 10wt% of unsaponifiable material based upon the total weight of the composition. The amount of unsaponifiable material present in the rosin acid-containing composition may be 0.1 , 0.2, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, and !0.0wi% based upon the total weight of the composition, including any and all ranges and subranges therein.
The rosin acid-containing composition may contain at least one saturated or unsaturated, rnonoearboxylic aliphatic hydrocarbon. The saturated or unsaturated, rnonocarboxylic aliphatic hydrocarbon may have from 5 to 30 carbon atoms, preferably from K to 24 carbon atoms. The hydrocarbon may have 5, 6, 7, 8. 9. 10. 1 1, J 2, 13, 14, 15, 16, 17, 1 S, 19, 20. 21 , 22, 23, 24. 25, 26, 27, 28. 29, and 30 carbon atoms, including any and all ranges and subranges therein.
The rosin acid-containing composition may contain at least one saturated or unsaturated, rnonocarboxylic aliphatic hydrocarbon or derivative thereof. Since the hydrocarbon is monocarboxylic, the derivative may be any commonly known derivative of a carbonyl-containing compound known in general Organic Chemistry Textbooks, such as "Organic Chemistry", 5th Edition, by Leroy G. Wade, which b which is hereby incorporated, in its entirety, herein by reference.
Examples of derivatives of the saturated or unsaturated, rnonocarboxylic aliphatic hydrocarbon may be an ester, mtriie, or amine carboxylate thereof, as well as those commonly found in black liquor solids, soaps, skimmings, as well as tall oil products such as pitch and/or distillate products thereof, Again, the saturated or unsaturated, monocarboxylic aliphatic hydrocarbon may have from 5 to 30 carbon atoms, preferably from 8 to 24 carbon atoms. The hydrocarbon may have 5, 6, 7, 8, 9, 10, 1 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, and 30 carbon atoms, including any and all ranges and subranges therein.
The rosin acid-containing composition may contain at least one saturated or unsaturated, monocarboxylic aliphatic hydrocarbon or derivative thereof having a linear, branched, and/or cyclic chain. Again, the saturated or unsaturated, monocarboxylic aliphatic hydrocarbon may have from 5 to 30 carbon atoms, preferably from 8 to 24 carbon atoms. The hydrocarbon may have 5, 6. 7, 8. 9, K), 1 1. 12. 13. 14. 15, 16, 17, 18. 19. 20, 21 , 22, 23, 24, 25, 26. 27, 28, 29, and 30 carbon atoms, including any and all ranges and subranges therein.
The rosin acid-containmg composition may contain at least one saturated or unsaturated, monocarboxylic aliphatic hydrocarbon or derivative thereof having a linear, branched, and/or cyclic chain, a dimer thereof, a trimer thereof, or mixtures thereof. The rosm-containing composition may contain less than about 75 wt% saturated or unsaturated, monocarboxylie aliphatic hydrocarbon or derivative thereof having a linear, branched, and/or cyclic chain, a dimer thereof, a trimer thereof, or mixtures thereof based upon the total weight of the composition. Preferably, the rosin acid-containing composition may contain less than about 50 wt%, more preferably less than about 25wt%, most preferably, less ifaan about 10 wt% saturated or unsaturated, monocarboxylie aliphatic hydrocarbon or derivative thereof having a linear, branched, and/or cyclic chain, a dimer thereof, a trimer thereof, or mixtures thereof based upon the total weight of the composition. In one very preferred embodiment, the rosin-containing composition may contain less than or equal to about 4 wt% saturated or unsaturated, monocarboxylie aliphatic hydrocarbon or derivative thereof having a linear, branched, and/or cyclic chain, a dimer thereof, a trimer thereof, or mixtures thereof based upon the total weight of the composition.
The amount of saturated or unsaturated, monocarboxylie aliphatic hydrocarbon or derivative thereof having a linear, branched, and/or cyclic chain, a dimer thereof, a trimer thereof, or mixtures thereof present in the rosin-containing composition may be 0.1 , 0.2, 0.3, 0,5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0.9,5, 10.0, and 10.0wt% based upon the total weight of the composition, including any and all ranges and subranges therein. The saturated or unsaturated, monocarboxylic aliphatic hydrocarbon or derivative thereof having a linear, branched, and/or cyclic chain, a dimer thereof, a trimer thereof, may be any one or more found in biomass products, such as those similar to black liquor soJids, soaps, skimmings, as well as tall oil products such as pitch and/or distillate products such as tall oil fatty acid, distilled tall oil, crude tall oil, and monomer.
The saturated or unsaturated, monocarboxylic aliphatic hydrocarbon is a ferry acid. Examples of such include oleic, linoliec and/or stearic acids, including a derivative thereof; a 1 inear, branched, and/or cyclic isomer thereof; a dimer thereof; and/or a trimer thereof.
The saturated or unsaturated, monocarboxylic aliphatic hydrocarbon or derivative thereof having a linear, branched, and/or cyclic chain, a dimer thereof, a trimer thereof, may be an acid having linear, branched, and/or cyclic Qg chain. Examples of such may include linoliec and/or oleic acids or derivative thereof. Further examples may be linear, branched, and/or cyclic isomers of linoliec and/or oleic acids.
Examples of the saturated or unsaturated, monocarboxylic aliphatic hydrocarbon or derivative thereof having a linear, branched, and/or cyclic chain, a dimer thereof, a trimer thereof may be those found and described, for example in United States Patents 6,875,842;
6,846,941 ; 6,344,573; 6,414,111; 4,519,952; and 6,623.554, , which are hereby incorporated, tn their entirety, herein by reference.
Finally, examples of the saturated or unsaturated, monocarboxylic aliphatic hydrocarbon or derivative thereof having a linear, branched, and/or cyclic chain, a dimer thereof, a lrirner thereof may be caproic. cnthanic. caprylic. capric. lsodecyl. pelargonic, lauπc. myπstic, palmitic, oleic, linoleic, linoJenic, siearic, isostearic, behenic, arachidic, arachidoruc, enicic. azelaie, coconut, soya, tall oil, tallow, lard, neatsfoot, apncot, wheat serm, corn oil, cotton seed oil, ricinic, ricinoleic, rapcseed, palm kernel fatty acids, dimer acids, trimer acids, ozone acids, diacids, triacids, combinations and mixtures of these.
