WO2007066052A2 - Assemblage entre une piece metallique et une piece en materiau ceramique a base de sic et/ou de c. - Google Patents

Assemblage entre une piece metallique et une piece en materiau ceramique a base de sic et/ou de c. Download PDF

Info

Publication number
WO2007066052A2
WO2007066052A2 PCT/FR2006/051318 FR2006051318W WO2007066052A2 WO 2007066052 A2 WO2007066052 A2 WO 2007066052A2 FR 2006051318 W FR2006051318 W FR 2006051318W WO 2007066052 A2 WO2007066052 A2 WO 2007066052A2
Authority
WO
WIPO (PCT)
Prior art keywords
piece
assembly according
intermediate piece
ceramic
ceramic material
Prior art date
Application number
PCT/FR2006/051318
Other languages
English (en)
Other versions
WO2007066052A3 (fr
Inventor
Joël Michel BENOIT
Jean-François FROMENTIN
Valérie CHAUMAT
Olivier Gillia
Nikolas Eustathopoulos
Fiqiri Hodaj
Alexey Koltsov
Original Assignee
Snecma
Commissariat A L'energie Atomique
Institut National Polytechnique De Grenoble
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma, Commissariat A L'energie Atomique, Institut National Polytechnique De Grenoble filed Critical Snecma
Priority to CN200680046270XA priority Critical patent/CN101326139B/zh
Priority to CA2632731A priority patent/CA2632731C/fr
Priority to EP06842129.6A priority patent/EP1971564B1/fr
Priority to US12/096,663 priority patent/US8177497B2/en
Priority to JP2008543882A priority patent/JP2009518270A/ja
Publication of WO2007066052A2 publication Critical patent/WO2007066052A2/fr
Publication of WO2007066052A3 publication Critical patent/WO2007066052A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/025Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of glass or ceramic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/78Other construction of jet pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/78Other construction of jet pipes
    • F02K1/82Jet pipe walls, e.g. liners
    • F02K1/822Heat insulating structures or liners, cooling arrangements, e.g. post combustion liners; Infra-red radiation suppressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/08Plants including a gas turbine driving a compressor or a ducted fan with supplementary heating of the working fluid; Control thereof
    • F02K3/10Plants including a gas turbine driving a compressor or a ducted fan with supplementary heating of the working fluid; Control thereof by after-burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/22Nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/123Metallic interlayers based on iron group metals, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/16Silicon interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/237Brazing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/64Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
    • F05D2230/642Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins using maintaining alignment while permitting differential dilatation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/226Carbides
    • F05D2300/2261Carbides of silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05004Special materials for walls or lining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12326All metal or with adjacent metals with provision for limited relative movement between components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/125Deflectable by temperature change [e.g., thermostat element]
    • Y10T428/12507More than two components

