WO2007094128A1 - 送信電力制御システム及びその方法並びにそれに用いる基地局及び移動通信端末 - Google Patents

送信電力制御システム及びその方法並びにそれに用いる基地局及び移動通信端末 Download PDF

Info

Publication number
WO2007094128A1
WO2007094128A1 PCT/JP2007/000048 JP2007000048W WO2007094128A1 WO 2007094128 A1 WO2007094128 A1 WO 2007094128A1 JP 2007000048 W JP2007000048 W JP 2007000048W WO 2007094128 A1 WO2007094128 A1 WO 2007094128A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
signal
mobile communication
transmission power
base station
Prior art date
Application number
PCT/JP2007/000048
Other languages
English (en)
French (fr)
Inventor
Kouichi Tamura
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2008500412A priority Critical patent/JP4894853B2/ja
Priority to CN2007800056043A priority patent/CN101385261B/zh
Priority to US12/279,365 priority patent/US8116802B2/en
Priority to EP07706297.4A priority patent/EP1986346A4/en
Publication of WO2007094128A1 publication Critical patent/WO2007094128A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70706Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation with means for reducing the peak-to-average power ratio

Definitions

  • the present invention relates to a transmission power control system and method, and a base station and mobile communication terminal used therefor, and more particularly to a transmission power control method in a HSDPA (High Speed Down Iink Packet Access) type mobile communication system.
  • HSDPA High Speed Down Iink Packet Access
  • CDMA Code Division Multiple Access
  • the HSDPA system which is scheduled for actual operation in the future, uses 16 Q AM modulation to achieve higher-speed data communication, and has used QPSK modulation more than ever before. Channel power is needed.
  • this HSDPA is a data transmission method using an HS_PDSCH (High Speed-Physical Downlink Shared Channel) in which the transmission rate in the downlink direction is increased.
  • HS_PDSCH High Speed-Physical Downlink Shared Channel
  • HS—SCCH High Speed-Shared Control Channel
  • CP I CH Common Pi lot Channel
  • PCCPCH Primary Common Control Physical Channel
  • Patent Document 1 JP 2002-261 687 A
  • Patent Document 1 always controls the power of the HS-PDSCH and controls the downlink transmission power to be constant when communication data exists, and communication data exists. It does not deal with the transmission power when changing from a non-operating state to a sitting state. For this reason, as described above, there is a problem that the occurrence of reception errors due to the inability to follow the AGC function is unavoidable.
  • An object of the present invention is to maintain a total received power on the receiving terminal side, thereby preventing deterioration of reception characteristics due to AGC saturation and a transmission power control system capable of realizing good reception characteristics, and the same And a base station and a mobile communication terminal used therefor. Means for solving the problem
  • a transmission power control system is a transmission power control system in an HSDPA mobile communication system, in which a base station transmits other downlink channels according to the presence / absence of a downlink shared channel signal. It includes means for controlling power and maintaining the total downstream power approximately constant.
  • a transmission power control method is a transmission power control method in an HSDPA mobile communication system, in which a base station transmits other downlink channels according to the presence or absence of a downlink shared channel signal.
  • the method includes the step of controlling the power to maintain the total downlink power substantially constant.
  • a base station is a base station in an HSDPA mobile communication system, and controls the transmission power of other downlink channels according to the presence / absence of a downlink shared channel signal to reduce the total downlink power. It is characterized by including means for maintaining substantially constant.
  • a mobile communication terminal is a mobile communication terminal in an HSDPA mobile communication system, and controls the gain of the AGC function according to the presence / absence of a signal addressed to itself in a lower shared channel. Means.
  • a program according to the present invention is a program for causing a computer to execute a transmission power control operation of a base station in an HSDPA mobile communication system, depending on the presence or absence of a downlink shared channel signal. It includes the process of maintaining the total downlink power substantially constant by controlling the transmission power.
  • Another program according to the present invention is a program for causing a computer to execute an operation of a mobile communication terminal in an HSDPA mobile communication system, depending on the presence / absence of a signal addressed to itself in a downlink shared channel. And a process for controlling the gain of the AGC function.
  • the first effect of the present invention is that the receiving end total power is kept constant before and after high-speed data channel communication.
  • the lower transmission power it is possible to prevent the deterioration of the received signal due to AGC saturation, so that good reception characteristics can be secured.
  • the second effect of the present invention is that the total power at the receiving end is made constant by controlling the transmission power of the HS-SCCH, which is a low speed rate and is not easily affected by signal degradation in the above control. Good reception characteristics can be maintained.
  • FIG. 1 is a functional block diagram on a transmission side (base station side) of a mobile communication system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a relationship between a base station and a mobile communication terminal in the mobile communication system according to the embodiment of the present invention.
  • FIG. 3 A flowchart showing the operation of the base station.
  • FIG. 4 is a characteristic diagram showing a time-dependent change in downlink received power of a radio signal transmitted from a base station and received by a mobile communication terminal.
  • FIG. 5 is a characteristic diagram showing a temporal change in downlink received power according to a modification.
  • FIG. 6 is a characteristic diagram showing a temporal change in downlink received power according to another modification.
  • FIG. 7 is a characteristic diagram showing a change with time in downlink received power according to still another modification.
  • FIG. 8 is a schematic block diagram showing a structure of a main part of a mobile communication terminal of still another modified example.
  • FIG. 9 is a flowchart showing the operation of the mobile communication terminal.
  • FIG. 10 is a characteristic diagram showing a change with time of downlink received power of a radio signal transmitted from a base station and received by a mobile communication terminal in a conventional mobile communication system.
  • FIG. 1 is a functional block diagram of a base station according to an embodiment of the present invention, and shows a circuit configuration for performing HSDPA transmission / reception control.