The rosin acid-containing composition has any acid value. Preferably, the composition has an acid value that include those values less than 200, preferably less than 190, more preferably less than 180, most preferably less than 170. The acid value of the rosin acid containing composition may be 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65. 70. 75, 80, 85, 90, 95, 100, 105, 1 10, 120, 125, 130, 140, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195 and 200, including any and all ranges and subranges therebetween. Preferably, the acid value is from 10 to 165, although it may be any acid value mentioned above, including any and all ranges and subranges therebetween.
As mentioned above, flue rosin acid ester of the present invention is a reaction product, in part, of at least one rosin acid-containing composition with an α, β-tmsaturated carboxyl compounds or ester thereof. An α, β-unsaturated carboxyl compound has an olefuiic unsataration adjacent to the carbon atom of a carboxyl group, i.e., has the -C=C-C(=O) -O- arrangemem of carbon and oxygen atoms. The α,β-unsaturated carboxyl compound is reactive with rosin acid to form an adduct therebetween. When the α,β-unsaturated carboxyl compound is maleic anhydride, the adduct between rosin and maleic acid is known as maleated rosin. When the α,β-unsaturated carboxyl compound is ftunaric acid, or art ester of fiimaric acid, then the corresponding adduct formed between rosin and fumaric acid or a fomarate is known as fumarated rosin. Suitable u,β-unsalurated carboxylic compounds include maleic anhydride, fumaric acid, mono (Ci -C12 alkyl) ester of fumaπc acid, di(Cι -Cn alkyl) ester of fumaπc acid, acrylic acid, Ci -C 12 alkyl ester of acrylic acid, methacryhc acid, Ci -Cn alkyl ester of methacryiic acid, itaconic acid, and Ci -Cn alkyl ester of itaconic acid. Maieic anhydride, fumaric acid and esters of fumaric acid are preferred α,β~unsaιurated carboxylic compounds, with fumaric acid and esters of fumaric acid being most preferred.
As mentioned above, the rosin acid ester of the present invention is a reaction product, in part, of at least one rosin acid-containing composition with an α,β-unsaturated carfooxyl compounds or ester thereof to form an intermediate composition that is and/or contains an adduct therebetween. The intermediate composition and/or adduet is then reacted with an alcohol-containing composition to form the composition of the present invention which may be or contain at least one rosin acid ester of the present invention.
The alcohol-containing composition may be any alcohol-containing composition. Preferably, the alcohol-containing composition is and/or contains any at least one polyhydric alcohol. Polyhydric alcohols of the present invention are reactive with acidic moieties via standard esterification reactions, and arc reactive with ester moieties via standard transesterification reactions, to produce crossHnked resinous adducts. Exemplary polyols include, without limitation, alkylεne glycol (such as ethylene glycol and propylene glycol), polyalkylene glycol (such as polyethylene glycol and polypropylene glycol), alkyjene triol (such as glycerol, tπmethylolethane, and trimethylolpropane), tetrafunctional alcohols such as pentaerythritol, pentafunctjonal alcohols such as dimerized trimethylolpropane, or hexafunctional alcohols such as dimerized pentaerythritol, where a preferred polyol of the present invention is polyethylene glycol. When the aleohol-contaimng composition is and'or contains at least one polyethylene glycol and, or polyol, preferably the at least one polyethylene glycol (PEG) and/or polyol has a weight average or number average molecular weight of that is less than 5000, more preferably less than 2000, most preferably less than 3000. The weight average or number average molecular weight of the polyethylene glycol and/or polyoi is iess than 5000, 4000, 3000, 2000, 1000, 900, 800, 700, 600, 500, 400, 300, 200, and 100. The most preferred polyol is a polyethylene glycol having a number or weight average molecular weight that is about 400 (e.g. PEG-400).
The rosin acid ester of the present invention may have any acid value. Such preferred acid values include those greater than 10 and those less than or equal to 200. Preferably, the acid value of the rosin acid ester of the present invention is not greater than 150, more preferably not greater than 100, most preferably not greater than 50. The acid value of the rosin acid ester of the present invention may be 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 20, 25, 30» 35, 40, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 200, 105, 1 JO5 120, 125, 130, 140, 150, 360» 170, 180, 190, and 200, including any and all ranges and subranges therebetween. Preferably, the acid value is from 1 to 50 although it may be any acid value mentioned above, including any and all ranges and subranges therebetween.
In addition, the rosin acid ester of the present invention is soluble in water. Preferably, the rosin acid ester is 100% soluble in water. The rosin acid ester may be from 50 to 300wt% soluble in water so long as it contains all of the physical and performance characteristics (when used in oil containing compositions, preferably metal working compositions) as described herein. In addition, the rosin acid ester of the present invention has any saponification number. Preferably, the saponification number is from 25 to 200, more preferably from 50 to 150, most preferably from 75 to 125.
Also, the rosin acid ester of the present invention has any hydroxy! value. Preferably, 5 the hydro.xyl value is from 25 to 150, more preferably from 40 to 120, most preferably from 50 to 100.
In addition, the rosin acid ester of the present invention has any pour point. Preferably, the pour point is less than or equal to 25°C, more preferably less than or equal to 10°C, most preferably less than or equal to 0°C. Of course, the pour point along with other C cold flow improvement characteristics may be depressed by the use of pour point depressants commonly known in the art and mentioned above.
Still further, the rosin acid ester of the present invention has an average particle diameter as measured by a Beckman Coulter LS230 particle size analyzer running Window's based "LS" software from Beckman Coulter version 3.29 of from 0.04 to 0.2 microns, preferably from 0.07 to 0. ! 7 microns, more preferably from 0.08 to 0, 16 microns, and most preferably from 0.09 to 0.15 microns. The average particle diameter may be 00.4, 0,05, 0.06, 0.07, 0.08, 0.09, 0.1 1, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, and 0.2 microns, including any and all ranges and subranges therein.
