WO2007119423A1 - Substance to be placed in the living body - Google Patents

Substance to be placed in the living body Download PDF

Info

Publication number
WO2007119423A1
WO2007119423A1 PCT/JP2007/055518 JP2007055518W WO2007119423A1 WO 2007119423 A1 WO2007119423 A1 WO 2007119423A1 JP 2007055518 W JP2007055518 W JP 2007055518W WO 2007119423 A1 WO2007119423 A1 WO 2007119423A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
vivo indwelling
stent
active substance
physiologically active
Prior art date
Application number
PCT/JP2007/055518
Other languages
French (fr)
Japanese (ja)
Inventor
Yotaro Fujita
Keiko Yamashita
Original Assignee
Terumo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Kabushiki Kaisha filed Critical Terumo Kabushiki Kaisha
Priority to JP2008510815A priority Critical patent/JP5102200B2/en
Publication of WO2007119423A1 publication Critical patent/WO2007119423A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to an in-vivo indwelling object.
  • the in vivo indwelling material of the present invention includes various forces such as a stent, a catheter, an artificial blood vessel, and a stent graft.
  • a stent will be described as an example.
  • PTCA Transvascular coronary angioplasty
  • PTCA is a guide catheter in which a small incision is made in the artery of a patient's leg or arm, an introducer system (introducer) is placed, and a guide wire is advanced through the lumen of the introducer sheath.
  • an introducer system introduction system
  • a guide wire is advanced through the lumen of the introducer sheath.
  • withdraw the guide wire insert another guide wire and balloon catheter into the lumen of the guide catheter, and lead the guide wire ahead
  • the balloon catheter is advanced to the lesion area of the patient's coronary artery under X-ray contrast, and the balloon is positioned in the lesion area. At that position, the doctor presses the balloon once at a predetermined pressure for 30 to 60 seconds. It is a technique to inflate.
  • the vascular lumen of the lesion is expanded and the blood flow through the vascular lumen is increased.
  • the intima proliferates, which is a healing reaction of the vessel wall, and restenosis has been reported at a rate of about 30 to 40%.
  • Stents have been studied for use in methods of preventing such restenosis, Has achieved some results.
  • the term stent refers to the expansion of the stenosis or occlusion site and the securing of the lumen in order to treat various diseases caused by stenosis or occlusion of blood vessels and other lumens. It is a tubular medical device that can be indwelled. Most of them are medical devices made of a metal material or a polymer material. For example, a tubular body made of a metal material or a polymer material provided with pores, a wire made of a metal material, or a polymer material. Various shapes have been proposed, such as those formed by knitting fibers into a cylindrical shape. The purpose of stent placement is the force that aims to prevent and reduce restenosis that occurs after procedures such as PTCA. Stent placement alone does not significantly suppress stenosis. The actual situation was.
  • this biological physiologically active substance is locally released over a long period of time at the indwelling site of the lumen by loading the biological physiologically active substance such as an immunosuppressive agent or an anticancer agent on this stent.
  • a method to reduce the restenosis rate has been proposed! RU
  • Patent Document 1 discloses a biodegradable polymer and a therapeutic substance on the surface of a stent body that also has metal (tantalum or the like) or biostable or bioabsorbable polymer (polylattic acid or the like) force. And a stent coated with a mixture thereof.
  • Patent Document 2 describes a stent in which a drug layer is provided on the surface of a stent body having a metal (such as stainless steel) or polymer force, and a biodegradable polymer layer is further provided on the surface of the drug layer. Yes.
  • the present invention is not limited to the metal stents described in 2, but is a problem in all stents using metal materials such as tantalum and stainless steel and polymers that are difficult to biodegrade.
  • Non-Patent Document 1 discloses that the polymer layer may be left in the living body semipermanently to cause chronic inflammation, and restenosis may occur due to degradation of the polymer. Reported to be provoked by thrombosis Has been.
  • a stent made of a biostable or biodegradable polymer such as polylatatic acid described in Patent Document 1 or a bioabsorbable polymer described in Patent Document 3 A stent with a certain poly-L-lactic acid power degrades and disappears in the living body, so that it is left in the body for a long time and mechanical stress is applied to the blood vessel wall, so that chronic inflammation hardly occurs.
  • blood vessels gradually meander with age, but if the stent disappears, the remaining endothelial cell layer can follow this meandering motion well. Therefore, it is possible to provide a stent with little or no invasion to a living body.
  • Patent Document 1 JP-A-8-33718
  • Patent Document 2 JP-A-9-56807
  • Patent Document 3 WO01 / 067990 Pamphlet
  • the stent described in Patent Document 1 that has a polylatatic acid equivalent force and the stent described in Patent Document 3 that also has a poly L-lactic acid force have lesions with low strength and elongation. Even if left in place, it could be damaged by some external force.
  • the radial force is low, the stent may drop out of the lesion after placement.
  • the force for crimping the stent onto the stent is low, the stent may drop out of the balloon catheter during delivery of the lesion.
  • the object of the present invention is to provide biodegradable material strength, does not cause mechanical stress and chronic inflammation in the living body after being placed in the living body, and has the necessary strength and elongation in the living body ( Elongation), damage and cracking due to external force are difficult to occur. There is to be.
  • an in-vivo indwelling material further has a necessary crimping force or radial force, and it is difficult to drop off after placement from a balloon catheter during delivery to a lesion.
  • In-vivo indwelling (stents, catheters, artificial prostheses that are inserted into the site to expand stenosis or occlusion in the living body, and then expanded to maintain the state.
  • In vivo indwelling materials such as blood vessels and stent grafts).
  • the present inventor has intensively studied for the purpose of solving the above-mentioned problems, and contains D-form polylactic acid and L-form polylactic acid in a specific range, and further, they form a specific structure. It has been found that an in-vivo indwelling body having a main body portion composed of a biodegradable substance mainly composed of a polylactic acid complex can solve the above-mentioned problems.
  • the present invention includes the following (1) to (21).
  • the drug release layer is composed of two or more layers, and these layers are the biological and physiological activities.
  • the polylactic acid complex has a first melting peak between 65 and 75 ° C. and a second melting peak between 200 and 250 ° C. in differential scanning calorimetry.
  • the in-vivo indwelling product according to any one of (1) to (9), which is a body.
  • the polylactic acid composite is a polylactic acid composite having a breaking strength specified by JIS K7113 of 70 MPa or more, a breaking elongation of 15% or more, and a Young's modulus of lOOMPa or more (1 ) To (10).
  • the biologically bioactive substance is an anticancer agent, immunosuppressant, antibiotic, antirheumatic agent, antithrombotic agent, HMG—CoA reductase inhibitor, ACE inhibitor, calcium antagonist, antihyperlipidemia Drugs, integrin inhibitors, antiallergic agents, antioxidants, GPIIbllla antagonists, retinoids, flavonoids, carotenoids, lipid improvers, DNA synthesis inhibitors, tyrosine kinase inhibitors, antiplatelet drugs, anti-inflammatory drugs, biological origin Any of the above (2) to (16), which is at least one selected from the group power of materials, interferon and NO production promoting substances The in-vivo indwelling object described.
  • Biodegradable polymer strength Polylactic acid, polydaricholic acid, polyhydroxybutyric acid, polymalic acid, polya-amino acid, collagen, laminin, heparan sulfate, fibronectin, vitronectin, chondroitin sulfate, hyaluronic acid, polystrength prolatathone And the in vivo indwelling material according to any one of the above (6) to (17), which is at least one selected from the group force consisting of the copolymer force.
  • the present invention is made of a biodegradable material, does not cause mechanical stress and chronic inflammation in the living body after being placed in the living body, and has necessary strength and elongation in the living body. However, it is difficult to cause damage and cracks due to external force, and an in-vivo indwelling object can be provided.
  • an in-vivo indwelling material further has a necessary crimping force or radial force, and it is difficult to drop off after placement from a balloon catheter during delivery to a lesion.
  • In-vivo indwelling (stents, catheters, artificial prostheses that are inserted into the site to expand stenosis or occlusion in the living body, and then expanded to maintain the state.
  • In vivo indwelling materials such as blood vessels and stent grafts) can be provided.
  • FIG. 1 is a side view showing an embodiment of the stent of the present invention.
  • FIG. 2 is an enlarged cross-sectional view taken along line AA in FIG.
  • FIG. 3 is another enlarged cross-sectional view taken along the line AA in FIG.
  • FIG. 4 is another enlarged cross-sectional view taken along the line AA in FIG.
  • FIG. 5 is an enlarged cross-sectional view taken along line BB in FIG. 1.
  • FIG. 6 is another enlarged cross-sectional view taken along line BB in FIG.
  • FIG. 7 is an enlarged photograph (40 ⁇ ) showing a pathological image after implantation of a porcine intracoronary stent in Example 5.
  • FIG. 8 is an enlarged photograph (40 ⁇ magnification) showing a pathological image after implantation of a porcine intracoronary stent in Comparative Example 9.
  • FIG. 9 is an enlarged photograph (40 ⁇ ) showing a pathological image after implantation of a porcine intracoronary stent in Comparative Example 11.
  • the present invention provides a biodegradable composition mainly composed of a polylactic acid complex in which D-form polylactic acid and L-form polylactic acid form a complex having a stereocomplex structure in a mass ratio of 45:55 to 55:45. It is an in-vivo indwelling body having a body part with material force.
  • the in-vivo indwelling body of the present invention may be a force main body itself having no main body and no other parts. That is, the in-vivo indwelling material of the present invention is a polylactic acid complex that forms a complex of stereocomplex structure with a D-form polylactic acid and an L-form polylactic acid at a mass ratio of 5:55 to 55:45. It may be an in-vivo indwelling made of a biodegradable substance containing as a main component. Even that case is within the scope of the present invention.
  • examples of the in-vivo indwelling material of the present invention include a stent made of the biodegradable substance and a stent in which a drug or the like is coated on the surface of the stent body (main body part) made of the biodegradable substance. .
  • Other aspects of the in-vivo indwelling material of the present invention will be described later.
  • the polylactic acid complex used in the present invention is a complex of D-form polylactic acid and L-form polylactic acid. In this complex, these polylactic acids form a stereocomplex structure.
  • the stereocomplex structure is a three-dimensional structure in which enantiomeric macromolecules such as D-form and L-form interact with each other by van der Waals forces to produce structural fitting.
  • a stereocomplex structure can be formed even on a polymer having stereoregularity such as isotactic and syndiotactic.
  • polylactic acid poly - gamma - Benjirugu Rutameto, poly - gamma - methyl Dal data formate, poly - tert butylene oxide, poly - tert Bed chill ethylene sulfates id, poly - alpha -Methylbenzylmetatalylate, poly- ⁇ -methyl- ⁇ -ethyl-j8-propiolatatone, ⁇ -1,1-dichloropropyl- ⁇ -propiolataton, etc. are known.
  • the mass ratio of D-form polylactic acid to L-form polylactic acid is 45:55 to 55:45. This mass ratio is preferably 50: 50! /.
  • a polylactic acid complex having such a mass ratio and a stereocomplex structure as described above has significantly high strength and elongation, and an in-vivo indwelling material using such a polylactic acid complex is unlikely to break in vivo. .
  • an in-vivo indwelling material such as a stent using the polylactic acid composite (a constricted portion formed in the living body).
  • In-vivo indwelling materials such as stents, catheters, artificial blood vessels, and stent grafts that are inserted into the site to expand the obstruction, occlusion, etc. For example, even if it is inserted into a lesioned part using a catheter, etc., expanded and extended for placement at that site, its shape It has the radial force necessary to maintain the shape.
  • the mass ratio of D-form polylactic acid and L-form polylactic acid here refers to the respective mass ratios used in producing the polylactic acid composite.
  • the polylactic acid complex has a weight average molecular weight of 1,000-1,000,000, preferably S, more preferably 2,000-700,000, more preferably S, More preferably, it is 400,000.
  • the polylactic acid complex has a first melting peak (that is, a glass transition temperature) between 65 and 75 ° C. in differential scanning calorimetry, and a second melting peak between 200 and 250 ° C. (That is, having a melting point) is preferable.
  • first melting peak that is, a glass transition temperature
  • second melting peak between 200 and 250 ° C. (That is, having a melting point) is preferable.
  • the polylactic acid complex has a weight average molecular weight in such a range or has such a melting peak, the strength and elongation of the polylactic acid complex are further increased, and this is used.
  • the in-vivo indwelling material is more difficult to break in vivo.
  • an in-vivo indwelling material such as a stent using such a polylactic acid composite has a higher radial force.
  • the polylactic acid composite is a polylactic acid composite having a breaking strength specified in JIS K7113 of 70 MPa or more, a breaking elongation of 15% or more, and a Young's modulus of lOOMPa or more. Is preferred.
  • the breaking strength is more preferably 75 MPa or more, more preferably 80 MPa or more.
  • the upper limit is not particularly limited, but is preferably 500 MPa or less.
  • the elongation at break is more preferably 20% or more, and further preferably 30% or more.
  • the upper limit is not particularly limited, but is preferably 200% or less.
  • the Young's modulus is more preferably 500 MPa or more, and more preferably 1, OOOMPa or more.
  • the upper limit is not particularly limited, but is preferably 50, OOOMPa or less.
  • An in-vivo indwelling product using a polylactic acid complex having such values in such a range is preferable because it is more difficult to break in vivo. Also, using such a polylactic acid composite An in-vivo indwelling material such as a stent is preferable because it has a higher radial force.
  • breaking strength means the values measured by the method specified in JIS K7113 (using No. 2 test piece of 1Z5 scale). To do.
  • the polylactic acid complex is a stretched polylactic acid complex.
  • the polylactic acid complex is preferably a polylactic acid complex produced by an alternating lamination method. Further, this alternate lamination method is preferably an alternate lamination method performed by forming a micro-order thin film. Further, the thickness of the micro-order thin film is preferably 1 m to 500 ⁇ m, more preferably 10 ⁇ m to 400 ⁇ m, and more preferably 50 ⁇ m to 300 ⁇ m. Is more preferable.
  • an in-vivo indwelling body using this polylactic acid composite is more difficult to break in vivo.
  • an in-vivo indwelling material such as a stent using such a polylactic acid composite is preferable because it has a higher radial force.
  • the alternating lamination method is a method for producing a thin film by alternately immersing a substrate in a D-form polylactic acid solution and an L-form polylactic acid solution.
  • a polylactic acid complex having a stereocomplex structure can be formed more efficiently than in a balta (solution).
  • a solution in which D-form polylactic acid is dissolved in acetonitrile and a solution in which L-form polylactic acid is dissolved in acetonitrile are prepared, and PFA (tetrafluoroethylene / perfluoroalkoxy vinyl ether copolymer) is prepared.
  • a method of repeatedly immersing and drying a substrate such as a polymerized resin in each solution is prepared.
  • the polylactic acid composite is produced by a conventional casting method or the like. You can also. However, in this case, the probability that a stereocomplex structure is formed is lower than that in the alternate lamination method.
  • the casting method a structure that is not a stereocomplex structure, for example, the probability that a single crystal is formed is relatively high, but in the case of manufacturing by an alternating lamination method, the stereocomplex structure is usually about 90% or more. Can be formed at a ratio of
  • the biodegradable substance has such a polylactic acid complex as a main component.
  • main component means containing 60% by mass or more by mass%. That is, in the present invention, the biodegradable substance contains 60% by mass or more of the polylactic acid complex. The biodegradable substance preferably contains 70% by mass or more of the polylactic acid complex.
  • the biodegradable substance preferably contains a biological physiologically active substance.
  • a biologically physiologically active substance is released, and an inflammatory reaction and restenosis associated with the biodegradation are released. This is because it can be suppressed with a physiologically physiologically active substance.
  • the content of the biologically physiologically active substance in the biodegradable substance is not particularly limited, but it is preferably 1 to 40% by mass, and more preferably 10 to 30% by mass. preferable.
  • the biological physiologically active substance is a powder.
  • the biologically and biologically active substance in the powder is preferably dispersed in the biodegradable substance.
  • the biologically physiologically active substance is chemically bonded to the polylactic acid complex.
  • the biological physiologically active substance is released at a more constant rate simultaneously with the decomposition of the polylactic acid complex.
  • At least a part of the biologically physiologically active substance is shaped by the alternating lamination method. It is preferably contained between the formed micro-order thin films. Furthermore, it is more preferable that at least a part of the biologically physiologically active substance is chemically bonded to the polylactic acid complex. In the process in which the in-vivo indwelling material of the present invention is in-vivo and then decomposed in the living body, the biological physiologically active substance is released at a more constant rate simultaneously with the decomposition of the polylactic acid complex. It is easy.
  • Such a biological physiologically active substance exhibits a desired effect, for example, an effect of suppressing restenosis when the in-vivo indwelling material of the present invention is placed in a diseased part in a living body.
  • a desired effect for example, an effect of suppressing restenosis when the in-vivo indwelling material of the present invention is placed in a diseased part in a living body.
  • anticancer agents for example, anticancer agents, immunosuppressive agents, antibiotics, antirheumatic agents, antithrombotic agents, HMG-CoA reductase inhibitors, ACE inhibitors, calcium antagonists, antihyperlipidemic agents, integrin inhibitors, antiallergic agents , Antioxidants, GPIIbllla antagonists, retinoids, flavonoids, carotenoids, lipid improvers, DNA synthesis inhibitors, tyrosine kinase inhibitors, antiplatelet drugs, anti-inflammatory drugs, bio-derived materials, interferon and NO production promoters are preferred It can be illustrated. More preferably, the biologically and physiologically active substance is at least one selected from the group force consisting of these! /.
  • the anticancer agent for example, vincristine, vinblastine, vindesine, irinotecan, pirarubicin, paclitaxel, docetaxel, methotrexate and the like are preferable.
  • an immunosuppressant for example, sirolimus, everolimus, biolimus, tacrolimus, azathioprine, cyclosporine, cyclophosphamide, mycophenolic acid mofeethyl, dasperimus, mizoribine and the like are preferable.
  • antibiotic for example, mitomycin, adriamycin, doxorubicin, actinomycin, daunorubicin, idarubicin, pirarubicin, aclarubicin, epilubicin, pepromycin, dinostatin styramer and the like are preferable.
  • anti-rheumatic agent for example, methotrexate, sodium thiomalate, penicillamine, oral benzalit and the like are preferable.
  • antithrombotic drug for example, heparin, aspirin, antithrombin preparation, ticlopidine, hirudin and the like are preferable.
  • HMG-CoA reductase inhibitors include, for example, cerivastatin and cerivasta. Chin sodium, atorvastatin, nispastatin, itapastatin, flupastatin, flupastatin sodium, simpastatin, oral pastatin, pravastatin, etc. are preferred.
  • ACE inhibitor for example, quinapril, perindopril elpmin, trandolapril, cilazapril, temocapril, delapril, enalapril maleate, lisinopril, captopril and the like are preferable.
  • calcium antagonist for example, hifedipine, dirubadipine, diltiazem, vedipine, disoldipine and the like are preferable.
  • probucol is preferable as an antihyperlipidemic agent.
  • tralast is preferable.
  • antioxidants examples include catechins, anthocyanins, and proanthocyanins.
  • Lycopene j8-carotene and the like are preferred.
  • epigallocatechin gallate is particularly preferred.
  • retinoid for example, all-trans retinoic acid is preferable.
  • tyrosine kinase inhibitor for example, genistein, chinorephostin, albumin and the like are preferable.
  • steroids such as dexamethasone and prednisolone are preferable.
  • examples of biological materials include EGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal growth factor), VEGF (epidermal
  • jr vascular endothelial growth factor
  • ir LjF hepatocyte growth factor
  • PDGF platelet derived growth factor
  • BFGF basic nbrolast growth factor
  • the biodegradable substance preferably contains the polylactic acid complex as a main component and contains the biological and physiologically active substance, but in addition to these, a biodegradable ingredient that is safe for the living body. (Hereinafter also referred to as “remainder component”).
