WO2007079273A2 - Method and device for resilient seal system - Google Patents

Method and device for resilient seal system Download PDF

Info

Publication number
WO2007079273A2
WO2007079273A2 PCT/US2006/060096 US2006060096W WO2007079273A2 WO 2007079273 A2 WO2007079273 A2 WO 2007079273A2 US 2006060096 W US2006060096 W US 2006060096W WO 2007079273 A2 WO2007079273 A2 WO 2007079273A2
Authority
WO
WIPO (PCT)
Prior art keywords
seal
construction panel
sealant
resilient
edge
Prior art date
Application number
PCT/US2006/060096
Other languages
French (fr)
Other versions
WO2007079273A3 (en
Inventor
Steven Richard Robinson
Original Assignee
Steven Richard Robinson
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steven Richard Robinson filed Critical Steven Richard Robinson
Publication of WO2007079273A2 publication Critical patent/WO2007079273A2/en
Publication of WO2007079273A3 publication Critical patent/WO2007079273A3/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/66Sealings
    • E04B1/68Sealings of joints, e.g. expansion joints
    • E04B1/6801Fillings therefor
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/02Arrangement or construction of joints; Methods of making joints; Packing for joints
    • E01C11/04Arrangement or construction of joints; Methods of making joints; Packing for joints for cement concrete paving
    • E01C11/10Packing of plastic or elastic materials, e.g. wood, resin

