WO2007133177A2 - Ultraviolet-resistant fabrics and methods for making them - Google Patents

Ultraviolet-resistant fabrics and methods for making them Download PDF

Info

Publication number
WO2007133177A2
WO2007133177A2 PCT/US2006/014960 US2006014960W WO2007133177A2 WO 2007133177 A2 WO2007133177 A2 WO 2007133177A2 US 2006014960 W US2006014960 W US 2006014960W WO 2007133177 A2 WO2007133177 A2 WO 2007133177A2
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
fabric
ultraviolet
garment
inherently flame
Prior art date
Application number
PCT/US2006/014960
Other languages
French (fr)
Other versions
WO2007133177A3 (en
Inventor
Rembert Joseph Truesdale, Iii
Phillip H. Riggins
Original Assignee
Southern Mills, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southern Mills, Inc. filed Critical Southern Mills, Inc.
Priority to EP06750876A priority Critical patent/EP2007943B1/en
Priority to ES11159705.0T priority patent/ES2557321T3/en
Priority to ES06750876T priority patent/ES2386553T3/en
Priority to CA2649935A priority patent/CA2649935C/en
Priority to EP11159705.0A priority patent/EP2377991B1/en
Priority to PL06750876T priority patent/PL2007943T3/en
Priority to PCT/US2006/014960 priority patent/WO2007133177A2/en
Publication of WO2007133177A2 publication Critical patent/WO2007133177A2/en
Publication of WO2007133177A3 publication Critical patent/WO2007133177A3/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/12Aldehydes; Ketones
    • D06M13/13Unsaturated aldehydes, e.g. acrolein; Unsaturated ketones; Ketenes ; Diketenes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/184Carboxylic acids; Anhydrides, halides or salts thereof
    • D06M13/1845Aromatic mono- or polycarboxylic acids
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/35Heterocyclic compounds
    • D06M13/352Heterocyclic compounds having five-membered heterocyclic rings
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/64General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/64General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups
    • D06P1/642Compounds containing nitrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/64General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups
    • D06P1/642Compounds containing nitrogen
    • D06P1/6426Heterocyclic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/653Nitrogen-free carboxylic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/653Nitrogen-free carboxylic acids or their salts
    • D06P1/6536Aromatic
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D2400/00Functions or special features of garments
    • A41D2400/26UV light protection
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/08Heat resistant; Fire retardant
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/25Resistance to light or sun, i.e. protection of the textile itself as well as UV shielding materials or treatment compositions therefor; Anti-yellowing treatments