  • mobile communication system 100 includes base station 10 that transmits a radio signal and mobile communication terminal 20 that receives the radio signal.
  • the mobile communication terminal 20 has an AGC unit that automatically adjusts the gain according to the received power of the radio signal.
  • the base station 10 has means for making the transmission power of a radio signal including at least a first channel in which signals are always generated and a second channel in which signals are sporadically included substantially constant.
  • the base station 10 uses the HS-SCCH power control determination as a transmission power control system that is a means for making the transmission power of a radio signal substantially constant as described above.
  • Unit 2 H S_S CCH power control unit 5, and HS-PDSCH power control unit 6.
  • the HS-SCCH encoding unit 1 performs encoding processing on the H S — S CCH information that is the signal of the first channel instructed by the host.
  • the HS-PDSCH encoding unit 3 performs the encoding process on the HS-DSC H information that is the second channel signal instructed by the host.
  • the outputs from the H S_S CCH encoding unit 1 and the H S_P DSCH encoding unit 3 are subjected to transmission power control by the H S_S CCH power control unit 5 and the H S_P DSCH power control unit 6, respectively.
  • the power-controlled HS_SCCH and H S — PDSCH data are spread in the spreading unit 7 by the spreading code output from the spreading code generating unit 4.
  • the details of each process described above are specified as specifications by 3GPP (3rd Generation Partnership Project) standardization and are well known.
  • the HS_S CCH power control determination unit 2 determines the presence / absence of HS-PDSCH transmission from the HS-DSCH information, and when there is no HS-PDSCH transmission, the transmission power by the HS_P DSCH transmission.
  • the HS-SCCH power control unit 5 is controlled so that the increase is compensated for as H S_S C CH transmission power.
  • the HS-SCCH power control determination unit 2 confirms the presence or absence of HS-PDSCH transmission based on HS_DSCH information instructed by the host ( Steps 21 and 22 in Figure 3).
  • the HS_S CCH power control determination unit 2 determines that the HS_S CCH power control ratio becomes the HS_S CCH transmission power ratio indicated by the host. — Controls the SCC H power controller 5. Accordingly, the H S_S CCH power control unit 5 determines the H S_S CCH transmission power to be P 1 in FIG. 4 (step 3 in FIG. 3).
  • the HS—SCCH so that the increase in transmission power during H S_P DS CH transmission is supplemented by the H S_S CCH transmission power.
  • the power control unit 5 is controlled. Thereby, the HS_SCCH power control unit 5 determines the HS_SCHC transmission power to be P2 in FIG. 4 (step 24 in FIG. 3).
  • the HS—SCCH power control unit 5 is notified in advance of the transmission power increase during transmission of HS—PDSCH ( ⁇ shown in FIG. 10) based on the transmission power information from the host.
  • HS Control has been described in which the received power before and after the transmission of H S — P DSC H is made constant by the SCCH transmission power.
  • the present invention is not limited to the above-described embodiment, and it is only necessary to compensate for an increase or decrease in transmission power due to the occurrence of sporadic signals in the second channel with the transmission power of the first channel in which signals are constantly generated.
  • downlink DP CH Dedicated Physical Channel
  • power control using a dummy channel power not used for communication as the first channel may be used.
  • ⁇ P P 2 — P 1 Earth m (m: Offset value and positive value).
  • the transmission power of the radio signal is made substantially constant by increasing or decreasing the transmission power of the HS-SCCH or the like so as to compensate for the transmission power of the HS-PDSCH that occurs sporadically. Exemplified what to do.
  • the reception error of the AGC function can be suppressed even by suppressing the change rate of the transmission power of the radio signal so that the AGC function of the mobile communication terminal 20 can follow. Can be prevented.
  • the transmission power of HS-SCCC or the like may be temporarily increased immediately before a signal is generated in HS-PDSCH.
  • the 3GPP HSDPA specification when HS-SCCH subframes are transmitted, it is determined whether there is transmission data in the HS_PDSCH subframe after 2 slots.
  • transmission side processing processing on the base station 10 side
  • transmission power control processing on the base station 10 side
  • erroneous reception of the AGC function can also be prevented on the receiving side (mobile communication terminal 20 side).
  • the mobile communication terminal 20 illustrated in FIG. 8 includes an AGC unit 21 that automatically adjusts the gain in accordance with the received power of the radio signal, and a second channel signal based on the first channel signal of the received radio signal.
  • a gain adjusting unit 23 that temporarily reduces the gain of the AGC unit 21 when the second channel signal is generated.
  • the receiving side receives the first slot of the HS-SCCH subframe according to the 3GPP HSDPA specification, and then receives itself in the HS-PDSCH subframe immediately thereafter. It is possible to determine whether there is HS_PDSCH data for the destination.
  • the gain value in the receiving side AGC (R x AGC) is temporarily reduced, so that reception by AGC saturation is performed. It is possible to prevent errors.
  • the processing on the receiving side in this case will be described using the flowchart of FIG.
  • HS_SCCH On the receiving side, after HS DP A open (HSDPA setting), HS_SCCH is continuously received, and the first slot of the HS_SCCH subframe is decoded (step 70).
  • base station 10 and mobile communication terminal 20 are each realized by dedicated hardware. However, some or all of the various functions described above may be realized in the base station 10 and the mobile communication terminal 20 by a computer program, or may be realized by a combination of hardware and a computer program. .
  • such a computer program of the base station 10 includes, for example, at least a first channel such as HS_SCCH in which a signal is always generated and a second channel such as HS-PDSCH in which a signal is sporadically generated. It is described to cause the base station 10 to execute the transmission power of the included radio signal to be substantially constant. It only has to be.
  • the computer program of the mobile communication terminal 20 detects in advance the signal generation of the second channel such as HS_PDSCH based on the signal of the first channel such as HS-SCCH of the received radio signal. It is only necessary to describe that the mobile communication terminal 20 is to temporarily reduce the gain of the AGC unit 21 when the second channel signal is generated.
  • the radio signal is communicated by the HS DP A system
  • the present invention can be applied to various types of radio signals as long as the first channel in which the signals are always generated and the second channel in which the signals are generated sporadically are included.