Definitions

  • the invention relates to an assembly between a metal part and a part made of ceramic material based on silicon carbide (SiC) and / or carbon (C).
  • This invention finds a preferred application in the field of aeronautics, for the assembly of a part of refractory metal alloy, such as an alloy based on nickel (Ni) or cobalt (Co), and a part in ceramic matrix composite material, or CMC part.
  • the CMC parts concerned comprise a matrix based on SiC, C or a so-called "mixed" matrix of C and SiC, reinforced by fibers of SiC and / or C.
  • Said matrix can be single-phase (for example entirely in SiC) or multiphase (it may contain, for example, at least one other phase with self-healing property as described in document FR 2 732 338).
  • CMC parts are used in aircraft turbojet engines to replace the most thermo-mechanically exposed mechanical parts, because they retain good mechanical properties at high temperatures, require less cooling, and are generally lighter.
  • the object of the invention is to overcome these drawbacks, or at least to mitigate them, by proposing an assembly which makes it possible, on the one hand, to compensate for the difference in expansion between a metal part and a part made of ceramic material based SiC and / or C and, on the other hand, to avoid or limit the formation of undesirable chemical compounds.
  • said part made of ceramic material based on SiC and / or C, this assembly being such that:
  • the second intermediate piece is made of another ceramic material (ie a ceramic material different from that of said piece of ceramic material), this other ceramic material being chemically less reactive towards metals than SiC or C, and having a coefficient of expansion lower than that of the material constituting said metal part; and -
  • the first intermediate piece is metallic and able to deform to compensate for the difference in expansion between said metallic piece and the second intermediate piece.
  • said ceramic part can be a solid SiC part or a CMC part of the type described above.
  • the invention therefore proposes to interpose between the ceramic and metallic parts two intermediate parts having distinct functions.
  • the first intermediate part makes it possible to compensate, by deforming, the expansion differences between the ceramic and metallic parts.
  • the latter is composed of a layer of ductile metallic material.
  • the part generally has a massive structure and forms a cushion of material capable of being deformed by shearing.
  • ductile materials which can be used, there may be mentioned nickel, palladium, gold, or alloys comprising these different metals.
  • nickel-based alloys are chosen, these exhibiting good resistance to high temperature and a limited cost.
  • said deformation is obtained by choosing a deformable structure for this part.
  • This structure can, for example, be spiral spring or bellows.
  • the part is then not necessarily made of ductile material.
  • this part can be made of an alloy based on Ni or Co.
  • the second intermediate piece aims to chemically protect said piece of ceramic material by preventing it from attacking by the liquid solder used, which generally comprises metals reactive with respect to SiC or C.
  • the liquid solder used which generally comprises metals reactive with respect to SiC or C.
  • the second intermediate part made of another ceramic material, less reactive with respect to metals (more particularly transition metals), such as an oxide or a nitride.
  • the second intermediate part has a higher rigidity and / or resistance to rupture than that of the part made of ceramic material.
  • the rigidity of the second intermediate piece makes it possible to form a rigid support for the first intermediate piece, which ensures the deformation of the latter, and makes it possible to attenuate the mechanical stresses exerted on the part made of ceramic material. Its resistance to rupture ensures the good mechanical strength of the assembly.
  • the second intermediate part thus makes it possible to mechanically protect the part made of ceramic material which, by nature, is generally fragile.
  • the second intermediate part has a coefficient of expansion sufficiently close to that of the part made of ceramic material, in order to limit the differences in expansion between these parts.
  • the latter is produced in mullite (an oxide) or in aluminum nitride AIN (a nitride).
  • Mullite is an alumina silicate, defined compound of formula (3AI2O3, 2Si ⁇ 2) obtainable by heating silica in the presence of alumina.
  • alumina AI 2 O 3
  • alumina can be used for aeronautical applications which require refractory assemblies.
  • the first brazing composition used to assemble the first intermediate part to the metal part and / or to the second intermediate part is based on Ni and comprises an atomic proportion of Ti less than or of the order of 10%.
  • this first composition also comprises the following elements: Fe, Cr and Si.
  • the brazing compositions comprising the elements Ni, Fe, Cr, Si and Ti will be denoted hereinafter NiFeCrSiTi.
  • Ni-based brazing compositions known as reactive (because they give rise to new intermetallic chemical compounds), are already known but in the present case, the proportion of Ti must be limited because this element has a high reactivity vis vis-à-vis the second intermediate piece, which would lead to the birth of fragile intermetallic phases.
  • said first brazing composition preferably comprises, in atomic percentages: between 3 and 6% (preferably between 3.5 and 5.5%) of Ti when the second intermediate piece is made of AIN, and between 6 and 10% of Ti when the second intermediate piece is made of mullite.
  • the second brazing composition used to assemble the second intermediate piece of AIN or mullite to the piece of ceramic material based on SiC and / or C is an alloy based on Si.
  • this second brazing composition essentially comprises, in atomic percentages: 60% to 97% of silicon Si and 40 to 3% of zirconium Zr and, preferably, it is a eutectic mixture of silicide of Zirconium ZrSi 2 and Si.
  • the liquidus temperature of a eutectic mixture ZrSi 2 -Si is around 1370 ° C., a temperature generally higher than the temperature at the start of melting of aeronautical metal alloys used for the metal part and / or the first intermediate part (for example, the temperature at which melting of the “Hastelloy X” alloy begins, described below, is 1310 ° C.).
  • a first cycle typically carried out up to 1400 ° C. to carry out the assembly of the part made of ceramic material to the second intermediate piece
  • a second cycle typically carried out up to 1250 ° C., temperature higher than the liquidus temperature of the first brazing composition, but at which said aeronautical metal alloys do not degrade.
  • This second cycle makes it possible to carry out the final assembly by assembling the metal parts together, that is to say the basic metal part and the first metal intermediate part, and with the parts made of ceramic materials, that is to say - say the second intermediate piece and the piece made of ceramic material based on SiC and / or C.
  • the second brazing composition consists essentially of a mixture of praseodymium silicide (PrSi 2 ) and Si, in which the silicon (Si) is in the majority and the praseodymium (Pr) is in the minority, in atomic proportions.
  • a brazing composition is new and can be used more generally for the assembly by brazing of two parts, one of the parts being made of SiC-based ceramic. and / or C and the other part being ceramic based on SiC, C, AIN or mullite.
  • said mixture of PrSi 2 and Si comprises, in atomic percentages 78% to 97% of Si and 22 to 3% of Pr and, preferably, consists of an eutectic mixture of PrSi 2 and Si.
  • the melting temperature of the PrSÎ 2 -Si brazing composition is relatively low and the assembly can be carried out by brazing all the parts of the assembly in a single step.
  • liquidus temperature of a eutectic mixture of PrSi 2 and Si is approximately 1212 0 C, and therefore approximately 158 ° C lower than the liquidus temperature of a eutectic mixture of ZrSi 2 and Yes.
  • the atomic proportion of the mixture of PrSi 2 and Si is less close to the eutectic, in particular between 78 and 81% of Si and 22 to 19% of Pr, or between 85 and 97% of Si and 15 to 3% of Pr, it will then be necessary to proceed in two stages, as detailed above, to avoid the fusion of the metallic parts.
  • solder composition PrSi 2 -Si it is therefore possible to braze all the parts of the assembly together, in a single step, at a temperature higher than the liquidus temperatures of said first and second solder compositions, but which remains low enough not to degrade the alloys present.
  • the subject of the invention is also a method of assembly by brazing using such a composition.
  • FIG. 1 schematically shows an assembly according to a first embodiment of the invention
  • FIG. 2 schematically shows an assembly according to a second embodiment of the invention.
  • FIG. 1 schematically shows an assembly according to a third embodiment of the invention.
  • FIG. 1 schematically shows an assembly according to a third embodiment of the invention.
  • FIG. 1 shows an assembly according to a third embodiment of the invention.
  • FIG. 1 shows an assembly according to a third embodiment of the invention.
  • FIG. 1 shows an assembly according to a third embodiment of the invention.
  • FIG. 1 shows an assembly according to a third embodiment of the invention.
  • FIG. 1 schematically shows an assembly according to a third embodiment of the invention.
  • FIG. 1 schematically shows an assembly according to a third embodiment of the invention.
  • FIG. 1 schematically shows an assembly according to a third embodiment of the invention.
  • FIG. 1 schematically shows an assembly according to a third embodiment of the invention.
  • FIG. 1 schematically shows an assembly according to a third embodiment of the invention.
  • FIG. 1 schematically shows an assembly according to a third embodiment of the invention.
  • FIG. 1 shows an assembly according to a third embodiment of the invention.
  • An alloy of the "Inconel 625" type typically comprises, in percentages by weight: at most 0.4% of AI; at most 0.1% of C; 20 to 23% Cr; at most 1% Co; at most 5% Fe; at most 0.5% of Mn; 8-10% Mo; 3.15 to 4.15% Niobium Nb; at most 0.015% P; at most 0.5% Si; at most 0.015% S; at most 0.4% Ti; and a balance in Ni.
  • CMC ceramic matrix composite part 7
  • the first brazing composition 2 used for brazing the metal part 1 to the first intermediate part 3 and for brazing the first intermediate part 3 to the second intermediate part 5 is of the NiFeCrSiTi type and essentially comprises (ie, apart from impurities), in mass percentages : 2.8% Fe; 7% Cr; 6.2% Si; 4.5% of Ti and a balance in Ni.
  • the second brazing composition 6 used to braze the second intermediate piece 5 to the piece of ceramic material 7 is a eutectic mixture of Zr 2 Si and Si.
  • the method of assembling the metallic 1 and ceramic 7 parts comprises two thermal cycles of temperature rise and fall, and essentially comprises the following steps:
  • the second brazing composition 6 is arranged on the surfaces to be assembled of the part made of ceramic material 7 and of the second intermediate part 5; - The assembly thus formed (parts 5 and 7 and composition 6) is raised in temperature beyond the liquidus temperature of the second brazing composition 6, then cooled;
  • the first brazing composition 2 is arranged on the surfaces to be assembled of the first and second intermediate parts 3 and 5 and of the metal part 1;
  • the surfaces of the parts of parts 5 and 7 to be assembled, respectively in AIN and CMC, are degreased in an organic solvent for example of the acetone, ester, ether, alcohol or a mixture of these.
  • the surfaces of the parts of parts 7 and 5 are coated with the suspension of the second brazing composition 6, formed from a eutectic mixture of ZrSi 2 and Si.
  • the parts in the vicinity of the CMC / AIN joint are covered with a suspension said anti-wetting agent which cannot be wetted by said composition. This suspension prevents the brazing composition from flowing out of the CMC / AIN joint.
  • the assembly thus formed, ready to be brazed, is placed in a vacuum oven or in a neutral gas atmosphere.
  • a first thermal cycle with a temperature plateau is typically carried out at 140 ° C. for 5 to 10 minutes. This temperature is higher than the liquidus temperature of the composition of the solder (at least 25 ° C above).
  • the assembly is then cooled to ambient temperature at a rate for example of 5 ° C. per minute.
  • the CMC / AIN assembly is removed from the oven.
  • a continuous brazing bead is observed between the CMC and I 1 AIN.
  • the assembly is cleaned with acetone and then ethanol before the second brazing with the first intermediate piece 3 and the metallic part 1.
  • the first intermediate piece 3 is made of Ni base alloy of the "Inconel 625" type.
  • metal part 1 is made of Ni base alloy of the "Hastelloy X" type.
  • the CMC piece 7, the bead of the second brazing composition 6 and the edges of the piece 5 in AIN are covered with a so-called anti-wetting suspension, which cannot be wetted by the first brazing composition of the NiFeCrSiTi type.
  • the latter is applied in the form of a ribbon on the AIN.
  • the first intermediate piece 3 is deposited.
  • This part 3 is then covered with a brazing tape of NiFeCrSiTi type and then with the part metallic 1.
  • the edges of parts 1 and 3 can be coated with an anti-wetting agent which cannot be wetted with the NiFeCrSiTi brazing composition.
  • this anti-wetting coating depends on the shape of this piece.
  • the assembly CMC / brazing ZrSi 2 -Si / AIN / brazing NiFeCrSiTi / base alloy Ni / brazing NiFeCrSiTi / base alloy Ni, ready to be brazed, is placed in an oven under vacuum or in a neutral gas atmosphere.
  • a second thermal cycle is carried out with a temperature plateau at 110O 0 C for 30 minutes and then a second plateau at 1250 0 C for 15 minutes. This temperature of 1250 ° C. is higher than the temperature of the liquidus of the NiFeCrSiTi brazing composition (at least 25 ° C. above).
  • the assembly is then cooled to room temperature at the rate, for example, of 5 ° C per minute.
  • the second brazing composition 6 used in the first example given above is replaced by an eutectic mixture of PrSi 2 and Si.
  • the assembly process metallic 1 and ceramic 7 parts comprises a single thermal cycle of temperature rise and fall, which essentially comprises the following stages:
  • the second brazing composition 6 is arranged on the surfaces to be assembled of the part made of ceramic material 7 and of the second intermediate part 5; and the first brazing composition 2 is arranged on the surfaces to be joined of the first and second intermediate pieces 3 and 5 and of the metallic piece 1; and
  • the carbon can be applied: 1) in the form of graphite powder mixed or not with an organic binder, 2) by deposition techniques of the chemical vapor deposition or CVD (for chemical vapor deposition) type or physical deposition in vapor phase or PVD (for "physical vapor deposition "), 3) simply by rubbing the surfaces with a graphite lead (for example a pencil lead).
  • the recommended carbon thickness is around 1 micrometer.
  • the parts in the vicinity of the joint are covered with a so-called suspension anti-wetting agent not wettable by the said composition
  • This suspension prevents the solder from flowing out of the CMC / AIN joint.
  • the AIN is covered with a solder tape of NiFeCrSiTi type. Over this solder tape, the first intermediate piece 3 in Ni base alloy is put in place This piece 3 is then covered with a solder tape of NiFeCrSiTi type and then with the metal piece in massive "Hastelloy X".
  • the edges of the pieces in metal alloy 1 and 3 can be r coated with anti-wetting agent, not wettable with the NiFeCrSiTi composition.
  • this anti-wetting coating depends on the shape of this piece.
  • the assembly CMC / brazing PrSi 2 -Si / AIN / brazing NiFeCrSiTi / base alloy Ni / brazing NiFeCrSiTi / base alloy Ni, ready to be brazed, is placed in an oven under vacuum (or in an atmosphere of neutral gas).
  • a single thermal cycle is carried out with a temperature plateau at HOO 0 C for 30 min. then a second level at 1250 0 C for 15 min. This temperature of 1250 ° C. is higher than the liquidus temperature of the NiFeCrSiTi type solder and that of the second PrSi 2 -Si solder composition (at least 25 ° C. above).
  • the assembly is then cooled to room temperature at the rate, for example, of 5 ° C per minute.
  • the second intermediate piece in AIN brazed either with ZrSi 2 -Si (in the first example) or with PrSi 2 -Si (in the second example), is replaced by a piece 5 in mullite.
  • the second intermediate piece in AIN from the previous examples is replaced by a piece 5 of mullite and a metallization is carried out on the face of this part 5 facing towards part 3.
  • This metallization is produced with a brazing composition known under the brand "TiCuSiI" comprising in mass percentages around 68.8% of Ag, 26.7% of Cu and 4.5% of Ti.
  • brazing composition based on palladium Pd and on Ni, preferably comprising, in atomic proportions, between 35 and 55% of Pd and a balance of Ni (that is to say between 50 and 69% of Pd and between 50 and 31% of Ni in percentages by mass), can then be used to assemble the first and second intermediate pieces 3 and 5 together and to also assemble the metallic piece with the first intermediate piece.
  • the method of assembling the metallic 1 and ceramic 7 pieces includes two thermal cycles and an additional metallization step between the first brazing of the piece of ceramic material 7 with the second intermediate piece 5 and the complete brazing of the assembly.
  • the metal part made of Ni-based alloy used in the first example given above is replaced by a metal part 1 made of Co-based alloy, for example the alloy known under the brand "Haynes 188" and typically comprising in percentages by weight: 20 to 24% of Ni, 20 to 24% of Cr, 13 to 15% of W, at most 3% of Fe, 0.2 to 0.5% of Si, at most 1.25% of Mn, 0.5 to 0.15% of C, at least 0.015% of B, 0.02 to 0.12% of La, and a balance in Co
  • the method of assembling the metallic 1 and ceramic 7 parts comprises two thermal cycles with a first temperature rise and fall cycle with a plateau at 1400 ° C. for 5 to 10 min. and a second cycle with a plateau at 1250 ° C. for 15 min.
  • the first intermediate piece 3 may have a massive structure, as shown in FIG. 1. This piece 3 is then made of material that is sufficiently ductile to deform and compensate for the difference in expansion between the metallic and ceramic pieces. Of course, the dimensions of this first intermediate piece 3 and, in particular, its thickness, must be sufficient for this piece to be able to play its role. For example, for a piece of ceramic material 7 and a metal piece 1 both cylindrical of revolution, 10 mm in diameter and 5mm thick, the first intermediate piece 3 is chosen with a cylindrical shape of revolution of 10 mm in diameter and 2 mm thick and, the first intermediate piece also of cylindrical shape of revolution 10 mm in diameter and 1 mm thick.
  • this piece 3 is not necessarily made of ductile alloy.
  • this piece 3 can be produced from an alloy of the "Inconel 601" type (registered trademark) typically comprising, in percentages by weight, 1 to 1.7% of AI, at most 0.1% of C , 21 to 25% of Cr, at most 1% of Cu, at most 1% of Mn, 58 to 63% of Ni, at most 0.5% of Si, at most 0.015% of S, and a balance in Fe .
  • FIG. 2 An example of a first intermediate piece 3 with a deformable structure is shown in FIG. 2.
  • This piece is formed of a deformable sheet 3 having flat areas 11, 15 brazed and inclined areas 10 which succeed one another to form concentric undulations.
  • the ply 3 comprises an inner flat area 11, substantially circular around an axis A, an outer flat area 15 substantially annular, coaxial with the inner area 11, and with an inner diameter greater than the diameter of said inner area, and at at least one intermediate, annular flat area 13 located between zones 11 and 15 and coaxial with them.
  • These zones 11, 13, 15 are connected to each other by inclined zones 10 having a symmetry of revolution with respect to the axis A.
  • the internal flat zone 11 is brazed to the metal part 1 while the external flat zone 15 is brazed to the second intermediate piece 5 or vice versa.
  • the intermediate ripples (formed by zones 10 and 13) remain free.
  • the intermediate piece 3 is formed by several ribbons folded in accordion and arranged radially around a fixed point, preferably central. These ribbons are arranged in several radial directions around said fixed point, which constitutes an arrangement of concentric undulations.
  • the deformable structure consists of several parts including a spiral spring 3 arranged in a circle whose main plane is substantially parallel to the surfaces of parts 1 and 5 to be assembled, so that these surfaces rest on the side faces of the spring.
  • This structure may also include at least one spiral spring of rectilinear shape, placed in the center of the circular spring 3 (not visible in FIG. 3), the axis of which is parallel to said surfaces.
  • the assembly of the invention can be implemented in a turbomachine and, more particularly, in a turbojet engine.
  • the invention may relate to a turbomachine nozzle comprising at least one assembly as mentioned above, in which the metal part is a casing or a lever of this nozzle and the part made of ceramic material is a component of this nozzle.
  • the invention also relates to a turbomachine combustion chamber comprising at least one assembly as mentioned above, in which said metal part is a casing, a seal or, in general, a component part of this chamber, and said part. in ceramic material is another component part of this chamber.
  • the invention also relates to post-combustion equipment of a turbomachine comprising at least one assembly as mentioned above, in which the metal part is an after-combustion casing or a platform, and the part made of ceramic material is a flame catching arm.

Abstract

Assemblage entre une pièce métallique (1) et une pièce en matériau céramique (7) réalisée en un matériau céramique à base de SiC et/ou de C, caractérisé en ce qu'il comporte une structure empilée comprenant les éléments suivants assemblés deux à deux, dans cet ordre, par brasage : - ladite pièce métallique (1) ; - une première pièce intercalaire (3) ; - une deuxième pièce intercalaire (5) ; et - ladite pièce en matériau céramique (7), dans lequel : - la deuxième pièce intercalaire (5) est réalisée en un autre matériau céramique, chimiquement moins réactif vis-à-vis des métaux que SiC ou C, qui présente un coefficient de dilatation inférieur à celui du matériau constitutif de ladite pièce métallique (1) ; et - la première pièce intercalaire (3) est métallique et apte à se déformer pour compenser l'écart de dilatation entre ladite pièce métallique (1) et la deuxième pièce intercalaire (5). Utilisation de cet assemblage dans une turbomachine.

Description

Assemblage entre une pièce métallique et une pièce en matériau céramique à base de SiC et/ou de C.
L'invention se rapporte à un assemblage entre une pièce métallique et une pièce en matériau céramique à base de carbure de silicium (SiC) et/ou de carbone (C).
Cette invention trouve une application privilégiée dans le domaine de l'aéronautique, pour l'assemblage d'une pièce en alliage métallique réfractaire, comme un alliage à base de nickel (Ni) ou de cobalt (Co), et d'une pièce en matériau composite à matrice céramique, ou pièce CMC. Plus particulièrement, les pièces CMC concernées comprennent une matrice à base de SiC, de C ou une matrice dite "mixte" de C et de SiC, renforcée par des fibres de SiC et/ou de C. Ladite matrice peut être monophasée (par exemple entièrement en SiC) ou multiphasée (elle peut contenir, par exemple, au moins une autre phase à propriété auto-cicatrisante telle que décrite dans le document FR 2 732 338).
Les pièces CMC sont utilisées dans les turboréacteurs d'avion en remplacement des pièces mécaniques les plus exposées thermo- mécaniquement, car elles conservent de bonnes propriétés mécaniques à hautes températures, nécessitent un refroidissement moindre, et sont généralement plus légères.
Un problème se pose toutefois pour fixer ces pièces en matériau céramique aux pièces métalliques qui les environnent.
Parmi les techniques d'assemblage utilisées à ce jour, on trouve l'assemblage mécanique classique, de type rivetage ou boutonnage. Ce type d'assemblage se révèle souvent inadapté pour des raisons d'encombrement, de masse et/ou de mauvais comportement dynamique.
On connaît par ailleurs des techniques d'assemblage par brasage pour assembler deux pièces en matériau céramique, entre elles. Toutefois, ces techniques sont difficilement utilisables pour braser ensemble une pièce en matériau céramique et une pièce métallique, en raison des comportements thermo-mécaniques et physico-chimiques très différents des matériaux céramique et métallique. En particulier, on se trouve confronté à une différence de dilatation très importante entre les pièces en présence. En effet, Ie coefficient de dilatation d'un alliage métallique est souvent deux à cinq fois supérieur à celui des matériaux céramiques utilisés. Ainsi, lors du refroidissement consécutif à la fusion de la composition de brasure, le retrait relatif de la pièce métallique engendre une zone en compression, respectivement en traction, dans les zones adjacentes au joint de brasure de la pièce en matériau céramique, respectivement de la pièce métallique. Il s'ensuit une flexion de l'ensemble faisant naître des contraintes pouvant être à l'origine de la rupture de l'une des pièces, généralement la pièce en matériau céramique qui est la plus fragile, et une mauvaise tenue du joint de brasure du fait de sa déformation localisée.
En outre, en raison de la forte réactivité de C ou de SiC vis-à-vis des métaux (plus particulièrement des métaux de transition), on constate généralement la formation de composés chimiques fragiles de type carbures ou siliciures entre les pièces céramique et métallique. Ces composés fragiles augmentent la fragilité de l'assemblage.
L'invention a pour but de pallier ces inconvénients, ou tout au moins de les atténuer, en proposant un assemblage qui permette, d'une part, de compenser l'écart de dilatation entre une pièce métallique et une pièce en matériau céramique à base de SiC et/ou de C et, d'autre part, d'éviter ou de limiter la formation de composés chimiques indésirables.
Ce but est atteint grâce à un assemblage selon l'invention comportant une structure empilée comprenant les éléments suivants assemblés deux à deux, dans cet ordre, par brasage ;
- ladite pièce métallique ;
- une première pièce intercalaire ;
- une deuxième pièce intercalaire ; et
- ladite pièce en matériau céramique à base de SiC et/ou de C, cet assemblage étant tel que :
- la deuxième pièce intercalaire est réalisée en un autre matériau céramique (i.e. un matériau céramique différent de celui de ladite pièce en matériau céramique), cet autre matériau céramique étant chimiquement moins réactif vis-à-vis des métaux que SiC ou C, et présentant un coefficient de dilatation inférieur à celui du matériau constitutif de ladite pièce métallique ; et - la première pièce intercalaire est métallique et apte à se déformer pour compenser l'écart de dilatation entre ladite pièce métallique et la deuxième pièce intercalaire.
On notera que ladite pièce céramique peut être une pièce en SiC massif ou une pièce CMC du type précédemment décrit.
L'invention propose donc d'intercaler entre les pièces céramique et métallique deux pièces intercalaires ayant des fonctions distinctes.
La première pièce intercalaire permet de compenser, en se déformant, les écarts de dilatation entre les pièces céramique et métallique.
Selon un premier mode de réalisation de la première pièce intercalaire, celle-ci est composée d'une couche de matériau métallique ductile. Dans ce cas, la pièce présente généralement une structure massive et forme un coussin de matière apte à se déformer par cisaillement. Parmi les matériaux ductiles susceptibles d'être utilisés, on peut citer le nickel, le palladium, l'or, ou des alliages comprenant ces différents métaux. Avantageusement, pour les applications aéronautiques qui nécessitent des assemblages réfractaires, on choisit les alliages à base de nickel, ceux-ci présentant une bonne tenue à haute température et un coût limité.
Selon un deuxième mode de réalisation de la première pièce intercalaire, ladite déformation est obtenue en choisissant une structure déformable pour cette pièce. Cette structure peut, par exemple, être à ressort à spirale ou à soufflet. La pièce n'est alors pas nécessairement en matériau ductile. Pour garantir de bonnes propriétés mécaniques et une bonne tenue en température, cette pièce peut être réalisée en alliage à base de Ni ou de Co.
La deuxième pièce intercalaire vise à protéger chimiquement ladite pièce en matériau céramique en empêchant l'attaque de celle-ci par la brasure liquide utilisée, qui comprend généralement des métaux réactifs vis-à-vis de SiC ou de C. Ainsi, on intercale entre la pièce en matériau céramique et les pièces métalliques de l'assemblage la deuxième pièce intercalaire, réalisée en un autre matériau céramique, moins réactif vis-à-vis des métaux (plus particulièrement des métaux de transition), comme un oxyde ou un nitrure.
Avantageusement, la deuxième pièce intercalaire présente une rigidité et/ou une résistance à Ia rupture plus élevée que celle de la pièce en matériau céramique. La rigidité de la deuxième pièce intercalaire permet de former un appui rigide pour la première pièce intercalaire, ce qui assure la déformation de cette dernière, et permet d'atténuer les contraintes mécaniques s'exerçant sur la pièce en matériau céramique. Sa résistance à la rupture permet de garantir la bonne tenue mécanique de l'assemblage. La deuxième pièce intercalaire permet ainsi de protéger mécaniquement la pièce en matériau céramique qui, par nature, est généralement fragile.
Avantageusement, la deuxième pièce intercalaire présente un coefficient de dilatation suffisamment proche de celui de la pièce en matériau céramique, afin de limiter les écarts de dilatation entre ces pièces.
Avantageusement, compte tenu des conditions mécaniques et chimiques que doit vérifier la deuxième pièce intercalaire, on réalise celle-ci en mullite (un oxyde) ou en nitrure d'aluminium AIN (un nitrure). La mullite est un silicate d'alumine, composé défini de formule (3AI2O3, 2Siθ2) pouvant être obtenu par chauffage de silice en présence d'alumine. Pour les applications aéronautiques qui nécessitent des assemblages réfractaires, la mullite et I1AIN sont particulièrement intéressants en raison de leur bonne tenue en température et de leur bonne tenue à l'oxydation. Pour d'autres applications, l'alumine (AI2O3) peut être utilisée.
Avantageusement, la première composition de brasure utilisée pour assembler la première pièce intercalaire à la pièce métallique et/ou à la deuxième pièce intercalaire, est à base de Ni et comprend une proportion atomique de Ti inférieure à ou de l'ordre de 10%. De préférence, cette première composition comprend également les éléments suivants : Fe, Cr et Si. Les compositions de brasure comprenant les éléments Ni, Fe, Cr, Si et Ti seront notées ci-après NiFeCrSiTi.
Différentes compositions de brasures à base de Ni, dites réactives (parce qu'elles donnent naissance à de nouveaux composés chimiques intermétalliques), sont déjà connues mais dans le cas présent, la proportion de Ti doit être limitée car cet élément présente une forte réactivité vis-à-vis de la deuxième pièce intercalaire, ce qui conduirait à la naissance de phases intermétalliques fragiles.