Definitions

  • the present invention relates generally to systems and
  • the present invention is directed to providing seals in construction joints that are resilient, and ideally waterproof, over relatively long periods of time.
  • Construction panels come in many different sizes
  • Such movement is caused by many factors including expansion and contraction of the adjacent sections due to changes in temperature.
  • the rods or tubes are typically made from some type of foam material and are commonly referred to as "backer rods".
  • the remainder of the gap or joint above the tube is then filled in with a sealant.
  • the backer rod does not add any waterproofing value, as it is only used to
  • Pre-compressed saturated, foam tapes can require additional time to be sized to the particular distance between any two panels, which may vary slightly or significantly. Such variations also require a variety of sizings to be readily accessible for the particulars of any single gap. Such pre-compressed tapes are expensive.
  • Another method is to combine the sealant
  • each joint must be coated with the sealant along its entire length, which may be five to seven feet, allowed to cure, then be compressed into the "precompressed" state for installation.
  • the seal system is intended to deter water and other contaminants from entering the
  • seals It is important that the seal be effective over relatively long periods of time and that it function properly even when exposed to extreme weather conditions.
  • Major problems with seals include water penetration and contaminant penetration. Water penetration may result in exposure of -unsealed surfaces or in freezing expansion. In the case of a seal where at least one panel contains wood, water penetration of the seal may result in rotting, particularly as the water may become trapped within the seal or gap. In the case of a seal where at least one panel contains masonry, the water may penetrate into the masonry and expand when cooled below its freezing point, creating internal stresses on the masonry and potentially fracturing the masonry. In all instances, penetration of water may result in further destruction of the seal should the water cool below its freezing point. Contaminant penetration may also have detrimental effects on the gap or seal. As the gap or seal is intended to permit expansion of the panels into the gap or seal, the presence of non-flexible contaminants may prevent such expansion and contribute to the increase of stresses and strains within the panels.
  • Another difficulty in applying such sealants is to ensure that the sealant completely fills the gap or joint as it then exists and adequately attaches to the adjacent panels. This may be accomplished by increasing the nozzle size, by slowing the rate at which the applicator is moved while increasing the rate of application, or by hand tooling. Increasing the nozzle size creates problems as the optimum nozzle size is the approximate width of the distance between adjacent panels at the lowermost portion of the gap or joint, which becomes difficult to reach with a full width nozzle. Slowing the rate of application, while effective, slows the construction process, increases manpower requirements, and may require additional time for staging and scaffolding use, all of which are undesirable.
  • a further difficulty in apply such seals is that time necessary to apply multiple seal layers.
  • the second seal cannot be applied before the first seal has sufficiently cured as to prevent the seals from becoming intertwined or not allowing air required to cure and therefore transferring destructive forces between themselves.
  • conventional seals require each seal to be applied and worked by hand to ensure adherence to the adjacent panels and sufficient penetration into the gap or joint. Such conventional seals may require skilled labor, further consuming additional time. It would be an improvement to the art to have a seal system, and a method for application of such seal system, which would provide a seal having a longer duration of use, which would better seal adjacent panels regardless of distance and which could be rapidly applied without the need multiple sized backer rods. It would be a further improvement to increase the speed of application, and to reduce costs, labor requirements, and material needs. It would be a further improvement to have a second seal which would not fail due to the same conditions as a first seal.
  • a seal system and method are provided for slowing deterioration at joints or gaps and for providing a second seal having physical properties different from the first seal.
  • the method for creating a resilient interface to deter water and contaminants from entering the joint or gap adjacent construction panels in accordance with the present invention includes introducing a foaming liquid expansive elastic closed-cell liquid- impermeable sealant between the two adjacent panels with sufficient volume to fill the distance between the two panels and adhere to each.
  • a seal is then introduced above the foamed liquid expansive elastic closed-cell liquid-impermeable sealant with sufficient volume to also fill the distance between the two panels and adhere to each.
  • the seal may be by application of one or more gunnablc sealants, which are well known in the art, typically being sold tn a tube form tor use with a caulking gun.
  • the seal may comprise an extruded resilient member affixed in gap with adhesive sealant on each side.
  • the extruded resilient member may be one or more from the group of neoprene, santoprene, silicone, and urethane.
  • a backer rod may be inserted in the seal between the layering of sealant and the seal to control sealant application depth and to contour the first sealant.
  • the resulting structure of the seal system provides a resilient interface intermediate a first construction panel and a second construction panel including a first seal composed of a foaming, expansive elastic closed-cell liquid-impermeable sealant, potentially a backer rod, and finally a second seal.
  • the objects of my invention are to provide, inter alia, a seal system that:
  • utilizes at least two different seals to increase longevity; • can include a backer rod to absorb some of the load and to provide further impediments to external articles invading the lower seal.
  • Figure 1 is a cross sectional view of the seal without the backer rod.
  • Figure 2 is a cross-sectional view of the seal with the backer rod. DESCRIPTION OF THE INVENTION
  • the seal system 10 comprises of a foaming sealant 20 and a seal 40 applied between adjacent first panel 110 and second panel 120.
  • Foaming sealant 20 is a sprayed-in-place, elastic closed cell hydrophilic/phobic sealant that expands when exposed to air, is impermeable to water and cures rapidly. Because the foaming sealant 20 expands and fills the joint when dispensed, seal 40 may be applied almost immediately thereafter.
  • foaming sealant 20 may be a polyurcthane-based sealant. No hand working of foaming sealant 20 by the applicator is necessary once applied.
  • Foaming sealant 20 expands upon contact with air/moisture and is applied in sufficient volume to expand to completely cover the distance between first panel 110 and second panel 120 and to adhere to first panel surface 111 and to second panel surface 121, forming a first resilient seal.
  • Foaming sealant 20 is elastic, therefore not detaching from first panel surface 111 or from second panel surface 121 during expansive cycling. Moreover the elastic property of foaming sealant 20 permits foaming sealant 20 not to internally shear or fail between first panel surface 111 and to second panel surface 121 during expansive cycling.
  • Seal 40 is seal of any material known in the art.
  • seal 40 is a standard gunnable sealant, including acrylic-latex-based caulk, polysulfide-based caulk, urethane-based caulk, poly-urea-based caulk, and silicone-based caulk.
  • seal 40 is not foaming or expansive, but is instead applied with a compressing "gun," such as a caulking gun, as a highly viscous liquid, which may be worked in place, including by increasing the nozzle size, by slowing the rate at which the applicator is moved while increasing the rate of application, or by hand tooling. Such adjustments may be necessary to ensure seal 40 adheres to both first panel surface 111 and second panel surface 121.
  • seal 40 may comprise an extruded resilient member affixed about gap 50 with adhesive sealant.
  • the extruded resilient member may be one or more from the group of neoprene, santoprene, silicone, and urethane. Iti operation, foaming sealant 20 is applied to gap 50 in sufficient volume to expand to adhere to both first panel surface 111 and second panel surface 121. After time for outer surface 21 of foaming sealant to cure sufficiently to become semi-rigid, seal 40 is applied into gap 50 above foaming sealant 20 in sufficient volume to contact or be worked into contact with panel surface 111 and second panel surface 121. Tn the alternative embodiment depicted in Figure 2, a backer rod 30 may be located between foaming sealant 20 and seal 40.
  • Backer rod 30 is constructed of a foam or other material, which is cut to length on site and which is intended as a spacing member. Backer rod 30 provides additional support for the forces exerted on foaming sealant 20 and on seal 40 from contact with panel surface 111 and/or second panel surface 121. Moreover backer rod 30 serves to prevent contaminants that may pass seal 40 from reaching foaming sealant 20. Finally, backer rod 30 may be inserted immediately after application of foaming sealant 20, including at times prior to the sufficient curing of foaming sealant 20 for outer surface 21 to become semi-rigid. Seal 40 may therefore be applied nearly immediately after application of foaming sealant 20. In operation for the alternative embodiment depicted in Figure 2, foaming sealant