Abstract

 送信側で、HS-DSCH送信の有無により、HS-SCCHの送信電力を制御して、受信側での受信総電力を一定に保つ様に制御する。すなわち、HS-DSCH送信がない場合には、HS-SCCHの送信電力をP2として送信し、HS-DSCH送信(電力はΔPとする)がある場合には、HS-SCCHの送信電力を、P1=P2-ΔPに変化制御させる。これにより、HS-DSCH送信の有無にかかわらず、受信端での総電力は変化せず、よって受信側のAGC機能の飽和動作がなくなり、受信エラーもなくなる。

Description

明 細 書
送信電力制御システム及びその方法並びにそれに用いる基地局及び 移動通信端末
技術分野
[0001] 本発明は送信電力制御システム及びその方法並びにそれに用いる基地局及 び移動通信端末に関し、 特に HSDPA (High Speed Down I ink Packet Acce ss) 方式の移動通信システムにおける送信電力制御方式に関するものである 背景技術
[0002] 従来、 CDMA (Code Division Multiple Access)移動通信方式では、 高速 なデータ通信を行うための手段として、 拡散率を落とした送受信を実施して いる。 そのため、 拡散利得が低下して信号劣化を受けやすくなるために、 デ ータチヤネルには強電力が必要となる。
[0003] また、 今後の実運用が予定されている H S D P A方式では、 更なる高速デ ータ通信を実現するために 1 6 Q AM変調を使用しており、 QPSK変調を 用いていた今まで以上のチャネルパワーが必要とされている。
[0004] なお、 この HSDPAとは、 下り方向の伝送速度を高速化した H S_P D SCH (High Speed-Physical Downlink Shared Channel :高速下り共用チ ャネル) を用いたデータ送信方式である。
[0005] この HSDPA方式では、 常時データを送信しているわけではなく、 受信 端末側からみると、 図 1 0の下り受信電力の変化例に示すように、 データ発 生時に突然受信電力が増加 ( + ΔΡ) する。
[0006] このため、 AGC (Auto Gain Control) が追従しきれず、 受信信号レベル が飽和するため受信誤りが生じる。 H S _ P D S C H送信の開始時に必ず受 信誤りが生じてはスループッ卜低下という問題が生じるため、 対策が必要と されている。
[0007] 図 1 0において、 HS— SCCH (High Speed-Shared Control Channel) は制御情報を移動通信端末に伝送するためのチャネルである。 CP I CH (C ommon Pi lot Channel) は共通パイロッ卜用のチャネルである。 PCCPCH (Primary Common Cotrol Physical Channel) は第一共通制御物理チャネル である。
[0008] なお、 H S D P A方式において、 基地局から移動通信端末へ送信する全て のチャネルの送信電力の総和を一定に制御する技術が提案されている。 この 技術では、 下り送信電力の変動に起因する他ユーザへの干渉波電力が変化し ない様にすることを目的としている。
[0009] 具体的には、 H S_P DS CHの送信電力を制御して、 CP I CHと、 D PCH (Dedicated Physical Channel :個別物理チャネル) と、 HS— PD S C Hとの電力の総和を一定に維持するものである(例えば、 特許文献 1参照
)o
特許文献 1 :特開 2002— 261 687号公報
発明の開示
発明が解決しょうとする課題
[0010] 図 1 0に示した様に、 従来方式では、 通信データが存在しない状態から、 通信データが存在する状態に変化したとき、 下り受信電力が ΔΡだけ急激に 増加する。 このため、 移動通信端末側の AG C機能が追従できず、 受信誤り が生ずるという課題がある。
[0011] また、 特許文献 1の技術は、 通信データが存在する状態においては、 常時 、 HS— PDSCHの電力を制御して、 下り送信電力を一定に制御するもの であって、 通信データが存在しない状態から損座する状態に変化する場合の 送信電力を扱うものではない。 このため、 やはり上述の様に、 AGC機能が 追従できないことによる受信誤りの発生は避けられないという課題がある。
[0012] 本発明の目的は、 受信端末側の受信総パワーを一定に保つことにより、 A GC飽和による受信特性劣化を防ぎ、 良好な受信特性を実現することが可能 な送信電力制御システム及びその方法並びにそれに用いる基地局及び移動通 信端末を提供することである。 課題を解決するための手段
[0013] 本発明による送信電力制御システムは、 H S D P A方式の移動通信システ ムにおける送信電力制御システムであって、 基地局において、 下り共用チヤ ネルの信号の有無に応じて、 他の下りチャネルの送信電力を制御して、 下り 総電力を略一定に維持する手段を含むことを特徴とする。
[0014] 本発明による送信電力制御方法は、 H S D P A方式の移動通信システムに おける送信電力制御方法であって、 基地局において、 下り共用チャネルの信 号の有無に応じて、 他の下りチャネルの送信電力を制御して、 下り総電力を 略一定に維持するステップを含むことを特徴とする。
[0015] 本発明による基地局は、 H S D P A方式の移動通信システムにおける基地 局であって、 下り共用チャネルの信号の有無に応じて、 他の下りチャネルの 送信電力を制御して、 下り総電力を略一定に維持する手段を含むことを特徴 とする。
[0016] 本発明による移動通信端末は、 H S D P A方式の移動通信システムにおけ る移動通信端末であって、 下リ共用チャネルでの自分宛の信号の有無に応じ て、 A G C機能のゲインを制御する手段を含むことを特徴とする。
[0017] 本発明によるプログラムは、 H S D P A方式の移動通信システムにおける 基地局の送信電力制御動作をコンピュータに実行させるためのプログラムで あって、 下り共用チャネルの信号の有無に応じて、 他の下りチャネルの送信 電力を制御して、 下り総電力を略一定に維持する処理を含むことを特徴とす る。