Ainsi, ladite première composition de brasure comprend, de préférence, en pourcentages atomiques : entre 3 et 6% (préférentiellement entre 3,5 et 5,5%) de Ti lorsque la deuxième pièce intercalaire est en AIN, et entre 6 et 10% de Ti lorsque la deuxième pièce intercalaire est en mullite. Avantageusement, la deuxième composition de brasure utilisée pour assembler la deuxième pièce intercalaire en AIN ou en mullite à la pièce en matériau céramique à base de SiC et/ou de C, est un alliage à base de Si.
Selon une première alternative, cette deuxième composition de brasure comprend essentiellement, en pourcentages atomiques : 60% à 97% de silicium Si et 40 à 3% de zirconium Zr et, de préférence, il s'agit d'un mélange eutectique de siliciure de zirconium ZrSi2 et de Si.
L'utilisation d'un mélange ZrSÎ2-Si pour braser une pièce en matériau céramique à base de SiC avec une pièce en mullite, est connue et décrite dans le document WO 03/037823.
L'utilisation de ZrSi2-Si présente l'inconvénient suivant : la température de liquidus d'un mélange eutectique ZrSi2-Si est d'environ 13700C, température généralement supérieure à la température de début de fusion à des alliages métalliques aéronautiques utilisés pour la pièce métallique et/ou la première pièce intercalaire (par exemple, la température de début de fusion de l'alliage "Hastelloy X", décrit plus loin, est de 13100C).
Pour réaliser l'assemblage de l'invention il est donc nécessaire d'effectuer deux cycles thermiques successifs de montée et descente en température : un premier cycle effectué typiquement jusqu'à 14000C pour réaliser l'assemblage de la pièce en matériau céramique à la deuxième pièce intercalaire ; et un second cycle effectué typiquement jusqu'à 12500C, température supérieure à la température de liquidus de la première composition de brasure, mais à laquelle lesdits alliages métalliques aéronautiques ne se dégradent pas. Ce second cycle permet de réaliser l'assemblage final en assemblant les pièces métalliques entre elles, c'est-à-dire la pièce métallique de base et la première pièce intercalaire métallique, et avec les pièces en matériaux céramiques, c'est-à-dire la seconde pièce intercalaire et la pièce en matériau céramique à base de SiC et/ou de C.
Selon une deuxième alternative, la deuxième composition de brasure est constituée essentiellement par un mélange de siliciure de praséodyme (PrSi2) et de Si, dans lequel le silicium (Si) est majoritaire et le praséodyme (Pr) est minoritaire, en proportions atomiques. Une telle composition de brasure est nouvelle et peut être utilisée plus généralement pour l'assemblage par brasage de deux pièces, l'une des pièces étant en céramique à base de SiC et/ou de C et l'autre pièce étant en céramique à base de SiC, de C, d'AIN ou de mullite.
Avantageusement, ledit mélange de PrSi2 et de Si comprend, en pourcentages atomiques 78% à 97% de Si et 22 à 3% de Pr et, de préférence, consiste en un mélange eutectique de PrSi2 et de Si.
Lorsque la proportion atomique du mélange de PrSi2 et de Si est proche de l'eutectique, c'est-à-dire de l'ordre de 81 à 85% de Si et 19 à 15% de Pr, la température de fusion de la composition de brasure PrSÎ2-Si est relativement basse et on peut réaliser l'assemblage en procédant à un brasage de l'ensemble des pièces de l'assemblage en une seule étape.
On notera que la température de liquidus d'un mélange eutectique de PrSi2 et de Si est d'environ 12120C, et donc d'environ 158°C inférieure à la température de liquidus d'un mélange eutectique de ZrSi2 et de Si.
Dans le cas où la proportion atomique du mélange de PrSi2 et de Si est moins proche de l'eutectique, notamment entre 78 et 81% de Si et 22 à 19% de Pr, ou entre 85 et 97% de Si et 15 à 3% de Pr, il faudra alors procéder en deux étapes, comme détaillé ci-dessus, pour éviter la fusion des pièces métalliques.
Grâce à la composition de brasure PrSi2-Si, il est donc possible de braser ensemble toutes les pièces de l'assemblage, en une seule étape, à une température supérieure aux températures de liquidus desdites première et deuxième compositions de brasure, mais qui reste suffisamment faible pour ne pas dégrader les alliages en présence. L'invention a également pour objet un procédé d'assemblage par brasage à l'aide d'une telle composition.
L'invention sera bien comprise et ses avantages apparaîtront mieux, à la lecture de la description détaillée qui suit, d'un mode de réalisation représenté à titre d'exemple non limitatif. La description se réfère aux dessins annexés sur lesquels :
- la figure 1 représente schématiquement un assemblage selon un premier mode de réalisation de l'invention ;
- la figure 2 représente schématiquement un assemblage selon un deuxième mode de réalisation de l'invention ; et
- la figure 3 représente schématiquement un assemblage selon un troisième mode de réalisation de l'invention. Selon un premier exemple d'assemblage selon l'invention, représenté sur la figure 1, celui-ci comprend :
- une pièce métallique 1 réalisée en un alliage de base Ni comme celui commercialisé sous la marque déposée "Hastelloy X" comprenant, en pourcentages en poids : au plus 0,5 % d'AI ; au plus 0,008 % de B ; 0,05 % à 0,15 % de C ; 20,5 % à 23 % de Cr ; 0,5 % à 2,5 % de Co ; au plus 0,5 % de Cu ; 17 à 20 % de Fe ; au plus 1 % de Mn ; 8 à 10 % de Mo ; au plus 0,04 % de P ; au plus 1 % de Si ; au plus 0,03 % de S ; au plus 0,15 % de Ti ; 0,2 à 1 % de W et un solde en Ni ;
- une première pièce intercalaire 3 réalisée en alliage à base de Ni, par exemple un alliage commercialisé sous la marque déposée "Inconel 600", "Inconel 601", "Inconel 625" ou "Nimonic 8OA". Un alliage de type "Inconel 625" comprend typiquement, en pourcentages en poids : au plus 0,4% d'AI ; au plus 0,1% de C ; 20 à 23% de Cr ; au plus 1 % de Co ; au plus 5% de Fe ; au plus 0,5% de Mn ; 8 à 10% de Mo ; 3,15 à 4,15% de Niobium Nb ; au plus 0,015% de P ; au plus 0,5% de Si ; au plus 0,015% de S ; au plus 0,4% de Ti ; et un solde en Ni.
- une deuxième pièce intercalaire 5 réalisée en AIN ; et
- une pièce composite à matrice céramique 7 (CMC), à base de SiC.
La première composition de brasure 2 utilisée pour braser la pièce métallique 1 à la première pièce intercalaire 3 et pour braser la première pièce intercalaire 3 à la deuxième pièce intercalaire 5 est de type NiFeCrSiTi et comprend essentiellement (i.e. aux impuretés près), en pourcentages massiques : 2,8% de Fe ; 7% de Cr ; 6,2% de Si ; 4,5% de Ti et un solde en Ni.
La deuxième composition de brasure 6 utilisée pour braser la deuxième pièce intercalaire 5 à la pièce en matériau céramique 7 est un mélange eutectique de Zr2Si et de Si.
Le procédé d'assemblage des pièces métallique 1 et céramique 7 comprend deux cycles thermiques de montée et descente en température, et comprend essentiellement les étapes suivantes :
- la deuxième composition de brasure 6 est disposée sur les surfaces à assembler de la pièce en matériau céramique 7 et de la deuxième pièce intercalaire 5 ; - l'ensemble ainsi formé (pièces 5 et 7 et composition 6) est monté en température au-delà de la température de liquidus de la deuxième composition de brasure 6, puis refroidi ;
- la première composition de brasure 2 est disposée sur les surfaces à assembler des première et deuxième pièces intercalaires 3 et 5 et de la pièce métallique 1; et
- le nouvel ensemble ainsi formé (pièces 5, 7, 3 et 1, compositions 2 et 6) est monté en température au-delà de la température de liquidus de la première composition de brasure 2, puis refroidi.
Voici un exemple détaillé d'un tel procédé : les surfaces des parties des pièces 5 et 7 à assembler, respectivement en AIN et en CMC, sont dégraissées dans un solvant organique par exemple du type acétone, ester, éther, alcool ou un mélange de ceux-ci. Les surfaces des parties des pièces 7 et 5 sont enduites de la suspension de la deuxième composition de brasure 6, formée d'un mélange eutectique de ZrSi2 et de Si. Les parties au voisinage du joint CMC / AIN sont recouvertes d'une suspension dite anti-mouillant non mouiilable par ladite composition. Cette suspension évite l'écoulement de la composition de brasure hors du joint CMC / AIN. L'ensemble ainsi formé, prêt à être brasé, est disposé dans un four sous vide ou sous atmosphère de gaz neutre. Un premier cycle thermique avec un palier de température est effectué typiquement à 140O0C pendant 5 à 10 minutes. Cette température est supérieure à la température du liquidus de la composition de la brasure (au moins 25°C au-dessus). L'ensemble est alors refroidi jusqu'à température ambiante à raison par exemple de 50C par minute. L'assemblage CMC / AIN est sorti du four. Un cordon de brasure continu est observé entre le CMC et I1AIN. L'ensemble est nettoyé avec de l'acétone puis de l'éthanol avant le second brasage avec la première pièce intercalaire 3 et la pièce métallique 1. La première pièce intercalaire 3 est en en alliage de base Ni de type "Inconel 625" la pièce métallique 1 est en alliage de base Ni de type "Hastelloy X". La pièce CMC 7, le cordon de la deuxième composition de brasure 6 et les bords de la pièce 5 en AIN sont recouverts d'une suspension dite anti-mouillant, non mouiilable par la première composition de brasure de type NiFeCrSiTi. Cette dernière est appliquée sous forme de ruban sur l'AIN. Par-dessus ce ruban de brasure, la première pièce intercalaire 3 est déposée. Cette pièce 3 est ensuite recouverte d'un ruban de brasure de type NiFeCrSiTi puis de la pièce métallique 1. Les bords des pièces 1 et 3 peuvent être revêtus d'anti-mouillant non mouillable par la composition de brasure NiFeCrSiTi. Pour la première pièce intercalaire 3, ce revêtement anti-mouillant dépend de la forme de cette pièce. L'ensemble CMC / brasure ZrSi2-Si / AIN / brasure NiFeCrSiTi / alliage de base Ni/brasure NiFeCrSiTi / alliage de base Ni, prêt à être brasé, est disposé dans un four sous vide ou sous atmosphère de gaz neutre. Un second cycle thermique est effectué avec un palier de température à 110O0C pendant 30 minutes puis un second palier à 12500C pendant 15 minutes. Cette température de 12500C est supérieure à la température du liquidus de la composition de brasure NiFeCrSiTi (au moins 25°C au dessus). L'ensemble est alors refroidi jusqu'à température ambiante à raison, par exemple, de 5°C par minute.