Definitions

  • Protective garments are often constructed from high-strength, inherently flame resistant fabrics, such as fabrics comprising aramid materials. Although such fabrics are strong and, therefore, can provide the desired degree of protection to the wearer, the strength of these fabrics can be compromised through exposure to ultraviolet (UV) rays, such as those emitted by the sun and other light sources. In fact, it is not unusual for the fabrics of such garments to lose 50% or more of theft original strength after repeated exposure to daylight.
  • UV ultraviolet
  • protective garments of the type described above are often worn outdoors.
  • such garments are used by various utility personnel and other industrial workers.
  • the strength of the protective garment can decline as use of the garment continues, even over a relatively short period of time. This results in decreased protection for the wearer, as well as increased costs in replacing compromised garments.
  • UV exposure can further adversely affect the color of the garments. Specifically, UV exposure can reduce the colorfastness of such garments, causing their color to fade as the duration of UV exposure increases. Such fading is undesirable from an aesthetics point of view. In some cases, however, such fading can decrease the visibility of the garment, and therefore the wearer.
  • This phenomenon is especially undesirable for high-visibility garments used near roadways and other hazardous areas in which failure to see the wearer may result in harm to that wearer.
  • a protective fabric includes a plurality of inherently flame resistant fibers, and at least one ultraviolet-resistant additive incorporated into the inherently flame resistant fibers through a dye process using a carrier, wherein the ultraviolet-resistant additive significantly increases at least one of the strength retention and the colorfastness of the fabric when exposed to ultraviolet radiation.
  • a method includes immersing a fabric in a mixture comprising a carrier and a ultraviolet-resistant additive, the fabric comprising a plurality of inherently flame resistant fibers, solublizing the ultraviolet-resistant additive with the carrier so that the ultraviolet-resistant additive is absorbed by the inherently flame resistant fibers, wherein absorption of the ultraviolet-resistant additive into the inherently flame resistant fibers significantly increases at least one of the strength retention and the colorfastness of the fibers when exposed to ultraviolet radiation.
  • FIG. 1 is a front view of an example protective garment that is constructed of a high- strength, flame-resistant fabric.
  • FIG. 2 is a front view of a further example garment that is constructed of a high- strength, flame resistant fabric.
  • the strength and/or colorfastness of fabrics used to construct protective garments can be significantly reduced due to ultraviolet (UV) exposure.
  • UV ultraviolet
  • the resistance of such fabrics to UV radiation can be significantly improved by incorporating UV-resistant additives into the fibers of such fabrics.
  • UV-resistant additives When such additives are incorporated into the fabric fibers, the strength loss and/or color fading that can occur due to UV exposure can be reduced.
  • FIG. 1 illustrates an example protective garment 10.
  • the garment 10 comprises a firefighter turnout coat that can be donned by firefighter personnel when exposed to flames and extreme heat.
  • the garment 10 generally comprises an outer shell 12 that forms the exterior surface of the garment, a moisture barrier 14 that forms an intermediate layer of the garment, and a thermal liner 16 that forms the interior surface (i.e., the surface that contacts the wearer) of the garment.
  • FIG. 2 illustrates a further example garment 18.
  • the garment 18 comprises a vest of the type that may be worn by a utility lineman.
  • the garment 18 includes an outer layer 20 of material, which may be dyed a bright shade that is easily identifiable for safety purposes.
  • the garment 18 includes reflective (e.g., retroreflective) stripes 22, which aid observers in seeing the wearer of the garment, especially at night.
  • a firefighter turnout coat and lineman vest are shown in the figures and described herein, other garments may benefit from the fabrics and methods described herein.
  • Such garments may include one or more of shirts, pants, jackets, coveralls, vests, and the like that are intended for use in various different applications.
  • the present disclosure is not limited to garments. More generally, the present disclosure pertains to UV-resistant fabrics irrespective of their application.
  • the fabrics used to make the outer shell 12 of the garment 10 and the outer layer 20 of the garment 18 can comprise a high-strength, flame-resistant fabric.
  • the fabric comprises inherently flame resistant fibers that form the fabric body. Examples of such inherently flame resistant fibers include aramid (aromatic polyamide) fibers, such as meta-aramid fibers and para-araniid fibers.
  • Example meta-aramid fibers include those sold under the trademark Nomex® by DuPont, and fibers that are currently available under the trademark Conex by Teijin.
  • Example para-aramid fibers include those that are currently available under the trademarks Kevla by DuPont, and Technora® and Twaron® by Teijin.
  • PBO polybenzoxazole
  • PBI polybenzimidazole
  • melamine polyamide
  • polyimide polyimideamide
  • modacrylic modacrylic
  • One or more other types of fibers may be blended with the inherently flame resistant fibers to construct the fabric.
  • fibers include cellulosic fibers, such as rayon, acetate, triacetate, and Iyocell. These cellulosic fibers, although not naturally resistant to flame, can be rendered flame resistant through application with an appropriate flame retardant.
  • cellulosic fibers that contain one or more flame retardants are given the designation "FR". Accordingly, the preferred flame resistant cellulosic fibers include FR rayon, FR acetate, FR triacetate, and FR Iyocell.
  • the fabric can be dyed to a desired shade of color using customary dyeing equipment.
  • a dye, a dye assistant (or “carrier”), and a flame retardant for the non-inherently flame resistant fibers (if applicable) are combined to form a mixture, (e.g., a dyebath, solution, dispersion, or the like).
  • Carriers aid in the absorption of dyestuff into the fibers of the fabric.
  • some carriers aid in the solubilization of various UV-resistant additives that, as is discussed below, increase the UV resistance of the fibers and, therefore, the fabric.