[0018] 本発明による他のプログラムは、 H S D P A方式の移動通信システムにお ける移動通信端末の動作をコンピュータに実行させるためのプログラムであ つて、 下り共用チャネルでの自分宛の信号の有無に応じて、 A G C機能のゲ ィンを制御する処理を含むことを特徴とする。
発明の効果
[0019] 本発明によれば、 以下に記載するような効果を奏する。 本発明による第 1 の効果は、 高速データチャネル通信前後で受信端総電力が一定に保たれるよ うに下リ送信電力を制御することにより、 A G C飽和による受信信号劣化を 防ぐことができるので、 良好な受信特性を確保できることである。 また、 本 発明による第 2の効果は、 上記制御において、 低速レートであり信号劣化の 影響を受けにくい H S— S C C Hの送信電力の制御によリ、 受信端総電力を 一定にしているために、 良好な受信特性が保持できることである。
図面の簡単な説明
[0020] 上述した目的、 およびその他の目的、 特徴および利点は、 以下に述べる好 適な実施の形態、 およびそれに付随する以下の図面によってさらに明らかに なる。
[図 1 ]本発明の実施の形態の移動通信システムの送信側 (基地局側) の機能ブ ロック図である。
[図 2]本発明の実施の形態の移動通信システムの基地局と移動通信端末との関 係を示す模式図である。
[図 3]基地局の動作を示すフローチヤ一卜である。
[図 4]基地局から送信されて移動通信端末で受信される無線信号の下り受信電 力の経時変化を示す特性図である。
[図 5]—変形例による下り受信電力の経時変化を示す特性図である。
[図 6]他の変形例による下り受信電力の経時変化を示す特性図である。
[図 7]さらに他の変形例による下り受信電力の経時変化を示す特性図である。
[図 8]さらに他の変形例の移動通信端末の要部の構造を示す模式的なプロック 図である。
[図 9]移動通信端末の動作を示すフローチャートである。
[図 10]—従来例の移動通信システムで基地局から送信されて移動通信端末で 受信される無線信号の下り受信電力の経時変化を示す特性図である。
発明を実施するための最良の形態
[0021 ] 以下に、 図 1ないし図 4を参照して本発明の実施の形態について説明する 。 図 1は本発明の実施の形態の基地局の機能ブロック図であり、 H S D P A 送信受信制御を行う回路構成を示す。 [0022] 本実施の形態の移動通信システム 1 00は、 図 2に示すように、 無線信号 を送信する基地局 1 0と無線信号を受信する移動通信端末 20とを有する。 移動通信端末 20は、 無線信号の受信電力に対応してゲインを自動調整する AGC部を有する。
[0023] 基地局 1 0は、 信号が常時発生する第一チャネルと散発的に発生する第二 チャネルとが少なくとも内包されている無線信号の送信電力を略一定とする 手段を有する。
[0024] より具体的には、 本実施の形態の基地局 1 0は、 上述のように無線信号の 送信電力を略一定とする手段である送信電力制御システムとして、 HS— S CCH電力制御判定部 2、 H S_S CCH電力制御部 5、 HS—PDSCH 電力制御部 6、 を有する。
[0025] 図 1に示すように、 HS— SCCHエンコード部 1は、 上位から指示され た第一チャネルの信号となる H S _ S C C H情報に対してェンコ一ド処理を 行う。 同様に、 HS— PDSCHエンコード部 3は、 上位から指示された第 二チャネルの信号となる HS— DSC H情報に対してェンコ一ド処理を行う
[0026] H S_S CCHエンコード部 1、 H S _ P D S C Hエンコード部 3からの 出力は各々 H S_S CCH電力制御部 5、 H S_P DS CH電力制御部 6に よって、 送信電力制御が実施される。
[0027] 電カ制御済みHS_SCCH、 H S _ P D S C Hデータは、 拡散部 7にお いて、 拡散コード生成部 4から出力される拡散コードにより拡散される。 上 記の各処理詳細は 3 G P P (3rd Generation Partnership Project)標準化に より仕様として規定されているものであり、 周知である。
[0028] 本発明では、 H S_S CCH電力制御判定部 2において、 HS— DSCH 情報から HS— PDSCH送信の有無が判定され、 HS— PDSCH送信が ない場合には、 H S_P DS CH送信による送信パワー増加分が H S_S C CH送信パワーとして補われるように、 HS— SCCH電力制御部 5が制御 されるのである。 [0029] つぎに、 図 1の H S_S CCH電力制御判定部 2および H S_S CCH電 力制御部 5にて実施される本発明での電力制御動作について、 図 3に示すフ ローチャートを使用し、 さらには図 4および図 5に示す送信電力の経時変化 の特性図を用いて説明する。
[0030] 本実施の形態による HS DP A電力制御方法は、 まず、 HS— SCCH電 力制御判定部 2にて、 上位から指示されるHS_DSCH情報に基づき、 H S— PDSCH送信の有無を確認する (図 3のステップ 21, 22) 。
[0031] H S_S CCH電力制御判定部 2は、 H S _ P D S C H送信がある場合に は (図 3のステップ 22で Y e s) 、 上位から指示された H S_S CCH送 信パワー比となるように HS— SCC H電力制御部 5を制御する。 それによ リ、 H S_S CCH電力制御部 5は H S_S CCH送信電力を図 4の P 1と なるよう決定する (図 3の 3ステップ 23) 。
[0032] H S_P DS CH送信がない場合には (図 3のステップ 22で N o ) 、 H S_P DS CH送信時の送信パワー増加分を、 H S_S CCH送信パワーで 補うように、 HS— SCCH電力制御部 5を制御する。 それにより、 HS_ S CCH電力制御部 5は、 H S_S CCH送信電力を図 4の P 2となるよう 決定する (図 3のステップ 24) 。
