WO2007129452A1 - Sensor output signal evaluation system - Google Patents

Sensor output signal evaluation system Download PDF

Info

Publication number
WO2007129452A1
WO2007129452A1 PCT/JP2007/000404 JP2007000404W WO2007129452A1 WO 2007129452 A1 WO2007129452 A1 WO 2007129452A1 JP 2007000404 W JP2007000404 W JP 2007000404W WO 2007129452 A1 WO2007129452 A1 WO 2007129452A1
Authority
WO
WIPO (PCT)
Prior art keywords
output signal
evaluation system
signal evaluation
sensor output
analysis unit
Prior art date
Application number
PCT/JP2007/000404
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoki Siozawa
Hiroki Takada
Masaru Miyao
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Publication of WO2007129452A1 publication Critical patent/WO2007129452A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • A61B5/395Details of stimulation, e.g. nerve stimulation to elicit EMG response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]

Definitions

  • the present invention relates to a sensor output signal evaluation system that evaluates an output signal of a sensor based on a relaxed and contracted motion of a measured person, and in particular, based on a relaxed and contracted motion performed by a measured person according to an index signal.
  • the present invention relates to a sensor output signal evaluation system for comparing and evaluating a sensor output signal and an index signal.
  • the output signal from the electromyograph usually represents the voltage measured by the surface electromyograph or the needle electromyograph along the time axis. It is shown.
  • the measured waveform of the output signal and the integrated waveform were visually perceived by doctors who were measurers, and subjective evaluations were made based on empirical rules.
  • involuntary movements are diagnosed as types of tremor, dystonia, spasm, etc., differential diagnosis of these, involuntary contraction muscle region identification, etc.
  • the scope of application of EMG output evaluation is diverse.
  • Surface electromyography is also used to create evoked electromyograms that show the detected potential of neurotransmission tests.
  • the integrated waveform of the output signal from the electromyograph may be used as a material for determining the relative degree of muscle contraction, or may be used as an index for evaluating the state of muscle training.
  • a pressure gauge having a probe inserted into the vagina is used. This is because the electromyograph output and the vaginal pressure have a high correlation.
  • the evaluator can simply calculate the raw waveform of the sensor output signal. This is a method of subjective evaluation.
  • various methods for evaluating the sensor output signal have been studied.
  • Patent Document 1_3, etc. one that integrates and evaluates output signals from sensors
  • Patent Documents 4, 5, etc. one that evaluates using frequency analysis such as FFT
  • detection value and target value There are some which perform feedback control using an error detection means for obtaining the error (Patent Document 6, etc.).
  • Patent Document 1 JP-A-2005-278706
  • Patent Document 2 JP 2005-074063
  • Patent Document 3 JP 2003-230545
  • Patent Document 4 JP-A-2004-2021 96
  • Patent Document 5 Japanese Patent Laid-Open No. 2003 _ 1 69782
  • Patent Document 6 JP-A-11-253502
  • the sensor that measures the relaxation and contraction movements of the measurement subject greatly changes the intensity of the output signal depending on the contact position or insertion position of the electrode or probe.
  • the conventional various evaluation methods that perform integrated waveforms, FFT analysis, error detection, etc. There were no standards, and these could not be evaluated quantitatively.
  • the intensity of the output signal varies greatly depending on the physical condition of the subject during measurement, there was no method that can objectively and quantitatively evaluate the sensor output signal.
  • a needle electrode is used as a probe to be used.
  • a needle electrode is used as a probe to be used.
  • Such tests are invasive and painful. Therefore, even though it was very harsh for the subject to measure many times, the conventional method could not make a quantitative evaluation. I had to grab the inclination.
  • the present invention is intended to provide a sensor output signal evaluation system capable of objectively and quantitatively evaluating a sensor output signal.
  • the sensor output signal evaluation system generates an index signal that serves as an index for the measurement subject to perform a relaxation and contraction operation in response thereto.
  • the output signal evaluation unit includes a maximum amplitude analysis unit that evaluates the maximum amplitude of the output signal per unit time according to the index signal, a relaxation time analysis unit that evaluates an output signal that is below a predetermined threshold, and a predetermined threshold. Evaluate the output signal using a systolic analyzer that evaluates the output signal above and at least one of.
  • the output signal evaluation unit may evaluate the output signal by combining all of the maximum amplitude analysis unit, the relaxation time analysis unit, and the contraction time analysis unit.
  • the output signal evaluation unit may evaluate the output signal by weighting the evaluation results of the maximum amplitude analysis unit, the relaxation analysis unit, and the contraction analysis unit.
  • the output signal evaluation unit may include a frequency spectrum analysis unit that evaluates the power spectrum of the output signal.
  • the frequency spectrum analysis unit may use a power spectrum in a low frequency band.
  • the relaxation time analysis unit may use an average value of output signals that are below a predetermined threshold.
  • the relaxation time analysis unit may use a variation in the output signal that falls below a predetermined threshold.
  • the relaxation time analysis unit may perform regression analysis of an exponential decay function at the time of relaxation using a maximum value sequence of output signals that are below a predetermined threshold.
  • the systolic analysis unit may use an average value of output signals exceeding a predetermined threshold.
  • the systolic analysis unit may use a variation in the output signal exceeding a predetermined threshold.
  • the contraction analysis unit may analyze the contraction duration using a maximum value sequence of output signals exceeding a predetermined threshold.
  • the systolic analysis unit may perform regression analysis of an exponential decay function during contraction using a maximum value sequence of output signals exceeding a predetermined threshold.
  • the maximum and minimum values of the index signal may be determined based on the output signals at the time of maximum contraction and maximum relaxation of the measurement subject.
  • the index signal may be determined such that its maximum value is lower by a predetermined amount than the output signal at the time of maximum contraction.
  • the indicator signal may be a pulse wave. It may also be a sound.
  • the sensor output signal evaluation system of the present invention has an advantage that the output signal from the sensor can be objectively and quantitatively evaluated. For this reason, it is possible to always perform stable diagnosis regardless of the measurement timing and measurement environment. Therefore, it is no longer necessary to measure repeatedly, and the burden on the subject is reduced.
  • FIG. 1 is a block diagram for explaining the overall outline of the sensor output signal evaluation system of the present invention.
  • the sensor output signal evaluation system of the present invention is mainly divided into an index signal generation unit 10 and an output signal evaluation unit 20.
  • the index signal generator 10 generates an index signal that serves as an index for the person to be measured.
  • the subject performs the relaxation and contraction of the measurement site in accordance with the index signal.
  • the person to be measured is a person who was provided with an electromyograph or pressure gauge electrode or probe at the measurement site. More specifically, for example, patients with symptoms such as dysphagia, urinary incontinence and dystonia.
  • the index signal output from the index signal generator 10 is, for example, a pulse wave sound having a predetermined period. If the indicator signal is a pulse wave, the subject should be operated to relax when the pulse wave is low and contract when it is high. Further, when the index signal is a sound, for example, it may be operated so as to contract when the sound is emitted and relax when the sound stops.
  • the following description will basically describe a case where a pulse wave is used as an index signal.
  • an index is used for the subject to perform relaxation and contraction operations. Anything can be used, such as a sine wave or a triangular wave.
  • the maximum and minimum values of the index signal output from the index signal generator 10 may be determined based on the sensor output at the time of maximum contraction and maximum relaxation of the measurement subject. That is, after the sensor is mounted, the sensor output when the measurement subject contracts the muscle of the measurement site as much as possible and the sensor output at normal times are recorded in advance.
  • the sensor output may be based on a raw waveform or an integrated waveform obtained by integrating the output. Then, based on this output, for example, the maximum value of the index signal is determined to be lower by a predetermined amount from the output signal at the time of maximum contraction. For example, the maximum value of the indicator signal is 80% lower than the output signal at maximum contraction.
  • the indicator signal has the maximum value.
  • the pulse wave may be set to have a predetermined period, for example, a period of 12 seconds.
  • the output signal from the sensor when the measurement subject performs the relaxation and contraction operations in accordance with the index signal determined as described above is, for example, 0. Integration is performed every second to generate an integrated waveform. This integrated waveform is divided by the splitter 12 every period, for example, every 12 seconds in the above example, based on the index signal of the index signal generator 10.
  • Figure 2 shows.
  • Figure 2 (a) shows a pulse wave that is an indicator signal.
  • Fig. 2 (b) shows the raw waveform from the electromyograph when the relaxation and contraction motions are performed according to this index signal.Conventionally, whether the muscle is moving correctly by looking at the amplitude of this raw waveform. was evaluated by the subjectivity of the measurer.
  • Figure 2 (c) shows the waveform obtained by integrating the raw waveform of Figure 2 (b). As shown in Fig.
  • the indicator signal and the output signal may be displayed in an overlapped manner and shown to the subject in real time.
  • the integrated waveform of the electromyograph output signal shows a low voltage when relaxed and a high voltage when contracted.
  • the horizontal axis is time and the vertical axis is voltage.
  • each value has no particular meaning, and the amplitude, pulse width, etc. are not limited to those shown in the illustrated example.
  • the output signal as shown in Fig. 2 (c) obtained in this manner is distributed by the splitter 12 for each period and input to the output signal evaluation unit 20 of the present invention.
  • the output signal evaluation unit 20 mainly includes a maximum amplitude analysis unit 21, a relaxation analysis unit 22, a contraction analysis unit 23, and a frequency spectrum analysis unit 24.
  • the output signal evaluation unit in the sensor output signal evaluation system of the present invention does not necessarily require all the above-described analysis units, and at least one of the above-described ones depends on the use and configuration of the evaluation system. If an analysis part is included, it functions as an evaluation system.
  • FIG. 3 is an enlarged view of one pulse waveform of the integrated waveform of FIG. 2 (c). explain.
  • the maximum amplitude analysis unit 21 evaluates and detects the maximum amplitude of the output signal per unit time according to the index signal. As shown in Fig. 3, the highest peak voltage of each output signal divided by the unit time by the splitter 12 is the period. Recorded every time, that is, every pulse. The maximum amplitude analyzer 21 analyzes whether or not an output signal of the same level as the index signal high is obtained.
  • the relaxation analysis unit 22 analyzes the output signal of the sensor when the measurement subject is relaxed.
  • the relaxation time analysis unit 2 2 uses the average value from the average value detection unit 1 3 that detects the average value of the output signal, and extracts an output signal that falls below this, and the relaxation time data extraction unit 3 1
  • the relaxation time data extraction unit 31 includes a relaxation time average value detection unit 32 that detects the average value of the output signal. As a result, it is analyzed whether or not an output signal of the same level as the low index signal is obtained when the measurement subject is relaxed.
  • the systolic analysis unit 23 analyzes the output signal of the sensor when the measurement subject contracts.
  • the systolic analysis unit 2 3 uses the average value from the average value detection unit 1 3 that detects the average value of the output signal, and detects the maximum value sequence that detects the maximum value sequence of the output signal that exceeds this value. 3 5 and the maximum value sequence detection unit 3 5 Using the output signal of the maximum value sequence detection unit 3 5 and the maximum value sequence detection unit 3 5 And a regression analysis unit 37 that performs regression analysis of the exponential decay function of the column.
  • the contraction duration detection unit 36 and the maximum amplitude analysis unit 21 analyze whether or not contraction is possible with the same output signal for the same duration as the high level of the indicator signal.
  • the average value detection unit 13 does not necessarily detect the average value of the output signal, and can provide a predetermined threshold value to separate the high side and the low side of the output signal. Any device may be used as long as it can distribute signals so that the relaxation analysis unit 22 can analyze the relaxation signal and the contraction analysis unit 23 can analyze the contraction signal.
  • the maximum value string detection unit 35 detects the voltage of the peak (maximum value) of the portion exceeding the average value of the integrated waveform until the average value falls below.
  • the contraction duration detection unit 36 detects the time from the first maximum value to the last maximum value from the output signal of the maximum value string detection unit 35. In consideration of the error at the rise and fall of the pulse-shaped integrated waveform, the maximum value next to the first maximum is taken into account. You may make it detect the time to the maximum value before the last maximum value.
  • the regression analysis unit 37 detects the “slope” of the maximum value sequence obtained by the maximum value sequence detection unit 35. Normally, when the subject contracts the muscle so that it follows the index signal, it tends to react excessively when the index signal rises, and then adjusts the muscle strength to produce a right-downward output signal. In addition, when a subject with weak muscle strength performs a contraction operation, the contraction force gradually decreases with time, even during the contraction operation. Become a signal. However, in the case of a measured person capable of normal muscle movement, the output signal is almost horizontal according to the index signal. In addition, when this output signal falls to the right, the integrated waveform of the electromyogram will oscillate.
  • the regression analysis unit 37 performs the regression analysis using an exponential decay curve by using the maximum value sequence at the time of contraction, for example, by obtaining the shape factor corresponding to the slope, thereby continuing the same for a certain period of time. It is analyzed whether it can contract by force. Specifically, for example, the following attenuation curve is regressed, and) 8 is obtained as a shape factor. The smaller this value, the more the follow-up waveform can be analyzed.
  • C is the maximum amplitude regression value and t is time.
  • the form factor ⁇ means how far away from the flat follow-up as with the pulse wave of the index signal, and 8) corresponds to the slope of attenuation. Therefore, it can be analyzed that the smaller the (8) in the above equation, the smaller the gradient and the closer it is to flat, and the larger the (8), the steeper the slope and the unevenness.
  • the frequency spectrum analyzer 24 analyzes the frequency of the output signal.
  • the frequency spectrum analysis unit 24 includes an FFT analysis unit 3 8 and a low-pass filter unit 39.
  • the FFT analysis unit 38 analyzes the power spectrum for each frequency and By specifically in filter unit 39 focuses on the average value of for example 3 H Z following Pawasu Bae vector, whether stable relaxation and shrinkage movements are performed that Ru is analyzed.
  • the results analyzed by the above analysis units are stored in the data stock unit 42, respectively. Then, using the pre-training database unit 45 that accumulates and accumulates data before biofeedback training, for example, ⁇ enables comparison between the state before training and the state after training. Diagnose with 46.
  • the diagnosis unit may display the analysis result of each analysis unit, or may display a raw waveform or an integrated waveform as necessary. It is also possible to display a standard deviation (and) indicating the variation in data before and after training, and to diagnose that the training result appears as it approaches zero.
  • the measurement results of each analysis unit when measured using a sensor, particularly an electromyograph, and the output results of each analysis unit, etc. are used for the subject who exercises following the index signal. Will be described in more detail.
  • a pelvic floor muscle group electromyograph Fem i Scan probe made by Mega Electronics Ltd. was inserted into the vagina of the subject and the pelvic floor muscle group was matched to the index signal.
  • a pulse wave of 1 cycle 1 2 seconds set to an amplitude of 80% of the output signal at the time of maximum contraction of the measurement subject is generated as an indicator signal generator 1 0
  • the output signal from the electromyograph was integrated by the moving integration unit 1 1, This integrated waveform was divided for each period of the pulse wave by splitters 12.
  • These integrated waveforms were regarded as independent trials, analyzed by each analysis unit, and statistically compared before and after biofeedback training.
  • Wilcoxon's sign rank test is used. The significance level was 0.05.
  • the above measurement It is not limited to the method, the number of measurements, the biofeedback training method, etc. The above description is merely an example.
  • Pre represents output data before biofeedback training
  • Post represents output data after training
  • FIG. 4 shows an example of the output result of the maximum amplitude analysis unit 21.
  • the vertical axis represents the amplitude.
  • the figure shows that the maximum amplitude is suppressed before and after training. In other words, before training, even if you try to perform contraction motion following the high of the pulse wave of the index signal, you could not control well and it caused the muscle to contract too much, and it was like a ringing waveform. It can be controlled to follow the pulse wave well and the ringing is suppressed.
  • FIG. 5 shows an example of the output result of the relaxation time analysis unit 22.
  • the vertical axis represents the amplitude. From the figure, it can be seen that the average amplitude during relaxation decreases before and after training. In other words, the muscle contraction signal is not output at the time of relaxation, which indicates that the muscle control function of the subject is improved.
  • FIG. 6 shows an example of an output result of the contraction duration detection unit 36 of the contraction time analysis unit 23.
  • the vertical axis represents time. From the figure, it can be seen that the duration of contraction increases before and after training, and that more continuous muscle movement is possible.
  • FIG. 7 shows an example of an output result of the regression analysis unit 37 of the contraction time analysis unit 23.
  • the vertical axis represents the value of the form factor ⁇ corresponding to the slope of the local maximum sequence.
  • the figure shows that the shape factor value decreases before and after training, so the slope of the output waveform that follows the high of the indicator signal is flattened, and the muscle control function of the subject is improved. .
  • FIG. 8 shows an example of the output result of the frequency spectrum analysis unit 24.
  • the vertical axis represents the average value of the power spectrum. From the figure, low frequency In the wave region, it can be seen that the power spectrum of OHZ has risen before and after training, and has fallen at a higher frequency. In other words, the increase in the low-frequency component OH z means that an output waveform with less variation is obtained, which means that more stable relaxation and contraction movements can be achieved. .
  • the output signal evaluation unit 20 shown in FIG. 1 can perform various analyzes and comprehensively use them to evaluate how approximate the index signal and the output signal are. Become. Of course, it is possible to use them individually if necessary and focus on only the analysis results. For example, using the analysis results of the maximum amplitude analysis unit 2 1, relaxation analysis unit 2 2 and contraction analysis unit 2 3 regression analysis unit 3 7 and contraction analysis unit 2 3 contraction duration detection unit 3 6 When evaluating how the measured sensor output signal approximates the index signal, the results from each analysis unit are displayed as numerical values, which part is approximated and which part is approximated. It may be clarified whether the part is not approximate.
  • the results from the respective analysis units may be collectively scored to display one numerical value.
  • the result from each analysis unit may be output after weighting the result from each analysis unit instead of equally dividing the result. For example, regarding the analysis result of the contraction duration detection unit 36, even if the contraction continues for a certain time longer than the index signal without following the index signal, the duration is stable. If you can be determined to be able to improve sustained muscle activity. However, since the operation does not actually follow the index signal, the analysis result of the contraction duration detection unit 36, for example, is used to reduce the influence of such misrecognition. It is possible to reduce the weighting compared to the analysis results from other analysis units.
  • the relaxation time analysis unit 22 detects the average value of the output signal at the time of relaxation by the relaxation average value detection unit 32.
  • the present invention is not limited to this. It is not limited, and it may be one that detects variations in the output signal during relaxation. You That is, it may be possible to analyze whether the output signal at the time of relaxation is stable by using a difference from the average value of the output signal at the time of relaxation to the output signal. Further, as in the case of the contraction analysis unit 23, a regression analysis of the exponential decay function may be performed using the maximum value sequence of the output signal at the time of relaxation. Further, similarly to the contraction duration detection unit 36, the relaxation duration time may be detected. Furthermore, these various relaxation analysis techniques may be combined.
  • the contraction analysis unit 23 may also detect an average value of output signals during contraction, or may detect variations in the output signals. Also, similar to the above, various methods of analysis at the time of contraction may be combined.
  • FIG. 1 is a block diagram for explaining an overall outline of a sensor output signal evaluation system of the present invention.
  • Fig. 2 is a graph showing each waveform signal.
  • Fig. 2 (a) is an index signal
  • Fig. 2 (b) is an electromyograph when relaxation and contraction are performed in response to the index signal.
  • Fig. 2 (c) shows the integrated waveform obtained by integrating the raw waveform.
  • Fig. 2 (d) shows the result of overlapping Fig. 2 (a) and Fig. 2 (c).
  • FIG. 3 is an enlarged view of one pulse waveform of the integrated waveform of FIG. 2 (c).
  • FIG. 4 is a graph showing an example of the output result of the maximum amplitude analysis unit.
  • FIG. 5 is a graph showing an example of the output result of the relaxation time analysis unit.
  • FIG. 6 is a graph showing an example of the output result of the contraction duration detection unit of the analysis unit during contraction.
  • FIG. 7 is a graph showing an example of the output result of the regression analysis unit of the systolic analysis unit.
  • FIG. 8 is a graph showing an example of an output result of the frequency spectrum analysis unit.

Abstract

A sensor output signal evaluation system for objectively and quantitatively evaluating the output signal of a sensor. An evaluation system for evaluating the output signal of a sensor to measure the relaxation and contraction of a subject. The system comprises an index signal generating unit (10) for generating an index signal representing the index according to which the subject relaxes and contracts and an output signal evaluating unit (20) for evaluating the approximation between the output signal of the sensor and the index signal. The output signal evaluating unit (20) has a maximum amplitude analyzing section (21) for evaluating the maximum amplitude of the output signal during the contraction in response to the index signal, a relaxation time analyzing section (22) for evaluating the output signal under a predetermined threshold, and a contraction time analyzing section (23) for evaluating the output signal over the predetermined threshold. The output signal evaluating unit (20) evaluates the output signal by using at least one of the sections.

Description

明 細 書  Specification
センサ出力信号評価システム  Sensor output signal evaluation system
技術分野  Technical field
[0001 ] 本発明は被測定者の弛緩及び収縮動作に基づくセンサの出力信号を評価す るセンサ出力信号評価システムに関し、 特に、 被測定者が指標信号に応じて 行った弛緩及び収縮動作に基づくセンサの出力信号と指標信号とを比較評価 するセンサ出力信号評価システムに関する。  [0001] The present invention relates to a sensor output signal evaluation system that evaluates an output signal of a sensor based on a relaxed and contracted motion of a measured person, and in particular, based on a relaxed and contracted motion performed by a measured person according to an index signal. The present invention relates to a sensor output signal evaluation system for comparing and evaluating a sensor output signal and an index signal.
背景技術  Background art
[0002] 人体の弛緩■収縮動作時の筋肉から発生する電気信号を測定するための筋 電計ゃ圧力計等のセンサは従来から種々存在している。  2. Description of the Related Art Various types of sensors such as electromyographs and pressure gauges for measuring electrical signals generated from muscles during relaxation and contraction of the human body have existed in the past.
[0003] 例えば筋電計を用いて筋肉の動作を検査する場合、 筋電計からの出力信号 は、 通常、 表面筋電計ゃ針筋電計により測定された電圧を時間軸に沿って表 示するものである。 従来ではこの出力信号の生波形や積分波形を、 測定者で ある医師等が視覚的に捉え、 経験則等に基づき主観的に評価を行っていた。  [0003] For example, when examining the movement of muscles using an electromyograph, the output signal from the electromyograph usually represents the voltage measured by the surface electromyograph or the needle electromyograph along the time axis. It is shown. In the past, the measured waveform of the output signal and the integrated waveform were visually perceived by doctors who were measurers, and subjective evaluations were made based on empirical rules.
[0004] 針筋電図法では、 その障害が神経原性のものなのか筋原性のものなのか、 急性のものなのか否か、 さらには慢性のものなのか否か等を判断するために 、 筋電計出力の評価は重要なものとなっている。  [0004] In needle electromyography, in order to determine whether the disorder is neurogenic or myogenic, whether it is acute, or whether it is chronic, etc. Evaluation of electromyograph output has become important.
[0005] また、 表面筋電図法では、 不随意運動の診断として、 振戦運動のタイプ分 けやジストニアやスパズム等の診断、 さらにはこれらの鑑別診断、 不随意収 縮筋の部位の特定等、 筋電計出力の評価の応用範囲は多岐にわたっている。 また、 表面筋電法は、 神経伝達検査の検出電位を示す誘発筋電図を作成する のにも用いられている。 さらに、 筋電計からの出力信号の積分波形は、 筋収 縮の相対的な度合いの判断材料にされる場合や、 筋肉トレーニングの状態を 評価する指標として用いられる場合もある。  [0005] In addition, in surface electromyography, involuntary movements are diagnosed as types of tremor, dystonia, spasm, etc., differential diagnosis of these, involuntary contraction muscle region identification, etc. The scope of application of EMG output evaluation is diverse. Surface electromyography is also used to create evoked electromyograms that show the detected potential of neurotransmission tests. Furthermore, the integrated waveform of the output signal from the electromyograph may be used as a material for determining the relative degree of muscle contraction, or may be used as an index for evaluating the state of muscle training.
[0006] さらに、 会陰筋群の測定を行うためには、 膣内に挿入するプローブを有す る圧力計等も用いられている。 これは、 筋電計出力と膣圧とが高い相関関係 を有するためである。 [0007] このように、 筋肉からの重要な情報を示す筋電計ゃ圧力計等のセンサから の出力信号の評価方法としては、 最も単純には、 センサの出力信号の生波形 を評価者が見て主観的に評価する手法である。 その他にも、 センサの出力信 号の評価方法は、 従来から種々開発検討されてきている。 例えば、 センサか らの出力信号を積分して評価するもの (特許文献 1 _3等) 、 F FT等の周 波数解析を用いて評価するもの (特許文献 4, 5等) 、 検出値と目標値の誤 差を求める誤差検出手段を用いてフィードバック制御するもの (特許文献 6 等) 等があった。 [0006] Further, in order to measure the perineal muscle group, a pressure gauge having a probe inserted into the vagina is used. This is because the electromyograph output and the vaginal pressure have a high correlation. [0007] As described above, as an evaluation method of an output signal from a sensor such as an electromyograph or a pressure gauge that indicates important information from the muscle, the evaluator can simply calculate the raw waveform of the sensor output signal. This is a method of subjective evaluation. In addition, various methods for evaluating the sensor output signal have been studied. For example, one that integrates and evaluates output signals from sensors (Patent Document 1_3, etc.), one that evaluates using frequency analysis such as FFT (Patent Documents 4, 5, etc.), detection value and target value There are some which perform feedback control using an error detection means for obtaining the error (Patent Document 6, etc.).
[0008] 特許文献 1 :特開 2005— 278706  [0008] Patent Document 1: JP-A-2005-278706
特許文献 2:特開 2005— 074063  Patent Document 2: JP 2005-074063
特許文献 3:特開 2003— 230545  Patent Document 3: JP 2003-230545
特許文献 4:特開 2004 _ 2021 96  Patent Document 4: JP-A-2004-2021 96
特許文献 5:特開 2003 _ 1 69782  Patent Document 5: Japanese Patent Laid-Open No. 2003 _ 1 69782
特許文献 6:特開平 1 1—253502  Patent Document 6: JP-A-11-253502
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] しかしながら、 被測定者の弛緩及び収縮動作を測定するセンサは、 電極や プローブの当接位置や挿入位置によって、 その出力信号の強度が大きく変化 してしまうため、 出力信号の波形の目視による主観的な評価はあまり意味の ないものであった。 また、 筋力トレーニングの前後において、 トレーニング の効果を測定しょうとした場合、 積分波形や F FT解析、 誤差検出等を行う 従来の種々の評価方法では、 検査時の測定結果とトレーニング後の測定結果 において基準となるものがなく、 これらを定量的に評価することはできなか つた。 さらに、 被測定者の測定時の体調等によっても出力信号の強度が大き く変化してしまうので、 センサの出力信号を客観的且つ定量的に評価可能な 手法は存在しなかった。  However, the sensor that measures the relaxation and contraction movements of the measurement subject greatly changes the intensity of the output signal depending on the contact position or insertion position of the electrode or probe. The subjective evaluation by did not make much sense. In addition, when trying to measure the effect of training before and after strength training, the conventional various evaluation methods that perform integrated waveforms, FFT analysis, error detection, etc. There were no standards, and these could not be evaluated quantitatively. Furthermore, since the intensity of the output signal varies greatly depending on the physical condition of the subject during measurement, there was no method that can objectively and quantitatively evaluate the sensor output signal.
[0010] また、 針筋電計ゃ誘発筋電計の場合、 用いるプローブとして針電極が用い られている。 この針電極を経皮的に筋組織内に刺入することで、 筋組織から の筋電位を測定したり、 末梢神経に電気刺激を与えたりする。 このような検 査は侵襲性があり、 強い痛みを伴うものである。 したがって、 何度も測定さ れるのは被測定者にとって非常に酷であったにもかかわらず、 従来の手法で は、 定量的な評価ができなかったため、 継続的に何度も測定することで、 傾 向をつかむしかなかった。 [0010] Further, in the case of a needle electromyograph or an induced electromyograph, a needle electrode is used as a probe to be used. By inserting this needle electrode into the muscle tissue percutaneously, Measure myoelectric potentials and give electrical stimulation to peripheral nerves. Such tests are invasive and painful. Therefore, even though it was very harsh for the subject to measure many times, the conventional method could not make a quantitative evaluation. I had to grab the inclination.
[001 1 ] 本発明は、 斯かる実情に鑑み、 センサの出力信号を客観的且つ定量的に評 価可能なセンサ出力信号評価システムを提供しょうとするものである。 課題を解決するための手段  [001 1] In view of such circumstances, the present invention is intended to provide a sensor output signal evaluation system capable of objectively and quantitatively evaluating a sensor output signal. Means for solving the problem
[0012] 上述した本発明の目的を達成するために、 本発明によるセンサ出力信号評 価システムは、 被測定者がこれに応じて弛緩及び収縮動作を行うための指標 となる指標信号を発生する指標信号発生部と、 センサの出力信号と指標信号 との近似性を評価する出力信号評価部と、 を具備するものである。 そして、 出力信号評価部は、 指標信号に応じた単位時間の出力信号の最大振幅を評価 する最大振幅解析部と、 所定の閾値を下回る出力信号を評価する弛緩時解析 部と、 所定の閾値を上回る出力信号を評価する収縮時解析部と、 の少なくと も何れか 1つを用いて出力信号を評価する。  [0012] In order to achieve the above-described object of the present invention, the sensor output signal evaluation system according to the present invention generates an index signal that serves as an index for the measurement subject to perform a relaxation and contraction operation in response thereto. An index signal generation unit; and an output signal evaluation unit that evaluates the approximation between the sensor output signal and the index signal. The output signal evaluation unit includes a maximum amplitude analysis unit that evaluates the maximum amplitude of the output signal per unit time according to the index signal, a relaxation time analysis unit that evaluates an output signal that is below a predetermined threshold, and a predetermined threshold. Evaluate the output signal using a systolic analyzer that evaluates the output signal above and at least one of.
[0013] ここで、 出力信号評価部は、 最大振幅解析部と弛緩時解析部と収縮時解析 部のすべてを組み合わせて出力信号を評価しても良い。  [0013] Here, the output signal evaluation unit may evaluate the output signal by combining all of the maximum amplitude analysis unit, the relaxation time analysis unit, and the contraction time analysis unit.
