WO2007121084A1 - Cationic end-capped siloxane prepolymer for reduced cross-link density - Google Patents

Cationic end-capped siloxane prepolymer for reduced cross-link density Download PDF

Info

Publication number
WO2007121084A1
WO2007121084A1 PCT/US2007/065851 US2007065851W WO2007121084A1 WO 2007121084 A1 WO2007121084 A1 WO 2007121084A1 US 2007065851 W US2007065851 W US 2007065851W WO 2007121084 A1 WO2007121084 A1 WO 2007121084A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
monomer
ether
Prior art date
Application number
PCT/US2007/065851
Other languages
French (fr)
Inventor
Derek Schorzman
Jay Kunzler
Original Assignee
Bauch & Lomb Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bauch & Lomb Incorporated filed Critical Bauch & Lomb Incorporated
Priority to EP07760018A priority Critical patent/EP2004729B1/en
Priority to JP2009505539A priority patent/JP2009533532A/en
Priority to DE602007001881T priority patent/DE602007001881D1/en
Priority to AT07760018T priority patent/ATE438677T1/en
Publication of WO2007121084A1 publication Critical patent/WO2007121084A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/388Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/452Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences

Definitions

  • the present invention relates to polymeric compositions useful in the manufacture of biocompatible medical devices. More particularly, the present invention relates to certain cationic monomers capable of polymerization to form polymeric compositions having desirable physical characteristics useful in the manufacture of ophthalmic devices. BACKGROUND AND SUMMARY
  • Silicon containing materials have been used in a variety of biomedical applications, including, for example, contact lenses and intraocular lenses. Such materials can generally be subdivided into hydrogels and non-hydrogels. Silicon containing hydrogels constitute crosslinked polymeric systems that can absorb and retain water in an equilibrium state and generally have a water content greater than about 5 weight percent and more commonly between about 10 to about 80 weight percent. Such materials are usually prepared by polymerizing a mixture containing at least one silicon containing monomer and at least one hydrophilic monomer. Either the silicon containing monomer or the hydrophilic monomer may function as a crosslinking agent (a crosslinker being defined as a monomer having multiple polymerizable functionalities) or a separate crosslinker may be employed.
  • a crosslinking agent a crosslinker being defined as a monomer having multiple polymerizable functionalities
  • Cationic, polymerizable siloxane prepolymers (described in US Pat. Appln. Ser. Numbers 1 1/341 ,208 filed January 27, 2006, 1 1/341 ,209 filed January 27, 2006, 60/756,637 filed January 6, 2006, 60/756,665 filed January 6, 2006, 60/756,638 filed January 6, 2006 and 60/756,982 filed January 6, 2006; each of which is under obligation of assignment to the assignor of this application and each of which is incorporated by reference herein) have desirable properties for use in biomedical and ophthalmic applications including good wetting characteristics, oxygen permeability, and hydrophilicity. However, due to the increased cross-link density that results from using appreciable quantities of these difunctional monomers in device formulations, it is desirable to reduce the cross-link density, and therefore modulus, while retaining other properties.
  • a mono vinyl polymerizable dicationic siloxane is synthesized in which only one, rather than both, of the cationic groups has a vinyl polymerizable moiety.
  • the single vinyl polymerizable moiety results in a non-cross-linking prepolymer that reduces modulus in polymerized monomeric mixtures containing same.
  • Such materials can be synthesized using methods well known in the art and are described using the following formulae:
  • Li, L 2 and L3 can individually be the same or different and are selected from the group consisting of urethanes, carbonates, carbamates, carboxyl ureidos, sulfonyls, a straight or branched C l -C30 alkyl group, a C1-C30 fluoroalkyl group, a C 1-C20 ester group, an alkyl ether, cycloalkyl ether, cycloalkenyl ether, aryl ether, arylalkyl ether, a polyether containing group, an ureido group, an amide group, an amine group, a substituted or unsubstituted C1 -C30 alkoxy group, a substituted or unsubstituted C3-C3O cycloalkyl group, a substituted or unsubstituted C3-C3O cycloalkyl alkyl group, a substituted or unsubstituted C3-C3
  • Silicon-containing hydrogels combine the beneficial properties of hydrogels with those of silicon-containing polymers (Kunzler and McGee, "Contact Lens Materials", Chemistry & Industry, pp. 651-655, 21 August 1995). Silicon-containing hydrogels as disclosed herein are used to produce a contact lens that combines the high oxygen permeability of polydimethylsiloxane (PDMS) materials with the comfort, wetting and deposit resistance of conventional non-ionic hydrogels.
  • the polymer compositions disclosed herein comprise polymerized silicon containing monomers ⁇ -end-capped with an ethylenically unsaturated cationic hydrophilic group.
  • the present invention provides novel cationic organosilicon-containing monomers which are useful in articles such as biomedical devices including contact lenses.
  • monomer and like terms as used herein denote relatively low molecular weight compounds that are polymerizable by, for example, free radical polymerization, as well as higher molecular weight compounds also referred to as “prepolymers”, “macromonomers”, and related terms.
  • (meth) denotes an optional methyl substituent. Accordingly, terms such as “(meth)acrylate” denotes either methacrylate or acrylate, and “(meth)acrylic acid” denotes either methacrylic acid or acrylic acid.
  • the invention relates to monomers of formula (I):
  • L), L 2 and L 3 can individually be the same or different and are selected from the group consisting of urethanes, carbonates, carbamates, carboxyl ureidos, sulfonyls, a straight or branched C 1 -C30 alkyl group, a C 1 -C30 fluoroalkyl group, a C 1 -C20 ester group, an alkyl ether, cycloalkyl ether, cycloalkenyl ether, aryl ether, arylalkyl ether, a polyether containing group, an ureido group, an amide group, an amine group, a substituted or unsubstituted C1 -C30 alkoxy group, a substituted or unsubstituted C3-C3O cycloalkyl group, a substituted or unsubstituted C3-C30 cycloalkylalkyl group, a substituted or unsubstituted
  • X " is at least a single charged counter ion.
  • single charge counter ions include the group consisting of Cl “ , Bf, I “ , CF 3 CO 2 “ , CH 3 CO 2 , HCO 3 “ , CH 3 SO 4 " , p- toluenesulfonate, HSO 4 ,H 2 PO 4 " , NO 3 " , and CH 3 CH(OH)CO 2 " .
  • dual charged counter ions would include SO 4 2" , CO 3 2" and HPO 4 2" .
  • Other charged counter ions would be obvious to one of ordinary skill in the art. It should be understood that a residual amount of counter ion may be present in the hydrated product. Therefore, the use of toxic counter ions is to be discouraged.
  • the ratio of counter ion and quaternary siloxanyl will be 1 : 1.
  • Counter ions of greater negative charge will result in differing ratios based upon the total charge of the counter ion.
  • n is an integer from 1 to about 300.
  • Ri, R 2 , R 3 , R 4 , Rs, R O , R 7 , R S and R 9 are each independently hydrogen, a straight or branched C1-C30 alkyl group, a C1-C30 fluoroalkyl group, a C1 -C20 ester group, an alkyl ether, cycloalkyl ether, cycloalkenyl ether, aryl ether, arylalkyl ether, a polyether containing group, an ureido group, an amide group, an amine group, a substituted or unsubstituted C 1 -C30 alkoxy group, a substituted or unsubstituted C3-C3O cycloalkyl group, a substituted or unsubstituted C3-C3O cycloalkylalkyl group, a substituted or unsubstituted C3-C3O cycloalkylalkyl group, a substituted or un
  • urethanes for use herein include, by way of example, a secondary amine linked to a carboxyl group which may also be linked to a further group such as an alkyl. Likewise the secondary amine may also be linked to a further group such as an alkyl.
  • carbonates for use herein include, by way of example, alkyl carbonates, aryl carbonates, and the like.
  • carbamates for use herein include, by way of example, alkyl carbamates, aryl carbamates, and the like.
  • carboxyl ureidos for use herein include, by way of example, alkyl carboxyl ureidos, aryl carboxyl ureidos, and the like.
  • sulfonyls for use herein include, by way of example, alkyl sulfonyls, aryl sulfonyls, and the like.
  • alkyl groups for use herein include, by way of example, a straight or branched hydrocarbon chain radical containing carbon and hydrogen atoms of from 1 to about 18 carbon atoms with or without unsaturation, to the rest of the molecule, e.g., methyl, ethyl, n-propyl, 1 -methylethyl (isopropyl), n-butyl, n- pentyl, etc., and the like.
  • fluoroalkyl groups for use herein include, by way of example, a straight or branched alkyl group as defined above Tiaving one or more fluorine atoms attached to the carbon atom, e.g., -CF 3 , -CF 2 CF 3 , -CH 2 CF 3 , -CH 2 CF 2 H, - CF 2 H and the like.
  • ester groups for use herein include, by way of example, a carboxylic acid ester having one to 20 carbon atoms and the like.
  • ether or polyether containing groups for use herein include, by way of example, an alkyl ether, cycloalkyl ether, cycloalkenyl ether, aryl ether, arylalkyl ether wherein the alkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, aryl, and arylalkyl groups are defined above, e.g., alkylene oxides, poly(alkylene oxide)s such as ethylene oxide, propylene oxide, butylene oxide, poly(ethylene oxide)s, poly(ethylene glycol)s, poly(propylene oxide)s, poly(butylene oxide)s and mixtures or copolymers thereof, an ether or polyether group of the general formula -R 10 OR 11 , wherein R 10 is a bond, an alkyl, cycloalkyl or aryl group as defined above and R is an alkyl, cycloalkyl or aryl group as
  • amide groups for use herein include, by way of example, an amide of the general formula -R 12 C(O)NR 13 R 14 wherein R 12 , R 13 and R 14 are independently Ci-C 3 O hydrocarbons, e.g., R 12 can be alkylene groups, arylene groups, cycloalkylene groups and R 13 and R 14 can be alkyl groups, aryl groups, and cycloalkyl groups as defined herein and the like.
  • amine groups for use herein include, by way of example, an amine of the general formula -R 15 N R 16 R 17 wherein R 15 is a C2-C30 alkylene, arylene, or cycloalkylene and R 16 and R 17 are independently C 1 -C30 hydrocarbons such as, for example, alkyl groups, aryl groups, or cycloalkyl groups as defined herefn, and the like.
  • an ureido group for use herein include, by way of example, an ureido group having one or more substituents or unsubstituted ureido.
  • the ureido group preferably is an ureido group having 1 to 12 carbon atoms.
  • substituents include alkyl groups and aryl groups.
  • the ureido group include 3-methylureido, 3,3-dimethylureido, and 3-phenylureido.
  • alkoxy groups for use herein include, by way of example, an alkyl group as defined above attached via oxygen linkage to the rest of the molecule, i.e., of the general formula -OR 20 , wherein R 20 is an alkyl, cycloalkyl, cycloalkenyl, aryl or an arylalkyl as defined above, e.g., -OCH 3 , -OC 2 H 5 , or -OC 6 Hs, and the like.
  • cycloalkyl groups for use herein include, by way of example, a substituted or unsubstituted non-aromatic mono or multicyclic ring system of about 3 to about 18 carbon atoms such as, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, perhydronapththyl, adamantyl and norbornyl groups bridged cyclic group or sprirobicyclic groups, e.g., sprio-(4,4)-non-2-yl and the like, optionally containing one or more heteroatoms, e.g., O and N, and the like.
  • a substituted or unsubstituted non-aromatic mono or multicyclic ring system of about 3 to about 18 carbon atoms such as, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, perhydronapththyl,
  • cycloalkylalkyl groups for use herein include, by way of example, a substituted or unsubstituted cyclic ring-containing radical containing from about 3 to about 18 carbon atoms directly attached to the alkyl group which are then attached to the main structure of the monomer at any carbon from the alkyl group that results in the creation of a stable structure such as, for example, cyclopropylmethyl, cyclobutylethyl, cyclopentylethyl and the like, wherein the cyclic ring can optionally contain one or more heteroatoms, e.g., O and N, and the like.
  • a substituted or unsubstituted cyclic ring-containing radical containing from about 3 to about 18 carbon atoms directly attached to the alkyl group which are then attached to the main structure of the monomer at any carbon from the alkyl group that results in the creation of a stable structure such as, for example, cyclopropylmethyl, cyclobutyleth
  • cycloalkenyl groups for use herein include, by way of example, a substituted or unsubstituted cyclic ring-containing radical containing from about 3 to about 18 carbon atoms with at least one carbon-carbon double bond such as, for example, cyclopropenyl, cyclobutenyl, cyclopentenyl and the like, wherein the cyclic ring can optionally contain one or more heteroatoms, e.g., O and N, and the like.
  • aryl groups for use herein include, by way of example, a substituted or unsubstituted monoaromatic or polyaromatic radical containing from about 5 to about 25 carbon atoms such as, for example, phenyl, naphthyl, tetrahydronapthyl, indenyl, biphenyl and the like, optionally containing one or more heteroatoms, e.g., O and N, and the like.
  • arylalkyl groups for use herein include, by way of example, a substituted or unsubstituted aryl group as defined above directly bonded to an alkyl group as defined above, e.g., -CH 2 C 6 Hs, -C 2 H 5 C 6 H 5 and the like, wherein the aryl group can optionally contain one or more heteroatoms, e.g., O and N, and the like.
  • fluoroaryl groups for use herein include, by way of example, an aryl group as defined above having one or more fluorine atoms attached to the aryl group.
  • heterocyclic ring groups for use herein include, by way of example, a substituted or unsubstituted stable 3 to about 15 membered ring radical, containing carbon atoms and from one to five heteroatoms, e.g., nitrogen, phosphorus, oxygen, sulfur and mixtures thereof.
  • Suitable heterocyclic ring radicals for use herein may be a monocyclic, bicyclic or tricyclic ring system, which may include fused, bridged or spiro ring systems, and the nitrogen, phosphorus, carbon, oxygen or sulfur atoms in the heterocyclic ring radical may be optionally oxidized to various oxidation states.
  • the nitrogen atom may be optionally quaternized; arid the ring radical may be partially or fully saturated (i.e., heteroaromatic or heteroaryl aromatic).
  • heterocyclic ring radicals include, but are not limited to, azetidinyl, acridinyl, benzodioxolyl, benzodioxanyl, benzofurnyl, carbazolyl, cinnolinyl, dioxolanyl, indolizinyl, naphthyridinyl, perhydroazepinyl, phenazinyl, phenothiazinyl, phenoxazinyl, phthalazinyl, pyridyl, pteridinyl, purinyl, quinazolinyl, quinoxalinyl, quinolinyl, isoquinolinyl, tetrazoyl, imidazolyl, tetrahydroisou
  • heteroaryl groups for use herein include, by way of example, a substituted or unsubstituted heterocyclic ring radical as defined above.
  • the heteroaryl ring radical may be attached to the main structure at any heteroatom or carbon atom that results in the creation of a stable structure.
  • heteroarylalkyl groups for use herein include, by way of example, a substituted or unsubstituted heteroaryl ring radical as defined above directly bonded to an alkyl group as defined above.
  • the heteroarylalkyl radical may be attached to the main structure at any carbon atom from the alkyl group that results in the creation of a stable structure.
  • heterocyclo groups for use herein include, by way of example, a substituted or unsubstituted heterocyhc ring radical as defined above.
  • the heterocyclo ring radical may be attached to the main structure at any heteroatom or carbon atom that results in the creation of a stable structure.
  • heterocycloalkyl groups for use herein include, by way of example, a substituted or unsubstituted heterocyhc ring radical as defined above directly bonded to an alkyl group as defined above.
  • the heterocycloalkyl radical may be attached to the main structure at carbon atom in the alkyl group that results in the creation of a stable structure.
  • a polyme ⁇ zable ethylenically unsaturated organic radical include, by way of example, (meth)acrylate-containing radicals, (meth)acrylamide -containing radicals, vinylcarbonate-containmg radicals, vinylcarbamate-containing radicals, styrene-contaimng radicals and the like
