WO2007061993A2 - Continuously variable transmission - Google Patents

Continuously variable transmission Download PDF

Info

Publication number
WO2007061993A2
WO2007061993A2 PCT/US2006/044983 US2006044983W WO2007061993A2 WO 2007061993 A2 WO2007061993 A2 WO 2007061993A2 US 2006044983 W US2006044983 W US 2006044983W WO 2007061993 A2 WO2007061993 A2 WO 2007061993A2
Authority
WO
WIPO (PCT)
Prior art keywords
bicycle
traction
coupled
transmission
crankshaft
Prior art date
Application number
PCT/US2006/044983
Other languages
French (fr)
Other versions
WO2007061993A3 (en
Inventor
Donald C. Miller
David J. Allen
Robert A. Smithson
Brad Pohl
Charles B. Lohr
Jon M. Nichols
Original Assignee
Fallbrook Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fallbrook Technologies Inc filed Critical Fallbrook Technologies Inc
Priority to KR1020087014990A priority Critical patent/KR101422475B1/en
Priority to ES06838127T priority patent/ES2424652T3/en
Priority to PL06838127T priority patent/PL1954959T3/en
Priority to CN2006800510506A priority patent/CN101495777B/en
Priority to EP06838127.6A priority patent/EP1954959B1/en
Priority to DK06838127.6T priority patent/DK1954959T3/en
Priority to TW095143152A priority patent/TWI434788B/en
Publication of WO2007061993A2 publication Critical patent/WO2007061993A2/en
Publication of WO2007061993A3 publication Critical patent/WO2007061993A3/en
Priority to HK10100991.7A priority patent/HK1137498A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/48Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members with members having orbital motion
    • F16H15/50Gearings providing a continuous range of gear ratios
    • F16H15/52Gearings providing a continuous range of gear ratios in which a member of uniform effective diameter mounted on a shaft may co-operate with different parts of another member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M1/00Rider propulsion of wheeled vehicles
    • B62M1/36Rider propulsion of wheeled vehicles with rotary cranks, e.g. with pedal cranks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • B62M11/14Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears
    • B62M11/145Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears built in, or adjacent to, the bottom bracket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M9/00Transmissions characterised by use of an endless chain, belt, or the like
    • B62M9/04Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio
    • B62M9/06Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like
    • B62M9/08Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving eccentrically- mounted or elliptically-shaped driving or driven wheel; with expansible driving or driven wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/26Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a spherical friction surface centered on its axis of revolution
    • F16H15/28Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a spherical friction surface centered on its axis of revolution with external friction surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/48Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members with members having orbital motion
    • F16H15/50Gearings providing a continuous range of gear ratios
    • F16H15/503Gearings providing a continuous range of gear ratios in which two members co-operate by means of balls or rollers of uniform effective diameter, not mounted on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/06Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type
    • F16H47/08Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type the mechanical gearing being of the type with members having orbital motion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19851Gear and rotary bodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20012Multiple controlled elements
    • Y10T74/20018Transmission control
    • Y10T74/20177Particular element [e.g., shift fork, template, etc.]