[0033] HS— SCCH電力制御部 5では、 上位からの送信パワー情報により、 H S— PDSCH送信時の送信パワー増加分 (図 1 0に示した ΔΡ) を前もつ て通知してもらい、 HS— SCCH電力制御判定部 2から電力制御指示があ つた場合には、 H S_S CCH送信電力が P 2 (=P 1 +AP) となるよう 決定し、 ベースバンド処理部で電力制御を実施した旨を上位に報告する。
[0034] HS— SCCHの送信電力により、 H S _ P D S C Hの送信前後の受信電 力を一定とする制御を説明した。 しかし、 本発明は上記形態に限定されるも のではなく、 信号が常時発生する第一チャネルの送信電力で、 第二チャネル の散発的な信号の発生による送信電力の増減を補償できればよい。
[0035] このため、 図 5に示すように、 図 4に示した H S_S CCHの送信電力の 代わりに、 第一チャネルとして下り DP CH (Dedicated Physical Channel ) の送信電力を変化制御してもよい。 また、 図 6に示す様に、 通信に用いな いダミーチャネルパワーを第一チャネルとして用いた電力制御でもよい。
[0036] また、 必ずしも Δ P = P 2— P 1である必要はない。 HS— SCCH信号 劣化の影響を軽減させるために、 電力制御量にオフセットを加味しても、 先 の実施の形態と同様の効果は期待できる。
[0037] すなわち、
厶 P = P 2— P 1土 m (m:オフセッ卜値であって正の値とする) であってもよい。
[0038] なお、 上記形態および変形例では、 散発的に発生する HS— PDSCHの 送信電力を補償するように HS— SCCHなどの送信電力を増減させること で、 無線信号の送信電力を略一定とすることを例示した。
[0039] しかし、 無線信号の送信電力を略一定とせずとも、 移動通信端末 20の A G C機能が追従できるように、 無線信号の送信電力の変化速度を抑制するこ とでも、 AGC機能の受信誤りは防止することができる。
[0040] 例えば、 HS— PDSCHに信号が発生する直前に一時的に HS— SCC Hなどの送信電力を順次上昇させればよい。 つまり、 3GPPの HSDPA 仕様により、 HS— SCCHサブフレーム送信時には、 2スロット後の HS _ P D S C Hサブフレームに送信データがあるかどうかが判明する。
[0041] そこで、 電力制御で使用するチャネル種別に限らず、 図 7に示すように、 HS— SCCHの送信パワーをスロッ卜単位で順次増大させて、 いわゆるラ ンプアップするように制御する。 これによつても、 電力制御開始時の急激な 送信電力上昇を防ぐ手段として有効である。
[0042] 上記各実施の形態としては、 送信電力制御として送信側処理 (基地局 1 0 側の処理) を記載した。 しかし、 受信側 (移動通信端末 20側) で AGC機 能の受信誤リを防止することもできる。
[0043] 例えば、 図 8に例示する移動通信端末 20は、 無線信号の受信電力に対応 してゲインを自動調整する AGC部 21と、 受信された無線信号の第一チヤ ネルの信号により第二チャネルの信号発生を事前に検出する信号検出部 22 と、 第二チャネルの信号が発生するときに AGC部 21のゲインを一時的に 低下させるゲイン調節部 23と、 を有する。
[0044] つまり、 受信側 (移動通信端末 20側) としては、 3GPPの HSDPA 仕様により、 H S— SCCHサブフレームの 1スロット目を受信することに よリ、 その直後の HS— PDSCHサブフレームに自分宛の H S _ P D S C Hデータがあるかどうかの判断が可能となっている。
[0045] そこで、 H S_P DS CHの受信前に、 受信側の AG C (R x AGC) に おけるゲイン値を一時的に低下させることにより、 上記の実施の形態と同様 に、 AGC飽和による受信誤りを防ぐことが可能である。 図 9のフローチヤ ートを使用して、 この場合における受信側の処理を説明する。
[0046] 受信側では、 HS DP Aオープン (HSDPA設定) 以降は、 常に HS_ SCCHを受信し続け、 H S_S CCHサブフレームの 1スロッ卜目を復号 する (ステップ 70) 。
[0047] 復号した結果、 自分宛の^!5_5〇〇!"1でぁる判断、 すなわち、 直後の H S— PDSCHサブフレームに自分宛のデータがあると判断した場合には ( ステップ 7 1 ) 、 受信したHS_SCCHサブフレームの2スロッ卜後には 、 受信総電力が上昇すると想定し、 Rx AGCにてゲイン値を制御する (ス テツプ 72) 。 ここでの制御とは、 強電力を受けても飽和しないようにゲイ ン値を下げることを意味している。
[0048] また、 本実施の形態では基地局 1 0や移動通信端末 20の各種機能が各々 専用のハードウェアにより実現されていることを想定した。 しかし、 上述の ような各種機能の一部ないし全部がコンピュータプログラムにより基地局 1 0や移動通信端末 20に実現されていてもよく、 ハードウエアとコンビユー タプログラムとの組み合わせにより実現されていてもよい。
[0049] 例えば、 このような基地局 1 0のコンピュータプログラムは、 例えば、 信 号が常時発生する H S _ S C C Hなどの第一チャネルと散発的に発生する H S— PDSCHなどの第二チヤネルとが少なくとも内包されている無線信号 の送信電力を略一定とすることを、 基地局 1 0に実行させるように記述され ていればよい。
[0050] また、 移動通信端末 20のコンピュータプログラムは、 例えば、 受信され た無線信号の HS— SCCHなどの第一チヤネルの信号によリ H S _ P D S C Hなどの第二チヤネルの信号発生を事前に検出すること、 第二チヤネルの 信号が発生するときに AGC部 21のゲインを一時的に低下させること、 を 移動通信端末 20に実行させるように記述されていればよい。
[0051] さらに、 上記形態では無線信号が HS DP A方式で通信されることを例示 した。 しかし、 信号が常時発生する第一チャネルと散発的に発生する第二チ ャネルとが内包されている無線信号であれば、 各種の無線信号に本願発明は 適用することができる。