[0014] また、 出力信号評価部は、 最大振幅解析部と弛緩時解析部と収縮時解析部 の評価結果に重み付けをして出力信号を評価しても良い。  [0014] Further, the output signal evaluation unit may evaluate the output signal by weighting the evaluation results of the maximum amplitude analysis unit, the relaxation analysis unit, and the contraction analysis unit.
[0015] さらに、 出力信号評価部は、 出力信号のパワースぺクトルを評価する周波 数スぺクトル解析部を有しても良い。  [0015] Further, the output signal evaluation unit may include a frequency spectrum analysis unit that evaluates the power spectrum of the output signal.
[0016] ここで、 周波数スぺクトル解析部は、 低周波帯域におけるパワースぺク卜 ルを用いれば良い。  [0016] Here, the frequency spectrum analysis unit may use a power spectrum in a low frequency band.
[0017] また、 弛緩時解析部は、 所定の閾値を下回る出力信号の平均値を用いれば 良い。  [0017] The relaxation time analysis unit may use an average value of output signals that are below a predetermined threshold.
[0018] また、 弛緩時解析部は、 所定の閾値を下回る出力信号のばらつきを用いて も良い。 [0019] さらに、 弛緩時解析部は、 所定の閾値を下回る出力信号の極大値列を用い て弛緩時の指数減衰関数の回帰分析を行っても良い。 [0018] In addition, the relaxation time analysis unit may use a variation in the output signal that falls below a predetermined threshold. [0019] Further, the relaxation time analysis unit may perform regression analysis of an exponential decay function at the time of relaxation using a maximum value sequence of output signals that are below a predetermined threshold.
[0020] また、 収縮時解析部は、 所定の閾値を上回る出力信号の平均値を用いれば 良い。 [0020] Further, the systolic analysis unit may use an average value of output signals exceeding a predetermined threshold.
[0021 ] また、 収縮時解析部は、 所定の閾値を上回る出力信号のばらつきを用いて も良い。  [0021] Further, the systolic analysis unit may use a variation in the output signal exceeding a predetermined threshold.
[0022] また、 収縮時解析部は、 所定の閾値を上回る出力信号の極大値列を用いて 収縮継続時間を解析しても良い。  [0022] Further, the contraction analysis unit may analyze the contraction duration using a maximum value sequence of output signals exceeding a predetermined threshold.
[0023] さらに、 収縮時解析部は、 所定の閾値を上回る出力信号の極大値列を用い て収縮時の指数減衰関数の回帰分析を行っても良い。 [0023] Further, the systolic analysis unit may perform regression analysis of an exponential decay function during contraction using a maximum value sequence of output signals exceeding a predetermined threshold.
[0024] また、 指標信号は、 その最大値及び最小値が被測定者の最大収縮時及び最 大弛緩時の出力信号に基づき決定されれば良い。 [0024] In addition, the maximum and minimum values of the index signal may be determined based on the output signals at the time of maximum contraction and maximum relaxation of the measurement subject.
[0025] また、 指標信号は、 その最大値が最大収縮時の出力信号から所定量だけ低 い大きさに決定されても良い。 [0025] Further, the index signal may be determined such that its maximum value is lower by a predetermined amount than the output signal at the time of maximum contraction.
[0026] ここで、 指標信号は、 パルス波であれば良い。 また、 音であっても良い。 [0026] Here, the indicator signal may be a pulse wave. It may also be a sound.
発明の効果  The invention's effect
[0027] 本発明のセンサ出力信号評価システムには、 客観的且つ定量的にセンサか らの出力信号を評価できるという利点がある。 このため、 測定時期や測定環 境にかかわらず、 常に安定した診断等を行うことも可能となる。 したがって 、 何度も測定する必要もなくなり、 被測定者の負担も軽くなる。  [0027] The sensor output signal evaluation system of the present invention has an advantage that the output signal from the sensor can be objectively and quantitatively evaluated. For this reason, it is possible to always perform stable diagnosis regardless of the measurement timing and measurement environment. Therefore, it is no longer necessary to measure repeatedly, and the burden on the subject is reduced.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 以下、 本発明を実施するための最良の形態を図示例と共に説明する。 図 1 は、 本発明のセンサ出力信号評価システムの全体的な概要を説明するための ブロック図である。 本発明のセンサ出力信号評価システムは、 主に指標信号 発生部 1 0と、 出力信号評価部 2 0とに分けられる。 指標信号発生部 1 0は 、 被測定者に対して指標となる指標信号を発生するものである。 被測定者は 、 この指標信号に応じて測定部位の弛緩及び収縮動作を行う。 なお、 被測定 者は測定部位に筋電計ゃ圧力計の電極やプローブ等が提供された者であり、 より具体的には、 例えば嚥下障害や尿失禁、 ジストニア等の症状を持つ患者 等である。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a block diagram for explaining the overall outline of the sensor output signal evaluation system of the present invention. The sensor output signal evaluation system of the present invention is mainly divided into an index signal generation unit 10 and an output signal evaluation unit 20. The index signal generator 10 generates an index signal that serves as an index for the person to be measured. The subject performs the relaxation and contraction of the measurement site in accordance with the index signal. The person to be measured is a person who was provided with an electromyograph or pressure gauge electrode or probe at the measurement site. More specifically, for example, patients with symptoms such as dysphagia, urinary incontinence and dystonia.
[0029] 指標信号発生部 1 0から出力される指標信号は、 例えば所定の周期のパル ス波ゃ音等である。 指標信号がパルス波の場合、 被測定者には、 例えばパル ス波がローのときに弛緩し、 ハイのときに収縮するように動作してもらうよ うにする。 また、 指標信号が音の場合には、 例えば音が発せられている時に 収縮し、 音が止まったところで弛緩するように動作してもらえば良い。 本明 細書においては、 以下の説明では基本的に指標信号としてパルス波を用いた ものについて説明するが、 本発明はこれに限定されず、 被測定者が弛緩及び 収縮動作をするのに指標となるものであれば、 正弦波や三角波等、 あらゆる ものが利用可能である。  The index signal output from the index signal generator 10 is, for example, a pulse wave sound having a predetermined period. If the indicator signal is a pulse wave, the subject should be operated to relax when the pulse wave is low and contract when it is high. Further, when the index signal is a sound, for example, it may be operated so as to contract when the sound is emitted and relax when the sound stops. In the present description, the following description will basically describe a case where a pulse wave is used as an index signal. However, the present invention is not limited to this, and an index is used for the subject to perform relaxation and contraction operations. Anything can be used, such as a sine wave or a triangular wave.
[0030] 指標信号発生部 1 0から出力される指標信号は、 その最大値及び最小値は 、 被測定者の最大収縮時及び最大弛緩時のセンサ出力に基づき決定されれば 良い。 すなわち、 センサ装着後、 被測定者に可能な限り測定部位の筋肉を収 縮してもらったときのセンサ出力と、 平常時のセンサ出力とを予め記録して おく。 なお、 センサ出力については、 生波形を基準にしても良いし、 その出 力を積分した積分波形を基準にしても良い。 そして、 この出力に基づき、 例 えば最大収縮時の出力信号から所定量だけ低い大きさに指標信号の最大値を 決定する。 例えば、 最大収縮時の出力信号から 8 0 %低い値を指標信号の最 大値とする。 より具体的には、 例えば筋電計を用いた測定の場合、 筋電計の 出力が最大収縮時に 2 . 5 Vを示し、 最大弛緩時に 1 Vを示したときには、 指標信号は、 最大値が 2 Vで最小値が 1 Vのパルス波となるように設定する 。 また、 パルス波は、 所定の周期、 例えば 1 2秒周期となるように設定すれ ば良い。 このように指標信号を設定することで、 センサの当接位置や挿入位 置等、 そのとき測定環境に影響されない被測定者の最大収縮時の出力を基準 とする指標信号を提供することが可能となる。  [0030] The maximum and minimum values of the index signal output from the index signal generator 10 may be determined based on the sensor output at the time of maximum contraction and maximum relaxation of the measurement subject. That is, after the sensor is mounted, the sensor output when the measurement subject contracts the muscle of the measurement site as much as possible and the sensor output at normal times are recorded in advance. The sensor output may be based on a raw waveform or an integrated waveform obtained by integrating the output. Then, based on this output, for example, the maximum value of the index signal is determined to be lower by a predetermined amount from the output signal at the time of maximum contraction. For example, the maximum value of the indicator signal is 80% lower than the output signal at maximum contraction. More specifically, for example, in the case of measurement using an electromyograph, when the output of the electromyograph shows 2.5 V at the maximum contraction and 1 V at the maximum relaxation, the indicator signal has the maximum value. Set to a pulse wave with a minimum value of 1 V at 2 V. The pulse wave may be set to have a predetermined period, for example, a period of 12 seconds. By setting the index signal in this way, it is possible to provide an index signal based on the output at the maximum contraction of the measured person, which is not affected by the measurement environment, such as the sensor contact position and insertion position. It becomes.
[0031 ] 次に、 被測定者が上記のように決定された指標信号に応じて弛緩及び収縮 動作を行ったときのセンサからの出力信号は、 移動積分部 1 1で例えば 0 . 1秒毎に積分され、 積分波形が生成される。 この積分波形は、 指標信号発生 部 1 0の指標信号を基準に、 周期毎に、 例えば上記の例では 1 2秒毎に、 ス プリッタ 1 2で分割される。 [0031] Next, the output signal from the sensor when the measurement subject performs the relaxation and contraction operations in accordance with the index signal determined as described above is, for example, 0. Integration is performed every second to generate an integrated waveform. This integrated waveform is divided by the splitter 12 every period, for example, every 12 seconds in the above example, based on the index signal of the index signal generator 10.
[0032] ここで、 被測定者が指標信号に応じて弛緩及び収縮動作を行った場合の筋 電計からの生波形及びその積分波形、 さらにはその積分波形を基にした指標 信号の各一例を図 2に示す。 図 2 ( a ) は、 指標信号であるパルス波である 。 図 2 ( b ) は、 この指標信号に応じて弛緩及び収縮動作を行ったときの筋 電計からの生波形であり、 従来ではこの生波形の振幅を見て筋肉が正しく動 いているか否かを測定者の主観で評価していたものである。 図 2 ( c ) は、 図 2 ( b ) の生波形を積分した波形である。 なお、 指標信号及び出力信号は 、 図 2 ( d ) に示すように、 オーバーラップ表示してリアルタイムに被測定 者へ示せば良い。 このように、 筋電計の出力信号の積分波形は、 弛緩時には 低い電圧を示し、 収縮時には高い電圧を示すものである。 なお、 図 2のダラ フは、 横軸は時間で縦軸は電圧であるが、 各値には特に意味はなく、 振幅や パルス幅等は図示例のものに限定されるものではない。  [0032] Here, each example of the raw waveform from the electromyograph and its integrated waveform when the measurement subject performs relaxation and contraction motions in response to the index signal, and further each of the index signal based on the integrated waveform Figure 2 shows. Figure 2 (a) shows a pulse wave that is an indicator signal. Fig. 2 (b) shows the raw waveform from the electromyograph when the relaxation and contraction motions are performed according to this index signal.Conventionally, whether the muscle is moving correctly by looking at the amplitude of this raw waveform. Was evaluated by the subjectivity of the measurer. Figure 2 (c) shows the waveform obtained by integrating the raw waveform of Figure 2 (b). As shown in Fig. 2 (d), the indicator signal and the output signal may be displayed in an overlapped manner and shown to the subject in real time. Thus, the integrated waveform of the electromyograph output signal shows a low voltage when relaxed and a high voltage when contracted. In the graph of FIG. 2, the horizontal axis is time and the vertical axis is voltage. However, each value has no particular meaning, and the amplitude, pulse width, etc. are not limited to those shown in the illustrated example.
[0033] このようにして得られた図 2 ( c ) に示すような出力信号を、 周期毎にス プリッタ 1 2で分配して、 本発明の出力信号評価部 2 0へ入力する。 出力信 号評価部 2 0は、 主に最大振幅解析部 2 1と弛緩時解析部 2 2と収縮時解析 部 2 3と周波数スペクトル解析部 2 4とからなるものである。 なお、 本発明 のセンサ出力信号評価システムにおける出力信号評価部は、 必ずしも上記の すべての解析部を必要とするものではなく、 評価システムの用途や構成等に よリ、 少なくとも上記の何れか 1つの解析部が含まれていれば評価システム として機能するものである。 以下、 本発明のセンサ出力信号評価システムの 好適実施例に関し、 図 2 ( c ) の積分波形の 1つのパルス波形の拡大図であ る図 3を用いながら、 各評価部についてその機能を詳細に説明する。  [0033] The output signal as shown in Fig. 2 (c) obtained in this manner is distributed by the splitter 12 for each period and input to the output signal evaluation unit 20 of the present invention. The output signal evaluation unit 20 mainly includes a maximum amplitude analysis unit 21, a relaxation analysis unit 22, a contraction analysis unit 23, and a frequency spectrum analysis unit 24. Note that the output signal evaluation unit in the sensor output signal evaluation system of the present invention does not necessarily require all the above-described analysis units, and at least one of the above-described ones depends on the use and configuration of the evaluation system. If an analysis part is included, it functions as an evaluation system. Hereinafter, regarding a preferred embodiment of the sensor output signal evaluation system of the present invention, the function of each evaluation unit will be described in detail with reference to FIG. 3 which is an enlarged view of one pulse waveform of the integrated waveform of FIG. 2 (c). explain.
[0034] 最大振幅解析部 2 1は、 指標信号に応じた単位時間の出力信号の最大振幅 を評価,検出するものである。 図 3に示されるように、 スプリッタ 1 2で単 位時間毎に分割された各々の出力信号の最も高くなつたピーク電圧が、 周期 毎、 すなわち、 パルス毎に記録される。 最大振幅解析部 2 1により、 指標信 号のハイと同じ程度の出力信号が得られているか否かが解析される。 [0034] The maximum amplitude analysis unit 21 evaluates and detects the maximum amplitude of the output signal per unit time according to the index signal. As shown in Fig. 3, the highest peak voltage of each output signal divided by the unit time by the splitter 12 is the period. Recorded every time, that is, every pulse. The maximum amplitude analyzer 21 analyzes whether or not an output signal of the same level as the index signal high is obtained.
[0035] 弛緩時解析部 2 2は、 被測定者の弛緩時のセンサの出力信号を解析するも のである。 図示例では、 弛緩時解析部 2 2は、 出力信号の平均値を検出する 平均値検出部 1 3からの平均値を用いて、 これを下回る出力信号を抽出する 弛緩時データ抽出部 3 1と、 弛緩時データ抽出部 3 1の出力信号の平均値を 検出する弛緩時平均値検出部 3 2とからなる。 これにより、 被測定者が弛緩 時に、 指標信号のローと同じ程度の出力信号が得られているか否かが解析さ れる。 The relaxation analysis unit 22 analyzes the output signal of the sensor when the measurement subject is relaxed. In the illustrated example, the relaxation time analysis unit 2 2 uses the average value from the average value detection unit 1 3 that detects the average value of the output signal, and extracts an output signal that falls below this, and the relaxation time data extraction unit 3 1 The relaxation time data extraction unit 31 includes a relaxation time average value detection unit 32 that detects the average value of the output signal. As a result, it is analyzed whether or not an output signal of the same level as the low index signal is obtained when the measurement subject is relaxed.
[0036] 収縮時解析部 2 3は、 被測定者の収縮時のセンサの出力信号を解析するも のである。 図示例では、 収縮時解析部 2 3は、 出力信号の平均値を検出する 平均値検出部 1 3からの平均値を用いて、 これを上回る出力信号の極大値列 を検出する極大値列検出部 3 5と、 極大値列検出部 3 5の出力信号を用いて 収縮時の継続時間を検出する収縮継続時間検出部 3 6と、 極大値列検出部 3 5の出力信号を用いて極大値列の指数減衰関数の回帰分析を行う回帰分析部 3 7とからなる。 収縮継続時間検出部 3 6と最大振幅解析部 2 1により、 指 標信号のハイと同じ程度の時間継続同じ程度の出力信号で収縮できているか 否かが解析される。  [0036] The systolic analysis unit 23 analyzes the output signal of the sensor when the measurement subject contracts. In the example shown in the figure, the systolic analysis unit 2 3 uses the average value from the average value detection unit 1 3 that detects the average value of the output signal, and detects the maximum value sequence that detects the maximum value sequence of the output signal that exceeds this value. 3 5 and the maximum value sequence detection unit 3 5 Using the output signal of the maximum value sequence detection unit 3 5 and the maximum value sequence detection unit 3 5 And a regression analysis unit 37 that performs regression analysis of the exponential decay function of the column. The contraction duration detection unit 36 and the maximum amplitude analysis unit 21 analyze whether or not contraction is possible with the same output signal for the same duration as the high level of the indicator signal.
[0037] なお、 平均値検出部 1 3に関しては、 必ずしも出力信号の平均値を検出す るものである必要はなく、 所定の閾値を設けて出力信号のハイ側とロー側を 分離できるものであれば如何なるものであっても構わず、 弛緩時解析部 2 2 が弛緩時の信号を、 収縮時解析部 2 3が収縮時の信号をそれぞれ解析できる ように振リ分けるものであれば良い。  It should be noted that the average value detection unit 13 does not necessarily detect the average value of the output signal, and can provide a predetermined threshold value to separate the high side and the low side of the output signal. Any device may be used as long as it can distribute signals so that the relaxation analysis unit 22 can analyze the relaxation signal and the contraction analysis unit 23 can analyze the contraction signal.
[0038] 極大値列検出部 3 5は、 積分波形の平均値を上回る部分のピーク (極大値 ) の電圧を平均値が下回るまで順に検出するものである。 収縮継続時間検出 部 3 6は、 極大値列検出部 3 5の出力信号から、 最初の極大値から最後の極 大値までの時間を検出するものである。 なお、 パルス状の積分波形の立ち上 がリ及び立ち下がリ部分の誤差を考慮して、 最初の極大値の次の極大値から 最後の極大値の手前の極大値までの時間を検出するようにしても構わない。 The maximum value string detection unit 35 detects the voltage of the peak (maximum value) of the portion exceeding the average value of the integrated waveform until the average value falls below. The contraction duration detection unit 36 detects the time from the first maximum value to the last maximum value from the output signal of the maximum value string detection unit 35. In consideration of the error at the rise and fall of the pulse-shaped integrated waveform, the maximum value next to the first maximum is taken into account. You may make it detect the time to the maximum value before the last maximum value.
[0039] 回帰分析部 3 7は、 極大値列検出部 3 5で得られた極大値列の 「傾き」 を 検出するものである。 通常、 被測定者が指標信号に追従するように筋を収縮 させるときに、 指標信号の立ち上がり時に過大に反応しすぎてその後筋力を 調整して右下がりな出力信号となる傾向がある。 また、 筋力の弱まった被測 定者が収縮動作を行うと、 収縮動作中にも関わらず、 時間と共に徐々に収縮 力が弱まっていくため、 筋電計の収縮時の出力は右下がりな出力信号となる 。 しかしながら、 正常な筋運動が可能な被測定者の場合には、 指標信号に応 じてほぼ水平な出力信号となる。 なお、 この右下がりな出力信号となる場合 、 筋電図の積分波形は減衰振動をすることになる。 回帰分析部 3 7では、 極 大値列検出部 3 5によりこの振動成分を省いた極大値列のみを対象としてお リ、 減衰特性のみを分析できる。 したがって、 回帰分析部 3 7では、 この収 縮時の極大値列を用いて、 指数減衰曲線による回帰分析を行うことにより、 例えば傾きに対応する形状因子を求めることで、 一定時間継続して同じ力で 収縮できているか否かが解析される。 具体的には、 例えば以下の減衰曲線を 回帰し、 )8を形状因子として求め、 この値が小さければ小さいほど追従波形 が平坦化していることが解析可能となる。  The regression analysis unit 37 detects the “slope” of the maximum value sequence obtained by the maximum value sequence detection unit 35. Normally, when the subject contracts the muscle so that it follows the index signal, it tends to react excessively when the index signal rises, and then adjusts the muscle strength to produce a right-downward output signal. In addition, when a subject with weak muscle strength performs a contraction operation, the contraction force gradually decreases with time, even during the contraction operation. Become a signal. However, in the case of a measured person capable of normal muscle movement, the output signal is almost horizontal according to the index signal. In addition, when this output signal falls to the right, the integrated waveform of the electromyogram will oscillate. In the regression analysis unit 37, only the maximum value sequence from which the vibration component is eliminated by the maximum value sequence detection unit 35 can be analyzed, and only the damping characteristic can be analyzed. Therefore, the regression analysis unit 37 performs the regression analysis using an exponential decay curve by using the maximum value sequence at the time of contraction, for example, by obtaining the shape factor corresponding to the slope, thereby continuing the same for a certain period of time. It is analyzed whether it can contract by force. Specifically, for example, the following attenuation curve is regressed, and) 8 is obtained as a shape factor. The smaller this value, the more the follow-up waveform can be analyzed.
C e X p [ - β t ]  C e X p [-β t]
但し、 Cは最大振幅の回帰値、 tは時間である。  Where C is the maximum amplitude regression value and t is time.
[0040] なお、 形状因子^は、 指標信号のパルス波と同じように平坦に追従すべき ところからどのくらいかけ離れているかを意味するものであり、 )8は減衰の 勾配に相当するものである。 したがって、 上式で )8が小さいほど緩やかな勾 配となり平坦に近く、 大きいほど急激な勾配となり平坦ではないということ が分析できる。 [0040] Incidentally, the form factor ^ means how far away from the flat follow-up as with the pulse wave of the index signal, and 8) corresponds to the slope of attenuation. Therefore, it can be analyzed that the smaller the (8) in the above equation, the smaller the gradient and the closer it is to flat, and the larger the (8), the steeper the slope and the unevenness.
[0041 ] 周波数スぺクトル解析部 2 4は、 出力信号の周波数をスぺクトル解析する ものである。 図示例では、 周波数スペクトル解析部 2 4は、 F F T解析部 3 8と、 ローパスフィルタ部 3 9とからなる。 周波数スペクトル解析部 2 4で は、 F F T解析部 3 8で周波数別のパワースペクトルを解析し、 ローバスフ ィルタ部 39で具体的には例えば 3 H Z以下のパワースぺクトルの平均値に 着目することで、 安定した弛緩及び収縮運動が行えているか否かが解析され る。 [0041] The frequency spectrum analyzer 24 analyzes the frequency of the output signal. In the illustrated example, the frequency spectrum analysis unit 24 includes an FFT analysis unit 3 8 and a low-pass filter unit 39. In the frequency spectrum analysis unit 24, the FFT analysis unit 38 analyzes the power spectrum for each frequency and By specifically in filter unit 39 focuses on the average value of for example 3 H Z following Pawasu Bae vector, whether stable relaxation and shrinkage movements are performed that Ru is analyzed.
[0042] 上記の各解析部で解析された結果は、 データストック部 42にそれぞれ蓄 積される。 そして、 バイオフィードバックトレーニング等を行う前のデータ を例えば累積して蓄積するトレーニング前データベース部 45を用いて、 卜 レーニングを行う前の状態と後の状態を比較できるようにし、 これらを用い て診断部 46で診断する。 診断部では、 各解析部の解析結果をそれぞれ表示 するようにしても良いし、 必要により生波形や積分波形を表示するようにし ても良い。 また、 トレーニング前後のデータのばらつきを示す標準偏差 (び ) を表示するようにし、 ゼロに近づけば近づくほどトレーニング成果が現れ ていると診断するようにしても良い。  [0042] The results analyzed by the above analysis units are stored in the data stock unit 42, respectively. Then, using the pre-training database unit 45 that accumulates and accumulates data before biofeedback training, for example, 卜 enables comparison between the state before training and the state after training. Diagnose with 46. The diagnosis unit may display the analysis result of each analysis unit, or may display a raw waveform or an integrated waveform as necessary. It is also possible to display a standard deviation (and) indicating the variation in data before and after training, and to diagnose that the training result appears as it approaches zero.
[0043] 以下、 指標信号に追従した運動をした被測定者に対して、 センサ、 特に筋 電計を用いて測定したときの各解析部の解析結果を、 各解析部の出力結果等 を用いてより具体的に説明する。 測定方法としては、 骨盤底筋群筋電計 (M e g a E l e c t r o n i c s L t d製の F em i S c a n のプロ一 ブを被測定者の膣部に挿入し、 指標信号に合わせて骨盤底筋群の収縮と弛緩 を繰り返し行わせた。 具体的には、 予め被測定者の最大収縮時の出力信号の 80%の振幅に設定された 1周期 1 2秒のパルス波を指標信号発生部 1 0か ら発生させ、 収縮 6秒間及び弛緩 6秒間の繰リ返し運動を 4回連続で行わせ 、 これを 6セット行った。 筋電計からの出力信号を移動積分部 1 1にて積分 し、 この積分波形をパルス波の周期毎にスプリツタ 1 2で分割した。 これら の積分波形を独立した試行によるものと捉え、 それぞれ各解析部で解析し、 バイオフィードバックトレーニングの前後で統計的に比較した。 なお、 ここ ではウィルコクソンの符号順位検定を用い、 有意水準を 0. 05とした。  [0043] Hereinafter, the measurement results of each analysis unit when measured using a sensor, particularly an electromyograph, and the output results of each analysis unit, etc. are used for the subject who exercises following the index signal. Will be described in more detail. As the measurement method, a pelvic floor muscle group electromyograph (Fem i Scan probe made by Mega Electronics Ltd. was inserted into the vagina of the subject and the pelvic floor muscle group was matched to the index signal. Specifically, a pulse wave of 1 cycle 1 2 seconds set to an amplitude of 80% of the output signal at the time of maximum contraction of the measurement subject is generated as an indicator signal generator 1 0 This was repeated 6 times for 6 seconds for contraction and 6 seconds for relaxation, and this was performed for 6 sets.The output signal from the electromyograph was integrated by the moving integration unit 1 1, This integrated waveform was divided for each period of the pulse wave by splitters 12. These integrated waveforms were regarded as independent trials, analyzed by each analysis unit, and statistically compared before and after biofeedback training. Here, Wilcoxon's sign rank test is used. The significance level was 0.05.
[0044] そして、 腹圧性尿失禁患者に対するバイオフィードバックトレーニングは 、 F em i S e a nのプローブを用いて、 膣部収縮 6秒間と弛緩 6秒間を 1 2回、 3セットを 1週間単位で 1 2週間行った。 なお、 本発明は上記の測定 方法や測定回数、 バイオフィードバックトレーニング方法等に限定されるも のではなく、 上述の説明はあくまでも一例である。 [0044] And biofeedback training for patients with stress urinary incontinence using the Fem i Sean probe, vaginal contraction 6 seconds and relaxation 6 seconds 1 2 times, 3 sets 1 week by 1 2 I went for a week. In the present invention, the above measurement It is not limited to the method, the number of measurements, the biofeedback training method, etc. The above description is merely an example.
[0045] さて、 このようにして測定された解析結果について、 以下、 各解析部の出 力結果を示す図を用いて説明する。 なお、 各図中、 P r eはバイオフィード バック卜レーニング前の出力データ、 P o s tは卜レーニング後の出力デー タを意味する。  [0045] Now, the analysis results measured in this way will be described below with reference to the drawings showing the output results of the respective analysis units. In each figure, Pre represents output data before biofeedback training and Post represents output data after training.
[0046] 図 4は、 最大振幅解析部 2 1の出力結果の一例を示すものである。 図 4は 、 縦軸は振幅を表している。 同図より、 トレーニング前後で最大振幅が抑え られていることが分かる。 すなわち、 トレーニング前は指標信号のパルス波 のハイに追従して収縮動作をしょうとしてもうまくコントロールできず筋肉 を収縮させすぎてしまい、 リンギングのような波形となっていたものが、 卜 レーニング後にはパルス波にうまく追従するようコントロールできるように なり、 リンギングが抑えられていることが分かる。  FIG. 4 shows an example of the output result of the maximum amplitude analysis unit 21. In Fig. 4, the vertical axis represents the amplitude. The figure shows that the maximum amplitude is suppressed before and after training. In other words, before training, even if you try to perform contraction motion following the high of the pulse wave of the index signal, you could not control well and it caused the muscle to contract too much, and it was like a ringing waveform. It can be controlled to follow the pulse wave well and the ringing is suppressed.
[0047] 図 5は、 弛緩時解析部 2 2の出力結果の一例を示すものである。 図 5は、 縦軸は振幅を表している。 同図より、 トレーニング前後で弛緩時の平均振幅 が下がっていることが分かる。 すなわち、 弛緩時に筋収縮信号が出ていない ということになリ、 被測定者の筋制御機能が向上していることが分かる。  FIG. 5 shows an example of the output result of the relaxation time analysis unit 22. In Fig. 5, the vertical axis represents the amplitude. From the figure, it can be seen that the average amplitude during relaxation decreases before and after training. In other words, the muscle contraction signal is not output at the time of relaxation, which indicates that the muscle control function of the subject is improved.
[0048] 図 6は、 収縮時解析部 2 3の収縮継続時間検出部 3 6の出力結果の一例を 示すものである。 図 6は、 縦軸は時間を表している。 同図より、 トレーニン グ前後で収縮時の継続時間が増えておリ、 よリ持続的な筋運動ができるよう になっていることが分かる。  FIG. 6 shows an example of an output result of the contraction duration detection unit 36 of the contraction time analysis unit 23. In Fig. 6, the vertical axis represents time. From the figure, it can be seen that the duration of contraction increases before and after training, and that more continuous muscle movement is possible.
[0049] 図 7は、 収縮時解析部 2 3の回帰分析部 3 7の出力結果の一例を示すもの である。 図 7は、 縦軸は極大値列の傾きに対応する形状因子^の値を表して いる。 同図より、 トレーニング前後で形状因子の値が減っているため、 指標 信号のハイに追従した出力波形の傾きが平坦化しておリ、 被測定者の筋制御 機能が向上していることが分かる。  FIG. 7 shows an example of an output result of the regression analysis unit 37 of the contraction time analysis unit 23. In Fig. 7, the vertical axis represents the value of the form factor ^ corresponding to the slope of the local maximum sequence. The figure shows that the shape factor value decreases before and after training, so the slope of the output waveform that follows the high of the indicator signal is flattened, and the muscle control function of the subject is improved. .
[0050] 図 8は、 周波数スぺクトル解析部 2 4の出力結果の一例を示すものである 。 図 8は、 縦軸はパワースぺクトルの平均値を表している。 同図より、 低周 波領域のうち、 O H Zのパワースぺクトルがトレーニング前後で上がってお リ、 逆にそれ以上の周波数で下がっていることが分かる。 すなわち、 O H z という低周波成分が増えたということは、 それだけばらつきの少ない出力波 形が得られているということになるため、 より安定した弛緩及び収縮運動が できるようになつていることが分かる。 FIG. 8 shows an example of the output result of the frequency spectrum analysis unit 24. In Fig. 8, the vertical axis represents the average value of the power spectrum. From the figure, low frequency In the wave region, it can be seen that the power spectrum of OHZ has risen before and after training, and has fallen at a higher frequency. In other words, the increase in the low-frequency component OH z means that an output waveform with less variation is obtained, which means that more stable relaxation and contraction movements can be achieved. .
[0051 ] このように、 図 1に示した出力信号評価部 2 0では、 種々の解析を行い、 これらを総合的に用いることで指標信号と出力信号が如何に近似しているか が評価可能となる。 また、 必要により個々に用いて個々の解析結果のみに着 目して評価しても勿論構わない。 例えば最大振幅解析部 2 1と弛緩時解析部 2 2と収縮時解析部 2 3の回帰分析部 3 7と収縮時解析部 2 3の収縮継続時 間検出部 3 6の解析結果を用いて、 測定されたセンサからの出力信号が如何 に指標信号と近似しているか評価する場合には、 各解析部からの結果をそれ ぞれ数値等で表示することで、 どの部分が近似していてどの部分が近似して いないのかを明らかにしても良い。  [0051] As described above, the output signal evaluation unit 20 shown in FIG. 1 can perform various analyzes and comprehensively use them to evaluate how approximate the index signal and the output signal are. Become. Of course, it is possible to use them individually if necessary and focus on only the analysis results. For example, using the analysis results of the maximum amplitude analysis unit 2 1, relaxation analysis unit 2 2 and contraction analysis unit 2 3 regression analysis unit 3 7 and contraction analysis unit 2 3 contraction duration detection unit 3 6 When evaluating how the measured sensor output signal approximates the index signal, the results from each analysis unit are displayed as numerical values, which part is approximated and which part is approximated. It may be clarified whether the part is not approximate.
[0052] さらに、 各解析部からの結果をまとめて点数化し、 1つの数値を表示する ようにしても良い。 まとめて 1つの数値を出力する場合には、 各解析部から の結果を等分して出力するのではなく、 各解析部からの結果に重み付けをし た上で出力するようにしても良い。 例えば、 収縮継続時間検出部 3 6の解析 結果については、 仮に指標信号に追従しておらず指標信号よりも常に一定時 間長い時間で収縮が継続していたとしても、 その継続時間が安定していれば 、 持続的な筋活動ができるように改善されたと判断される可能性がある。 し かしながら、 実際には指標信号には追従した動作とはなっていないため、 こ のような誤認識の影響を低くするために、 例えば収縮継続時間検出部 3 6の 解析結果については、 他の解析部からの解析結果に比べて重み付けを低くす るということが可能である。  [0052] Further, the results from the respective analysis units may be collectively scored to display one numerical value. When outputting one numerical value collectively, the result from each analysis unit may be output after weighting the result from each analysis unit instead of equally dividing the result. For example, regarding the analysis result of the contraction duration detection unit 36, even if the contraction continues for a certain time longer than the index signal without following the index signal, the duration is stable. If you can be determined to be able to improve sustained muscle activity. However, since the operation does not actually follow the index signal, the analysis result of the contraction duration detection unit 36, for example, is used to reduce the influence of such misrecognition. It is possible to reduce the weighting compared to the analysis results from other analysis units.
[0053] なお、 図示例では弛緩時解析部 2 2は、 弛緩時平均値検出部 3 2により弛 緩時の出力信号の平均値を検出するものとなっているが、 本発明はこれに限 定されず、 弛緩時の出力信号のばらつきを検出するものであっても良い。 す なわち、 弛緩時の出力信号の平均値から出力信号までの差分を用いる等によ リ、 弛緩時の出力信号が安定しているか否かを解析するものであっても良い 。 さらに、 収縮時解析部 2 3と同じように、 弛緩時の出力信号の極大値列を 用いて指数減衰関数の回帰分析を行うものであっても良い。 また、 収縮継続 時間検出部 3 6と同様に、 弛緩継続時間を検出するようにしても良い。 さら に、 このような種々の弛緩時解析の手法を組み合わせても良い。 In the illustrated example, the relaxation time analysis unit 22 detects the average value of the output signal at the time of relaxation by the relaxation average value detection unit 32. However, the present invention is not limited to this. It is not limited, and it may be one that detects variations in the output signal during relaxation. You That is, it may be possible to analyze whether the output signal at the time of relaxation is stable by using a difference from the average value of the output signal at the time of relaxation to the output signal. Further, as in the case of the contraction analysis unit 23, a regression analysis of the exponential decay function may be performed using the maximum value sequence of the output signal at the time of relaxation. Further, similarly to the contraction duration detection unit 36, the relaxation duration time may be detected. Furthermore, these various relaxation analysis techniques may be combined.
[0054] 一方、 収縮時解析部 2 3も、 収縮時の出力信号の平均値を検出するように しても良いし、 その出力信号のばらつきを検出するものであっても良い。 ま た、 上記と同様、 このような種々の収縮時解析の手法を組み合わせても良い  On the other hand, the contraction analysis unit 23 may also detect an average value of output signals during contraction, or may detect variations in the output signals. Also, similar to the above, various methods of analysis at the time of contraction may be combined.
[0055] このように、 本発明のセンサ出力信号評価システムでは、 上記の解析部を 種々組み合わせることで、 客観的且つ定量的に、 種々の測定、 解析、 診断等 が可能となる。 [0055] Thus, in the sensor output signal evaluation system of the present invention, various measurements, analysis, diagnosis, and the like can be objectively and quantitatively performed by combining the above analysis units in various ways.
[0056] なお、 本発明のセンサ出力信号評価システムは、 上述の図示例にのみ限定 されるものではなく、 本発明の要旨を逸脱しない範囲内において種々変更を 加え得ることは勿論である。  It should be noted that the sensor output signal evaluation system of the present invention is not limited to the illustrated example described above, and it is needless to say that various changes can be made without departing from the scope of the present invention.
図面の簡単な説明  Brief Description of Drawings
[0057] [図 1 ]図 1は、 本発明のセンサ出力信号評価システムの全体的な概要を説明す るためのブロック図である。  [0057] [FIG. 1] FIG. 1 is a block diagram for explaining an overall outline of a sensor output signal evaluation system of the present invention.
[図 2]図 2は、 各波形信号を示すグラフであり、 図 2 ( a ) は指標信号、 図 2 ( b ) は指標信号に応じて弛緩及び収縮動作を行った場合の筋電計からの生 波形、 図 2 ( c ) は生波形を積分した積分波形、 図 2 ( d ) は図 2 ( a ) と 図 2 ( c ) をオーバーラップしたものである。  [Fig. 2] Fig. 2 is a graph showing each waveform signal. Fig. 2 (a) is an index signal, and Fig. 2 (b) is an electromyograph when relaxation and contraction are performed in response to the index signal. Fig. 2 (c) shows the integrated waveform obtained by integrating the raw waveform. Fig. 2 (d) shows the result of overlapping Fig. 2 (a) and Fig. 2 (c).
[図 3]図 3は、 図 2 ( c ) の積分波形の 1つのパルス波形の拡大図である。  [FIG. 3] FIG. 3 is an enlarged view of one pulse waveform of the integrated waveform of FIG. 2 (c).
[図 4]図 4は、 最大振幅解析部の出力結果の一例を示すグラフである。  FIG. 4 is a graph showing an example of the output result of the maximum amplitude analysis unit.
[図 5]図 5は、 弛緩時解析部の出力結果の一例を示すグラフである。  FIG. 5 is a graph showing an example of the output result of the relaxation time analysis unit.
[図 6]図 6は、 収縮時解析部の収縮継続時間検出部の出力結果の一例を示すグ ラフである。 [図 7]図 7は、 収縮時解析部の回帰分析部の出力結果の一例を示すグラフであ る。 FIG. 6 is a graph showing an example of the output result of the contraction duration detection unit of the analysis unit during contraction. [FIG. 7] FIG. 7 is a graph showing an example of the output result of the regression analysis unit of the systolic analysis unit.
[図 8]図 8は、 周波数スぺクトル解析部の出力結果の一例を示すグラフである 符号の説明  [FIG. 8] FIG. 8 is a graph showing an example of an output result of the frequency spectrum analysis unit.
1 0 指標信号発生部  1 0 Indicator signal generator
1 1 移動積分部  1 1 Moving integrator
1 2 スプリッタ  1 2 Splitter
1 3 平均値検出部  1 3 Average value detector
2 0 出力信号評価部  2 0 Output signal evaluation section
2 1 最大振幅解析部  2 1 Maximum amplitude analyzer
2 2 弛緩時解析部  2 2 Analysis section during relaxation
2 3 収縮時解析部  2 3 Analysis section during contraction
2 4 周波数スぺクトル解析部  2 4 Frequency spectrum analyzer
3 1 弛緩時データ抽出部  3 1 Data extraction unit during relaxation
3 2 弛緩時平均値検出部  3 2 Relaxation average value detector
3 5 極大値列検出部  3 5 Maximum value string detector
3 6 収縮継続時間検出部  3 6 Contraction duration detector
3 7 回帰分析部  3 7 Regression analysis section
3 8 F F T解析部  3 8 F F T analysis part
3 9 ローパスフィルタ部  3 9 Low-pass filter
4 2 データストック部  4 2 Data Stock Department
4 5 卜レーニンヮ前データべ  4 5
4 6 診断部  4 6 Diagnostic Department