  • polylactic acid having no stereocomplex structure such as the above-mentioned polylactic acid complex (a simple substance of D-form polylactic acid, a simple substance of L-form polylactic acid, and a combination of D-form and L-form. (Co) polymers, etc.), polydaricholic acid, polyhydroxybutyric acid, polymalic acid, poly ⁇ - Mixtures and compounds (co-copolymers) that are at least one selected from the group consisting of amino acids, collagen, laminin, heparan sulfate, fibronectin, vitronectin, chondroitin sulfate, hyaluronic acid, polyprolacton and their copolymer power. Polymer, etc.).
  • polylactic acid and a copolymer of Z or polylactic acid and polydaricolic acid can be preferably used.
  • the method for preparing such a biodegradable substance is not particularly limited!
  • the biodegradable substance contains a powdered biological physiologically active substance
  • the polylactic acid complex, the biologically biologically active substance of the powder, and the remaining component are mixed.
  • the mixture can be prepared by applying a known method, for example, a mixing method using a mixer, a method of melting and kneading each component, a method of kneading each component in a paste, and the like.
  • the biodegradable substance contains a biological physiologically active substance and at least a part of the biologically physiologically active substance is chemically bonded to the polylactic acid complex
  • a polylactic acid complex having the stereocomplex structure such as a D-form and an L-form polylactic acid having a hydroxyl group or a carboxyl group at the terminal in advance is prepared, and the biological group is used with the functional group at the end as a microinitiator.
  • a method of converting a physiologically active substance into an ester or amide it can be prepared by growing a lactide starting from a specific functional group of the biological physiologically active substance to form a polylactic acid complex having the stereocomplex structure.
  • D-form polylactic acid A solution in which L is dissolved in acetonitrile, a solution in which L-form polylactic acid is dissolved in acetonitrile, and a solution in which the biological physiologically active substance is dissolved are prepared, and PFA (tetrafluoroethylene / perfluorocarbon) is prepared. It can be prepared by a method in which a substrate such as an alcohol ether copolymer (resin) is immersed in each solution in turn and dried.
  • a substrate such as an alcohol ether copolymer (resin) is immersed in each solution in turn and dried.
  • the biological physiologically active substance is contained between the micro-order thin films formed by the alternating lamination method, and at least the biological physiologically active substance is included.
  • Partial strength The polylactic acid composite of this micro-order thin film For example, a solution in which D-form polylactic acid and the biological physiologically active substance are chemically bonded with an ester bond or an amide bond dissolved in acetonitrile. And a solution prepared by dissolving L-form polylactic acid and the above biological physiologically active substance chemically bonded with ester bond or amide bond in acetonitrile, and preparing PFA (tetrafluoroethylene perfluorocarbon). It can be prepared by a method of repeatedly dipping and drying a substrate such as a alkoxyvinyl ether copolymer resin) in each solution alternately.
  • the in-vivo indwelling material of the present invention has a main body portion made of such a biodegradable substance.
  • This main body is a main part in the in-vivo indwelling material of the present invention described later.
  • the in-vivo indwelling body of the present invention is a stent in which a drug or the like is applied to the surface of the stent body having the biodegradable material force
  • the hemorrhoid stent body is the body of the present invention. Equivalent to.
  • the shape of the main body is preferably a tube shape, a tubular shape, a net shape, a fiber shape, a nonwoven fabric shape, a woven fabric shape, or a filament shape.
  • the reason is that it can be easily placed in a lumen in a living body such as a blood vessel.
  • the method for manufacturing the main body is not particularly limited, and can be manufactured by, for example, a known method.
  • the biodegradable substance is made into a fiber and then knitted into a cylindrical shape, or a tubular body is formed from the biodegradable substance. And a method of providing pores.
  • the in-vivo indwelling material of the present invention has a main body portion made of such a biodegradable substance, and further has a drug release layer containing the biological physiologically active substance on the surface of the main body portion. It is preferable to have it.
  • the reason for this is that after the in-vivo indwelling material of the present invention is placed in the living body, the biological physiologically active substance is released in the process of decomposing the drug release layer in the living body. This is because an inflammatory reaction associated with biodegradation can be suppressed by this biologically physiologically active substance.
  • the biological and physiologically active substance can be of the same type and properties as those which the biodegradable substance may contain.
  • the drug release layer preferably further contains a biodegradable polymer. The reason for this is that after the in-vivo indwelling material of the present invention is placed in the living body, the rate at which the biological physiologically active substance is released is moderately adjusted in the process of decomposition of the drug release layer in the living body. This is because it becomes easy to adjust.
  • the biodegradable polymer may be the polylactic acid complex or other polylactic acid, and may be the remaining component that the biodegradable substance may contain. A little.
  • this biodegradable polymer includes polylactic acid (including the above-mentioned polylactic acid complex, and other polylactic acid (a simple substance of D-form polylactic acid, a simple substance of L-form polylactic acid, a combination of D-form and L-form (co- ) Polymer)), polydaricholic acid, polyhydroxybutyric acid, polymalic acid, poly-a-amino acid, collagen, laminin, heparan sulfate, fibronectin, vitronectin, chondroitin sulfate, hyaluronic acid, polystrength prolatathone and these Preferred examples of the copolymer are as follows.
  • the biodegradable polymer is at least one of the group forces selected as these forces.
  • the biodegradable polymer strength is preferably polylactic acid and a copolymer of Z or polylactic acid and polyglycolic acid. The reason is that the desired strength and decomposition rate can be set.
  • the drug release layer contains other components as the remainder other than the biodegradable polymer and the biological physiologically active substance as long as the performance of the in-vivo in-vivo of the present invention is not impaired.
  • other components include polyethylene succinate, polybutylene succinate, polybutylene succinate 'adipate, polylactic acid-trimethylene carbonate Examples thereof include a copolymer and a polyglycolic acid trimethylene carbonate copolymer.
  • the content of the biologically physiologically active substance is not particularly limited, and may be adjusted in consideration of the state of the lesion, the type of the biologically physiologically active substance used, and the like. However, it is preferably 1 to 99% by mass, more preferably 30 to 70% by mass.
  • the ratio of the content ratio of the biodegradable polymer and the biological physiologically active substance is 99: 1 to 1: It is preferable that it is 99. 70: 30-30: It is more preferable that it is 70! /.
  • the content of the other components in the drug release layer is preferably 40% by mass or less, more preferably 30% by mass or less. Further, 0% by mass, that is, it may not be contained.
  • the drug release layer comprises two or more layers, and these layers include a layer containing the biological and physiologically active substance and a layer containing the biodegradable polymer. That is, it is preferable that the drug release layer has two layers of the layer containing the biological physiologically active substance and the layer containing the biodegradable polymer and other layer forces.
  • the drug release layer also has two layer forces: a layer containing the biological physiologically active substance and a layer containing the biodegradable polymer.
  • a layer containing the biologically physiologically active substance is present on the main body side, and a layer containing the biodegradable polymer is present on the upper surface thereof.
  • the drug release layer is composed of two or more layers, after the in-vivo indwelling material of the present invention is placed in the living body, in the process in which the drug release layer is decomposed in the living body, biological physiological activity Substances are easily released at a constant rate! / ⁇ .
  • the layer containing the biological physiologically active substance is a layer comprising the biological physiologically active substance, the biodegradable polymer and Z or the other component.
  • the mass ratio of the biologically physiologically active substance to the biodegradable polymer and Z or the other component is preferably 10:90 to 90: 10! /.
  • the layer containing the biodegradable polymer is a layer that also has the biodegradable polymer and the other component forces.
  • the content of the other components is preferably 30% by mass or less, more preferably 20% by mass or less.
  • the drug release layer has a layer other than the layer containing the biological physiologically active substance and the layer containing the biodegradable polymer, these layers may be layers composed of the other components. Good.
  • a plurality of these layers may exist.
  • the thickness of the drug release layer is not particularly limited, and is held on the surface of the main body.
  • the amount can be determined as appropriate in consideration of various conditions such as the amount and type of the biologically physiologically active substance to be added and the type of in-vivo indwelling material.
  • the in-vivo indwelling material of the present invention is an in-vivo indwelling material that particularly requires an operation for delivering from outside the living body to a lesion site in the living body, such as a stent, an artificial blood vessel, or a stent graft.
  • the thickness may be any as long as the reachability (delivery property) is good and the biological and physiologically active substance can be contained in a desired amount.
  • the thickness is preferably 1 to 100 / ⁇ ⁇ , more preferably 1 to 50 / ⁇ ⁇ , more preferably 1 to 20 / ⁇ ⁇ .
  • the drug release layer is composed of two or more layers, it is preferable to have a range such as the total thickness force of all the layers.
  • the thickness of the layer containing the biological physiologically active substance is 1 to: LOO m is preferably 1 to 15 / ⁇ ⁇ , and more preferably 3 to 7 m. Further preferred. Also, the thickness of the layer containing the biodegradable polymer is preferably 1 to 75 m, more preferably 1 to 25 / ⁇ ⁇ , and 1 to: LO / zm. Further preferred.
  • the method for forming such a drug release layer on the surface of the main body is not particularly limited, and for example, a known method can be applied.
  • the biological physiologically active substance and the biodegradable polymer are mixed in a solvent such as acetone, ethanol, chloroform, tetrahydrofuran, or the like at a ratio as described above, and the concentration of the solution is preferably 0.001 to 20% by mass. Is dissolved so as to be 0.01 to 10% by mass to make a solution. Next, this solution is applied to the surface of the main body by a conventional method using a spray, a dispenser or the like, or the main body is immersed in this solution, and then the solvent is volatilized.
  • a solvent such as acetone, ethanol, chloroform, tetrahydrofuran, or the like
  • This method uses a solvent (for example, acetone, ethanol, chloroform, tetrahydrofuran) that easily dissolves the biodegradable polymer and the biological physiologically active substance.
  • a solvent for example, acetone, ethanol, chloroform, tetrahydrofuran
  • the surface of the main body can be easily wetted. In this case, it can be preferably applied.
  • the biological physiologically active substance is melted and applied to the surface of the main body.
  • the drug release layer can be formed on the surface of the main body by such a method. in front The same applies to the case of containing other components.
  • the thickness of each layer can be adjusted as appropriate depending on the amount of solution applied by spraying the solution concentration.
  • the in-vivo indwelling material of the present invention is an in-vivo indwelling material having the main body part also having the biodegradable substance force, and preferably having the drug release layer on the surface of the main body part.
  • the type of the in-vivo indwelling material of the present invention is not particularly limited. Any in-vivo indwelling material that needs to be strong enough to be extinguished after it has existed in the living body for a certain period of time or elongation may be used.
  • stents, covered stents, coils, microcoils, artificial blood vessels, artificial bones, shields, wire braids, clips, and plugs may be used.
  • the duct has a hollow organ and a function of supporting a lumen in the Z or duct system (ureter, bile duct, urethra, uterus, esophagus, bronchi).
  • a closure member as a closure system for a hollow space connection, tubing, etc.
  • a fixation or support device for temporarily fixing a tissue implant or tissue transplant.
  • orthopedic implants bolts, nails, wires, plates, joints, etc.
  • Examples thereof include a stent graft, a vascular anastomosis device, a vascular hemostasis device, a vascular aneurysm treatment device, and an implantable medical device using a stent as a holding body.
  • a stent or the like that is inserted into the site in order to expand a stenosis or occlusion in the living body, expands, and is placed in the site to maintain the state.
  • In vivo indwelling materials stents, catheters, artificial blood vessels, stent grafts, etc.
  • a stent is preferable. The reason is that it can be easily delivered and placed in the affected area.
  • the stent may be either a balloon expansion type or a self-expansion type, and the size may be appropriately selected according to the application site.
  • the outer diameter before dilation is preferably 1.0 to 3. Omm and the length is 5 to 50 mm.
  • the thickness of the stent has the radial force necessary to place it in the affected area.
  • the thickness of the stent body is preferably 1 to 1000 ⁇ m in range force S, more preferably 10 to 500 ⁇ m in range force S, and 40 to 200 ⁇ m in thickness. A range is more preferred.
  • examples of the shape of the stent include those shown in FIG.
  • a stent body 1 is a cylindrical body that is open at both ends and extends between the ends in the longitudinal direction.
  • the side surface of the cylindrical body has a large number of notches communicating with the outer side surface and the inner side surface, and this notch portion is deformed to have a structure that can expand and contract in the radial direction of the cylindrical body. It is placed at the target site and maintains its shape.
  • the stent body 1 is composed of a linear member 2 and has a substantially rhombic element 11 having a notch inside as a basic unit.
  • a plurality of substantially rhombic elements 11 are arranged in a continuous manner in the minor axis direction of the approximately rhombus shape to form an annular unit 12.
  • the annular unit 12 is connected to an adjacent annular unit via a linear coupling member 13.
  • the plurality of annular units 12 are continuously arranged in the axial direction in a state where the portions are joined.
  • the stent body (stent) 1 has a cylindrical body having both ends opened and extending between the ends in the longitudinal direction.
  • the stent body (stent) 1 has a substantially diamond-shaped notch, and has a structure that can be expanded and contracted in the radial direction of the cylindrical body by deformation of the notch.
  • the length in the width direction of the linear member 2 configured to have a large number of notches is preferably 0.01- It is 0.5 mm, more preferably 0.05 to 0.2 mm.
  • the stent 1 shown above is only one embodiment, and is a cylindrical body that is composed of a linear member 2, has both end portions open, and extends between the both end portions in the longitudinal direction.
  • a large number of notches that communicate the outer side surface and the inner side surface are provided on the side surface, and a structure that can be expanded and contracted in the radial direction of the cylindrical body by deforming the notch portion is widely included.
  • the in-vivo indwelling body of the present invention is a stent
  • the radial force force when the outer diameter is expanded from 2.1 mm to 3. Omm and then compressed by 1 mm is 1 30 to 500 gf per 10 mm stent length.
  • Stents with such radial forces can be securely placed in the lesion. Then, I like it because it has a positive effect.
  • the present invention is an in-vivo indwelling body having the main body part having the biodegradable material force, and preferably having the drug release layer on the surface of the main body part.
  • FIG. 2 shows a state in which the stent 1 shown in FIG. 1 is an in-vivo indwelling material having a biodegradable material force composed of a polylactic acid complex 20 containing a powdered biological physiologically active substance 30 in a dispersed state. It is sectional drawing in such a case.
  • FIG. 3 shows that the stent 1 shown in FIG. 1 has a stent body 10 that also has the biodegradable material force, and the surface thereof includes a layer 32 containing a biological bioactive substance and a biodegradable polymer.
  • 4 is a cross-sectional view in the case of an in-vivo indwelling material having a drug release layer comprising a layer 42.
  • FIG. 4 shows a biodegradable polymer in which the stent 1 shown in FIG. 1 has a stent body 10 that also has the biodegradable substance force, and a powdered biological bioactive substance 30 is dispersed on this surface.
  • FIG. 4 is a cross-sectional view in the case of an in-vivo indwelling body having a drug release layer comprising 40.
  • FIGS. 5 and 6 are enlarged cross-sectional views taken along the line BB in FIG.
  • FIG. 5 shows a case similar to that shown in FIG.
  • FIG. 6 shows a case similar to that shown in FIG. Example
  • the solution was put into a PFA petri dish to prepare a cast film having a thickness of 150 m. Thereafter, the film was uniaxially stretched in a warm bath at 80 ° C. The draw ratio at this time was 4 times. The thickness of the film obtained by stretching was 100 m. The stretched film was subjected to a tensile test based on JIS K7113 (plastic tensile test method) to determine the breaking strength and breaking elongation. Here, the film was punched into 1/5 scale type 2 test piece.
  • Example 2 the test was carried out in the same manner as in Example 1, except that the ratio of! ⁇ 1 ⁇ ⁇ :?] ⁇ was 45:55, and everything else was the same.
  • Example 3 the test was carried out in the same manner as in Example 1, except that the ratio of! ⁇ 1 ⁇ ⁇ :?] ⁇ was 55:45, and everything else was the same.
  • Copolymer 100 D065, API 100 D065) pellets of 50% polylactic acid and 0% polylactic acid (hereinafter also referred to as “DL-PLA”) in acetone adjusted to 23 ° C in advance. Dissolved. Here, the copolymer concentration in acetone was set to 5%. Next, the solution was put into a PFA petri dish to prepare a cast film having a thickness of 150 m. Thereafter, the film was uniaxially stretched in a warm bath at 80 ° C. The draw ratio at this time was 4 times. The thickness of the film obtained by stretching was 100 m. The stretched film was subjected to a tensile test based on JIS K7113 (plastic tensile test method) to determine the breaking strength and breaking elongation. Here, the film was punched into 1/5 scale type 2 test piece.
  • JIS K7113 plastic tensile test method
  • Comparative Examples 2-7 the ratio of PLLA: PLDA in Example 1 to 50:50 was 70:30 (Comparative Example 2), 30:70 (Comparative Example 3), 60:40 ( Comparative Examples 4), 40:60 (Comparative Example 5), 100: 0 (Comparative Example 6), and 0: 100 (Comparative Example 7) were used.
  • the cast film produced and stretched in the same manner as in Example 1 was cut into a rectangle having a size of 50 mm ⁇ 7 mm, and this was rolled into a cylindrical shape having a diameter of about 2 mm and a length of 50 mm. This was then inserted into a polytetrafluoroethylene shrink tube having a diameter of 2.4 mm and a length of 60 mm. Next, a PTFE tube (chukoh, AWG-17) having a diameter of 1.5 mm and a length of 70 mm was further inserted into the cast film cylinder.
  • a PTFE tube chlorukoh, AWG-17
  • Cylinders and shrink tubes which are also Lumka, were heated in an oven preheated to 200 ° C for 1 hour to obtain a pipe with a diameter of 2. lmm and a wall thickness of 100 m. The pipe was annealed.
  • This pipe is then processed with an excimer laser (SPL400H, manufactured by Sumitomo Heavy Industries, Ltd.) to form a stent with the same shape as in Fig. 1, with an outer diameter of 2. lmm, a length of 10mm, and a thickness (wall thickness) of 100m. did.
  • SPL400H excimer laser
  • rapamycin hereinafter also referred to as “RM”
  • RM rapamycin
  • polylactic acid-polyglycolic acid composition ratio (mass ratio): 85-15
  • THF tetrahydrofuran solution
  • PLGA a solution in which the mass ratio is 1: 1
  • a scanning electron microscope indicates that about 600 ⁇ g of a mixture of RM and PLGA is applied to the surface of the stent with a thickness of 10 ⁇ m. Then, the stent was expanded to a diameter of 3. Omm with a balloon catheter (manufactured by Thermonet Earthenware, ARASI), and then the pushing force (radial force) when the stent was pushed inward by lmm was measured.
  • the stent of Example 4 was percutaneously placed in the porcine coronary artery for 1 month for pathological evaluation.
  • % AS (Neointimal area) Z (Inner elastic plate area) X 100 (%)
  • the stent of Comparative Example 8 was percutaneously placed in the porcine coronary artery for 1 month for pathological evaluation.
  • Example 4 Using the cast film produced by the same method as in Comparative Example 4, the same stent as in Example 4 was produced and subjected to the same measurement.
  • the stent of Comparative Example 10 was percutaneously placed in the porcine coronary artery for 1 month for pathological evaluation.