Claims

請求の範囲
[1] HSDP A方式の移動通信システムにおける送信電力制御システムであつ て、
基地局において、 下り共用チャネル (HS— PDSCH) の信号の有無に 応じて、 他の下りチャネルの送信電力を制御して、 下り総電力を略一定に維 持する手段を含むことを特徴とする送信電力制御システム。
[2] 前記他の下りチャネルは、 HS— SCCHであることを特徴とする請求項
1記載の送信電力制御システム。
[3] 前記他の下りチャネルは、 DPCHであることを特徴とする請求項 1記載 の送信電力制御システム。
[4] 前記他の下りチャネルは、 ダミーチャネルであることを特徴とする請求項
1記載の送信電力制御システム。
[5] 前記手段は、 前記他の下りチャネルの送信電力を、 前記下り共用チャネル の信号有無の遷移時に、 順次変化させることを特徴とする請求項 1ないし 4 の何れか一項に記載の送信電力制御システム。
[6] H S D P A方式の移動通信システムにおける送信電力制御方法であって、 基地局において、 下り共用チャネル (HS— PDSCH) の信号の有無に 応じて、 他の下りチャネルの送信電力を制御して、 下り総電力を略一定に維 持するステップを含むことを特徴とする送信電力制御方法。
[7] 前記他の下りチャネルは、 HS— SCCHであることを特徴とする請求項
6記載の送信電力制御方法。
[8] 前記他の下りチャネルは、 DPCHであることを特徴とする請求項 6記載 の送信電力制御方法。
[9] 前記他の下りチャネルは、 ダミーチャネルであることを特徴とする請求項
6記載の送信電力制御方法。
[10] 前記ステップは、 前記他の下りチャネルの送信電力を、 前記下り共用チヤ ネルの信号有無の遷移時に、 順次変化させることを特徴とする請求項 6ない し 9の何れか一項に記載の送信電力制御方法。
[11] HS DP A方式の移動通信システムにおける基地局であって、 下り共用チ ャネル (HS— PDSCH) の信号の有無に応じて、 他の下りチャネルの送 信電力を制御して、 下り総電力を略一定に維持する手段を含むことを特徴と する基地局。
[12] 前記他の下りチャネルは、 HS— SCCHであることを特徴とする請求項
1 1記載の基地局。
[13] 前記他の下りチャネルは、 DPCHであることを特徴とする請求項 1 1記 載の基地局。
[14] 前記他の下りチャネルは、 ダミーチャネルであることを特徴とする請求項
1 1記載の基地局。
[15] 前記手段は、 前記他の下りチャネルの送信電力を、 前記下り共用チャネル の信号有無の遷移時に、 順次変化させることを特徴とする請求項 1 1ないし 1 4の何れか一項に記載の基地局。
[16] HSDP A方式の移動通信システムにおける移動通信端末であって、
下り共用チャネル (HS— PDSCH) での自分宛の信号の有無に応じて 、 A G C機能のゲインを制御する手段を含むことを特徴とする移動通信端末
[17] HSDP A方式の移動通信システムにおける基地局の送信電力制御動作を コンピュータに実行させるためのプログラムであって、 下り共用チャネル ( HS— PDSCH) の信号の有無に応じて、 他の下りチャネルの送信電力を 制御して、 下り総電力を略一定に維持する処理を含むことを特徴とするプロ グラム。
[18] HSDP A方式の移動通信システムにおける移動通信端末における動作を コンピュータに実行させるためのプログラムであって、
下り共用チャネル (HS— PDSCH) での自分宛の信号の有無に応じて
、 A G C機能のゲインを制御する処理を含むことを特徴とするプログラム。
[19] 無線信号を送信する基地局と前記無線信号を受信する移動通信端末とを有 する移動通信システムであって、 前記移動通信端末は、 前記無線信号の受信電力に対応してゲインを自動調 整する A G C部を有し、
前記基地局は、 信号が常時発生する第一チャネルと散発的に発生する第二 チャネルとが少なくとも内包されている前記無線信号の送信電力を略一定と する手段を有することを特徴とする移動通信システム。
[20] 前記手段は、 前記第一チャネルの信号の有無に対応して前記第二チャネル の送信電力を増減させる請求項 1 9に記載の移動通信システム。
[21 ] 無線信号を送信する基地局と前記無線信号を受信する移動通信端末とを有 する移動通信システムであって、
前記移動通信端末は、 前記無線信号の受信電力に対応してゲインを自動調 整する A G C部を有し、
前記基地局は、 信号が常時発生する第一チャネルと散発的に発生する第二 チャネルとが少なくとも内包されている前記無線信号の送信電力の変化速度 を抑制する手段を有することを特徴とする移動通信システム。
[22] 前記手段は、 前記第二チャネルに前記信号が発生する直前に一時的に前記 第一チャネルの送信電力を順次上昇させることを特徴とする請求項 2 1に記 載の移動通信システム。