Definitions

  • the field of the invention relates generally to transmissions, and more particularly to continuously variable transmissions (CVTs). Description of the Related Art
  • Embodiments of the CVTs disclosed here can be used in any machine, device, vehicle, etc., where it is desired to adjust the ratio of input speed to output speed.
  • a bicycle is one such application.
  • the drivetrain of a bicycle typically consists of pedals coupled to cranks for driving a crankshaft, which is received in, and supported by, frame members of the bicycle.
  • the crankshaft is coupled to a sprocket that transfers power to the rear wheel of the bicycle by a chain.
  • a cog at the rear wheel receives power from the chain and is adapted to interface with the rear wheel hub for driving the rear wheel of the bicycle.
  • Some bicycles are provided with internally geared rear hubs, where a set of gears is arranged to receive power from the cog and drive the rear wheel.
  • a bicycle is provided with a CVT at the rear hub to drive the rear wheel.
  • One aspect of the invention relates to a bicycle having a plurality of bicycle frame members, a crankshaft operationally coupled to one or more cranks of the bicycle, and a continuously variable transmission (CVT) coaxially coupled with, and coaxially mounted about, the crankshaft.
  • CVT continuously variable transmission
  • crankshaft coupled to a rotatable planetary gear set carrier coupled, and a plurality of planet gears coupled to said carrier.
  • a ring gear rotationally constrained, can be coupled to the planet gears, which can be coupled to a sun gear coupled.
  • a first traction ring is operationally coupled to the sun gear, and a plurality of traction planets are coupled to the traction ring.
  • a second traction ring is coupled to the traction planets. Power is transferred sequentially from the crankshaft to the planetary gear set carrier, to the planetary gears, to the sun gear, to the first traction ring, to the traction planets, and to the second traction ring.
  • the crankshaft is additionally coupled to a cage that is adapted to support the traction planets axially and radially and to transfer power to the traction planets.
  • Yet another aspect of the invention concerns a bicycle transmission having a planetary gear set configured for coupling to a crankshaft of a bicycle and to be mounted coaxially about the crankshaft.
  • the bicycle transmission can further have a continuously variable variator coupled to the planetary gearset configured to be mounted coaxially about the crankshaft.
  • Still another aspect of the invention is directed to a shift screw and ⁇ a shift pin hub for facilitating the adjustment of a transmission ratio.
  • the invention relates to a device for actuating an axial translation of an idler or traction sun as the transmission ratio is adjusted.
  • the traction sun actuation device includes a plurality of cam rollers configured to interface with a cam surface of a pivot arm.
  • Another aspect of the invention covers the pivot arms having an integral cam surface for facilitating the axial translation of the traction sun.
  • the invention is directed to a cage for a transmission.
  • the cage has a plurality of splines for engaging corresponding splines of a transmission housing.
  • the cage can further can a plurality of slots with skew roller reaction surfaces.
  • Figures 1 is schematic cross-section of continuously variable transmission (CVT) implemented on the frame of a bicycle.
  • Figure 2 is a schematic cross-section of yet another embodiment of a CVT implemented on the frame of a bicycle.
  • CVT continuously variable transmission
  • Figure 3 is a perspective view of still another embodiment of a CVT that can be implemented, among other things, on the frame (such as the bottom bracket) of a bicycle.
  • Figure 4A is a perspective, cross-sectional view of the transmission of Figure 3.
  • Figure 4B is a cross-sectional view of the transmission of Figure 3.
  • Figure 4C is a partial, exploded view of certain assemblies and components of the transmission of Figure 3.
  • Figure 4D is a partial, exploded view of certain assemblies and components of the transmission of Figure 3.
  • Figure 5 is a perspective, partially exploded view of certain components of a housing for the transmission of Figure 3.
  • Figure 6 A is a perspective view of a planetary gear set carrier that can be used with the transmission of Figure 3.
  • Figure 6B is an elevational side view of the planetary gear set carrier of Figure 6A.
  • Figure 7A is a perspective view of a cage that can be used with the transmission of Figure 3.
  • Figure 7B is a perspective view of a cage component of the cage of Figure 7A.
  • Figure 7C is a second perspective view of the cage component of Figure 7B.
  • Figure 8A is a perspective view of a planet-pivot-arm assembly that can be used with the transmission of Figure 3.
  • Figure 8B is a cross-sectional view of the planet-pivot-arm assembly of Figure A.
  • Figure 9 is a perspective view of a traction ring and clamping force generation assembly that can be used with the transmission of Figure 3.
  • Figure 1OA is a perspective view of an input driver that can be used with the transmission of Figure 3.
  • Figure 1OB is another perspective view of the input driver of Figure 1OA.
  • Figure 1OC is a cross-sectional view of the input driver of Figure 1OA.
  • Figure 1OD is a perspective view of an output driver that can be used with the transmission of Figure 3.
  • Figure 1OE is another perspective view of an output driver that can be used with the transmission of Figure 3.
  • Figure 1OF is a cross-sectional view the output driver of Figure 10D.
  • Figure 1 IA is a perspective view of a shift screw that can be used with a shifting actuator of the transmission of Figure 3.
  • Figure HB is a cross-sectional view of the shift screw of Figure HA.
  • Figure 12A is a perspective view of a shift pin hub that can be used with a shifting actuator of the transmission of Figure 3.
  • Figure 12B is a cross-sectional view of the shift pin hub of Figure 12 A.
  • Figure 13 A is a detail view A of Figure 4B showing a traction sun actuation device that can be used with the transmission of Figure 3.
  • Figure 13B is a perspective view of the traction sun actuation device of Figure 13 A.
  • Figure 13C is a side elevational view of traction sun actuation device of Figure 13B.
  • Figure 13D is an exploded view of the traction sun actuation device of Figure 13B.
  • Figure 14A is a perspective view of certain components of the CVT of Figure 3 showing a shifting actuator for the CVT.
  • Figure 14B is second perspective view of certain components shown in Figure 14 A.
  • Figure 14C is a cross-sectional view of the components shown in Figure 14 A.
  • the terms “operationally connected,” “operationally coupled”, “operationally linked”, “operably connected”, “operably coupled”, “operably linked,” and like terms refer to a relationship (mechanical, linkage, coupling, etc.) between elements whereby operation of one element results in a corresponding, following, or simultaneous operation or actuation of a second element. It is noted that in using said terms to describe inventive embodiments, specific structures or mechanisms that link or couple the elements are typically described. However, unless otherwise specifically stated, when one of said terms is used, the term indicates that the actual linkage or coupling may take a variety of forms, which in certain instances will be obvious to a person of ordinary skill in the relevant technology.
  • Figure 1 illustrates one embodiment of a bicycle transmission 100 mounted in a bicycle frame 102 rather than the rear hub of the bicycle (not shown).
  • the illustrated embodiment integrates a support structure 104 of the transmission into the frame 102 of the bicycle.
  • the major components of the transmission 100 include a variator 106, a planetary gear set 110 and a support structure 104.
  • the planetary gear set 110 of the illustrated embodiment includes a central sun gear 112, a set of planet gears 114 that orbit and surround the sun gear 112, a set of planet gears 114 that orbit and surround the sun gear 112, and a ring gear 116 that surrounds the set of planer gears 114.
  • a dashed circle is used to better illustrate the location of the ring gear 116 that, in the illustrated embodiment, is integrated with the support structure 104.
  • Each of the planet gears 114 rotates about a respective planet shaft 118, and a planet carrier 120 supports the planet shafts 118.
  • the planet gears 114 are compound planetary gears.
  • the variator 106 of the illustrated embodiment includes an input ring 124, an output ring 126, and a set of planet balls 130 in contact with, and between, the input ring 124 and the output ring 126.
  • An idler 132 is placed between, and in contact with, the planet balls 130, and is analogous to the sun gear 112 of the planetary gear set 110.
  • the variator 106 operates as illustrated and described in United States Patent 7,011,600.
  • Cranks 140 of a bicycle provide torque input into the planet carrier 120.
  • the planet carrier 120 rotates the planet gears 114 about the sun gear 112.
  • the ring gear 116 is fixed and the planet gears 114 drive the sun gear 112.
  • the ring gear 116 is fixed, and the planet gears 114 drive the sun gear 112.
  • the planet carrier 120 is connected to the cage 142 of the variator 106.
  • the sun gear 112 is connected to the input ring 124 via a cam loader 144, a set of bearings 146 and ramps 148 that generates axial force that is proportional to the amount of torque applied, although any axial force generating mechanism described in United States Patent 7,011,600 or known or described in previous publications can be used.
  • torque is supplied to the variator 106 from both the sun gear 112, via the input ring 124, and the carrier 120, via the cage 142.
  • the variator 106 takes and sums the two torque inputs and varies the output speed to the output ring 126 and out via an output sprocket 150.
  • the illustrated embodiment includes an optional reaction sleeve 152 to react the axial force generated as well as a thrust bearing 154 for reacting the axial thrust generated to clamp the input ring 124 and the output ring 126 to the planet balls 130.
  • a second embodiment is illustrated that also utilizes the planetary gear set 110 as an input to the variator 106.
  • torque again is applied from the cranks 140 to the carrier 120 and output through the sun gear 112.
  • the carrier 120 is not attached to the cage 142 and, therefore, torque is only input to the variator 106 through the input ring 124 while the cage 142 is fixed to the frame 102.
  • the transmission 300 can use components similar to those described above with reference to the embodiments of the transmission 100. However, the use of a similar or identical reference name for a component does not necessarily introduce into an embodiment (or aspect of the embodiment) any characterizations associated with a previously described embodiment.
  • FIG. 3 is a perspective view of the transmission 300.
  • power can be provided to the transmission 300 via cranks 350, and power can be delivered out of the transmission 300 via a sprocket 348.
  • the transmission 300 can include a central hub shell 390 that, along with end caps 302 and 346, forms a housing 345 for most of the components of the transmission 300.
  • the housing 345 can be configured to be implemented on a bicycle frame, such as in the bottom bracket of the bicycle, for example.
  • the transmission 300 can be used in any machine or vehicle where it is desired to adjust the ratio of input speed to output speed, or vice versa.
  • the transmission 300 can include a set of planet-pivot-arm assemblies 410 positioned between an input traction ring 330 and an output traction ring 336.
  • the planet-pivot-arm assemblies 410 can include an array of traction planets 332 in contact with the input traction ring 330, the output traction ring 336, and a traction sun 333.
  • the transmission 300 can include an input driver 326 for operationally driving the input traction ring 330.
  • the output traction ring 336 is configured to operationally driver the output driver 340.
  • the transmission 300 includes an input load cam 328 positioned between the input driver 326 and the traction ring 330.
  • the transmission preferably also includes an output load cam 338 located between the output traction ring 336 and the output driver 340.
  • a cage 356 is provided to support and guide the planet-pivot- arm assemblies 410, as well as to provide stiffness and/or rigidity to the transmission 300. It should be noted that the previous recitation of components of the transmission 300 can be expanded or reduced, and that enumerated members can be combined together and continue to perform their intended functions, without departing from the scope of present invention.
  • the cranks 350 are coupled to provide torque to a crank shaft or central shaft 360, which is generally positioned and supported in the housing 345 by bearings 395.
  • the central shaft 360 can also be configured to provide radial and axial support for certain assemblies of the transmission 300.
  • the central shaft 360 defines a longitudinal axis of the transmission 300 that will serve as a reference point for describing the location and or motion of other components of the transmission 300.
  • the terms "axial,” “axially,” “lateral,” “laterally,” refer to a position or direction that is coaxial or parallel with the longitudinal axis defined by the central shaft 360.
  • the terms “radial” and “radially” refer to locations or directions that extend perpendicularly from the longitudinal axis.
  • the cranks 350 couple to a first stage planetary gear set via the central shaft 360.
  • the first stage planetary gear set includes sun gear 312, compound planetary gears 310, carrier 320, and ring gear 316.
  • the central shaft 360 couples to the ring gear 316.
  • the carrier 320 is configured to receive and support, on planetary gear axles 318, the compound planetary gears 310.
  • the carrier 320 is rotationally and axially fixed, and can be part of (or attached to) the housing 345.
  • the ring gear 316 drives the compound planetary gears 310, which orbit around and drive the sun gear 312.
  • the input driver 326 is coupled to and receives torque from the sun gear 312.
  • the input driver 326 delivers torque via the input load cam 328 to the input traction ring 330, which transfers torque to the planet- pivot-arm assemblies 410.
  • the output driver 340 receives torque from the planet- pivot-arm assemblies 410 via the output traction ring 340 and output load cam 338.
  • the output driver 340 is coupled to and delivers torque to the sprocket 348.
  • a sprocket is used in this example, other embodiments of the transmission 300 can use a pulley, a freewheel, a cog, etc.
  • the input traction ring 330 and the output traction ring 340 are substantially similar.
  • a traction ring 330, 340 preferably includes a traction surface for transmitting torque through frictional or hydroelastodynamic contact with the traction planets 332.
  • a traction ring 330, 340 can include ramps that form part of a load cam assembly (see Figure 10).
  • the traction surface of the traction ring 330, 340 can be inclined at about 45 degrees from vertical, which in this case refers to a plane surface extending radially.
  • a cage 356 includes an input cage 352 and an output cage 354 (see Figures 1 A-IC), and circumscribes and supports the planet-pivot-arm assemblies 410, as depicted in Figures 4A-4D.
  • a planet-pivot-arm assembly 410 can include a traction planet 332.
  • the traction planets 332 are in contact with and are radially supported by the traction sun 333.
  • An exemplary planet-pivot-arm assembly 410 is depicted in Figure 9.
  • the traction sun 333 can be a generally cylindrical tube. In some embodiments, the traction sun 333 has a generally constant outer diameter; however, in other embodiments the outer diameter is not constant.
  • the outer diameter may be smaller at the center portion than at the ends, or may be larger at the center and smaller at the ends. In other embodiments, the outer diameter is larger at one end than at the other and the change between the two ends may be linear or non-linear depending on shift speed and torque requirements.
  • a planet-pivot-arm assembly 410 can have pivot arms 380, which can be operationally coupled to a traction sun actuation device 382 (see Figures 4B and 13A- 13D). As will be discussed further below, the traction sun actuation device 382 can be used to translate axially the traction sun 333 when the speed ratio of the transmission 300 is adjusted.
  • the pivot arms 380 can be coupled to a shift pin hub 374 via hub pin fingers 376 (see Figure 13A) and shift pins (not shown). The shift pin hub 374 can be used to actuate the planet-pivot-arm assembly 410 in response to a shifting input.
  • thrust bearings can be provide on either or both of the input and output ends of the CVT 300.
  • an input thrust bearing is located between the stationary, first stage planetary carrier 320 and the input driver 326.
  • the input thrust bearing in the embodiment illustrated in Figure 4, includes an input bearing race 322 that is received and supported in a recess of the carrier 320.
  • the input thrust bearing also has a set of rollers 324 that can be positioned and supported by a roller retainer.
  • the rollers 324 can be balls, barreled rollers, asymmetrical rollers or any other type of rollers.
  • the input driver 326 is provided with an integral bearing race that cooperates with the rollers 324 and the input bearing race 322 to complete the input thrust bearing.
  • an output thrust bearing can be positioned between the output driver 340 and the end cap 346, which can have a recess for receiving and support an output bearing race 344.
  • the end cap 346 helps to react the axial forces that arise in the transmission 300.
  • the bearing races 322, 344 can be made of various bearing race materials such as steel, bearing steel, ceramic or any other material suitable for bearing races.
  • the output thrust bearing includes a set of rollers 342 positioned and supported in roller retainer.
  • the output driver 340 can have an integral bearing race that cooperates with the output bearing race 344 and the rollers 342 to complete the output thrust bearing.