Abstract

It is intended to provide a substance to be placed in the living body which is made of a biodegradable material, causes neither mechanical stress nor chronic inflammation in the living body after placing in the living body, sustains a required strength and elongation in the living body and scarcely suffers from breakage or cracking due to an external force. The above problem is solved by providing a substance to be placed in the living body which has the main body made of a biodegradable material comprising, as the main component, a polylactic acid complex wherein D-polylactic acid and L-polylactic acid form together a complex of a stereo complex structure at a ratio by mass of from 45:55 to 55:45.

Description

明 細 書  Specification
生体内留置物  In vivo indwelling
技術分野  Technical field
[0001] 本発明は生体内留置物に関する。  [0001] The present invention relates to an in-vivo indwelling object.
背景技術  Background art
[0002] 本発明の生体内留置物としては、ステント、カテーテル、人工血管、ステントグラフト 等、様々なものが挙げられる力 以下においては例としてステントを挙げて説明する。  [0002] The in vivo indwelling material of the present invention includes various forces such as a stent, a catheter, an artificial blood vessel, and a stent graft. Hereinafter, a stent will be described as an example.
[0003] まず、虚血性心疾患に適用される血管形成術について説明する。  [0003] First, angioplasty applied to ischemic heart disease will be described.
我が国における食生活の欧米化が、虚血性心疾患 (狭心症、心筋梗塞)の患者数 を急激に増カロさせて ヽることを受け、それらの冠動脈病変を軽減化する方法として経 皮的経血管的冠動脈形成術 (PTCA)が施行され、飛躍的に普及してきている。現 在では、技術的な発展により適用症例も増えており、 PTCAが始まった当時の限局 性 (病変の長さが短いもの)で一枝病変(1つの部位にのみ狭窄がある病変)のものか ら、より遠位部で偏心的で石灰化しているようなもの、そして多枝病変(2つ以上の部 位に狭窄がある病変)へと PTCAの適用が拡大されて 、る。  The Westernization of dietary habits in Japan has led to a sudden increase in the number of patients with ischemic heart disease (anginal angina, myocardial infarction). Transvascular coronary angioplasty (PTCA) has been performed and has become very popular. At present, the number of applied cases has increased due to technological development. Whether it is localized at the time PTCA began (short lesion length) or single-branch lesion (lesion with stenosis only at one site)? Thus, PTCA has been extended to more distal, eccentric, calcified, and multi-branch lesions (lesions with stenosis in more than one site).
[0004] PTCAとは、患者の脚又は腕の動脈に小さな切開を施してイントロデューサーシ一 ス (導入器)を留置し、イントロデューサーシースの内腔を通じて、ガイドワイヤを先行 させながら、ガイドカテーテルと呼ばれる長い中空のチューブを血管内に挿入して冠 状動脈の入口に配置した後ガイドワイヤを抜き取り、別のガイドワイヤとバルーンカテ 一テルをガイドカテーテルの内腔に挿入し、ガイドワイヤを先行させながらバルーン カテーテルを X線造影下で患者の冠状動脈の病変部まで進めて、バルーンを病変 部内に位置させて、その位置で医師がバルーンを所定の圧力で 30〜60秒間、 1回 力 複数回膨らませる手技である。  [0004] PTCA is a guide catheter in which a small incision is made in the artery of a patient's leg or arm, an introducer system (introducer) is placed, and a guide wire is advanced through the lumen of the introducer sheath. After inserting a long hollow tube called a blood vessel into the blood vessel and placing it at the entrance of the coronary artery, withdraw the guide wire, insert another guide wire and balloon catheter into the lumen of the guide catheter, and lead the guide wire ahead The balloon catheter is advanced to the lesion area of the patient's coronary artery under X-ray contrast, and the balloon is positioned in the lesion area. At that position, the doctor presses the balloon once at a predetermined pressure for 30 to 60 seconds. It is a technique to inflate.
これにより、病変部の血管内腔は拡張され血管内腔を通る血流は増加する。しかし ながら、カテーテルによって血管壁が傷つけられたりすると、血管壁の治癒反応であ る血管内膜の増殖が起こり 30〜40%程度の割合で再狭窄が報告されている。  As a result, the vascular lumen of the lesion is expanded and the blood flow through the vascular lumen is increased. However, when the vessel wall is damaged by the catheter, the intima proliferates, which is a healing reaction of the vessel wall, and restenosis has been reported at a rate of about 30 to 40%.
[0005] ステントは、このような再狭窄を予防する方法にぉ 、て用いるものとして検討され、 ある程度の成果をあげている。ここで言うステントとは、血管や他の管腔が狭窄もしく は閉塞することによって生じる様々な疾患を治療するために、その狭窄もしくは閉塞 部位を拡張し、その内腔を確保するためにそこに留置することができる管状の医療用 具である。そして、それらの多くは、金属材料又は高分子材料よりなる医療用具であ り、例えば金属材料や高分子材料よりなる管状体に細孔を設けたものや、金属材料 のワイヤや高分子材料の繊維を編み上げて円筒形に成形したもの等様々な形状の ものが提案されている。ステント留置の目的は、 PTCA等の手技を施した後に起こる 再狭窄の予防及びその低減ィ匕を狙ったものである力 このようなステントの留置のみ では狭窄を顕著に抑制することができていないのが実状であった。 [0005] Stents have been studied for use in methods of preventing such restenosis, Has achieved some results. The term stent refers to the expansion of the stenosis or occlusion site and the securing of the lumen in order to treat various diseases caused by stenosis or occlusion of blood vessels and other lumens. It is a tubular medical device that can be indwelled. Most of them are medical devices made of a metal material or a polymer material. For example, a tubular body made of a metal material or a polymer material provided with pores, a wire made of a metal material, or a polymer material. Various shapes have been proposed, such as those formed by knitting fibers into a cylindrical shape. The purpose of stent placement is the force that aims to prevent and reduce restenosis that occurs after procedures such as PTCA. Stent placement alone does not significantly suppress stenosis. The actual situation was.
[0006] そこで、近年、このステントに免疫抑制剤や抗癌剤等の生物学的生理活性物質を 担持させることによって、管腔の留置部位で長期にわたって局所的にこの生物学的 生理活性物質を放出させ、再狭窄率の低減化を図る方法が提案されて!、る。 [0006] Therefore, in recent years, this biological physiologically active substance is locally released over a long period of time at the indwelling site of the lumen by loading the biological physiologically active substance such as an immunosuppressive agent or an anticancer agent on this stent. A method to reduce the restenosis rate has been proposed! RU
例えば、特許文献 1には、金属(タンタル等)又は生体安定性又は生体吸収性のポ リマー(ポリラタティックアシッド等)力もなるステント本体の表面に、生分解性高分子と 治療のための物質との混合物をコーティングしたステントが記載されている。  For example, Patent Document 1 discloses a biodegradable polymer and a therapeutic substance on the surface of a stent body that also has metal (tantalum or the like) or biostable or bioabsorbable polymer (polylattic acid or the like) force. And a stent coated with a mixture thereof.
また、特許文献 2には、金属 (ステンレス等)又は高分子力もなるステント本体の表 面に薬剤層を設け、更にこの薬剤層の表面に生分解性高分子層を設けたステントが 記載されている。  Patent Document 2 describes a stent in which a drug layer is provided on the surface of a stent body having a metal (such as stainless steel) or polymer force, and a biodegradable polymer layer is further provided on the surface of the drug layer. Yes.
[0007] し力しながら、これら特許文献 1、 2に記載されている金属製のステントは、半永久的 にステント本体が生体内に留置されることになる。したがって、その表面の生分解性 高分子が生体内で分解されて薬剤が放出された後、ステント本体の血管壁に対する メカ-カルストレスに起因した慢性的な炎症が起こる可能がある。これは特許文献 1、 [0007] However, in the metal stents described in Patent Documents 1 and 2, the stent body is indwelled in the living body semipermanently. Therefore, after the biodegradable polymer on the surface is degraded in vivo and the drug is released, chronic inflammation due to mechanical stress on the vessel wall of the stent body may occur. This is patent document 1,
2に記載されて ヽる金属製ステントに限定されるものではなく、タンタルやステンレス 等の金属材料や生分解し難い高分子を使用している全てのステントにおける問題点 である。 The present invention is not limited to the metal stents described in 2, but is a problem in all stents using metal materials such as tantalum and stainless steel and polymers that are difficult to biodegrade.
これに関連して、非特許文献 1には、高分子層が半永久的に生体内に留置される ことによって、慢性的に炎症が持続する可能性がある上に、高分子の劣化によって 再狭窄が誘発される恐れがあるばかりか、血栓症を併発する恐れさえあることが報告 されている。 In this regard, Non-Patent Document 1 discloses that the polymer layer may be left in the living body semipermanently to cause chronic inflammation, and restenosis may occur due to degradation of the polymer. Reported to be provoked by thrombosis Has been.
[0008] 一方、特許文献 1に記載されて 、るポリラタティックアシッド等の生体安定性又は生 分解性ポリマーからなるステントや、特許文献 3に記載されて 、るような生体吸収性ポ リマーであるポリ L乳酸力もなるステントは、生体内で分解 '消失するので、長期間生 体内に留置されて血管壁にメカ-カルストレスを与えて慢性的な炎症が起こることは ほとんどない。また、血管は加齢により徐々に蛇行していくが、ステントが消失すれば 残った内皮細胞の層がこの蛇行運動に良好に追随できる。従って、生体への侵襲が な ヽ又は小さ 、ステントを提供し得る。  [0008] On the other hand, a stent made of a biostable or biodegradable polymer such as polylatatic acid described in Patent Document 1 or a bioabsorbable polymer described in Patent Document 3 A stent with a certain poly-L-lactic acid power degrades and disappears in the living body, so that it is left in the body for a long time and mechanical stress is applied to the blood vessel wall, so that chronic inflammation hardly occurs. In addition, blood vessels gradually meander with age, but if the stent disappears, the remaining endothelial cell layer can follow this meandering motion well. Therefore, it is possible to provide a stent with little or no invasion to a living body.
特許文献 1 :特開平 8— 33718号公報  Patent Document 1: JP-A-8-33718
特許文献 2:特開平 9 - 56807号公報  Patent Document 2: JP-A-9-56807
特許文献 3: WO01/067990パンフレット  Patent Document 3: WO01 / 067990 Pamphlet
特干文献 1 : Renu Virmani ect.、 Mechanism of Late In— Stent Restenosis After Impl antation of a Paclitaxel Derivate- Eluting Polymer Stent System in Humans、「Circul ation」、 2002、 VOL106、 p2649— 2651  Special Reference 1: Renu Virmani ect., Mechanism of Late In— Stent Restenosis After Impl antation of a Paclitaxel Derivate- Eluting Polymer Stent System in Humans, “Circulation”, 2002, VOL106, p2649— 2651
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] しかし、特許文献 1に記載されて 、るポリラタティックアシッド等力もなるステントや、 特許文献 3に記載されて 、るようなポリ L乳酸力もなるステントは、強度及び伸びが低 ぐ病変部に留置しても何らかの外力により破損する可能性があった。また、ラジアル フォースが低くなるため留置後にステントが病変部力 脱落する可能性があった。 更に、ステントへのノ レーンカテーテルに対する力しめ力(クリンビングフォース)が 低いため、病変部のデリバリー時にステントがバルーンカテーテル力 脱落する可能 性があった。 [0009] However, the stent described in Patent Document 1 that has a polylatatic acid equivalent force and the stent described in Patent Document 3 that also has a poly L-lactic acid force have lesions with low strength and elongation. Even if left in place, it could be damaged by some external force. In addition, since the radial force is low, the stent may drop out of the lesion after placement. Furthermore, since the force for crimping the stent onto the stent (cribing force) is low, the stent may drop out of the balloon catheter during delivery of the lesion.
[0010] 上記ではステントを例に挙げた力 このような強度低下等の問題はステントに限らず [0010] In the above, the force given as an example of a stent. Problems such as strength reduction are not limited to stents.
、生分解性を有する生体内留置物に共通する問題である。 It is a problem common to in vivo indwelling materials having biodegradability.
[0011] したがって、本発明の目的は、生分解性の材料力もなり、生体内に留置後に生体 にメカニカルストレス及び慢性的な炎症を発生させず、かつ、生体内で必要な強度及 び伸び (伸度)を有し、外力による破損及び亀裂が生じ難 1、生体内留置物を提供す ることにある。 [0011] Therefore, the object of the present invention is to provide biodegradable material strength, does not cause mechanical stress and chronic inflammation in the living body after being placed in the living body, and has the necessary strength and elongation in the living body ( Elongation), damage and cracking due to external force are difficult to occur. There is to be.
また、このような生体内留置物であって、更に、必要なクリンビングフォースやラジア ルフォースを有し、病変部へのデリバリー時のバルーンカテーテルからの脱落ゃ留 置後の脱落などが生じ難い生体内留置物 (生体内に生じた狭窄部や閉塞部等を拡 張するために当該部位に挿入し、拡張した上で、その状態を保持するために当該部 位に留置するステント、カテーテル、人工血管、ステントグラフト等の生体内留置物) を提供することにある。  Further, such an in-vivo indwelling material further has a necessary crimping force or radial force, and it is difficult to drop off after placement from a balloon catheter during delivery to a lesion. In-vivo indwelling (stents, catheters, artificial prostheses that are inserted into the site to expand stenosis or occlusion in the living body, and then expanded to maintain the state. In vivo indwelling materials such as blood vessels and stent grafts).
課題を解決するための手段  Means for solving the problem
[0012] 本発明者は上記の課題を解決することを目的に鋭意検討し、 D体ポリ乳酸と L体ポ リ乳酸とを特定の範囲で含有し、更にそれらが特定の構造を形成しているポリ乳酸複 合体を主成分とする生分解性物質からなる本体部を有する生体内留置物が、上記 の課題を解決することを見出した。  [0012] The present inventor has intensively studied for the purpose of solving the above-mentioned problems, and contains D-form polylactic acid and L-form polylactic acid in a specific range, and further, they form a specific structure. It has been found that an in-vivo indwelling body having a main body portion composed of a biodegradable substance mainly composed of a polylactic acid complex can solve the above-mentioned problems.
[0013] すなわち、本発明は次の(1)〜(21)である。  [0013] That is, the present invention includes the following (1) to (21).
(1) D体ポリ乳酸と L体ポリ乳酸と力 5: 55〜55: 45の質量比でステレオコンプレツ タス構造の複合体を形成しているポリ乳酸複合体を主成分とする生分解性物質から なる本体部を有する生体内留置物。  (1) Biodegradability mainly composed of polylactic acid complex forming a complex structure of stereocomplex structure with mass ratio of D-form polylactic acid and L-form polylactic acid 5: 55 ~ 55: 45 An in-vivo indwelling having a main body made of a substance.
(2)前記生分解性物質が、生物学的生理活性物質を含有する上記(1)に記載の 生体内留置物。  (2) The in-vivo indwelling product according to (1), wherein the biodegradable substance contains a biological physiologically active substance.
(3)前記生物学的生理活性物質の少なくとも一部が粉体であり、この粉体の生物 学的生理活性物質が前記生分解性物質中で分散している上記 (2)に記載の生体内 留置物。  (3) The biological bioactive substance according to (2), wherein at least a part of the biological physiologically active substance is a powder, and the biological physiologically active substance of the powder is dispersed in the biodegradable substance. Indwelling in the body.
(4)前記生物学的生理活性物質の少なくとも一部が前記ポリ乳酸複合体と化学結 合して 、る上記(2)又は(3)に記載の生体内留置物。  (4) The in vivo indwelling product according to (2) or (3), wherein at least a part of the biological physiologically active substance is chemically bonded to the polylactic acid complex.
[0014] (5)前記本体部の表面に、前記生物学的生理活性物質を含有する薬剤放出層を 有する上記(1)〜 (4)の 、ずれかに記載の生体内留置物。  [0014] (5) The in-vivo indwelling product according to any one of (1) to (4), wherein a drug releasing layer containing the biological physiologically active substance is provided on the surface of the main body.
(6)前記薬剤放出層が更に生分解性ポリマーを含有する上記 (5)に記載の生体内 留置物。  (6) The in-vivo indwelling product according to (5), wherein the drug release layer further contains a biodegradable polymer.
(7)前記薬剤放出層が 2以上の層からなり、それらの層が前記生物学的生理活性 物質を含む層及び前記生分解性ポリマーを含む層を含む上記(6)に記載の生体内 留置物。 (7) The drug release layer is composed of two or more layers, and these layers are the biological and physiological activities. The in-vivo indwelling material according to (6) above, comprising a layer containing a substance and a layer containing the biodegradable polymer.
[0015] (8)前記ポリ乳酸複合体の重量平均分子量が 1, 000〜1, 000, 000である上記( 1)〜(7)の 、ずれかに記載の生体内留置物。  [0015] (8) The in-vivo indwelling product according to any one of (1) to (7), wherein the polylactic acid complex has a weight average molecular weight of 1,000 to 1,000,000.
(9)前記ポリ乳酸複合体が、延伸されたポリ乳酸複合体である上記(1)〜(8)の 、 ずれかに記載の生体内留置物。  (9) The in-vivo indwelling product according to any one of (1) to (8), wherein the polylactic acid complex is a stretched polylactic acid complex.
(10)前記ポリ乳酸複合体が、示差走査熱量測定において 65〜75°Cの間に第 1の 融解ピークを有し、 200〜250°Cの間に第 2の融解ピークを有するポリ乳酸複合体で ある上記(1)〜(9)の 、ずれかに記載の生体内留置物。  (10) The polylactic acid complex has a first melting peak between 65 and 75 ° C. and a second melting peak between 200 and 250 ° C. in differential scanning calorimetry. The in-vivo indwelling product according to any one of (1) to (9), which is a body.
(11)前記ポリ乳酸複合体が、 JIS K7113に規定される破断強度が 70MPa以上 であり、破断伸度が 15%以上であり、ヤング率が lOOMPa以上であるポリ乳酸複合 体である上記(1)〜(10)のいずれかに記載の生体内留置物。  (11) The polylactic acid composite is a polylactic acid composite having a breaking strength specified by JIS K7113 of 70 MPa or more, a breaking elongation of 15% or more, and a Young's modulus of lOOMPa or more (1 ) To (10).
[0016] (12)前記ポリ乳酸複合体が、交互積層法により製造されたポリ乳酸複合体である 上記(1)〜(11)の!、ずれかに記載の生体内留置物。  [0016] (12) The in-vivo indwelling product according to any one of (1) to (11) above, wherein the polylactic acid complex is a polylactic acid complex produced by an alternating lamination method.
(13)前記交互積層法が、マイクロオーダー薄膜を形成して行う交互積層法である 上記(12)に記載の生体内留置物。  (13) The in-vivo indwelling product according to (12), wherein the alternating lamination method is an alternating lamination method performed by forming a micro-order thin film.
(14)前記マイクロオーダー薄膜の厚さが 1 πι〜500 /ζ mである上記(13)に記載 の生体内留置物。  (14) The in-vivo indwelling product according to the above (13), wherein the thickness of the micro-order thin film is 1πι to 500 / ζ m.
(15)前記マイクロオーダー薄膜の間に、前記生物学的生理活性物質を含有する 上記( 13)又は( 14)に記載の生体内留置物。  (15) The in-vivo indwelling product according to (13) or (14), wherein the biological physiologically active substance is contained between the micro-order thin films.