[23] 前記手段は、 前記 A G C部の追従性に対応して前記変化速度を抑制する請 求項 2 1または 2 2に記載の移動通信システム。
[24] 前記基地局が、 H S D P A方式の前記無線信号を送信し、 前記第一チヤネ ルが H S— P D S C Hからなることを特徴とする請求項 1 9ないし 2 3の何 れか一項に記載の移動通信システム。
[25] 無線信号を送信する基地局と前記無線信号を受信する移動通信端末とを有 する移動通信システムであって、
前記基地局は、 信号が常時発生する第一チャネルと散発的に発生する第二 チャネルとが少なくとも内包されている前記無線信号を送信し、
前記移動通信端末は、 前記無線信号の受信電力に対応してゲインを自動調 整する A G C部と、 受信された前記無線信号の前記第一チヤネルの信号によ リ前記第二チャネルの信号発生を事前に検出する信号検出部と、 前記第二チ ャネルの信号が発生するときに前記 A G C部のゲインを一時的に低下させる ゲイン調節部と、 を有することを特徴とする移動通信システム。
[26] 移動通信端末で受信される無線信号を送信する基地局であって、
信号が常時発生する第一チャネルと散発的に発生する第二チャネルとが少 なくとも内包されている前記無線信号の送信電力を略一定とする手段を有す ることを特徴とする基地局。
[27] 移動通信端末で受信される無線信号を送信する基地局であって、
信号が常時発生する第一チャネルと散発的に発生する第二チャネルとが少 なくとも内包されている前記無線信号の送信電力の変化速度を抑制する手段 を有することを特徴とする基地局。
[28] 信号が常時発生する第一チャネルと散発的に発生する第二チャネルとが少 なくとも内包されている無線信号を受信する移動通信端末であって、 前記無線信号の受信電力に対応してゲインを自動調整する A G C部と、 受信された前記無線信号の前記第一チャネルの信号により前記第二チヤネ ルの信号発生を事前に検出する信号検出部と、
前記第二チャネルの信号が発生するときに前記 A G C部のゲインを一時的 に低下させるゲイン調節部と、
を有することを特徴とする移動通信端末。
[29] 移動通信端末で受信される無線信号を送信する基地局のためのコンビユー タプログラムであって、
信号が常時発生する第一チャネルと散発的に発生する第二チャネルとが少 なくとも内包されている前記無線信号の送信電力を略一定とすることを前記 基地局に実行させることを特徴とするコンピュータプログラム。
[30] 信号が常時発生する第一チャネルと散発的に発生する第二チャネルとが少 なくとも内包されている無線信号を受信し、 前記無線信号の受信電力に対応 して A G C部によリゲインを自動調整する移動通信端末のためのコンピュー タプログラムであって、 受信された前記無線信号の前記第一チャネルの信号により前記第二チヤネ ルの信号発生を事前に検出すること、
前記第二チャネルの信号が発生するときに前記 A G C部のゲインを一時的 に低下させること、
を前記移動通信端末に実行させることを特徴とするコンピュータプログラム
PCT/JP2007/000048 2006-02-15 2007-02-01 送信電力制御システム及びその方法並びにそれに用いる基地局及び移動通信端末 WO2007094128A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008500412A JP4894853B2 (ja) 2006-02-15 2007-02-01 送信電力制御システム及びその方法並びにそれに用いる基地局
CN2007800056043A CN101385261B (zh) 2006-02-15 2007-02-01 发送功率控制系统及其方法、以及在其中使用的基站和移动通信终端
US12/279,365 US8116802B2 (en) 2006-02-15 2007-02-01 Transmission power control system, method therefor, and base station and mobile communication terminal that are used therein
EP07706297.4A EP1986346A4 (en) 2006-02-15 2007-02-01 TRANSMISSION SYSTEM, METHOD THEREFOR AND BASE STATION AND MOBILE COMMUNICATION DEVICE USED IN IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006037319 2006-02-15
JP2006-037319 2006-02-15