  • a polyme ⁇ zable ethylenically unsaturated organic radical can be represented by the general formula:
  • R 22 wherein R" is hydrogen, fluorine or methyl; R 22 is independently hydrogen, fluorine, an alkyl radical having 1 to 6 carbon atoms, or a -CO-Y-R 24 radical wherein Y is -O-, -S- or -NH- and R 24 is a divalent alkylene radical having 1 to about 10 carbon atoms.
  • Monomers having the following structures are useful in forming medical devices:
  • the invention includes a reaction mixture comprising such mono vinyl polymerizable dicationic siloxanes which are easily synthesized to afford a predictable mixture of mono- vinyl and di-vinyl groups to provide a controlled reduction in the cross-link density of the resulting polymerized device. It is noted that a certain amount of non- vinyl containing polymer is also obtained, but can be minimized via appropriate stoichiometry to an acceptable amount.
  • the resulting mixture comprises
  • Li, L 2 , L3, Ri, R 2 , R3, R 4 , Rs, R O , R7, Rs, R9, n and X ' are as set forth above and L 4 is independently the same or different as Li, L 2 and L3.
  • the invention includes articles formed of device forming monomer mixes comprising the monomers of formula (I).
  • the article is the polymerization product of a mixture comprising the aforementioned cationic monomer and at least a second monomer.
  • Preferred articles are optically clear and useful as a contact lens.
  • a method of making articles comprising monomers of the invention herein comprises providing a monomer mixture comprising the monomer of claim 1 and at least a second monomer, subjecting the monomer mixture to polymerizing conditions to provide a polymerized device, extracting the polymerized device, and packaging and sterilizing the polymerized device.
  • Useful articles made with these materials may require hydrophobic, possibly silicon containing monomers.
  • Preferred compositions have both hydrophilic and hydrophobic monomers.
  • the invention is applicable to a wide variety of polymeric materials, either rigid or soft.
  • Especially preferred polymeric materials are lenses including contact lenses, rigid gas permeable contact lenses, phakic and aphakic intraocular lenses and corneal implants although all polymeric materials including biomaterials are contemplated as being within the scope of this invention.
  • Especially preferred are silicon containing hydrogels.
  • the present invention also provides medical devices such as heart valves and films, surgical devices, vessel substitutes, intrauterine devices, membranes, diaphragms, surgical implants, blood vessels, artificial ureters, artificial breast tissue and membranes intended to come into contact with body fluid outside of the body, e.g., membranes for kidney dialysis and heart/lung machines and the like, catheters, mouth guards, denture liners, ophthalmic devices, and especially contact lenses.
  • medical devices such as heart valves and films, surgical devices, vessel substitutes, intrauterine devices, membranes, diaphragms, surgical implants, blood vessels, artificial ureters, artificial breast tissue and membranes intended to come into contact with body fluid outside of the body, e.g., membranes for kidney dialysis and heart/lung machines and the like, catheters, mouth guards, denture liners, ophthalmic devices, and especially contact lenses.
  • Silicon containing hydrogels are prepared by polymerizing a mixture containing at least one silicon containing monomer and at least one hydrophilic monomer.
  • the silicon containing monomer may function as a crosslinking agent (a crosslinker being defined as a monomer having multiple polymerizable functionalities) or a separate crosslinker may be employed.
  • Lenses are made from poly(organosiloxane) monomers which are ⁇ , ⁇ terminally bonded through a divalent hydrocarbon group to a polymerized activated unsaturated group.
  • Various hydrophobic silicon-containing prepolymers such as l,3-bis(methacryloxyalkyl) polysiloxanes were copolymerized with known hydrophilic monomers such as 2- hydroxyethyl methacrylate (HEMA).
  • U.S. Pat. No. 5,358,995 (Lai et al) describes a silicon containing hydrogel which is comprised of an acrylic ester-capped polysiloxane prepolymer, polymerized with a bulky polysiloxanylalkyl (meth)acrylate monomer, and at least one hydrophilic monomer.
  • Lai et al is assigned to Bausch & Lomb Incorporated and the entire disclosure is incorporated herein by reference.
  • the acrylic ester-capped polysiloxane prepolymer, commonly known as M 2 D x consists of two acrylic ester end groups and "x" number of repeating dimethylsiloxane units.
  • the preferred bulky polysiloxanylalkyl (meth)acrylate monomers are TRIS-type (methacryloxypropyl tris(trimethylsiloxy)silane) with the hydrophilic monomers being either acrylic- or vinyl-containing.
  • TRIS-type methacryloxypropyl tris(trimethylsiloxy)silane
  • Other examples of silicon-containing monomer mixtures which may be used with this invention include the following: vinyl carbonate and vinyl carbamate monomer mixtures as disclosed in U.S. Pat. Nos. 5,070,215 and 5,610,252 (Bambury et al); fluorosilicon monomer mixtures as disclosed in U.S. Pat. Nos.
  • non-silicon hydrophobic materials include alkyl acrylates and methacrylates.
  • the mono vinyl polymerizable dicationic siloxanes of the invention herein may be copolymerized with a wide variety of monomers to produce silicon hydrogel lenses.
  • a second monomer may be selected from unsaturated carboxylic acids; methacrylic acids, acrylic acids; acrylic substituted alcohols; 2-hydroxyethylmethacrylate, 2-hydroxyethylacrylate; vinyl lactams; N-vinyl pyrrolidone (NVP) N-vinyl caprolactone; acrylamides; mefhacrylamide, N,N- dimethylacrylamide; methacrylates; ethylene glycol dimethacrylate, methyl methacrylate, allyl methacrylate; hydrophilic vinyl carbonates, hydrophilic vinyl carbamate monomers; hydrophilic oxazolone monomers, 3-methacryloyloxypropyl tris(trimethylsiloxy)silane, ethylene glycol dimethacrylate (EGDMA), allyl
  • Suitable hydrophilic monomers include: unsaturated carboxylic acids, such as methacrylic and acrylic acids; acrylic substituted alcohols, such as 2- hydroxyethylmethacrylate and 2-hydroxyethylacrylate; vinyl lactams, such as N- vinylpyrrolidone (NVP) and l -vinylazonan-2-one; and acrylamides, such as methacrylamide and N,N-dimethylacrylamide (DMA).
  • unsaturated carboxylic acids such as methacrylic and acrylic acids
  • acrylic substituted alcohols such as 2- hydroxyethylmethacrylate and 2-hydroxyethylacrylate
  • vinyl lactams such as N- vinylpyrrolidone (NVP) and l -vinylazonan-2-one
  • acrylamides such as methacrylamide and N,N-dimethylacrylamide (DMA).
  • hydrophilic vinyl carbonate or vinyl carbamate monomers disclosed in U.S. Pat. Nos. 5,070,215
  • hydrophilic oxazolone monomers disclosed in U.S. Pat. No. 4,910,277.
  • Other suitable hydrophilic monomers will be apparent to one skilled in the art.
  • Hydrophobic cross linkers would include methacrylates such as ethylene glycol dimethacrylate (EGDMA) and allyl methacrylate (AMA).
  • EGDMA ethylene glycol dimethacrylate
  • AMA allyl methacrylate
  • the monomer mixtures containing, as an example, the mono vinyl polymerizable dicationic siloxanes of the invention herein are relatively water soluble. This feature provides advantages over traditional silicon hydrogel monomer mixtures in that there is less risk of incompatibility phase separation resulting in hazy lenses and the polymerized materials are extractable with water.
  • traditional organic extraction methods may also be used.
  • the extracted lenses demonstrate a good combination of oxygen permeability (Dk) and low modulus, properties known to be important to obtaining desirable contact lenses.
  • lenses prepared with the mono vinyl polymerizable dicationic siloxanes of the invention herein are wettable even without surface treatment, provide dry mold release, do not require solvents in the monomer mix (although solvents such as glycerol may be used), the extracted polymerized material is not cytotoxic and the surface is lubricious to the touch.
  • solvents such as glycerol may be used
  • the polymerized monomer mix containing the mono vinyl polymerizable dicationic siloxanes of the invention herein do not demonstrate a desirable tear strength
  • toughening agents such as TBE (4-?-butyl-2-hydroxycyclohexyl methacrylate) may be added to the monomer mix.
  • Other strengthening agents are well known to those of ordinary skill in the art and may also be used when needed.
  • an organic diluent may be included in the initial monomeric mixture.
  • the term "organic diluent” encompasses organic compounds which minimize incompatibility of the components in the initial monomeric mixture and are substantially nonreactive with the components in the initial mixture. Additionally, the organic diluent serves to minimize phase separation of polymerized products produced by polymerization of the monomeric mixture. Also, the organic diluent will generally be relatively non-inflammable.
  • Contemplated organic diluents include terz-butanol (TBA); diols, such as ethylene glycol and polyols, such as glycerol.
  • TSA terz-butanol
  • diols such as ethylene glycol
  • polyols such as glycerol.
  • the organic diluent is sufficiently soluble in the extraction solvent to facilitate its removal from a cured article during the extraction step.
  • Other suitable organic diluents would be apparent to a person of ordinary skill in the art.
  • the organic diluent is included in an amount effective to provide the desired effect. Generally, the diluent is included at 5 to 60% by weight of the monomeric mixture, with 10 to 50% by weight being especially preferred
  • the monomeric mixture comprising at least one hydrophilic monomer, at least one mono vinyl functionalized dicationic siloxanes and optionally the organic diluent, is shaped and cured by conventional methods such as static casting or spincasting.
  • Lens formation can be by free radical polymerization such as azobisisobutyronitrile (AIBN) and peroxide catalysts using initiators and under conditions such as those set forth in U.S. Pat. No. 3,808, 179, incorporated herein by reference.
  • Photo initiation of polymerization of the monomer mixture as is well known in the art may also be used in the process of forming an article as disclosed herein. Colorants and the like may be added prior to monomer polymerization.
  • non-polymerized monomers into the eye upon installation of a lens can cause irritation and other problems.
  • nonflammable solvents including water may be used for the extraction process.
  • the biomaterials formed from the polymerized monomer mix containing the mono vinyl polymerizable dicationic siloxanes disclosed herein are formed they are then extracted to prepare them for packaging and eventual use. Extraction is accomplished by exposing the polymerized materials to various solvents such as water, ter/-butanol, etc. for varying periods of time. For example, one extraction process is to immerse the polymerized materials in water for about three minutes, remove the water and then immerse the polymerized materials in another aliquot of water for about three minutes, remove that aliquot of water and then autoclave the polymerized material in water or buffer solution.
  • solvents such as water, ter/-butanol, etc.
  • the shaped article for example an RGP lens
  • the machining step includes lathe cutting a lens surface, lathe cutting a lens edge, buffing a lens edge or polishing a lens edge or surface.
  • the present process is particularly advantageous for processes wherein a lens surface is lathe cut, since machining of a lens surface is especially difficult when the surface is tacky or rubbery.
  • NMR ⁇ -Nuclear Magnetic Resonance
  • SEC Size Exclusion Chromatography
  • ESI-TOFMS The electrospray (ESI) time of flight (TOF) MS analysis was performed on an Applied Biosystems Mariner instrument. The instrument operated in positive ion mode. The instrument was mass calibrated with a standard solution containing lysine, angiotensinogen, bradykinin (fragment 1-5) and des-Pro bradykinin. This mixture provides a seven- point calibration from 147 to 921 m/z. The applied voltage parameters were optimized from signal obtained from the same standard solution.
  • Modulus and elongation tests were conducted according to ASTM D- 1708a, employing an Instron (Model 4502) instrument where the hydrogel film sample is immersed in borate buffered saline; an appropriate size of the film sample is gauge length 22 mm and width 4.75 mm, where the sample further has ends forming a dog bone shape to accommodate gripping of the sample with clamps of the Instron instrument, and a thickness of 200+50 microns.
  • Instron Model 4502
  • Oxygen permeability (also referred to as Dk) was determined by the following procedure. Other methods and/or instruments may be used as long as the oxygen permeability values obtained therefrom are equivalent to the described method.
  • the oxygen permeability of silicone hydrogels is measured by the polarographic method (ANSI Z80.20-1998) using an 02 Permeometer Model 20 IT instrument (Createch, Albany, California USA) having a probe containing a central, circular gold cathode at its end and a silver anode insulated from the cathode. Measurements are taken only on pre- inspected pinhole-free, flat silicone hydrogel film samples of three different center thicknesses ranging from 150 to 600 microns.
  • Center thickness measurements of the film samples may be measured using a Rehder ET-I electronic thickness gauge.
  • the film samples have the shape of a circular disk. Measurements are taken with the film sample and probe immersed in a bath containing circulating phosphate buffered saline (PBS) equilibrated at 35°C+/- 0.2°. Prior to immersing the probe and film sample in the PBS bath, the film sample is placed and centered on the cathode premoistened with the equilibrated PBS, ensuring no air bubbles or excess PBS exists between the cathode and the film sample, and the film sample is then secured to the probe with a mounting cap, with the cathode portion of the probe contacting only the film sample.
  • PBS circulating phosphate buffered saline
  • Teflon polymer membrane e.g., having a circular disk shape
  • the Teflon membrane is first placed on the pre-moistened cathode, and then the film sample is placed on the Teflon membrane, ensuring no air bubbles or excess PBS exists beneath the Teflon membrane or film sample.
  • R2 correlation coefficient value
  • oxygen permeability (Dk) is calculated from the film samples having at least three different thicknesses.
  • Any film samples hydrated with solutions other than PBS are first soaked in purified water and allowed to equilibrate for at least 24 hours, and then soaked in PHB and allowed to equilibrate for at least 12 hours.
  • the instruments are regularly cleaned and regularly calibrated using RGP standards.
  • Upper and lower limits are established by calculating a +/- 8.8% of the Repository values established by William J. Benjamin, et al., The Oxygen Permeability of Reference Materials, Optom Vis Sci 7 (12s): 95 (1997), the disclosure of which is incorporated herein in its entirety: Material Name Repository Values Lower Limit Upper Limit
  • the targeted end group nominal mass for this sample is 326 Da (Ci 2 Ha 4 N 2 O 2 SiCh) and the required sodium charge agent has a mass of 23 Da (Na).
  • the mass peaks in the distribution for this sample correspond to a nominal mass sequence of (74 x n + 326 + 23) where n is the number of repeat units.
  • n is the number of repeat units.
  • the mass spectrum of this sample indicated a mass distribution of doubly charged oligomers having a repeat unit mass of 37 Da. When deconvoluted this corresponds to a repeat unit mass of 74 Da (37 Da x 2). This corresponds to the targeted dimethyl siloxane (CaHoSiO) repeat unit chemistry.
  • the targeted end group nominal mass for this sample is 570 Da (C 2 SHs 4 N 4 OoSi).
  • the end group chemistry contains two quaternary nitrogen atoms and thus no additional charge agent is required. The two quaternary nitrogen (N + ) atoms also explain the presence of the doubly charged mass peaks.
  • Example 4-5 Polymerization, processing and properties of ⁇ lms containing cationic siloxanyl prepolymers.
  • Liquid monomer solutions containing cationic end-capped poly(dimethylsiloxane) prepolymers (from examples 2 and 3 above) as well as other monomers and initiator used commonly in ophthalmic materials were clamped between silanized glass plates at various thicknesses and polymerized using thermal decomposition of the free-radical generating additive by heating 2 h at 100 0 C under a nitrogen atmosphere.
  • Each of the formulations listed in table 1 afforded a transparent, tack-free, insoluble film.