[0017] (16)前記本体部の形状が、チューブ状、管状、網状、繊維状、不織布状、織布状 又はフィラメント状である上記(1)〜(15)のいずれかに記載の生体内留置物。  [0017] (16) The living body according to any one of (1) to (15), wherein the shape of the main body portion is a tube shape, a tubular shape, a net shape, a fiber shape, a nonwoven fabric shape, a woven fabric shape, or a filament shape. Detainment.
(17)前記生物学的生理活性物質が、抗癌剤、免疫抑制剤、抗生物質、抗リウマチ 剤、抗血栓薬、 HMG— CoA還元酵素阻害剤、 ACE阻害剤、カルシウム拮抗剤、抗 高脂血症薬、インテグリン阻害薬、抗アレルギー剤、抗酸化剤、 GPIIbllla拮抗薬、レ チノイド、フラボノイド、カロチノイド、脂質改善薬、 DNA合成阻害剤、チロシンキナー ゼ阻害剤、抗血小板薬、抗炎症薬、生体由来材料、インターフェロン及び NO産生 促進物質力 なる群力も選ばれる少なくとも 1つである上記(2)〜(16)のいずれかに 記載の生体内留置物。 (17) The biologically bioactive substance is an anticancer agent, immunosuppressant, antibiotic, antirheumatic agent, antithrombotic agent, HMG—CoA reductase inhibitor, ACE inhibitor, calcium antagonist, antihyperlipidemia Drugs, integrin inhibitors, antiallergic agents, antioxidants, GPIIbllla antagonists, retinoids, flavonoids, carotenoids, lipid improvers, DNA synthesis inhibitors, tyrosine kinase inhibitors, antiplatelet drugs, anti-inflammatory drugs, biological origin Any of the above (2) to (16), which is at least one selected from the group power of materials, interferon and NO production promoting substances The in-vivo indwelling object described.
(18)前記生分解性ポリマー力 ポリ乳酸、ポリダリコール酸、ポリヒドロキシ酪酸、ポ リリンゴ酸、ポリ一 a—アミノ酸、コラーゲン、ラミニン、へパラン硫酸、フイブロネクチン 、ビトロネクチン、コンドロイチン硫酸、ヒアルロン酸、ポリ力プロラタトン及びこれらの共 重合体力 なる群力 選ばれる少なくとも 1つである上記(6)〜(17)のいずれかに記 載の生体内留置物。  (18) Biodegradable polymer strength Polylactic acid, polydaricholic acid, polyhydroxybutyric acid, polymalic acid, polya-amino acid, collagen, laminin, heparan sulfate, fibronectin, vitronectin, chondroitin sulfate, hyaluronic acid, polystrength prolatathone And the in vivo indwelling material according to any one of the above (6) to (17), which is at least one selected from the group force consisting of the copolymer force.
(19)前記生分解性ポリマー力 ポリ乳酸とポリダリコール酸との共重合体である上 記(18)に記載の生体内留置物。  (19) The biodegradable polymer strength The in-vivo indwelling product according to the above (18), which is a copolymer of polylactic acid and polydaricholic acid.
[0018] (20)ステントである上記(1)〜(19)の 、ずれかに記載の生体内留置物。  [0018] (20) The in-vivo indwelling product according to any one of (1) to (19), which is a stent.
(21)外径を 2. 1mmから 3. Ommへ拡張した後、 1mm圧縮したときのラジアルフォ 一スがステント長 10mmあたり 130〜500gfである上記(20)に記載のステント。 発明の効果  (21) The stent according to (20) above, wherein the radial face when expanded from 2.1 mm to 3. Omm and then compressed by 1 mm is 130 to 500 gf per 10 mm stent length. The invention's effect
[0019] 本発明によれば、生分解性の材料からなり、生体内に留置後に生体にメカ二カルス トレス及び慢性的な炎症を発生させず、かつ、生体内で必要な強度及び伸びを有し 、外力による破損及び亀裂が生じ難 、生体内留置物を提供することができる。  [0019] According to the present invention, it is made of a biodegradable material, does not cause mechanical stress and chronic inflammation in the living body after being placed in the living body, and has necessary strength and elongation in the living body. However, it is difficult to cause damage and cracks due to external force, and an in-vivo indwelling object can be provided.
また、このような生体内留置物であって、更に、必要なクリンビングフォースやラジア ルフォースを有し、病変部へのデリバリー時のバルーンカテーテルからの脱落ゃ留 置後の脱落などが生じ難い生体内留置物 (生体内に生じた狭窄部や閉塞部等を拡 張するために当該部位に挿入し、拡張した上で、その状態を保持するために当該部 位に留置するステント、カテーテル、人工血管、ステントグラフト等の生体内留置物) を提供することができる。  Further, such an in-vivo indwelling material further has a necessary crimping force or radial force, and it is difficult to drop off after placement from a balloon catheter during delivery to a lesion. In-vivo indwelling (stents, catheters, artificial prostheses that are inserted into the site to expand stenosis or occlusion in the living body, and then expanded to maintain the state. In vivo indwelling materials such as blood vessels and stent grafts) can be provided.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]図 1は、本発明のステントの一態様を示す側面図である。 FIG. 1 is a side view showing an embodiment of the stent of the present invention.
[図 2]図 2は、図 1の A— A線に沿って切断した拡大横断面図である。  2 is an enlarged cross-sectional view taken along line AA in FIG.
[図 3]図 3は、図 1の A— A線に沿って切断した他の拡大横断面図である。  FIG. 3 is another enlarged cross-sectional view taken along the line AA in FIG.
[図 4]図 4は、図 1の A— A線に沿って切断した他の拡大横断面図である。  FIG. 4 is another enlarged cross-sectional view taken along the line AA in FIG.
[図 5]図 5は、図 1の B— B線に沿って切断した拡大横断面図である。  FIG. 5 is an enlarged cross-sectional view taken along line BB in FIG. 1.
[図 6]図 6は、図 1の B— B線に沿って切断した他の拡大横断面図である。 [図 7]図 7は、実施例 5のブタ冠動脈内ステント埋め込み後病理像を示す拡大写真 (4 0倍)である。 [FIG. 6] FIG. 6 is another enlarged cross-sectional view taken along line BB in FIG. FIG. 7 is an enlarged photograph (40 ×) showing a pathological image after implantation of a porcine intracoronary stent in Example 5.
圆 8]図 8は、比較例 9のブタ冠動脈内ステント埋め込み後病理像を示す拡大写真 (4 0倍)である。  [8] FIG. 8 is an enlarged photograph (40 × magnification) showing a pathological image after implantation of a porcine intracoronary stent in Comparative Example 9.
圆 9]図 9は、比較例 11のブタ冠動脈内ステント埋め込み後病理像を示す拡大写真( 40倍)である。  [9] FIG. 9 is an enlarged photograph (40 ×) showing a pathological image after implantation of a porcine intracoronary stent in Comparative Example 11.
符号の説明  Explanation of symbols
1 ステント(ステント本体)  1 Stent (Stent body)
2 線状部材  2 Linear members
11 要素  11 elements
12 環状ユニット  12 Ring unit
13 連結部材  13 Connecting member
10 ステント本体  10 Stent body
20 ポリ乳酸複合体  20 Polylactic acid composite
30 粉体の生物学的生理活性物質  30 Biologically bioactive substances in powder
32 生物学的生理活性物質を含む層  32 Layers containing biologically bioactive substances
40 生分解性ポリマー  40 Biodegradable polymer
42 生分解性ポリマーを含む層  42 Layer containing biodegradable polymer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下に本発明につ 、て詳細に説明する。  [0022] The present invention is described in detail below.
本発明は、 D体ポリ乳酸と L体ポリ乳酸とが 45 : 55〜55: 45の質量比でステレオコ ンプレックス構造の複合体を形成しているポリ乳酸複合体を主成分とする生分解性 物質力 なる本体部を有する生体内留置物である。  The present invention provides a biodegradable composition mainly composed of a polylactic acid complex in which D-form polylactic acid and L-form polylactic acid form a complex having a stereocomplex structure in a mass ratio of 45:55 to 55:45. It is an in-vivo indwelling body having a body part with material force.
[0023] ここで、本発明の生体内留置物は本体部を有するものである力 本体部そのもので あってその他の部分を有さないものであってもよい。つまり、本発明の生体内留置物 は、 D体ポリ乳酸と L体ポリ乳酸と力 5: 55〜55 :45の質量比でステレオコンプレック ス構造の複合体を形成しているポリ乳酸複合体を主成分とする生分解性物質からな る生体内留置物であってもよい。その場合であっても本発明の範囲内である。 したがって、本発明の生体内留置物としては、例えば、前記生分解性物質からなる ステントや、前記生分解性物質力 なるステント本体 (本体部)の表面に薬剤等を塗 布したステントが挙げられる。その他の本発明の生体内留置物の態様については後 述する。 [0023] Here, the in-vivo indwelling body of the present invention may be a force main body itself having no main body and no other parts. That is, the in-vivo indwelling material of the present invention is a polylactic acid complex that forms a complex of stereocomplex structure with a D-form polylactic acid and an L-form polylactic acid at a mass ratio of 5:55 to 55:45. It may be an in-vivo indwelling made of a biodegradable substance containing as a main component. Even that case is within the scope of the present invention. Therefore, examples of the in-vivo indwelling material of the present invention include a stent made of the biodegradable substance and a stent in which a drug or the like is coated on the surface of the stent body (main body part) made of the biodegradable substance. . Other aspects of the in-vivo indwelling material of the present invention will be described later.
[0024] 初めに、本発明で用いるポリ乳酸複合体について説明する。  [0024] First, the polylactic acid complex used in the present invention will be described.
本発明で用いるポリ乳酸複合体は、 D体ポリ乳酸と L体ポリ乳酸との複合体である。 そして、この複合体において、これらのポリ乳酸はステレオコンプレックス構造を形成 している。  The polylactic acid complex used in the present invention is a complex of D-form polylactic acid and L-form polylactic acid. In this complex, these polylactic acids form a stereocomplex structure.
ここでステレオコンプレックス構造とは、 D体及び L体のような鏡像異性体の関係に ある高分子同士がファンデルワールス力により相互に作用して、構造的フィッティング を生じてなる立体構造である。  Here, the stereocomplex structure is a three-dimensional structure in which enantiomeric macromolecules such as D-form and L-form interact with each other by van der Waals forces to produce structural fitting.
[0025] ステレオコンプレックス構造は、ァイソタクチックとシンジオタクチックとのような立体 規則性を持つ高分子にぉ ヽても形成し得る。 [0025] A stereocomplex structure can be formed even on a polymer having stereoregularity such as isotactic and syndiotactic.
ステレオコンプレックスを形成する例としては、ポリ乳酸以外に、ポリ- γ -ベンジルグ ルタメート,ポリ- γ -メチルダルタメート,ポリ- tert-ブチレンオキサイド,ポリ- tert-ブ チルエチレンサルフイド,ポリ - α -メチルベンジルメタタリレート,ポリ- α -メチル - α - ェチル- j8 -プロピオラタトン, β -1,1-ジクロロプロピル- β -プロピオラタトンなどが知 られている。 As an example of forming a stereocomplex, in addition to polylactic acid, poly - gamma - Benjirugu Rutameto, poly - gamma - methyl Dal data formate, poly - tert butylene oxide, poly - tert Bed chill ethylene sulfates id, poly - alpha -Methylbenzylmetatalylate, poly-α-methyl-α-ethyl-j8-propiolatatone, β-1,1-dichloropropyl-β-propiolataton, etc. are known.
[0026] また、本発明で用いるポリ乳酸複合体にぉ 、て、 D体ポリ乳酸と L体ポリ乳酸との質 量比は 45: 55〜55: 45である。この質量比は 50: 50であることが好まし!/、。  [0026] In the polylactic acid complex used in the present invention, the mass ratio of D-form polylactic acid to L-form polylactic acid is 45:55 to 55:45. This mass ratio is preferably 50: 50! /.
このような質量比であって、かつ、上記のようなステレオコンプレックス構造を有する ポリ乳酸複合体は強度及び伸度が顕著に高ぐこれを用いてなる生体内留置物は生 体内で破損し難い。また、このようなポリ乳酸複合体は、外力により伸びた後であって も強度を保持するので、前記ポリ乳酸複合体を用いてなるステント等の生体内留置 物 (生体内に生じた狭窄部や閉塞部等を拡張するために当該部位に挿入し、拡張し た上で、その状態を保持するために当該部位に留置するステント、カテーテル、人工 血管、ステントグラフト等の生体内留置物)は、例えば病変部へノ レーンカテーテル 等を用いて挿入し、その部位に留置するために拡張し伸びた後であっても、その形 状を保持するために必要なラジアルフォースを有する。 A polylactic acid complex having such a mass ratio and a stereocomplex structure as described above has significantly high strength and elongation, and an in-vivo indwelling material using such a polylactic acid complex is unlikely to break in vivo. . In addition, since such a polylactic acid composite retains strength even after being stretched by an external force, an in-vivo indwelling material such as a stent using the polylactic acid composite (a constricted portion formed in the living body). In-vivo indwelling materials such as stents, catheters, artificial blood vessels, and stent grafts that are inserted into the site to expand the obstruction, occlusion, etc. For example, even if it is inserted into a lesioned part using a catheter, etc., expanded and extended for placement at that site, its shape It has the radial force necessary to maintain the shape.
なお、ここでいう D体ポリ乳酸と L体ポリ乳酸との質量比は、前記ポリ乳酸複合体を 製造する際に用いた各々の質量比をいう。  The mass ratio of D-form polylactic acid and L-form polylactic acid here refers to the respective mass ratios used in producing the polylactic acid composite.
[0027] また、前記ポリ乳酸複合体の重量平均分子量は 1, 000-1, 000, 000であること 力 S好ましく、 2, 000〜700, 000であること力 Sより好ましく、 5, 000〜400, 000である ことが更に好ましい。 [0027] The polylactic acid complex has a weight average molecular weight of 1,000-1,000,000, preferably S, more preferably 2,000-700,000, more preferably S, More preferably, it is 400,000.
また、前記ポリ乳酸複合体が、示差走査熱量測定において 65〜75°Cの間に第 1の 融解ピーク (すなわちガラス転移温度)を有し、 200〜250°Cの間に第 2の融解ピーク (すなわち融点)を有するものであることが好ましい。ここで、示差走査熱量測定は N  In addition, the polylactic acid complex has a first melting peak (that is, a glass transition temperature) between 65 and 75 ° C. in differential scanning calorimetry, and a second melting peak between 200 and 250 ° C. (That is, having a melting point) is preferable. Where differential scanning calorimetry is N
2 ガス気流下、 5°CZminの昇温速度で測定するものとする。島津製作所社製 DT— 5 0を好ましく用いることができる。  2 It shall be measured in a gas stream at a temperature increase rate of 5 ° CZmin. DT-50 manufactured by Shimadzu Corporation can be preferably used.
前記ポリ乳酸複合体が、このような範囲の重量平均分子量である場合や、このよう な融解ピークを有する場合は、このポリ乳酸複合体の強度及び伸度が更に高くなり、 これを用いてなる生体内留置物は生体内で更に破損し難くなる。また、このようなポリ 乳酸複合体を用いてなるステント等の生体内留置物は、更に高 、ラジアルフォースを 有することとなる。  When the polylactic acid complex has a weight average molecular weight in such a range or has such a melting peak, the strength and elongation of the polylactic acid complex are further increased, and this is used. The in-vivo indwelling material is more difficult to break in vivo. In addition, an in-vivo indwelling material such as a stent using such a polylactic acid composite has a higher radial force.
[0028] また、前記ポリ乳酸複合体が、 JIS K7113に規定される破断強度が 70MPa以上 であり、破断伸度が 15%以上であり、ヤング率が lOOMPa以上であるポリ乳酸複合 体であることが好ましい。  [0028] Further, the polylactic acid composite is a polylactic acid composite having a breaking strength specified in JIS K7113 of 70 MPa or more, a breaking elongation of 15% or more, and a Young's modulus of lOOMPa or more. Is preferred.
ここで、破断強度は、 75MPa以上であることがより好ましぐ 80MPa以上であること が更に好まし 、。上限は特に限定されな 、が 500MPa以下であることが好まし 、。 また、破断伸びは、 20%以上であることがより好ましぐ 30%以上であることが更に 好まし 、。上限は特に限定されな 、が 200%以下であることが好まし 、。  Here, the breaking strength is more preferably 75 MPa or more, more preferably 80 MPa or more. The upper limit is not particularly limited, but is preferably 500 MPa or less. Further, the elongation at break is more preferably 20% or more, and further preferably 30% or more. The upper limit is not particularly limited, but is preferably 200% or less.
また、ヤング率は、 500MPa以上であることがより好ましぐ 1, OOOMPa以上である ことが更に好ましい。上限は特に限定されないが 50, OOOMPa以下であることが好ま しい。  The Young's modulus is more preferably 500 MPa or more, and more preferably 1, OOOMPa or more. The upper limit is not particularly limited, but is preferably 50, OOOMPa or less.
これらの値がこのような範囲のポリ乳酸複合体を用いてなる生体内留置物は、生体 内で更に破損し難くなるので好ましい。また、このようなポリ乳酸複合体を用いてなる ステント等の生体内留置物は、更に高いラジアルフォースを有することとなるので好ま しい。 An in-vivo indwelling product using a polylactic acid complex having such values in such a range is preferable because it is more difficult to break in vivo. Also, using such a polylactic acid composite An in-vivo indwelling material such as a stent is preferable because it has a higher radial force.
なお、以下において「破断強度」、「破断伸度」、「ヤング率」と記した場合、全て JIS K7113に規定された方法(1Z5スケールの 2号試験片を使用)で測定されたもの を意味する。  In the following, “breaking strength”, “breaking elongation”, and “Young's modulus” all mean the values measured by the method specified in JIS K7113 (using No. 2 test piece of 1Z5 scale). To do.
[0029] また、前記ポリ乳酸複合体が、延伸されたポリ乳酸複合体であることが好ま 、。  [0029] Further, it is preferable that the polylactic acid complex is a stretched polylactic acid complex.
これは、前記ポリ乳酸複合体をそのガラス転移温度以上、融点以下の温度で延伸 すると、非晶部分の分子が延伸方向に引き伸ばされ結晶化度が増すとともに、分子 が延伸方向に配向するので、延伸方向の引張強度や引張弾性率が大きくなるからで ある。  This is because when the polylactic acid complex is stretched at a temperature not lower than the glass transition temperature and not higher than the melting point, the amorphous portion of the molecules is stretched in the stretching direction and the degree of crystallinity increases, and the molecules are oriented in the stretching direction. This is because the tensile strength and tensile modulus in the stretching direction increase.
[0030] また、前記ポリ乳酸複合体は、交互積層法により製造されたポリ乳酸複合体である ことが好ましい。更に、この交互積層法は、マイクロオーダー薄膜を形成して行う交互 積層法であることが好ましい。更に、前記マイクロオーダー薄膜の厚さは 1 m〜50 0 μ mであることが好ましぐ 10 μ m〜400 μ mであることがより好ましぐ 50 μ m〜3 00 μ mであることが更に好ましい。  [0030] The polylactic acid complex is preferably a polylactic acid complex produced by an alternating lamination method. Further, this alternate lamination method is preferably an alternate lamination method performed by forming a micro-order thin film. Further, the thickness of the micro-order thin film is preferably 1 m to 500 μm, more preferably 10 μm to 400 μm, and more preferably 50 μm to 300 μm. Is more preferable.
この交互積層法により製造された前記ポリ乳酸複合体は、強度及び伸びが特に良 好となるので、このポリ乳酸複合体を用いてなる生体内留置物は、生体内で更に破 損し難くなる。また、このようなポリ乳酸複合体を用いてなるステント等の生体内留置 物は、更に高 、ラジアルフォースを有することとなるので好まし 、。  Since the polylactic acid composite produced by this alternate lamination method has particularly good strength and elongation, an in-vivo indwelling body using this polylactic acid composite is more difficult to break in vivo. In addition, an in-vivo indwelling material such as a stent using such a polylactic acid composite is preferable because it has a higher radial force.
[0031] ここで交互積層法とは、基板を D体ポリ乳酸溶液及び L体ポリ乳酸溶液に交互に浸 漬することによって薄膜を作製する方法である。このような交互積層法を適用すること により、バルタ (溶液)中よりも効率よくステレオコンプレックス構造のポリ乳酸複合体を 形成できる。  Here, the alternating lamination method is a method for producing a thin film by alternately immersing a substrate in a D-form polylactic acid solution and an L-form polylactic acid solution. By applying such an alternate layering method, a polylactic acid complex having a stereocomplex structure can be formed more efficiently than in a balta (solution).