Still even further, the rosin acid ester of the present invention has a kinematic viscosity (in centiStokes), as measured using Cannon Fenskε viscosity tubes (according to standard ASTM D445) immersed in constant temperature baths at 100"C, at 4O°C, and at 2^°C of from 250 to 650 centiStokes, from 4500 to 6000 centiStokes. and from 10000 to i 5000 centiStokes, respectively, including any and all ranges and subranges therein. More preferably in constant temperature baths at 100°C, at 40°C, and at 25°C. the viscosity of the rosin acid ester of the present invention is from 400 to 500 centiStokes, from 5000 to 5500 centiStokes, and from 12000 to 13000 centiStokes, respectively, including any and all ranges and subranges therein.
As mentioned above, the rosin acid ester and/or composition of the present invention may be made by a two-rεaetion process, although both reactions may be performed simultaneously in one step and/or serially in multiple steps. In the first reaction, at least one rosin acid-containing composition is reacted with at least one α,β~unsaturated carboxylic acid or ester thereof to form an intermediate composition containing an adduct therebetween rosin acid and cx,β-unsaturated carboxylic acid or ester thereof. Subsequently, the intermediate composition containing the adduct is reacted with an alcohol-containing compound to produce the composition of the present invention. The resultant ester-containing composition is and'or contains at least one rosin acid ester of the present invention.
In the first reaction, an adduct is formed between the rosin acid-containing compound and the α,β-unsatαrated carboxylic acid or ester thereof. The above-mentioned intermediate composition contains this adduct. The reaction is perfomed so as to complete a Diels Alder reaction between the rosin acid-containing composition and the αJJ-unsaturated carboxylic acid or ester thereof. Preferably, the reaction is performed at elevated temperature. More preferably, the temperature of the reaction is about 200°C, of from 180°C to 205°C. The reaction time may be any. However, the preferable reaction time may be from 30 minutes to 90 minutes, more preferably from 45 minutes to 75 minutes including any and all ranges and subranges therein. The rosin acid-containing composition is preferably melted prior to the addition of the α,β-unsaturated carboxylic acid or ester thereof. The resultant intermediate composition containing the adduct between the rosin acid-containing compound and the ouβ- unsaturated carboxylic acid or ester thereof is then cooled.
In various aspects of the present invention, the intermediate composition comprises reaction product so that about from 1 to 25 wt %, from 2 to 25 wt %, or from 3 to 25 wt %; or from about 1 to 20 wt %. from 2 to 20 wt %, or from 3 to 20 wt %; or from about 1 to 15 wt %, from 2 to 15 wt %, or from 3 to 15 wt % α,β-unsaturated carboxylic acid or ester thereof. In the most preferred, embodiment, the α»β-urtsaturated carboxylic acid or ester thereof is ftimaric acid or an ester thereof to create a fumarated rosin acid. The above-mentioned intermediate composition contains at least one fumarated rosin acid.
For the second reaction, the adduct or the intermediate composition containing the adduct may be contacted with the alcohol-containing composition in any amounts and any conditions necessary to make the rosin acid ester of the present invention. The adduct or the intermediate composition containing the adduct may be contacted with the alcohol-containing composition so as to undergo an esterification and/or a transesterification.
The rosin acid ester of the present invention may be made by contacting at least about not less than 25wt%, preferably not less than about 40wt%, more preferably not less than about 50wt%> most preferably not less than about 52wt% of the alcohol-containing compound with not more than about 75wt%, preferably not more than about 60wt%, more preferably not more than about 50wt%, most preferably not more than about 48wt% of the adduct between the rosin acid compound and the α,β-un saturated carboxylic acid or ester thereof. More specifically, the amount of alcohol-containing compound added to the reaction may be not kss than about 25, 30, 35. 40, 45, 46, 47, 48. 49, 50, 51, 52, 53, 54, 55. 60, 65, 70. 75, 80, 85, 90. and 95wt%, based upon the total weight of the alcohol-containing compound and the adduct between the rosin acid compound and the α,β-unsaturated carboxyJk acid or ester thereof, including any and ail ranges and subranges therein. In addition thereto, the amount of adduct between the rosin acid compound and the α,β-unsaturated carboxylic acid or ester thereof added to the reaction may be not more than about 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 46, 47, 48, 48, 49, 50, 51, 52, 53, 54, 55, 60, 65, 70, and 75wt%, based upon the total weight of the alcohol-containing compound and the adduct between the rosin acid compound and the α,β-utisaturated carboxylic acid or ester thereof, including any and all ranges and subranges therein.
To increase the rate of the esterification and/or transesterification reaction, a catalyst for esterification reactions may be included in the reactant mixture.
Esterification/Transesterification catalysts are well known in the art and include sulfuric acid, phosphoric acid and other inorganic acids, meta! hydroxides and, alkoxides such as tin oxide, magnesium oxide (MgO) and titanium isopropoxide, and divalent metal salts such as tin or zinc salts. Preferably, the catalyst is magnesium oxide (MgO). When a cataiyst is present, it should be used in small amounts, e.g., less than about 5 weight percent of the total mass of the reaction mixture, preferably less than about 2% and more preferably less than about 1% of the total mass of the reaction mixture. The catalyst may be present in an amount that is from 0.05 to 0.8, preferably from 0 07 to 0.6, most preferably from 0.09 to 0.4 weight percent of the total mass of the reaction mixture. Excessive amounts of catalyst increase the cost of preparing the rosin acid ester, as well as often leave behind residue thai may be harmful to the environment in which the ester is located.
The adduc; between the rosin acid compound and the α,β-unsaturated carboxylic acid or ester thereof, the alcohol-containing compound, and the catalyst may be added together simultaneously or serially. Preferably, the reaction is carried out at elevated temperature. Most preferably, the temperature of the reaction is from 230 to 29O°C, preferably from 240 to 280°C, more preferably from 250 to 270°C, most preferably from 255 to 265°C, including any and all ranges and subranges therebetween,
Preferably, the rosin-containing composition is any rosin-containing composition commercially available from Arizona Chemical Company, such as for example, Sylvaros NCY. Preferably, the adduct between the rosin acid compound and the α,p*-unsaturated carbαxylic acid or ester thereof is made by contacting, preferably under Diels Alder conditions, Sylvaros NCY with fumaric acid to produce an intermediate composition containing the adduct referred to herein as a fumarated rosin acid. Examples of fumarated rosin acids are those available from Arizona Chemical Company such as for example Sylvaprint 8250. In another preferred embodiment, the fumarated rosin ester is contacted with the alcohol-containing compound, most preferably polyethylene glycol (e.g. PEG-400), preferably under esteπfication and/or transesterfication conditions so as to produce a specifically embodied rosin acid ester of the present invention.
In an alternative embodiment, the rosin acid ester may farther be hydrogenated, either fully and/or partially. The optionally hydrogenated rosin acid ester may also be utilized as the rosin acid ester as described herein, preferably as a lubricant in oil-containing compositions such as metal working compositions.
Once the rosin acid ester and/or the composition containing the rosin acid ester of the present invention is made, it is very useful in many capacities. Preferably, the rosin acid ester is useful as a lubricant for use in any oil-containing composition. More preferably, the oil- containing composition is a metal working composition. The metal working composition may be synthetic, semi -synthetic, and/or soluble oil and may be fluids used for cutting, grinding, and stamping metals.
The rosin acid ester of the present invention are preferably used to improve the load carrying characteristics of lubricating fluids used in metal working fluids where a primary function of the metal working fluid is to provide lubricity between the metal being worked and the machine tool. Lubricating base fluids used as metal working fluids include but are not limited to mineral oiL, esters and polyalkylene glycols. A typical metal working formulation may be as follows: Mineral Oil 68%; Sulfonate 14%; Distilled tall oil 4%; Triethanolamine 2.5%; Ethoxyfated Castor Oil 6.5%; Emulsifier 2.5%; and lubricant 3%.
The synthetic, semi-synthetic, and/or soluble metal working oil compositions may contain at least one oil, castor oil, mineral oil, pH buffer, extreme pressure lubricant, extreme pressure additive, bonding lubricant, boundary lubricant, corrosion inhibitor (rust inhibitor), coupler, fungicide/biocide, emulsifier, primary ermilsifier, co-emulsifier, and diluent. These include, but are not limited to, Sulfated castor oil-a boundary lubricant, Actracor 4000-a rust inhibitor, Triethanolamine-a pH buffer, Actrafos 1 1 OA-an extreme pressure additive, Sulfonate-a rust inhibitor and a emulsifier, Distilled Tall Oil - a co-emulsifier, Ethox TO-8 - a emulsifier, Ethox GMO- a co-emulsifier. and Ethox ("O-36- a boundary lubricant. Preferably, the diluent is water.
In addition to the rosin acid ester of the present invention, the lubricating fluid may contain one or more additives, Additives are often included in lubricating fluids, and accordingly one of ordinary skill in the art is well aware of such additives that include but are not limited to antiwear agents, extreme pressure agents, antioxidants, antirust agents, and defoamers. These additives may be included in lubricating fluid formulations of the present invention in their usual amounts, i.e., the amounts in which they are used in compositions that do not include the rosin acid ester of the present invention, where these additives will provide their usual properties.
Exemplary additives include:
Imidazolines, such as 2-methylimidazoiine, and polyaJkyl amines, such as are disclosed in U.S. Pat. No. 4,713,188;
Pølyisobutylene having a number average molecular weight from 400 to 2500, preferably about 950. Poiyisobutylene acts to improve lubricity and anti-scuff activity of the lubricant;
Functionalized polyisobutylene having a number average molecular weight from 400 to 2500, preferably about 1300. The functional group for the olefin is typically amine based. This functionalized polyisobutylene is present in an amount up to 15% by weight, preferably up to 10%. more preferably about 5%, by weight. The functionaliiced poiyisobutylene is therefore, a reaction product of the olefin and olefin polymers with amines (mono-or-polyamines). The functionalized poiyisobutylene provides superior detergency performance, particularly in two-stroke cycle engines;
Auxiliary extreme pressure agents and corrosion and oxidation inhibiting agents such as a chlorinated aliphatic hydrocarbon, e.g., chlorinated wax and chlorinated aromatic compounds: organic sulfides and polysulfides; sulfuiizεd alkyjphenol; phosphosulfurized hydrocarbons; phosphorus esters; including principally dihydrocarbon and trihydrocarbon phosphites, and metal thiocarbamates. Many of these auxiliary extreme pressure agents and corrosion oxidation inhibitors also serve as antfwear agents. Zinc dialkyiphosphorodiώioates are a well known example;
Pour point depressants, which serve to improve low temperature properties of lubricating fluid based compositions. Examples of useful pour point depressants are polyamidεs, polymethacrylates; polyacrylates; polyacrylamides; condensation products of haloparaffin waxes and aromatic compounds; vinyl carboxylate polymers; and tεrpolymers of dtalkylrumarates, vinyl esters of fatty acids and alkyl vinyl ethers.
Pour point depressants useful for the purposes of this invention, techniques for their preparation and their uses are described in U.S. Pat Nos. 2,387,501; 2,015,748;
2,655,479; 1,815,022; 2,191,498; 2,666,746; 2,721,877; 2,721,878; and 3,250,715; and
Anti foam agents, which function to reduce or prevent the formation of stable foam. Typical anti foam agents include silicones or organic polymers. While the rosin acid ester is- preferably a lubπcan! in metal working compositions, the I v*m acid esier of the present im ention may also be used m combination w ith any other oil where it is desired to improve the load carrying properties of ihe oil. Such oils include, w ithout limitation, automatic transmission fluid (ATF), cylinder lubricant, erankcase lubricating oil. functional fluid, such as a power transmission fluid where an exemplary power transmission fluid is hydraulic fluid and hydraulic oil, tractor oil, gear oil, and engine oil. In these oils, the rosin acid ester of the present invention may be present in the composition at an amount effective to improve the load carrying characteristics of the composition
An example of a soluble oil metal working formuiation is as follows:
Soluble Oil
• Mineral Oil: 67 %
Sodium Sulfonate: 14%
• Lubricity Agent: 13%
• Coemulsifier (DTO); 4%
• Coemulsifier: 2%
An example of a synthetic oil metal working formulation is as follows:
Synthetic Fluid • Water: 70 %
• Rust Inhibitor. 10%
• pH Buffer. 5%
Extreme Pressure lubricant 4%
* Boundary lubricant 1 : 5%
Boundary lubricant 2: 4%
Fungicide: 2%
Of course, any of the other additional additives mentioned could be added to either of the above-mentioned example formulations in their effective amounts, In both of the abovβ- mentioned formulations, the lubricity agent is preferably the rosin acid ester of the present invention and/or a composition containing the rosin acid ester of the present invention.
The rosin acid ester of the present invention may be added to an oil containing composition, such as a metal working composition/formulation, at any wr% or it may replace any one of the above conventional components of the oil-containing composition, especially the components of metal working fluids. Preferably, the amount of rosin acid ester added is such to increase the end composition's load carrying property as compared to that of the same composition when not containing the rosin acid ester of the present invention. The amount of the rosin acid ester added may be any amount In general, it is preferable to be present in an amount that is not greater than 50wt%, preferably not greater than 30wt%, based upon the total weight of the composition. Further, the amount of rosin acid ester may range from 1 to 30wt%, preferably from 3 to 15 wt%, based upon the total weight of the composition. The amount of the rosin acid ester of the present invention that may be present in the OJI- contaming composition, preferably a metal working composition, may be 1. 2, 3, 4, 5, 6. 6, 7, K, 9, 10, 1 1 , 12, 13, 14. 15. 16, 37. 18, 19, 20, 22, 24, 26, 28, 30. 35. 40. 45. and 50wt%, based upon the total weight of the composition, including any and all ranges and subranges therein.
The present invention is explained in more detail with ihe aid of the following embodiment examples.
Examples
Example 1-production of the rosin acid ester #1 of the present invention (U398).
Fumarated rosin ester, Le. Syivapriπt 8250 was contacted with PEG-400 at 260"C in (he presence of a magnesium oxide catalyst at an amount ranging from 0.1 to 0.3 wt% based upon the total mass of the reaction mixture. A trap was added to collect water from the reaction. The reaction was monitored by the acid value and stopped (i.e. cooled) once the desired acid value (i.e. —10) was reached.
Example 2-Production of Oii -containing compositions.
The following oil-containing compositions were made, preferably as metal working compositions. Synthetic Metal Working Oil f-ormulation**
Sulfated castor oil 4w?% Boundary lubricant
Λctrafos 4OfK) 1 ()wt% Rust inhibitor
1 πethanolammc 5wt% pH buffer and inhibitor Λcratafos 1 10Λ 4wt% kxtreme pressure additive
Lubπciry Agent* 5wi%
Water 72wτ%
*note that the lubπcity agent may be rosin acid ester #1 (i.e. U398), commercially available Umflex 397 available from Arizona Chemical Company (U397), or conventional lubricity agents.
**note that the "partially formulated synthetic metalworfdng fluid" is simply 10wt% of the Lubricity Agent* in water.
Semisynthetic Metalworkirtg Fluid Formulation
Lubricity Agent* 25wt%
Mineral Oil 25wt%
Actracor 4000 10wt%
Water 40wt%
* note that the lubricity agent may be rosin acid ester #1 (i.e. U398), commercially available
Uniflex 397 available from Aπ/ona Chemical Company (U397), or conventional lubricity agents.
Soluble Oil Metalworking Concentrate Formulation**"*** Mineral Oil ? 1.5wi% Sulfonate 7 wt% rast inhibitor and cmulsifier Distilled Tail Oil 4wr% co-emulsifier Tπethanolamine 2wt% Ethox TO-8 2.5wt% emulsifier Ethox GMO 3wt% co-emulsifier Ethox CO-36 4wt% Boundary lubricants Lubricity Agent* ήwt%
* note that the lubricity agent may be rosin acid ester Ul (i.e. U398), commercially available Umflex 397 available from Arizona Chemical Company (U397), or conventional lubricity agents.
**note that the "partially formulated soluble oil metalworkiαg fluid" is simply the same as the above formulation, except the EthoxTO-8 and Ethox GMO are removed and are replaced by water.
***The above formulation and "partially formulated soluble oil metal working fluid" formulation** are concentrates and were added to water and diluted to 7wt%, i'xamplc 3.-... 'Jesting the load carrying properties of the rosin acid ester when utilized in fully lυrrnulated and/ or partially forrnuJated oil-containing compositions.
The above-mentioned Lubricity Agents, especially inventive example 1 (U398), and commercially available products were tested for their load carrying properties when added to the above-mentioned oil-containing composition: Synthetic Metal Working Oil Formulation;
Partially Formulated Synthetic Metal Working Oil Formulation, Soluble Oil Metalworking
Formulation, Partially Formulated Soluble Oil Metalworking Formulation; and Semi synthetic Metalworking Fluid Formulation,
The load carrying properties were measured at different torques using ASTM D 3233-93 (Reapproved 2003) Standard (sec attached) to determine the load at failure (Ib f) of each formulation at each torque, respectively. The results are summarized in Figures 1-5.
Example 4-Measurtng particle size of inventive rosin acid ester
The particle diameter of the rosin acid ester # 1 (U398) from Example 1 above of the present invention was measured by a Beckman Coulter LS230 particle size analyzer running Window's based "LS" software from Beckman Coulter version 3.29. The results can be found in Figure 6.
As used throughout, ranges are used as a short hand for describing each and every value that is within the range, including all subranges therein. Numerous modifications and variations on the present invention are possible in light (»1 the above teachings. It is, therefore, to be understood that within the scope of the accompanying claims, the invention may be practiced otherwise than as specifically described herein.
All of the references, as well as their cited references, cited herein are hereby incorporated by reference with respect to relative portions related to the subject matter of the present invention and all of its embodiments

Claims

We_clairn_
! . A lυΛin acid cstei that is a reaction product of contacting at least one rosin-containtng composition with at leasi one α, β-unsaturated carboxylic acid or ester thereof to form an adduct thereof: and at least one alcohol-containing compound to produce She rosin acid ester.
2. The rosin acid ester according to Claim 1 , wherein the ester has an acid value of less than or equal to 50.
3. The rosin acid ester according to Claim I, wherein not more than 48wt% of the adduct is produced based upon the total weight of the adduct and the alcohol-containing composition and is contacted with at least 52wt% of the alcohol -containing composition based upon the total weight of the adduct and the alcohol-containing composition.
4. The rosin acid ester according to Claim 3, wherein the alcohol-containing compound is a polyhydric alcohol .
5. The rosin acid ester according to Claim 3, wherein the alcohol-containing compound is a polyethylene glycol,
6. The rosin acid ester according to Claim 3, wherein the alcohol-containing compound is a polyethylene glycol and has a weight average molecular weight of not more than 1000.
7. The rosin acid ester according to Claim 3, wherein the alcohol-containing compound is a polyethylene glycol and has a number average molecular weight of not more than 1000.
8. An oil-containing composition comprising, a rosin acid ester according to any one claim of claims 1 -7; and
9. The composition according to Claim S', wherein the composition is a metal working fluid.
10. The composition according to Claim 9, farther comprising water.
1 1. A rosin acid ester made by the process of comprising;
contacting not more than 48wt% of at least adduct of a rosin compound with at least 52wt% of an α, β-unsaturated carboxylic acid with at least one alcohol-containing compound to produce the rosin acid ester to produce a rosin acid ester having an acid value that is not greater than 50,.
12. A composition comprising,
the rosin acid ester according to claim 13 and water.
13, The composition according to Claim 8, wherein the composition is a metal working fluid.
14. The composition according to Claim 9, farther comprising an oil.
PCT/US2007/068611 2006-05-09 2007-05-09 Water-soluble rosin acid esters WO2007134138A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009510165A JP5455623B2 (en) 2006-05-09 2007-05-09 Water-soluble rosin acid ester
EP07783551.0A EP2016147B1 (en) 2006-05-09 2007-05-09 Water-soluble rosin acid esters