Abstract

The present invention relates to hydrophilic dicationic siloxane prepolymers with one polymerizable vinyl moiety instead of two polymerizable vinyl moieties, resulting in contact lenses and/or biomedical devices with reduced cross-link density and modulus without detracting from other properties.

Description

CATIONIC END-CAPPED SILOXANE PREPOL YMER FOR REDUCED
CROSS-LINK DENSITY
CROSS-REFERENCE TO RELATED APPLICATIONS
None FIELD
The present invention relates to polymeric compositions useful in the manufacture of biocompatible medical devices. More particularly, the present invention relates to certain cationic monomers capable of polymerization to form polymeric compositions having desirable physical characteristics useful in the manufacture of ophthalmic devices. BACKGROUND AND SUMMARY
Polymeric silicon containing materials have been used in a variety of biomedical applications, including, for example, contact lenses and intraocular lenses. Such materials can generally be subdivided into hydrogels and non-hydrogels. Silicon containing hydrogels constitute crosslinked polymeric systems that can absorb and retain water in an equilibrium state and generally have a water content greater than about 5 weight percent and more commonly between about 10 to about 80 weight percent. Such materials are usually prepared by polymerizing a mixture containing at least one silicon containing monomer and at least one hydrophilic monomer. Either the silicon containing monomer or the hydrophilic monomer may function as a crosslinking agent (a crosslinker being defined as a monomer having multiple polymerizable functionalities) or a separate crosslinker may be employed.
Cationic, polymerizable siloxane prepolymers (described in US Pat. Appln. Ser. Numbers 1 1/341 ,208 filed January 27, 2006, 1 1/341 ,209 filed January 27, 2006, 60/756,637 filed January 6, 2006, 60/756,665 filed January 6, 2006, 60/756,638 filed January 6, 2006 and 60/756,982 filed January 6, 2006; each of which is under obligation of assignment to the assignor of this application and each of which is incorporated by reference herein) have desirable properties for use in biomedical and ophthalmic applications including good wetting characteristics, oxygen permeability, and hydrophilicity. However, due to the increased cross-link density that results from using appreciable quantities of these difunctional monomers in device formulations, it is desirable to reduce the cross-link density, and therefore modulus, while retaining other properties.
In this invention, a mono vinyl polymerizable dicationic siloxane is synthesized in which only one, rather than both, of the cationic groups has a vinyl polymerizable moiety. The single vinyl polymerizable moiety results in a non-cross-linking prepolymer that reduces modulus in polymerized monomeric mixtures containing same. Such materials can be synthesized using methods well known in the art and are described using the following formulae:
X- X"
Figure imgf000003_0001
wherein Li, L2 and L3 can individually be the same or different and are selected from the group consisting of urethanes, carbonates, carbamates, carboxyl ureidos, sulfonyls, a straight or branched C l -C30 alkyl group, a C1-C30 fluoroalkyl group, a C 1-C20 ester group, an alkyl ether, cycloalkyl ether, cycloalkenyl ether, aryl ether, arylalkyl ether, a polyether containing group, an ureido group, an amide group, an amine group, a substituted or unsubstituted C1 -C30 alkoxy group, a substituted or unsubstituted C3-C3O cycloalkyl group, a substituted or unsubstituted C3-C3O cycloalkyl alkyl group, a substituted or unsubstituted C3-C3O cycloalkenyl group, a substituted or unsubstituted C5-C30 aryl group, a substituted or unsubstituted C5-C3O arylalkyl group, a substituted or unsubstituted C5-C30 heteroaryl group, a substituted or unsubstituted C3-C3O heterocyclic ring, a substituted or unsubstituted C4-C30 heterocyclolalkyl group, a substituted or unsubstituted C6-C30 heteroarylalkyl group, a C5-C3O fluoroaryl group, or a hydroxyl substituted alkyl ether and combinations thereof; X" is at least a single charged counter ion; n is an integer from 1 to about 300; Ri, R2, R3, R4, R5, RO, R7, Rs and R9 are each independently hydrogen, a straight or branched C1-C30 alkyl group, a C1-C30 fluoroalkyl group, a C1-C20 ester group, an alkyl ether, cycloalkyl ether, cycloalkenyl ether, aryl ether, arylalkyl ether, a polyether containing group, an ureido group, an amide group, an amine group, a substituted or unsubstituted C1-C30 alkoxy group, a substituted or unsubstituted C3-C3O cycloalkyl group, a substituted or unsubstituted C3-C30 cycloalkylalkyl group, a substituted or unsubstituted C3-C3O cycloalkenyl group, a substituted or unsubstituted C5-C30 aryl group, a substituted or unsubstituted C5-C30 arylalkyl group, a substituted or unsubstituted C5-C30 heteroaryl group, a substituted or unsubstituted C3-C30 heterocyclic ring, a substituted or unsubstituted C4-C30 heterocyclolalkyl group, a substituted or unsubstituted C6-C30 heteroarylalkyl group, fluorine, a C5-C30 fluoroaryl group, or a hydroxyl group and V is a polymerizable ethylenically unsaturated organic radical.
Silicon-containing hydrogels combine the beneficial properties of hydrogels with those of silicon-containing polymers (Kunzler and McGee, "Contact Lens Materials", Chemistry & Industry, pp. 651-655, 21 August 1995). Silicon-containing hydrogels as disclosed herein are used to produce a contact lens that combines the high oxygen permeability of polydimethylsiloxane (PDMS) materials with the comfort, wetting and deposit resistance of conventional non-ionic hydrogels. The polymer compositions disclosed herein comprise polymerized silicon containing monomers α-end-capped with an ethylenically unsaturated cationic hydrophilic group.
The present invention provides novel cationic organosilicon-containing monomers which are useful in articles such as biomedical devices including contact lenses. BRIEF DESCRIPTION OF THE DRAWINGS
None
DETAILED DESCRIPTION
The term "monomer" and like terms as used herein denote relatively low molecular weight compounds that are polymerizable by, for example, free radical polymerization, as well as higher molecular weight compounds also referred to as "prepolymers", "macromonomers", and related terms.
The term "(meth)" as used herein denotes an optional methyl substituent. Accordingly, terms such as "(meth)acrylate" denotes either methacrylate or acrylate, and "(meth)acrylic acid" denotes either methacrylic acid or acrylic acid.
In a first aspect, the invention relates to monomers of formula (I):
X- X"
Figure imgf000005_0001
formula (I), wherein L), L2 and L3 can individually be the same or different and are selected from the group consisting of urethanes, carbonates, carbamates, carboxyl ureidos, sulfonyls, a straight or branched C 1 -C30 alkyl group, a C 1 -C30 fluoroalkyl group, a C 1 -C20 ester group, an alkyl ether, cycloalkyl ether, cycloalkenyl ether, aryl ether, arylalkyl ether, a polyether containing group, an ureido group, an amide group, an amine group, a substituted or unsubstituted C1 -C30 alkoxy group, a substituted or unsubstituted C3-C3O cycloalkyl group, a substituted or unsubstituted C3-C30 cycloalkylalkyl group, a substituted or unsubstituted C3-C3O cycloalkenyl group, a substituted or unsubstituted C5-C30 aryl group, a substituted or unsubstituted C5-C30 arylalkyl group, a substituted or unsubstituted C5-C30 heteroaryl group, a substituted or unsubstituted C3-C30 heterocyclic ring, a substituted or unsubstituted C4-C30 heterocyclolalkyl group, a substituted or unsubstituted C6-C30 heteroarylalkyl group, a C5-C3O fluoroaryl group, or a hydroxyl substituted alkyl ether and combinations thereof.
X" is at least a single charged counter ion. Examples of single charge counter ions include the group consisting of Cl", Bf, I", CF3CO2 ", CH3CO2 , HCO3 ", CH3SO4 ", p- toluenesulfonate, HSO4 ,H2PO4 ", NO3 ", and CH3CH(OH)CO2 ". Examples of dual charged counter ions would include SO4 2", CO3 2" and HPO4 2". Other charged counter ions would be obvious to one of ordinary skill in the art. It should be understood that a residual amount of counter ion may be present in the hydrated product. Therefore, the use of toxic counter ions is to be discouraged. Likewise, it should be understood that, for a singularly charged counter ion, the ratio of counter ion and quaternary siloxanyl will be 1 : 1. Counter ions of greater negative charge will result in differing ratios based upon the total charge of the counter ion. n is an integer from 1 to about 300. Ri, R2, R3, R4, Rs, RO, R7, RS and R9 are each independently hydrogen, a straight or branched C1-C30 alkyl group, a C1-C30 fluoroalkyl group, a C1 -C20 ester group, an alkyl ether, cycloalkyl ether, cycloalkenyl ether, aryl ether, arylalkyl ether, a polyether containing group, an ureido group, an amide group, an amine group, a substituted or unsubstituted C 1 -C30 alkoxy group, a substituted or unsubstituted C3-C3O cycloalkyl group, a substituted or unsubstituted C3-C3O cycloalkylalkyl group, a substituted or unsubstituted C3-C3O cycloalkenyl group, a substituted or unsubstituted C5-C30 aryl group, a substituted or unsubstituted C5-C3O arylalkyl group, a substituted or unsubstituted C5-C30 heteroaryl group, a substituted or unsubstituted C3-C3O heterocyclic ring, a substituted or unsubstituted C4-C30 heterocyclolalkyl group, a substituted or unsubstituted C6-C30 heteroarylalkyl group, fluorine, a C5-C3O fluoroaryl group, or a hydroxyl group and V is a polymerizable ethylenically unsaturated organic radical.
Representative examples of urethanes for use herein include, by way of example, a secondary amine linked to a carboxyl group which may also be linked to a further group such as an alkyl. Likewise the secondary amine may also be linked to a further group such as an alkyl.
Representative examples of carbonates for use herein include, by way of example, alkyl carbonates, aryl carbonates, and the like.
Representative examples of carbamates, for use herein include, by way of example, alkyl carbamates, aryl carbamates, and the like.
Representative examples of carboxyl ureidos, for use herein include, by way of example, alkyl carboxyl ureidos, aryl carboxyl ureidos, and the like.
Representative examples of sulfonyls for use herein include, by way of example, alkyl sulfonyls, aryl sulfonyls, and the like.
Representative examples of alkyl groups for use herein include, by way of example, a straight or branched hydrocarbon chain radical containing carbon and hydrogen atoms of from 1 to about 18 carbon atoms with or without unsaturation, to the rest of the molecule, e.g., methyl, ethyl, n-propyl, 1 -methylethyl (isopropyl), n-butyl, n- pentyl, etc., and the like.
Representative examples of fluoroalkyl groups for use herein include, by way of example, a straight or branched alkyl group as defined above Tiaving one or more fluorine atoms attached to the carbon atom, e.g., -CF3, -CF2CF3, -CH2CF3, -CH2CF2H, - CF2H and the like.
Representative examples of ester groups for use herein include, by way of example, a carboxylic acid ester having one to 20 carbon atoms and the like.