具体的には、例えば、 D体ポリ乳酸をァセトニトリルに溶解させた溶液と、 L体ポリ乳 酸をァセトニトリルに溶解させた溶液とを準備し、 PFA (四フッ化工チレン'パーフル ォロアルコキビニルエーテル共重合榭脂)等の基板を各溶液に交互に浸漬.乾燥を 繰り返す方法が挙げられる。  Specifically, for example, a solution in which D-form polylactic acid is dissolved in acetonitrile and a solution in which L-form polylactic acid is dissolved in acetonitrile are prepared, and PFA (tetrafluoroethylene / perfluoroalkoxy vinyl ether copolymer) is prepared. For example, a method of repeatedly immersing and drying a substrate such as a polymerized resin in each solution.
本発明において前記ポリ乳酸複合体は、従来法であるキャスト法等によって製造す ることもできる。しかし、この場合、交互積層法と比較してステレオコンプレックス構造 が形成される確率が低くなる。キャスト法の場合はステレオコンプレックス構造ではな い構造、例えば単独結晶が形成される確率が比較的高くなつてしまうが、交互積層 法で製造した場合であると、ステレオコンプレックス構造を通常 90%以上程度の割合 で形成することができる。 In the present invention, the polylactic acid composite is produced by a conventional casting method or the like. You can also. However, in this case, the probability that a stereocomplex structure is formed is lower than that in the alternate lamination method. In the case of the casting method, a structure that is not a stereocomplex structure, for example, the probability that a single crystal is formed is relatively high, but in the case of manufacturing by an alternating lamination method, the stereocomplex structure is usually about 90% or more. Can be formed at a ratio of
[0032] 本発明にお 、て生分解性物質は、このようなポリ乳酸複合体を主成分とする。 [0032] In the present invention, the biodegradable substance has such a polylactic acid complex as a main component.
ここで「主成分」とは質量%で60質量%以上含有することを意味する。つまり、本発 明にお 、て生分解性物質は前記ポリ乳酸複合体を 60質量%以上含有する。この生 分解性物質は前記ポリ乳酸複合体を 70質量%以上含有することが好ましぐ 80質量 Here, “main component” means containing 60% by mass or more by mass%. That is, in the present invention, the biodegradable substance contains 60% by mass or more of the polylactic acid complex. The biodegradable substance preferably contains 70% by mass or more of the polylactic acid complex.
%以上含有することが更に好ましい。 It is more preferable to contain at least%.
[0033] また、前記生分解性物質は、生物学的生理活性物質を含有することが好ま ヽ。本 発明の生体内留置物を生体内に留置した後、その生体内で分解していく過程で、生 物学的生理活性物質を放出し、この生分解に伴う炎症反応や再狭窄をこの生物学 的生理活性物質で抑制することができるからである。 [0033] The biodegradable substance preferably contains a biological physiologically active substance. In the process in which the in vivo indwelling material of the present invention is placed in the living body and then decomposed in the living body, a biologically physiologically active substance is released, and an inflammatory reaction and restenosis associated with the biodegradation are released. This is because it can be suppressed with a physiologically physiologically active substance.
[0034] また、前記生分解性物質おける前記生物学的生理活性物質の含有率は特に限定 されないが、 1〜40質量%含有することが好ましぐ 10〜30質量%含有することが更 に好ましい。 [0034] The content of the biologically physiologically active substance in the biodegradable substance is not particularly limited, but it is preferably 1 to 40% by mass, and more preferably 10 to 30% by mass. preferable.
[0035] また、この生物学的生理活性物質は、少なくともその一部が粉体であることが好まし くい。そして、この粉体の生物学的生理活性物質は前記生分解性物質中で分散して いることが好ましい。本発明の生体内留置物が生体内に留置された後、その生体内 で分解して!/ヽく過程で、前記生物学的生理活性物質が一定の速度で放出され易!、 力 である。  [0035] Further, it is preferable that at least a part of the biological physiologically active substance is a powder. The biologically and biologically active substance in the powder is preferably dispersed in the biodegradable substance. After the in-vivo indwelling object of the present invention is placed in the living body, it is decomposed in the living body! In the process of sowing, the biologically active substance is easily released at a constant rate!
[0036] また、前記生物学的生理活性物質の少なくとも一部が前記ポリ乳酸複合体と化学 結合していることが好ましい。本発明の生体内留置物が生体内に留置された後、そ の生体内で分解していく過程で、ポリ乳酸複合体の分解と同時に生物学的生理活性 物質が、より一定の速度で放出され易いことにより、炎症反応をより抑制することがで きる。  [0036] Further, it is preferable that at least a part of the biologically physiologically active substance is chemically bonded to the polylactic acid complex. In the process in which the in-vivo indwelling material of the present invention is in-vivo and then decomposed in the living body, the biological physiologically active substance is released at a more constant rate simultaneously with the decomposition of the polylactic acid complex. By being easily treated, the inflammatory reaction can be further suppressed.
[0037] また、前記生物学的生理活性物質の少なくとも一部が、前記交互積層法により形 成した前記マイクロオーダー薄膜の間に含有されていることが好ましい。更に、前記 生物学的生理活性物質の少なくとも一部が前記ポリ乳酸複合体と化学結合している ことが更に好ましい。本発明の生体内留置物が生体内に留置された後、その生体内 で分解していく過程で、ポリ乳酸複合体の分解と同時に生物学的生理活性物質が、 より一定の速度で放出され易いからである。 [0037] Further, at least a part of the biologically physiologically active substance is shaped by the alternating lamination method. It is preferably contained between the formed micro-order thin films. Furthermore, it is more preferable that at least a part of the biologically physiologically active substance is chemically bonded to the polylactic acid complex. In the process in which the in-vivo indwelling material of the present invention is in-vivo and then decomposed in the living body, the biological physiologically active substance is released at a more constant rate simultaneously with the decomposition of the polylactic acid complex. It is easy.
[0038] このような生物学的生理活性物質としては、本発明の生体内留置物を生体内の病 変部に留置した際に、所望の効果、例えば再狭窄を抑制する効果を奏するものであ れば特に限定されない。  [0038] Such a biological physiologically active substance exhibits a desired effect, for example, an effect of suppressing restenosis when the in-vivo indwelling material of the present invention is placed in a diseased part in a living body. There is no particular limitation as long as it exists.
例えば、抗癌剤、免疫抑制剤、抗生物質、抗リウマチ剤、抗血栓薬、 HMG-CoA 還元酵素阻害剤、 ACE阻害剤、カルシウム拮抗剤、抗高脂血症薬、インテグリン阻 害薬、抗アレルギー剤、抗酸化剤、 GPIIbllla拮抗薬、レチノイド、フラボノイド、カロチ ノイド、脂質改善薬、 DNA合成阻害剤、チロシンキナーゼ阻害剤、抗血小板薬、抗 炎症薬、生体由来材料、インターフェロン及び NO産生促進物質を好ましく例示でき る。前記生物学的生理活性物質は、これらからなる群力 選ばれる少なくとも 1つであ ることがより好まし!/、。  For example, anticancer agents, immunosuppressive agents, antibiotics, antirheumatic agents, antithrombotic agents, HMG-CoA reductase inhibitors, ACE inhibitors, calcium antagonists, antihyperlipidemic agents, integrin inhibitors, antiallergic agents , Antioxidants, GPIIbllla antagonists, retinoids, flavonoids, carotenoids, lipid improvers, DNA synthesis inhibitors, tyrosine kinase inhibitors, antiplatelet drugs, anti-inflammatory drugs, bio-derived materials, interferon and NO production promoters are preferred It can be illustrated. More preferably, the biologically and physiologically active substance is at least one selected from the group force consisting of these! /.
[0039] ここで、抗癌剤としては、例えばビンクリスチン、ビンブラスチン、ビンデシン、イリノテ カン、ピラルビシン、パクリタキセル、ドセタキセル、メトトレキサート等が好ましい。 また、免疫抑制剤としては、例えば、シロリムス、エベロリムス、バイオリムス、タクロリ ムス、ァザチォプリン、シクロスポリン、シクロフォスフアミド、ミコフエノール酸モフエチ ル、ダスペリムス、ミゾリビン等が好ましい。  [0039] Here, as the anticancer agent, for example, vincristine, vinblastine, vindesine, irinotecan, pirarubicin, paclitaxel, docetaxel, methotrexate and the like are preferable. Moreover, as an immunosuppressant, for example, sirolimus, everolimus, biolimus, tacrolimus, azathioprine, cyclosporine, cyclophosphamide, mycophenolic acid mofeethyl, dasperimus, mizoribine and the like are preferable.
また、抗生物質としては、例えば、マイトマイシン、アドリアマイシン、ドキソルビシン、 ァクチノマイシン、ダウノルビシン、イダルビシン、ピラルビシン、アクラルビシン、ェピ ルビシン、ぺプロマイシン、ジノスタチンスチマラマー等が好ましい。  Moreover, as the antibiotic, for example, mitomycin, adriamycin, doxorubicin, actinomycin, daunorubicin, idarubicin, pirarubicin, aclarubicin, epilubicin, pepromycin, dinostatin styramer and the like are preferable.
[0040] また、抗リウマチ剤としては、例えば、メトトレキサート、チオリンゴ酸ナトリウム、ぺニ シラミン、口ベンザリット等が好ましい。 [0040] As the anti-rheumatic agent, for example, methotrexate, sodium thiomalate, penicillamine, oral benzalit and the like are preferable.
また、抗血栓薬としては、例えば、へパリン、アスピリン、抗トロンビン製剤、チクロピ ジン、ヒルジン等が好ましい。  As the antithrombotic drug, for example, heparin, aspirin, antithrombin preparation, ticlopidine, hirudin and the like are preferable.
また、 HMG— CoA還元酵素阻害剤としては、例えば、セリバスタチン、セリバスタ チンナトリウム、アトルバスタチン、ニスパスタチン、イタパスタチン、フルパスタチン、 フルパスタチンナトリウム、シンパスタチン、口パスタチン、プラバスタチン等が好まし い。 HMG-CoA reductase inhibitors include, for example, cerivastatin and cerivasta. Chin sodium, atorvastatin, nispastatin, itapastatin, flupastatin, flupastatin sodium, simpastatin, oral pastatin, pravastatin, etc. are preferred.
[0041] また、 ACE阻害剤としては、例えば、キナプリル、ぺリンドプリルエルプミン、トランド ラプリル、シラザプリル、テモカプリル、デラプリル、マレイン酸ェナラプリル、リシノプリ ル、カプトプリル等が好ましい。  [0041] Further, as the ACE inhibitor, for example, quinapril, perindopril elpmin, trandolapril, cilazapril, temocapril, delapril, enalapril maleate, lisinopril, captopril and the like are preferable.
また、カルシウム拮抗剤としては、例えば、ヒフエジピン、二ルバジピン、ジルチアゼ ム、ベ-ジピン、二ソルジピン等が好ましい。  In addition, as the calcium antagonist, for example, hifedipine, dirubadipine, diltiazem, vedipine, disoldipine and the like are preferable.
また、抗高脂血症剤としては、例えば、プロブコールが好ましい。  Moreover, as an antihyperlipidemic agent, for example, probucol is preferable.
また、抗アレルギー剤としては、例えば、トラ-ラストが好ましい。  As the antiallergic agent, for example, tralast is preferable.
[0042] また、抗酸化剤としては、例えば、カテキン類、アントシァニン、プロアントシァ-ジン[0042] Examples of the antioxidant include catechins, anthocyanins, and proanthocyanins.
、リコピン、 j8 -カロチン等が好ましい。カテキン類の中では、ェピガロカテキンガレー トが特に好ましい。 Lycopene, j8-carotene and the like are preferred. Of the catechins, epigallocatechin gallate is particularly preferred.
また、レチノイドとしては、例えば、オールトランスレチノイン酸が好ましい。 また、チロシンキナーゼ阻害剤としては、例えば、ゲニスティン、チノレフォスチン、ァ 一ブスタチン等が好まし 、。  Further, as the retinoid, for example, all-trans retinoic acid is preferable. In addition, as the tyrosine kinase inhibitor, for example, genistein, chinorephostin, albumin and the like are preferable.
また、抗炎症剤としては、例えば、デキサメタゾン、プレドニゾロン等のステロイドが 好ましい。  As the anti-inflammatory agent, for example, steroids such as dexamethasone and prednisolone are preferable.
[0043] 更に、生体由来材料としては、例えば、 EGF (epidermal growth factor)、VE [0043] Furthermore, examples of biological materials include EGF (epidermal growth factor), VE
jr (vascular endothelial growth factor)、 ir LjF(hepatocyte growth fac tor)、 PDGF (platelet derived growth factor)、 BFGF (basic nbrolast gro wth factor)等が好ましい。  Preferred are jr (vascular endothelial growth factor), ir LjF (hepatocyte growth factor), PDGF (platelet derived growth factor), BFGF (basic nbrolast growth factor) and the like.
[0044] このように前記生分解性物質は前記ポリ乳酸複合体を主成分とし、前記生物学的 生理活性物質を含有することが好ましいが、これら以外に、生体に安全な生分解す る成分 (以下、「残部成分」ともいう。)を含有してもよい。  [0044] As described above, the biodegradable substance preferably contains the polylactic acid complex as a main component and contains the biological and physiologically active substance, but in addition to these, a biodegradable ingredient that is safe for the living body. (Hereinafter also referred to as “remainder component”).
このような残部成分としては、例えば、前記ポリ乳酸複合体のようなステレオコンプレ ックス構造を有さないポリ乳酸 (D体ポリ乳酸の単体、 L体ポリ乳酸の単体、 D体と L体 との(共)重合体等)、ポリダリコール酸、ポリヒドロキシ酪酸、ポリリンゴ酸、ポリ α— アミノ酸、コラーゲン、ラミニン、へパラン硫酸、フイブロネクチン、ビトロネクチン、コン ドロイチン硫酸、ヒアルロン酸、ポリ力プロラタトン及びこれらの共重合体力もなる群か ら選ばれる少なくとも 1つである混合物やィ匕合物 (共重合体等)が挙げられる。これら の中でもポリ乳酸及び Z又はポリ乳酸とポリダリコール酸との共重合体を好ましく用い ることがでさる。 Examples of such remaining components include polylactic acid having no stereocomplex structure such as the above-mentioned polylactic acid complex (a simple substance of D-form polylactic acid, a simple substance of L-form polylactic acid, and a combination of D-form and L-form. (Co) polymers, etc.), polydaricholic acid, polyhydroxybutyric acid, polymalic acid, poly α- Mixtures and compounds (co-copolymers) that are at least one selected from the group consisting of amino acids, collagen, laminin, heparan sulfate, fibronectin, vitronectin, chondroitin sulfate, hyaluronic acid, polyprolacton and their copolymer power. Polymer, etc.). Among these, polylactic acid and a copolymer of Z or polylactic acid and polydaricolic acid can be preferably used.
[0045] このような生分解性物質を調整する方法は特に限定されな!ヽ。  [0045] The method for preparing such a biodegradable substance is not particularly limited!
例えば、この生分解性物質が粉体の生物学的生理活性物質を含有する場合であ れば、前記ポリ乳酸複合体と、この粉体の生物学的生理活性物質と、前記残部成分 とを、公知の方法、例えばミキサーを用いた混合方法や、各成分を溶融して混練する 方法や、各成分をペースト状にして混練する方法等を適用して混合して調製すること ができる。  For example, if the biodegradable substance contains a powdered biological physiologically active substance, the polylactic acid complex, the biologically biologically active substance of the powder, and the remaining component are mixed. The mixture can be prepared by applying a known method, for example, a mixing method using a mixer, a method of melting and kneading each component, a method of kneading each component in a paste, and the like.
また、例えば、この生分解性物質が生物学的生理活性物質を含有し、この前記生 物学的生理活性物質の少なくとも一部が前記ポリ乳酸複合体と化学結合している場 合であれば、例えば、予め末端に水酸基やカルボキシル基を持つ D体及び L体ポリ 乳酸カゝら前記ステレオコンプレックス構造のポリ乳酸複合体を作成し、この末端の官 能基をマイクロイニシエータ一として前記生物学的生理活性物質をエステルイ匕やアミ ド化する方法が挙げられる。他にも、前記生物学的生理活性物質の特定の官能基を 開始点としてラクチドを成長させ、前記ステレオコンプレックス構造を有するポリ乳酸 複合体を形成する方法を適用して調製することができる。  For example, if the biodegradable substance contains a biological physiologically active substance and at least a part of the biologically physiologically active substance is chemically bonded to the polylactic acid complex, For example, a polylactic acid complex having the stereocomplex structure such as a D-form and an L-form polylactic acid having a hydroxyl group or a carboxyl group at the terminal in advance is prepared, and the biological group is used with the functional group at the end as a microinitiator. For example, a method of converting a physiologically active substance into an ester or amide. In addition, it can be prepared by growing a lactide starting from a specific functional group of the biological physiologically active substance to form a polylactic acid complex having the stereocomplex structure.
[0046] また、例えば、前記生物学的生理活性物質の少なくとも一部が、前記交互積層法 により形成した前記マイクロオーダー薄膜の間に含有されている場合であれば、例え ば、 D体ポリ乳酸をァセトニトリルに溶解させた溶液と、 L体ポリ乳酸をァセトニトリルに 溶解させた溶液と、前記生物学的生理活性物質を溶解させた溶液とを準備し、 PFA (四ふつ化工チレン ·パーフルォロアルコキビ-ルエーテル共重合榭脂)等の基板を 各溶液に順に浸潰し、乾燥を繰り返す方法で調製することができる。 [0046] Also, for example, if at least a part of the biologically physiologically active substance is contained between the micro-order thin films formed by the alternating lamination method, for example, D-form polylactic acid A solution in which L is dissolved in acetonitrile, a solution in which L-form polylactic acid is dissolved in acetonitrile, and a solution in which the biological physiologically active substance is dissolved are prepared, and PFA (tetrafluoroethylene / perfluorocarbon) is prepared. It can be prepared by a method in which a substrate such as an alcohol ether copolymer (resin) is immersed in each solution in turn and dried.
[0047] また、例えば、前記生物学的生理活性物質の少なくとも一部が、前記交互積層法 により形成した前記マイクロオーダー薄膜の間に含有されており、更に、この生物学 的生理活性物質の少なくとも一部力 このマイクロオーダー薄膜の前記ポリ乳酸複合 体と化学結合している場合であれば、例えば、 D体ポリ乳酸と前記生物学的生理活 性物質とをエステル結合やアミド結合でィ匕学結合させたものをァセトニトリルに溶解さ せた溶液と、 L体ポリ乳酸と前記生物学的生理活性物質とをエステル結合やアミド結 合で化学結合させたものをァセトニトリルに溶解させた溶液とを準備し、 PFA (四ふつ 化工チレン.パーフルォロアルコキビ-ルエーテル共重合榭脂)等の基板を各溶液 に交互に浸漬し乾燥させる操作を繰り返す方法で調製することができる。 [0047] In addition, for example, at least a part of the biological physiologically active substance is contained between the micro-order thin films formed by the alternating lamination method, and at least the biological physiologically active substance is included. Partial strength The polylactic acid composite of this micro-order thin film For example, a solution in which D-form polylactic acid and the biological physiologically active substance are chemically bonded with an ester bond or an amide bond dissolved in acetonitrile. And a solution prepared by dissolving L-form polylactic acid and the above biological physiologically active substance chemically bonded with ester bond or amide bond in acetonitrile, and preparing PFA (tetrafluoroethylene perfluorocarbon). It can be prepared by a method of repeatedly dipping and drying a substrate such as a alkoxyvinyl ether copolymer resin) in each solution alternately.
[0048] 本発明の生体内留置物はこのような生分解性物質からなる本体部を有する。 [0048] The in-vivo indwelling material of the present invention has a main body portion made of such a biodegradable substance.