  • the carrier can instead be imbibed into the fibers during fiber production. When the fibers are imbibed with carrier, dyeing is conducted in the typical manner, except that additional carrier may not be needed in the mixture.
  • the fabric is contacted with the mixture, typically by immersion, and the mixture is heated to fix the dye in the fibers.
  • dyeing can be performed during other stages of the production process. Therefore, dyeing can be performed on the fibers, on yarn, or on substantially any fibrous textile, including sliver.
  • Suitable equipment for dyeing a textile include, for example, jig dyeing machines, pad dyeing machines, beck dyeing machines, and jet dyeing machines.
  • UV-resistant additives can be incorporated into the fibers to increase the fibers' resistance to UV radiation.
  • One type of UV-resistant additive is UV light absorbers.
  • UV light absorbers are materials that absorb UV radiation to reduce the deleterious effects of that radiation on the medium (fibers in this case) in which the absorber is incorporated.
  • Such UV light absorbers include, for example, benzophenone compounds, triazsole compounds, and benzoic acid compounds.
  • UV light absorbers include Uvinul 3000 (2,4-dihydroxy-benzophenone), Uvinul 3049 (2,2'-dihydroxy-4,4'- dimethoxybenzophenone), Uvinul 3050 (2,2'-4,4'-tetrahydroxybenzophenone), and Uvinul 3088 (2-propenoic acid,3-(4Omethoxyphenyl)-,2-ethylhexylester), all from BASF; Surftech 4500 (benzotriazole) from American Textile, LLC; and Tinuvin 234 (2-(2H-benzotriazol-2- yl)-4,6-bis(l-methyl-l- ⁇ henylethyl)phenol), Tinuvin 327 (2-(3,5,Di-(tert)-butyl-2- hydoxyphenyl)-5-chlorobenzotriazole) and Tinuvin 328 (2-hydroxy-3,5-di-(ter)- amylphenyl)benz
  • HAL stabilizers include, for example, amide compounds and piperidine compounds.
  • Specific examples include Uvinul 4050H (N,N'-1,6- hexanediylbis(N-(2,2,6,6-tetramethyl-piperidinyl-formamide) from BASF, and Sanduvor 3058 Liquid (l-acetyl-4-(3-dodecyl-2,5-dioxo-l-pyrrolidinyl)-2,2,6,6- tetramethyl-piperidine from Clariant.
  • UV light absorber/HAL stabilizer blends include Chimasrob 119FL (Chimasorb 119 (complex triazine) and Tinuvin 622 (sucinate polymer with piperidineethanol)) and Tinuvin 783LD (Tinuvin 622 and Chimasorb 944 (complex triazine)).
  • the UV-resistant additives can be incorporated into the fibers of the fabric at nearly any stage in the production process.
  • the UV light absorber(s) can, for example, be provided in the mixture in a concentration of about 0.5 % on weight of fabric (owl) to about 6% owf
  • the HAL stabilizer(s) can, for example, be provided in the dyebath in a concentration from about 0.5% to about 3% owf. In some embodiments, concentrations of about 2% to 4% and 2% to 3% owf for UV light absorber and HAL stabilizer, respectively, are preferred.
  • Examples of carriers that have been determined to solubilize UV light absorbers and/or HAL stabilizers include aryl ether, benzyl alcohol, N- cyclohexylpyrrolidone (CHP), N,N-diethyl-m-toluamide (DEET), dimethylformamide (DMF), dibutyl acetamide (DBA), Isophorone, Acetophenone, Dimethylacetamide, and Dibutylformamide.
  • a flame retardant compound can also be included in the mixture, applied as an after- dyeing surface treatment, or otherwise incorporated in the fibers of the fabric to enhance flame resistance or to counteract any deleterious effects of the carrier contained within the inherently flame resistant fibers.
  • other chemicals can be applied to the fibers (e.g., added to the mixture) including lubricants, wetting agents, leveling agents, and the like.
  • Testing was performed to examine the effectiveness of UV light absorbers and HAL stabilizers that were incorporated in the fibers of fabric during the dye process. In that testing, various samples of fabric were tested for strength according to test methods described in ASTM D5733-99 and ASTM D1424-96 both before and after exposure to UV radiation (daylight). Some of those samples had been treated with a UV light absorber, a HAL stabilizer, or both, while others (the "controls") were left untreated. Table I provides strength retention data for this testing.
  • Phase A various samples of 100% Nomex T-462® were tested for strength after 14 days of exposure to UV radiation in the form of sunlight using the trap tear test described in ASTM D5733-99, which is hereby incorporated by reference.
  • Each sample was dyed or treated using a carrier, which comprised one of DEET, CHP, benzyl alcohol, and aryl ether.
  • a control sample and a sample treated with a benzophenone compound (Uvinul 3049) were prepared using each carrier.
  • each treated sample exhibited 7.8% greater strength retention as compared to the controls (i.e., 85.9% average for treated samples, 78.1% average for non-treated samples), and strength retention differences as high as 12.9% were observed.
  • Phase B samples of a 65/35 blend of Nomex T- 462® and FR rayon were tested for strength after 30 days of exposure to sunlight using the Elmendorf test described in ASTM D 1424-96, which is hereby incorporated by reference.
  • Each sample was dyed or treated using a CHP carrier, and each sample was treated with a different concentration of UV light absorber ranging from zero (i.e., for the control) to 6%.
  • significant strength retention increases were observed when the fabric was treated with levels of UV light absorber as low as 1% owf.
  • the strength retention for the sample treated with 1% benzophenone compound was 14.9% greater in the warp direction and 8.8% greater in the fill direction as compared to the control sample. Greater strength retention was generally observed as the percentage of UV light absorber was increased.
  • Phase C samples of a 60/40 blend of Kevlar T-970® and Nomex T-462® were tested for strength after 14 days, and in two cases 30 days, of exposure to sunlight. The samples were treated with various carriers and UV light absorbers.
  • HAL stabilizers in improving colorfastness of fabrics that are exposed to UV radiation.
  • various samples of fabric were tested for colorfastness according to AATCC Test
  • Method 16-2003 (Option 3). Some of those samples had been treated with a UV light absorber, a HAL stabilizer, or both, while others (i.e., the controls) were left untreated. Table rovides colorfastness data for this testing.
  • colorfastness is rated from a scale of 1 to 5, with "1" being the poorest colorfastness and "5" being the best colorfastness.
  • Table II the colorfastness of the fabrics treated with UV light absorbers and/or HAL stabilizers performed markedly better in terms of colorfastness as compared to the control fabrics.