Representative examples of ether or polyether containing groups for use herein include, by way of example, an alkyl ether, cycloalkyl ether, cycloalkenyl ether, aryl ether, arylalkyl ether wherein the alkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, aryl, and arylalkyl groups are defined above, e.g., alkylene oxides, poly(alkylene oxide)s such as ethylene oxide, propylene oxide, butylene oxide, poly(ethylene oxide)s, poly(ethylene glycol)s, poly(propylene oxide)s, poly(butylene oxide)s and mixtures or copolymers thereof, an ether or polyether group of the general formula -R10OR11, wherein R10 is a bond, an alkyl, cycloalkyl or aryl group as defined above and R is an alkyl, cycloalkyl or aryl group as defined above, e.g., -CH2CH2OC6H5 and -CH2CH2OC2H5, and the like.
Representative examples of amide groups for use herein include, by way of example, an amide of the general formula -R12C(O)NR13R14 wherein R12, R13 and R14 are independently Ci-C3O hydrocarbons, e.g., R12 can be alkylene groups, arylene groups, cycloalkylene groups and R13 and R14 can be alkyl groups, aryl groups, and cycloalkyl groups as defined herein and the like. Representative examples of amine groups for use herein include, by way of example, an amine of the general formula -R15N R16R17 wherein R15 is a C2-C30 alkylene, arylene, or cycloalkylene and R16 and R17 are independently C 1 -C30 hydrocarbons such as, for example, alkyl groups, aryl groups, or cycloalkyl groups as defined herefn, and the like.
Representative examples of an ureido group for use herein include, by way of example, an ureido group having one or more substituents or unsubstituted ureido. The ureido group preferably is an ureido group having 1 to 12 carbon atoms. Examples of the substituents include alkyl groups and aryl groups. Examples of the ureido group include 3-methylureido, 3,3-dimethylureido, and 3-phenylureido.
Representative examples of alkoxy groups for use herein include, by way of example, an alkyl group as defined above attached via oxygen linkage to the rest of the molecule, i.e., of the general formula -OR20, wherein R20 is an alkyl, cycloalkyl, cycloalkenyl, aryl or an arylalkyl as defined above, e.g., -OCH3, -OC2H5, or -OC6Hs, and the like.
Representative examples of cycloalkyl groups for use herein include, by way of example, a substituted or unsubstituted non-aromatic mono or multicyclic ring system of about 3 to about 18 carbon atoms such as, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, perhydronapththyl, adamantyl and norbornyl groups bridged cyclic group or sprirobicyclic groups, e.g., sprio-(4,4)-non-2-yl and the like, optionally containing one or more heteroatoms, e.g., O and N, and the like.
Representative examples of cycloalkylalkyl groups for use herein include, by way of example, a substituted or unsubstituted cyclic ring-containing radical containing from about 3 to about 18 carbon atoms directly attached to the alkyl group which are then attached to the main structure of the monomer at any carbon from the alkyl group that results in the creation of a stable structure such as, for example, cyclopropylmethyl, cyclobutylethyl, cyclopentylethyl and the like, wherein the cyclic ring can optionally contain one or more heteroatoms, e.g., O and N, and the like.
Representative examples of cycloalkenyl groups for use herein include, by way of example, a substituted or unsubstituted cyclic ring-containing radical containing from about 3 to about 18 carbon atoms with at least one carbon-carbon double bond such as, for example, cyclopropenyl, cyclobutenyl, cyclopentenyl and the like, wherein the cyclic ring can optionally contain one or more heteroatoms, e.g., O and N, and the like.
Representative examples of aryl groups for use herein include, by way of example, a substituted or unsubstituted monoaromatic or polyaromatic radical containing from about 5 to about 25 carbon atoms such as, for example, phenyl, naphthyl, tetrahydronapthyl, indenyl, biphenyl and the like, optionally containing one or more heteroatoms, e.g., O and N, and the like.
Representative examples of arylalkyl groups for use herein include, by way of example, a substituted or unsubstituted aryl group as defined above directly bonded to an alkyl group as defined above, e.g., -CH2C6Hs, -C2H5C6H5 and the like, wherein the aryl group can optionally contain one or more heteroatoms, e.g., O and N, and the like.
Representative examples of fluoroaryl groups for use herein include, by way of example, an aryl group as defined above having one or more fluorine atoms attached to the aryl group.
Representative examples of heterocyclic ring groups for use herein include, by way of example, a substituted or unsubstituted stable 3 to about 15 membered ring radical, containing carbon atoms and from one to five heteroatoms, e.g., nitrogen, phosphorus, oxygen, sulfur and mixtures thereof. Suitable heterocyclic ring radicals for use herein may be a monocyclic, bicyclic or tricyclic ring system, which may include fused, bridged or spiro ring systems, and the nitrogen, phosphorus, carbon, oxygen or sulfur atoms in the heterocyclic ring radical may be optionally oxidized to various oxidation states. In addition, the nitrogen atom may be optionally quaternized; arid the ring radical may be partially or fully saturated (i.e., heteroaromatic or heteroaryl aromatic). Examples of such heterocyclic ring radicals include, but are not limited to, azetidinyl, acridinyl, benzodioxolyl, benzodioxanyl, benzofurnyl, carbazolyl, cinnolinyl, dioxolanyl, indolizinyl, naphthyridinyl, perhydroazepinyl, phenazinyl, phenothiazinyl, phenoxazinyl, phthalazinyl, pyridyl, pteridinyl, purinyl, quinazolinyl, quinoxalinyl, quinolinyl, isoquinolinyl, tetrazoyl, imidazolyl, tetrahydroisouinolyl, piperidinyl, piperazinyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, 2-oxoazepinyl, azepinyl, pyrrolyl, 4-piperidonyl, pyrrolidinyl, pyrazinyl, pyrimidinyl, pyridazinyl, oxazolyl, oxazolinyl, oxasolidinyl, triazolyl, indanyl, isoxazolyl, isoxasolidinyl, moφholinyl, thiazolyl, thiazolinyl, thiazolidinyl, isothiazolyl, quinuclidinyl, isothiazolidinyl, indolyl, isoindolyl, indolinyl, isoindolinyl, octahydroindolyl, octahydroisoindolyl, quinolyl, isoquinolyl, decahydroisoquinolyl, benzimidazolyl, thiadiazolyl, benzopyranyl, benzothiazolyl, benzooxazolyl, furyl, tetrahydrofurtyl, tetrahydropyranyl, thienyl, benzothienyl, thiamoφholinyl, thiamoφholinyl sulfoxide, thiamoφholinyl sulfone, dioxaphospholanyl, oxadiazolyl, chromanyl, isochromanyl and the like and mixtures thereof.
Representative examples of heteroaryl groups for use herein include, by way of example, a substituted or unsubstituted heterocyclic ring radical as defined above. The heteroaryl ring radical may be attached to the main structure at any heteroatom or carbon atom that results in the creation of a stable structure.
Representative examples of heteroarylalkyl groups for use herein include, by way of example, a substituted or unsubstituted heteroaryl ring radical as defined above directly bonded to an alkyl group as defined above. The heteroarylalkyl radical may be attached to the main structure at any carbon atom from the alkyl group that results in the creation of a stable structure.
Representative examples of heterocyclo groups for use herein include, by way of example, a substituted or unsubstituted heterocyhc ring radical as defined above. The heterocyclo ring radical may be attached to the main structure at any heteroatom or carbon atom that results in the creation of a stable structure.
Representative examples of heterocycloalkyl groups for use herein include, by way of example, a substituted or unsubstituted heterocyhc ring radical as defined above directly bonded to an alkyl group as defined above. The heterocycloalkyl radical may be attached to the main structure at carbon atom in the alkyl group that results in the creation of a stable structure.
Representative examples of a "polymeπzable ethylenically unsaturated organic radical" include, by way of example, (meth)acrylate-containing radicals, (meth)acrylamide -containing radicals, vinylcarbonate-containmg radicals, vinylcarbamate-containing radicals, styrene-contaimng radicals and the like In one embodiment, a polymeπzable ethylenically unsaturated organic radical can be represented by the general formula:
Figure imgf000012_0001
R22 wherein R" is hydrogen, fluorine or methyl; R22 is independently hydrogen, fluorine, an alkyl radical having 1 to 6 carbon atoms, or a -CO-Y-R24 radical wherein Y is -O-, -S- or -NH- and R24 is a divalent alkylene radical having 1 to about 10 carbon atoms.
The substituents in the 'substituted alkyl', 'substituted alkoxy', 'substituted cycloalkyl', 'substituted cycloalkylalkyl', 'substituted cycloalkenyl', 'substituted arylalkyl', 'substituted aryl', 'substituted heterocyclic ring', 'substituted heteroaryl ring,' 'substituted heteroarylalkyP, 'substituted heterocycloalkyl ring', 'substituted cyclic ring' and 'substituted carboxylic acid derivative' may be the same or different and include one or more substituents such as hydrogen, hydroxy, halogen, carboxyl, cyano, nitro, oxo (=0), thio(=S), substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkenyl, substituted or unsubstituted amino, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted heterocycloalkyl ring, substituted or unsubstituted heteroarylalkyl, substituted or unsubstituted heterocyclic ring, substituted or unsubstituted guanidine, -COORx, - C(O)Rx, -C(S)Rx, -C(O)NRxRy, -C(O)ONRxRy, -NRxCONRyRz, -N(Rx)SORy, - N(Rx)SO2Ry, -(=N-N(Rx)Ry), - NRxC(O)ORy, -NRxRy, -NRxC(O)Ry-, -NRxC(S)Ry - NRxC(S)NRyRz, -SONRxRy-, -SO2NRxRy-, -ORx, -ORxC(O)NRyRz, -ORxC(O)ORy- , -OC(O)Rx, -OC(O)NRxRy, - RxNRyC(O)Rz, -RxORy, -RxC(O)ORy, - RxC(O)NRyRz, -RxC(O)Rx, -RxOC(O)Ry, -SRx, -SORx, -SO2Rx, -ONO2, wherein Rx, Ry and Rz in each of the above groups can be the same or different and can be a hydrogen atom, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkenyl, substituted or unsubstituted amino, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, 'substituted heterocycloalkyl ring' substituted or unsubstituted heteroarylalkyl, or a substituted or unsubstituted heterocyclic ring.
Monomers having the following structures are useful in forming medical devices:
Figure imgf000014_0001
Figure imgf000014_0002
A schematic representation of a synthetic method for making the novel cationic silicon-containing monomers disclosed herein is provided below:
O CH, CH, O
Il r Y 3 I Y 3 Il
Cl- CH2- C-NH-(CH2)3-^-Sι-O-^-$ι-(CH2)3— NH-C-CH— Cl
CH, CH,
H3C-C-C-O- (CH2)JN(CH3).,
O O CH, Il ^H3 QH3
H3C-C-C-O—(CH2)2-N-CH— C-NH-(CH2)3-{- Si-O^- Sι-fCH2)3—NH- ffC-CH— N-(CHj)2-O- ffC- -rC—-rCuH CH2 CH3 C| CH3 CH3 CH3 cf CH2
Figure imgf000015_0001
In a second aspect, the invention includes a reaction mixture comprising such mono vinyl polymerizable dicationic siloxanes which are easily synthesized to afford a predictable mixture of mono- vinyl and di-vinyl groups to provide a controlled reduction in the cross-link density of the resulting polymerized device. It is noted that a certain amount of non- vinyl containing polymer is also obtained, but can be minimized via appropriate stoichiometry to an acceptable amount. The resulting mixture comprises
Di-polymerizable (cross-linking)
X- X-
Figure imgf000015_0002
Mono-polymerizable (non-cross-linking) X- X"
Figure imgf000015_0003
wherein Li, L2 , L3, Ri, R2, R3, R4, Rs, RO, R7, Rs, R9, n and X'are as set forth above and L4 is independently the same or different as Li, L2 and L3.
In a third aspect, the invention includes articles formed of device forming monomer mixes comprising the monomers of formula (I). According to preferred embodiments, the article is the polymerization product of a mixture comprising the aforementioned cationic monomer and at least a second monomer. Preferred articles are optically clear and useful as a contact lens.