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US79916506P 2006-05-09 2006-05-09
US60/799,165 2006-05-09
US11/746,148 2007-05-09
US11/746,148 US7994106B2 (en) 2006-05-09 2007-05-09 Water soluble rosin acid esters

Publications (1)

Publication Number Publication Date
WO2007134138A1 true WO2007134138A1 (en) 2007-11-22

Family

ID=38694236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/068611 WO2007134138A1 (en) 2006-05-09 2007-05-09 Water-soluble rosin acid esters

Country Status (5)

Country Link
US (1) US7994106B2 (en)
EP (1) EP2016147B1 (en)
JP (1) JP5455623B2 (en)
KR (1) KR20090011014A (en)
WO (1) WO2007134138A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102993976A (en) * 2012-12-21 2013-03-27 广西梧州日成林产化工股份有限公司 Preparation method of anti-crystallization stable rosin

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9499709B2 (en) * 2010-03-01 2016-11-22 Xerox Corporation Oligomeric rosin esters for use in inks
CN105246995A (en) * 2013-06-14 2016-01-13 阿利桑那化学公司 Rosin ester tackifiers for pressure-sensitive adhesives
PL3158017T3 (en) * 2014-06-20 2018-06-29 Dsm Ip Assets B.V. Resin, composition and use
US11525102B2 (en) * 2020-12-21 2022-12-13 Kraton Polymers Llc Metal-working fluid compositions and methods for making

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0043182A1 (en) 1980-06-02 1982-01-06 Uss Engineers And Consultants, Inc. Lubricant composition and metal forming process
US4519952A (en) 1981-04-10 1985-05-28 Uop Inc. Process for separating fatty acids from unsaponifiables
US4956109A (en) 1988-05-30 1990-09-11 The Nisshin Oil Mills, Ltd. Lubricating oil
US5166258A (en) * 1991-02-19 1992-11-24 Westvaco Corporation Modified rosin esters and their use in printing inks
US6274657B1 (en) * 1992-04-23 2001-08-14 Arizona Chemical Company Surfactant for forming stable dispersions of rosin esters
US6297353B1 (en) 1998-04-22 2001-10-02 Harting, S.A. Process for obtaining unsaponifiable compounds from black-liquor soaps, tall oil and their by-products
US6344573B1 (en) 2000-09-25 2002-02-05 Resitec Industria Quimica Ltda Process for extraction and concentration of liposoluble vitamins and provitamins, growth factors and animal and vegetable hormones from residues and by-products of industrialized animal and vegetable products
US6414111B2 (en) 1998-08-31 2002-07-02 Arizona Chemical Company Method for separating sterols from tall oil
US6462210B1 (en) 1999-04-16 2002-10-08 Harting, S.A. Fractionation process for the unsaponifiable material derived from black-liquor soaps
US6465665B1 (en) 1999-09-03 2002-10-15 Thomas Francis Harting Glade High efficiency process for the recovery of the high pure sterols
US6623554B2 (en) 2000-12-20 2003-09-23 Chemtek, Incorporated Protective coating compositions containing natural-origin materials, and method of use thereof
US6846941B2 (en) 2001-12-17 2005-01-25 Resitec Industria Quimica Ltda. Process for separating unsaponifiable valuable products from raw materials
US6875842B2 (en) 2002-03-28 2005-04-05 Arizona Chemical Company Resinates from monomer
US20050197255A1 (en) * 2004-03-03 2005-09-08 Baker Hughes Incorporated Lubricant composition

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2412720A (en) * 1944-04-11 1946-12-17 Hercules Glue Company Ltd Spray compositions
US2770598A (en) * 1956-03-23 1956-11-13 Sun Oil Co Soluble oil
BE622310A (en) * 1961-10-09
US4035320A (en) * 1974-01-18 1977-07-12 Union Camp Corporation Radiation curable compositions
JPS5228402B2 (en) * 1974-06-25 1977-07-26
US4260550A (en) * 1979-09-25 1981-04-07 Johnson & Johnson Baby Products Company Modified rosin esters
JPS5980467A (en) * 1982-10-29 1984-05-09 Tokushima Seiyu Kk Preparation of rosin ester emulsion
US4643848A (en) * 1986-02-21 1987-02-17 Westvaco Corporation Modified rosin ester preparation
JPS62256891A (en) * 1986-04-29 1987-11-09 Nippon Steel Corp Cold rolling oil for steel plate
US4751025A (en) * 1986-09-23 1988-06-14 Union Camp Corporation Rosin ester modified with unsaturated carboxylic acid function
JPH0586333A (en) * 1991-03-29 1993-04-06 Arakawa Chem Ind Co Ltd Colorless rosin ester derivative and its production
JP3367089B2 (en) * 1994-10-07 2003-01-14 荒川化学工業株式会社 Rosin-based aqueous resin and method for producing the same
US5691405A (en) * 1996-02-16 1997-11-25 Westvaco Corporation Rosin-supported urea-and urethane-modified emulsion polymers
US6200372B1 (en) * 1996-03-13 2001-03-13 Sun Chemical Corporation Water-based offset lithographic newspaper printing ink
JP2000328082A (en) * 1999-05-19 2000-11-28 Yushiro Chem Ind Co Ltd Lubricant for hot rolling
JP4066450B2 (en) * 2001-09-12 2008-03-26 荒川化学工業株式会社 Plasticizer for lactic acid resin and lactic acid resin composition
WO2003074634A2 (en) * 2002-03-06 2003-09-12 Exxonmobil Chemical Patents Inc. Improved hydrocarbon fluids