この本体部は、後述する本発明の生体内留置物における主要部である。 例えば、本発明の生体内留置物が、前記生分解性物質力 なるステント本体の表 面に薬剤等を塗布したステントである場合、ここで 、ぅステント本体が本発明で 、う本 体部に相当する。  This main body is a main part in the in-vivo indwelling material of the present invention described later. For example, when the in-vivo indwelling body of the present invention is a stent in which a drug or the like is applied to the surface of the stent body having the biodegradable material force, the hemorrhoid stent body is the body of the present invention. Equivalent to.
この本体部の形状は、チューブ状、管状、網状、繊維状、不織布状、織布状又はフ イラメント状であることが好ましい。理由は、血管等の生体内の管腔に容易に留置す ることができるためである。  The shape of the main body is preferably a tube shape, a tubular shape, a net shape, a fiber shape, a nonwoven fabric shape, a woven fabric shape, or a filament shape. The reason is that it can be easily placed in a lumen in a living body such as a blood vessel.
[0049] また、この本体部の製造方法は特に限定されず、例えば公知の方法によって製造 することができる。 [0049] The method for manufacturing the main body is not particularly limited, and can be manufactured by, for example, a known method.
例えば、この本体部力^テントの本体である場合であれば、前記生分解性物質を繊 維状とした後、円筒状に編み上げる方法や、前記生分解性物質から管状体を成形し 、これに細孔を設ける方法が挙げられる。  For example, in the case of the main body force of the tent, the biodegradable substance is made into a fiber and then knitted into a cylindrical shape, or a tubular body is formed from the biodegradable substance. And a method of providing pores.
[0050] 本発明の生体内留置物はこのような生分解性物質からなる本体部を有し、更に、そ の本体部の表面に、前記生物学的生理活性物質を含有する薬剤放出層を有するこ とが好ましい。 [0050] The in-vivo indwelling material of the present invention has a main body portion made of such a biodegradable substance, and further has a drug release layer containing the biological physiologically active substance on the surface of the main body portion. It is preferable to have it.
理由は、本発明の生体内留置物が生体内に留置された後、その生体内でこの薬 剤放出層が分解していく過程で、生物学的生理活性物質が放出されるので、再狭窄 や生分解に伴う炎症反応をこの生物学的生理活性物質で抑制することができるから である。  The reason for this is that after the in-vivo indwelling material of the present invention is placed in the living body, the biological physiologically active substance is released in the process of decomposing the drug release layer in the living body. This is because an inflammatory reaction associated with biodegradation can be suppressed by this biologically physiologically active substance.
ここで、生物学的生理活性物質は、前記生分解性物質が含有してもよいものと同様 の種類、性状等のものを用いることができる。 [0051] また、この薬剤放出層は、更に生分解性ポリマーを含有することが好ましい。理由 は、本発明の生体内留置物が生体内に留置された後、その生体内でこの薬剤放出 層が分解していく過程で、前記生物学的生理活性物質が放出される速度を適度に 調整することが容易になるからである。 Here, the biological and physiologically active substance can be of the same type and properties as those which the biodegradable substance may contain. [0051] The drug release layer preferably further contains a biodegradable polymer. The reason for this is that after the in-vivo indwelling material of the present invention is placed in the living body, the rate at which the biological physiologically active substance is released is moderately adjusted in the process of decomposition of the drug release layer in the living body. This is because it becomes easy to adjust.
ここで、生分解性ポリマーは、前記ポリ乳酸複合体であってもよぐその他のポリ乳 酸であってもよぐまた、前記生分解性物質が含有してもよい前記残部成分であって ちょい。  Here, the biodegradable polymer may be the polylactic acid complex or other polylactic acid, and may be the remaining component that the biodegradable substance may contain. A little.
つまり、この生分解性ポリマーとしては、ポリ乳酸 (前記ポリ乳酸複合体を含み、それ 以外のポリ乳酸 (D体ポリ乳酸の単体、 L体ポリ乳酸の単体、 D体と L体との(共)重合 体等)でもよい)、ポリダリコール酸、ポリヒドロキシ酪酸、ポリリンゴ酸、ポリ— a—ァミノ 酸、コラーゲン、ラミニン、へパラン硫酸、フイブロネクチン、ビトロネクチン、コンドロイ チン硫酸、ヒアルロン酸、ポリ力プロラタトン及びこれらの共重合体を好ましく例示でき る。これら力もなる群力も選ばれる少なくとも 1つである生分解性ポリマーであることが 好ましい。更に、この生分解性ポリマー力 ポリ乳酸及び Z又はポリ乳酸とポリグリコ ール酸との共重合体であることが更に好ましい。理由は、所望の強度や分解速度を 設定することができるカゝらである。  In other words, this biodegradable polymer includes polylactic acid (including the above-mentioned polylactic acid complex, and other polylactic acid (a simple substance of D-form polylactic acid, a simple substance of L-form polylactic acid, a combination of D-form and L-form (co- ) Polymer)), polydaricholic acid, polyhydroxybutyric acid, polymalic acid, poly-a-amino acid, collagen, laminin, heparan sulfate, fibronectin, vitronectin, chondroitin sulfate, hyaluronic acid, polystrength prolatathone and these Preferred examples of the copolymer are as follows. It is preferable that the biodegradable polymer is at least one of the group forces selected as these forces. Further, the biodegradable polymer strength is preferably polylactic acid and a copolymer of Z or polylactic acid and polyglycolic acid. The reason is that the desired strength and decomposition rate can be set.
[0052] また、前記薬剤放出層は、本発明の生体内留置物の性能を損なわない範囲で、前 記生分解性ポリマー及び前記生物学的生理活性物質以外の残部として、その他成 分を含有してもよい(以下、「その他成分」ともいう。 ) oこのようなその他成分としては、 例えば、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネ ート 'アジペート、ポリ乳酸ートリメチレンカーボネート共重合体、ポリグリコール酸ート リメチレンカーボネート共重合体等が挙げられる。  [0052] Further, the drug release layer contains other components as the remainder other than the biodegradable polymer and the biological physiologically active substance as long as the performance of the in-vivo in-vivo of the present invention is not impaired. (Hereinafter also referred to as “other components”.) O Examples of such other components include polyethylene succinate, polybutylene succinate, polybutylene succinate 'adipate, polylactic acid-trimethylene carbonate Examples thereof include a copolymer and a polyglycolic acid trimethylene carbonate copolymer.
[0053] このような薬剤放出層において前記生物学的生理活性物質の含有率は特に限定 されず、病変部の状態や用いる前記生物学的生理活性物質の種類等を考慮して調 整することができるが、 1〜99質量%であることが好ましぐ 30〜70質量%であること が更に好ましい。  [0053] In such a drug release layer, the content of the biologically physiologically active substance is not particularly limited, and may be adjusted in consideration of the state of the lesion, the type of the biologically physiologically active substance used, and the like. However, it is preferably 1 to 99% by mass, more preferably 30 to 70% by mass.
また、前記薬剤放出層が、更に前記生分解性ポリマーを含有する場合であれば、 前記生分解性ポリマーと前記生物学的生理活性物質との含有率の比は、 99 : 1〜1: 99であることが好ましぐ 70: 30-30: 70であることが更に好まし!/、。 Further, when the drug release layer further contains the biodegradable polymer, the ratio of the content ratio of the biodegradable polymer and the biological physiologically active substance is 99: 1 to 1: It is preferable that it is 99. 70: 30-30: It is more preferable that it is 70! /.
また、前記薬剤放出層における前記その他成分の含有率は 40質量%以下である ことが好ましぐ 30質量%以下であることが更に好ましい。また、 0質量%、つまり含有 していなくてもよい。  The content of the other components in the drug release layer is preferably 40% by mass or less, more preferably 30% by mass or less. Further, 0% by mass, that is, it may not be contained.
[0054] また、前記薬剤放出層が 2以上の層からなり、それらの層が前記生物学的生理活 性物質を含む層及び前記生分解性ポリマーを含む層を含むことが好ましい。つまり、 前記薬剤放出層は、前記生物学的生理活性物質を含む層及び前記生分解性ポリマ 一を含む層の 2つの層及び他の層力 なることが好ましい。  [0054] Preferably, the drug release layer comprises two or more layers, and these layers include a layer containing the biological and physiologically active substance and a layer containing the biodegradable polymer. That is, it is preferable that the drug release layer has two layers of the layer containing the biological physiologically active substance and the layer containing the biodegradable polymer and other layer forces.
更に、前記薬剤放出層は、前記生物学的生理活性物質を含む層及び前記生分解 性ポリマーを含む層の 2つの層力もなることが好ましい。  Furthermore, it is preferable that the drug release layer also has two layer forces: a layer containing the biological physiologically active substance and a layer containing the biodegradable polymer.
更に、前記薬剤放出層において、前記生物学的生理活性物質を含む層が本体部 側に存在し、その上面に前記生分解性ポリマーを含む層が存在することが好ましい。 前記薬剤放出層が 2以上の層からなる場合、本発明の生体内留置物が生体内に 留置された後、その生体内でこの薬剤放出層が分解していく過程で、生物学的生理 活性物質が一定速度で放出されやす!/ヽ。  Furthermore, in the drug release layer, it is preferable that a layer containing the biologically physiologically active substance is present on the main body side, and a layer containing the biodegradable polymer is present on the upper surface thereof. In the case where the drug release layer is composed of two or more layers, after the in-vivo indwelling material of the present invention is placed in the living body, in the process in which the drug release layer is decomposed in the living body, biological physiological activity Substances are easily released at a constant rate! / ヽ.
[0055] ここで前記生物学的生理活性物質を含む層は、前記生物学的生理活性物質と、 前記生分解性ポリマー及び Z又は前記その他成分とからなる層である。ここで前記 生物学的生理活性物質と、前記生分解性ポリマー及び Z又は前記その他成分との 質量比は 10: 90〜90: 10であることが好まし!/、。 Here, the layer containing the biological physiologically active substance is a layer comprising the biological physiologically active substance, the biodegradable polymer and Z or the other component. Here, the mass ratio of the biologically physiologically active substance to the biodegradable polymer and Z or the other component is preferably 10:90 to 90: 10! /.
また、前記生分解性ポリマーを含む層は、前記生分解性ポリマー及び前記その他 成分力もなる層である。ここで前記その他成分の含有率は 30質量%以下であること が好ましぐ 20質量%以下であることが更に好ましい。  The layer containing the biodegradable polymer is a layer that also has the biodegradable polymer and the other component forces. Here, the content of the other components is preferably 30% by mass or less, more preferably 20% by mass or less.
[0056] 前記薬剤放出層が、前記生物学的生理活性物質を含む層及び前記生分解性ポリ マーを含む層以外の層を有する場合、それらの層は前記その他成分からなる層であ つてもよい。 [0056] When the drug release layer has a layer other than the layer containing the biological physiologically active substance and the layer containing the biodegradable polymer, these layers may be layers composed of the other components. Good.
なお、これらの層の積層の順は特に限定されない。  Note that the order of stacking these layers is not particularly limited.
また、これらの層は、各々複数存在してもよい。  A plurality of these layers may exist.
[0057] また、このような薬剤放出層の厚さは特に限定されず、前記本体部の表面に保持さ せる前記生物学的生理活性物質の量、種類や生体内留置物の種類等、諸条件を考 慮して適宜決めることができる。例えば、本発明の生体内留置物がステント、人工血 管、ステントグラフトのような、生体外から生体内の病変部へデリバリーする操作が特 に必要な生体内留置物である場合であれば、その到達性 (デリバリー性)が良好であ り、かつ、前記生物学的生理活性物質を所望の量含有させることができる程度の厚さ であればよい。この厚さは 1〜100 /ζ πιであることが好ましぐ 1〜50 /ζ πιであることが より好ましぐ 1〜20 /ζ πιであることが更に好ましい。 [0057] Further, the thickness of the drug release layer is not particularly limited, and is held on the surface of the main body. The amount can be determined as appropriate in consideration of various conditions such as the amount and type of the biologically physiologically active substance to be added and the type of in-vivo indwelling material. For example, if the in-vivo indwelling material of the present invention is an in-vivo indwelling material that particularly requires an operation for delivering from outside the living body to a lesion site in the living body, such as a stent, an artificial blood vessel, or a stent graft. The thickness may be any as long as the reachability (delivery property) is good and the biological and physiologically active substance can be contained in a desired amount. The thickness is preferably 1 to 100 / ζ πι, more preferably 1 to 50 / ζ πι, more preferably 1 to 20 / ζ πι.
[0058] また、前記薬剤放出層が 2以上の層からなる場合は、それら全ての層の合計の厚さ 力 のような範囲であることが好ましい。そして、前記生物学的生理活性物質を含む 層の厚さは 1〜: LOO mであることが好ましぐ 1〜15 /ζ πιであることがより好ましぐ 3 〜7 mであることが更に好ましい。また、前記生分解性ポリマーを含む層の厚さは 1 〜75 mであることが好ましぐ 1〜25 /ζ πιであることがより好ましぐ 1〜: LO /z mであ ることが更に好ましい。 [0058] Further, when the drug release layer is composed of two or more layers, it is preferable to have a range such as the total thickness force of all the layers. The thickness of the layer containing the biological physiologically active substance is 1 to: LOO m is preferably 1 to 15 / ζ πι, and more preferably 3 to 7 m. Further preferred. Also, the thickness of the layer containing the biodegradable polymer is preferably 1 to 75 m, more preferably 1 to 25 / ζ πι, and 1 to: LO / zm. Further preferred.
[0059] このような薬剤放出層を前記本体部の表面に形成する方法は特に限定されず、例 えば公知の方法を適用することができる。  [0059] The method for forming such a drug release layer on the surface of the main body is not particularly limited, and for example, a known method can be applied.
例えば、上記のような比で前記生物学的生理活性物質と前記生分解性ポリマーと を、アセトン、エタノール、クロ口ホルム、テトラヒドロフランなどの溶媒に、溶液濃度が 0. 001〜20質量%、好ましくは 0. 01〜10質量%となるように溶解させ溶液を作る。 次に、この溶液をスプレー、ディスペンサー等を用いた従来の方法により前記本体部 の表面に塗布するか、又はこの溶液中に前記本体部を浸漬し、その後溶媒を揮発さ せる。  For example, the biological physiologically active substance and the biodegradable polymer are mixed in a solvent such as acetone, ethanol, chloroform, tetrahydrofuran, or the like at a ratio as described above, and the concentration of the solution is preferably 0.001 to 20% by mass. Is dissolved so as to be 0.01 to 10% by mass to make a solution. Next, this solution is applied to the surface of the main body by a conventional method using a spray, a dispenser or the like, or the main body is immersed in this solution, and then the solvent is volatilized.
この方法は、前記生分解性ポリマーと前記生物学的生理活性物質とを容易に溶解 させる溶媒 (例えばアセトン、エタノール、クロ口ホルム、テトラヒドロフラン)力 用いる 前記本体部の表面を容易に濡らすことが可能である場合に、好ましく適用することが できる。  This method uses a solvent (for example, acetone, ethanol, chloroform, tetrahydrofuran) that easily dissolves the biodegradable polymer and the biological physiologically active substance. The surface of the main body can be easily wetted. In this case, it can be preferably applied.
[0060] また、例えば、前記生物学的生理活性物質を融解させて前記本体部の表面に塗 布等してちょい。  [0060] For example, the biological physiologically active substance is melted and applied to the surface of the main body.
[0061] このような方法で前記薬剤放出層を前記本体部の表面に形成することができる。前 記その他成分を含有する場合であっても同様である。各層の厚さは溶液の濃度ゃス プレー等による塗布量により適宜調整することができる。 [0061] The drug release layer can be formed on the surface of the main body by such a method. in front The same applies to the case of containing other components. The thickness of each layer can be adjusted as appropriate depending on the amount of solution applied by spraying the solution concentration.
[0062] このように本発明の生体内留置物は、前記生分解性物質力もなる前記本体部を有 し、好ましくは前記本体部の表面に前記薬剤放出層を有する生体内留置物である。  [0062] As described above, the in-vivo indwelling material of the present invention is an in-vivo indwelling material having the main body part also having the biodegradable substance force, and preferably having the drug release layer on the surface of the main body part.
[0063] このような本発明の生体内留置物の種類は特に限定されない。一定期間生体内に 存在した後に消失してもよぐ強度や伸びが必要な生体内留置物であればよい。 例えば、ステント、カバードステント、コイル、マイクロコイル、人工血管、人口骨、シ 一ルド、ワイヤ編物、クリップ、栓である。 [0063] The type of the in-vivo indwelling material of the present invention is not particularly limited. Any in-vivo indwelling material that needs to be strong enough to be extinguished after it has existed in the living body for a certain period of time or elongation may be used. For example, stents, covered stents, coils, microcoils, artificial blood vessels, artificial bones, shields, wire braids, clips, and plugs.
また、例えば、中空器官及び Z又は管系 (尿管、胆管、尿道、子宮、食道、気管支) 内の内腔支持機能を有するものである。  Further, for example, it has a hollow organ and a function of supporting a lumen in the Z or duct system (ureter, bile duct, urethra, uterus, esophagus, bronchi).
また、例えば、中空空間接続、管系のための閉鎖システムとしての閉鎖部材である また、例えば、組織インプラント又は組織トランスプラントを一時的に固定するため の固定又は支持装置である。  Also, for example, a closure member as a closure system for a hollow space connection, tubing, etc. Also, for example, a fixation or support device for temporarily fixing a tissue implant or tissue transplant.
また、例えば、整形外科用インプラント(ボルト、釘、ワイヤ、プレート、関節等)であ る。  Also, for example, orthopedic implants (bolts, nails, wires, plates, joints, etc.).
また、例えば、ステントグラフト、血管吻合デバイス、血管止血デバイス、血管瘤治 療デバイス、保持体にステントを使用した体内埋め込み医療器などである。  Examples thereof include a stent graft, a vascular anastomosis device, a vascular hemostasis device, a vascular aneurysm treatment device, and an implantable medical device using a stent as a holding body.
これらの大きさ等は適用箇所に応じて適宣選択すれば良い。  These sizes and the like may be appropriately selected according to the application location.
[0064] このような中でも、生体内に生じた狭窄部や閉塞部等を拡張するために当該部位 に挿入し、拡張した上で、その状態を保持するために当該部位に留置するステント等 の生体内留置物 (ステント、カテーテル、人工血管、ステントグラフト等)であることが 好ましい。更に、このような中でもステントであることが好ましい。理由は、病変部への デリバリーや留置が容易に行えるためである。 [0064] Among these, a stent or the like that is inserted into the site in order to expand a stenosis or occlusion in the living body, expands, and is placed in the site to maintain the state. In vivo indwelling materials (stents, catheters, artificial blood vessels, stent grafts, etc.) are preferable. Furthermore, among these, a stent is preferable. The reason is that it can be easily delivered and placed in the affected area.