  • the housing 345 includes a central hub shell 390, an input end cap 302, and an output end cap 346.
  • the end caps 302, 346 fasten to the central hub shell 390 with fasteners (not shown); however, the ends cap 302, 346 can also thread into, or can otherwise be attached to the central hub shell 390.
  • the central hub shell 390 can be provided with internal splines 392 formed integral with the inside of the hub shell 390 to engage with complimentary splines 925 of the cage 356.
  • the end caps 302, 346 are generally flat discs, although either or both can have a curved shape or other configuration.
  • the end cap 346 can be provided with a recess 1405 adapted to receive and support the output bearing race 344.
  • the central bores of the end caps 302, 346 can be adapted to receive the bearings 395 for providing positioning and rolling contact with respect to other components of the transmission 300.
  • the end caps 302 and 346 can be made of, for example, aluminum, titanium, steel, high strength thermoplastics, or thermoset plastics.
  • the end caps 302 and 346 are preferably made of a material suitable to provide rigidity and stiffness to the transmission 300, as well as to react the axial forces that arise in the transmission 300 during operation.
  • the first stage planetary carrier 320 can be adapted by machining, or formed as an integral piece, to be capable of axially and radially supporting the compound planetary gears 310.
  • the carrier 320 includes bore holes 605 adapted to secure and receive the planetary shafts 318.
  • the carrier 320 can include cavities 610 and 615 formed integral with the carrier 320 to receive the compound planetary gears 310.
  • a central bore 620 of the carrier 320 can be configured to receive a bearing 396, which serves to locate, and provide a rolling interface for, the input driver 326 (see Figure 4B, for example).
  • carrier 320 can be configured to form part of the housing 345 and/or to receive and support the bearing race 322.
  • a cage 356 can have two halves, input cage half 352 and input cage half 354.
  • the cage halves 352, 354 can be substantially similar.
  • the cage halves 352, 354 can be interchangeable.
  • the cage 356 is shaped to provide a stationary, reaction support structure for the pivot arms 380; that is, the cage 356 is configured to provide the angular alignment (about the longitudinal axis of the central shaft 360) for the pivot arms 380 (and consequently, the traction planet axles 334) as the pivot arms 380 pivot radially inward and outward about the traction planets 332 during shifting of the transmission ratio.
  • the slots 915 of the cage 356 guide the planet- pivot-arm assemblies 410 along skew surfaces 910 through contact with the skew rollers 1220.
  • the skew surfaces 910 provide reaction surfaces for the skew rollers 1220 as the planet-pivot-arm assemblies 410 pivot or tilt in slot 915 when the transmission ratio of the CVT 300 is adjusted.
  • the corresponding slots of cage halves 352, 354 are offset slightly in the angular direction, relative to one another, to reduce potential deleterious effects on shifting, for example, that can be caused by skewing (relative to a lateral axis) of the traction planet axles 334 (see Figure 9A).
  • the planet- pivot-arm assembly 410 can include a traction planet 332, a traction planet axle 334, and pivot arms 380 having a slotted joint 1210.
  • the planet-pivot-arm assembly 410 can also include skew rollers 1220, which are rolling elements attached to each end of a pivot arm axle 334 and provide for rolling contact of the traction planet axle 334 along skew surfaces 910 of the input cage 352 and output cage 354.
  • the planet-pivot- arm assembly 410 can include bearings 374.
  • the skew rollers 1220 and the bearings 374 can be supported by the traction planet axle 334.
  • the traction planet axle 334 passes through a bore formed in the radially outward end of a pivot arm 380.
  • the pivot arms 380 are machined with a curvature suitable to axially translate the traction sun 333 in reaction to a shift mechanism input.
  • the pivot arms 380 can be provide with a cam surface 1230.
  • the curvature of the cam surface 1230 can be configured to produce a desired axial translation of the traction sun 333 during shifting of the transmission ratio.
  • the traction planet axle 334 can be a generally cylindrical shaft that extends through a bore formed through the center of the traction planet 332.
  • the traction planet axle 334 interfaces with the surface of the bore in the traction planet 332 via needle or radial bearings that align the traction planet 332 on the traction planet axle 334.
  • the traction planet axle 334 extends beyond the sides of the traction planet 332 where the bore ends so that the pivot arms 380 can actuate a shift in the position of the traction planet 332. Where the traction planet axle 334 extends beyond the edge of the traction planet 332, it couples to the radial outward end of the pivot arms 380.
  • the traction planet axle 334 passes through a bore formed in the radially outward end of the pivot arms 380.
  • the interface between the traction planets 332 and the traction planet axles 334 can be any of the bearings described in other patents or publications.
  • the traction planets 332 are fixed to, and rotate with, the planet axles 334.
  • the bearings 374 are positioned between the traction planet axles 332 and the pivot arms 380 such that the transverse forces acting on the traction planet axles 332 are reacted by the pivot arms 380 as well as, or alternatively, the cage 356.
  • the bearings 374 can be radial bearings (balls or needles), journal bearings, or any other type of bearings or suitable mechanism.
  • traction- type transmissions use a clamping mechanism to prevent slippage between the traction planets 332 and the traction rings 330, 336 when transmitting certain levels of torque. Provision of a clamping mechanism is sometimes referred to here as generating an axial force, or providing an axial force generator. With reference to Figures 4A-4D and 9, clamping force generation mechanisms that can be used with the transmission 300 will now be described.
  • a load cam 700 includes load cam rollers 705 and ramps 710, which can be formed integral with a traction ring, such as input or output traction rings 330 and 336.
  • the rollers 705 can be supported and positioned in a suitable roller retainer, for example roller retainer 720.
  • a traction ring 330, 340 can includes about 16 ramps 710, with each ramp 710 having about a 10 degree incline.
  • the ramps 710 are helical and have a lead equivalent to about 55-66 mm over a 160-degree span.
  • the input load cam 328 includes rollers 327 and ramps integral with the input traction ring 330
  • the output load cam assembly 338 includes rollers 337 and ramps integral with the output traction ring 336.
  • the rollers 705, 327, 337 can be spherical, cylindrical, barreled, asymmetrical or other shape suitable for a given application.
  • the ramps 710 are provided on a ring that is fastened to the input driver 326 or to the input traction ring 330; alternatively, each of the input driver 326 and the input traction ring can be fitted with rings having the ramps 710.
  • the input traction ring 330 and the load cam assembly 328 are an integral unit, effectively as when the ramps 1610 are built into the input traction ring 330, and the rollers 705 and roller retainer 720 form a distinct assembly.
  • the first stage planetary sun gear 312 imparts torque to the input driver 326.
  • the input driver 326 transfers torque to the input traction ring 330 via the ramps 710, which can be integral with the input traction ring 330.
  • the ramps 710 activate the rollers 705, which ride up the ramps 710.
  • the rollers 705 wedge in place, pressed between the ramps 705 and a surface of the input driver 326, and transmit both torque and axial force through the ramps 705 from the input driver 326 to the input traction ring 330.
  • the axial force then clamps the traction planets 332 between the input traction ring 330, the output traction ring 336, and the traction sun 333.
  • an input driver 326 can be a generally circular plate 552 with a central bore 554, which is adapted with a spline or other fastening device to engage the sun gear 312.
  • the input driver 326 includes a surface 556 that engages the load cam rollers 327.
  • the surface 556 can be flat or can have load cam ramps, such as the ramps shown on the input traction ring 330 (see Figures 4B and 9, for example).
  • the input driver 326 includes a bearing race 558 that cooperates with the input bearing race 322 and the rollers 324 to provide the functionality of a thrust bearing for supporting axial loads and rolling contact between stationary and rotating components.
  • an output driver 340 can be a generally circular plate 560 having a central bore with a flange 562, which is adapted to receive bearings 395 and to engage with, for example, a sprocket 348.
  • the flange 562 can be adapted to receive a bearing 391 that locates and supports the output end cap 346.
  • the output driver 340 includes a surface 564 that is configured to engage the load cam rollers 337.
  • the surface 546 can be flat or can have load ramps, such as the ramps shown (but not referenced) on the output traction ring 336.
  • the output driver 340 includes a bearing race 566 that cooperates with the output bearing race 344 and the rollers 342 to provide the functionality of a thrust bearing, as discussed above with reference to the input driver 326.
  • the bearing race 566 is located on a side of the output driver 326 that is opposite to the side having the surface 564.
  • a shift wheel 375 can be used to drive the shift screw 370.
  • the shift wheel 375 can be, for example, a pulley or a compound gear adapted to be actuated by a linear actuator such as a cable or a chain (not shown).
  • the housing 345 can be suitably adapted to allow the linear actuator to access the shift wheel 375.
  • the shift pin hub 374 is coupled to the pivot arms 380 by shift pins (not shown) that fit in the fingers 376 and in the shift pin hole 1212 of the pivot arms 380 (see Figures 8A-8B).
  • the fingers 376 are configured to fit in the slot 1280 of the pivot arms 380.
  • the shift pin hub 374 is provided with a threaded end 580, in one embodiment, to allow the shift screw 370 to actuate the shift pin hub 374 via corresponding shift screw threads 1005 of the shift screw 370.
  • the shift screw 370 can mount coaxially with and is rotatable about the central shaft 360.
  • the shift screw 370 can be axially constrained by the sun gear 312 and the ring gear 316. Suitable thrust bearings can be positioned between the shift screw 370 and, respectively, the sun gear 312 and the ring gear 316 (see Figure 4B, for example).
  • the shift screw 370 includes a shift screw flange 1010 adapted to couple to the shift wheel 375.
  • a shift input is provided by the linear actuator (chain, cable, etc.) to the shift wheel 375, which rotates the shift screw 370.
  • the shift screw threads 1005 engage the shift pin hub threads 580, and since the shift screw 370 is constrained axially at the same time that the shift pin hub 374 is constrained rotationally, the shift screw 370 causes the shift pin hub 374 to move axially.
  • the axial translation of the shift pin hub 374 causes the pivot arms 380 to pivot on the pivot pins (not shown) coupling the shift pin hub fingers 376 and the pivot arms 380.
  • the pivot arms 380 pivot about the centers of the planets 332.
  • the pivoting of the pivot arms 380 causes the traction planet axles 334 to tilt radially inward or outward, which results in a change in the relative point of contact between the traction planets 332 and, respectively, the input traction ring 330 and the output traction ring 336.
  • This change the relative point of contact between the traction planets 332 and the traction rings 330, 336 results in a change in the speed ratio of the transmission 300.
  • the traction sun 333 translate axially as the pivot arms 380 tilt the traction planet axles 334. Translation of the traction sun 333 can be accomplished by a traction sun actuation device 382, which in one embodiment is positioned between the traction sun 333 and the pivot arms 380.
  • the traction sun actuation device 382 includes cam rollers 1805 adapted to engage the cam surface 1230 of the pivot arms 380. The cam rollers 1805 can be supported and positioned on cam roller support ring 1810 having support extensions 1812. To react and transfer axial forces, an angular contact thrust bearing is positioned between the support ring 1810 and the traction sun 333.
  • a bearing race 1811 is integral with the support ring 1810, a bearing race 1825 is suitably coupled or affixed to the traction sun 333, and a set of bearing rollers 1820 is supported and positioned by a bearing roller retainer 1815.
  • a traction sun actuation device 382 can be provided for each of end of the traction sun 333, as illustrated in Figures 4A-4D.
  • the cam surface 1230 of the pivot arms 380 acts on the cam rollers 1805, which transfer an axial force to the cam roller support ring 1810.
  • the cam rollers 1805 are provided with flanges 1807 to engage the pivot arms 380, and thereby the support ring 1810 is constrained from rotation about the central shaft 360.
  • the support ring 1810 then transfers the axial force to the traction sun 333 via the bearing race 1810, bearing rollers 1820, and bearing race 1825.
  • the curvature or profile of the cam surface 1230 determines the relative speed between the speed of axial translation of the traction sun 333 vis-a-vis the speed of change of the tilt of the traction planet axles 334.
  • the profile of the shift cam surface 1230 usually varies according to the location of the contact point between the traction sun 333 and the traction planets 332, as well as the desired amount of relative axial motion between the traction planets 332 and the traction sun 333.
  • the profile of the cam surface 1230 can be such that axial translation of the traction sun 333 relative to the traction planets 332 is proportional to the change of the tilt of the traction planets axles 334.
  • the angle of tilt of the traction planet axles 334 is referred to herein as "gamma.”
  • the applicant has discovered that controlling the axial translation of the traction sun 333 relative to the change in gamma influences CVT ratio control forces.
  • the normal force at the cam surface 1230 and the cam roller 1805 is generally parallel to the traction planet axles 334. This enables an efficient transfer of a shift moment about the traction planets 332 to horizontal shift forces that translate the traction sun 333.
  • RSF describes the transverse creep rate between the traction planets 332 and the traction sun 333.
  • "creep" is the discrete local motion of a body relative to another. In traction drives, the transfer of power from a driving element to a driven element via a traction interface requires creep.
  • creep in the direction of power transfer is referred to as “creep in the rolling direction.”
  • the driving and driven elements experience creep in a direction orthogonal to the power transfer direction, in such a case this component of creep is referred to as “transverse creep.”
  • transverse creep is imposed between the traction sun 333 and the traction planets 332.
  • An RSF equal to 1.0 indicates pure rolling. At RSF values less than 1.0, the traction sun 333 translates slower than the traction planet 332 rotates. At RSF values greater than 1.0, the traction sun 333 translates faster than the traction planet 332 rotates.
  • a process for defining a profile for the cam surface 1230 for any variation of transverse creep and/or location of the interface between the traction sun 333 and the pivot arm 380 and cam roller 1805 This process generates different cam profiles and aids in determining the effects on shift forces and shifter displacement.
  • the process involves the use of parametric equations to define a two-dimensional datum curve that has the desired profile for the cam surface 1230. The curve is then used to generate models of the cam surface 1230.
  • the parametric equations of the datum curve are as follows:
  • the angle theta varies from minimum gamma (which in some embodiments is -20 degrees) to maximum gamma (which in some embodiments is +20 degrees).
  • GAMMAJV1AX is the maximum gamma.
  • the parametric range variable "t" varies from 0 to 1.
  • x and "y” are the center point of the cam rollers 1805 on each side of the traction sun 333.
  • the equations for x and y are parametric.
  • "LEG” and "ARM” define the position of the interface between the pivot arm 380, cam roller 1805, and traction sun 333.
  • LEG is the perpendicular distance between the longitudinal axis of the traction planet axle 334 to a line that passes through the centers of the two corresponding cam rollers 1805.
  • ARM is the distance between centers of the cam rollers 1805 on either side of the traction sun 333.
  • RSF values above zero are preferred. Applicant discovered that an RSF of zero dramatically increases the force required to shift the CVT. Usually, RSF values above 1.0 and less than 2.5 are preferred. There is a maximum RSF for a maximum gamma angle. For example, for gamma equals to +20 degrees an RSF of about 1.6 is the maximum. RSF further depends on the size of the traction planet 332 and the size of the traction sun 333, as well as the location of the cam roller 1805.
  • crankshaft can be directly, or through a load cam assembly, coupled to the input driver 326 or the input traction ring 330 of the variator.
  • a shift actuator 1 can be provided to actuate the shift wheel 375.
  • the end cap 302 and/or the planetary gearset carrier 320 can be adapted to allow the shift actuator 1 to engage the shift wheel 375.
  • the end cap 302 can have, for example, holes 2 that allow the shift actuator 1 to enter and exit the housing 345.
  • the carrier 320 supports the shift wheel 375 (on an axle or pin that is not shown) and, hence, the carrier 320 can be provided with holes 3 that allow the shift actuator 1 to pass into and out of the carrier 320 to access the shift wheel 375.
  • the shift actuator 1 can be, for example, a shift cable, wire, belt, etc. If the shift wheel 375 is a gear with teeth, the shift actuator 1 can be a chain, for example. It will be obvious to a person of ordinary skill in the relevant technology that other shift actuators can be used to control the shift wheel 375.

Abstract

Traction planets and traction rings can be operationally coupled to a planetary gearset to provide a continuously variable transmission (CVT). The CVT can be used in a bicycle. In one embodiment, the CVT is mounted on the frame of the bicycle at a location forward of the rear wheel hub of the bicycle. In one embodiment, the CVT is mounted on and supported by members of the bicycle frame such that the CVT is coaxial with the crankshaft of the bicycle. The crankshaft is configured to drive elements of the planetary gearset, which are configured to operationally drive the traction rings and the traction planets. Inventive component and subassemblies for such a CVT are disclosed. A shifting mechanism includes a plurality of pivot arms arranged to pivot about the centers of the traction planets as a shift pin hub moves axially.

Description

CONTINUOUSLY VARIABLE TRANSMISSION
RELATED APPLICATIONS
[0001] This application claims priority to United States provisional patent application No. 60/738,865, which was filed on November 22, 2005 and is hereby incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTION Field of the Invention
[0002] The field of the invention relates generally to transmissions, and more particularly to continuously variable transmissions (CVTs). Description of the Related Art
[0003] Embodiments of the CVTs disclosed here can be used in any machine, device, vehicle, etc., where it is desired to adjust the ratio of input speed to output speed.. A bicycle is one such application. The drivetrain of a bicycle typically consists of pedals coupled to cranks for driving a crankshaft, which is received in, and supported by, frame members of the bicycle. The crankshaft is coupled to a sprocket that transfers power to the rear wheel of the bicycle by a chain. A cog at the rear wheel receives power from the chain and is adapted to interface with the rear wheel hub for driving the rear wheel of the bicycle. Some bicycles are provided with internally geared rear hubs, where a set of gears is arranged to receive power from the cog and drive the rear wheel. In some applications, a bicycle is provided with a CVT at the rear hub to drive the rear wheel.
[0004] However, there remains an unfulfilled need for a CVT that is received and supported by the frame members of the bicycle at a location forward of the rear wheel or rear wheel hub. The embodiments of the CVTs disclosed here address this and other needs in the field of continuously variable transmissions.
SUMMARY OF THE INVENTION
[0005] The systems and methods described herein have several features, no single one of which is solely responsible for the overall desirable attributes. Without limiting the scope as expressed by the claims that follow, the more prominent features of certain embodiments of the invention will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled "Detailed Description of Certain Inventive Embodiments," one will understand how the features of the systems and methods provide several advantages over related traditional systems and methods. [0006] One aspect of the invention relates to a bicycle having a plurality of bicycle frame members, a crankshaft operationally coupled to one or more cranks of the bicycle, and a continuously variable transmission (CVT) coaxially coupled with, and coaxially mounted about, the crankshaft.
[0007] Another aspect of the invention is addressed to a bicycle having a crankshaft coupled to a rotatable planetary gear set carrier coupled, and a plurality of planet gears coupled to said carrier. A ring gear, rotationally constrained, can be coupled to the planet gears, which can be coupled to a sun gear coupled. A first traction ring is operationally coupled to the sun gear, and a plurality of traction planets are coupled to the traction ring. A second traction ring is coupled to the traction planets. Power is transferred sequentially from the crankshaft to the planetary gear set carrier, to the planetary gears, to the sun gear, to the first traction ring, to the traction planets, and to the second traction ring. In another embodiment, the crankshaft is additionally coupled to a cage that is adapted to support the traction planets axially and radially and to transfer power to the traction planets.
[0008] Yet another aspect of the invention concerns a bicycle transmission having a planetary gear set configured for coupling to a crankshaft of a bicycle and to be mounted coaxially about the crankshaft. The bicycle transmission can further have a continuously variable variator coupled to the planetary gearset configured to be mounted coaxially about the crankshaft.
[0009] Still another aspect of the invention is directed to a shift screw and ■ a shift pin hub for facilitating the adjustment of a transmission ratio. In another regard, the invention relates to a device for actuating an axial translation of an idler or traction sun as the transmission ratio is adjusted. In one embodiment, the traction sun actuation device includes a plurality of cam rollers configured to interface with a cam surface of a pivot arm. Another aspect of the invention covers the pivot arms having an integral cam surface for facilitating the axial translation of the traction sun.
[0010] In one aspect the invention is directed to a cage for a transmission. The cage has a plurality of splines for engaging corresponding splines of a transmission housing. The cage can further can a plurality of slots with skew roller reaction surfaces.
BRIEF DESCRIPTION OF THE FIGURES
[0011] Figures 1 is schematic cross-section of continuously variable transmission (CVT) implemented on the frame of a bicycle. [0012] Figure 2 is a schematic cross-section of yet another embodiment of a CVT implemented on the frame of a bicycle.
[0013] Figure 3 is a perspective view of still another embodiment of a CVT that can be implemented, among other things, on the frame (such as the bottom bracket) of a bicycle.
[0014] Figure 4A is a perspective, cross-sectional view of the transmission of Figure 3.
[0015] Figure 4B is a cross-sectional view of the transmission of Figure 3.
[0016] Figure 4C is a partial, exploded view of certain assemblies and components of the transmission of Figure 3.
[0017] Figure 4D is a partial, exploded view of certain assemblies and components of the transmission of Figure 3.
[0018] Figure 5 is a perspective, partially exploded view of certain components of a housing for the transmission of Figure 3.
[0019] Figure 6 A is a perspective view of a planetary gear set carrier that can be used with the transmission of Figure 3.
[0020] Figure 6B is an elevational side view of the planetary gear set carrier of Figure 6A.
[0021] Figure 7A is a perspective view of a cage that can be used with the transmission of Figure 3.
[0022] Figure 7B is a perspective view of a cage component of the cage of Figure 7A.
[0023] Figure 7C is a second perspective view of the cage component of Figure 7B.
[0024] Figure 8A is a perspective view of a planet-pivot-arm assembly that can be used with the transmission of Figure 3.
[0025] Figure 8B is a cross-sectional view of the planet-pivot-arm assembly of Figure A.
[0026] Figure 9 is a perspective view of a traction ring and clamping force generation assembly that can be used with the transmission of Figure 3.
[0027] Figure 1OA is a perspective view of an input driver that can be used with the transmission of Figure 3.
[0028] Figure 1OB is another perspective view of the input driver of Figure 1OA. [0029] Figure 1OC is a cross-sectional view of the input driver of Figure 1OA.
[0030] Figure 1OD is a perspective view of an output driver that can be used with the transmission of Figure 3.
[0031] Figure 1OE is another perspective view of an output driver that can be used with the transmission of Figure 3.
[0032] Figure 1OF is a cross-sectional view the output driver of Figure 10D.
[0033] Figure 1 IA is a perspective view of a shift screw that can be used with a shifting actuator of the transmission of Figure 3.
[0034] Figure HB is a cross-sectional view of the shift screw of Figure HA.
[0035] Figure 12A is a perspective view of a shift pin hub that can be used with a shifting actuator of the transmission of Figure 3.
[0036] Figure 12B is a cross-sectional view of the shift pin hub of Figure 12 A.
[0037] Figure 13 A is a detail view A of Figure 4B showing a traction sun actuation device that can be used with the transmission of Figure 3.
[0038] Figure 13B is a perspective view of the traction sun actuation device of Figure 13 A.
[0039] Figure 13C is a side elevational view of traction sun actuation device of Figure 13B.
[0040] Figure 13D is an exploded view of the traction sun actuation device of Figure 13B.
[0041] Figure 14A is a perspective view of certain components of the CVT of Figure 3 showing a shifting actuator for the CVT.
[0042] Figure 14B is second perspective view of certain components shown in Figure 14 A.
[0043] Figure 14C is a cross-sectional view of the components shown in Figure 14 A.
DETAILED DESCRIPTION OF CERTAIN INVENTIVE EMBODIMENTS
[0044] Reference will now be made in detail to the present embodiments(s) (exemplary embodiments) of the invention, an example(s) of which is (are) illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts (elements).
[0045] The CVT embodiments described here are generally related to those of the type disclosed in U.S. Patent Nos. 6,241,636; 6,419,608; 6,689,012; and 7,011,600. The entire disclosure of each of these patents is hereby incorporated herein by reference. Additionally, U.S. Patent Application 10/788,736 (now U.S. Patent 7,011,600) was included as Appendix A of the provisional application from which this application claims priority. The disclosure of U.S. Patent Application 11/543,311, filed October 3, 2006, is hereby incorporated by reference herein in its entirety.
[0046] The preferred embodiments will now be described with reference to the accompanying figures, wherein like numerals refer to like elements throughout. The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive manner simply because it is being utilized in conjunction with a detailed description of certain specific embodiments of the invention. Furthermore, embodiments of the invention may include several novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the inventions herein described.
[0047] As used here, the terms "operationally connected," "operationally coupled", "operationally linked", "operably connected", "operably coupled", "operably linked," and like terms, refer to a relationship (mechanical, linkage, coupling, etc.) between elements whereby operation of one element results in a corresponding, following, or simultaneous operation or actuation of a second element. It is noted that in using said terms to describe inventive embodiments, specific structures or mechanisms that link or couple the elements are typically described. However, unless otherwise specifically stated, when one of said terms is used, the term indicates that the actual linkage or coupling may take a variety of forms, which in certain instances will be obvious to a person of ordinary skill in the relevant technology.
[0048] For description purposes, the term "radial" is used here to indicate a direction or position that is perpendicular relative to a longitudinal axis of a transmission or variator. The term "axial" as used here refers to a direction or position along an axis that is parallel to a main or longitudinal axis of a transmission or variator. For clarity and conciseness, at times similar components labeled. [0049] Figure 1 illustrates one embodiment of a bicycle transmission 100 mounted in a bicycle frame 102 rather than the rear hub of the bicycle (not shown). The illustrated embodiment integrates a support structure 104 of the transmission into the frame 102 of the bicycle. The major components of the transmission 100 include a variator 106, a planetary gear set 110 and a support structure 104. The planetary gear set 110 of the illustrated embodiment includes a central sun gear 112, a set of planet gears 114 that orbit and surround the sun gear 112, a set of planet gears 114 that orbit and surround the sun gear 112, and a ring gear 116 that surrounds the set of planer gears 114. In Figure I5 a dashed circle is used to better illustrate the location of the ring gear 116 that, in the illustrated embodiment, is integrated with the support structure 104. Each of the planet gears 114 rotates about a respective planet shaft 118, and a planet carrier 120 supports the planet shafts 118. In the exemplary embodiment of Figure I5 the planet gears 114 are compound planetary gears.
[0050] As described in the embodiments described in United States Patent 7,011,600, the variator 106 of the illustrated embodiment includes an input ring 124, an output ring 126, and a set of planet balls 130 in contact with, and between, the input ring 124 and the output ring 126. An idler 132 is placed between, and in contact with, the planet balls 130, and is analogous to the sun gear 112 of the planetary gear set 110. The variator 106 operates as illustrated and described in United States Patent 7,011,600.
[0051] Cranks 140 of a bicycle provide torque input into the planet carrier 120. The planet carrier 120 rotates the planet gears 114 about the sun gear 112. The ring gear 116 is fixed and the planet gears 114 drive the sun gear 112. The ring gear 116 is fixed, and the planet gears 114 drive the sun gear 112. The planet carrier 120 is connected to the cage 142 of the variator 106. The sun gear 112 is connected to the input ring 124 via a cam loader 144, a set of bearings 146 and ramps 148 that generates axial force that is proportional to the amount of torque applied, although any axial force generating mechanism described in United States Patent 7,011,600 or known or described in previous publications can be used. Therefore, in the illustrated embodiment, torque is supplied to the variator 106 from both the sun gear 112, via the input ring 124, and the carrier 120, via the cage 142. The variator 106 takes and sums the two torque inputs and varies the output speed to the output ring 126 and out via an output sprocket 150. The illustrated embodiment includes an optional reaction sleeve 152 to react the axial force generated as well as a thrust bearing 154 for reacting the axial thrust generated to clamp the input ring 124 and the output ring 126 to the planet balls 130.
[0052] In the embodiment illustrated in Figure 2, a second embodiment is illustrated that also utilizes the planetary gear set 110 as an input to the variator 106. In this embodiment, torque again is applied from the cranks 140 to the carrier 120 and output through the sun gear 112. In this embodiment, however, the carrier 120 is not attached to the cage 142 and, therefore, torque is only input to the variator 106 through the input ring 124 while the cage 142 is fixed to the frame 102.
[0053] An alternative transmission 300 will now be described with reference to Figures 3-13D. The transmission 300 can use components similar to those described above with reference to the embodiments of the transmission 100. However, the use of a similar or identical reference name for a component does not necessarily introduce into an embodiment (or aspect of the embodiment) any characterizations associated with a previously described embodiment.
[0054] Figure 3 is a perspective view of the transmission 300. In one embodiment (in a bicycle application, for example), power can be provided to the transmission 300 via cranks 350, and power can be delivered out of the transmission 300 via a sprocket 348. The transmission 300 can include a central hub shell 390 that, along with end caps 302 and 346, forms a housing 345 for most of the components of the transmission 300. In one embodiment, the housing 345 can be configured to be implemented on a bicycle frame, such as in the bottom bracket of the bicycle, for example. However, the transmission 300 can be used in any machine or vehicle where it is desired to adjust the ratio of input speed to output speed, or vice versa. That is, although various embodiments and features of the transmissions described herein are discussed with reference to a bicycle application, a person of ordinary skill in the relevant art will readily recognize modifications of and to the transmission 300, and features thereof, that can be used in any vehicle, machine, or device that uses a transmission to adjust the ratio of input to output speeds.
[0055] Referencing Figures 4A-4D now, an exemplary embodiment of certain assemblies and components of the transmission 300 will now be described. In one embodiment, the transmission 300 can include a set of planet-pivot-arm assemblies 410 positioned between an input traction ring 330 and an output traction ring 336. The planet-pivot-arm assemblies 410 can include an array of traction planets 332 in contact with the input traction ring 330, the output traction ring 336, and a traction sun 333. The transmission 300 can include an input driver 326 for operationally driving the input traction ring 330. The output traction ring 336 is configured to operationally driver the output driver 340. Preferably, the transmission 300 includes an input load cam 328 positioned between the input driver 326 and the traction ring 330. The transmission preferably also includes an output load cam 338 located between the output traction ring 336 and the output driver 340. In the embodiment illustrated, a cage 356 is provided to support and guide the planet-pivot- arm assemblies 410, as well as to provide stiffness and/or rigidity to the transmission 300. It should be noted that the previous recitation of components of the transmission 300 can be expanded or reduced, and that enumerated members can be combined together and continue to perform their intended functions, without departing from the scope of present invention.
[0056] The cranks 350 are coupled to provide torque to a crank shaft or central shaft 360, which is generally positioned and supported in the housing 345 by bearings 395. The central shaft 360 can also be configured to provide radial and axial support for certain assemblies of the transmission 300. For purposes of description, the central shaft 360 defines a longitudinal axis of the transmission 300 that will serve as a reference point for describing the location and or motion of other components of the transmission 300. As used here, the terms "axial," "axially," "lateral," "laterally," refer to a position or direction that is coaxial or parallel with the longitudinal axis defined by the central shaft 360. The terms "radial" and "radially" refer to locations or directions that extend perpendicularly from the longitudinal axis.
[0057] In one embodiment, the cranks 350 couple to a first stage planetary gear set via the central shaft 360. The first stage planetary gear set includes sun gear 312, compound planetary gears 310, carrier 320, and ring gear 316. The central shaft 360 couples to the ring gear 316. The carrier 320 is configured to receive and support, on planetary gear axles 318, the compound planetary gears 310. In one embodiment, the carrier 320 is rotationally and axially fixed, and can be part of (or attached to) the housing 345.
[0058] The ring gear 316 drives the compound planetary gears 310, which orbit around and drive the sun gear 312. The input driver 326 is coupled to and receives torque from the sun gear 312. The input driver 326 delivers torque via the input load cam 328 to the input traction ring 330, which transfers torque to the planet- pivot-arm assemblies 410. The output driver 340 receives torque from the planet- pivot-arm assemblies 410 via the output traction ring 340 and output load cam 338. The output driver 340 is coupled to and delivers torque to the sprocket 348. Although a sprocket is used in this example, other embodiments of the transmission 300 can use a pulley, a freewheel, a cog, etc.
[0059] In some embodiments, the input traction ring 330 and the output traction ring 340 are substantially similar. A traction ring 330, 340 preferably includes a traction surface for transmitting torque through frictional or hydroelastodynamic contact with the traction planets 332. In some embodiments, a traction ring 330, 340 can include ramps that form part of a load cam assembly (see Figure 10). The traction surface of the traction ring 330, 340 can be inclined at about 45 degrees from vertical, which in this case refers to a plane surface extending radially.
[0060] A cage 356 includes an input cage 352 and an output cage 354 (see Figures 1 A-IC), and circumscribes and supports the planet-pivot-arm assemblies 410, as depicted in Figures 4A-4D. A planet-pivot-arm assembly 410 can include a traction planet 332. The traction planets 332 are in contact with and are radially supported by the traction sun 333. An exemplary planet-pivot-arm assembly 410 is depicted in Figure 9. The traction sun 333 can be a generally cylindrical tube. In some embodiments, the traction sun 333 has a generally constant outer diameter; however, in other embodiments the outer diameter is not constant. The outer diameter may be smaller at the center portion than at the ends, or may be larger at the center and smaller at the ends. In other embodiments, the outer diameter is larger at one end than at the other and the change between the two ends may be linear or non-linear depending on shift speed and torque requirements.
[0061] A planet-pivot-arm assembly 410 can have pivot arms 380, which can be operationally coupled to a traction sun actuation device 382 (see Figures 4B and 13A- 13D). As will be discussed further below, the traction sun actuation device 382 can be used to translate axially the traction sun 333 when the speed ratio of the transmission 300 is adjusted. The pivot arms 380 can be coupled to a shift pin hub 374 via hub pin fingers 376 (see Figure 13A) and shift pins (not shown). The shift pin hub 374 can be used to actuate the planet-pivot-arm assembly 410 in response to a shifting input. Shifting, or adjustment of the speed ratio, of the transmission will be further described below with reference to Figures 11 A-12B. [0062] To handle axial reaction forces and provide a rolling contact between moving and stationary members of the CVT 300, thrust bearings can be provide on either or both of the input and output ends of the CVT 300. At the input side, generally referring to the area where the central shaft 360 couples to the ring gear 316, an input thrust bearing is located between the stationary, first stage planetary carrier 320 and the input driver 326. The input thrust bearing, in the embodiment illustrated in Figure 4, includes an input bearing race 322 that is received and supported in a recess of the carrier 320. The input thrust bearing also has a set of rollers 324 that can be positioned and supported by a roller retainer. The rollers 324 can be balls, barreled rollers, asymmetrical rollers or any other type of rollers. In one embodiment, the input driver 326 is provided with an integral bearing race that cooperates with the rollers 324 and the input bearing race 322 to complete the input thrust bearing.
[0063] On the output side, generally referring to the area where the output driver 340 is located, an output thrust bearing can be positioned between the output driver 340 and the end cap 346, which can have a recess for receiving and support an output bearing race 344. Thus, in this embodiment, the end cap 346 helps to react the axial forces that arise in the transmission 300. The bearing races 322, 344 can be made of various bearing race materials such as steel, bearing steel, ceramic or any other material suitable for bearing races. The output thrust bearing includes a set of rollers 342 positioned and supported in roller retainer. In one embodiment, the output driver 340 can have an integral bearing race that cooperates with the output bearing race 344 and the rollers 342 to complete the output thrust bearing.
[0064] Referencing Figure 5 now, in one embodiment, the housing 345 includes a central hub shell 390, an input end cap 302, and an output end cap 346. In one embodiment, the end caps 302, 346 fasten to the central hub shell 390 with fasteners (not shown); however, the ends cap 302, 346 can also thread into, or can otherwise be attached to the central hub shell 390. The central hub shell 390 can be provided with internal splines 392 formed integral with the inside of the hub shell 390 to engage with complimentary splines 925 of the cage 356. The end caps 302, 346 are generally flat discs, although either or both can have a curved shape or other configuration. As shown in Figure 5, the end cap 346 can be provided with a recess 1405 adapted to receive and support the output bearing race 344. The central bores of the end caps 302, 346 can be adapted to receive the bearings 395 for providing positioning and rolling contact with respect to other components of the transmission 300. The end caps 302 and 346 can be made of, for example, aluminum, titanium, steel, high strength thermoplastics, or thermoset plastics. Depending on the embodiment, the end caps 302 and 346 are preferably made of a material suitable to provide rigidity and stiffness to the transmission 300, as well as to react the axial forces that arise in the transmission 300 during operation.
[0065] Turning to Figures 6A-6B now, the first stage planetary carrier 320 can be adapted by machining, or formed as an integral piece, to be capable of axially and radially supporting the compound planetary gears 310. The carrier 320 includes bore holes 605 adapted to secure and receive the planetary shafts 318. The carrier 320 can include cavities 610 and 615 formed integral with the carrier 320 to receive the compound planetary gears 310. A central bore 620 of the carrier 320 can be configured to receive a bearing 396, which serves to locate, and provide a rolling interface for, the input driver 326 (see Figure 4B, for example). As previously mentioned, in some embodiments that carrier 320 can be configured to form part of the housing 345 and/or to receive and support the bearing race 322.
[0066] Passing to Figures 7A-7C, a cage 356 can have two halves, input cage half 352 and input cage half 354. In one embodiment, the cage halves 352, 354 can be substantially similar. Hence, the cage halves 352, 354 can be interchangeable. Is some embodiments, the cage 356 is shaped to provide a stationary, reaction support structure for the pivot arms 380; that is, the cage 356 is configured to provide the angular alignment (about the longitudinal axis of the central shaft 360) for the pivot arms 380 (and consequently, the traction planet axles 334) as the pivot arms 380 pivot radially inward and outward about the traction planets 332 during shifting of the transmission ratio.
[0067] In one embodiment, the slots 915 of the cage 356 guide the planet- pivot-arm assemblies 410 along skew surfaces 910 through contact with the skew rollers 1220. The skew surfaces 910 provide reaction surfaces for the skew rollers 1220 as the planet-pivot-arm assemblies 410 pivot or tilt in slot 915 when the transmission ratio of the CVT 300 is adjusted. In some embodiments, the corresponding slots of cage halves 352, 354 are offset slightly in the angular direction, relative to one another, to reduce potential deleterious effects on shifting, for example, that can be caused by skewing (relative to a lateral axis) of the traction planet axles 334 (see Figure 9A). [0068] Turning to Figures 8A and 8B now, in one embodiment, the planet- pivot-arm assembly 410 can include a traction planet 332, a traction planet axle 334, and pivot arms 380 having a slotted joint 1210. The planet-pivot-arm assembly 410 can also include skew rollers 1220, which are rolling elements attached to each end of a pivot arm axle 334 and provide for rolling contact of the traction planet axle 334 along skew surfaces 910 of the input cage 352 and output cage 354. The planet-pivot- arm assembly 410 can include bearings 374. The skew rollers 1220 and the bearings 374 can be supported by the traction planet axle 334. The traction planet axle 334 passes through a bore formed in the radially outward end of a pivot arm 380.
[0069] In one embodiment, the pivot arms 380 are machined with a curvature suitable to axially translate the traction sun 333 in reaction to a shift mechanism input. The pivot arms 380 can be provide with a cam surface 1230. As will be further described below with reference to Figures 13A-13D, the curvature of the cam surface 1230 can be configured to produce a desired axial translation of the traction sun 333 during shifting of the transmission ratio.
[0070] The traction planet axle 334 can be a generally cylindrical shaft that extends through a bore formed through the center of the traction planet 332. In some embodiments, the traction planet axle 334 interfaces with the surface of the bore in the traction planet 332 via needle or radial bearings that align the traction planet 332 on the traction planet axle 334. The traction planet axle 334 extends beyond the sides of the traction planet 332 where the bore ends so that the pivot arms 380 can actuate a shift in the position of the traction planet 332. Where the traction planet axle 334 extends beyond the edge of the traction planet 332, it couples to the radial outward end of the pivot arms 380. The traction planet axle 334 passes through a bore formed in the radially outward end of the pivot arms 380.
[0071] In various embodiments, the interface between the traction planets 332 and the traction planet axles 334 can be any of the bearings described in other patents or publications. In some embodiments, the traction planets 332 are fixed to, and rotate with, the planet axles 334. In the embodiment of Figure 8A, the bearings 374 are positioned between the traction planet axles 332 and the pivot arms 380 such that the transverse forces acting on the traction planet axles 332 are reacted by the pivot arms 380 as well as, or alternatively, the cage 356. In some such embodiments, the bearings 374 can be radial bearings (balls or needles), journal bearings, or any other type of bearings or suitable mechanism. [0072] Typically, traction- type transmissions use a clamping mechanism to prevent slippage between the traction planets 332 and the traction rings 330, 336 when transmitting certain levels of torque. Provision of a clamping mechanism is sometimes referred to here as generating an axial force, or providing an axial force generator. With reference to Figures 4A-4D and 9, clamping force generation mechanisms that can be used with the transmission 300 will now be described.
[0073] As mentioned above with reference to Figures 4A-4D, some embodiments of the transmission 300 preferably include an input load cam 328 and/or an output load cam 338. The following discussion of a load cam 700 applies equally to both load cams 328, 338. In one embodiment, a load cam 700 includes load cam rollers 705 and ramps 710, which can be formed integral with a traction ring, such as input or output traction rings 330 and 336. The rollers 705 can be supported and positioned in a suitable roller retainer, for example roller retainer 720. In some embodiments, a traction ring 330, 340 can includes about 16 ramps 710, with each ramp 710 having about a 10 degree incline. In certain embodiments, the ramps 710 are helical and have a lead equivalent to about 55-66 mm over a 160-degree span. The input load cam 328 includes rollers 327 and ramps integral with the input traction ring 330, and the output load cam assembly 338 includes rollers 337 and ramps integral with the output traction ring 336. The rollers 705, 327, 337 can be spherical, cylindrical, barreled, asymmetrical or other shape suitable for a given application.
[0074] In some embodiments, the ramps 710 are provided on a ring that is fastened to the input driver 326 or to the input traction ring 330; alternatively, each of the input driver 326 and the input traction ring can be fitted with rings having the ramps 710. In some embodiments, the input traction ring 330 and the load cam assembly 328 are an integral unit, effectively as when the ramps 1610 are built into the input traction ring 330, and the rollers 705 and roller retainer 720 form a distinct assembly.
[0075] During operation of the transmission 300, the first stage planetary sun gear 312 imparts torque to the input driver 326. The input driver 326 transfers torque to the input traction ring 330 via the ramps 710, which can be integral with the input traction ring 330. As the input driver 326 rotates, the ramps 710 activate the rollers 705, which ride up the ramps 710. The rollers 705 wedge in place, pressed between the ramps 705 and a surface of the input driver 326, and transmit both torque and axial force through the ramps 705 from the input driver 326 to the input traction ring 330. The axial force then clamps the traction planets 332 between the input traction ring 330, the output traction ring 336, and the traction sun 333.
[0076] Turning to Figures 10A- 1OC now, an input driver 326 can be a generally circular plate 552 with a central bore 554, which is adapted with a spline or other fastening device to engage the sun gear 312. The input driver 326 includes a surface 556 that engages the load cam rollers 327. The surface 556 can be flat or can have load cam ramps, such as the ramps shown on the input traction ring 330 (see Figures 4B and 9, for example). In one embodiment, the input driver 326 includes a bearing race 558 that cooperates with the input bearing race 322 and the rollers 324 to provide the functionality of a thrust bearing for supporting axial loads and rolling contact between stationary and rotating components.
[0077] Referencing Figures 10D- 1OF now, an output driver 340 can be a generally circular plate 560 having a central bore with a flange 562, which is adapted to receive bearings 395 and to engage with, for example, a sprocket 348. In another embodiment, the flange 562 can be adapted to receive a bearing 391 that locates and supports the output end cap 346. The output driver 340 includes a surface 564 that is configured to engage the load cam rollers 337. The surface 546 can be flat or can have load ramps, such as the ramps shown (but not referenced) on the output traction ring 336. In one embodiment, the output driver 340 includes a bearing race 566 that cooperates with the output bearing race 344 and the rollers 342 to provide the functionality of a thrust bearing, as discussed above with reference to the input driver 326. The bearing race 566 is located on a side of the output driver 326 that is opposite to the side having the surface 564.
[0078] Referencing Figures 11A-12B now, the speed ratio of the transmission 300 can be adjusted using the shift screw 370 and the shift pin hub 374. In one embodiment, a shift wheel 375 can be used to drive the shift screw 370. The shift wheel 375 can be, for example, a pulley or a compound gear adapted to be actuated by a linear actuator such as a cable or a chain (not shown). The housing 345 can be suitably adapted to allow the linear actuator to access the shift wheel 375.
[0079] The shift pin hub 374 is coupled to the pivot arms 380 by shift pins (not shown) that fit in the fingers 376 and in the shift pin hole 1212 of the pivot arms 380 (see Figures 8A-8B). The fingers 376 are configured to fit in the slot 1280 of the pivot arms 380. The shift pin hub 374 is provided with a threaded end 580, in one embodiment, to allow the shift screw 370 to actuate the shift pin hub 374 via corresponding shift screw threads 1005 of the shift screw 370.
[0080] The shift screw 370 can mount coaxially with and is rotatable about the central shaft 360. In one embodiment, the shift screw 370 can be axially constrained by the sun gear 312 and the ring gear 316. Suitable thrust bearings can be positioned between the shift screw 370 and, respectively, the sun gear 312 and the ring gear 316 (see Figure 4B, for example). In one embodiment, the shift screw 370 includes a shift screw flange 1010 adapted to couple to the shift wheel 375.
[0081] To adjust the speed ratio of the transmission 300, a shift input is provided by the linear actuator (chain, cable, etc.) to the shift wheel 375, which rotates the shift screw 370. The shift screw threads 1005 engage the shift pin hub threads 580, and since the shift screw 370 is constrained axially at the same time that the shift pin hub 374 is constrained rotationally, the shift screw 370 causes the shift pin hub 374 to move axially. The axial translation of the shift pin hub 374 causes the pivot arms 380 to pivot on the pivot pins (not shown) coupling the shift pin hub fingers 376 and the pivot arms 380. The pivot arms 380 pivot about the centers of the planets 332. Because the pivot arms 380 are coupled to the traction planet axles 334, the pivoting of the pivot arms 380 causes the traction planet axles 334 to tilt radially inward or outward, which results in a change in the relative point of contact between the traction planets 332 and, respectively, the input traction ring 330 and the output traction ring 336. This change the relative point of contact between the traction planets 332 and the traction rings 330, 336 results in a change in the speed ratio of the transmission 300.
[0082] In some embodiments, it is preferable that the traction sun 333 translate axially as the pivot arms 380 tilt the traction planet axles 334. Translation of the traction sun 333 can be accomplished by a traction sun actuation device 382, which in one embodiment is positioned between the traction sun 333 and the pivot arms 380. In one embodiment, the traction sun actuation device 382 includes cam rollers 1805 adapted to engage the cam surface 1230 of the pivot arms 380. The cam rollers 1805 can be supported and positioned on cam roller support ring 1810 having support extensions 1812. To react and transfer axial forces, an angular contact thrust bearing is positioned between the support ring 1810 and the traction sun 333. In the embodiment illustrated in Figures 13A-13D, a bearing race 1811 is integral with the support ring 1810, a bearing race 1825 is suitably coupled or affixed to the traction sun 333, and a set of bearing rollers 1820 is supported and positioned by a bearing roller retainer 1815. In some embodiments, a traction sun actuation device 382 can be provided for each of end of the traction sun 333, as illustrated in Figures 4A-4D.
[0083] As the pivot arms 380 pivot about the planets 332, the cam surface 1230 of the pivot arms 380 acts on the cam rollers 1805, which transfer an axial force to the cam roller support ring 1810. The cam rollers 1805 are provided with flanges 1807 to engage the pivot arms 380, and thereby the support ring 1810 is constrained from rotation about the central shaft 360. The support ring 1810 then transfers the axial force to the traction sun 333 via the bearing race 1810, bearing rollers 1820, and bearing race 1825. As will be discussed further below, the curvature or profile of the cam surface 1230 determines the relative speed between the speed of axial translation of the traction sun 333 vis-a-vis the speed of change of the tilt of the traction planet axles 334.
[0084] The profile of the shift cam surface 1230 usually varies according to the location of the contact point between the traction sun 333 and the traction planets 332, as well as the desired amount of relative axial motion between the traction planets 332 and the traction sun 333. The profile of the cam surface 1230 can be such that axial translation of the traction sun 333 relative to the traction planets 332 is proportional to the change of the tilt of the traction planets axles 334. The angle of tilt of the traction planet axles 334 is referred to herein as "gamma." The applicant has discovered that controlling the axial translation of the traction sun 333 relative to the change in gamma influences CVT ratio control forces. For example, if the axial translation of the traction sun 333 is linearly proportional to a change in gamma, the normal force at the cam surface 1230 and the cam roller 1805 is generally parallel to the traction planet axles 334. This enables an efficient transfer of a shift moment about the traction planets 332 to horizontal shift forces that translate the traction sun 333.
[0085] A linear relation between translation of the traction sun 333 and gamma change is given as translation of the traction sun 333 is the mathematical product of the radius of the planets 332, the gamma angle and RSF (that is, translation of traction sun 333 = ball radius * gamma angle * RSF), where RSF is a roll-slide factor. RSF describes the transverse creep rate between the traction planets 332 and the traction sun 333. As used here, "creep" is the discrete local motion of a body relative to another. In traction drives, the transfer of power from a driving element to a driven element via a traction interface requires creep. Usually, creep in the direction of power transfer is referred to as "creep in the rolling direction." Sometimes the driving and driven elements experience creep in a direction orthogonal to the power transfer direction, in such a case this component of creep is referred to as "transverse creep." During operation, the traction planet 332 and the traction sun 333 on each other. When the traction sun 333 is translated axially (that is, orthogonal to the rolling direction), transverse creep is imposed between the traction sun 333 and the traction planets 332. An RSF equal to 1.0 indicates pure rolling. At RSF values less than 1.0, the traction sun 333 translates slower than the traction planet 332 rotates. At RSF values greater than 1.0, the traction sun 333 translates faster than the traction planet 332 rotates.
[0086] A process for defining a profile for the cam surface 1230 for any variation of transverse creep and/or location of the interface between the traction sun 333 and the pivot arm 380 and cam roller 1805. This process generates different cam profiles and aids in determining the effects on shift forces and shifter displacement. In one embodiment, the process involves the use of parametric equations to define a two-dimensional datum curve that has the desired profile for the cam surface 1230. The curve is then used to generate models of the cam surface 1230. In one embodiment of the process, the parametric equations of the datum curve are as follows:
[0087] theta = 2*GAMMA_MAX*t-GAMMA_MAX
[0088] x=LEG*sin(theta) - 0.5*BALL_DIA*RSF*theta*pi/180 + 0.5*ARM*cos(theta)
[0089] y= LEG*cos(theta) - 0.5*ARM*sin(theta)
[0090] z=0
[0091] The angle theta varies from minimum gamma (which in some embodiments is -20 degrees) to maximum gamma (which in some embodiments is +20 degrees). GAMMAJV1AX is the maximum gamma. The parametric range variable "t" varies from 0 to 1. Here "x" and "y" are the center point of the cam rollers 1805 on each side of the traction sun 333. The equations for x and y are parametric. "LEG" and "ARM" define the position of the interface between the pivot arm 380, cam roller 1805, and traction sun 333. More specifically, LEG is the perpendicular distance between the longitudinal axis of the traction planet axle 334 to a line that passes through the centers of the two corresponding cam rollers 1805. ARM is the distance between centers of the cam rollers 1805 on either side of the traction sun 333.
[0092] RSF values above zero are preferred. Applicant discovered that an RSF of zero dramatically increases the force required to shift the CVT. Usually, RSF values above 1.0 and less than 2.5 are preferred. There is a maximum RSF for a maximum gamma angle. For example, for gamma equals to +20 degrees an RSF of about 1.6 is the maximum. RSF further depends on the size of the traction planet 332 and the size of the traction sun 333, as well as the location of the cam roller 1805.
[0093] Linear axial translation of the traction sun 333 relative to gamma is not the only desired relation. Hence, for example, if it is desired that the translation of the traction sun 333 be linearly proportional to CVT ratio, then the RSF factor is made a function of gamma angle or CVT ratio so that the relation between the position of the traction sun 333 and CVT ratio is linearly proportional. This is a desirable feature for some types of control schemes.
[0094] It should be noted that while several embodiments have been described above that implement a continuously variable variator in conjunction with a planetary gear set for a bicycle transmission, in other embodiments the planetary gear set is not used. Rather, the crankshaft can be directly, or through a load cam assembly, coupled to the input driver 326 or the input traction ring 330 of the variator.
[0095] Turning to Figures 14A-14C now, a shift actuator 1 can be provided to actuate the shift wheel 375. As shown, the end cap 302 and/or the planetary gearset carrier 320 can be adapted to allow the shift actuator 1 to engage the shift wheel 375. The end cap 302 can have, for example, holes 2 that allow the shift actuator 1 to enter and exit the housing 345. In one embodiment, the carrier 320 supports the shift wheel 375 (on an axle or pin that is not shown) and, hence, the carrier 320 can be provided with holes 3 that allow the shift actuator 1 to pass into and out of the carrier 320 to access the shift wheel 375. The shift actuator 1 can be, for example, a shift cable, wire, belt, etc. If the shift wheel 375 is a gear with teeth, the shift actuator 1 can be a chain, for example. It will be obvious to a person of ordinary skill in the relevant technology that other shift actuators can be used to control the shift wheel 375.
[0096] The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated.