A method of making articles comprising monomers of the invention herein comprises providing a monomer mixture comprising the monomer of claim 1 and at least a second monomer, subjecting the monomer mixture to polymerizing conditions to provide a polymerized device, extracting the polymerized device, and packaging and sterilizing the polymerized device.
Useful articles made with these materials may require hydrophobic, possibly silicon containing monomers. Preferred compositions have both hydrophilic and hydrophobic monomers. The invention is applicable to a wide variety of polymeric materials, either rigid or soft. Especially preferred polymeric materials are lenses including contact lenses, rigid gas permeable contact lenses, phakic and aphakic intraocular lenses and corneal implants although all polymeric materials including biomaterials are contemplated as being within the scope of this invention. Especially preferred are silicon containing hydrogels.
The present invention also provides medical devices such as heart valves and films, surgical devices, vessel substitutes, intrauterine devices, membranes, diaphragms, surgical implants, blood vessels, artificial ureters, artificial breast tissue and membranes intended to come into contact with body fluid outside of the body, e.g., membranes for kidney dialysis and heart/lung machines and the like, catheters, mouth guards, denture liners, ophthalmic devices, and especially contact lenses.
Silicon containing hydrogels are prepared by polymerizing a mixture containing at least one silicon containing monomer and at least one hydrophilic monomer. The silicon containing monomer may function as a crosslinking agent (a crosslinker being defined as a monomer having multiple polymerizable functionalities) or a separate crosslinker may be employed.
An early example of a silicon containing contact lens material is disclosed in U.S. Pat. No. 4, 153,641 (Deichert et al assigned to Bausch & Lomb Incorporated). Lenses are made from poly(organosiloxane) monomers which are α, ω terminally bonded through a divalent hydrocarbon group to a polymerized activated unsaturated group. Various hydrophobic silicon-containing prepolymers such as l,3-bis(methacryloxyalkyl) polysiloxanes were copolymerized with known hydrophilic monomers such as 2- hydroxyethyl methacrylate (HEMA).
U.S. Pat. No. 5,358,995 (Lai et al) describes a silicon containing hydrogel which is comprised of an acrylic ester-capped polysiloxane prepolymer, polymerized with a bulky polysiloxanylalkyl (meth)acrylate monomer, and at least one hydrophilic monomer. Lai et al is assigned to Bausch & Lomb Incorporated and the entire disclosure is incorporated herein by reference. The acrylic ester-capped polysiloxane prepolymer, commonly known as M2 Dx consists of two acrylic ester end groups and "x" number of repeating dimethylsiloxane units. The preferred bulky polysiloxanylalkyl (meth)acrylate monomers are TRIS-type (methacryloxypropyl tris(trimethylsiloxy)silane) with the hydrophilic monomers being either acrylic- or vinyl-containing. Other examples of silicon-containing monomer mixtures which may be used with this invention include the following: vinyl carbonate and vinyl carbamate monomer mixtures as disclosed in U.S. Pat. Nos. 5,070,215 and 5,610,252 (Bambury et al); fluorosilicon monomer mixtures as disclosed in U.S. Pat. Nos. 5,321 , 108; 5,387,662 and 5,539,016 (Kunzler et al); fumarate monomer mixtures as disclosed in U.S. Pat. Nos. 5,374,662; 5,420,324 and 5,496,871 (Lai et al) and urethane monomer mixtures as disclosed in U.S. Pat. Nos. 5,451,651 ; 5,648,515; 5,639,908 and 5,594,085(Lai et al), all of which are commonly assigned to assignee herein Bausch & Lomb Incorporated, and the entire disclosures of which are incorporated herein by reference.
Examples of non-silicon hydrophobic materials include alkyl acrylates and methacrylates.
As a non limiting example, the mono vinyl polymerizable dicationic siloxanes of the invention herein may be copolymerized with a wide variety of monomers to produce silicon hydrogel lenses. For example, a second monomer may be selected from unsaturated carboxylic acids; methacrylic acids, acrylic acids; acrylic substituted alcohols; 2-hydroxyethylmethacrylate, 2-hydroxyethylacrylate; vinyl lactams; N-vinyl pyrrolidone (NVP) N-vinyl caprolactone; acrylamides; mefhacrylamide, N,N- dimethylacrylamide; methacrylates; ethylene glycol dimethacrylate, methyl methacrylate, allyl methacrylate; hydrophilic vinyl carbonates, hydrophilic vinyl carbamate monomers; hydrophilic oxazolone monomers, 3-methacryloyloxypropyl tris(trimethylsiloxy)silane, ethylene glycol dimethacrylate (EGDMA), allyl methacrylate (AMA) and mixtures thereof.
Suitable hydrophilic monomers include: unsaturated carboxylic acids, such as methacrylic and acrylic acids; acrylic substituted alcohols, such as 2- hydroxyethylmethacrylate and 2-hydroxyethylacrylate; vinyl lactams, such as N- vinylpyrrolidone (NVP) and l -vinylazonan-2-one; and acrylamides, such as methacrylamide and N,N-dimethylacrylamide (DMA).
Still further examples are the hydrophilic vinyl carbonate or vinyl carbamate monomers disclosed in U.S. Pat. Nos. 5,070,215, and the hydrophilic oxazolone monomers disclosed in U.S. Pat. No. 4,910,277. Other suitable hydrophilic monomers will be apparent to one skilled in the art.
Hydrophobic cross linkers would include methacrylates such as ethylene glycol dimethacrylate (EGDMA) and allyl methacrylate (AMA). In contrast to traditional silicon hydrogel monomer mixtures, the monomer mixtures containing, as an example, the mono vinyl polymerizable dicationic siloxanes of the invention herein are relatively water soluble. This feature provides advantages over traditional silicon hydrogel monomer mixtures in that there is less risk of incompatibility phase separation resulting in hazy lenses and the polymerized materials are extractable with water. However, when desired, traditional organic extraction methods may also be used. In addition, the extracted lenses demonstrate a good combination of oxygen permeability (Dk) and low modulus, properties known to be important to obtaining desirable contact lenses. Moreover, lenses prepared with the mono vinyl polymerizable dicationic siloxanes of the invention herein are wettable even without surface treatment, provide dry mold release, do not require solvents in the monomer mix (although solvents such as glycerol may be used), the extracted polymerized material is not cytotoxic and the surface is lubricious to the touch. In cases where the polymerized monomer mix containing the mono vinyl polymerizable dicationic siloxanes of the invention herein do not demonstrate a desirable tear strength, toughening agents such as TBE (4-?-butyl-2-hydroxycyclohexyl methacrylate) may be added to the monomer mix. Other strengthening agents are well known to those of ordinary skill in the art and may also be used when needed.
Although an advantage of the mono vinyl polymeπzable dicationic siloxanes of the invention herein is that they are relatively water soluble and also soluble in their comonomers, an organic diluent may be included in the initial monomeric mixture. As used herein, the term "organic diluent" encompasses organic compounds which minimize incompatibility of the components in the initial monomeric mixture and are substantially nonreactive with the components in the initial mixture. Additionally, the organic diluent serves to minimize phase separation of polymerized products produced by polymerization of the monomeric mixture. Also, the organic diluent will generally be relatively non-inflammable.
Contemplated organic diluents include terz-butanol (TBA); diols, such as ethylene glycol and polyols, such as glycerol. Preferably, the organic diluent is sufficiently soluble in the extraction solvent to facilitate its removal from a cured article during the extraction step. Other suitable organic diluents would be apparent to a person of ordinary skill in the art.
The organic diluent is included in an amount effective to provide the desired effect. Generally, the diluent is included at 5 to 60% by weight of the monomeric mixture, with 10 to 50% by weight being especially preferred
According to the present process, the monomeric mixture, comprising at least one hydrophilic monomer, at least one mono vinyl functionalized dicationic siloxanes and optionally the organic diluent, is shaped and cured by conventional methods such as static casting or spincasting. Lens formation can be by free radical polymerization such as azobisisobutyronitrile (AIBN) and peroxide catalysts using initiators and under conditions such as those set forth in U.S. Pat. No. 3,808, 179, incorporated herein by reference. Photo initiation of polymerization of the monomer mixture as is well known in the art may also be used in the process of forming an article as disclosed herein. Colorants and the like may be added prior to monomer polymerization.
Subsequently, a sufficient amount of unreacted monomer and, when present, organic diluent is removed from the cured article to improve the biocompatibility of the article. Release of non-polymerized monomers into the eye upon installation of a lens can cause irritation and other problems. Unlike other monomer mixtures that must be extracted with flammable solvents such as isopropyl alcohol, because of the properties of the novel mono vinyl polymerizable dicationic siloxanes of the invention herein, nonflammable solvents including water may be used for the extraction process.
Once the biomaterials formed from the polymerized monomer mix containing the mono vinyl polymerizable dicationic siloxanes disclosed herein are formed they are then extracted to prepare them for packaging and eventual use. Extraction is accomplished by exposing the polymerized materials to various solvents such as water, ter/-butanol, etc. for varying periods of time. For example, one extraction process is to immerse the polymerized materials in water for about three minutes, remove the water and then immerse the polymerized materials in another aliquot of water for about three minutes, remove that aliquot of water and then autoclave the polymerized material in water or buffer solution.
Following extraction of unreacted monomers and any organic diluent, the shaped article, for example an RGP lens, is optionally machined by various processes known in the art. The machining step includes lathe cutting a lens surface, lathe cutting a lens edge, buffing a lens edge or polishing a lens edge or surface. The present process is particularly advantageous for processes wherein a lens surface is lathe cut, since machining of a lens surface is especially difficult when the surface is tacky or rubbery.
Generally, such machining processes are performed before the article is released from a mold part. After the machining operation, the lens can be released from the mold part and hydrated. Alternately, the article can be machined after removal from the mold part and then hydrated. EXAMPLES
All solvents and reagents were obtained from Sigma-Aldrich, Milwaukee, WI, and used as received with the exception of aminopropyl terminated poly(dimethylsiloxane), 900-1000 and 3000 g/mol, obtained from Gelest, Inc., Morrisville, PA, and methacryloxypropyltris(trirnethylsiloxy)silane, obtained from Silar Laboratories, Scotia, NY, which were both used without further purification. The monomers 2-hydroxyethyl methacrylate and l-vinyl-2-pyrrolidone were purified using standard techniques. Analytical measurements