Claims

請求の範囲 The scope of the claims
[1 ] 被測定者の弛緩及び収縮動作を測定するセンサの出力信号を評価する評価 システムであって、 該システムは、  [1] An evaluation system for evaluating an output signal of a sensor for measuring a subject's relaxation and contraction motion, the system comprising:
被測定者がこれに応じて弛緩及び収縮動作を行うための指標となる指標信 号を発生する指標信号発生部と、  An index signal generator for generating an index signal that serves as an index for the measurement subject to perform relaxation and contraction in response thereto;
センサの出力信号と指標信号との近似性を評価する出力信号評価部と、 を具備し、  An output signal evaluation unit that evaluates the closeness between the sensor output signal and the index signal;
前記出力信号評価部は、  The output signal evaluation unit
前記指標信号に応じた単位時間の出力信号の最大振幅を評価する最大振幅 解析部と、  A maximum amplitude analyzer for evaluating the maximum amplitude of the output signal per unit time according to the index signal;
所定の閾値を下回る出力信号を評価する弛緩時解析部と、  A relaxation analysis unit that evaluates an output signal below a predetermined threshold;
所定の閾値を上回る出力信号を評価する収縮時解析部と、  A systolic analysis unit that evaluates an output signal exceeding a predetermined threshold;
の少なくとも何れか 1つを用いて出力信号を評価することを特徴とするセ ンサ出力信号評価システム。  A sensor output signal evaluation system characterized in that an output signal is evaluated using at least one of the above.
[2] 請求項 1に記載のセンサ出力信号評価システムにおいて、 前記出力信号評 価部は、 前記最大振幅解析部と前記弛緩時解析部と前記収縮時解析部のすべ てを組み合わせて出力信号を評価することを特徴とするセンサ出力信号評価 システム。 [2] The sensor output signal evaluation system according to claim 1, wherein the output signal evaluation unit outputs an output signal by combining all of the maximum amplitude analysis unit, the relaxation analysis unit, and the contraction analysis unit. A sensor output signal evaluation system characterized by evaluating.
[3] 請求項 2に記載のセンサ出力信号評価システムにおいて、 前記出力信号評 価部は、 前記最大振幅解析部と前記弛緩時解析部と前記収縮時解析部の評価 結果に重み付けをして出力信号を評価することを特徴とするセンサ出力信号 評価システム。  [3] The sensor output signal evaluation system according to claim 2, wherein the output signal evaluation unit weights and outputs the evaluation results of the maximum amplitude analysis unit, the relaxation analysis unit, and the contraction analysis unit. A sensor output signal evaluation system characterized by evaluating a signal.
[4] 請求項 1乃至請求項 3の何れかに記載のセンサ出力信号評価システムにお いて、 前記出力信号評価部は、 さらに、 出力信号のパワースペクトルを評価 する周波数スぺクトル解析部を有することを特徴とするセンサ出力信号評価 システム。  [4] In the sensor output signal evaluation system according to any one of claims 1 to 3, the output signal evaluation unit further includes a frequency spectrum analysis unit that evaluates a power spectrum of the output signal. Sensor output signal evaluation system characterized by the above.
[5] 請求項 4に記載のセンサ出力信号評価システムにおいて、 前記周波数スぺ クトル解析部は、 低周波帯域におけるパワースぺクトルを用いることを特徴 とするセンサ出力信号評価システム。 [5] The sensor output signal evaluation system according to claim 4, wherein the frequency spectrum analysis unit uses a power spectrum in a low frequency band. Sensor output signal evaluation system.
[6] 請求項 1乃至請求項 5の何れかに記載のセンサ出力信号評価システムにお いて、 前記弛緩時解析部は、 所定の閾値を下回る出力信号の平均値を用いる ことを特徴とするセンサ出力信号評価システム。 [6] In the sensor output signal evaluation system according to any one of [1] to [5], the relaxation time analysis unit uses an average value of output signals that are less than a predetermined threshold value. Output signal evaluation system.
[7] 請求項 1乃至請求項 6の何れかに記載のセンサ出力信号評価システムにお いて、 前記弛緩時解析部は、 所定の閾値を下回る出力信号のばらつきを用い ることを特徴とするセンサ出力信号評価システム。 [7] The sensor output signal evaluation system according to any one of [1] to [6], wherein the relaxation time analysis unit uses a variation in output signal that falls below a predetermined threshold value. Output signal evaluation system.
[8] 請求項 1乃至請求項 7の何れかに記載のセンサ出力信号評価システムにお いて、 前記弛緩時解析部は、 所定の閾値を下回る出力信号の極大値列を用い て弛緩時の指数減衰関数の回帰分析を行うことを特徴とするセンサ出力信号 評価システム。  [8] In the sensor output signal evaluation system according to any one of [1] to [7], the relaxation time analysis unit uses a maximum value sequence of output signals that are less than a predetermined threshold value to indicate a relaxation time index. A sensor output signal evaluation system characterized by performing regression analysis of an attenuation function.
[9] 請求項 1乃至請求項 8の何れかに記載のセンサ出力信号評価システムにお いて、 前記収縮時解析部は、 所定の閾値を上回る出力信号の平均値を用いる ことを特徴とするセンサ出力信号評価システム。  [9] In the sensor output signal evaluation system according to any one of claims 1 to 8, the contraction analysis unit uses an average value of output signals exceeding a predetermined threshold value. Output signal evaluation system.
[10] 請求項 1乃至請求項 9の何れかに記載のセンサ出力信号評価システムにお いて、 前記収縮時解析部は、 所定の閾値を上回る出力信号のばらつきを用い ることを特徴とするセンサ出力信号評価システム。  [10] The sensor output signal evaluation system according to any one of [1] to [9], wherein the contraction analysis unit uses a variation in output signal exceeding a predetermined threshold value. Output signal evaluation system.
[11 ] 請求項 1乃至請求項 1 0の何れかに記載のセンサ出力信号評価システムに おいて、 前記収縮時解析部は、 所定の閾値を上回る出力信号の極大値列を用 いて収縮継続時間を解析することを特徴とするセンサ出力信号評価システム  [11] In the sensor output signal evaluation system according to any one of claims 1 to 10, the contraction time analysis unit uses a maximum value sequence of output signals exceeding a predetermined threshold value, and a contraction duration time Sensor output signal evaluation system characterized by analyzing
[12] 請求項 1乃至請求項 1 1の何れかに記載のセンサ出力信号評価システムに おいて、 前記収縮時解析部は、 所定の閾値を上回る出力信号の極大値列を用 いて収縮時の指数減衰関数の回帰分析を行うことを特徴とするセンサ出力信 号評価システム。 [12] In the sensor output signal evaluation system according to any one of claims 1 to 11, the contraction time analysis unit uses a maximum value sequence of output signals exceeding a predetermined threshold value at the time of contraction. Sensor output signal evaluation system characterized by performing regression analysis of exponential decay function.
[13] 請求項 1乃至請求項 1 2の何れかに記載のセンサ出力信号評価システムに おいて、 前記指標信号は、 その最大値及び最小値が被測定者の最大収縮時及 び最大弛緩時の出力信号に基づき決定されることを特徴とするセンサ出力信 号評価システム。 [13] The sensor output signal evaluation system according to any one of claims 1 to 12, wherein the index signal has a maximum value and a minimum value at the time of maximum contraction and maximum relaxation of the measurement subject. Sensor output signal, which is determined based on the output signal of No. evaluation system.
[14] 請求項 1乃至請求項 1 3の何れかに記載のセンサ出力信号評価システムに おいて、 前記指標信号は、 その最大値が前記最大収縮時の出力信号から所定 量だけ低い大きさに決定されることを特徴とするセンサ出力信号評価システ ム。  [14] In the sensor output signal evaluation system according to any one of claims 1 to 13, the maximum value of the index signal is smaller than the output signal at the time of the maximum contraction by a predetermined amount. A sensor output signal evaluation system characterized by being determined.
[15] 請求項 1乃至請求項 1 4の何れかに記載のセンサ出力信号評価システムに おいて、 前記指標信号は、 パルス波であることを特徴とするセンサ出力信号 評価システム。  15. The sensor output signal evaluation system according to any one of claims 1 to 14, wherein the index signal is a pulse wave.
[16] 請求項 1乃至請求項 1 4の何れかに記載のセンサ出力信号評価システムに おいて、 前記指標信号は、 音であることを特徴とするセンサ出力信号評価シ ステム。  16. The sensor output signal evaluation system according to any one of claims 1 to 14, wherein the index signal is a sound.
PCT/JP2007/000404 2006-04-13 2007-04-12 Sensor output signal evaluation system WO2007129452A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006111387A JP4859035B2 (en) 2006-04-13 2006-04-13 Sensor output signal evaluation system
JP2006-111387 2006-04-13

Publications (1)

Publication Number Publication Date
WO2007129452A1 true WO2007129452A1 (en) 2007-11-15

Family

ID=38667565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000404 WO2007129452A1 (en) 2006-04-13 2007-04-12 Sensor output signal evaluation system

Country Status (2)

Country Link
JP (1) JP4859035B2 (en)
WO (1) WO2007129452A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101705787B1 (en) * 2015-01-29 2017-02-13 주식회사 크레타 System for managing core stability excercise

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224330A (en) * 1994-12-21 1996-09-03 Hitachi Ltd Signal recording device and training device
US6240315B1 (en) * 1998-02-25 2001-05-29 Seung Kee Mo Electrical apparatus for medical treatment using EMG envelope signal
JP2002113115A (en) * 2000-05-18 2002-04-16 Seung Kee Mo Electrotherapeutical device utilizing variant system
JP2002143326A (en) * 2000-11-15 2002-05-21 Ito Choutanpa Kk Muscle training device
JP2004049608A (en) * 2002-07-22 2004-02-19 Japan Science & Technology Corp Exercise and learning support system, exercise and learning support method and exercise and learning support program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224330A (en) * 1994-12-21 1996-09-03 Hitachi Ltd Signal recording device and training device
US6240315B1 (en) * 1998-02-25 2001-05-29 Seung Kee Mo Electrical apparatus for medical treatment using EMG envelope signal
JP2002113115A (en) * 2000-05-18 2002-04-16 Seung Kee Mo Electrotherapeutical device utilizing variant system
JP2002143326A (en) * 2000-11-15 2002-05-21 Ito Choutanpa Kk Muscle training device
JP2004049608A (en) * 2002-07-22 2004-02-19 Japan Science & Technology Corp Exercise and learning support system, exercise and learning support method and exercise and learning support program

Also Published As

Publication number Publication date
JP4859035B2 (en) 2012-01-18
JP2007282733A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
US20210361185A1 (en) Electrical impedance myography
Yoshitake et al. Muscle shear modulus measured with ultrasound shear‐wave elastography across a wide range of contraction intensity
Beck et al. Comparison of Fourier and wavelet transform procedures for examining the mechanomyographic and electromyographic frequency domain responses during fatiguing isokinetic muscle actions of the biceps brachii
US6936016B2 (en) Method for analysis of abnormal body tremors
González-Izal et al. sEMG wavelet-based indices predicts muscle power loss during dynamic contractions
EP2085025B1 (en) Autonomic nerve activity measuring apparatus and autonomic nerve activity measuring method
KR101456590B1 (en) blood-flow disorders measurement system using pulse waves
Vasseljen et al. Onset in abdominal muscles recorded simultaneously by ultrasound imaging and intramuscular electromyography
Hong et al. Quantitative evaluation of post-stroke spasticity using neurophysiological and radiological tools: a pilot study
Caruso et al. A force/displacement analysis of muscle testing
Sonmezocak et al. Machine learning and regression analysis for diagnosis of bruxism by using EMG signals of jaw muscles
Martinez-Valdes et al. Consensus for experimental design in electromyography (CEDE) project: Single motor unit matrix
JP2000166877A (en) Biorhythm inspecting apparatus and biorhythm inspecting method
Evans et al. Controlled manual loading of body tissues: towards the next generation of pressure algometer
Marri et al. Identification of onset of fatigue in biceps brachii muscles using surface EMG and multifractal DMA alogrithm
RU2510238C2 (en) Method for obtaining information on psychophysiological state of living being
JP4859035B2 (en) Sensor output signal evaluation system
Ng et al. Mechanomyography sensors for detection of muscle activities and fatigue during Fes-evoked contraction
KR100745034B1 (en) Integrative muscle function analysis device
Sun et al. Muscle fatigue assessment using one-channel single-element ultrasound transducer
Orizio et al. Mechanomyography
Suganthi et al. Evaluation of muscle fatigue based on SEMG using deep learning techniques
RU2269927C2 (en) Method for increasing objectivity level of manual muscle testing
Caesaria et al. Effect of Muscle Fatigue on EMG Signal and Maximum Heart Rate for Pre and Post Physical Activity
KR102306613B1 (en) Apparatus for discriminating myopathy using surface electromyography signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737061

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07737061

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)