Claims

1. A bicycle comprising: a plurality of bicycle frame members; a crankshaft operationally coupled to one or more cranks of the bicycle; and a continuously variable transmission (CVT) coaxially coupled with, and coaxially mounted about, the crankshaft.
2. The bicycle of Claim 1, wherein the CVT comprises a plurality of traction planets.
3. The bicycle of Claim 2, wherein the CVT comprises one or more pivot arms coupled to the traction planets.
4. The bicycle of Claim 1, wherein the housing of the CVT is incorporated with the bicycle frame members.
5. The bicycle of Claim 2, wherein the housing of the CVT incorporates a carrier of a planetary gear set.
6. The bicycle of Claim 1, further comprising a planetary gear set.
7. The bicycle of Claim 6, wherein the carrier of the planetary gear set is incorporated with the housing of the CVT.
8. The bicycle of Claim 6, wherein the crankshaft is configured to drive a ring gear of the planetary gear set.
9. The bicycle of Claim 8, wherein the ring gear is configured to drive planetary gears of the planetary gear set.
10. The bicycle of Claim 9, wherein the planetary gears are configured to drive a sun gear of the planetary gear set.
11. The bicycle of Claim 10, wherein the sun gear is configured to drive an input driver of the CVT.
12. The bicycle of Claim 11, wherein the input driver is configured to operationally drive a traction ring of the CVT.
13. The bicycle of Claim 3, further comprising a pivot pin hub coupled to the pivot arms.
14. The bicycle of Claim 13, wherein an axial movement of the pivot pin hub causes a pivoting of the pivot arms.
15. A bicycle comprising : a crankshaft; a rotatable planetary gear set carrier coupled to the crankshaft; a plurality of planet gears coupled to said carrier; a ring gear, rotationally constrained, coupled to the planet gears; a sun gear coupled to the planet gears; a first traction ring operationally coupled to the sun gear; a plurality of traction planets coupled to the traction ring; and a second traction ring coupled to the traction planets.
16. The bicycle of Claim 15, further comprising a cage coupled to the crankshaft and adapted to transfer power to the traction planets.
17. The bicycle of Claim 16, wherein the traction planets are spherical rollers.
18. The bicycle of Claim 15, further comprising an axial force reaction sleeve.
19. The bicycle of Claim 15, further comprising an axial thrust bearing.
20. The bicycle of Claim 15, further comprising a traction sun.
21. The bicycle of Claim 15, further comprising at least one load cam assembly.
22. The bicycle of Claim 21, wherein the load cam assembly comprises load cam rollers and ramps.
23. A bicycle comprising: a crankshaft; a rotatable planetary gear set carrier coupled to the crankshaft; a plurality of planet gears coupled to said carrier; a ring gear, rotationally constrained, coupled to the planet gears; a sun gear coupled to the planet gears; a first traction ring operationally coupled to the sun gear and coaxially mounted about the crankshaft; a plurality of traction planets coupled to the traction ring; and a second traction ring coupled to the traction planets and coaxially mounted about the crankshaft.
24. The bicycle of Claim 23, further comprising a cage rigidly coupled to members of the frame of the bicycle, the cage configured to support the plurality of traction planets axially and radially.
25. The bicycle of Claim 23, further comprising a housing that is integral with the frame members of the bicycle.
26. A bicycle transmission comprising: a planetary gear set configured for coupling to a crankshaft of a bicycle and to be mounted coaxially about said crankshaft; and a continuously variable variator coupled to said planetary gearset configured to be mounted coaxially about said crankshaft.
27. The bicycle transmission of Claim 26, wherein the transmission is configured to be mounted on frame members of the bicycle.
28. The bicycle transmission of Claim 27, wherein the transmission is mounted forward of the rear wheel.
29. The bicycle transmission of Claim 28, wherein the transmission is mounted on the bottom bracket of the bicycle.
30. The bicycle transmission of Claim 26, wherein the crankshaft is coupled to a carrier of the planetary gearset.
31. The bicycle transmission of Claim 26, wherein the crankshaft is coupled to a ring gear of the planetary gearset.
32. The bicycle transmission of Claim 26, wherein the ring gear of the planetary gearset is constrained rotationally.
33. The bicycle transmission of Claim 26, wherein the crankshaft is coupled to a cage of the variator.
34. The bicycle transmission of Claim 26, wherein a sun gear of the planetary gearset is coupled to an input driver of the variator.
35. The bicycle transmission of Claim 26, wherein a carrier of the planetary gearset is constrained rotationally.
36. The bicycle transmission of Claim 26, wherein a cage of the variator is rigidly coupled to the frame members of the bicycle.
37. A shift screw and shift pin hub as substantially shown and described with reference to Figures 11 A-12B.
38. A planetary gearset carrier as substantially shown and described with reference to Figures 6A-6B.
39. A cage as substantially shown and described with reference to Figures 7A-7B.
40. A pivot arm assembly as substantially shown and described with reference to Figures 8A-8B.
41. Input and output drivers as substantially shown and described with reference to Figures 10A- 1OF.
42. A traction sun actuation device as substantially shown and described with reference to Figures 13A-13D.
43. A pivot arm assembly for facilitating the shifting of a transmission, the pivot arm assembly comprising: a substantially u-shaped body having one or more pivot arms; wherein distal ends of the pivot arms are configured to receive the ends of a traction planet axle; a slot configured to receive fingers of a shift pin hub; and a through hole in said slot for receiving a shift pin that couples the pivot arm assembly to the shift pin hub.
44. A driver ring comprising: central bore adapted to receive or transfer torque; a bearing race; and a surface adapted to engage load cam rollers.
45. A shifter for facilitating the adjustment of a transmission ratio, the shifter comprising: a shift screw having a first set of threads and a surface for engaging a shifter actuator; a shift pin hub having a second set of threads and a plurality of fingers, the fingers configured to engage a plurality of shift pins; wherein the first and second set of threads are configured such that a rotation of the shift screw causes an axial translation of the shift pin hub.
46. A traction sun actuation device comprising: a cam surface; and a plurality of cam rollers configured to engage the cam surface.
47. The traction sun actuation device of Claim 46, further comprising a thrust bearing configured to transfer axial forces from the cam rollers to the traction sun.
48. The traction sun actuation device of Claim 46, wherein the cam surface is integral with a pivot arm of a transmission.
49. The traction sun actuation device of Claim 47, wherein a first bearing race of the thrust bearing is integral with a support ring of the cam rollers, and wherein a second bearing race of the thrust bearing is coupled to the traction sun.
50. A transmission as substantially shown and described with reference to Figures 4A-4D.
PCT/US2006/044983 2005-11-22 2006-11-21 Continuously variable transmission WO2007061993A2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020087014990A KR101422475B1 (en) 2005-11-22 2006-11-21 A bicycle with continuously variable transmission
ES06838127T ES2424652T3 (en) 2005-11-22 2006-11-21 Continuously variable transmission
PL06838127T PL1954959T3 (en) 2005-11-22 2006-11-21 Continuously variable transmission
CN2006800510506A CN101495777B (en) 2005-11-22 2006-11-21 Continuously variable transmission
EP06838127.6A EP1954959B1 (en) 2005-11-22 2006-11-21 Continuously variable transmission
DK06838127.6T DK1954959T3 (en) 2005-11-22 2006-11-21 Continuously variable transmission
TW095143152A TWI434788B (en) 2005-11-22 2006-11-22 Continuously variable transmission
HK10100991.7A HK1137498A1 (en) 2005-11-22 2010-01-29 Continuously variable transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US73886505P 2005-11-22 2005-11-22
US60/738,865 2005-11-22

Publications (2)

Publication Number Publication Date
WO2007061993A2 true WO2007061993A2 (en) 2007-05-31
WO2007061993A3 WO2007061993A3 (en) 2009-04-23

Family

ID=38067839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/044983 WO2007061993A2 (en) 2005-11-22 2006-11-21 Continuously variable transmission

Country Status (10)

Country Link
US (6) US20070155567A1 (en)
EP (1) EP1954959B1 (en)
KR (1) KR101422475B1 (en)
CN (1) CN101495777B (en)
DK (1) DK1954959T3 (en)
ES (1) ES2424652T3 (en)
HK (1) HK1137498A1 (en)
PL (1) PL1954959T3 (en)
TW (1) TWI434788B (en)
WO (1) WO2007061993A2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008154437A1 (en) * 2007-06-11 2008-12-18 Fallbrook Technologies Inc. Continuously variable transmission
WO2011109444A1 (en) * 2010-03-03 2011-09-09 Fallbrook Technologies Inc. Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
CN101796327B (en) * 2007-07-05 2014-01-29 福博科技术公司 Continuously variable transmission
EP2699470A1 (en) * 2011-04-18 2014-02-26 Kalle Tanskanen Speed regulator
WO2014147055A1 (en) * 2013-03-18 2014-09-25 Campus Rex GmbH & Co. KG Power-split transmission and method for optimizing the efficiency of and/or the range of gear ratios in a power-split transmission
FR3003924A1 (en) * 2013-03-27 2014-10-03 Peugeot Citroen Automobiles Sa VARIATION TRANSMISSION CONTINUES
WO2014172422A1 (en) * 2013-04-19 2014-10-23 Fallbrook Intellectual Property Company Llc Continuously variable transmission
WO2015028726A1 (en) * 2013-08-27 2015-03-05 Peugeot Citroen Automobiles Sa Continuous variation transmission with power recirculation
WO2016062461A1 (en) * 2014-10-23 2016-04-28 Robert Bosch Gmbh Adjustable friction ring-type transmission for a vehicle operated using motor power and/or pedal force
WO2016062436A1 (en) * 2014-10-23 2016-04-28 Robert Bosch Gmbh Coaxially arranged friction ring-type transmission for a vehicle operated by motor and/or pedal force
US11125329B2 (en) 2007-11-16 2021-09-21 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US11174922B2 (en) 2019-02-26 2021-11-16 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
US11215268B2 (en) 2018-11-06 2022-01-04 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11306818B2 (en) 2016-01-15 2022-04-19 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US11454303B2 (en) 2005-12-09 2022-09-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US11598397B2 (en) 2005-12-30 2023-03-07 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US11667351B2 (en) 2016-05-11 2023-06-06 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101526127B (en) 2001-04-26 2011-08-17 瀑溪技术公司 A continuously variable transmission and member support, support frame and frame manufacture method
US7011600B2 (en) 2003-02-28 2006-03-14 Fallbrook Technologies Inc. Continuously variable transmission
US7166052B2 (en) 2003-08-11 2007-01-23 Fallbrook Technologies Inc. Continuously variable planetary gear set
JP4974896B2 (en) 2004-10-05 2012-07-11 フォールブルック テクノロジーズ インコーポレイテッド Continuously variable transmission
EP1937965A2 (en) * 2005-08-22 2008-07-02 Viryd Technologies Inc. Tubular fluid energy converter
KR101327190B1 (en) 2005-10-28 2013-11-06 폴브룩 테크놀로지즈 인크 Electromotive drives
US20070155567A1 (en) 2005-11-22 2007-07-05 Fallbrook Technologies Inc. Continuously variable transmission
US7882762B2 (en) 2006-01-30 2011-02-08 Fallbrook Technologies Inc. System for manipulating a continuously variable transmission
US7770674B2 (en) 2006-03-14 2010-08-10 Fallbrook Technologies Inc. Wheel chair
CN101484350A (en) * 2006-05-11 2009-07-15 瀑溪技术公司 Continuously variable drivetrain
JP5443984B2 (en) 2006-06-26 2014-03-19 フォールブルック インテレクチュアル プロパティー カンパニー エルエルシー Front-end accessory drive (FEAD) system
EP2089642B1 (en) 2006-11-08 2013-04-10 Fallbrook Intellectual Property Company LLC Clamping force generator
EP2125469A2 (en) * 2007-02-01 2009-12-02 Fallbrook Technologies Inc. System and methods for control of transmission and/or prime mover
US20100093479A1 (en) 2007-02-12 2010-04-15 Fallbrook Technologies Inc. Continuously variable transmissions and methods therefor
WO2008101070A2 (en) 2007-02-16 2008-08-21 Fallbrook Technologies Inc. Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
EP2142826B1 (en) 2007-04-24 2015-10-28 Fallbrook Intellectual Property Company LLC Electric traction drives
CN101848832A (en) * 2007-09-25 2010-09-29 加布里埃尔·帕迪利亚·奥罗兹科 Drive system for vehicle
CN102317146B (en) 2007-12-21 2015-11-25 福博科知识产权有限责任公司 Automatic transmission and for its method
CA2942806C (en) 2008-02-29 2018-10-23 Fallbrook Intellectual Property Company Llc Continuously and/or infinitely variable transmissions and methods therefor
US8317651B2 (en) 2008-05-07 2012-11-27 Fallbrook Intellectual Property Company Llc Assemblies and methods for clamping force generation
CN102112778B (en) 2008-06-06 2013-10-16 福博科技术公司 Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
EP2304272B1 (en) 2008-06-23 2017-03-08 Fallbrook Intellectual Property Company LLC Continuously variable transmission
US8561403B2 (en) 2008-08-05 2013-10-22 Vandyne Super Turbo, Inc. Super-turbocharger having a high speed traction drive and a continuously variable transmission
WO2010017242A1 (en) 2008-08-05 2010-02-11 Fallbrook Technologies Inc. Methods for control of transmission and prime mover
US8469856B2 (en) 2008-08-26 2013-06-25 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8167759B2 (en) 2008-10-14 2012-05-01 Fallbrook Technologies Inc. Continuously variable transmission
WO2010056090A2 (en) * 2008-11-17 2010-05-20 Byun Donghwan Continuously variable transmission
KR101763655B1 (en) 2009-04-16 2017-08-01 폴브룩 인텔렉츄얼 프로퍼티 컴퍼니 엘엘씨 Stator assembly and shifting mechanism for a continuously variable transmission
CN102308459A (en) * 2009-04-21 2012-01-04 丰田自动车株式会社 Motor with transmission function
WO2011016873A1 (en) * 2009-08-05 2011-02-10 Woodward Governor Company A high speed and continuously variable traction drive
WO2011031708A2 (en) * 2009-09-10 2011-03-17 Infinitrak, Llc Epicyclic arrangements and related systems and methods
KR101035207B1 (en) * 2009-11-12 2011-05-17 최정용 Continuously variable transmission
KR101026005B1 (en) * 2010-01-29 2011-03-30 최정용 Continuously variable transmission for a bycycle
US8888643B2 (en) 2010-11-10 2014-11-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
CN103370560B (en) 2010-12-23 2016-04-13 范戴尼超级涡轮有限公司 Symmetrical traction drive, machinery-turbosupercharger and in symmetrical traction drive, transmit the method for rotating mechanical energy
DE112012000506B4 (en) 2011-01-19 2021-02-18 Vandyne Superturbo, Inc. High-torque traction drive
AU2012240435B2 (en) 2011-04-04 2016-04-28 Fallbrook Intellectual Property Company Llc Auxiliary power unit having a continuously variable transmission
US20140200110A1 (en) * 2011-06-10 2014-07-17 Toyota Jidosha Kabushiki Kaisha Continuously variable transmission
EP2767728A4 (en) * 2011-09-22 2016-04-13 Toyota Motor Co Ltd Continuously variable transmission
AU2013212557C1 (en) 2012-01-23 2017-09-21 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9005068B2 (en) * 2012-12-21 2015-04-14 Shimano Inc. Continuously variable bicycle transmission mechanism and bicycle hub
DE102013206713A1 (en) * 2013-04-15 2014-10-16 Robert Bosch Gmbh Motor and powered by muscle power vehicle
TW201514057A (en) * 2013-10-14 2015-04-16 Chen zheng he Two-wheel vehicle structure (2)
TW201514400A (en) * 2013-10-14 2015-04-16 Chen zheng he Two-wheel vehicle structure
US9670832B2 (en) 2013-11-21 2017-06-06 Vandyne Superturbo, Inc. Thrust absorbing planetary traction drive superturbo
MX364676B (en) 2014-10-24 2019-05-03 Superturbo Tech Inc Method and device for cleaning control particles in a wellbore.
US10107183B2 (en) 2014-11-20 2018-10-23 Superturbo Technologies, Inc. Eccentric planetary traction drive super-turbocharger
US10400872B2 (en) 2015-03-31 2019-09-03 Fallbrook Intellectual Property Company Llc Balanced split sun assemblies with integrated differential mechanisms, and variators and drive trains including balanced split sun assemblies
WO2017161278A1 (en) 2016-03-18 2017-09-21 Fallbrook Intellectual Property Company Llc Continuously variable transmissions systems and methods
WO2017184617A1 (en) * 2016-04-20 2017-10-26 Jack Chen Human powered watercraft or land vehicle
US10316951B2 (en) * 2016-07-13 2019-06-11 Shimano Inc. Bicycle drive unit
TWI610038B (en) * 2017-02-07 2018-01-01 Motive Power Industry Co Ltd Stepless shifting ring seat drive mechanism
US10670120B2 (en) 2017-03-16 2020-06-02 Camilo Ernesto Guzman Infinitely variable transmission embodied in a semi planetary configuration
CN107191565A (en) * 2017-06-21 2017-09-22 江苏创斯达科技有限公司 A kind of buncher
TWI652419B (en) * 2017-10-31 2019-03-01 摩特動力工業股份有限公司 Continuously variable stepless transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735430A (en) 1984-11-13 1988-04-05 Philip Tomkinson Racing bicycle having a continuously variable traction drive
US5051106A (en) 1990-07-05 1991-09-24 Fritsch Joseph E Transverse axis infinitely variable transmission
GB2339863A (en) 1998-07-23 2000-02-09 Milner Peter J A continuously-variable transmission device