Abstract

A method and structure for providing a resilient seal system in the gap or joint between adjacent construction panels (110, 120) utilizing a foaming expansive elastic closed-cell liquid-impermeable sealant (20) (20), a backer rod (30) and a seal (40). The foaming expansive elastic closed-cell liquid-impermeable sealant (20) (20) is first introduced to the gap or joint (50) between the adjacent construction panels (110, 120). A seal (40) is introduced into or over the gap (50) after the foaming expansive elastic closed- cell liquid-impermeable sealant (20) (20) has sufficiently cured. In alternative embodiment a backer rod (30) is located intermediate the sealant (20) (20) and seal (40) as a spacing member.

Description

TΓΓLE OF THE INVENTION
Method and Device for Resilient Seal System
BACKGROUND OF THE INVENTION
Field of the Invention. The present invention relates generally to systems and
5 methods for creating a seal system between adjacent panels subject to temperature expansion and contraction. More particularly, the present invention is directed to providing seals in construction joints that are resilient, and ideally waterproof, over relatively long periods of time.
Description of the Related Art. Construction panels come in many different sizes
1.0 and shapes and may be used for various purposes, including roadways, sideways, and precast structures. In many situations it is necessary to form a lateral gap or joint in the structure to allow for independent movement of the adjacent sections. Such movement is caused by many factors including expansion and contraction of the adjacent sections due to changes in temperature.
15 Various seal systems and configurations have been used to seal such gaps or joints.
One popular technique involves pressing a flexible rod or tube into the gap or joint The rods or tubes are typically made from some type of foam material and are commonly referred to as "backer rods". The remainder of the gap or joint above the tube is then filled in with a sealant. The backer rod does not add any waterproofing value, as it is only used to
20 control the depth of the sealant. Another method is to use pre-compressed saturated, foam tapes. Pre-compressed foam tapes can require additional time to be sized to the particular distance between any two panels, which may vary slightly or significantly. Such variations also require a variety of sizings to be readily accessible for the particulars of any single gap. Such pre-compressed tapes are expensive. Another method is to combine the sealant
25 and the pre-comprcsscd foam tape; however such a method may require additional time because each joint must be coated with the sealant along its entire length, which may be five to seven feet, allowed to cure, then be compressed into the "precompressed" state for installation.
The seal system is intended to deter water and other contaminants from entering the
30 gap or joint. It is important that the seal be effective over relatively long periods of time and that it function properly even when exposed to extreme weather conditions. Major problems with seals include water penetration and contaminant penetration. Water penetration may result in exposure of -unsealed surfaces or in freezing expansion. In the case of a seal where at least one panel contains wood, water penetration of the seal may result in rotting, particularly as the water may become trapped within the seal or gap. In the case of a seal where at least one panel contains masonry, the water may penetrate into the masonry and expand when cooled below its freezing point, creating internal stresses on the masonry and potentially fracturing the masonry. In all instances, penetration of water may result in further destruction of the seal should the water cool below its freezing point. Contaminant penetration may also have detrimental effects on the gap or seal. As the gap or seal is intended to permit expansion of the panels into the gap or seal, the presence of non-flexible contaminants may prevent such expansion and contribute to the increase of stresses and strains within the panels.
It is known that such flexing and conditions may have a detrimental effect on the seal between the panels. Flexing may fatigue the sealant, which has limited flexibility and elasticity. Weather conditions may alter the flexibility and elasticity of the sealant so as to result in cracking. It is known to introduce the sealant into the space between the adjacent construction panels in two applications, forming two seals, so that if one seal fails, the other may remain waterproof. However the conditions which cause failure of the first seal layer may also cause the second substantially identical seal layer to fail.
Another difficulty in applying such sealants is to ensure that the sealant completely fills the gap or joint as it then exists and adequately attaches to the adjacent panels. This may be accomplished by increasing the nozzle size, by slowing the rate at which the applicator is moved while increasing the rate of application, or by hand tooling. Increasing the nozzle size creates problems as the optimum nozzle size is the approximate width of the distance between adjacent panels at the lowermost portion of the gap or joint, which becomes difficult to reach with a full width nozzle. Slowing the rate of application, while effective, slows the construction process, increases manpower requirements, and may require additional time for staging and scaffolding use, all of which are undesirable.
A further difficulty in apply such seals is that time necessary to apply multiple seal layers. The second seal cannot be applied before the first seal has sufficiently cured as to prevent the seals from becoming intertwined or not allowing air required to cure and therefore transferring destructive forces between themselves. Moreover conventional seals require each seal to be applied and worked by hand to ensure adherence to the adjacent panels and sufficient penetration into the gap or joint. Such conventional seals may require skilled labor, further consuming additional time. It would be an improvement to the art to have a seal system, and a method for application of such seal system, which would provide a seal having a longer duration of use, which would better seal adjacent panels regardless of distance and which could be rapidly applied without the need multiple sized backer rods. It would be a further improvement to increase the speed of application, and to reduce costs, labor requirements, and material needs. It would be a further improvement to have a second seal which would not fail due to the same conditions as a first seal.
BRIEF SUMMARY OF THE INVENTION
In accordance with the present invention, a seal system and method are provided for slowing deterioration at joints or gaps and for providing a second seal having physical properties different from the first seal.
The method for creating a resilient interface to deter water and contaminants from entering the joint or gap adjacent construction panels in accordance with the present invention includes introducing a foaming liquid expansive elastic closed-cell liquid- impermeable sealant between the two adjacent panels with sufficient volume to fill the distance between the two panels and adhere to each. A seal is then introduced above the foamed liquid expansive elastic closed-cell liquid-impermeable sealant with sufficient volume to also fill the distance between the two panels and adhere to each. The seal may be by application of one or more gunnablc sealants, which are well known in the art, typically being sold tn a tube form tor use with a caulking gun. Alternatively, the seal may comprise an extruded resilient member affixed in gap with adhesive sealant on each side.
The extruded resilient member may be one or more from the group of neoprene, santoprene, silicone, and urethane. A backer rod may be inserted in the seal between the layering of sealant and the seal to control sealant application depth and to contour the first sealant.
The resulting structure of the seal system provides a resilient interface intermediate a first construction panel and a second construction panel including a first seal composed of a foaming, expansive elastic closed-cell liquid-impermeable sealant, potentially a backer rod, and finally a second seal. The above described and many other features and attendant advantages of the present invention will become better understood by reference to the following detailed description when taken in conjunction with the accompanying drawings.
Accordingly, the objects of my invention are to provide, inter alia, a seal system that:
• extends the lifespan of the seal;
• extends the lifespan of the adjacent panels;
• utilizes at least two different seals to increase longevity; • can include a backer rod to absorb some of the load and to provide further impediments to external articles invading the lower seal.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross sectional view of the seal without the backer rod. Figure 2 is a cross-sectional view of the seal with the backer rod. DESCRIPTION OF THE INVENTION
As shown in Figure 1, the seal system 10 comprises of a foaming sealant 20 and a seal 40 applied between adjacent first panel 110 and second panel 120.
Foaming sealant 20 is a sprayed-in-place, elastic closed cell hydrophilic/phobic sealant that expands when exposed to air, is impermeable to water and cures rapidly. Because the foaming sealant 20 expands and fills the joint when dispensed, seal 40 may be applied almost immediately thereafter. In one embodiment foaming sealant 20 may be a polyurcthane-based sealant. No hand working of foaming sealant 20 by the applicator is necessary once applied. Foaming sealant 20 expands upon contact with air/moisture and is applied in sufficient volume to expand to completely cover the distance between first panel 110 and second panel 120 and to adhere to first panel surface 111 and to second panel surface 121, forming a first resilient seal. Foaming sealant 20 is elastic, therefore not detaching from first panel surface 111 or from second panel surface 121 during expansive cycling. Moreover the elastic property of foaming sealant 20 permits foaming sealant 20 not to internally shear or fail between first panel surface 111 and to second panel surface 121 during expansive cycling.
Seal 40 is seal of any material known in the art. In the preferred embodiment, seal 40 is a standard gunnable sealant, including acrylic-latex-based caulk, polysulfide-based caulk, urethane-based caulk, poly-urea-based caulk, and silicone-based caulk. As is known in the art seal 40 is not foaming or expansive, but is instead applied with a compressing "gun," such as a caulking gun, as a highly viscous liquid, which may be worked in place, including by increasing the nozzle size, by slowing the rate at which the applicator is moved while increasing the rate of application, or by hand tooling. Such adjustments may be necessary to ensure seal 40 adheres to both first panel surface 111 and second panel surface 121. In an alternative embodiment (not shown), seal 40 may comprise an extruded resilient member affixed about gap 50 with adhesive sealant. The extruded resilient member may be one or more from the group of neoprene, santoprene, silicone, and urethane. Iti operation, foaming sealant 20 is applied to gap 50 in sufficient volume to expand to adhere to both first panel surface 111 and second panel surface 121. After time for outer surface 21 of foaming sealant to cure sufficiently to become semi-rigid, seal 40 is applied into gap 50 above foaming sealant 20 in sufficient volume to contact or be worked into contact with panel surface 111 and second panel surface 121. Tn the alternative embodiment depicted in Figure 2, a backer rod 30 may be located between foaming sealant 20 and seal 40. Backer rod 30 is constructed of a foam or other material, which is cut to length on site and which is intended as a spacing member. Backer rod 30 provides additional support for the forces exerted on foaming sealant 20 and on seal 40 from contact with panel surface 111 and/or second panel surface 121. Moreover backer rod 30 serves to prevent contaminants that may pass seal 40 from reaching foaming sealant 20. Finally, backer rod 30 may be inserted immediately after application of foaming sealant 20, including at times prior to the sufficient curing of foaming sealant 20 for outer surface 21 to become semi-rigid. Seal 40 may therefore be applied nearly immediately after application of foaming sealant 20. In operation for the alternative embodiment depicted in Figure 2, foaming sealant
20 is applied to gap 50 in sufficient volume to expand to adhere to both first panel surface 111 and second panel surface 121. Backer road 30 is inserted into gap 50 atop foaming sealant 20. Seal 40 is then applied into gap 50 above backer rod 30 in sufficient volume to contact or be worked into contact with panel surface 111 and second panel surface 121. The foregoing disclosure and description of the invention is illustrative and explanatory thereof. Various changes in the details of the illustrated construction may be made within the scope of the appended claims without departing from the spirit of the invention. The present invention should only be limited by the following claims and their legal equivalents.

Claims

CLAIMS What is claimed is:
1. A method of providing a resilient barrier between a first construction panel (110) and a second construction panel (120), said first construction panel (110) being adjacent said second construction panel (120), said first construction panel (110) having a first edge (111), said second construction panel having a first edge (121), said first construction panel (110) having thickness, said second construction panel
(120) having thickness, said first edge (111) of said first construction panel (110) being distant said first edge (121) of said second construction panel (120), comprising: a. introducing a foaming expansive elastic closed-cell liquid-impermeable sealant (20) adjacent said first edge (111) of said first construction panel
(110) and adjacent said first edge (121) of said second construction panel (120); b. introducing a seal (40) above said expansive elastic closed-cell liquid- impermeable sealant (20) and adjacent said first construction pane! (110) and adjacent said second construction panel (120).
2. The method of providing a resilient barrier of claim 1, wherein said seal (40) is an application of one or more from the group of acrylic-latex-based caulk, polysulfide- based caulk, urethane-based caulk, poly-urea-based caulk, and silicone-based caulk.
3. The method of providing a resilient barrier of claim 2, further comprising a. introducing a spacing member (30) intermediate said expansive elastic closed-cell liquid-impermeable sealant (20) and said seal (40).
4. The method of providing a resilient barrier of claim 1 wherein said seal (40) comprises an resilient member (40) adhered in place, said resilient member (40) is one or more from the group of neoprenc, santoprene, silicone, and urethane.
5. The method of providing a resilient barrier of claim 4, further comprising a. introducing a spacing member (30) intermediate said expansive elastic closed-cell liquid-impermeable sealant (20) and said seal.
6. A resilient interface intermediate a first construction panel and a second construction panel (120), said first construction panel (110) having a first edge (111), said second construction panel (120) having a first edge (121), said first construction panel (110) having thickness, said second construction, panel (120) having thickness, said first edge (111) of said first construction panel (110) being distant said first edge (121) of said second construction panel (120) comprising: a. a first sealant (20), said first sealant (20) being a foaming expansive elastic closed-cell liquid-impermeable sealant, said first sealant (20) being adjacent said first edge (111) of said first construction panel (110) and adjacent said first edge (121) of said second construction panel (120); b. a seal (40), said seal (40) being above said expansive elastic closed-cell liquid-impermeable sealant (20) and adjacent said first construction panel (110) and adjacent said second construction panel (120)
7. The resilient interface of claim 6, wherein said seal (40) is an application of one or more from the group of acrylic-latex-based caulk, polysulfide-based caulk, uretibtane-based caulk, poly-urea-based caulk, and silicone-based caulk.
8 The resilient interface of claim 7, further comprising a. a spacing member (30) intermediate said expansive elastic closed-cell liquid-impermeable sealant (20) and said seal.
9. The resilient interface of claim 6 wherein said seal (40) comprises an resilient member (40) adhered in place, said resilient member (40) is one or more from the group of neoprene, santoprene, silicone, and urethane.
10 The resilient interface of claim 9, further comprising a. a spacing member (30) intermediate said expansive elastic closed-cell liquid-impermeable sealant (20) and said seal.
PCT/US2006/060096 2005-12-29 2006-10-20 Method and device for resilient seal system WO2007079273A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/320,882 US20070151185A1 (en) 2005-12-29 2005-12-29 Method and device for resilient seal system
US11/320,882 2005-12-29

Publications (2)

Publication Number Publication Date
WO2007079273A2 true WO2007079273A2 (en) 2007-07-12
WO2007079273A3 WO2007079273A3 (en) 2007-12-27

Family

ID=38222893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/060096 WO2007079273A2 (en) 2005-12-29 2006-10-20 Method and device for resilient seal system

Country Status (2)

Country Link
US (1) US20070151185A1 (en)
WO (1) WO2007079273A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013097738A1 (en) * 2011-12-28 2013-07-04 珠海天威飞马打印耗材有限公司 Toner cartridge sealing structure and method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7661232B2 (en) * 2005-06-28 2010-02-16 Easi-Set Industries, Inc. System and method for a secondary water drainage system with street level leak detection
US9200437B1 (en) 2008-12-11 2015-12-01 Emseal Joint Systems Ltd. Precompressed foam expansion joint system transition
US10066387B2 (en) * 2008-12-11 2018-09-04 Emseal Joint Systems, Ltd. Precompressed foam expansion joint system transition
US8318304B2 (en) * 2009-11-24 2012-11-27 Alva-Tech, Inc. Intumescent rod
US20120023846A1 (en) * 2010-08-02 2012-02-02 Mattox Timothy M Intumescent backer rod
US8959872B2 (en) * 2012-01-13 2015-02-24 The Boeing Company Systems, methods, and components for the construction and disassembly of raised panel assemblies
US8499515B1 (en) * 2012-01-13 2013-08-06 The Boeing Company Systems, methods, and components for the construction and disassembly of raised panel assemblies
US20150052841A1 (en) * 2013-02-05 2015-02-26 Tindall Corporation Structure including non-structural joint
JP6512747B2 (en) * 2013-06-28 2019-05-15 ザ・ボーイング・カンパニーThe Boeing Company System, method and components for assembly and disassembly of a raised panel assembly
WO2015027155A1 (en) 2013-08-22 2015-02-26 Tindall Corporation Cruciform tower
JP6275532B2 (en) * 2014-04-09 2018-02-07 旭化工株式会社 Non-combustible, heat-insulating, elastic stretch protective material
JP6409356B2 (en) * 2014-06-20 2018-10-24 株式会社大林組 Panel structure and method for manufacturing panel structure
DE102015116591A1 (en) * 2015-09-30 2017-03-30 Airbus Operations Gmbh Profile for joining a floor structure and sealing system for a floor structure
US10815658B2 (en) * 2016-12-09 2020-10-27 Jd Russell Company Concrete expansion joint insert including a sealant on one edge
US11821200B2 (en) * 2022-02-28 2023-11-21 Schul International Co., Llc Interface transition and environmental barrier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3492250A (en) * 1963-05-21 1970-01-27 Du Pont Closed cell foam
US4922676A (en) * 1989-01-23 1990-05-08 Spronken John R Closure and seal for prefabricated building panels
US5335466A (en) * 1992-12-01 1994-08-09 Langohr Donald R Wide vertical joint seal
US20040035075A1 (en) * 2002-08-23 2004-02-26 Trout John T. Joint materials and configurations