Selon un deuxième exemple d'assemblage selon l'invention, la deuxième composition de brasure 6 utilisée dans le premier exemple donné ci-dessus, est remplacée par un mélange eutectique de PrSi2 et de Si. Dans ce cas, Le procédé d'assemblage des pièces métallique 1 et céramique 7 comprend un seul cycle thermique de montée et descente en température, qui comprend essentiellement les étapes suivantes :
- la deuxième composition de brasure 6 est disposée sur les surfaces à assembler de la pièce en matériau céramique 7 et de la deuxième pièce intercalaire 5 ; et la première composition de brasure 2 est disposée sur les surfaces à assembler des première et deuxième pièces intercalaires 3 et 5 et de la pièce métallique 1; et
- l'ensemble ainsi formé (pièces 5, 7, 3 et 1, compositions 2 et 6) est monté en température au-delà des températures de liquidus des première et deuxième compositions de brasure 6 et 2, puis l'ensemble est refroidi.
Voici un exemple détaillé d'un tel procédé : Les surfaces des pièces 1, 3, 5 et 7 à assembler sont dégraissées dans un solvant organique par exemple du type acétone, ester, éther, alcool ou un mélange de ceux-ci. Les surfaces des parties des pièces CMC 7 et AIN 5 en vis à vis sont recouvertes de carbone nécessaire au bon mouillage de ces surfaces par la composition de brasure PrSi2-Si. Le carbone peut être appliqué : 1) sous forme de poudre de graphite mélangée ou non par un liant organique, 2) par des techniques de dépôt du type dépôt chimique en phase vapeur ou CVD (pour "chemical vapor déposition") ou dépôt physique en phase vapeur ou PVD (pour "physical vapor déposition"), 3) tout simplement en frottant les surfaces avec une mine en graphite (par exemple une mine de crayon de papier). L'épaisseur de carbone recommandée est de l'ordre de 1 micromètre. Une fois que la couche de carbone a été appliquée sur toutes ces surfaces, on dispose la suspension de la deuxième composition de brasure formée du mélange eutectique PrSi2-Si entre la pièce CMC 7 et la pièce AIN 5. Les parties au voisinage du joint sont recouvertes d'une suspension dite anti-mouillant non mouillable par ladite composition. Cette suspension évite l'écoulement de la brasure hors du joint CMC / AIN. L'AIN est recouvert d'un ruban de brasure de type NiFeCrSiTi. Pardessus ce ruban de brasure, la première pièce intercalaire 3 en alliage de base Ni est mise en place. Cette pièce 3 est ensuite recouverte d'un ruban de brasure de type NiFeCrSiTi puis de la pièce métallique en "Hastelloy X" massive. Les bords des pièces en alliage métallique 1 et 3 peuvent être revêtus d'anti-mouillant, non mouillable par la composition NiFeCrSiTi. Pour la première pièce intercalaire 3, ce revêtement anti-mouillant dépend de la forme de cette pièce. L'ensemble CMC / brasure PrSi2-Si / AIN / brasure NiFeCrSiTi / alliage de base Ni / brasure NiFeCrSiTi / alliage de base Ni, prêt à être brasé, est disposé dans un four sous vide (ou sous atmosphère de gaz neutre). Un unique cycle thermique est effectué avec un palier de température à HOO0C pendant 30 min. puis un second palier à 12500C pendant 15 min. Cette température de 12500C est supérieure à la température du liquidus de la brasure de type NiFeCrSiTi et à celle de la deuxième composition de brasure PrSi2-Si (au moins 25°C au-dessus). L'ensemble est alors refroidi jusqu'à température ambiante à raison, par exemple, de 5°C par minute.
Selon un troisième exemple d'assemblage selon l'invention, la deuxième pièce intercalaire en AIN brasée soit avec ZrSi2-Si (dans le premier exemple) soit avec PrSi2-Si (dans le deuxième exemple), est remplacée par une pièce 5 en mullite.
Selon un quatrième exemple d'assemblage selon l'invention la deuxième pièce intercalaire en AIN des exemples précédents, est remplacée par une pièce 5 en mullite et on effectue une métallisation de la face de cette pièce 5 tournée vers la pièce 3. Cette métallisation est réalisée avec une composition de brasure connue sous la marque "TiCuSiI" comprenant en pourcentages massiques environ 68,8% de Ag, 26,7% de Cu et 4,5% de Ti. Une autre composition de brasure à base de palladium Pd et de Ni, comprenant de préférence, en proportions atomiques, entre 35 et 55% de Pd et un solde en Ni (c'est-à-dire entre 50 et 69% de Pd et entre 50 et 31% de Ni en pourcentages massiques), peut alors être utilisée pour assembler entre elles les première et deuxième pièces intercalaires 3 et 5 et pour assembler aussi la pièce métallique avec la première pièce intercalaire. Dans ce cas, le procédé d'assemblage des pièces métallique 1 et céramique 7 comprend deux cycles thermiques et une étape supplémentaire de métallisation entre le premier brasage de la pièce en matériau céramique 7 avec la deuxième pièce intercalaire 5 et le brasage complet de l'assemblage.
Selon un cinquième exemple d'assemblage selon l'invention, la pièce métallique en alliage à base de Ni utilisée dans le premier exemple donné ci- dessus, est remplacée par une pièce métallique 1 en alliage à base de Co, par exemple l'alliage connu sous la marque "Haynes 188" et comprenant, typiquement, en pourcentages en poids : 20 à 24% de Ni, 20 à 24% de Cr, 13 à 15% de W, au plus 3% de Fe, 0,2 à 0,5% de Si, au plus 1,25% de Mn, 0,5 à 0,15% de C, au moins 0,015% de B, 0,02 à 0,12% de La, et un solde en Co. Dans ce cas, le procédé d'assemblage des pièces métallique 1 et céramique 7 comprend deux cycles thermiques avec un premier cycle de montée et descente en température avec un palier à 14000C pendant 5 à 10 min. et un second cycle avec un palier à 12500C pendant 15 min.
Dans les exemples précités, la première pièce intercalaire 3 peut présenter une structure massive, comme représenté sur la figure 1. Cette pièce 3 est alors en matériau suffisamment ductile pour se déformer et compenser l'écart de dilatation entre les pièces métalliques et céramiques. Bien entendu, les dimensions de cette première pièce intercalaire 3 et, en particulier, son épaisseur, doivent être suffisantes pour que cette pièce puisse jouer son rôle. A titre d'exemple, pour une pièce en matériau céramique 7 et une pièce métallique 1 toutes deux cylindriques de révolution, de 10 mm de diamètre et de 5mm d'épaisseur, on choisit la première pièce intercalaire 3 avec une forme cylindrique de révolution de 10 mm de diamètre et de 2 mm d'épaisseur et, la première pièce intercalaire également de forme cylindrique de révolution de 10 mm de diamètre et de 1 mm d'épaisseur.
Selon un autre mode de réalisation de la première pièce intercalaire 3, celle-ci est réalisée avec une structure déformable. Dans ce cas, cette pièce 3 n'est pas nécessairement réalisée en alliage ductile. A titre d'exemple, on peut réaliser cette pièce 3 en alliage de type "Inconel 601" (marque déposée) comprenant typiquement, en pourcentages en poids, 1 à 1,7% d'AI, au plus 0,1% de C, 21 à 25% de Cr, au plus 1% de Cu, au plus 1% de Mn, 58 à 63% de Ni, au plus 0,5% de Si, au plus 0,015% de S, et un solde en Fe.
Un exemple de première pièce intercalaire 3 à structure déformable est représenté sur la figure 2. Cette pièce est formée d'une nappe 3 déformable présentant des zones en méplat 11, 15 brasées et des zones inclinées 10 qui se succèdent pour former des ondulations concentriques. La nappe 3 comporte une zone en méplat intérieure 11, sensiblement circulaire autour d'un axe A, une zone en méplat 15 extérieure sensiblement annulaire, coaxiale à la zone intérieure 11, et de diamètre intérieur supérieur au diamètre de ladite zone intérieure, et au moins une zone en méplat 13 intercalaire, annulaire, située entre les zones 11 et 15 et coaxiales à celles-ci. Ces zones 11, 13, 15 sont reliées entre elles par des zones inclinées 10 présentant une symétrie de révolution par rapport à l'axe A. La zone en méplat intérieure 11 est brasée à la pièce métallique 1 tandis que la zone en méplat extérieure 15 est brasée à la deuxième pièce intercalaire 5 ou inversement. Les ondulations intercalaires (formées par les zones 10 et 13) restent libres.
Selon un autre exemple de réalisation, non représenté, la pièce intercalaire 3 est formée par plusieurs rubans repliés en accordéon et agencés radialement autour d'un point fixe, de préférence central. Ces rubans sont agencés selon plusieurs directions radiales autour dudit point fixe, ce qui constitue une disposition d'ondulations concentriques.
Selon un autre exemple représenté sur la figure 3, la structure déformable est constituée de plusieurs pièces dont un ressort en spirale 3 disposé en cercle dont le plan principal est sensiblement parallèle aux surfaces des pièces 1 et 5 à assembler, de sorte que ces surfaces reposent sur les faces latérales du ressort. Cette structure peut également comprendre au moins un ressort en spirale de forme rectiligne, disposé au centre du ressort circulaire 3 (non visible sur la figure 3), dont l'axe est parallèle auxdites surfaces.
L'assemblage de l'invention peut être mis en œuvre dans une turbomachine et, plus particulièrement, dans un turboréacteur. Ainsi, l'invention peut concerner une tuyère de turbomachine comportant au moins un assemblage tel que mentionné ci-dessus, dans laquelle la pièce métallique est un carter ou un levier de cette tuyère et la pièce en matériau céramique est un volet de cette tuyère.
L'invention concerne aussi une chambre de combustion de turbomachine comportant au moins un assemblage tel que mentionné ci-dessus, dans lequel ladite pièce métallique est un carter, un joint ou, de manière générale, une pièce constitutive de cette chambre, et ladite pièce en matériau céramique est une autre pièce constitutive de cette chambre.
L'invention concerne également un équipement de post-combustion d'une turbomachine comportant au moins un assemblage tel que mentionné ci- dessus, dans lequel la pièce métallique est un carter de post-combustion ou une plateforme, et la pièce en matériau céramique est un bras accroche- flammes.

Claims

REVENDICATIONS
1. Assemblage entre une pièce métallique (1) et une pièce en matériau céramique (7) réalisée en un matériau céramique à base de SiC et/ou de C, caractérisé en ce qu'il comporte une structure empilée comprenant les éléments suivants assemblés deux à deux, dans cet ordre, par brasage :
- ladite pièce métallique (1) ;
- une première pièce intercalaire (3);
- une deuxième pièce intercalaire (5); et
- ladite pièce en matériau céramique (7),
dans lequel :
- la deuxième pièce intercalaire (5) est réalisée en un autre matériau céramique, chimiquement moins réactif vis-à-vis des métaux que SiC ou C, qui présente un coefficient de dilatation inférieur à celui du matériau constitutif de ladite pièce métallique (1) ; et
- la première pièce intercalaire (3) est métallique et apte à se déformer pour compenser l'écart de dilatation entre ladite pièce métallique (1) et la deuxième pièce intercalaire (5).
2. Assemblage selon la revendication 1, caractérisé en ce que la deuxième pièce intercalaire (5) présente une rigidité et/ou une résistance à la rupture plus élevée que celle de ladite pièce en matériau céramique (7).
3. Assemblage selon la revendication 1 ou 2, caractérisé en ce que ladite pièce en matériau céramique (7) est en SiC massif.
4. Assemblage selon la revendication 1 ou 2, caractérisé en ce que ladite pièce en matériau céramique (7) est en matériau composite à matrice céramique.
5. Assemblage selon la revendication 4, caractérisé en ce que ledit matériau composite comprend une matrice à base de SiC et/ou de C, renforcée par des fibres de SiC et/ou de C.
6. Assemblage selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ladite pièce métallique (1) est en alliage à base de Ni ou à base de Co.
7. Assemblage selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la deuxième pièce intercalaire (5) est en AIN ou en mullite.
8. Assemblage selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la première pièce intercalaire (3) est en Ni ou en alliage à base de Ni, ou en Co, ou en alliage à base de Co.
9. Assemblage selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'une première composition de brasure (2) est utilisée pour assembler la première pièce intercalaire (3) à la pièce métallique (1) et/ou à la deuxième pièce intercalaire (5), cette première composition étant à base de Ni et comprenant une proportion atomique de Ti inférieure à ou de l'ordre de 10%, et cette première composition comprenant, de préférence, les éléments suivants : Fe, Cr et Si.
10. Assemblage selon les revendications 7 et 9, caractérisé en ce que ladite première composition de brasure (2) comprend, en pourcentages atomiques : entre 3 et 6% de Ti lorsque la deuxième pièce intercalaire (5) est en AIN, et entre 6 et 10% de Ti lorsque la deuxième pièce intercalaire (5) est en mullite.
11. Assemblage selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'une première composition de brasure (2) est utilisée pour assembler la première pièce intercalaire (3) à la pièce métallique (1) et/ou à la deuxième pièce intercalaire (5), cette première composition étant à base de Pd et de Ni.
12. Assemblage selon l'une quelconque des revendications 1 à 11, caractérisé en ce qu'une deuxième composition de brasure (6) est utilisée pour assembler la deuxième pièce intercalaire (5) en AIN ou en mullite à la pièce en matériau céramique (7) à base de SiC et/ou de C, cette deuxième composition étant à base de Si.
13. Assemblage selon la revendication 12, caractérisé en ce que ladite deuxième composition de brasure (6) comprend essentiellement, en pourcentages atomiques : 60% à 97% de Si et 40 à 3% de Zr et, de préférence, consiste en un mélange eutectique de ZrSi2 et de Si.
14. Assemblage selon la revendication 12, caractérisé en ce que ladite deuxième composition de brasure (6) comprend essentiellement, en pourcentages atomiques ; 78% à 97% de Si et 22 à 3% de Pr et, de préférence, consiste en un mélange eutectique de PrSi2 et de Si.
15. Assemblage selon l'une quelconque des revendications 1 à 14, caractérisé en ce que ladite première pièce intercalaire (3) est composée d'une couche de matériau métallique ductile.
16. Assemblage selon l'une quelconque des revendications 1 à 14, caractérisé en ce que ladite première pièce intercalaire (3) comporte une structure déformable.
17. Assemblage selon la revendication 16, caractérisé en ce que ladite structure déformable est formée d'une nappe déformable présentant des zones déformables, par exemple sous forme d'ondulations concentriques, et des zones en méplat brasées.
18. Composition de brasure (6) pour l'assemblage par brasage de deux pièces, l'une des pièces (7) étant en céramique à base de SiC et/ou de C et l'autre pièce (5) étant en céramique à base de SiC, de C, d'AIN ou de mullite, caractérisée en ce qu'elle est constituée essentiellement par un mélange de PrSi2 et de Si, dans lequel Si est majoritaire et Pr minoritaire, en proportions atomiques.
19. Composition de brasure (6) selon la revendication 18, caractérisée en ce que ledit mélange de PrSi2 et de Si comprend, en pourcentages atomiques, 78% à 97% de Si et 22 à 3% de Pr et, de préférence, consiste en un mélange eutectique de PrSÎ2 et de Si.
20. Procédé de réalisation d'un assemblage selon l'une quelconque des revendications 1 à 17, caractérisé en ce que, selon une première étape, on brase ensemble ladite pièce céramique (7) et la deuxième pièce intercalaire (5) à l'aide d'une deuxième composition de brasure (6) et en ce que, selon une deuxième étape, on brase ensemble la deuxième pièce intercalaire (5), la première pièce intercalaire (3) et ladite pièce métallique (1) à l'aide d'une première composition de brasure (2) ayant une température de fusion inférieure à celle de la deuxième composition de brasure (6).
21. Procédé de réalisation d'un assemblage selon l'une quelconque des revendications 1 à 17, caractérisé en ce qu'on brase ensemble, en une unique étape, ladite pièce céramique (7), la deuxième pièce intercalaire (5), la première pièce intercalaire (3) et ladite pièce métallique (1).
22. Turbomachine comportant au moins un assemblage selon l'une quelconque des revendications 1 à 17.
23. Tuyère de turbomachine comportant au moins un assemblage selon l'une quelconque des revendications 1 à 17, dans laquelle ladite pièce métallique (1) est un carter ou un levier de cette tuyère, et ladite pièce en matériau céramique (7) est un volet de cette tuyère.
24. Chambre de combustion de turbomachine comportant au moins un assemblage selon l'une quelconque des revendications 1 à 17, dans lequel ladite pièce métallique (1) est un carter, un joint ou une pièce constitutive de cette chambre, et ladite pièce en matériau céramique (7) est une autre pièce constitutive de cette chambre.
25. Equipement de post-combustion d'une turbomachine comportant au moins un assemblage selon l'une quelconque des revendications 1 à 17, dans lequel ladite pièce métallique (1) est un carter de post-combustion ou une plateforme, et la pièce en matériau céramique (7) est un bras accroche- flammes.
PCT/FR2006/051318 2005-12-08 2006-12-08 Assemblage entre une piece metallique et une piece en materiau ceramique a base de sic et/ou de c. WO2007066052A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200680046270XA CN101326139B (zh) 2005-12-08 2006-12-08 一种位于金属部件和碳化硅基和/或碳基陶瓷材料部件之间的装配件
CA2632731A CA2632731C (fr) 2005-12-08 2006-12-08 Assemblage entre une piece metallique et une piece en materiau ceramique a base de sic et/ou de c
EP06842129.6A EP1971564B1 (fr) 2005-12-08 2006-12-08 Assemblage entre une piece metallique et une piece en materiau ceramique a base de sic et/ou de c.
US12/096,663 US8177497B2 (en) 2005-12-08 2006-12-08 Joint between a metal part and a ceramic part based SiC and/or C
JP2008543882A JP2009518270A (ja) 2005-12-08 2006-12-08 金属ピースとSiCおよび/またはC系セラミック材料からなるピースとのアセンブリ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0553790 2005-12-08
FR0553790A FR2894499B1 (fr) 2005-12-08 2005-12-08 Assemblage entre une piece metallique et une piece en materiau ceramique a base de sic et/ou de c

Publications (2)

Publication Number Publication Date
WO2007066052A2 true WO2007066052A2 (fr) 2007-06-14
WO2007066052A3 WO2007066052A3 (fr) 2008-04-24

Family

ID=37009856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/051318 WO2007066052A2 (fr) 2005-12-08 2006-12-08 Assemblage entre une piece metallique et une piece en materiau ceramique a base de sic et/ou de c.

Country Status (8)

Country Link
US (1) US8177497B2 (fr)
EP (1) EP1971564B1 (fr)
JP (1) JP2009518270A (fr)
CN (1) CN101326139B (fr)
CA (1) CA2632731C (fr)
FR (1) FR2894499B1 (fr)
RU (1) RU2427555C2 (fr)
WO (1) WO2007066052A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2233835A1 (fr) 2009-03-23 2010-09-29 Siemens Aktiengesellschaft Chambre de combustion brasée avec des inserts en céramique
US8141364B2 (en) 2005-12-08 2012-03-27 Snecma Brazed joint between a metal part and a ceramic part
US8161753B2 (en) 2005-12-08 2012-04-24 Snecma Brazed joint between a titanium-based metal part and a ceramic part based on silicon carbide (SIC) and/or carbon
EP2048344A3 (fr) * 2007-10-10 2012-06-06 Bayern-Chemie Gesellschaft für flugchemische Antriebe mbH Moteur à réaction ou à fusée avec tuyère d'éjection isolée thermiquement

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007029031A1 (de) * 2007-06-23 2008-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum dauerhaften Verbinden zweier Komponenten durch Löten mit Glas- oder Metalllot
CH700774A1 (de) * 2009-03-31 2010-10-15 Alstom Technology Ltd Doppellotelement, Verfahren zu dessen Herstellung und Verwendungen desselben.
FR2957542B1 (fr) 2010-03-16 2012-05-11 Commissariat Energie Atomique Procede d'assemblage de pieces en materiaux a base de sic par brasage non-reactif, compositions de brasure, et joint et assemblage obtenus par ce procede.
CN102009239B (zh) * 2010-10-15 2012-09-05 北京航空航天大学 一种用于碳基材料及其制品的连接方法
EP2627349B1 (fr) 2010-10-15 2016-02-03 The Trustees of Columbia University in the City of New York Gènes de l'obésité, leurs protéines et leurs utilisations
US8876481B2 (en) * 2011-01-05 2014-11-04 General Electric Company Turbine airfoil component assembly for use in a gas turbine engine and methods for fabricating same
FR2984781B1 (fr) * 2011-12-22 2014-01-24 Commissariat Energie Atomique Procede d'assemblage par brasage d'un substrat comprenant du pyrocarbone avec des pieces comprenant du pyrocarbone.
CN103476205A (zh) * 2012-06-08 2013-12-25 昆山同寅兴业机电制造有限公司 改变复合材料电子产品机壳变形度的结构
US9527262B2 (en) * 2012-09-28 2016-12-27 General Electric Company Layered arrangement, hot-gas path component, and process of producing a layered arrangement
JP5772861B2 (ja) 2013-04-01 2015-09-02 株式会社デンソー 接合体の製造方法
US9702490B2 (en) 2013-04-30 2017-07-11 Corning Incorporated Sealing method for silicon carbide parts used at high temperatures
US20140366544A1 (en) * 2013-06-13 2014-12-18 Pratt & Whitney Canada Corp. Combustor exit duct for gas turbine engines
WO2015009388A1 (fr) * 2013-07-19 2015-01-22 United Technologies Corporation Ensemble élément constitutif céramique de moteur à turbine à gaz et liaisonnage
JP5862630B2 (ja) 2013-09-20 2016-02-16 株式会社デンソー 接合体の製造方法
EP3055530B1 (fr) * 2013-10-07 2020-08-12 United Technologies Corporation Paroi de dispositif de combustion assemblée par soudage pour un moteur à turbine
US11619387B2 (en) * 2015-07-28 2023-04-04 Rolls-Royce Corporation Liner for a combustor of a gas turbine engine with metallic corrugated member
US11149646B2 (en) * 2015-09-02 2021-10-19 General Electric Company Piston ring assembly for a turbine engine
FR3045598B1 (fr) * 2015-12-21 2018-01-12 Centre National De La Recherche Scientifique Procede de fabrication d'une ceramique a partir d'une reaction chimique
US10737444B2 (en) * 2017-04-07 2020-08-11 General Electric Company Methods and assemblies for forming features in composite components
CN108644028B (zh) * 2018-03-12 2020-01-24 上海卫星工程研究所 一种大推力双向摇摆轨控发动机高温隔热屏
CN110026634B (zh) * 2019-05-13 2021-01-29 哈尔滨工业大学 一种应用Si-Zr高温钎料钎焊碳纤维增强碳基复合材料的方法
CN116966751B (zh) * 2023-09-22 2024-01-05 淄博晟元新材料科技有限责任公司 一种钯合金管净化器组件

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3813759A (en) * 1971-09-09 1974-06-04 English Electric Co Ltd Method of brazing
JPS60226464A (ja) * 1984-04-20 1985-11-11 日本特殊陶業株式会社 セラミックと金属との接合構造
US5402032A (en) * 1992-10-29 1995-03-28 Litton Systems, Inc. Traveling wave tube with plate for bonding thermally-mismatched elements
JPH07149578A (ja) * 1993-09-03 1995-06-13 Saga Pref Gov 炭化けい素セラミックスと金属の高強度ろう付け接合体及びその接合方法
US5447683A (en) * 1993-11-08 1995-09-05 General Atomics Braze for silicon carbide bodies
US5836505A (en) * 1996-05-07 1998-11-17 Commissariat A L'energie Atomique Joining by brazing of ceramic materials containing silicon carbide
CN1131570C (zh) * 1998-09-08 2003-12-17 住友金属工业株式会社 非水电解质二次电池用负极材料及其制造方法
US6335105B1 (en) * 1999-06-21 2002-01-01 General Electric Company Ceramic superalloy articles
FR2806405B1 (fr) * 2000-03-14 2002-10-11 Commissariat Energie Atomique Procede d'assemblage de pieces en materiaux a base de sic par brasage refractaire non reactif, composition de brasure, et joint et assemblage refractaires obtenus par ce procede
FR2806406B1 (fr) * 2000-03-14 2003-01-10 Commissariat Energie Atomique Procede de recouvrement de pieces en materiaux a base de sic , compositions de recouvrement, et pieces recouvertes obtenues par ce procede
JP2002043482A (ja) * 2000-05-17 2002-02-08 Ngk Insulators Ltd 電子回路用部材及びその製造方法並びに電子部品
US6655695B1 (en) * 2001-02-13 2003-12-02 Honeywell International Inc. Face seal assembly with composite rotor
JP4014528B2 (ja) * 2003-03-28 2007-11-28 日本碍子株式会社 ヒートスプレッダモジュールの製造方法及びヒートスプレッダモジュール
US7060360B2 (en) * 2003-05-22 2006-06-13 United Technologies Corporation Bond coat for silicon based substrates
FR2855557B1 (fr) * 2003-05-26 2007-03-02 Snecma Moteurs Volet de tuyere a duree de vie augmentee pour turbomoteurs d'avion.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8141364B2 (en) 2005-12-08 2012-03-27 Snecma Brazed joint between a metal part and a ceramic part
US8161753B2 (en) 2005-12-08 2012-04-24 Snecma Brazed joint between a titanium-based metal part and a ceramic part based on silicon carbide (SIC) and/or carbon
EP2048344A3 (fr) * 2007-10-10 2012-06-06 Bayern-Chemie Gesellschaft für flugchemische Antriebe mbH Moteur à réaction ou à fusée avec tuyère d'éjection isolée thermiquement
EP2233835A1 (fr) 2009-03-23 2010-09-29 Siemens Aktiengesellschaft Chambre de combustion brasée avec des inserts en céramique

Also Published As

Publication number Publication date
FR2894499B1 (fr) 2011-04-01
RU2008127506A (ru) 2010-01-20
EP1971564A2 (fr) 2008-09-24
CA2632731A1 (fr) 2007-06-14
CN101326139A (zh) 2008-12-17
FR2894499A1 (fr) 2007-06-15
CA2632731C (fr) 2016-02-02
JP2009518270A (ja) 2009-05-07
RU2427555C2 (ru) 2011-08-27
US8177497B2 (en) 2012-05-15
EP1971564B1 (fr) 2018-03-14
CN101326139B (zh) 2013-06-05
US20080304959A1 (en) 2008-12-11
WO2007066052A3 (fr) 2008-04-24

Similar Documents

Publication Publication Date Title
EP1971564B1 (fr) Assemblage entre une piece metallique et une piece en materiau ceramique a base de sic et/ou de c.
EP1966107B1 (fr) Assemblage par brasage entre une piece metallique a base de titane et une piece en materiau ceramique a base de carbure de silicium (sic) et/ou de carbone
EP1263692B1 (fr) Procede d'assemblage de pieces en materiaux a base de carbure de silicium par brasage refractaire non reactif, composition de brasure, et joint et assemblage refractaires
EP3416930B1 (fr) Secteur d'anneau de turbine avec barrière environnementale dopée par un élément électriquement conducteur
EP1797310B1 (fr) Melangeur pour tuyere a flux separes
EP2547479B1 (fr) Procede d'assemblage de pieces en materiaux a base de sic par brasage non-reactif avec ajout d'un renfort ; compositions de brasure ; assemblage obtenus par un tel procede
EP2547481B1 (fr) Procede d'assemblage de pieces en materiaux a base de sic par brasage non-reactif, composition de brasure, et assemblage obtenus par ce procede
EP2165794B1 (fr) Procédé d'assemblage moyennement réfractaire de pièces en matériaux à base de SiC par brasage non réactif ; Composition et suspension de brasure ; Joint et assemblage obtenus par ce procédé
EP2547480B1 (fr) Procede d'assemblage de pieces en materiaux a base de sic par brasage non-reactif, composition de brasure, et assemblage obtenu par ce procede
EP2401540B1 (fr) Materiau compliant
FR2942515A1 (fr) Dispositif d'assemblage.
WO2013128124A1 (fr) Procédé d'assemblage de deux pièces métalliques par brasage
FR2907448A1 (fr) Composition de brasure et procede d'assemblage par brasage utilisant cette composition
FR2942516A1 (fr) Assemblage affleurant.
EP3368244B1 (fr) Procede pour realiser une piece d'etancheite a corps en superalliage contenant du bore et revetu
EP4237665A1 (fr) Assemblage pour turbine comprenant des secteurs avec languettes d'etancheite lamifiees
FR3098542A1 (fr) Ensemble de pièces de turbomachine
WO2014057187A1 (fr) Procede de brasage de pieces en materiau a base de carbure de silicium avec des organes de serrage de maintien ayant des proprietes anti-mouillage
FR2724924A1 (fr) Procede d'assemblage d'une ceramique a base de nitrure de bore avec une autre ceramique identique ou avec un substrat en alliage metallique refractaire
FR2942518A1 (fr) Dispositif d'assemblage a distance.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680046270.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 4835/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006842129

Country of ref document: EP

Ref document number: 2632731

Country of ref document: CA

Ref document number: 2008543882

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12096663

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008127506

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006842129

Country of ref document: EP