Abstract

Embodiments of the invention can provide a protective fabric includes a plurality of inherently flame resistant fibers, and at least one ultraviolet-resistant additive incorporated into the inherently flame resistant fibers through a dye process using a carrier, wherein the ultraviolet-resistant additive significantly increases at least one of the strength retention and the colorfastness of the fabric when exposed to ultraviolet radiation.

Description

ULTRAVIOLET-RESISTANT FABRICS AND METHODS FOR MAKING THEM BACKGROUND
Protective garments are often constructed from high-strength, inherently flame resistant fabrics, such as fabrics comprising aramid materials. Although such fabrics are strong and, therefore, can provide the desired degree of protection to the wearer, the strength of these fabrics can be compromised through exposure to ultraviolet (UV) rays, such as those emitted by the sun and other light sources. In fact, it is not unusual for the fabrics of such garments to lose 50% or more of theft original strength after repeated exposure to daylight.
Unfortunately, protective garments of the type described above are often worn outdoors. For example, such garments are used by various utility personnel and other industrial workers. In such cases, the strength of the protective garment can decline as use of the garment continues, even over a relatively short period of time. This results in decreased protection for the wearer, as well as increased costs in replacing compromised garments.
In addition to reducing the strength of protective garments, UV exposure can further adversely affect the color of the garments. Specifically, UV exposure can reduce the colorfastness of such garments, causing their color to fade as the duration of UV exposure increases. Such fading is undesirable from an aesthetics point of view. In some cases, however, such fading can decrease the visibility of the garment, and therefore the wearer.
This phenomenon is especially undesirable for high-visibility garments used near roadways and other hazardous areas in which failure to see the wearer may result in harm to that wearer.
In view of the above, it would be desirable to be able to produce protective fabric that has greater resistance to UV radiation.
SUMMARY OF THE INVENTION Disclosed are protective fabrics and methods for making protective fabrics. In one embodiment, a protective fabric includes a plurality of inherently flame resistant fibers, and at least one ultraviolet-resistant additive incorporated into the inherently flame resistant fibers through a dye process using a carrier, wherein the ultraviolet-resistant additive significantly increases at least one of the strength retention and the colorfastness of the fabric when exposed to ultraviolet radiation.
In one embodiment, a method includes immersing a fabric in a mixture comprising a carrier and a ultraviolet-resistant additive, the fabric comprising a plurality of inherently flame resistant fibers, solublizing the ultraviolet-resistant additive with the carrier so that the ultraviolet-resistant additive is absorbed by the inherently flame resistant fibers, wherein absorption of the ultraviolet-resistant additive into the inherently flame resistant fibers significantly increases at least one of the strength retention and the colorfastness of the fibers when exposed to ultraviolet radiation.
BRIEF DESCRIPTION OF THE DRAWINGS
The fabrics and methods of the present disclosure can be better understood with reference to the following drawings. Features shown in these drawings are not necessary drawn to scale.
FIG. 1 is a front view of an example protective garment that is constructed of a high- strength, flame-resistant fabric.
FIG. 2 is a front view of a further example garment that is constructed of a high- strength, flame resistant fabric.
DETAILED DESCRIPTION
As is described above, the strength and/or colorfastness of fabrics used to construct protective garments can be significantly reduced due to ultraviolet (UV) exposure. As is described in the following, however, the resistance of such fabrics to UV radiation can be significantly improved by incorporating UV-resistant additives into the fibers of such fabrics. When such additives are incorporated into the fabric fibers, the strength loss and/or color fading that can occur due to UV exposure can be reduced.
FIG. 1 illustrates an example protective garment 10. As is shown in that figure, the garment 10 comprises a firefighter turnout coat that can be donned by firefighter personnel when exposed to flames and extreme heat. As is indicated in FIG. 1, the garment 10 generally comprises an outer shell 12 that forms the exterior surface of the garment, a moisture barrier 14 that forms an intermediate layer of the garment, and a thermal liner 16 that forms the interior surface (i.e., the surface that contacts the wearer) of the garment. FIG. 2 illustrates a further example garment 18. The garment 18 comprises a vest of the type that may be worn by a utility lineman. As is indicated in FIG. 2, the garment 18 includes an outer layer 20 of material, which may be dyed a bright shade that is easily identifiable for safety purposes. Optionally, the garment 18 includes reflective (e.g., retroreflective) stripes 22, which aid observers in seeing the wearer of the garment, especially at night.
It is noted that, although a firefighter turnout coat and lineman vest are shown in the figures and described herein, other garments may benefit from the fabrics and methods described herein. Such garments may include one or more of shirts, pants, jackets, coveralls, vests, and the like that are intended for use in various different applications. Moreover, the present disclosure is not limited to garments. More generally, the present disclosure pertains to UV-resistant fabrics irrespective of their application.
The fabrics used to make the outer shell 12 of the garment 10 and the outer layer 20 of the garment 18 can comprise a high-strength, flame-resistant fabric. In some embodiments, the fabric comprises inherently flame resistant fibers that form the fabric body. Examples of such inherently flame resistant fibers include aramid (aromatic polyamide) fibers, such as meta-aramid fibers and para-araniid fibers.
Example meta-aramid fibers include those sold under the trademark Nomex® by DuPont, and fibers that are currently available under the trademark Conex by Teijin.
Example para-aramid fibers include those that are currently available under the trademarks Kevla by DuPont, and Technora® and Twaron® by Teijin.
Other inherently flame resistant fibers suitable for construction of the fabric include, for example, polybenzoxazole (PBO), polybenzimidazole (PBI), melamine, polyamide, polyimide, polyimideamide, and modacrylic.
One or more other types of fibers may be blended with the inherently flame resistant fibers to construct the fabric. Examples of such fibers include cellulosic fibers, such as rayon, acetate, triacetate, and Iyocell. These cellulosic fibers, although not naturally resistant to flame, can be rendered flame resistant through application with an appropriate flame retardant. Generally speaking, cellulosic fibers that contain one or more flame retardants are given the designation "FR". Accordingly, the preferred flame resistant cellulosic fibers include FR rayon, FR acetate, FR triacetate, and FR Iyocell.
Of the many blends conceivable using the above-described fibers, specific examples include 100% Nomex T-455®, 100% Nomex T-462®, 100% Nomex El 14® (Z-200), a 65/35 blend of Nomex T-462® and FR rayon, a 60/40 blend of Nomex T-462® and FR rayon, a 60/40 blend of Kevlar T-970® and Nomex T-462®, a 60/40 blend of Kevlar T-970® and PBI, an 80/20 blend of Nomex T-462® and PBI, a 60/20/20 blend of Kevlar T-970®, PBO, and Nomex T-462®, a 50/50 blend of meta-aramid and modacrylic, a 60/40 blend of Kevlar Nomex T-970® and Basofil® (melamine), a 60/40 blend of meta-aramid and para- aramid, and 90/10 blend of meta-aramid and para-aramid. It is to be understood that these specific constructions are mere examples and are not intended to limit the scope of the
present disclosure. The fabric can be dyed to a desired shade of color using customary dyeing equipment. Typically, a dye, a dye assistant (or "carrier"), and a flame retardant for the non-inherently flame resistant fibers (if applicable), are combined to form a mixture, (e.g., a dyebath, solution, dispersion, or the like). Carriers aid in the absorption of dyestuff into the fibers of the fabric. In addition, some carriers aid in the solubilization of various UV-resistant additives that, as is discussed below, increase the UV resistance of the fibers and, therefore, the fabric. As an alternative to adding carrier to the mixture (e.g., dyebath), the carrier can instead be imbibed into the fibers during fiber production. When the fibers are imbibed with carrier, dyeing is conducted in the typical manner, except that additional carrier may not be needed in the mixture.