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3334557A (en) * 1965-04-29 1967-08-08 Phelan Faust Paint Mfg Company Polyurethane concrete slab sealer
GB1134625A (en) * 1965-09-27 1968-11-27 Ici Ltd Building panel
US3827204A (en) * 1972-03-14 1974-08-06 Thiokol Chemical Corp Sealed joint for sectionalized flooring and method of making the same
US4058947A (en) * 1975-09-17 1977-11-22 Johns-Manville Corporation Fire resistant joint system for concrete structures
US5007765A (en) * 1988-09-16 1991-04-16 Dow Corning Corporation Sealing method for joints
CA1280007C (en) * 1989-04-19 1991-02-12 Konrad Baerveldt Joint filler
JPH0539985U (en) * 1991-10-30 1993-05-28 株式会社サクラクレパス Applicator
US6418688B1 (en) * 1999-04-05 2002-07-16 Louis T Jones, Jr. Joint forming systems
US20040045075A1 (en) * 2002-09-09 2004-03-11 Yan Suen Ching Velcro adjustable strap
US6928777B2 (en) * 2002-11-15 2005-08-16 3M Innovative Properties Company Method and apparatus for firestopping a through-penetration
US6666618B1 (en) * 2002-11-25 2003-12-23 Richard James Anaya System and method for sealing roadway joints
US7665256B2 (en) * 2004-08-24 2010-02-23 3M Innovative Properties Company Method and apparatus for firestopping a through-penetration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3492250A (en) * 1963-05-21 1970-01-27 Du Pont Closed cell foam
US4922676A (en) * 1989-01-23 1990-05-08 Spronken John R Closure and seal for prefabricated building panels
US5335466A (en) * 1992-12-01 1994-08-09 Langohr Donald R Wide vertical joint seal
US20040035075A1 (en) * 2002-08-23 2004-02-26 Trout John T. Joint materials and configurations

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013097738A1 (en) * 2011-12-28 2013-07-04 珠海天威飞马打印耗材有限公司 Toner cartridge sealing structure and method

Also Published As

Publication number Publication date
US20070151185A1 (en) 2007-07-05
WO2007079273A3 (en) 2007-12-27

Similar Documents

Publication Publication Date Title
US20070151185A1 (en) Method and device for resilient seal system
EP3067482B1 (en) Expansion joint seal system
US9739049B1 (en) Expansion joint for longitudinal load transfer
US11142904B2 (en) Continuous wall assemblies and methods
US9982428B2 (en) Expansion joint seal with surface load transfer, intumescent, and internal sensor
US10316661B2 (en) Water and/or fire resistant tunnel expansion joint systems
CA3070161C (en) Below grade, blind side, dual waterproofing membrane assembly incorporating a sheet membrane with adhesive to fully bond to concrete/shotcrete, and a method of making, and using same
US20140151968A1 (en) Coiled precompressed, precoated joint seal and method of making
CN111980181B (en) Underground windowless dual waterproofing membrane assembly and methods of making and using same
CN107842043B (en) Flexible waterproof structure of deformation joint and manufacturing method
KR101566591B1 (en) Reinforcing method for reinforcing the gap between window frame and wall and reinforcing sheet for crack repair of building
KR100597579B1 (en) Method of the adiabatic and waterproof panel construction for structural building thereof
KR101884202B1 (en) complex water proofing method having joint reinforcement structure
KR100712129B1 (en) Waterproof structure of connecting part of concrete structure and the method of constructing thereof
AU2002100047A4 (en) Spray-on joint seal protection
EP0262968A2 (en) Method of forming weathertight seal
JP2017031756A (en) Joint filler material and installation method thereof for exterior finishing boards of structure with ventilation layer
KR200370359Y1 (en) Method of the adiabatic and waterproof panel

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06839482

Country of ref document: EP

Kind code of ref document: A2