NMR: Η-Nuclear Magnetic Resonance (NMR) characterization was carried out using a 400 MHz Varian spectrometer using standard techniques in the art. Samples were dissolved in chloroform-d (99.8 atom % D), unless otherwise noted. Chemical shifts were determined by assigning the residual chloroform peak at 7.25 ppm. Peak areas and proton ratios were determined by integration of baseline separated peaks. Splitting patterns (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad) and coupling constants (J/Hz) are reported when present and clearly distinguishable.
SEC: Size Exclusion Chromatography (SEC) analyses were carried out by injection of 100 μL of sample dissolved in tetrahydrofuran (THF) (5-20 mg/mL) onto a Polymer Labs PL Gel Mixed Bed E (x2) column at 35 0C using a Waters 515 HPLC pump and HPLC grade THF mobile phase flow rate of 1.0 mL/min, and detected by a Waters 410 Differential Refractometer at 35 0C. Values of Mn, Mw, and polydispersity (PD) were determined by comparison to Polymer Lab Polystyrene narrow standards.
ESI-TOFMS: The electrospray (ESI) time of flight (TOF) MS analysis was performed on an Applied Biosystems Mariner instrument. The instrument operated in positive ion mode. The instrument was mass calibrated with a standard solution containing lysine, angiotensinogen, bradykinin (fragment 1-5) and des-Pro bradykinin. This mixture provides a seven- point calibration from 147 to 921 m/z. The applied voltage parameters were optimized from signal obtained from the same standard solution.
Stock solutions of the polymer samples were prepared as 1 mg/mL in tetrahydrofuran (THF). From these stock solutions, samples were prepared for ESI-TOF MS analysis as 30 μM solutions in isopropanol (IPA) with the addition of 2% by volume saturated NaCl in IPA. Samples were directly infused into the ESI-TOF MS instrument at a rate of 35 μL/min.
Mechanical properties and Oxygen Permeability: Modulus and elongation tests were conducted according to ASTM D- 1708a, employing an Instron (Model 4502) instrument where the hydrogel film sample is immersed in borate buffered saline; an appropriate size of the film sample is gauge length 22 mm and width 4.75 mm, where the sample further has ends forming a dog bone shape to accommodate gripping of the sample with clamps of the Instron instrument, and a thickness of 200+50 microns.
Oxygen permeability (also referred to as Dk) was determined by the following procedure. Other methods and/or instruments may be used as long as the oxygen permeability values obtained therefrom are equivalent to the described method. The oxygen permeability of silicone hydrogels is measured by the polarographic method (ANSI Z80.20-1998) using an 02 Permeometer Model 20 IT instrument (Createch, Albany, California USA) having a probe containing a central, circular gold cathode at its end and a silver anode insulated from the cathode. Measurements are taken only on pre- inspected pinhole-free, flat silicone hydrogel film samples of three different center thicknesses ranging from 150 to 600 microns. Center thickness measurements of the film samples may be measured using a Rehder ET-I electronic thickness gauge. Generally, the film samples have the shape of a circular disk. Measurements are taken with the film sample and probe immersed in a bath containing circulating phosphate buffered saline (PBS) equilibrated at 35°C+/- 0.2°. Prior to immersing the probe and film sample in the PBS bath, the film sample is placed and centered on the cathode premoistened with the equilibrated PBS, ensuring no air bubbles or excess PBS exists between the cathode and the film sample, and the film sample is then secured to the probe with a mounting cap, with the cathode portion of the probe contacting only the film sample. For silicone hydrogel films, it is frequently useful to employ a Teflon polymer membrane, e.g., having a circular disk shape, between the probe cathode and the film sample. In such cases, the Teflon membrane is first placed on the pre-moistened cathode, and then the film sample is placed on the Teflon membrane, ensuring no air bubbles or excess PBS exists beneath the Teflon membrane or film sample. Once measurements are collected, only data with correlation coefficient value (R2) of 0.97 or higher should be entered into the calculation of Dk value. At least two Dk measurements per thickness, and meeting R2 value, are obtained. Using known regression analyses, oxygen permeability (Dk) is calculated from the film samples having at least three different thicknesses. Any film samples hydrated with solutions other than PBS are first soaked in purified water and allowed to equilibrate for at least 24 hours, and then soaked in PHB and allowed to equilibrate for at least 12 hours. The instruments are regularly cleaned and regularly calibrated using RGP standards. Upper and lower limits are established by calculating a +/- 8.8% of the Repository values established by William J. Benjamin, et al., The Oxygen Permeability of Reference Materials, Optom Vis Sci 7 (12s): 95 (1997), the disclosure of which is incorporated herein in its entirety: Material Name Repository Values Lower Limit Upper Limit
Fluoroperm 30 26.2 24 29
Menicon EX 62.4 56 66
Quantum II 92.9 85 101
Abbreviations
NVP l-Vinyl-2-pyrrolidone
TRIS Methacryloxypropyltris(trimethylsiloxy)silane
HEMA 2-Hydroxyethyl methacrylate v-64 2, 2'-Azobis(2-methylpropionitrile) Unless otherwise specifically stated or made clear by its usage, all numbers used in the examples should be considered to be modified by the term "about" and to be weight percent.
Example 1. Synthesis of 3-(chloroacetylamido)propyl terminated poly(dimethylsiloxane).
To a vigorously stirred biphasic mixture of a solution of 3-aminopropyl terminated poly(dimethylsiloxane) (97.7 g, 3000 g/mol) obtained from Gelest, Inc., Morrisville, PA, in dichloromethane (350 mL) and NaOH (aq) (0.75 M, 150 mL) at 0 0C was added a solution of chloroacetyl chloride (8 mL, 0.1 mol) in dichloromethane (5OmL) dropwise. Following a one hour reaction period at ambient temperature, the organic layer was separated and stirred 5 hours over silica gel (25 g) and Na2SO4 (25 g) and filtered. Solvents were removed at reduced pressure to afford the product as a colorless liquid (85 g, 83 %): 1H NMR (CDCl3, 400 MHz) δ 6.64 (br, 2 H), 4.05 (s, 4 H), 3.29 (q, J = 7 Hz, 4 H), 1.60-1.52 (m, 4 H), 0.56-0.52 (m, 4 H), 0.06 (s, approximately 264 H); GPC: Mw 3075 g/mol, PD 1.80. The mass spectrum of this sample indicated a mass distribution of singly charged oligomers having a repeat unit mass of 74 Da. This corresponds to the targeted dimethyl siloxane (C2H6SiO) repeat unit chemistry. The targeted end group nominal mass for this sample is 326 Da (Ci2Ha4N2O2SiCh) and the required sodium charge agent has a mass of 23 Da (Na). The mass peaks in the distribution for this sample correspond to a nominal mass sequence of (74 x n + 326 + 23) where n is the number of repeat units. There is a good match between the experimental and theoretical isotopic distribution patterns for the oligomers evaluated. CH3 CH3 H2N-(CH2)3-f^i-O-)7fi-(CH2)3-NH2
CH, CH,
O
Il CI— C-CHXI
CI— CH—C-NH-(CH2)3-(-Si-O-|^Si-(CH2)3— NH-C-CH—CI
CH, CH,
Example 2. Synthesis of cationic methacrylate terminated poly(dimethylsiloxane).
To a solution of 3-(chloroacetylamido)propyl end-capped poly(dimethylsiloxane) (20.0 g) from example 1 in ethyl acetate (25 mL) was added 2-(dimethylamino)ethyl methacrylate (3.40 mL, 20.1 mmol) and the mixture was heated 80 hours at 60 0C under a nitrogen atmosphere in the dark. The resulting solution was stripped of solvent and/or reagent at reduced pressure affording the product (23.1 g) containing a residual amount of 2-(dimethylamino)ethyl methacrylate (<10 w/w %) that is easily quantified by 1H NMR analysis: 1H NMR (CDCl3, 400 MHz) δ 9.23 (br, 2 H), 6.07 (s, 2 H), 5.60 (s, 2 H), 4.71 (s, 4 H), 4.65-4.63 (m, 4 H), 4.18 (br, 4 H)3.47 (s, 12 H), 3.19-3.13 (m, 4 H), 1.88 (s, 6 H), 1.53-1.49 (m, 4 H), 0.51 -0.47 (m, 4 H), 0.01 (s, approximately 327 H). The mass spectrum of this sample indicated a mass distribution of doubly charged oligomers having a repeat unit mass of 37 Da. When deconvoluted this corresponds to a repeat unit mass of 74 Da (37 Da x 2). This corresponds to the targeted dimethyl siloxane (CaHoSiO) repeat unit chemistry. The targeted end group nominal mass for this sample is 570 Da (C2SHs4N4OoSi). The end group chemistry contains two quaternary nitrogen atoms and thus no additional charge agent is required. The two quaternary nitrogen (N+) atoms also explain the presence of the doubly charged mass peaks. The mass peaks in the distribution for this sample correspond to a nominal mass sequence of ((74/2) x n + 570) where n is the number of repeat units. There is a good match between the experimental and theoretical isotopic distribution patterns for the oligomers evaluated.
CI—CH— fl C-NH-(CH2)3-( r- ?SiH-*O- ,|7? Si"-»(CH2)—NH- ffC-CH—CI CH, CH,
H3C-C-C-O-(CH2)2-N(CH3)2 CH2
Figure imgf000028_0001
Example 3. Synthesis of cationic chloride terminated poly(dimethylsiloxane) with variable terminal methacrylate.
To a solution of 3-(chloroacetylamido)propyl end-capped poly(dimethylsiloxane) (50.0 g) from example 1 in ethyl acetate (50 mL) was added 2-(dimethylamino)ethyl methacrylate (3.03 mL, 18.0 mmol) and 3-(dimethylamino)propanol (0.71 mL, 6.1 mmol) and the mixture was heated 80 hours at 60 0C under a nitrogen atmosphere in the dark. The resulting solution was stripped of solvent and/or reagent at reduced pressure affording the product (53.5 g) containing a residual amount of 2-(dimethylamino)ethyl methacrylate and 3-(dimethylamino)propanol (<10 w/w %) that are easily quantified by 1H NMR analysis as described above.
Figure imgf000029_0001
+
O CH3 O CH3 CH3 O CH3
H3C-C-C-O- (CH2)A-N-CH- C-NH-(CH2)3-|-Sι-O-[^Sι-(CH2)— NH-C-CH2- N— (CH-2)3-OH
CH, CH '3 Cl CH, CH, CH,
Cl
Example 4-5. Polymerization, processing and properties of Ωlms containing cationic siloxanyl prepolymers.
Liquid monomer solutions containing cationic end-capped poly(dimethylsiloxane) prepolymers (from examples 2 and 3 above) as well as other monomers and initiator used commonly in ophthalmic materials were clamped between silanized glass plates at various thicknesses and polymerized using thermal decomposition of the free-radical generating additive by heating 2 h at 100 0C under a nitrogen atmosphere. Each of the formulations listed in table 1 afforded a transparent, tack-free, insoluble film.
Table 1. Formulations containing cationic end-capped poly(dimethylsiloxane)
Ex. Ex. 2 Ex. 3 Nvp TRIS v-64
4 19 2 34.4 48.9 0.5
5 19 2 34.4 48.9 0.5 Films were removed from glass plates and hydrated/extracted in deionized H2O for a minimum of 4 hours, transferred to fresh deionized H2O and autoclaved 30 min at 121 0C. The cooled films were then analyzed for selected properties of interest in ophthalmic materials as described in table 2. Mechanical tests were conducted in borate buffered saline according to ASTM D- 1708a, discussed above.
Table 2. Properties of processed films containing canonic end-capped poly(dimethylsiloxane)
Example Modulus (g/mm )*
3 210(21 ) 4 136(15)
*number in parentheses indicates standard deviation of final digit(s)