Once the mixture is formed, the fabric is contacted with the mixture, typically by immersion, and the mixture is heated to fix the dye in the fibers. Although the fabric has to been described as being dyed in the piece, dyeing can be performed during other stages of the production process. Therefore, dyeing can be performed on the fibers, on yarn, or on substantially any fibrous textile, including sliver. Suitable equipment for dyeing a textile include, for example, jig dyeing machines, pad dyeing machines, beck dyeing machines, and jet dyeing machines.
In addition to dye, UV-resistant additives can be incorporated into the fibers to increase the fibers' resistance to UV radiation. One type of UV-resistant additive is UV light absorbers. UV light absorbers are materials that absorb UV radiation to reduce the deleterious effects of that radiation on the medium (fibers in this case) in which the absorber is incorporated. Such UV light absorbers include, for example, benzophenone compounds, triazsole compounds, and benzoic acid compounds. Specific examples, of UV light absorbers include Uvinul 3000 (2,4-dihydroxy-benzophenone), Uvinul 3049 (2,2'-dihydroxy-4,4'- dimethoxybenzophenone), Uvinul 3050 (2,2'-4,4'-tetrahydroxybenzophenone), and Uvinul 3088 (2-propenoic acid,3-(4Omethoxyphenyl)-,2-ethylhexylester), all from BASF; Surftech 4500 (benzotriazole) from American Textile, LLC; and Tinuvin 234 (2-(2H-benzotriazol-2- yl)-4,6-bis(l-methyl-l-ρhenylethyl)phenol), Tinuvin 327 (2-(3,5,Di-(tert)-butyl-2- hydoxyphenyl)-5-chlorobenzotriazole) and Tinuvin 328 (2-hydroxy-3,5-di-(ter)- amylphenyl)benzotriazole) from Ciba Specialty Chemicals.
Another type of UV-resistant additive that can be incorporated into the fibers are hindered amine light (HAL) stabilizers. Such HAL stabilizers include, for example, amide compounds and piperidine compounds. Specific examples include Uvinul 4050H (N,N'-1,6- hexanediylbis(N-(2,2,6,6-tetramethyl-piperidinyl-formamide) from BASF, and Sanduvor 3058 Liquid (l-acetyl-4-(3-dodecyl-2,5-dioxo-l-pyrrolidinyl)-2,2,6,6- tetramethyl-piperidine from Clariant.
Tests suggest that UV light absorbers are particularly effective in improving fabric strength retention, while HAL stabilizers are particularly effective in improving fabric colorfastness. Although they can be used separately, incorporation of both a UV light absorber and a HAL stabilizer into a given fabric can yield improved results in terms of strength retention and/or colorfastness. Specific examples of UV light absorber/HAL stabilizer blends include Chimasrob 119FL (Chimasorb 119 (complex triazine) and Tinuvin 622 (sucinate polymer with piperidineethanol)) and Tinuvin 783LD (Tinuvin 622 and Chimasorb 944 (complex triazine)). The UV-resistant additives can be incorporated into the fibers of the fabric at nearly any stage in the production process. Given that carriers that may be used as dye assistants in the dyeing process, it may be desirable to add the UV-resistant additives to the fibers during the dyeing process (assuming dyeing is performed). In such a case, the UV light absorber(s) can, for example, be provided in the mixture in a concentration of about 0.5 % on weight of fabric (owl) to about 6% owf, and the HAL stabilizer(s) can, for example, be provided in the dyebath in a concentration from about 0.5% to about 3% owf. In some embodiments, concentrations of about 2% to 4% and 2% to 3% owf for UV light absorber and HAL stabilizer, respectively, are preferred. Examples of carriers that have been determined to solubilize UV light absorbers and/or HAL stabilizers include aryl ether, benzyl alcohol, N- cyclohexylpyrrolidone (CHP), N,N-diethyl-m-toluamide (DEET), dimethylformamide (DMF), dibutyl acetamide (DBA), Isophorone, Acetophenone, Dimethylacetamide, and Dibutylformamide.
A flame retardant compound can also be included in the mixture, applied as an after- dyeing surface treatment, or otherwise incorporated in the fibers of the fabric to enhance flame resistance or to counteract any deleterious effects of the carrier contained within the inherently flame resistant fibers. Furthermore, other chemicals can be applied to the fibers (e.g., added to the mixture) including lubricants, wetting agents, leveling agents, and the like. Testing was performed to examine the effectiveness of UV light absorbers and HAL stabilizers that were incorporated in the fibers of fabric during the dye process. In that testing, various samples of fabric were tested for strength according to test methods described in ASTM D5733-99 and ASTM D1424-96 both before and after exposure to UV radiation (daylight). Some of those samples had been treated with a UV light absorber, a HAL stabilizer, or both, while others (the "controls") were left untreated. Table I provides strength retention data for this testing.
TABLE I: STRENGTHRETENTION AFTEREXPOSURETOUVRADIATION
Figure imgf000008_0001
Figure imgf000009_0001
Figure imgf000010_0001
Various phases of testing were conducted. In one such phase (Phase A), various samples of 100% Nomex T-462® were tested for strength after 14 days of exposure to UV radiation in the form of sunlight using the trap tear test described in ASTM D5733-99, which is hereby incorporated by reference. Each sample was dyed or treated using a carrier, which comprised one of DEET, CHP, benzyl alcohol, and aryl ether. A control sample and a sample treated with a benzophenone compound (Uvinul 3049) were prepared using each carrier.
As can be appreciated from Table I, the samples that were treated with the benzophenone compound UV light absorber typically exhibited greatly improved strength retention in both the warp and fill directions after UV exposure. On average, each treated sample exhibited 7.8% greater strength retention as compared to the controls (i.e., 85.9% average for treated samples, 78.1% average for non-treated samples), and strength retention differences as high as 12.9% were observed.
In a second phase of the testing (Phase B), samples of a 65/35 blend of Nomex T- 462® and FR rayon were tested for strength after 30 days of exposure to sunlight using the Elmendorf test described in ASTM D 1424-96, which is hereby incorporated by reference. Each sample was dyed or treated using a CHP carrier, and each sample was treated with a different concentration of UV light absorber ranging from zero (i.e., for the control) to 6%. As is evident from the test data, significant strength retention increases were observed when the fabric was treated with levels of UV light absorber as low as 1% owf. In particular, the strength retention for the sample treated with 1% benzophenone compound (Uvinul 3049) was 14.9% greater in the warp direction and 8.8% greater in the fill direction as compared to the control sample. Greater strength retention was generally observed as the percentage of UV light absorber was increased.
In a third phase of the testing (Phase C), samples of a 60/40 blend of Kevlar T-970® and Nomex T-462® were tested for strength after 14 days, and in two cases 30 days, of exposure to sunlight. The samples were treated with various carriers and UV light absorbers.
In addition, two samples were treated with a HAL stabilizer (in the 30 day exposure cases).
Again, the samples that were treated with the UV light stabilizers exhibited increased strength retention. The testing conducted for the samples containing a HAL stabilizer appeared to indicate that similar results are possible in cases in which the concentration of UV light absorber was reduced and the concentration of HAL stabilizer was increased.
Further testing was performed to examine the effectiveness of UV light absorbers and
HAL stabilizers in improving colorfastness of fabrics that are exposed to UV radiation. In this testing, various samples of fabric were tested for colorfastness according to AATCC Test
Method 16-2003 (Option 3). Some of those samples had been treated with a UV light absorber, a HAL stabilizer, or both, while others (i.e., the controls) were left untreated. Table rovides colorfastness data for this testing.
TABLE II: COLORFASTNESS AFTER EXPOSURE TO UV RADIATION
Figure imgf000012_0001
Figure imgf000013_0001
According to AATTCC Test Method 16-2003, colorfastness is rated from a scale of 1 to 5, with "1" being the poorest colorfastness and "5" being the best colorfastness. As can be appreciated from Table II, the colorfastness of the fabrics treated with UV light absorbers and/or HAL stabilizers performed markedly better in terms of colorfastness as compared to the control fabrics.
While particular embodiments of the protective garments have been disclosed in detail in the foregoing description and drawings for purposes of example, it will be understood by those skilled in the art that variations and modifications thereof can be made without departing from the scope of the disclosure.