[0065] 更に、このステントは、バルーン拡張タイプ、自己拡張タイプのいずれであってもよく 、その大きさは適用箇所に応じて適宣選択すれば良い。例えば、心臓の冠状動脈に 用いる場合は、拡張前における外径は 1. 0〜3. Omm,長さは 5〜50mmが好まし い。また、ステントの肉厚は、病変部に留置するために必要なラジアルフォースを有し 、血流を阻害しない程度であれば特に限定されないが、ステント本体の肉厚として 1 〜1000 μ mの範囲力 S好ましく、 10〜500 μ mの範囲力 Sより好ましく、 40〜200 μ m の範囲が更に好ましい。 [0065] Further, the stent may be either a balloon expansion type or a self-expansion type, and the size may be appropriately selected according to the application site. For example, when used in the coronary artery of the heart, the outer diameter before dilation is preferably 1.0 to 3. Omm and the length is 5 to 50 mm. In addition, the thickness of the stent has the radial force necessary to place it in the affected area. The thickness of the stent body is preferably 1 to 1000 μm in range force S, more preferably 10 to 500 μm in range force S, and 40 to 200 μm in thickness. A range is more preferred.
[0066] また、そのステントの形状は、例えば、図 1に示すものが挙げられる。  [0066] Further, examples of the shape of the stent include those shown in FIG.
図 1において、ステント本体 1は、両末端部が開口し、前記両末端部の間を長手方 向に延在する円筒体である。円筒体の側面は、その外側面と内側面とを連通する多 数の切欠部を有し、この切欠部が変形することによって、円筒体の径方向に拡縮可 能な構造になっており、目的部位に留置され、その形状を維持する。  In FIG. 1, a stent body 1 is a cylindrical body that is open at both ends and extends between the ends in the longitudinal direction. The side surface of the cylindrical body has a large number of notches communicating with the outer side surface and the inner side surface, and this notch portion is deformed to have a structure that can expand and contract in the radial direction of the cylindrical body. It is placed at the target site and maintains its shape.
図 1に示す態様において、ステント本体 1は、線状部材 2からなり、内部に切り欠き 部を有する略菱形の要素 11を基本単位とする。複数の略菱形の要素 11が、略菱形 の形状がその短軸方向に連続して配置され結合することで環状ユニット 12をなして いる。環状ユニット 12は、隣接する環状ユニットと線状の連結部材 13を介して接続さ れている。これにより複数の環状ユニット 12がー部結合した状態でその軸方向に連 続して配置される。ステント本体 (ステント) 1は、このような構成により、両末端部が開 口し、前記両末端部の間を長手方向に延在する円筒体をなしている。ステント本体( ステント) 1は、略菱形の切り欠き部を有しており、この切欠部が変形することによって 、円筒体の径方向に拡縮可能な構造になっている。  In the embodiment shown in FIG. 1, the stent body 1 is composed of a linear member 2 and has a substantially rhombic element 11 having a notch inside as a basic unit. A plurality of substantially rhombic elements 11 are arranged in a continuous manner in the minor axis direction of the approximately rhombus shape to form an annular unit 12. The annular unit 12 is connected to an adjacent annular unit via a linear coupling member 13. As a result, the plurality of annular units 12 are continuously arranged in the axial direction in a state where the portions are joined. With such a configuration, the stent body (stent) 1 has a cylindrical body having both ends opened and extending between the ends in the longitudinal direction. The stent body (stent) 1 has a substantially diamond-shaped notch, and has a structure that can be expanded and contracted in the radial direction of the cylindrical body by deformation of the notch.
[0067] ステント本体 1が線状部材 2で構成される場合、ステント本体 1を多数の切欠き部を 有するように構成する線状部材 2の幅方向の長さは、好ましくは 0. 01-0. 5mmで あり、より好ましくは 0. 05〜0. 2mmである。  [0067] When the stent main body 1 is composed of the linear member 2, the length in the width direction of the linear member 2 configured to have a large number of notches is preferably 0.01- It is 0.5 mm, more preferably 0.05 to 0.2 mm.
[0068] なお、上記に示したステント 1は一態様に過ぎず、線状部材 2からなり、両末端部が 開口し、前記両末端部の間を長手方向に延在する円筒体であって、その側面上に、 外側面と内側面とを連通する多数の切欠部を有し、この切欠部が変形することによつ て、円筒体の径方向に拡縮可能な構造を広く含む。  [0068] It should be noted that the stent 1 shown above is only one embodiment, and is a cylindrical body that is composed of a linear member 2, has both end portions open, and extends between the both end portions in the longitudinal direction. In addition, a large number of notches that communicate the outer side surface and the inner side surface are provided on the side surface, and a structure that can be expanded and contracted in the radial direction of the cylindrical body by deforming the notch portion is widely included.
[0069] また、本発明の生体内留置物がステントである場合、外径を 2. 1mmから 3. Omm へ拡張した後、 1mm圧縮したときのラジアルフォース力 ステント長 10mmあたり、 1 30〜500gfであるステントであることが好まし!/、。  [0069] Also, when the in-vivo indwelling body of the present invention is a stent, the radial force force when the outer diameter is expanded from 2.1 mm to 3. Omm and then compressed by 1 mm is 1 30 to 500 gf per 10 mm stent length. Preferable to be a stent!
このようなラジアルフォースを有するステントは、病変部に確実に留置することができ ると 、う効果を奏するので好ま 、。 Stents with such radial forces can be securely placed in the lesion. Then, I like it because it has a positive effect.
なお、通常、ラジアルフォースは、ステント長さに概ね正比例する。  Normally, the radial force is almost directly proportional to the stent length.
[0070] このように、本発明は、前記生分解性物質力 なる前記本体部を有し、好ましくは前 記本体部の表面に前記薬剤放出層を有する生体内留置物である。  [0070] Thus, the present invention is an in-vivo indwelling body having the main body part having the biodegradable material force, and preferably having the drug release layer on the surface of the main body part.
したがって、本発明の生体内留置物の断面を示すと、例えば次に示す図 2〜6のよ うになる。  Therefore, when the cross section of the in-vivo indwelling object of this invention is shown, it will become like FIG.
[0071] 本発明の生体内留置物が図 1に示したステントである場合を例に挙げ、その A— A 線断面図及び B— B線断面図について、いくつかの態様を説明する。  [0071] Taking the case where the in-vivo indwelling object of the present invention is the stent shown in Fig. 1, several modes will be described with reference to the AA line cross-sectional view and the BB line cross-sectional view.
図 2〜4は、図 1の A— A線に沿って切断した場合の拡大横断面図である。 図 2は、図 1に示したステント 1が、粉体の生物学的生理活性物質 30を分散した状 態で含むポリ乳酸複合体 20からなる生分解性物質力もなる生体内留置物である態 様の場合の断面図である。  2 to 4 are enlarged cross-sectional views taken along line AA in FIG. FIG. 2 shows a state in which the stent 1 shown in FIG. 1 is an in-vivo indwelling material having a biodegradable material force composed of a polylactic acid complex 20 containing a powdered biological physiologically active substance 30 in a dispersed state. It is sectional drawing in such a case.
また、図 3は、図 1に示したステント 1が、前記生分解性物質力もなるステント本体 10 を有し、この表面に、生物学的生理活性物質を含む層 32と生分解性ポリマーを含む 層 42とからなる薬剤放出層を有する生体内留置物である態様の場合の断面図であ る。  Further, FIG. 3 shows that the stent 1 shown in FIG. 1 has a stent body 10 that also has the biodegradable material force, and the surface thereof includes a layer 32 containing a biological bioactive substance and a biodegradable polymer. 4 is a cross-sectional view in the case of an in-vivo indwelling material having a drug release layer comprising a layer 42. FIG.
また、図 4は、図 1に示したステント 1が、前記生分解性物質力もなるステント本体 10 を有し、この表面に、粉体の生物学的生理活性物質 30が分散した生分解性ポリマー 40からなる薬剤放出層を有する生体内留置物である態様の場合の断面図である。  FIG. 4 shows a biodegradable polymer in which the stent 1 shown in FIG. 1 has a stent body 10 that also has the biodegradable substance force, and a powdered biological bioactive substance 30 is dispersed on this surface. FIG. 4 is a cross-sectional view in the case of an in-vivo indwelling body having a drug release layer comprising 40.
[0072] 次に、図 5、 6は、図 1の B— B線に沿って切断した場合の拡大横断面図である。 Next, FIGS. 5 and 6 are enlarged cross-sectional views taken along the line BB in FIG.
図 5は、図 3で示したものと同様の態様の場合を示すものである。  FIG. 5 shows a case similar to that shown in FIG.
また、図 6は、図 4で示したものと同様の態様の場合を示すものである。 実施例  FIG. 6 shows a case similar to that shown in FIG. Example
[0073] 以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるも のではない。  [0073] Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.
<実施例 1 >  <Example 1>
L—ポリ乳酸 (API社製、 100L0105)ペレット(以下、「PLLA」ともいう)と、発酵法 により合成した D—ポリ乳酸 (以下、「PLDA」ともいう)とを、予め 50°Cに調整したァセ トニトリル溶液中にそれぞれ別々に溶解させ、その後1^1^\:?1^八=50:50の割合 になるように、それらを混合させた。ここで、 PLLAと PLDAとの合計濃度が 20mg/m 1となるようにした。 L-polylactic acid (API, 100L0105) pellet (hereinafter also referred to as “PLLA”) and D-polylactic acid (hereinafter also referred to as “PLDA”) synthesized by fermentation are adjusted to 50 ° C. in advance. The case They were dissolved separately in the tonitrile solution and then mixed so that the ratio of 1 ^ 1 ^ \ :? 1 ^ 8 = 50: 50. Here, the total concentration of PLLA and PLDA was set to 20 mg / m 1.
次に、その溶液を PFAシャーレに入れ、厚さ 150 mのキャストフィルムを作製した 。その後、このフィルムを 80°Cの温浴中で一軸延伸させた。この時の延伸倍率は 4倍 とした。延伸により得られたフィルムの厚さは 100 mであった。そして、この延伸させ たフィルムを JIS K7113 (プラスチックの引張試験方法)に基づく引張試験に供し破 断強度、破断伸度を求めた。ここでフィルムは 1/5スケールの 2号形試験片に打ち抜 いたものを用いた。  Next, the solution was put into a PFA petri dish to prepare a cast film having a thickness of 150 m. Thereafter, the film was uniaxially stretched in a warm bath at 80 ° C. The draw ratio at this time was 4 times. The thickness of the film obtained by stretching was 100 m. The stretched film was subjected to a tensile test based on JIS K7113 (plastic tensile test method) to determine the breaking strength and breaking elongation. Here, the film was punched into 1/5 scale type 2 test piece.
結果を第 1表に示す。  The results are shown in Table 1.
[0074] <実施例 2、 3> <Examples 2 and 3>
実施例 2では、実施例 1において 50:50とした!^1^\:?]^^の比を45:55とし、そ の他は全て同様とした試験を行った。  In Example 2, the test was carried out in the same manner as in Example 1, except that the ratio of! ^ 1 ^ \ :?] ^^ was 45:55, and everything else was the same.
実施例 3では、実施例 1において 50:50とした!^1^\:?]^^の比を55:45とし、そ の他は全て同様とした試験を行った。  In Example 3, the test was carried out in the same manner as in Example 1, except that the ratio of! ^ 1 ^ \ :?] ^^ was 55:45, and everything else was the same.
結果を第 1表に示す。  The results are shown in Table 1.
[0075] [表 1] 第 1表 実施例引張試験値 [0075] [Table 1] Table 1 Example tensile test values
[0076] <比較例 1> <Comparative Example 1>
50質量%の ポリ乳酸と 50質量%の0 ポリ乳酸との共重合体 (API社製 100 D065)ペレット(以下、「DL— PLA」ともいう)を、予め 23°Cに調整したアセトン中に 溶解させた。ここで、アセトン中の共重合体濃度が 5%となるようにした。 次に、その溶液を PFAシャーレに入れ、厚さ 150 mのキャストフィルムを作製した 。その後、このフィルムを 80°Cの温浴中で一軸延伸させた。この時の延伸倍率は 4倍 とした。延伸により得られたフィルムの厚さは 100 mであった。そして、この延伸させ たフィルムを JIS K7113 (プラスチックの引張試験方法)に基づく引張試験に供し破 断強度、破断伸度を求めた。ここでフィルムは 1/5スケールの 2号形試験片に打ち抜 いたものを用いた。 Copolymer (100 D065, API 100 D065) pellets of 50% polylactic acid and 0% polylactic acid (hereinafter also referred to as “DL-PLA”) in acetone adjusted to 23 ° C in advance. Dissolved. Here, the copolymer concentration in acetone was set to 5%. Next, the solution was put into a PFA petri dish to prepare a cast film having a thickness of 150 m. Thereafter, the film was uniaxially stretched in a warm bath at 80 ° C. The draw ratio at this time was 4 times. The thickness of the film obtained by stretching was 100 m. The stretched film was subjected to a tensile test based on JIS K7113 (plastic tensile test method) to determine the breaking strength and breaking elongation. Here, the film was punched into 1/5 scale type 2 test piece.
結果を第 2表に示す。  The results are shown in Table 2.
[0077] <比較例 2〜7 > [0077] <Comparative Examples 2 to 7>
比較例 2〜7では、実施例 1にお!/、て 50: 50とした PLLA: PLDAの比を 70: 30 (比 較例 2)、 30 : 70 (比較例 3)、 60 :40 (比較例 4)、 40 : 60 (比較例 5)、 100 : 0 (比較 例 6)、 0 : 100 (比較例 7)とし、その他は全て同様とした試験を行った。  In Comparative Examples 2-7, the ratio of PLLA: PLDA in Example 1 to 50:50 was 70:30 (Comparative Example 2), 30:70 (Comparative Example 3), 60:40 ( Comparative Examples 4), 40:60 (Comparative Example 5), 100: 0 (Comparative Example 6), and 0: 100 (Comparative Example 7) were used.
結果を第 2表に示す。  The results are shown in Table 2.
[0078] [表 2] 第 2表 比較例引張試験値 [0078] [Table 2] Table 2 Tensile test values of comparative examples
[0079] <実施例 4> <Example 4>
実施例 1と同じ方法で作製し、延伸させたキャストフィルムを 50mm X 7mmの大きさ の長方形にカットし、これを直径約 2mm、長さ 50mmの円筒状に丸めた。そして、こ れを直径 2. 4mm、長さ 60mmのポリテトラフルォロエチレン製のシュリンクチューブ の中に挿入した。次に、そのキャストフィルムからなる円筒の中に、更に、直径 1. 5m m、長さ 70mmの PTFEチューブ(chukoh社製、 AWG- 17)を挿入した。  The cast film produced and stretched in the same manner as in Example 1 was cut into a rectangle having a size of 50 mm × 7 mm, and this was rolled into a cylindrical shape having a diameter of about 2 mm and a length of 50 mm. This was then inserted into a polytetrafluoroethylene shrink tube having a diameter of 2.4 mm and a length of 60 mm. Next, a PTFE tube (chukoh, AWG-17) having a diameter of 1.5 mm and a length of 70 mm was further inserted into the cast film cylinder.
このようにして作製した 3層構造のチューブ(内側力も PTFEチューブ、キャストフィ ルムカもなる円筒、シュリンクチューブ)を、予め 200°Cに昇温したオーブン内で 1時 間加熱して、直径 2. lmm、肉厚 100 mのパイプを得た(なお、このカロ熱により、パ イブにはァニール処理が施された)。 A three-layer tube made in this way (with an internal force of PTFE tube and cast fiber) Cylinders and shrink tubes, which are also Lumka, were heated in an oven preheated to 200 ° C for 1 hour to obtain a pipe with a diameter of 2. lmm and a wall thickness of 100 m. The pipe was annealed.
そして、このパイプをエキシマレーザー(住友重機械社製、 SPL400H)により、図 1 と同じ形状であって、外径 2. lmm、長さ 10mm、厚み(肉厚) 100 mであるステン トを加工した。  This pipe is then processed with an excimer laser (SPL400H, manufactured by Sumitomo Heavy Industries, Ltd.) to form a stent with the same shape as in Fig. 1, with an outer diameter of 2. lmm, a length of 10mm, and a thickness (wall thickness) of 100m. did.
[0080] 次に、抗癌剤であるラパマイシン(以下、「RM」ともいう)と、生分解性ポリマーであ るポリ乳酸ーポリグリコール酸 (組成比(質量比):85— 15)共重合体 (以下、「PLGA 」とも 、う)とを、質量比が 1: 1になるように溶解したテトラヒドロフラン(以下、「THF」と ¾ 、う)溶液 (合計濃度 1質量%)を用意し、上記のように加工したステントの表面にス プレー(マイクロスプレーガン 11、 NORDSON社製)により噴霧した。そして、溶媒 である THFを乾燥した後、約 600 μ gの RMと PLGAとの混合物が 10 μ mの厚さで 前記ステントの表面に塗布されて ヽることを走査型電子顕微鏡 (SEM)にて確認した そして、このステントを外径 3. Ommまでバルーンカテーテル (テルモネ土製、ァラシ) で拡張し、その後、このステントを lmm内側へ押し込んだ時の押し込み力(ラジアル フォース)を測定した。  [0080] Next, rapamycin (hereinafter also referred to as “RM”) as an anticancer agent and polylactic acid-polyglycolic acid (composition ratio (mass ratio): 85-15) copolymer as a biodegradable polymer ( Hereinafter, a tetrahydrofuran solution (hereinafter referred to as “THF”) and a solution in which the mass ratio is 1: 1 (hereinafter referred to as “PLGA”) is prepared. The surface of the stent thus processed was sprayed with a spray (Micro Spray Gun 11, manufactured by NORDSON). After drying the solvent THF, a scanning electron microscope (SEM) indicates that about 600 μg of a mixture of RM and PLGA is applied to the surface of the stent with a thickness of 10 μm. Then, the stent was expanded to a diameter of 3. Omm with a balloon catheter (manufactured by Thermonet Earthenware, ARASI), and then the pushing force (radial force) when the stent was pushed inward by lmm was measured.
この結果、ラジアルフォースは 198kgfであった。  As a result, the radial force was 198 kgf.
[0081] <実施例 5 > <Example 5>
実施例 4のステントを経皮的にブタ冠動脈内に 1ヶ月間留置し、病理評価を行なつ た。  The stent of Example 4 was percutaneously placed in the porcine coronary artery for 1 month for pathological evaluation.
図 7に示すように、 1ヶ月経過してもそれほど顕著な狭窄は認められず、次の式から 求める0 /oArea Stenosis (%AS)は 35. 5%であった。 As shown in Fig. 7, no conspicuous stenosis was observed even after 1 month, and 0 / oArea Stenosis (% AS) calculated from the following formula was 35.5%.
[0082] < %Area Stenosis (%AS)算出方法 > [0082] <% Area Stenosis (% AS) calculation method>
%AS= (新生内膜面積) Z (内弾性板面積) X 100 (%)  % AS = (Neointimal area) Z (Inner elastic plate area) X 100 (%)
[0083] <比較例 8 > [0083] <Comparative Example 8>
比較例 1と同じ方法により作製したキャストフィルムを用い、実施例 4と同じステントを 作製し、同じ測定を行った。 この結果、ラジアルフォースは 103kgfであった。 Using the cast film produced by the same method as Comparative Example 1, the same stent as Example 4 was produced and subjected to the same measurement. As a result, the radial force was 103 kgf.
[0084] <比較例 9 > <Comparative Example 9>
比較例 8のステントを経皮的にブタ冠動脈内に 1ヶ月間留置し、病理評価を行なつ た。  The stent of Comparative Example 8 was percutaneously placed in the porcine coronary artery for 1 month for pathological evaluation.
図 8に示すように、 1ヶ月経過すると弱いラジアルフォースに起因すると思われるネ ガティブリモデリングが認められ、0 /0 Area Stenosis (%AS)も 97. 3%であった。 As shown in FIG. 8, one month elapses when the value Gatineau yellowtail modeling seems to be due to a weak radial force is observed, 0/0 Area Stenosis (% AS) it was also 97.3%.
[0085] <比較例 10 > [0085] <Comparative Example 10>
比較例 4と同じ方法により作製したキャストフィルムを用い、実施例 4と同じステントを 作製し、同じ測定を行った。  Using the cast film produced by the same method as in Comparative Example 4, the same stent as in Example 4 was produced and subjected to the same measurement.
この結果、ラジアルフォースは 116kgfであった。  As a result, the radial force was 116 kgf.
[0086] <比較例 11 > [0086] <Comparative Example 11>
比較例 10のステントを経皮的にブタ冠動脈内に 1ヶ月間留置し、病理評価を行なつ た。  The stent of Comparative Example 10 was percutaneously placed in the porcine coronary artery for 1 month for pathological evaluation.
図 9に示すように、 1ヶ月経過すると弱いラジアルフォースに起因すると思われるネ ガティブリモデリングが認められ、0 /0 Area Stenosis (%AS)も 95. 1%であった。 As shown in FIG. 9, one month elapses when the value Gatineau yellowtail modeling seems to be due to a weak radial force is observed, 0/0 Area Stenosis (% AS) also 95. was 1%.