Claims

WHAT IS CLAIMED IS:
A monomer of formula (I):
Figure imgf000031_0001
formula (I), wherein L1, L2 and L^ can individually be the same or different and are selected from the group consisting of urethanes, carbonates, carbamates, carboxyl ureidos, sulfonyls, a straight or branched C1-C30 alkyl group, a C1-C30 fluoroalkyl group, a C1-C20 ester group, an alkyl ether, cycloalkyl ether, cycloalkenyl ether, aryl ether, arylalkyl ether, a polyether containing group, an ureido group, an amide group, an amine group, a substituted or unsubstituted C1-C30 alkoxy group, a substituted or unsubstituted C3-C3O cycloalkyl group, a substituted or unsubstituted C3-C3O cycloalkylalkyl group, a substituted or unsubstituted C3-C3O cycloalkenyl group, a substituted or unsubstituted C5-C3O aryl group, a substituted or unsubstituted C5-C3O arylalkyl group, a substituted or unsubstituted C5-C3O heteroaryl group, a substituted or unsubstituted C3-C3O heterocyclic ring, a substituted or unsubstituted C4-C30 heterocyclolalkyl group, a substituted or unsubstituted C6-C30 heteroarylalkyl group, a C5-C30 fluoroaryl group, or a hydroxyl substituted alkyl ether and combinations thereof; X" is at least a single charged counter ion; n is an integer from 1 to about 300; Ri, R2, R^, R4, R5, Rδ, R7, Rs and R9 are each independently hydrogen, a straight or branched C1-C30 alkyl group, a C1 -C30 fluoroalkyl group, a C1 -C20 ester group, an alkyl ether, cycloalkyl ether, cycloalkenyl ether, aryl ether, arylalkyl ether, a polyether containing group, an ureido group, an amide group, an amine group, a substituted or unsubstituted C1-C30 alkoxy group, a substituted or unsubstituted C3-C3O cycloalkyl group, a substituted or unsubstituted C3-C3O cycloalkylalkyl group, a substituted or unsubstituted C3-C3O cycloalkenyl group, a substituted or unsubstituted C5-C30 aryl group, a substituted or unsubstituted C5-C3O arylalkyl group, a substituted or unsubstituted C5-C30 heteroaryl group, a substituted or unsubstituted C3-C30 heterocyclic ring, a substituted or unsubstituted C4-C30 heterocyclolalkyl group, a substituted or unsubstituted C6-C30 heteroarylalkyl group, fluorine, a C5-C3O fluoroaryl group, or a hydroxyl group and V is a polymerizable ethylenically unsaturated organic radical.
2. The monomer of claim 1 wherein X" is selected from the group consisting of Cl", Br", I", CF1CO2 ", CH3CO2 ", HCO3 ", CH3SO4 ", p-toluenesulfonate, HSO4 5H2PO4 , NO3 , CH3CH(OH)CO2 ", SO4 2", CO3 2" , HPO4 2" and mixtures thereof.
3. The monomer of claim 1 wherein X" is at least a single charged counter ion and is selected from the group consisting of Cl", Br", I", CF3CO2 ", CH3CO2 ", HCO3 ", CH3SO4 ", /?-toluenesulfonate, HSO4 ,H2PO4 ", NO3 ", and CH3CH(OH)CO2 " and mixtures thereof.
4. The monomer of claim 1 wherein the monomer has a structure selected from the group consisting of
Figure imgf000032_0001
Figure imgf000032_0002
Figure imgf000033_0001
and mixtures thereof.
5. A monomer mix useful for making polymerized biomaterials comprising at least one monomer of claim 1 and at least one second monomer.
6. The monomer mix of claim 5, further comprising in addition to the second monomer a hydrophobic monomer and a hydrophilic monomer.
7. The monomer mix of claim 5 wherein the second monomer is selected from the group consisting of unsaturated carboxylic acids; methacrylic acids, acrylic acids; acrylic substituted alcohols; 2-hydroxyethylmethacrylate, 2-hydroxyethylacrylate; vinyl lactams; N-vinyl pyrrolidone (NVP) N- vinyl caprolactone; acrylamides; methacrylamide, N,N- dimethylacrylamide; methacrylates; ethylene glycol dimethacrylate, methyl methacrylate, allyl methacrylate; hydrophilic vinyl carbonates, hydrophilic vinyl carbamate monomers; hydrophilic oxazolone monomers, 3-methacryloyloxypropyl tris(trimethylsiloxy)silane, ethylene glycol dimethacrylate (EGDMA), allyl methacrylate (AMA) and mixtures thereof.
8. A device comprising the monomer of claim 1 as a polymerized comonomer.
9. The device of claim 8 wherein the device is a contact lens.
10. The device of claim 8 wherein the contact lens is a rigid gas permeable contact lens.
1 1. The device of claim 8 wherein the lens is a soft contact lens.
12. The device of claim 8 wherein the lens is a hydrogel contact lens.
13. The device of claim 8 wherein the lens is an intraocular lens.
14. The device of claim 13 wherein the lens is a phakic intraocular lens.
15. The device of claim 13 wherein the lens is an aphakic intraocular lens.
16. The device of claim 8 wherein the device is a corneal implant.
17. The device of claim 8 wherein the device is selected from the group consisting of heart valves, intraocular lenses, films, surgical devices, vessel substitutes, intrauterine devices, membranes, diaphragms, surgical implants, blood vessels, artificial ureters, artificial breast tissue, membranes for kidney dialysis machines, membranes for heart/lung machines, catheters, mouth guards, denture liners, ophthalmic devices, and contact lenses.
18. A method of making a device comprising: providing a monomer mixture comprising the monomer of claim 1 and at least a second monomer; subjecting the monomer mixture to polymerizing conditions to provide a polymerized device; extracting the polymerized device; and packaging and sterilizing the polymerized device.
19. The method of claim 18 wherein the step of extracting is performed with nonflammable solvents.
20. The method of claim 18 wherein the extraction solvent is water.
21. A silicon containing monomer containing an ethylenically unsaturated group and at least two cationic hydrophilic groups.
22. The silicon containing monomer of claim 21 wherein the at least two cationic hydrophilic groups are ammonium containing groups. 23 The silicon containing monomer of claim 22 having at least one counter ion selected from the group consisting of Cl , Br , I , CF3CO2 , CH3CO2 , HCO3 , CH3SO4 , p- toluenesulfonate, HSO4 ,H2PO4 , NO3 , CH3CH(OH)CO2 , SO4 2 , CO3 2 , HPO4 2 and mixtures thereof
PCT/US2007/065851 2006-04-13 2007-04-03 Cationic end-capped siloxane prepolymer for reduced cross-link density WO2007121084A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07760018A EP2004729B1 (en) 2006-04-13 2007-04-03 Cationic end-capped siloxane prepolymer for reduced cross-link density
JP2009505539A JP2009533532A (en) 2006-04-13 2007-04-03 Cationic end-capped siloxane prepolymer for reducing crosslink density
DE602007001881T DE602007001881D1 (en) 2006-04-13 2007-04-03 Cationic end-group siloxane prepolymer for reduced crosslinking density
AT07760018T ATE438677T1 (en) 2006-04-13 2007-04-03 CATIONIC END-GROUP SILOXANE PREPOLYMER FOR REDUCED CROSS-LINK DENSITY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/403,393 US7960447B2 (en) 2006-04-13 2006-04-13 Cationic end-capped siloxane prepolymer for reduced cross-link density
US11/403,393 2006-04-13

Publications (1)

Publication Number Publication Date
WO2007121084A1 true WO2007121084A1 (en) 2007-10-25

Family

ID=38372428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/065851 WO2007121084A1 (en) 2006-04-13 2007-04-03 Cationic end-capped siloxane prepolymer for reduced cross-link density

Country Status (8)

Country Link
US (1) US7960447B2 (en)
EP (1) EP2004729B1 (en)
JP (2) JP2009533532A (en)
CN (1) CN101421335A (en)
AT (1) ATE438677T1 (en)
DE (1) DE602007001881D1 (en)
ES (1) ES2329197T3 (en)
WO (1) WO2007121084A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US7828728B2 (en) 2003-07-25 2010-11-09 Dexcom, Inc. Analyte sensor
JP4708342B2 (en) 2003-07-25 2011-06-22 デックスコム・インコーポレーテッド Oxygen augmentation membrane system for use in implantable devices
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
US8744546B2 (en) 2005-05-05 2014-06-03 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US7825273B2 (en) * 2006-01-06 2010-11-02 Bausch & Lomb Incorporated Process for making cationic hydrophilic siloxanyl monomers
US7468397B2 (en) * 2006-06-30 2008-12-23 Bausch & Lomb Incorporated Polymerizable siloxane-quaternary amine copolymers
US7579021B2 (en) * 2006-09-27 2009-08-25 Bausch & Lomb Incorporated Drug delivery systems based on degradable cationic siloxanyl macromonomers
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
EP2326944B1 (en) 2008-09-19 2020-08-19 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
PL2452212T3 (en) * 2009-07-09 2015-08-31 Bausch & Lomb Mono ethylenically unsaturated polymerizable group containing polycarbosiloxane monomers
JP5784119B2 (en) 2010-07-30 2015-09-24 ノバルティス アーゲー Amphiphilic polysiloxane prepolymers and their use
WO2012047961A1 (en) 2010-10-06 2012-04-12 Novartis Ag Polymerizable chain-extended polysiloxanes with pendant hydrophilic groups
EP2625218B1 (en) 2010-10-06 2018-04-25 Novartis AG Water-processable silicone-containing prepolymers and uses thereof
US8835525B2 (en) 2010-10-06 2014-09-16 Novartis Ag Chain-extended polysiloxane crosslinkers with dangling hydrophilic polymer chains
AU2012213442B2 (en) * 2011-02-01 2016-06-23 Dsm Ip Assets B.V. Silicone containing monomers with hydrophilic end groups
US20130143056A1 (en) * 2011-06-08 2013-06-06 Surmodics, Inc. Photo-vinyl linking agents
CN105949466A (en) 2011-06-30 2016-09-21 帝斯曼知识产权资产管理有限公司 Silicone-containing monomer
WO2013142058A1 (en) 2012-03-22 2013-09-26 Momentive Performance Materials Inc. Polymerizable amido-containing organosilicon compounds, silicon-containing polymers and biomedical devices therefrom
US20140175685A1 (en) * 2012-12-20 2014-06-26 Novartis Ag Method for Making Silicone Hydrogel Contact Lenses
BR112015016867A2 (en) * 2013-01-15 2017-10-03 Medicem Ophthalmic Cy Ltd [Cy/Cy] BIOANALOGICAL INTRAOCULAR LENS AND ITS IMPLANT
US10441676B2 (en) 2013-01-15 2019-10-15 Medicem Institute s.r.o. Light-adjustable hydrogel and bioanalogic intraocular lens
JP2016512566A (en) 2013-01-31 2016-04-28 モーメンティブ・パフォーマンス・マテリアルズ・インク Water-soluble silicone material
KR20200140308A (en) * 2018-04-03 2020-12-15 에보니크 오퍼레이션즈 게엠베하 Siloxane for use in textile processing and cleaning and care formulations

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1688453A (en) * 1926-05-19 1928-10-23 American Telephone & Telegraph Telephone signaling system
US5536861A (en) * 1993-02-09 1996-07-16 Ciba-Geigy Corporation Monomers for producing antimicrobial quaternary group-containing polyers
EP1285943A2 (en) * 2001-08-23 2003-02-26 Goldschmidt AG Uv-absorbing quaternary polysiloxanes