Claims

1. A protective fabric, comprising: a plurality of inherently flame resistant fibers; and at least one ultraviolet-resistant additive incorporated into the inherently flame resistant fibers through a dye process using a carrier; wherein the ultraviolet-resistant additive significantly increases at least one of the strength retention and the colorfastness of the fabric after exposure to ultraviolet radiation.
2. The fabric of claim 1, wherein the inherently flame resistant fibers include aramid fibers.
3. The fabric of claim 1, wherein the inherently flame resistant fibers include para-aramid fibers.
4. The fabric of claim 1, wherein the inherently flame resistant fibers include meta-aramid fibers.
5. The fabric of claim 1, wherein the inherently flame resistant fibers include polybenzoxazole (PBO) fibers, polybenzimidazole (PBl) fibers, melamine fibers, polyamide fibers, polyimide fibers, polyimideamide fibers, modacrylic fibers, or a blend thereof.
6. The fabric of claim 1, wherein the ultraviolet-resistant additive comprises an ultraviolet light absorber.
7. The fabric of claim 6, wherein the ultraviolet light absorber comprises at a benzophenone compound, a triazsole compound, a benzoic acid compound, or a mixture thereof.
8. The fabric of claim 6, wherein the ultraviolet light absorber comprises a benzophenone compound.
9. The fabric of claim 6, wherein the ultraviolet light absorber is incorporated into the inherently flame resistant fibers in a dye process in a concentration of about 0.5 percent to about 6 percent on weight of fabric.
10. The fabric of claim 1, wherein the ultraviolet-resistant additive comprises a hindered amine light (HAL) stabilizer.
11. The fabric of claim 10, wherein the hindered amine light (HAL) stabilizer comprises an amide compound, a piperidine compound, or a mixture thereof.
12. The fabric of claim 6, wherein the hindered amine light (HAL) stabilizer is incorporated into the inherently flame resistant fibers in a dye process in a concentration of about 0.5 percent to about 3 percent on weight of fabric.
13. The fabric of claim 1, wherein the ultraviolet-resistant additive comprises both an ultraviolet light absorber and a hindered amine light (HAL) stabilizer.
14. The fabric of claim 1, wherein the ultraviolet-resistant additive is incorporated into the inherently flame resistant fibers using aryl ether, benzyl alcohol, N- cyclohexylpyrrolidone (CHP), N,N-diethyl-m-toluamide (DEET), dimethylforrnamide (DMF), dibutyl acetamide (DBA), acetophenone, Isophorone, Acetophenone, Dimethylacetamide, and Dibutylformamide, or a mixture thereof.
15. The fabric of claim 1, further comprising a plurality of fibers including FR rayon fibers, FR acetate fibers, FR triacetate fibers, FR lyocell fibers, or a blend thereof.
16. A protective garment, comprising: a fabric comprising a plurality of inherently flame resistant fibers, and at least one ultraviolet-resistant additive incorporated into the inherently flame resistant fibers through a dye process using a carrier;
\ 1I wherein the ultraviolet-resistant additive significantly increases at least one of the ; strength retention and the colorfastness of the fabric when exposed to ultraviolet radiation.
17. The garment of claim 16, wherein the inherently flame resistant fibers include aramid fibers.
18. The garment of claim 16, wherein the inherently flame resistant fibers include polybenzoxazole (PBO) fibers, polybenzimidazole (PBI) fibers, melamine, polyamide fibers, polyimide fibers, polyimideamide fibers, and modacrylic fibers, or a blend thereof.
19. The garment of claim 16, wherein the ultraviolet-resistant additive comprises an ultraviolet light absorber.
20. The garment of claim 19, wherein the ultraviolet light absorber comprises a benzophenone compound, a triazsole compound, a benzoic acid compound, or a mixture thereof.
21. The garment of claim 19, wherein the ultraviolet light absorber is incorporated into the inherently flame resistant fibers in a dye process in a concentration of about 0.5 percent to about 6 percent on weight of fabric.
22. The garment of claim 16, wherein the ultraviolet-resistant additive comprises a hindered amine light (HAL) stabilizer.
23. The garment of claim 22, wherein the hindered amine light (HAL) stabilizer comprises an amide compound, a piperidine compound, or a mixture thereof.
24. The garment of claim 22, wherein the hindered amine light (HAL) stabilizer is incorporated into the inherently flame resistant fibers in a dye process in a concentration of about 0.5 percent to about 3 percent on weight of fabric.
25. The garment of claim 16, wherein the ultraviolet-resistant additive comprises both an ultraviolet light absorber and a hindered amine light (HAL) stabilizer.
26. The garment of claim 16, wherein the ultraviolet-resistant additive is i incorporated into the inherently flame resistant fibers using aryl ether, benzyl alcohol, N- cyclohexylpyrrolidone (CHP), N,N-diethyl-m-toluamide (DEET), dimethylformamide (DMF), dibutyl acetamide (DBA), acetophenone, Isophorone, Acetophenone, Dimethylacetamide, and Dibutylformamide, or a mixture thereof.
27. The garment of claim 16, wherein the fabric further comprises a plurality of fibers including FR rayon fibers, FR acetate fibers, FR triacetate fibers, FR lyocell fibers, or a blend thereof.
28. The garment of claim 16, wherein the garment is a firefighter turnout gear garment.
29. The garment of claim 16, wherein the garment is a utility lineman garment.
30. A method, comprising: immersing a fabric in a mixture comprising a carrier and an ultraviolet-resistant additive, the fabric comprising a plurality of inherently flame resistant fibers; and solublizing the ultraviolet-resistant additive with the carrier so that the ultraviolet- resistant additive is absorbed by the inherently flame resistant fibers; wherein absorption of the ultraviolet-resistant additive into the inherently flame resistant fibers significantly increases at least one of the strength retention and the colorfastness of the fabric when exposed to ultraviolet radiation.
31. The method of claim 30, wherein the inherently flame resistant fibers include aramid fibers.
32. The method of claim 30, wherein the inherently flame resistant fibers include polybenzoxazole (PBO) fibers, polybenzimidazole (PBI) fibers, melamine fibers, polyamide fibers, polyimide fibers, polyimideamide fibers, modacrylic fibers, or a blend thereof.
33. The method of claim 30, wherein the ultraviolet-resistant additive comprises an ultraviolet light absorber.
34. The method of claim 33, wherein the ultraviolet light absorber comprises a benzophenone compound, a triazsole compound, a benzoic acid compound, or a mixture thereof.
35. The method of claim 33, wherein the ultraviolet light absorber is added to the mixture in a concentration of about 0.5 percent to about 6 percent on weight of fabric.
36. The method of claim 30, wherein the ultraviolet-resistant additive comprises a hindered amine light (HAL) stabilizer.
37. The method of claim 36, wherein the hindered amine light (HAL) stabilizer comprises an amide compound, a piperidine compound, or a mixture thereof.
38. The method of claim 36, wherein the hindered amine light (HAL) stabilizer is added to the mixture in a concentration of about 0.5 percent to about 3 percent on weight of fabric.
39. The method of claim 30, wherein the ultraviolet-resistant additive comprises both an ultraviolet light absorber and a hindered amine light (HAL) stabilizer.
40. The method of claim 30, wherein the carrier comprises aryl ether, benzyl alcohol, N-cyclohexylpyrrolidone (CHP), N,N-diethyl-m-toluamide (DEET), dimethylformamide (DMF), dibutyl acetamide (DBA), acetophenone, Isophorone, Acetophenone, Dimethylacetamide, and Dibutylformamide, or a mixture thereof.
41. The method of claim 30, wherein the mixture comprises a dye and the method s a dyeing method.
PCT/US2006/014960 2006-04-20 2006-04-20 Ultraviolet-resistant fabrics and methods for making them WO2007133177A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP06750876A EP2007943B1 (en) 2006-04-20 2006-04-20 Ultraviolet-resistant fabrics and methods for making them
ES11159705.0T ES2557321T3 (en) 2006-04-20 2006-04-20 Ultraviolet resistant fabrics and their manufacturing procedures
ES06750876T ES2386553T3 (en) 2006-04-20 2006-04-20 Ultraviolet light resistant fabrics and methods to manufacture them
CA2649935A CA2649935C (en) 2006-04-20 2006-04-20 Ultraviolet-resistant fabrics
EP11159705.0A EP2377991B1 (en) 2006-04-20 2006-04-20 Ultraviolet-resistant fabrics and methods for making them
PL06750876T PL2007943T3 (en) 2006-04-20 2006-04-20 Ultraviolet-resistant fabrics and methods for making them
PCT/US2006/014960 WO2007133177A2 (en) 2006-04-20 2006-04-20 Ultraviolet-resistant fabrics and methods for making them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2006/014960 WO2007133177A2 (en) 2006-04-20 2006-04-20 Ultraviolet-resistant fabrics and methods for making them