Claims

請求の範囲 The scope of the claims
[I] D体ポリ乳酸と L体ポリ乳酸と力 5: 55〜55 :45の質量比でステレオコンプレックス 構造の複合体を形成しているポリ乳酸複合体を主成分とする生分解性物質からなる 本体部を有する生体内留置物。  [I] D-form polylactic acid and L-form polylactic acid from a biodegradable substance composed mainly of a polylactic acid complex that forms a complex with a stereocomplex structure at a mass ratio of 5:55 to 55:45 The in-vivo indwelling which has a main-body part.
[2] 前記生分解性物質が、生物学的生理活性物質を含有する請求項 1に記載の生体 内留置物。  [2] The indwelling material according to claim 1, wherein the biodegradable substance contains a biological physiologically active substance.
[3] 前記生物学的生理活性物質の少なくとも一部が粉体であり、この粉体の生物学的 生理活性物質が前記生分解性物質中で分散している請求項 2に記載の生体内留置 物。  [3] The living body according to claim 2, wherein at least a part of the biological physiologically active substance is a powder, and the biological physiologically active substance of the powder is dispersed in the biodegradable substance. Detainment.
[4] 前記生物学的生理活性物質の少なくとも一部が前記ポリ乳酸複合体と化学結合し ている請求項 2又は 3に記載の生体内留置物。  [4] The in vivo indwelling product according to claim 2 or 3, wherein at least a part of the biological physiologically active substance is chemically bonded to the polylactic acid complex.
[5] 前記本体部の表面に、前記生物学的生理活性物質を含有する薬剤放出層を有す る請求項 1〜4のいずれかに記載の生体内留置物。 [5] The in-vivo indwelling product according to any one of [1] to [4], further comprising a drug release layer containing the biological physiologically active substance on the surface of the main body.
[6] 前記薬剤放出層が更に生分解性ポリマーを含有する請求項 5に記載の生体内留 置物。 6. The in vivo indwelling product according to claim 5, wherein the drug release layer further contains a biodegradable polymer.
[7] 前記薬剤放出層が 2以上の層からなり、それらの層が前記生物学的生理活性物質 を含む層及び前記生分解性ポリマーを含む層を含む請求項 6に記載の生体内留置 物。  7. The in-vivo indwelling product according to claim 6, wherein the drug release layer comprises two or more layers, and the layers include the layer containing the biologically bioactive substance and the layer containing the biodegradable polymer. .
[8] 前記ポリ乳酸複合体の重量平均分子量が 1, 000〜1, 000, 000である請求項 1 [8] The weight average molecular weight of the polylactic acid complex is 1,000 to 1,000,000.
〜7の 、ずれかに記載の生体内留置物。 The in-vivo indwelling object in any one of ~ 7.
[9] 前記ポリ乳酸複合体が、延伸されたポリ乳酸複合体である請求項 1〜8のいずれか に記載の生体内留置物。 [9] The in-vivo indwelling product according to any one of [1] to [8], wherein the polylactic acid complex is a stretched polylactic acid complex.
[10] 前記ポリ乳酸複合体が、示差走査熱量測定において 65〜75°Cの間に第 1の融解 ピークを有し、 200〜250°Cの間に第 2の融解ピークを有するポリ乳酸複合体である 請求項 1〜9のいずれかに記載の生体内留置物。 [10] The polylactic acid complex has a first melting peak between 65 and 75 ° C. and a second melting peak between 200 and 250 ° C. in differential scanning calorimetry. It is a body. The in-vivo indwelling object in any one of Claims 1-9.
[II] 前記ポリ乳酸複合体が、 JIS K7113に規定される破断強度が 70MPa以上であり 、破断伸度が 15%以上であり、ヤング率が lOOMPa以上であるポリ乳酸複合体であ る請求項 1〜10のいずれかに記載の生体内留置物。 [II] The polylactic acid composite is a polylactic acid composite having a breaking strength specified by JIS K7113 of 70 MPa or more, a breaking elongation of 15% or more, and a Young's modulus of lOOMPa or more. The in-vivo indwelling object in any one of 1-10.
[12] 前記ポリ乳酸複合体が、交互積層法により製造されたポリ乳酸複合体である請求 項 1〜: L 1のいずれかに記載の生体内留置物。 [12] The in-vivo indwelling product according to any one of [1] to [1], wherein the polylactic acid complex is a polylactic acid complex produced by an alternating lamination method.
[13] 前記交互積層法が、マイクロオーダー薄膜を形成して行う交互積層法である請求 項 12に記載の生体内留置物。 13. The in-vivo indwelling product according to claim 12, wherein the alternating lamination method is an alternating lamination method performed by forming a micro-order thin film.
[14] 前記マイクロオーダー薄膜の厚さが 1 πι〜500 /ζ mである請求項 13に記載の生 体内留置物。 14. The in-vivo indwelling object according to claim 13, wherein the thickness of the micro-order thin film is 1πι to 500 / ζ m.
[15] 前記マイクロオーダー薄膜の間に、前記生物学的生理活性物質を含有する請求 項 13又は 14に記載の生体内留置物。  15. The in-vivo indwelling product according to claim 13 or 14, wherein the biological physiologically active substance is contained between the micro-order thin films.
[16] 前記本体部の形状が、チューブ状、管状、網状、繊維状、不織布状、織布状又は フィラメント状である請求項 1〜15のいずれかに記載の生体内留置物。  [16] The in-vivo indwelling product according to any one of [1] to [15], wherein the shape of the main body portion is a tube shape, a tubular shape, a net shape, a fiber shape, a nonwoven fabric shape, a woven fabric shape, or a filament shape.
[17] 前記生物学的生理活性物質が、抗癌剤、免疫抑制剤、抗生物質、抗リウマチ剤、 抗血栓薬、 HMG— CoA還元酵素阻害剤、 ACE阻害剤、カルシウム拮抗剤、抗高 脂血症薬、インテグリン阻害薬、抗アレルギー剤、抗酸化剤、 GPIIbllla拮抗薬、レチ ノイド、フラボノイド、カロチノイド、脂質改善薬、 DNA合成阻害剤、チロシンキナーゼ 阻害剤、抗血小板薬、抗炎症薬、生体由来材料、インターフェロン及び NO産生促 進物質力もなる群力 選ばれる少なくとも 1つである請求項 2〜16のいずれかに記載 の生体内留置物。  [17] The biological physiologically active substance is an anticancer agent, immunosuppressant, antibiotic, antirheumatic agent, antithrombotic agent, HMG—CoA reductase inhibitor, ACE inhibitor, calcium antagonist, antihyperlipidemia Drugs, integrin inhibitors, antiallergic agents, antioxidants, GPIIbllla antagonists, retinoids, flavonoids, carotenoids, lipid improvers, DNA synthesis inhibitors, tyrosine kinase inhibitors, antiplatelet drugs, anti-inflammatory drugs, biological materials 17. The in-vivo indwelling product according to any one of claims 2 to 16, which is at least one selected from the group force that also has the ability to promote interferon and NO production.
[18] 前記生分解性ポリマー力 ポリ乳酸、ポリダリコール酸、ポリヒドロキシ酪酸、ポリリン ゴ酸、ポリ α アミノ酸、コラーゲン、ラミニン、へパラン硫酸、フイブロネクチン、ビト ロネクチン、コンドロイチン硫酸、ヒアルロン酸、ポリ力プロラタトン及びこれらの共重合 体力もなる群力も選ばれる少なくとも 1つである請求項 6〜17のいずれかに記載の生 体内留置物。  [18] The biodegradable polymer strength polylactic acid, polydaricholic acid, polyhydroxybutyric acid, polyphosphonic acid, poly α-amino acid, collagen, laminin, heparan sulfate, fibronectin, vitronectin, chondroitin sulfate, hyaluronic acid, poly strength prolatathone and 18. The in-vivo indwelling product according to any one of claims 6 to 17, wherein at least one of the group forces that can be used as the copolymer force is selected.
[19] 前記生分解性ポリマーが、ポリ乳酸とポリダリコール酸との共重合体である請求項 1 [19] The biodegradable polymer is a copolymer of polylactic acid and polydaricholic acid.
8に記載の生体内留置物。 In vivo indwelling material of 8.
[20] ステントである請求項 1〜19のいずれかに記載の生体内留置物。 [20] The in-vivo indwelling product according to any one of [1] to [19], which is a stent.
[21] 外径を 2. 1mmから 3. Ommへ拡張した後、 1mm圧縮したときのラジアルフォース がステント長 10mmあたり 130〜500gfである請求項 20に記載のステント。 21. The stent according to claim 20, wherein the radial force when the outer diameter is expanded from 2.1 mm to 3. Omm and then compressed by 1 mm is 130 to 500 gf per 10 mm of the stent length.
PCT/JP2007/055518 2006-03-30 2007-03-19 Substance to be placed in the living body WO2007119423A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008510815A JP5102200B2 (en) 2006-03-30 2007-03-19 In vivo indwelling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006095211 2006-03-30
JP2006-095211 2006-03-30

Publications (1)

Publication Number Publication Date
WO2007119423A1 true WO2007119423A1 (en) 2007-10-25

Family

ID=38609213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055518 WO2007119423A1 (en) 2006-03-30 2007-03-19 Substance to be placed in the living body

Country Status (2)

Country Link
JP (1) JP5102200B2 (en)
WO (1) WO2007119423A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517969A (en) * 2008-03-20 2011-06-23 アボット カーディオヴァスキュラー システムズ インコーポレイテッド Implantable medical device coating with improved mechanical stability
JP2012176168A (en) * 2011-02-28 2012-09-13 Kyoto Medical Planning Ltd Stent device
CN101683537B (en) * 2008-09-25 2013-01-23 上海聚睿生物材料有限公司 Tissue engineering tendon compound support material as well as preparation method and application thereof
JP2017155151A (en) * 2016-03-02 2017-09-07 国立大学法人 奈良先端科学技術大学院大学 Joint structure and joining method
JP2022107629A (en) * 2017-09-08 2022-07-22 ゼウス カンパニー インコーポレイテッド Polymer tube with controlled orientation

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264913A (en) * 1987-04-21 1988-11-01 Bio Material Yunibaasu:Kk Polylactic acid fiber
JPH04501109A (en) * 1988-10-12 1992-02-27 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー polylactide composition
JP2000017164A (en) * 1998-06-30 2000-01-18 Shimadzu Corp Pellet for producing polylactic acid stereocomplex polymer and production of stereocomplex polymer molding product
WO2001067990A1 (en) * 2000-03-13 2001-09-20 Keiji Igaki Wire rods for vascular stents and vascular stents with the use of the same
WO2004043506A1 (en) * 2002-11-14 2004-05-27 Synecor, Llc. Intraluminal prostheses and carbon dioxide-assisted methods of impregnating same with pharmacological agents
JP2004351137A (en) * 2003-05-30 2004-12-16 Gunze Ltd Method of manufacturing bone treatment instrument and bone treatment instrument
JP2005520640A (en) * 2002-03-20 2005-07-14 アドヴァンスド カーディオヴァスキュラー システムズ, インコーポレイテッド Biodegradable hydrophobic polymers for stents
JP2005523119A (en) * 2002-04-24 2005-08-04 サン バイオメディカル, リミテッド Drug delivery intravascular stent and method for treating restenosis
US20050271617A1 (en) * 2002-06-25 2005-12-08 Hiroyuki Shirahama Biodegradable bio-absorbable material for clinical practice
US20060041102A1 (en) * 2004-08-23 2006-02-23 Advanced Cardiovascular Systems, Inc. Implantable devices comprising biologically absorbable polymers having constant rate of degradation and methods for fabricating the same
US20070043434A1 (en) * 2005-08-18 2007-02-22 David Meerkin Biodegradable endovascular stent using stereocomplexation of polymers

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264913A (en) * 1987-04-21 1988-11-01 Bio Material Yunibaasu:Kk Polylactic acid fiber
JPH04501109A (en) * 1988-10-12 1992-02-27 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー polylactide composition
JP2000017164A (en) * 1998-06-30 2000-01-18 Shimadzu Corp Pellet for producing polylactic acid stereocomplex polymer and production of stereocomplex polymer molding product
WO2001067990A1 (en) * 2000-03-13 2001-09-20 Keiji Igaki Wire rods for vascular stents and vascular stents with the use of the same
JP2005520640A (en) * 2002-03-20 2005-07-14 アドヴァンスド カーディオヴァスキュラー システムズ, インコーポレイテッド Biodegradable hydrophobic polymers for stents
JP2005523119A (en) * 2002-04-24 2005-08-04 サン バイオメディカル, リミテッド Drug delivery intravascular stent and method for treating restenosis
US20050271617A1 (en) * 2002-06-25 2005-12-08 Hiroyuki Shirahama Biodegradable bio-absorbable material for clinical practice
WO2004043506A1 (en) * 2002-11-14 2004-05-27 Synecor, Llc. Intraluminal prostheses and carbon dioxide-assisted methods of impregnating same with pharmacological agents
JP2004351137A (en) * 2003-05-30 2004-12-16 Gunze Ltd Method of manufacturing bone treatment instrument and bone treatment instrument
US20060041102A1 (en) * 2004-08-23 2006-02-23 Advanced Cardiovascular Systems, Inc. Implantable devices comprising biologically absorbable polymers having constant rate of degradation and methods for fabricating the same
US20070043434A1 (en) * 2005-08-18 2007-02-22 David Meerkin Biodegradable endovascular stent using stereocomplexation of polymers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TSUJI H. ET AL.: "Stereocomplex formation between enantiomeric poly(lactic acid). XI. Mechanical properties and morphology of solution-cast films", POLYMER, vol. 40, no. 24, November 1999 (1999-11-01), pages 6699 - 6708, XP004177305 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517969A (en) * 2008-03-20 2011-06-23 アボット カーディオヴァスキュラー システムズ インコーポレイテッド Implantable medical device coating with improved mechanical stability
CN101683537B (en) * 2008-09-25 2013-01-23 上海聚睿生物材料有限公司 Tissue engineering tendon compound support material as well as preparation method and application thereof
JP2012176168A (en) * 2011-02-28 2012-09-13 Kyoto Medical Planning Ltd Stent device
JP2017155151A (en) * 2016-03-02 2017-09-07 国立大学法人 奈良先端科学技術大学院大学 Joint structure and joining method
JP2022107629A (en) * 2017-09-08 2022-07-22 ゼウス カンパニー インコーポレイテッド Polymer tube with controlled orientation

Also Published As

Publication number Publication date
JP5102200B2 (en) 2012-12-19
JPWO2007119423A1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
US9211205B2 (en) Bioabsorbable medical device with coating
JP5932073B2 (en) Absorbable stent with coating to control stent degradation and maintain pH neutral
US9724864B2 (en) Bioabsorbable polymeric composition and medical device
ES2451653T3 (en) Implantable medical device with surface erosion polyester drug supply coating
US20130060327A1 (en) Biodegradable self-expanding prosthesis
JP5053668B2 (en) Stent
US20130018448A1 (en) Drug elution medical device
WO2007083797A1 (en) Stent
EP2086599A2 (en) Bioabsorbable medical device with coating
CN104870028A (en) Fully absorbable intraluminal devices and methods of manufacturing the same
JP2004097810A (en) Medical appliance embedded into living body
JP5102200B2 (en) In vivo indwelling
JP2006087704A (en) Medical care implant
RU2571685C2 (en) Implanted stent
WO2007116646A1 (en) In vivo indwelling object
JP2005168937A (en) Stent
JP2006167078A (en) Medical implant
JP2007313009A (en) Stent
JP2009061021A (en) In vivo indwelling object including branched biodegradable polyester
JP2006262960A (en) Stent
JP4828268B2 (en) Stent
JP2007105368A (en) Medical material, other than tissue replacing and bonding material
JP2008237677A (en) In-vivo indwelling object
JPWO2008123108A1 (en) In-vivo medical device
JP2008113827A (en) In-vivo indwelling material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738963

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008510815

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738963

Country of ref document: EP

Kind code of ref document: A1