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0043182A1 (en) 1980-06-02 1982-01-06 Uss Engineers And Consultants, Inc. Lubricant composition and metal forming process
US4519952A (en) 1981-04-10 1985-05-28 Uop Inc. Process for separating fatty acids from unsaponifiables
US4956109A (en) 1988-05-30 1990-09-11 The Nisshin Oil Mills, Ltd. Lubricating oil
US5166258A (en) * 1991-02-19 1992-11-24 Westvaco Corporation Modified rosin esters and their use in printing inks
US6274657B1 (en) * 1992-04-23 2001-08-14 Arizona Chemical Company Surfactant for forming stable dispersions of rosin esters
US6297353B1 (en) 1998-04-22 2001-10-02 Harting, S.A. Process for obtaining unsaponifiable compounds from black-liquor soaps, tall oil and their by-products
US6414111B2 (en) 1998-08-31 2002-07-02 Arizona Chemical Company Method for separating sterols from tall oil
US6462210B1 (en) 1999-04-16 2002-10-08 Harting, S.A. Fractionation process for the unsaponifiable material derived from black-liquor soaps
US6465665B1 (en) 1999-09-03 2002-10-15 Thomas Francis Harting Glade High efficiency process for the recovery of the high pure sterols
US6344573B1 (en) 2000-09-25 2002-02-05 Resitec Industria Quimica Ltda Process for extraction and concentration of liposoluble vitamins and provitamins, growth factors and animal and vegetable hormones from residues and by-products of industrialized animal and vegetable products
US6623554B2 (en) 2000-12-20 2003-09-23 Chemtek, Incorporated Protective coating compositions containing natural-origin materials, and method of use thereof
US6846941B2 (en) 2001-12-17 2005-01-25 Resitec Industria Quimica Ltda. Process for separating unsaponifiable valuable products from raw materials
US6875842B2 (en) 2002-03-28 2005-04-05 Arizona Chemical Company Resinates from monomer
US20050197255A1 (en) * 2004-03-03 2005-09-08 Baker Hughes Incorporated Lubricant composition

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ASTM D 3233-93, 2003
KIRK-OTHMER: "Encyclopedia of Chemical Technology", 1996, JOHN WILEY & SONS
LEROY G. WADE: "Organic Chemistry Textbooks", article "Organic Chemistry"
See also references of EP2016147A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102993976A (en) * 2012-12-21 2013-03-27 广西梧州日成林产化工股份有限公司 Preparation method of anti-crystallization stable rosin

Also Published As

Publication number Publication date
EP2016147A4 (en) 2010-08-25
US7994106B2 (en) 2011-08-09
KR20090011014A (en) 2009-01-30
JP5455623B2 (en) 2014-03-26
JP2009542824A (en) 2009-12-03
US20080020957A1 (en) 2008-01-24
EP2016147B1 (en) 2017-07-26
EP2016147A1 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
EP2016147A1 (en) Water-soluble rosin acid esters
GB1566414A (en) Lubricants
CN101528901A (en) Soluble oil containing overbased sulfonate additives
EP0679711B1 (en) Functionalized polymer as grease additive
Kamalakar et al. Thumba (Citrullus colocynthis L.) seed oil: a potential bio-lubricant base-stock
WO2011106186A1 (en) Estolide derivatives useful as biolubricants
EP2694630A1 (en) Estolide derivatives useful as biolubricants
CN101443426A (en) Water-soluble rosin acid esters
US7396803B2 (en) Low foaming, lubricating, water based emulsions
Ali et al. Oxidation stability of castor oil in solvent extraction
IL144261A (en) Non-phosphorous, non-metallic anti-wear compound and friction modifier for lubricants
CN113337326B (en) Aqueous composition comprising a water-soluble glycerol-based polyalkylene glycol and use thereof
KR100761557B1 (en) Water soluble metal working fluids using soybean oil and metal working fluids thereof
US9771538B2 (en) Bio-based lubricants
WO1991015455A1 (en) Esters and fluids containing them
US20140194331A1 (en) High performance biohydraulic fluid
CN107109291B (en) Alpha-olefin adsorption-inhibiting lubricant composition, adsorption-inhibiting method, and adsorption inhibitor
EP2890747A1 (en) Process for production of rosin resin, product obtained by said process and use thereof
CA2970663C (en) Catalytic oxidation of hydrocarbons
CA2971185A1 (en) Oxidized alpha-olefins in rust preventive coatings
CN112707818A (en) Ester compound and preparation method and application thereof
CN116004302A (en) Self-emulsifying ester for metal grinding and preparation method thereof
El-Adly et al. Lubricating greases based on fatty by-products and jojoba constituents
CN117070266A (en) High-base number composite calcium sulfonate-based lubricating grease composition and preparation method thereof
NZ513014A (en) Non-phosphorous, non-metallic anti-wear compound and friction modifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07783551

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2007783551

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007783551

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009510165

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780016986.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087029949

Country of ref document: KR