Publications (2)

Publication Number Publication Date
WO2007133177A2 true WO2007133177A2 (en) 2007-11-22
WO2007133177A3 WO2007133177A3 (en) 2008-05-22

Family

ID=38694331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/014960 WO2007133177A2 (en) 2006-04-20 2006-04-20 Ultraviolet-resistant fabrics and methods for making them

Country Status (5)

Country Link
EP (2) EP2007943B1 (en)
CA (1) CA2649935C (en)
ES (2) ES2386553T3 (en)
PL (1) PL2007943T3 (en)
WO (1) WO2007133177A2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009039606B3 (en) * 2009-09-01 2011-01-20 Bundesrepublik Deutschland, vertreten durch das Bundesministerium der Verteidigung, dieses vertreten durch das Bundesamt für Wehrtechnik und Beschaffung Dyeing m-aramid fibers or textiles comprises using a dye solution comprising a cationic dye, benzyl alcohol, acetic or formic acid, sodium nitrate, ultraviolet absorber and nonionic dispersant
WO2013074181A3 (en) * 2011-09-02 2013-08-22 Invista Technologies S.A R. L. Flame resistant yarns and fabrics including partially aromatic polyamide fiber and other flame resistant fibers
AT514469A1 (en) * 2013-01-11 2015-01-15 Chemiefaser Lenzing Ag Flame retardant fabric for protective clothing and upholstery fabrics applications and its use
US9131790B2 (en) 2013-08-15 2015-09-15 Aavn, Inc. Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US9394634B2 (en) 2014-03-20 2016-07-19 Arun Agarwal Woven shielding textile impervious to visible and ultraviolet electromagnetic radiation
US9493892B1 (en) 2012-08-15 2016-11-15 Arun Agarwal Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US9708736B2 (en) 2014-05-29 2017-07-18 Arun Agarwal Production of high cotton number or low denier core spun yarn for weaving of reactive fabric and enhanced bedding
US9765454B2 (en) 2006-08-31 2017-09-19 Southern Mills, Inc. Flame resistant fabrics and garments made from same
KR20180078021A (en) * 2016-12-29 2018-07-09 (주)오로피노 Visibility aramide blended yarn fabric and its manufacturing method
US10443159B2 (en) 2013-08-15 2019-10-15 Arun Agarwal Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US10808337B2 (en) 2013-08-15 2020-10-20 Arun Agarwal Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US11168414B2 (en) 2013-08-15 2021-11-09 Arun Agarwal Selective abrading of a surface of a woven textile fabric with proliferated thread count based on simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US11225733B2 (en) 2018-08-31 2022-01-18 Arun Agarwal Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US11359311B2 (en) 2013-08-15 2022-06-14 Arun Agarwal Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
CN114657765A (en) * 2022-04-26 2022-06-24 朱健 Corrosion-resistant waterproof fabric and preparation method thereof
US11873587B2 (en) 2019-03-28 2024-01-16 Southern Mills, Inc. Flame resistant fabrics
US11891731B2 (en) 2021-08-10 2024-02-06 Southern Mills, Inc. Flame resistant fabrics

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11946173B2 (en) 2020-05-20 2024-04-02 Glen Raven, Inc. Yarns and fabrics including modacrylic fibers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3802841A (en) 1971-06-14 1974-04-09 Rhone Poulenc Textile Nitro aromatic hydrocarbon,amino nitro aromatic & nitro aromatic phosphine oxides on aromatic polyamide-imide as light fading inhibitors for dyes thereon

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888821A (en) * 1972-11-02 1975-06-10 Du Pont Aromatic polyamide fibers containing ultraviolet light screeners
EP0409771A3 (en) * 1989-06-27 1991-06-12 Ciba-Geigy Ag Process of photochemical and thermal stabilization of polyamide fibres, dyeable by acid and basic dyes, and of their mixtures amongst themselves and with other fibres
JP3041823B2 (en) * 1989-09-09 2000-05-15 クラリアント ファイナンス(ビーブイアイ)リミティド Synthetic polyamides and their salts
US5074889A (en) * 1990-06-13 1991-12-24 E. I. Du Pont De Nemours And Company Aromatic polyamide fibers and method of printing such fibers with acid dyes in the presence of hexamethylene diamine dihydrochloride impregnated in fiber
JP3085805B2 (en) * 1992-12-25 2000-09-11 日華化学株式会社 How to process textile products
US6495660B2 (en) * 1999-10-20 2002-12-17 Honeywell International Inc Polyamide substrate
JP2008509297A (en) * 2004-08-06 2008-03-27 サザンミルズ インコーポレイテッド High visibility flame resistant cloth and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3802841A (en) 1971-06-14 1974-04-09 Rhone Poulenc Textile Nitro aromatic hydrocarbon,amino nitro aromatic & nitro aromatic phosphine oxides on aromatic polyamide-imide as light fading inhibitors for dyes thereon

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9765454B2 (en) 2006-08-31 2017-09-19 Southern Mills, Inc. Flame resistant fabrics and garments made from same
DE102009039606B3 (en) * 2009-09-01 2011-01-20 Bundesrepublik Deutschland, vertreten durch das Bundesministerium der Verteidigung, dieses vertreten durch das Bundesamt für Wehrtechnik und Beschaffung Dyeing m-aramid fibers or textiles comprises using a dye solution comprising a cationic dye, benzyl alcohol, acetic or formic acid, sodium nitrate, ultraviolet absorber and nonionic dispersant
WO2013074181A3 (en) * 2011-09-02 2013-08-22 Invista Technologies S.A R. L. Flame resistant yarns and fabrics including partially aromatic polyamide fiber and other flame resistant fibers
JP2014525521A (en) * 2011-09-02 2014-09-29 インヴィスタ テクノロジーズ エスアエルエル Flameproof yarns and fabrics containing partially aromatic polyamide fibers and other flameproof fibers
US9683315B2 (en) 2011-09-02 2017-06-20 Invista North America Sarl Flame resistant yarns and fabrics including partially aromatic polyamide fiber and other flame resistant fibers
US9493892B1 (en) 2012-08-15 2016-11-15 Arun Agarwal Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
AT514469A1 (en) * 2013-01-11 2015-01-15 Chemiefaser Lenzing Ag Flame retardant fabric for protective clothing and upholstery fabrics applications and its use
AT514469B1 (en) * 2013-01-11 2015-04-15 Chemiefaser Lenzing Ag Flame retardant fabric for protective clothing and upholstery fabrics applications and its use
US10472744B2 (en) 2013-08-15 2019-11-12 Arun Agarwal Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US10443159B2 (en) 2013-08-15 2019-10-15 Arun Agarwal Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US9708737B2 (en) 2013-08-15 2017-07-18 Arun Agarwal Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US11359311B2 (en) 2013-08-15 2022-06-14 Arun Agarwal Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US11168414B2 (en) 2013-08-15 2021-11-09 Arun Agarwal Selective abrading of a surface of a woven textile fabric with proliferated thread count based on simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US9481950B2 (en) 2013-08-15 2016-11-01 Arun Agarwal Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US10808337B2 (en) 2013-08-15 2020-10-20 Arun Agarwal Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US10066324B2 (en) 2013-08-15 2018-09-04 Arun Agarwal Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US9131790B2 (en) 2013-08-15 2015-09-15 Aavn, Inc. Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US9777411B2 (en) 2014-03-20 2017-10-03 Arun Agarwal Woven shielding textile impervious to visible and ultraviolet electromagnetic radiation
US9394634B2 (en) 2014-03-20 2016-07-19 Arun Agarwal Woven shielding textile impervious to visible and ultraviolet electromagnetic radiation
US10428445B2 (en) 2014-05-29 2019-10-01 Arun Agarwal Production of high cotton number or low denier core spun yarn for weaving of reactive fabric and enhanced bedding
US9708736B2 (en) 2014-05-29 2017-07-18 Arun Agarwal Production of high cotton number or low denier core spun yarn for weaving of reactive fabric and enhanced bedding
KR20180078021A (en) * 2016-12-29 2018-07-09 (주)오로피노 Visibility aramide blended yarn fabric and its manufacturing method
US11225733B2 (en) 2018-08-31 2022-01-18 Arun Agarwal Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
US11873587B2 (en) 2019-03-28 2024-01-16 Southern Mills, Inc. Flame resistant fabrics
US11891731B2 (en) 2021-08-10 2024-02-06 Southern Mills, Inc. Flame resistant fabrics
CN114657765A (en) * 2022-04-26 2022-06-24 朱健 Corrosion-resistant waterproof fabric and preparation method thereof

Also Published As

Publication number Publication date
ES2386553T3 (en) 2012-08-22
CA2649935A1 (en) 2007-11-22
EP2377991A3 (en) 2011-12-28
WO2007133177A3 (en) 2008-05-22
EP2377991B1 (en) 2015-10-28
EP2007943A2 (en) 2008-12-31
ES2557321T3 (en) 2016-01-25
EP2377991A2 (en) 2011-10-19
PL2007943T3 (en) 2012-10-31
CA2649935C (en) 2015-06-23
EP2007943B1 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
US7811952B2 (en) Ultraviolet-resistant fabrics and methods for making them
CA2649935C (en) Ultraviolet-resistant fabrics
US9765454B2 (en) Flame resistant fabrics and garments made from same
EP2318579B1 (en) Crystallized meta-aramid blends for improved flash fire and arc protection
US8475919B2 (en) Wool and aramid fiber blends for multifunctional protective clothing
US20180127917A1 (en) Lightweight, arc-rated, dyeable fabrics
WO2008097356A2 (en) Methods and systems for providing dyed, stretchable flame resistant fabrics and garments
CA2760481A1 (en) Crystallized meta-aramid blends for improved flash fire and superior arc protection
US20190249341A1 (en) Fabric Containing an Intimate Blend of Antistatic Fibers Arranged in a Pattern
US20220408864A1 (en) Fabric and protective product
AU2018204269B2 (en) Flame resistant fabrics and garments made from same
JP2010150704A (en) Wholly aromatic polyamide fiber structure
JP2008038299A (en) Heat-resistant fabric having light resistance
EP4215658A1 (en) Fabric, method for producing same and clothing item using same
CN108018712A (en) Uvr Protective Fabric preparation method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006750876

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2649935

Country of ref document: CA

NENP Non-entry into the national phase in:

Ref country code: DE