Publications (1)

Publication Number Publication Date
WO2007094128A1 true WO2007094128A1 (ja) 2007-08-23

Family

ID=38371316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000048 WO2007094128A1 (ja) 2006-02-15 2007-02-01 送信電力制御システム及びその方法並びにそれに用いる基地局及び移動通信端末

Country Status (5)

Country Link
US (1) US8116802B2 (ja)
EP (1) EP1986346A4 (ja)
JP (1) JP4894853B2 (ja)
CN (3) CN102510573B (ja)
WO (1) WO2007094128A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11146966B2 (en) * 2013-06-18 2021-10-12 Itron Networked Solutions, Inc. Configuring a network of devices to operate within a television whitespace spectrum
CN110895422B (zh) * 2019-11-20 2021-04-02 珠海格力电器股份有限公司 电压控制方法及装置、控制器、控制电路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261687A (ja) 2001-02-28 2002-09-13 Nec Corp 移動通信システム及びその送信電力制御方法並びにそれに使用する基地局
JP2005167963A (ja) * 2003-11-11 2005-06-23 Sony Ericsson Mobilecommunications Japan Inc 移動体通信端末及び送信電力制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1261365B (it) * 1993-12-02 1996-05-20 Cselt Centro Studi Lab Telecom Procedimento e dispositivo per il controllo di potenza nella tratta stazione base-mezzo mobile di un sistema radiomobile con accesso a divisione di codice
JP3628145B2 (ja) * 1997-05-21 2005-03-09 松下電器産業株式会社 送信電力制御装置及び送信電力制御方法
US6862447B1 (en) * 1999-02-16 2005-03-01 Lucent Technologies Inc. Method of making downlink operational measurements in a wireless communication system
US6580920B2 (en) * 2001-06-05 2003-06-17 Nokia Mobile Phones Ltd. System for adjusting gain of a mobile station during an idle period of the serving base station
JP4288093B2 (ja) * 2003-04-09 2009-07-01 株式会社エヌ・ティ・ティ・ドコモ 無線通信制御システム及び無線通信制御方法
WO2004112277A1 (en) * 2003-06-13 2004-12-23 Siemens Aktiengesellschaft Power control for a mobile radio communication system
JP2005045504A (ja) * 2003-07-28 2005-02-17 Toshiba Corp マルチキャリア通信システム、マルチキャリア受信装置およびマルチキャリア送信装置
WO2005062489A1 (en) * 2003-12-22 2005-07-07 Telefonaktiebolaget Lm Ericsson (Publ) Power control for high-speed packet data transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261687A (ja) 2001-02-28 2002-09-13 Nec Corp 移動通信システム及びその送信電力制御方法並びにそれに使用する基地局
JP2005167963A (ja) * 2003-11-11 2005-06-23 Sony Ericsson Mobilecommunications Japan Inc 移動体通信端末及び送信電力制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1986346A4 *

Also Published As

Publication number Publication date
CN103974400A (zh) 2014-08-06
JP4894853B2 (ja) 2012-03-14
CN101385261B (zh) 2013-04-17
CN102510573A (zh) 2012-06-20
EP1986346A1 (en) 2008-10-29
CN103974400B (zh) 2017-11-17
EP1986346A4 (en) 2014-12-03
JPWO2007094128A1 (ja) 2009-07-02
CN102510573B (zh) 2014-10-29
US8116802B2 (en) 2012-02-14
US20090054019A1 (en) 2009-02-26
CN101385261A (zh) 2009-03-11

Similar Documents

Publication Publication Date Title
JP4781265B2 (ja) ワイヤレス通信網における2次的リンク電力制御
US7660600B2 (en) Adjustment of target signal-to-interference in outer loop power control for wireless communication systems
US7746831B2 (en) Method and apparatus for controlling gain level of a supplemental channel in a CDMA communication system
US7020483B2 (en) Power control in mobile radio telephone systems when transmission is interrupted
JP4740209B2 (ja) 不連続送信の状態値に基づいてダウンリンクおよびアップリンクの符号化複合トランスポートチャネルにおける送信電力を制御するための無線通信方法および装置
US6075974A (en) Method and apparatus for adjusting thresholds and measurements of received signals by anticipating power control commands yet to be executed
US20110159899A1 (en) Outer loop power control for wireless communications
CA2496466A1 (en) Distributed reverse channel outer loop power control for a wireless communications system
AU2002312547A1 (en) Method and apparatus for controlling gain level of a supplemental channel in a CDMA communication system
US20130051346A1 (en) Power Level of Transmitted Control Channel Symbol
US20040082301A1 (en) Method of and a device for controlling an outer loop for adjusting the target value of an inner power control loop
WO2007094128A1 (ja) 送信電力制御システム及びその方法並びにそれに用いる基地局及び移動通信端末
US20060171478A1 (en) Dual loop signal quality based link adaptation
JP4192745B2 (ja) 送信電力制御システム、基地局及びそれらに用いる送信電力制御方法並びにそのプログラム
MXPA99004638A (en) Method and apparatus for adjusting thresholds and measurements of received signals by anticipating power control commands yet to be executed

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008500412

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007706297

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12279365

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780005604.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE