WO2007133526A2 - Method and apparatus for battery management in a converged wireless transmit/receive unit - Google Patents

Method and apparatus for battery management in a converged wireless transmit/receive unit Download PDF

Info

Publication number
WO2007133526A2
WO2007133526A2 PCT/US2007/011076 US2007011076W WO2007133526A2 WO 2007133526 A2 WO2007133526 A2 WO 2007133526A2 US 2007011076 W US2007011076 W US 2007011076W WO 2007133526 A2 WO2007133526 A2 WO 2007133526A2
Authority
WO
WIPO (PCT)
Prior art keywords
rat
battery management
power state
state change
unit
Prior art date
Application number
PCT/US2007/011076
Other languages
French (fr)
Other versions
WO2007133526A3 (en
Inventor
Catherine Livet
Guang Lu
Original Assignee
Interdigital Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Technology Corporation filed Critical Interdigital Technology Corporation
Priority to CN2007800169287A priority Critical patent/CN101444131B/en
Priority to EP07794635A priority patent/EP2027732A2/en
Priority to KR1020097002040A priority patent/KR101289601B1/en
Priority to JP2009509793A priority patent/JP5036808B2/en
Publication of WO2007133526A2 publication Critical patent/WO2007133526A2/en
Publication of WO2007133526A3 publication Critical patent/WO2007133526A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention generally relates to wireless communication systems. More particularly, the present invention relates to power management in a converged wireless transmit/receive unit (WTRU) capable of operating over multiple radio access technologies (RATs).
  • WTRU converged wireless transmit/receive unit
  • RATs radio access technologies
  • a converged WTRU is a mobile device capable of communicating via multiple radio access technologies (RATs).
  • RATs radio access technologies
  • a converged WTRU offers rich services including voice, mobile access to e-mail and personal information, web browsing, audio and video playback and streaming, gaming, and the like.
  • communicating via multiple RATs requires a large amount of power resulting in the rapid drain of a converged WTRU's battery.
  • communication via multiple RATs requires the converged WTRU to transmit and receive on each of the multiple RATs.
  • a converged WTRU may have multiple RF chains, or may be capable of communicating via multiple RATs simultaneously. Since a converged WTRU is generally a portable device, satisfying power demands by increasing the battery size is not desired. Accordingly, minimizing power consumption in a converged WTRU is desirable.
  • the transceiver generally draws the largest amount of power. Therefore, the simplest way to conserve power is to turn off the transceiver or reduce its activity when it is not required. This may be accomplished by placing the WTRU in a sleep state or discontinuous reception (DRX) mode.
  • DRX discontinuous reception
  • RATs radio access technologies
  • the first state is the Awake state, where a WTRU's radio is on.
  • the WTRU can be actively transmitting or receiving data, or the WTRU can be in a power save mode where it generates control traffic to monitor the radio and, if required, quickly switch to active transmission and reception of data.
  • the second state is a Sleep state, where a WTRU's radio is periodically turned off. The WTRU intermittently awakes to receive information from the network, such as, for example, beacons in an IEEE 802.11 RAT, a Pilot Channel (PCH) in a Third Generation Partnership Project (3G) RAT, and the like.
  • the network side may store packets addressed to the sleeping WTRU in a buffer and deliver the packets when the WTRU is in the Awake state.
  • RAT protocols define the required and optional power management modes for a given technology.
  • WLAN wireless local area network
  • the client radio will alternate between two states: (1) active state, where the wireless client is constantly powered actively transmitting and receiving; and (2) power save state that occurs when the wireless client is intermittently sleeping.
  • WLAN access points in an infrastructure network track the state of every associated WTRU. These access points will buffer the traffic destined for a WTRU in a Sleep state. At fixed intervals, the AP will send out a TIM (Traffic Indication Map) frame indicating which sleeping WTRUs have buffered traffic waiting at the access point. A WTRU in a sleep state will intermittently power on its receiver and receive the TIM. If the WTRU has traffic waiting, it will send a packet switched (PS)-PoIl frame to the AP. The WTRU will wait for the traffic until it is received, or the AP will send another TIM frame indicating that there is no buffered traffic.
  • PS packet switched
  • a WTRU may be in either one of two basic states, idle state or connected state. In the idle state, the WTRU is "camping on a cell". However, the WTRU is still able to receive signaling information such as paging. The WTRU will stay in the idle state until a radio resource controller (RRC) connection is established.
  • RRC radio resource controller
  • Various connected state modes are defined in UMTS, including cell dedicated channel (CELL-DCH), cell forward access channel (CELL-FACH), cell paging channel (CELL_PCH), and UMTS terrestrial radio access network (UTRAN) registration area paging channel (URA_PCH), each having varying degrees communication capability and power saving benefits.
  • FIG. 1 a prior art converged WTRU 110 is shown in a multi-RAT wireless environment 100.
  • Various RATs RATi, RAT2, ..., RANN are available for communication via their respective protocols.
  • the converged WTRU 110 includes a plurality of RAT processing units 120i, I2O2, ..., 12ON, for communicating with each RATi, RAT2... RATN, respectively.
  • each RAT processing unit 120i, 1202, ..., 12ON are controlled by respective RAT battery management units, 130i, 1302, ..., 13ON. These RAT battery management units 1301, 1302, ..., 13ON manage power and resources in accordance with their respective RAT protocol.
  • the converged WTRU 110 therefore includes functionality for communicating via multiple RATs, and for managing power and resources in accordance with each respective RAT's protocol and power modes.
  • Other WTRU components 140 include various other components and functionality including a display, input devices, transmitter, and the like.
  • RATi processing unit 12Oi provides RAT specific protocol functionality in conjunction with the other WTRU components 140, while RATi battery management unit 13Oi manages power resources and power modes.
  • converged WTRU 110 lacks coordination in that each RAT processing unit 120i, 1202, ..., 12ON, and associated RAT battery management unit 130i, 1302, ..., 13ON, operate independently of each other. Opportunities for minimizing power consumption are therefore lost. Accordingly, a method and apparatus for coordinating multi-RAT battery management in a converged WTRU is desired.
  • the present invention is a method and apparatus for minimizing power consumption in a converged WTRU.
  • power consumption is minimized by coordinating battery management of the various RATs supported by the converged WTRU.
  • a coordinated multi-RAT battery management (CMRBM) unit is used by the converged WTRU to minimize power consumption.
  • the CMRBM unit monitors various power and link metrics of the various RATs supported by the converged WTRU, and coordinates power states of the converged WTRU.
  • Figure 1 illustrates conventional battery management in a converged WTRU
  • Figure 2 illustrates a converged WTRU including a coordinated multi-RAT battery management unit according to a preferred embodiment of the present invention
  • Figure 3 is a state machine diagram of the possible power modes of the converged WTRU of Figure 2;
  • Figure 4 is a flow diagram of a method for coordinating multi-RAT battery management in the converged WTRU of Figure 2;
  • Figure 5 is a flow diagram of a method for coordinating multi-RAT battery management using a configuration reports.
  • Figure 6 is a flow diagram of a method for coordinating multi-RAT battery management during inter-RAT handover.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0026] Although the features and elements of the present invention are described in the preferred embodiments in particular combinations, each feature or element can be used alone (without the other features and elements of the preferred embodiments) or in various combinations with or without other features and elements of the present invention.
  • a WTRU includes but is not limited to a user equipment (UE), a mobile station, a fixed or mobile subscriber unit, a pager, or any other type of device capable of operating in a wireless environment.
  • UE user equipment
  • FIG. 2 shows a converged WTRU 210 including a CMRBM unit
  • the CMRBM unit 220 coordinates the various RAT battery management units 230i, 2302, - - - , 23ON 3 (collectively referred to herein using reference numeral 230) which in turn control the power and resource management of each respective RAT processing unit 240i, 2402, ..., 24ON (collectively referred to herein using reference numeral 240).
  • the multi-RAT wireless communication environment includes RATi, RAT2, ..., RATN, which may be, purely by way of example and in no way limiting the scope of the present invention, a general packet radio service (GPRS) network, a universal mobile telecommunication (UMTS) network, a global system for mobile communications (GSM) network, a GSM enhanced data rates for GSM evolution (EDGE) radio access network (GERAN), and a wireless local area network (WLAN), such as an IEEE 802. Hx compliant network.
  • the converged WTRU 210 includes other WTRU components 250, which may include a transceiver, memory, display, and the like.
  • the CMRBM unit 220 coordinates the various RAT battery management units 240i, 2402, ..., 24ON of the converged WTRU 210.
  • three generic power states are preferably utilized by the CMRBM unit 220.
  • the first power state is the Awake state. In the Awake state, the converged WTRU 210 is actively transmitting and/or receiving data.
  • the CMRBM Awake state is analogous to a WLAN active state and the UMTS connected state, discussed above.
  • the second power state is the Sleep state. In the Sleep state, a RAT is operating with reduced functionality and decreased power consumption, typically powering on only periodically.
  • the Sleep power state is analogous to a UMTS idle state, discussed above.
  • the third power state is the Off state. In the Off state, a RAT is completely powered down and does not periodically transmit or receive traffic.
  • a state machine 300 utilized by the CMRBM unit 220 of converged WTRU 210 of Figure 2 for controlling RAT battery management units is shown.
  • a given RAT processing unit is completely powered off.
  • a given RAT processing unit is powered and at least partially operational.
  • the ON state 320 further comprises an Awake Mode 330 and a Sleep Mode 340.
  • Awake Mode 330 a RAT processing unit is fully operational and may even be actively transmitting data to or receiving data from a network.
  • the RAT processing unit is operating with reduced functionality.
  • a RAT processing unit will power off its transceiver periodically and reduce control messaging, as described above.
  • the CMRBM unit 220 power states are generalized power states for use in coordinating multi-RAT battery management.
  • a given RAT protocol may define various sub-states or modes of a given CMRBM power state.
  • the Active state in the UMTS access technology comprises at least four sub-states (URA_PCH, CELLJDCH, CELL_PCH, and CELL_FACH described above). While the CMRBM unit 220 coordinates battery management generally, the specific sub-state selected by a RAT battery management unit is ultimately determined by the RAT battery management unit according to its respective RAT protocol.
  • a RAT battery management unit may change from the OFF state 310 to the ON state 320, and vice versa, via receipt of a state change request. While in the ON state, a RAT battery management unit may alternate between the Awake Mode 330 and the Sleep Mode 340 by way of a state change request. Alternatively, a RAT battery management unit may unilaterally change its state or mode based on its respective RAT protocol and battery management configuration.
  • the CMRBM unit 220 preferably communicates with the various RAT battery management units 240i, 2402, ..., 24ON of the converged WTRU 210 by way of the messaging primitives detailed, by way of example, in Table 1 below.
  • Other primitives may also be used, and the primitives discussed below may contain additional information elements than those explicitly recited in the description, as desired.
  • Figure 4 is a flow diagram 400 of a method for coordinating multi-
  • the CMRBM unit 220 monitors the various RAT battery management units 240i, 2402, ..., 24ON contained in the converged WTRU 210, as well as various signal and link metrics of the RAT, (step 410). Based on this monitoring, the CMRBM unit 220 determines whether a state or mode change of any of the RAT battery management units is desired, (step 420). This determination may be based on any principal for minimizing battery power of the converged WTRU 220. For example, when there is no network of a given RAT available, for example RATi, it is desirable to place the corresponding RAT battery management unit 23Oi and RAT processing unit 240i.in an OFF mode to conserve power.
  • the RAT battery management unit 23Oi and RAT processing unit 240i may then be placed in the ON mode.
  • predetermined RAT processing units may be placed in an OFF mode, either permanently or periodically, to conserve battery power.
  • a user of the converged WTRU 210 may configure the
  • the CMRBM unit 220 may adjust power modes and states as desired.
  • the CMRBM unit 220 may request the change of state of a RAT battery management unit 230 from Sleep mode to Awake mode, or to refuse the RAT battery management unit 230 to change to Sleep mode based on its respective power management protocol, when a handover to this RAT is imminent, as discussed in greater detail below with reference to Figure 6.
  • the CMRBM may utilize link quality metrics to affect the state change of any RAT. For example, when the WTRU 210 is connected to several RATs and the link quality is good on these RATs, the CMRBM may request a RAT to change its state to Sleep mode, or vice versa.
  • the CMRBM unit 220 determines that a state or mode change is required in step 420, the CMRBM unit 220 requests a RAT battery management unit 230 to make a state or mode change, (step 430).
  • the CMRBM unit 220 uses the primitives defined in Table 1 above for requesting the state change.
  • the CMRBM unit 220 sends a "State Change Request" message to the RAT battery management unit 230 where a state or mode change is requested.
  • the RAT battery management unit 230 indicates whether it will comply with the request, based on its RAT specific protocols, and preferably sends a "State Change Indication" message confirming its current state, (step 440).
  • a specific RAT changes modes eg., from an
  • the network is typically informed of the mode or state change so that traffic destined for the converged WTRU 210 may be buffered by the network, as discussed above, or for other reasons.
  • the RAT specific protocols for synchronizing power modes with the network are used in order to accomplish this.
  • any RAT battery management 230 unit desires a state change (step 450).
  • a RAT battery management unit 230 may make an independent decision regarding its state based upon RAT specific protocols. If no RAT battery management unit 230 desires a state change, the method returns to step 410 for further monitoring. If a RAT battery management unit 230 desires a state change, the RAT battery management unit 230 requests permission for the state change from the CMRBM unit 220, (step 460).
  • the request is a "State Information Request" primitive as detailed above in Table 1.
  • the CMRBM unit 220 Upon receiving the state change request, the CMRBM unit 220 determines whether to grant the state change request and signals the requesting RAT battery management unit 230 accordingly, (step 470). Preferably, the CMRBM unit 220 signals the requesting RAT battery management unit 230 using a "State Information Response" message as detailed above in Table 1. It is noted that the CMRBM unit 220 may or may not grant the requested state change, and the requesting RAT battery management unit 230 may proceed with the state change regardless of the permission granted or denied by the CMRBM unit 220. [0039] In another embodiment, referring to Figure 5, a flow diagram 500 of a method for coordinating multi-RAT battery management in converged WTRU 210 using configuration reports is shown.
  • each RAT battery management unit 230 informs the CMRBM unit 220 of its respective battery management configuration, (step 520).
  • the RAT battery management units 230 send the CMRBM unit 220 a "Configuration Report" message as defined in Table 1 above. It is noted that typically the initial battery management configuration is dictated by the specific RAT protocol.
  • the CMRBM unit 220 compiles the reports and determines the need to request state changes of any of the RAT battery management units 230 so that power consumption is ininimized, (step 530). If the CMRBM unit 210 determines no state changes are required (i.e.
  • the method advances to step 550.
  • the CMRBM unit 220 determines a state change is desired (i.e. the converged WTRU 210 could be configured more efficiently)
  • the CMRBM unit 220 requests a RAT battery management unit 230 to make a state change, (step 540).
  • this request is in the form of a "Configuration Request" message as defined above in Table 1.
  • the RAT battery management unit 230 requested to change states may then determine, on its own accord, whether to make the state change or not, based on its specific RAT protocol. The chosen state will be indicated by the RAT battery management unit 230 in the next configuration report.
  • the various RAT battery management units 230 repeat the configuration reporting periodically, (step 550). The periodic reporting may be at fixed intervals, or may be dynamically adjusted based on user controls, or the CMRBM unit 220.
  • the CMRBM unit 220 may request a RAT battery management unit 230 to completely power down, thereby shutting down its respective RAT processing unit 240. This is preferably achieved by sending a "Turn Off Request” message as defined above in Table 1. Similarly, the CMRBM unit 220 may request a RAT battery management unit 230 in a powered down state to turn on. This is preferably achieved by sending a "Turn On Request” message as defined above in Table 1. Converged WTRU 210 may power a RAT battery management unit 230, and thereby a corresponding RAT processing unit 240, on and off in various circumstances to conserve power.
  • the CMRBM unit 220 may turn off a RAT battery management unit 230 and corresponding RAT processing unit 240.
  • the CMRBM unit 220 provides efficient power management of converged WTRU's 210 various access technologies during inter-RAT handover.
  • the CMRBM unit 220 works in conjunction with a converged WTRU's 210 inter-RAT handover policy functionality to improve the execution of an inter-RAT handover by reducing handover delay.
  • Converged WTRU's 210 CMRBM unit 220 monitors various RAT battery management units 230 and RAT signal quality and power management metrics, (step 610). Based on the converged WTRU's 210 inter-RAT handover policy, it is determined whether an inter-RAT handover is desired, (step 620).
  • step 620 it is then determined whether the target RAT processing unit(s) 240 are in an awake state, (step 630). If the target RAT processing unit(s) are not in an awake state, the CMRBM unit 220 signals the target RAT(s) battery management unit(s) 230 to place the target RAT(s) processing unit(s) 240 in an appropriate awake state for handover, step (640). This may be accomplished by either method described above with reference to Figure 4 and 5 (i.e. individual RAT signaling or configuration reports).
  • the converged WTRU 210 When the target RAT processing unit(s) are in an awake state, the converged WTRU 210 performs inter-RAT handover, (step 650). Finally, the CMRBM unit 220 signals the various RAT battery management units 230 in the converged WTRU 210 so that a minimal power consumption configuration is achieved, (step 660). [0042] For example, when converged WTRU 210 is in an active state using a first RAT processing unit 240i, but the CMRBM unit 220 senses diminishing link quality (i.e.
  • the CMRBM unit 220 requests a second RAT battery management unit 2302, or plurality of other RAT battery management units 2302, ..., 23ON, and corresponding RAT processing units 2402, ..., 24ON that are currently in a sleep state to change to an awake state.
  • the CMRBM unit 220 may select RAT processing units 2402, ..., 24ON that have the best link quality, or RAT processing units 2402, ..., 24ON that are best suited to handle the type of traffic transmitted using the first RAT processing unit 240i. In this manner, a handover target RAT is in an awake state and ready to receive traffic, thereby minimizing handover delay.
  • WTRU converged wireless transmit/receive unit
  • RATs radio access technologies
  • a method further comprising: requesting a power state change of a RAT battery management unit based on the determination.
  • a method according to any of embodiments 3-8, wherein determining whether a power state change is desired is further based on link quality metrics. 10. The method of embodiment 9, wherein if a link quality metric of a RAT is below a predetermined threshold, a change in the power state of a RAT battery management unit associated with the RAT is requested.
  • a method further comprising: each RAT battery management unit reporting its power management configuration, wherein determining whether a power state change is desired is based on the reporting.
  • a method further comprising: determining at each RAT battery management unit whether a power state change is desired; and requesting permission to change power state when the determination is positive.
  • a method according to any of embodiments 3-15, wherein the determination of whether a power state change is required is based on data rates of the plurality of RATs. 17. A method according to any of embodiments 3-16, wherein the determination of whether a power state change is required is based on the converged WTRU's inter-RAT handover policy.
  • a converged wireless transmit/receive unit comprising: a transceiver; and a plurality of radio access technology (RAT) processing units; each RAT processing unit in conjunction with the transceiver configured to transmit and receive over a different RAT.
  • WTRU converged wireless transmit/receive unit
  • each of the plurality of RAT battery management units are configured to control a power state of a respective RAT processing unit.
  • a WTRU according to any of embodiments 18-20, further comprising: a coordinated multiple RAT battery management (CMRBM) unit configured to coordinate each of the plurality of RAT battery management units to minimize power consumption.
  • CRBM coordinated multiple RAT battery management
  • each RAT battery management unit is configured to receive a power state change request from the CMRBM unit.
  • each RAT battery management unit is further configured to determine whether to implement the requested power state change based on the RAT battery management unit's protocol.
  • each RAT battery management unit is further configured to indicate its compliance with the power state change request to the CMRBM unit.
  • the CMRBM unit is further configured to determine whether a power state change is desired based on the reporting.
  • each RAT battery management unit is further configured to report its power management configuration.
  • each RAT battery management unit is configured to: determine whether a power state change is desired.
  • each RAT battery management unit is configured to: request permission from the CMRBM unit to change power state when the determination is positive.

Abstract

The present invention is a method and apparatus for minimizing power consumption in a converged WTRU. In a preferred embodiment, power consumption is minimized by coordinating battery management of the various RATs supported by the converged WTRU. A coordinated multi-RAT battery management (CMRBM) unit is used by the converged WTRU to minimize power consumption. The CMRBM unit monitors various power and link metrics of the various RATs supported by the converged WTRU, and coordinates power states of the converged WTRU.

Description

[0001] METHOD AND APPAEATUS FOR BATTERY
MANAGEMENT IN A CONVERGED WIRELESS TRANSMIT/RECEIVE UNIT
[0002] FIELD OF INVENTION
[0003] The present invention generally relates to wireless communication systems. More particularly, the present invention relates to power management in a converged wireless transmit/receive unit (WTRU) capable of operating over multiple radio access technologies (RATs).
[0004] BACKGROUND
[0005] A converged WTRU is a mobile device capable of communicating via multiple radio access technologies (RATs). A converged WTRU offers rich services including voice, mobile access to e-mail and personal information, web browsing, audio and video playback and streaming, gaming, and the like. However, communicating via multiple RATs requires a large amount of power resulting in the rapid drain of a converged WTRU's battery. [0006] In a converged WTRU, communication via multiple RATs requires the converged WTRU to transmit and receive on each of the multiple RATs. To further compound the problem, a converged WTRU may have multiple RF chains, or may be capable of communicating via multiple RATs simultaneously. Since a converged WTRU is generally a portable device, satisfying power demands by increasing the battery size is not desired. Accordingly, minimizing power consumption in a converged WTRU is desirable.
[0007] Of all the components in a converged WTRU, the transceiver generally draws the largest amount of power. Therefore, the simplest way to conserve power is to turn off the transceiver or reduce its activity when it is not required. This may be accomplished by placing the WTRU in a sleep state or discontinuous reception (DRX) mode. Different radio access technologies (RATs) have their own battery saving mechanisms, and two states are generally considered, (sometimes with different terminology than described below). [0008] The first state is the Awake state, where a WTRU's radio is on. In this state, the WTRU can be actively transmitting or receiving data, or the WTRU can be in a power save mode where it generates control traffic to monitor the radio and, if required, quickly switch to active transmission and reception of data. The second state is a Sleep state, where a WTRU's radio is periodically turned off. The WTRU intermittently awakes to receive information from the network, such as, for example, beacons in an IEEE 802.11 RAT, a Pilot Channel (PCH) in a Third Generation Partnership Project (3G) RAT, and the like. The network side may store packets addressed to the sleeping WTRU in a buffer and deliver the packets when the WTRU is in the Awake state. [0009] It should be noted that RAT protocols define the required and optional power management modes for a given technology. To illustrate, in a wireless local area network (WLAN), to reduce battery consumption of the wireless client, the client radio will alternate between two states: (1) active state, where the wireless client is constantly powered actively transmitting and receiving; and (2) power save state that occurs when the wireless client is intermittently sleeping.
[0010] WLAN access points in an infrastructure network track the state of every associated WTRU. These access points will buffer the traffic destined for a WTRU in a Sleep state. At fixed intervals, the AP will send out a TIM (Traffic Indication Map) frame indicating which sleeping WTRUs have buffered traffic waiting at the access point. A WTRU in a sleep state will intermittently power on its receiver and receive the TIM. If the WTRU has traffic waiting, it will send a packet switched (PS)-PoIl frame to the AP. The WTRU will wait for the traffic until it is received, or the AP will send another TIM frame indicating that there is no buffered traffic.
[0011] In universal mobile telecommunication systems (UMTS) technology, a WTRU may be in either one of two basic states, idle state or connected state. In the idle state, the WTRU is "camping on a cell". However, the WTRU is still able to receive signaling information such as paging. The WTRU will stay in the idle state until a radio resource controller (RRC) connection is established. Various connected state modes are defined in UMTS, including cell dedicated channel (CELL-DCH), cell forward access channel (CELL-FACH), cell paging channel (CELL_PCH), and UMTS terrestrial radio access network (UTRAN) registration area paging channel (URA_PCH), each having varying degrees communication capability and power saving benefits.
[0012] Other access technologies have their own respective power management states and modes. The WLAN and UMTS power modes described above are merely exemplary, and are not meant to limit, the scope of the present invention, which may be applied to any radio access technology, as desired. [0013] Referring to Figure 1, a prior art converged WTRU 110 is shown in a multi-RAT wireless environment 100. Various RATs RATi, RAT2, ..., RANN are available for communication via their respective protocols. The converged WTRU 110 includes a plurality of RAT processing units 120i, I2O2, ..., 12ON, for communicating with each RATi, RAT2... RATN, respectively. The power states of each RAT processing unit 120i, 1202, ..., 12ON are controlled by respective RAT battery management units, 130i, 1302, ..., 13ON. These RAT battery management units 1301, 1302, ..., 13ON manage power and resources in accordance with their respective RAT protocol. The converged WTRU 110 therefore includes functionality for communicating via multiple RATs, and for managing power and resources in accordance with each respective RAT's protocol and power modes. Other WTRU components 140 include various other components and functionality including a display, input devices, transmitter, and the like. To illustrate, when converged WTRU 110 uses RATi, RATi processing unit 12Oi provides RAT specific protocol functionality in conjunction with the other WTRU components 140, while RATi battery management unit 13Oi manages power resources and power modes.
[0014] However, converged WTRU 110 lacks coordination in that each RAT processing unit 120i, 1202, ..., 12ON, and associated RAT battery management unit 130i, 1302, ..., 13ON, operate independently of each other. Opportunities for minimizing power consumption are therefore lost. Accordingly, a method and apparatus for coordinating multi-RAT battery management in a converged WTRU is desired.
[0015] SUMMARY
[0016] The present invention is a method and apparatus for minimizing power consumption in a converged WTRU. In a preferred embodiment, power consumption is minimized by coordinating battery management of the various RATs supported by the converged WTRU. A coordinated multi-RAT battery management (CMRBM) unit is used by the converged WTRU to minimize power consumption. The CMRBM unit monitors various power and link metrics of the various RATs supported by the converged WTRU, and coordinates power states of the converged WTRU.
[0017] BRIEF DESCRIPTION OF THE DRAWINGS
[0018] A more detailed understanding of the invention may be had from the following description, given by way of example and to be understood in conjunction with the accompanying drawings, wherein:
[0019] Figure 1 illustrates conventional battery management in a converged WTRU;
[0020] Figure 2 illustrates a converged WTRU including a coordinated multi-RAT battery management unit according to a preferred embodiment of the present invention;
[0021] Figure 3 is a state machine diagram of the possible power modes of the converged WTRU of Figure 2;
[0022] Figure 4 is a flow diagram of a method for coordinating multi-RAT battery management in the converged WTRU of Figure 2;
[0023] Figure 5 is a flow diagram of a method for coordinating multi-RAT battery management using a configuration reports; and
[0024] Figure 6 is a flow diagram of a method for coordinating multi-RAT battery management during inter-RAT handover. [0025] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0026] Although the features and elements of the present invention are described in the preferred embodiments in particular combinations, each feature or element can be used alone (without the other features and elements of the preferred embodiments) or in various combinations with or without other features and elements of the present invention.
[0027] As used herein, a WTRU includes but is not limited to a user equipment (UE), a mobile station, a fixed or mobile subscriber unit, a pager, or any other type of device capable of operating in a wireless environment. [0028] Figure 2 shows a converged WTRU 210 including a CMRBM unit
220. The CMRBM unit 220 coordinates the various RAT battery management units 230i, 2302, - - - , 23ON3 (collectively referred to herein using reference numeral 230) which in turn control the power and resource management of each respective RAT processing unit 240i, 2402, ..., 24ON (collectively referred to herein using reference numeral 240). The multi-RAT wireless communication environment includes RATi, RAT2, ..., RATN, which may be, purely by way of example and in no way limiting the scope of the present invention, a general packet radio service (GPRS) network, a universal mobile telecommunication (UMTS) network, a global system for mobile communications (GSM) network, a GSM enhanced data rates for GSM evolution (EDGE) radio access network (GERAN), and a wireless local area network (WLAN), such as an IEEE 802. Hx compliant network. The converged WTRU 210 includes other WTRU components 250, which may include a transceiver, memory, display, and the like. [0029] The CMRBM unit 220 coordinates the various RAT battery management units 240i, 2402, ..., 24ON of the converged WTRU 210. In order to achieve this, three generic power states are preferably utilized by the CMRBM unit 220. The first power state is the Awake state. In the Awake state, the converged WTRU 210 is actively transmitting and/or receiving data. The CMRBM Awake state is analogous to a WLAN active state and the UMTS connected state, discussed above. The second power state is the Sleep state. In the Sleep state, a RAT is operating with reduced functionality and decreased power consumption, typically powering on only periodically. The Sleep power state is analogous to a UMTS idle state, discussed above. The third power state is the Off state. In the Off state, a RAT is completely powered down and does not periodically transmit or receive traffic.
[0030] Referring to Figure 3, a state machine 300 utilized by the CMRBM unit 220 of converged WTRU 210 of Figure 2 for controlling RAT battery management units is shown. In the Off state 310, a given RAT processing unit is completely powered off. In the ON state 320, a given RAT processing unit is powered and at least partially operational. The ON state 320 further comprises an Awake Mode 330 and a Sleep Mode 340. In the Awake Mode 330, a RAT processing unit is fully operational and may even be actively transmitting data to or receiving data from a network. In the Sleep Mode 340, the RAT processing unit is operating with reduced functionality. Typically, in the Sleep Mode 340, a RAT processing unit will power off its transceiver periodically and reduce control messaging, as described above.
[0031] It should be noted that the CMRBM unit 220 power states are generalized power states for use in coordinating multi-RAT battery management. A given RAT protocol may define various sub-states or modes of a given CMRBM power state. For example, the Active state in the UMTS access technology comprises at least four sub-states (URA_PCH, CELLJDCH, CELL_PCH, and CELL_FACH described above). While the CMRBM unit 220 coordinates battery management generally, the specific sub-state selected by a RAT battery management unit is ultimately determined by the RAT battery management unit according to its respective RAT protocol. This is not limited to the Awake Mode 330, and includes the CMRBM Sleep Mode 340, as well as various other power management details that are specific to individual RAT protocols. [0032] Still referring to Figure 3, a state change is indicated by the dashed lines. A RAT battery management unit may change from the OFF state 310 to the ON state 320, and vice versa, via receipt of a state change request. While in the ON state, a RAT battery management unit may alternate between the Awake Mode 330 and the Sleep Mode 340 by way of a state change request. Alternatively, a RAT battery management unit may unilaterally change its state or mode based on its respective RAT protocol and battery management configuration.
[0033] Referring back to Figure 2, the CMRBM unit 220 preferably communicates with the various RAT battery management units 240i, 2402, ..., 24ON of the converged WTRU 210 by way of the messaging primitives detailed, by way of example, in Table 1 below. Other primitives may also be used, and the primitives discussed below may contain additional information elements than those explicitly recited in the description, as desired.
Figure imgf000008_0001
Figure imgf000009_0001
Table 1
[0034] Figure 4 is a flow diagram 400 of a method for coordinating multi-
RAT battery management in the converged WTRU of Figure 2. The CMRBM unit 220 monitors the various RAT battery management units 240i, 2402, ..., 24ON contained in the converged WTRU 210, as well as various signal and link metrics of the RAT, (step 410). Based on this monitoring, the CMRBM unit 220 determines whether a state or mode change of any of the RAT battery management units is desired, (step 420). This determination may be based on any principal for minimizing battery power of the converged WTRU 220. For example, when there is no network of a given RAT available, for example RATi, it is desirable to place the corresponding RAT battery management unit 23Oi and RAT processing unit 240i.in an OFF mode to conserve power. Similarly, if the network becomes available, the RAT battery management unit 23Oi and RAT processing unit 240i may then be placed in the ON mode. Alternatively, when the converged WTRU 210 senses a low battery power level, predetermined RAT processing units may be placed in an OFF mode, either permanently or periodically, to conserve battery power.
[0035] Alternatively, a user of the converged WTRU 210 may configure the
CMRBM unit 220 to adjust power modes and states as desired. Alternatively, the CMRBM unit 220 may request the change of state of a RAT battery management unit 230 from Sleep mode to Awake mode, or to refuse the RAT battery management unit 230 to change to Sleep mode based on its respective power management protocol, when a handover to this RAT is imminent, as discussed in greater detail below with reference to Figure 6. The CMRBM may utilize link quality metrics to affect the state change of any RAT. For example, when the WTRU 210 is connected to several RATs and the link quality is good on these RATs, the CMRBM may request a RAT to change its state to Sleep mode, or vice versa.
[0036] In the case where the CMRBM unit 220 determines that a state or mode change is required in step 420, the CMRBM unit 220 requests a RAT battery management unit 230 to make a state or mode change, (step 430). Preferably, the CMRBM unit 220 uses the primitives defined in Table 1 above for requesting the state change. Specifically, the CMRBM unit 220 sends a "State Change Request" message to the RAT battery management unit 230 where a state or mode change is requested. Upon receiving the state change request, the RAT battery management unit 230 indicates whether it will comply with the request, based on its RAT specific protocols, and preferably sends a "State Change Indication" message confirming its current state, (step 440). [0037] It is noted that when a specific RAT changes modes (eg., from an
Awake mode to a Sleep mode, or vice versa), the network is typically informed of the mode or state change so that traffic destined for the converged WTRU 210 may be buffered by the network, as discussed above, or for other reasons. The RAT specific protocols for synchronizing power modes with the network are used in order to accomplish this.
[0038] If no state change is desired by the CMRBM unit 220 at step 420, it is then determined whether any RAT battery management 230 unit desires a state change, (step 450). A RAT battery management unit 230 may make an independent decision regarding its state based upon RAT specific protocols. If no RAT battery management unit 230 desires a state change, the method returns to step 410 for further monitoring. If a RAT battery management unit 230 desires a state change, the RAT battery management unit 230 requests permission for the state change from the CMRBM unit 220, (step 460). Preferably, the request is a "State Information Request" primitive as detailed above in Table 1. Upon receiving the state change request, the CMRBM unit 220 determines whether to grant the state change request and signals the requesting RAT battery management unit 230 accordingly, (step 470). Preferably, the CMRBM unit 220 signals the requesting RAT battery management unit 230 using a "State Information Response" message as detailed above in Table 1. It is noted that the CMRBM unit 220 may or may not grant the requested state change, and the requesting RAT battery management unit 230 may proceed with the state change regardless of the permission granted or denied by the CMRBM unit 220. [0039] In another embodiment, referring to Figure 5, a flow diagram 500 of a method for coordinating multi-RAT battery management in converged WTRU 210 using configuration reports is shown. When converged WTRU 210 is powered on, (step 510), each RAT battery management unit 230 informs the CMRBM unit 220 of its respective battery management configuration, (step 520). Preferably, the RAT battery management units 230 send the CMRBM unit 220 a "Configuration Report" message as defined in Table 1 above. It is noted that typically the initial battery management configuration is dictated by the specific RAT protocol. Next, the CMRBM unit 220 compiles the reports and determines the need to request state changes of any of the RAT battery management units 230 so that power consumption is ininimized, (step 530). If the CMRBM unit 210 determines no state changes are required (i.e. the converged WTRU 210 is currently operating in the optimum power configuration), the method advances to step 550. If, on the other hand, the CMRBM unit 220 determines a state change is desired (i.e. the converged WTRU 210 could be configured more efficiently), the CMRBM unit 220 requests a RAT battery management unit 230 to make a state change, (step 540). Preferably, this request is in the form of a "Configuration Request" message as defined above in Table 1. The RAT battery management unit 230 requested to change states may then determine, on its own accord, whether to make the state change or not, based on its specific RAT protocol. The chosen state will be indicated by the RAT battery management unit 230 in the next configuration report. Optionally, the various RAT battery management units 230 repeat the configuration reporting periodically, (step 550). The periodic reporting may be at fixed intervals, or may be dynamically adjusted based on user controls, or the CMRBM unit 220.
[0040] In addition to the methods described above with reference to Figures
4 and 5, the CMRBM unit 220 may request a RAT battery management unit 230 to completely power down, thereby shutting down its respective RAT processing unit 240. This is preferably achieved by sending a "Turn Off Request" message as defined above in Table 1. Similarly, the CMRBM unit 220 may request a RAT battery management unit 230 in a powered down state to turn on. This is preferably achieved by sending a "Turn On Request" message as defined above in Table 1. Converged WTRU 210 may power a RAT battery management unit 230, and thereby a corresponding RAT processing unit 240, on and off in various circumstances to conserve power. For example, where there is no network to scan, when the power supply is below a predetermined threshold, or where a user has not used a specific RAT network for a predetermined amount of time, the CMRBM unit 220 may turn off a RAT battery management unit 230 and corresponding RAT processing unit 240.
[0041] In another embodiment, the CMRBM unit 220 provides efficient power management of converged WTRU's 210 various access technologies during inter-RAT handover. In this embodiment, referring to Figure 6, the CMRBM unit 220 works in conjunction with a converged WTRU's 210 inter-RAT handover policy functionality to improve the execution of an inter-RAT handover by reducing handover delay. Converged WTRU's 210 CMRBM unit 220 monitors various RAT battery management units 230 and RAT signal quality and power management metrics, (step 610). Based on the converged WTRU's 210 inter-RAT handover policy, it is determined whether an inter-RAT handover is desired, (step 620). For example, it may be desirable to transfer active sessions from a RAT network with a low or diminishing link quality to a RAT network with strong or improving link quality. When it is determined that a handover is desired in step 620, it is then determined whether the target RAT processing unit(s) 240 are in an awake state, (step 630). If the target RAT processing unit(s) are not in an awake state, the CMRBM unit 220 signals the target RAT(s) battery management unit(s) 230 to place the target RAT(s) processing unit(s) 240 in an appropriate awake state for handover, step (640). This may be accomplished by either method described above with reference to Figure 4 and 5 (i.e. individual RAT signaling or configuration reports). When the target RAT processing unit(s) are in an awake state, the converged WTRU 210 performs inter-RAT handover, (step 650). Finally, the CMRBM unit 220 signals the various RAT battery management units 230 in the converged WTRU 210 so that a minimal power consumption configuration is achieved, (step 660). [0042] For example, when converged WTRU 210 is in an active state using a first RAT processing unit 240i, but the CMRBM unit 220 senses diminishing link quality (i.e. a predetermined criteria indicating handover), the CMRBM unit 220 requests a second RAT battery management unit 2302, or plurality of other RAT battery management units 2302, ..., 23ON, and corresponding RAT processing units 2402, ..., 24ON that are currently in a sleep state to change to an awake state. The CMRBM unit 220 may select RAT processing units 2402, ..., 24ON that have the best link quality, or RAT processing units 2402, ..., 24ON that are best suited to handle the type of traffic transmitted using the first RAT processing unit 240i. In this manner, a handover target RAT is in an awake state and ready to receive traffic, thereby minimizing handover delay.
[0043] EMBODIMENTS
1. A method for minimizing power consumption in a converged wireless transmit/receive unit (WTRU) capable of transmitting and receiving over a plurality of radio access technologies (RATs), the method comprising: providing a plurality of RAT specific battery management units for each of the plurality of RATs of the WTRU.
2. The method of embodiment 1, further comprising: monitoring a power configuration of a plurality of RAT battery management units.
3. The method of embodiment 2, further comprising: determining whether a power state change is desired.
4. The method of embodiment 3, wherein the power state change is desired in order to minimize power consumption of the WTRU.
5. A method according to either embodiment 3 or 4, further comprising: requesting a power state change of a RAT battery management unit based on the determination.
6. The method of embodiment 5, further comprising: receiving the power state change request at a RAT battery management unit.
7. The method of embodiment 6, further comprising: deteπrύning at a RAT battery management unit whether to implement the requested power state change based on a battery management protocol of the RAT battery management unit.
8. A method according to any of embodiments 5-7, further comprising: the RAT battery management unit indicating its compliance with the power state change request.
9. A method according to any of embodiments 3-8, wherein determining whether a power state change is desired is further based on link quality metrics. 10. The method of embodiment 9, wherein if a link quality metric of a RAT is below a predetermined threshold, a change in the power state of a RAT battery management unit associated with the RAT is requested.
11. A method according to any of embodiments 3-10, further comprising: each RAT battery management unit reporting its power management configuration, wherein determining whether a power state change is desired is based on the reporting. r
12. The method of embodiment 11, wherein the reporting is repeated periodically by each RAT battery management unit.
13. A method according to any of the preceding embodiments, further comprising: determining at each RAT battery management unit whether a power state change is desired; and requesting permission to change power state when the determination is positive.
14. The method of embodiment 13, further comprising: making a power state change at a RAT battery management unit desiring a state change upon receiving permission.
15. A method according to any of embodiments 3-14, wherein the determination of whether a power state change is required is based on user preference.
16. A method according to any of embodiments 3-15, wherein the determination of whether a power state change is required is based on data rates of the plurality of RATs. 17. A method according to any of embodiments 3-16, wherein the determination of whether a power state change is required is based on the converged WTRU's inter-RAT handover policy.
18. A converged wireless transmit/receive unit (WTRU) comprising: a transceiver; and a plurality of radio access technology (RAT) processing units; each RAT processing unit in conjunction with the transceiver configured to transmit and receive over a different RAT.
19. The WTRU of embodiment 18, further comprising: a plurality of RAT battery management units, one for each RAT processing unit.
20. The WTRU of embodiment 19, wherein each of the plurality of RAT battery management units are configured to control a power state of a respective RAT processing unit.
21. A WTRU according to any of embodiments 18-20, further comprising: a coordinated multiple RAT battery management (CMRBM) unit configured to coordinate each of the plurality of RAT battery management units to minimize power consumption.
22. The WTRU of embodiment 21, wherein the CMRBM unit is configured to: monitor a power configuration of the plurality of RAT battery management units.
23. The WTRU of embodiment 22, wherein the CMRBM unit is further configured to: determine whether a power state change is desired in order to minimize power consumption of the WTRU based on said monitoring.
24. The WTRU of embodiment 23, wherein the CMRBM unit is further configured to: request a power state change of a RAT battery management unit based on said determination.
25. A WTRU according to any of embodiments 21-24, wherein each RAT battery management unit is configured to receive a power state change request from the CMRBM unit.
26. The WTRU of embodiment 25, wherein each RAT battery management unit is further configured to determine whether to implement the requested power state change based on the RAT battery management unit's protocol.
27. A WTRU according to either embodiment 25 or 26, wherein each RAT battery management unit is further configured to indicate its compliance with the power state change request to the CMRBM unit.
28. A WTRU according to any of embodiments 21-24, wherein the CMRBM unit is further configured to determine whether a power state change is desired based on link quality metrics.
29. A WTRU according to any of embodiments 21-24, or 28, wherein the CMRBM unit is further configured to request a change in the power state of a given RAT battery management unit when a link quality metric of the given RAT is below a predetermined threshold. 30. A WTRU according to any of embodiments 21-24, or 28-29, wherein the CMRBM unit is further configured to determine whether a power state change is desired based on the reporting.
31. A WTRU according to any of embodiments 25-27, wherein each RAT battery management unit is further configured to report its power management configuration.
32. The WTRU of embodiment 31, wherein the reporting is repeated periodically.
33. A WTRU according to any of embodiments 25-27, or 31-32, wherein each RAT battery management unit is configured to: determine whether a power state change is desired.
34. A WTRU according to any of embodiments 25-27, or 31-33, wherein each RAT battery management unit is configured to: request permission from the CMRBM unit to change power state when the determination is positive.

Claims

CLAIMS What is claimed is:
1. A method for miriimizing power consumption in a converged wireless transmit/receive unit (WTRU) capable of transmitting and receiving over a plurality of radio access technologies (RATs), the WTRU having a RAT specific battery management unit for each of the plurality of RATs, the method comprising: monitoring a power configuration of a plurality of RAT battery management units; determining whether a power state change is desired in order to minimize power consumption of the WTRU based on the monitoring; and requesting a power state change of a RAT battery management unit based on the determination.
2. The method of claim 1, further comprising: receiving the power state change request at a RAT battery management unit; determining at the RAT battery management unit whether to implement the requested power state change based on a battery management protocol of the RAT battery management unit.
3. The method of claim 2, further comprising: the RAT battery management unit indicating its compliance with the power state change request.
4. The method of claim 1, wherein determining whether a power state change is desired is further based on link quality metrics.
5. The method of claim 4, wherein if a link quality metric of a RAT is below a predetermined threshold, a change in the power state of a RAT battery management unit associated with the RAT is requested.
6. The method of claim 1, further comprising: each RAT battery management unit reporting its power management configuration, wherein determining whether a power state change is desired is based on the reporting.
7. The method of claim 6, wherein the reporting is repeated periodically by each RAT battery management unit.
8. The method of claim 1, further comprising: determining at each RAT battery management unit whether a power state change is desired; and requesting permission to change power state when the determination is positive.
9. The method of claim 8, further comprising: making a power state change at a RAT battery management unit desiring a state change upon receiving permission.
10. The method of claim 1, wherein the determination of whether a power state change is required is based on user preference.
11. The method of claim 1, wherein the determination of whether a power state change is required is based on data rates of the plurality of RATs.
12. The method of claim 1, wherein the determination of whether a power state change is required is based on the converged WTRU's inter-RAT handover policy.
13. A converged wireless transmit/receive unit (WTRU) comprising: a transceiver; a plurality of radio access technology (RAT) processing units; each RAT processing unit in conjunction with the transceiver configured to transmit and receive over a different RAT; a plurality of RAT battery management units, one for each RAT processing unit, configured to control a power state of a respective RAT processing unit; and a coordinated multiple RAT battery management (CMRBM) unit configured to coordinate each of the plurality of RAT battery management units to minimize power consumption.
14. The converged WTRU of claim 13, wherein the CMRBM unit is configured to: monitor a power configuration of the plurality of RAT battery management units; determine whether a power state change is desired in order to minimize power consumption of the WTRU based on said monitoring; and request a power state change of a RAT battery management unit based on said determination.
15. The converged WTRU of claim 13, wherein each RAT battery management unit is configured to receive a power state change request from the CMRBM unit, and to determine whether to implement the requested power state change based on the RAT battery management unit's protocol.
16. The converged WTRU of claim 15, wherein each RAT battery management unit is further configured to indicate its compliance with the power state change request to the CMRBM unit.
17. The converged WTRU of claim 14, wherein the CMRBM unit is further configured to determine whether a power state change is desired based on link quality metrics.
18. The converged WTRU of claim 17, wherein the CMRBM unit is further configured to request a change in the power state of a given RAT battery management unit when a link quality metric of the given RAT is below a predetermined threshold.
19. The converged WTRU of claim 14, wherein each RAT battery management unit is further configured to report its power management configuration.
20. The converged WTRU of claim 19, wherein the reporting is repeated periodically.
21. The converged WTRU of claim 19, wherein the CMRBM unit is further configured to determine whether a power state change is desired based on the reporting.
22. The converged WTRU of claim 13, wherein each RAT battery management unit is configured to: deterrnine whether a power state change is desired; and request permission from the CMRBM unit to change power state when the determination is positive.
23. A machine readable storage medium having a stored set of instructions executable by a converged wireless transmit/receive unit (WTRU) for providing coordinated multi-radio access technology battery management, the instructions comprising: instructions to monitor a power configuration of a plurality of RAT battery management units, determine whether a power state change is desired in order to minimize power consumption of the WTRU based on the monitoring; and to request a power state change of a RAT battery management unit based on the determination .
24. The machine readable storage medium of claim 23, further comprising: instructions to receive the power state change request at a RAT battery management unit; and to determine at the RAT battery management unit whether to implement the requested power state change based on a battery management protocol of the RAT battery management unit.
25. The machine readable storage medium of claim 24, further comprising: instructions for the RAT battery management unit to indicate its compliance with the power state change request.
26. The machine readable storage medium of claim 23, wherein determining whether a power state change is desired is based on link quality metrics.
27. The machine readable storage medium of claim 26, further comprising: instructions to determine if a link quality metric of a RAT is below a predetermined threshold, and to request a change in the power state of a RAT battery management unit associated with the RAT when the determination is positive.
28. The machine readable storage medium of claim 23, further comprising: instructions for each RAT battery management unit to report its power management configuration, wherein determining whether a power state change is desired is based on the reporting.
29. The machine readable storage medium of claim 28, further comprising: instructions for each RAT battery management unit to periodically reporting a power management configuration.
30. The machine readable storage medium of claim 23, further comprising: instructions for each RAT battery management unit to determine whether a power state change is desired, and for a RAT battery management unit to request permission from a coordinated multi-RAT battery management (CMRBM) unit to change power state when the determination is positive.
31. The machine readable storage medium of claim 30, further comprising: instructions to make a power state change at a RAT battery management unit desiring a state change upon receiving permission from the CMRBM unit.
32. The machine readable storage medium of claim 23, wherein the determination of whether a power state change is required is based on user preference.
33. The machine readable storage medium of claim 23, wherein the determination of whether a power state change is required is based on data rates of the plurality of RATs.
34. The machine readable storage medium of claim 23, wherein the determination of whether a power state change is required is based on the converged WTRU's inter-RAT handover policy.
PCT/US2007/011076 2006-05-10 2007-05-08 Method and apparatus for battery management in a converged wireless transmit/receive unit WO2007133526A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800169287A CN101444131B (en) 2006-05-10 2007-05-08 Method and apparatus for battery management in a converged wireless transmit/receive unit
EP07794635A EP2027732A2 (en) 2006-05-10 2007-05-08 Method and apparatus for battery management in a converged wireless transmit/receive unit
KR1020097002040A KR101289601B1 (en) 2006-05-10 2007-05-08 Method and apparatus for battery management in a converged wireless transmit/receive unit
JP2009509793A JP5036808B2 (en) 2006-05-10 2007-05-08 Method and apparatus for battery management in an integrated wireless transmit / receive unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US79919606P 2006-05-10 2006-05-10
US60/799,196 2006-05-10
US82756806P 2006-09-29 2006-09-29
US60/827,568 2006-09-29

Publications (2)

Publication Number Publication Date
WO2007133526A2 true WO2007133526A2 (en) 2007-11-22
WO2007133526A3 WO2007133526A3 (en) 2008-03-06

Family

ID=38694418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/011076 WO2007133526A2 (en) 2006-05-10 2007-05-08 Method and apparatus for battery management in a converged wireless transmit/receive unit

Country Status (6)

Country Link
EP (1) EP2027732A2 (en)
JP (1) JP5036808B2 (en)
KR (2) KR20090014201A (en)
CN (1) CN101444131B (en)
TW (2) TWI423704B (en)
WO (1) WO2007133526A2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009115896A1 (en) * 2008-03-18 2009-09-24 Kyocera Corporation Power management for multimode wireless communication device
JP2011505108A (en) * 2007-11-27 2011-02-17 プロテウス バイオメディカル インコーポレイテッド Transbody communication system adopting communication channel
WO2011065942A1 (en) * 2009-11-25 2011-06-03 Hewlett-Packard Development Company, L.P. Radio device
TWI477116B (en) * 2010-05-05 2015-03-11 Htc Corp Method of controlling packet switched data transmission and related communication device
US9363742B2 (en) 2012-01-09 2016-06-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for selecting radio access technology
US9391853B2 (en) 2009-12-23 2016-07-12 Apple Inc. Efficient service advertisement and discovery in a peer-to-peer networking environment with dynamic advertisement and discovery periods based on operating conditions
US9603550B2 (en) 2008-07-08 2017-03-28 Proteus Digital Health, Inc. State characterization based on multi-variate data fusion techniques
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US9883819B2 (en) 2009-01-06 2018-02-06 Proteus Digital Health, Inc. Ingestion-related biofeedback and personalized medical therapy method and system
US9941931B2 (en) 2009-11-04 2018-04-10 Proteus Digital Health, Inc. System for supply chain management
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
US10098181B2 (en) 2014-03-19 2018-10-09 Apple Inc. Selecting a radio access technology mode based on current conditions
US10187121B2 (en) 2016-07-22 2019-01-22 Proteus Digital Health, Inc. Electromagnetic sensing and detection of ingestible event markers
US10223905B2 (en) 2011-07-21 2019-03-05 Proteus Digital Health, Inc. Mobile device and system for detection and communication of information received from an ingestible device
US10238604B2 (en) 2006-10-25 2019-03-26 Proteus Digital Health, Inc. Controlled activation ingestible identifier
US10398161B2 (en) 2014-01-21 2019-09-03 Proteus Digital Heal Th, Inc. Masticable ingestible product and communication system therefor
US10441194B2 (en) 2007-02-01 2019-10-15 Proteus Digital Heal Th, Inc. Ingestible event marker systems
US10517506B2 (en) 2007-05-24 2019-12-31 Proteus Digital Health, Inc. Low profile antenna for in body device
US10529044B2 (en) 2010-05-19 2020-01-07 Proteus Digital Health, Inc. Tracking and delivery confirmation of pharmaceutical products
US11464423B2 (en) 2007-02-14 2022-10-11 Otsuka Pharmaceutical Co., Ltd. In-body power source having high surface area electrode
US11744481B2 (en) 2013-03-15 2023-09-05 Otsuka Pharmaceutical Co., Ltd. System, apparatus and methods for data collection and assessing outcomes
CN116774629A (en) * 2023-06-16 2023-09-19 国网江苏省电力有限公司泰州供电分公司 Intelligent monitoring module and method for relay protection outlet loop number
US11928614B2 (en) 2006-05-02 2024-03-12 Otsuka Pharmaceutical Co., Ltd. Patient customized therapeutic regimens

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006116718A2 (en) 2005-04-28 2006-11-02 Proteus Biomedical, Inc. Pharma-informatics system
US9198608B2 (en) 2005-04-28 2015-12-01 Proteus Digital Health, Inc. Communication system incorporated in a container
US8718193B2 (en) 2006-11-20 2014-05-06 Proteus Digital Health, Inc. Active signal processing personal health signal receivers
WO2008112577A1 (en) 2007-03-09 2008-09-18 Proteus Biomedical, Inc. In-body device having a multi-directional transmitter
PT2192946T (en) 2007-09-25 2022-11-17 Otsuka Pharma Co Ltd In-body device with virtual dipole signal amplification
DK2268261T3 (en) 2008-03-05 2017-08-28 Proteus Digital Health Inc Edible event markers with multi-mode communications and systems as well as methods for using them
US8543659B2 (en) * 2010-03-02 2013-09-24 Qualcomm Incorporated Apparatus and method for user equipment battery information reporting
CN103026317B (en) * 2010-07-30 2016-02-24 惠普发展公司,有限责任合伙企业 Control the method and system of the power consumption of polymerization I/O port
US9235683B2 (en) 2011-11-09 2016-01-12 Proteus Digital Health, Inc. Apparatus, system, and method for managing adherence to a regimen
EP2929732B1 (en) * 2012-12-10 2016-10-26 Telefonaktiebolaget LM Ericsson (publ) Intelligent m2m energy optimization algorithm
DE102015203265B4 (en) * 2014-03-19 2020-09-24 Apple Inc. Selecting a radio access technology mode based on current conditions
US20180288724A1 (en) * 2017-03-30 2018-10-04 Htc Corporation Device and Method of Handling Radio Access Technology Capabilities

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022837A2 (en) * 1998-10-15 2000-04-20 Telefonaktiebolaget Lm Ericsson (Publ) A variable sleep mode for mobile stations in a mobile communications network
EP1089578A2 (en) * 1999-09-29 2001-04-04 Kabushiki Kaisha Toshiba Mobile radio communication terminal that suppresses an increase in power consumption
US20040180701A1 (en) * 2003-03-11 2004-09-16 Interdigital Technology Corporation System and method for battery conservation with assistance from the network and radio resource management

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111686A (en) * 2000-10-04 2002-04-12 Sony Corp Communication method and communication device
US20020173303A1 (en) 2001-05-16 2002-11-21 Docomo Communications Laboratories Usa, Inc. Wireless communication system
TWI220929B (en) * 2001-07-25 2004-09-11 Handsun Electronic Entpr Co Lt Monitoring management method of the whole region battery capacity
JP3906169B2 (en) * 2003-03-05 2007-04-18 三洋電機株式会社 Mobile phone and control program for broadcast reception function of mobile phone
US20050198257A1 (en) * 2003-12-29 2005-09-08 Gupta Ajay G. Power conservation in wireless devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022837A2 (en) * 1998-10-15 2000-04-20 Telefonaktiebolaget Lm Ericsson (Publ) A variable sleep mode for mobile stations in a mobile communications network
EP1089578A2 (en) * 1999-09-29 2001-04-04 Kabushiki Kaisha Toshiba Mobile radio communication terminal that suppresses an increase in power consumption
US20040180701A1 (en) * 2003-03-11 2004-09-16 Interdigital Technology Corporation System and method for battery conservation with assistance from the network and radio resource management

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11928614B2 (en) 2006-05-02 2024-03-12 Otsuka Pharmaceutical Co., Ltd. Patient customized therapeutic regimens
US11357730B2 (en) 2006-10-25 2022-06-14 Otsuka Pharmaceutical Co., Ltd. Controlled activation ingestible identifier
US10238604B2 (en) 2006-10-25 2019-03-26 Proteus Digital Health, Inc. Controlled activation ingestible identifier
US10441194B2 (en) 2007-02-01 2019-10-15 Proteus Digital Heal Th, Inc. Ingestible event marker systems
US11464423B2 (en) 2007-02-14 2022-10-11 Otsuka Pharmaceutical Co., Ltd. In-body power source having high surface area electrode
US10517506B2 (en) 2007-05-24 2019-12-31 Proteus Digital Health, Inc. Low profile antenna for in body device
JP2011505108A (en) * 2007-11-27 2011-02-17 プロテウス バイオメディカル インコーポレイテッド Transbody communication system adopting communication channel
US11612321B2 (en) 2007-11-27 2023-03-28 Otsuka Pharmaceutical Co., Ltd. Transbody communication systems employing communication channels
US8437810B2 (en) 2008-03-18 2013-05-07 Kyocera Corporation Power management for multimode wireless communication device
US7979097B2 (en) 2008-03-18 2011-07-12 Kyocera Corporation Power management for multimode wireless communication device
WO2009115896A1 (en) * 2008-03-18 2009-09-24 Kyocera Corporation Power management for multimode wireless communication device
US11217342B2 (en) 2008-07-08 2022-01-04 Otsuka Pharmaceutical Co., Ltd. Ingestible event marker data framework
US9603550B2 (en) 2008-07-08 2017-03-28 Proteus Digital Health, Inc. State characterization based on multi-variate data fusion techniques
US10682071B2 (en) 2008-07-08 2020-06-16 Proteus Digital Health, Inc. State characterization based on multi-variate data fusion techniques
US9883819B2 (en) 2009-01-06 2018-02-06 Proteus Digital Health, Inc. Ingestion-related biofeedback and personalized medical therapy method and system
US10305544B2 (en) 2009-11-04 2019-05-28 Proteus Digital Health, Inc. System for supply chain management
US9941931B2 (en) 2009-11-04 2018-04-10 Proteus Digital Health, Inc. System for supply chain management
EP2524548A4 (en) * 2009-11-25 2013-10-30 Hewlett Packard Development Co Radio device
US10524208B2 (en) 2009-11-25 2019-12-31 Hewlett-Packard Development Company, L.P. Controlling an amount of power supplied to a radio device
US9655044B2 (en) 2009-11-25 2017-05-16 Hewlett-Packard Development Company, L.P. Radio device
TWI501672B (en) * 2009-11-25 2015-09-21 Hewlett Packard Development Co Radio device
EP2524548A1 (en) * 2009-11-25 2012-11-21 Hewlett-Packard Development Company, L.P. Radio device
WO2011065942A1 (en) * 2009-11-25 2011-06-03 Hewlett-Packard Development Company, L.P. Radio device
US9391853B2 (en) 2009-12-23 2016-07-12 Apple Inc. Efficient service advertisement and discovery in a peer-to-peer networking environment with dynamic advertisement and discovery periods based on operating conditions
US10230596B2 (en) 2009-12-23 2019-03-12 Apple Inc. Efficient service advertisement and discovery in a peer-to-peer networking environment with cooperative advertisement
TWI477116B (en) * 2010-05-05 2015-03-11 Htc Corp Method of controlling packet switched data transmission and related communication device
US9854007B2 (en) 2010-05-05 2017-12-26 Htc Corporation Method of controlling packet switched data transmission and related communication device
US10529044B2 (en) 2010-05-19 2020-01-07 Proteus Digital Health, Inc. Tracking and delivery confirmation of pharmaceutical products
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US10223905B2 (en) 2011-07-21 2019-03-05 Proteus Digital Health, Inc. Mobile device and system for detection and communication of information received from an ingestible device
US9363742B2 (en) 2012-01-09 2016-06-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for selecting radio access technology
US11744481B2 (en) 2013-03-15 2023-09-05 Otsuka Pharmaceutical Co., Ltd. System, apparatus and methods for data collection and assessing outcomes
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
US10398161B2 (en) 2014-01-21 2019-09-03 Proteus Digital Heal Th, Inc. Masticable ingestible product and communication system therefor
US10098181B2 (en) 2014-03-19 2018-10-09 Apple Inc. Selecting a radio access technology mode based on current conditions
US10797758B2 (en) 2016-07-22 2020-10-06 Proteus Digital Health, Inc. Electromagnetic sensing and detection of ingestible event markers
US10187121B2 (en) 2016-07-22 2019-01-22 Proteus Digital Health, Inc. Electromagnetic sensing and detection of ingestible event markers
CN116774629A (en) * 2023-06-16 2023-09-19 国网江苏省电力有限公司泰州供电分公司 Intelligent monitoring module and method for relay protection outlet loop number
CN116774629B (en) * 2023-06-16 2024-01-23 国网江苏省电力有限公司泰州供电分公司 Intelligent monitoring module and method for relay protection outlet loop number

Also Published As

Publication number Publication date
CN101444131A (en) 2009-05-27
WO2007133526A3 (en) 2008-03-06
JP2009536804A (en) 2009-10-15
TWI423704B (en) 2014-01-11
TWI364918B (en) 2012-05-21
KR20090018732A (en) 2009-02-20
TW200814557A (en) 2008-03-16
KR20090014201A (en) 2009-02-06
KR101289601B1 (en) 2013-08-07
EP2027732A2 (en) 2009-02-25
TW200947888A (en) 2009-11-16
JP5036808B2 (en) 2012-09-26
CN101444131B (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP5036808B2 (en) Method and apparatus for battery management in an integrated wireless transmit / receive unit
US20130331144A1 (en) Method and apparatus for battery management in a converged wireless transmit/receive unit
RU2414067C2 (en) Method of transitioning between multiple reception levels
US8964611B2 (en) Data resume indicator for mobile device power conservation
US8391918B2 (en) Method and system for radio access technology selection
EP2346208B1 (en) Access control to a wireless network
US8755848B2 (en) Mobile device power management
US7474887B2 (en) Method and system for reducing battery consumption in wireless transmit/receive units (WTRUs) employed in a wireless local area network/wireless wide area network (WLAN/WWAN)
US8880919B2 (en) Method and device for providing low power consumption services and communication system
US7912518B2 (en) Power saving method for mobile terminal
US20110319073A1 (en) Method And System for Radio Access Technology Selection
WO2007145006A1 (en) Mobile communication system and mobile terminal
KR20100044754A (en) Method and apparatus for discontinuous transmission/reception operation for reducing power consumption in cellular system
US8144639B1 (en) Dynamic mode transition based on resource utilization and user application
CN116916421A (en) Terminal power saving method, terminal, network side equipment and computer readable storage medium

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009509793

Country of ref document: JP

Ref document number: 200780016928.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007794635

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087030109

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020097002040

Country of ref document: KR