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2902389A (en) * 1955-02-25 1959-09-01 Dow Corning Process of bonding polysiloxanes to a surface and the resulting product
CA939378A (en) * 1969-05-15 1974-01-01 Edwin P. Plueddemann Cationic unsaturated amine-functional silane coupling agents
US3808179A (en) * 1972-06-16 1974-04-30 Polycon Laboratories Oxygen-permeable contact lens composition,methods and article of manufacture
US3843529A (en) * 1972-08-10 1974-10-22 Dow Corning Metal working lubricant compositions
US4006176A (en) * 1975-04-22 1977-02-01 The Procter & Gamble Company Organosilane compounds
US4005024A (en) * 1975-04-22 1977-01-25 The Procter & Gamble Company Rinse aid composition containing an organosilane
US4153641A (en) * 1977-07-25 1979-05-08 Bausch & Lomb Incorporated Polysiloxane composition and contact lens
US4189546A (en) * 1977-07-25 1980-02-19 Bausch & Lomb Incorporated Polysiloxane shaped article for use in biomedical applications
US4185087A (en) * 1977-12-28 1980-01-22 Union Carbide Corporation Hair conditioning compositions containing dialkylamino hydroxy organosilicon compounds and their derivatives
DE2912485A1 (en) 1979-03-29 1980-10-09 Henkel Kgaa NEW QUARTAERE POLYSILOXAN DERIVATIVES, THEIR USE IN HAIR COSMETICS, AND THEIR WASHING AND TREATMENT PRODUCTS CONTAINING THEM
US4260725A (en) * 1979-12-10 1981-04-07 Bausch & Lomb Incorporated Hydrophilic contact lens made from polysiloxanes which are thermally bonded to polymerizable groups and which contain hydrophilic sidechains
US4259467A (en) * 1979-12-10 1981-03-31 Bausch & Lomb Incorporated Hydrophilic contact lens made from polysiloxanes containing hydrophilic sidechains
US4418165A (en) * 1980-06-03 1983-11-29 Dow Corning Corporation Optically clear silicone compositions curable to elastomers
US4388229A (en) * 1981-11-02 1983-06-14 Syntex (U.S.A.) Inc. Contact lens rejuvenating solution
LU84463A1 (en) * 1982-11-10 1984-06-13 Oreal POLYQUATERNARY POLYSILOXANE POLYMERS
US4472327A (en) * 1983-01-31 1984-09-18 Neefe Charles W Method of making hydrogel cosmetic contact lenses
US4495361A (en) * 1983-04-29 1985-01-22 Bausch & Lomb Incorporated Polysiloxane composition with improved surface wetting characteristics and biomedical devices made thereof
US5137448A (en) * 1984-07-31 1992-08-11 Dentsply Research & Development Corp. Dental impression method with photocuring of impression material in light transmissive tray
US4686267A (en) * 1985-10-11 1987-08-11 Polymer Technology Corporation Fluorine containing polymeric compositions useful in contact lenses
US4745142A (en) * 1985-10-14 1988-05-17 Teijin Limited Stainproof polyester fiber
US4633003A (en) * 1985-11-25 1986-12-30 Alcon Laboratories, Inc. Siloxane monomers for ophthalmic applications
US4640941A (en) * 1985-11-25 1987-02-03 Alcon Laboratories Hydrogels containing siloxane comonomers
LU86361A1 (en) * 1986-03-19 1987-11-11 Oreal AQUEOUS COSMETIC COMPOSITION WITH DIFFERENT FOAM FOR THE TREATMENT OF HAIR AND SKIN
DE3705121A1 (en) * 1987-02-18 1988-09-01 Goldschmidt Ag Th POLYQUATERIAL POLYSILOXANE POLYMERS, THEIR PRODUCTION AND USE IN COSMETIC PREPARATIONS
US5006622A (en) * 1987-04-02 1991-04-09 Bausch & Lomb Incorporated Polymer compositions for contact lenses
DE3719086C1 (en) * 1987-06-06 1988-10-27 Goldschmidt Ag Th Diquartere polysiloxanes, their production and use in cosmetic preparations
US5128408A (en) * 1987-11-16 1992-07-07 Toyo Boseki Kabushiki Kaisha Gas-permeable material with excellent compatibility with blood
US5039458A (en) * 1987-12-21 1991-08-13 W. R. Grace & Co.-Conn. Method of making a hydrophilic, biocompatible, protein non-adsorptive contact lens
US4910277A (en) * 1988-02-09 1990-03-20 Bambury Ronald E Hydrophilic oxygen permeable polymers
US5070170A (en) * 1988-02-26 1991-12-03 Ciba-Geigy Corporation Wettable, rigid gas permeable, substantially non-swellable contact lens containing block copolymer polysiloxane-polyoxyalkylene backbone units, and use thereof
DE3837811C1 (en) * 1988-11-08 1990-04-26 Th. Goldschmidt Ag, 4300 Essen, De
IL92351A (en) * 1988-11-29 1994-02-27 Allergan Inc Irvine Aqueous opthalmic solutions containing stabilized chlorine dioxide and an inorganic salt
US5070215A (en) * 1989-05-02 1991-12-03 Bausch & Lomb Incorporated Novel vinyl carbonate and vinyl carbamate contact lens material monomers
US5034461A (en) * 1989-06-07 1991-07-23 Bausch & Lomb Incorporated Novel prepolymers useful in biomedical devices
US5064613A (en) * 1989-11-03 1991-11-12 Dow Corning Corporation Solid antimicrobial
US5013459A (en) * 1989-11-09 1991-05-07 Dow Corning Corporation Opthalmic fluid dispensing method
CA2116849C (en) * 1991-09-12 2001-06-12 Yu-Chin Lai Wettable silicone hydrogel compositions and methods
FR2682090B1 (en) * 1991-10-03 1993-12-31 Holzstoff Holding Sa RESERVOIR SYSTEM FOR EXTENDED BROADCASTING OF AN ACTIVE INGREDIENT.
US5358995A (en) * 1992-05-15 1994-10-25 Bausch & Lomb Incorporated Surface wettable silicone hydrogels
US5260000A (en) * 1992-08-03 1993-11-09 Bausch & Lomb Incorporated Process for making silicone containing hydrogel lenses
JP3254018B2 (en) * 1992-10-20 2002-02-04 昭和電工株式会社 Polyorganosilsesquioxane and method for producing the same
US5321108A (en) * 1993-02-12 1994-06-14 Bausch & Lomb Incorporated Fluorosilicone hydrogels
US5374662A (en) * 1993-03-15 1994-12-20 Bausch & Lomb Incorporated Fumarate and fumaramide siloxane hydrogel compositions
US5340583A (en) * 1993-05-06 1994-08-23 Allergan, Inc. Antimicrobial lenses and lens care systems
US5393330A (en) * 1993-06-30 1995-02-28 Osi Specialties, Inc. Cationic emulsions of alkylalkoxysilanes
US5451651A (en) * 1993-12-17 1995-09-19 Bausch & Lomb Incorporated Urea and urethane monomers for contact lens materials
US5399737A (en) * 1994-04-04 1995-03-21 Alcon Laboratories, Inc. Quaternary ammonium siloxane compounds and methods for their use
US5760100B1 (en) * 1994-09-06 2000-11-14 Ciba Vision Corp Extended wear ophthalmic lens
TW585882B (en) * 1995-04-04 2004-05-01 Novartis Ag A method of using a contact lens as an extended wear lens and a method of screening an ophthalmic lens for utility as an extended-wear lens
FR2736262B1 (en) * 1995-07-07 1997-09-26 Oreal DETERGENT COSMETIC COMPOSITIONS FOR HAIR USE AND THE USE THEREOF
US5714557A (en) * 1995-12-07 1998-02-03 Bausch & Lomb Incorporated Monomeric units useful for reducing the modulus of low water polymeric silicone compositions
EP0865444B1 (en) * 1995-12-07 2001-09-19 BAUSCH &amp; LOMB INCORPORATED Monomeric units useful for reducing the modulus of silicone hydrogels
JP3484591B2 (en) 1995-12-28 2004-01-06 東レ株式会社 Plastic molded article, method for producing the same, and optical article
WO1997032917A1 (en) * 1996-03-04 1997-09-12 Osi Specialities, Inc. Silicone aminopolyalkyleneoxide block copolymers
JP3715021B2 (en) * 1996-04-09 2005-11-09 Jsr株式会社 Liquid curable resin composition
DE19627204A1 (en) * 1996-07-05 1998-01-08 Basf Ag Cosmetic or pharmaceutical compositions for use on the skin
US5707435A (en) 1996-10-16 1998-01-13 Dow Corning Corporation Ammonium siloxane emulsions and their use as fiber treatment agents
US5707434A (en) * 1996-10-16 1998-01-13 Dow Corning Corporation Water soluble ammonium siloxane compositions and their use as fiber treatment agents
US5725736A (en) * 1996-10-25 1998-03-10 Kimberly-Clark Worldwide, Inc. Tissue containing silicone betaines
US5994488A (en) * 1996-12-06 1999-11-30 Toray Industries, Inc. Plastic articles for medical use
DE19718634A1 (en) * 1997-05-02 1998-11-05 Wacker Chemie Gmbh Radiation- or thermosetting organosiloxane compositions with (methyl) styrene groups
US6013711A (en) * 1997-06-18 2000-01-11 Ck Witco Corporation Hydrophilic polysiloxane compositions
US5844026A (en) * 1997-06-30 1998-12-01 Ciba Specialty Chemicals Corporation N,N',N''-tris{2,4-bis Hydrocarbyloxy-2,2,6,6-tetra-methylpiperidin-4-yl)alkylamino!-s-triazin-6-yl}-3,3'-ethylenediiminodipropylamines, their isomers and bridged derivatives and polymer compositions stabilized therewith
US6822016B2 (en) * 2001-09-10 2004-11-23 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
US5962548A (en) * 1998-03-02 1999-10-05 Johnson & Johnson Vision Products, Inc. Silicone hydrogel polymers
US6849671B2 (en) * 1998-03-02 2005-02-01 Johnson & Johnson Vision Care, Inc. Contact lenses
JP2000017031A (en) * 1998-06-29 2000-01-18 Shin Etsu Chem Co Ltd Radiation curable resin composition
DE69920484T2 (en) * 1998-07-17 2005-10-06 Biocompatibles Uk Ltd., Farnham METHOD FOR PRODUCING COATED MOLDED POLYMERIC ARTICLES
EP1000959B1 (en) * 1998-11-14 2003-04-16 Goldschmidt AG Polyetherquat functional polysiloxanes
AU3887500A (en) * 1999-03-16 2000-10-04 Coating Systems Laboratories, Inc. Antimicrobial skin preparations containing organosilane quaternaries
US6649722B2 (en) * 1999-12-10 2003-11-18 Novartis Ag Contact lens
DE10036677A1 (en) * 2000-07-27 2002-02-14 Wacker Chemie Gmbh Aqueous compositions
DE10051258A1 (en) * 2000-10-16 2002-04-25 Goldschmidt Rewo Gmbh & Co Kg Washing agents having a softening effect contain at least one quaternary polysiloxane compound
JP4012680B2 (en) * 2000-10-26 2007-11-21 信越化学工業株式会社 Organosilicon compound
US6534184B2 (en) * 2001-02-26 2003-03-18 Kion Corporation Polysilazane/polysiloxane block copolymers
US6815074B2 (en) * 2001-05-30 2004-11-09 Novartis Ag Polymeric materials for making contact lenses
US6482969B1 (en) * 2001-10-24 2002-11-19 Dow Corning Corporation Silicon based quaternary ammonium functional compositions and methods for making them
US6607717B1 (en) * 2001-10-24 2003-08-19 Dow Corning Corporation Silicon based quaternary ammonium functional compositions and their applications
US6730767B2 (en) * 2001-11-02 2004-05-04 Bausch & Lomb Incorporated High refractive index aromatic-based siloxane monofunctional macromonomers
US6852793B2 (en) * 2002-06-19 2005-02-08 Bausch & Lomb Incorporated Low water content, high refractive index, flexible, polymeric compositions
WO2004041986A1 (en) * 2002-11-04 2004-05-21 The Procter & Gamble Company Fabric treatment compositions comprising oppositely charged polymers
US6787603B2 (en) * 2002-11-27 2004-09-07 Dow Corning Corporation Method of making emulsion containing quaternary ammonium functional silanes and siloxanes
CA2525865A1 (en) * 2003-05-22 2004-12-09 Coating Systems Laboratories, Inc. Antimicrobial quaternary ammonium organosilane coatings
DE102005004706A1 (en) * 2005-02-02 2006-08-10 Goldschmidt Gmbh UV-absorbing quaternary polysiloxanes
US7759408B2 (en) * 2005-12-21 2010-07-20 Bausch & Lomb Incorporated Silicon-containing monomers end-capped with polymerizable cationic hydrophilic groups
US7622512B2 (en) * 2005-12-21 2009-11-24 Bausch & Lomb Incorporated Cationic hydrophilic siloxanyl monomers
US7528208B2 (en) * 2006-01-06 2009-05-05 Bausch & Lomb Incorporated Siloxane prepolymer containing pendant and end-capping cationic and polymerizable groups
US7557231B2 (en) * 2006-06-30 2009-07-07 Bausch & Lomb Incorporated Carboxylic tris-like siloxanyl monomers
US7468397B2 (en) 2006-06-30 2008-12-23 Bausch & Lomb Incorporated Polymerizable siloxane-quaternary amine copolymers
US7601766B2 (en) * 2006-06-30 2009-10-13 Bausch & Lomb Incorporated Carboxylic siloxanyl monomers with pendant polymerizable groups
US7579021B2 (en) * 2006-09-27 2009-08-25 Bausch & Lomb Incorporated Drug delivery systems based on degradable cationic siloxanyl macromonomers
US20080152540A1 (en) * 2006-12-22 2008-06-26 Bausch & Lomb Incorporated Packaging solutions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1688453A (en) * 1926-05-19 1928-10-23 American Telephone & Telegraph Telephone signaling system
US5536861A (en) * 1993-02-09 1996-07-16 Ciba-Geigy Corporation Monomers for producing antimicrobial quaternary group-containing polyers
EP1285943A2 (en) * 2001-08-23 2003-02-26 Goldschmidt AG Uv-absorbing quaternary polysiloxanes
US6630132B2 (en) * 2001-08-23 2003-10-07 Goldschmidt Ag UV-light-absorbing quaternary polysiloxanes

Also Published As

Publication number Publication date
US20070242215A1 (en) 2007-10-18
EP2004729B1 (en) 2009-08-05
US7960447B2 (en) 2011-06-14
ATE438677T1 (en) 2009-08-15
CN101421335A (en) 2009-04-29
ES2329197T3 (en) 2009-11-23
EP2004729A1 (en) 2008-12-24
JP2013100539A (en) 2013-05-23
JP2009533532A (en) 2009-09-17
DE602007001881D1 (en) 2009-09-17

Similar Documents

Publication Publication Date Title
EP2004729B1 (en) Cationic end-capped siloxane prepolymer for reduced cross-link density
EP2404951B1 (en) Polymerizable siloxane-quaternary amine copolymers
US7759408B2 (en) Silicon-containing monomers end-capped with polymerizable cationic hydrophilic groups
US7622512B2 (en) Cationic hydrophilic siloxanyl monomers
US20080076897A1 (en) Pendant end-capped low modulus cationic siloxanyls
US7528208B2 (en) Siloxane prepolymer containing pendant and end-capping cationic and polymerizable groups
EP2035480B1 (en) Fluorinated poly (ether)s end-capped with polymerizable cationic hydrophilic groups
EP2035485A2 (en) Carboxylic siloxanyl monomers with pendant polymerizable groups
US20070161769A1 (en) Polymerizable silicon-containing monomer bearing pendant cationic hydrophilic groups
EP2038328A2 (en) Carboxylic m2dx-like siloxanyl monomers
US8828420B2 (en) Siloxane prepolymer containing pendant cationic and polymerizable groups

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07760018

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007760018

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780013244.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009505539

Country of ref document: JP

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)