Family Cites Families (758)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US600707A (en) * 1898-03-15 Sash-supporter
GB592320A (en) 1945-03-13 1947-09-15 Frederick Whigham Mcconnel Improvements in or relating to variable speed-gears
US2675713A (en) * 1954-04-20 Protective mechanism for variable
USRE22761E (en) 1946-05-28 Transmission
US1121210A (en) 1914-12-15 Fried Krupp Germaniawerft Ag Submarine boat.
US719595A (en) * 1901-07-06 1903-02-03 Jacob B Huss Bicycle driving mechanism.
US1097546A (en) * 1913-03-11 1914-05-19 William S Harley Transmission-gearing.
US1207985A (en) 1914-08-17 1916-12-12 Charles I Null Antifriction-hanger.
US1175677A (en) * 1914-10-24 1916-03-14 Roderick Mcclure Power-transmitting device.
US1174677A (en) 1915-06-10 1916-03-07 Entpr Railway Equipment Co Divertible ballast-car.
US1380006A (en) * 1917-08-04 1921-05-31 Hamilton Beach Mfg Co Variable-speed transmission
JP3223241B2 (en) * 1997-03-17 2001-10-29 本田技研工業株式会社 Belt type continuously variable transmission
US1382186A (en) * 1920-06-25 1921-06-21 Elmer G Godshalk Lock-casing
US1390971A (en) 1921-01-24 1921-09-13 Samain Pierre Gearing
US1558222A (en) 1924-01-14 1925-10-20 Beetow Albert Backlash take-up for gears
CH118064A (en) 1924-08-07 1926-12-16 Jakob Arter Friction change transmission.
US1629902A (en) 1924-08-07 1927-05-24 Arter Jakob Power-transmitting device
US1686446A (en) 1926-04-15 1928-10-02 John A Gilman Planetary transmission mechanism
FR620375A (en) 1926-06-24 1927-04-21 Automatic pressure device for friction plates
US1774254A (en) 1927-06-28 1930-08-26 John F Daukus Clutch mechanism
US1903228A (en) * 1927-10-21 1933-03-28 Gen Motors Corp Frictional gearing
DE498701C (en) 1927-11-18 1930-05-31 Jakob Arter Friction ball change gear
US1865102A (en) 1929-05-07 1932-06-28 Frank A Hayes Variable speed transmission mechanism
US1793571A (en) * 1929-12-14 1931-02-24 Frank O Vaughn Variable-speed drive
US1847027A (en) 1930-02-19 1932-02-23 Thomsen Thomas Peter Change-speed gear
US1978439A (en) 1930-04-01 1934-10-30 John S Sharpe Variable transmission
US1850189A (en) 1930-07-16 1932-03-22 Carl W Weiss Transmission device
GB391448A (en) 1930-08-02 1933-04-27 Frank Anderson Hayes Improvements in or relating to friction transmission
US1858696A (en) 1931-07-08 1932-05-17 Carl W Weiss Transmission
US2131158A (en) 1932-02-03 1938-09-27 Gen Motors Corp Continuously variable transmission
US2086491A (en) 1932-04-11 1937-07-06 Adiel Y Dodge Variable speed transmission
US2109845A (en) * 1932-07-23 1938-03-01 Erban Operating Corp Power transmission mechanism
US2196064A (en) 1933-02-04 1940-04-02 Erban Patents Corp Driving energy consumer
US2060884A (en) 1933-09-19 1936-11-17 Erban Operating Corp Power transmission mechanism
US2112763A (en) * 1933-12-28 1938-03-29 Cloudsley John Leslie Variable speed power transmission mechanism
US2030203A (en) * 1934-05-31 1936-02-11 Gen Motors Corp Torque loading lash adjusting device for friction roller transmissions
US2152796A (en) 1935-03-13 1939-04-04 Erban Patents Corp Variable speed transmission
US2134225A (en) 1935-03-13 1938-10-25 Christiansen Ejnar Variable speed friction gear
US2100629A (en) 1936-07-18 1937-11-30 Chilton Roland Transmission
US2209254A (en) 1938-07-29 1940-07-23 Yrjo A Ahnger Friction transmission device
US2259933A (en) 1939-02-20 1941-10-21 John O Holloway Clutch coupling for motor vehicles
US2325502A (en) 1940-03-08 1943-07-27 Georges Auguste Felix Speed varying device
US2269434A (en) 1940-11-18 1942-01-13 Cuyler W Brooks Automatic transmission mechanism
US2595367A (en) 1943-11-09 1952-05-06 Picanol Jaime Toroidal variable-speed gear drive
US2480968A (en) 1944-08-30 1949-09-06 Ronai Ernest Variable transmission means
US2469653A (en) 1945-02-01 1949-05-10 Kopp Jean Stepless variable change-speed gear with roller bodies
US2461258A (en) 1946-06-06 1949-02-08 Cuyler W Brooks Automatic transmission mechanism
US2596538A (en) 1946-07-24 1952-05-13 Allen A Dicke Power transmission
US2553465A (en) 1946-11-30 1951-05-15 Monge Jean Raymond Barthelemy Manual or power-operated planetary transmission
BE488557A (en) 1948-04-17
US2586725A (en) 1950-02-08 1952-02-19 Roller Gear Corp Variable-speed transmission
US2696888A (en) 1951-05-26 1954-12-14 Curtiss Wright Corp Propeller having variable ratio transmission for changing its pitch
US2716357A (en) * 1952-07-07 1955-08-30 Rennerfelt Sven Bernhard Continuously variable speed gears
US2730904A (en) * 1952-07-14 1956-01-17 Rennerfelt Sven Bernhard Continuously variable speed gears
US2748614A (en) 1953-06-23 1956-06-05 Zenas V Weisel Variable speed transmission
US2868037A (en) 1954-01-01 1959-01-13 Hindmarch Thomas Torsionally resilient mounting
US2901924A (en) 1954-08-05 1959-09-01 New Prod Corp Accessory drive
US2868038A (en) * 1955-05-26 1959-01-13 Liquid Controls Corp Infinitely variable planetary transmission
US2873911A (en) 1955-05-26 1959-02-17 Librascope Inc Mechanical integrating apparatus
US2913932A (en) 1955-10-04 1959-11-24 Mcculloch Motors Corp Variable speed planetary type drive
US2874592A (en) 1955-11-07 1959-02-24 Mcculloch Motors Corp Self-controlled variable speed planetary type drive
US2959063A (en) 1956-09-11 1960-11-08 Perbury Engineering Ltd Infinitely variable change speed gears
US2891213A (en) 1956-10-30 1959-06-16 Electric Control Corp Constant frequency variable input speed alternator apparatuses
US2931235A (en) * 1957-11-12 1960-04-05 George Cohen 600 Group Ltd Variable speed friction drive transmissions
BE571424A (en) 1957-11-12
US2931234A (en) * 1957-11-12 1960-04-05 George Cohen 600 Group Ltd Variable speed friction drive trans-mission units
US2883883A (en) 1957-11-13 1959-04-28 Curtiss Wright Corp Variable speed transmission
US2964959A (en) 1957-12-06 1960-12-20 Gen Motors Corp Accessory drive transmission
DE1171692B (en) 1958-01-09 1964-06-04 Fabrications Unicum Soc D Friction gear with several flat friction discs
BE574149A (en) 1958-01-09 1959-04-16 Fabrications Unicum Soc D Pressure device of friction speed variators
US3048056A (en) 1958-04-10 1962-08-07 Gen Motors Corp Drive system
US3035460A (en) 1958-12-02 1962-05-22 Guichard Louis Automatic infinitely variablespeed drive
US2959070A (en) 1959-01-09 1960-11-08 Borg Warner Accessory drive
US2959972A (en) 1959-02-11 1960-11-15 Avco Mfg Corp Single ball joint roller support for toroidal variable ratio transmissions
US3051020A (en) 1959-02-16 1962-08-28 Thornton Axle Inc Locking differential with pressure relief device
US3008061A (en) 1959-04-21 1961-11-07 Barden Corp Slow speed motor
US2949800A (en) 1959-05-11 1960-08-23 Neuschotz Robert Tool for installing threaded elements
US3248960A (en) 1959-11-13 1966-05-03 Roller Gear Ltd Variable speed drive transmission
DE1178259B (en) 1959-12-03 1964-09-17 Motoren Werke Mannheim Ag Main and secondary connecting rod for V machines
US3204476A (en) 1960-04-05 1965-09-07 William S Rouverol Variable speed transmission
US3237468A (en) 1960-05-13 1966-03-01 Roller Gear Ltd Variable speed drive transmission
DE1217166B (en) 1960-11-04 1966-05-18 Manabu Kashihara Ball friction gear with swiveling balls
US3246531A (en) 1960-11-04 1966-04-19 Kashihara Manabu Infinitely variable speed change gear
BE629125A (en) 1961-03-08
US3229538A (en) 1961-09-25 1966-01-18 Roller Gear Ltd Variable speed drive transmission
US3154957A (en) 1961-10-16 1964-11-03 Kashihara Manabu Infinitely variable speed change gear utilizing a ball
US3086704A (en) 1961-11-24 1963-04-23 Ryan Aeronautical Co Cosine-secant multiplier
CH398236A (en) 1962-09-20 1965-08-31 Yamamoto Sota Friction stepless speed variator
US3216283A (en) 1963-03-04 1965-11-09 Ford Motor Co Variable speed torque transmitting means
US3283614A (en) 1963-04-10 1966-11-08 Gen Motors Corp Friction drive mechanism
US3163050A (en) 1963-06-19 1964-12-29 Excelermatic Toroidal transmission bearing means
US3184983A (en) * 1963-10-30 1965-05-25 Excelermatic Toroidal transmission mechanism with torque loading cam means
US3211364A (en) 1963-10-30 1965-10-12 Lau Blower Co Blower wheel
FR1376401A (en) 1963-12-05 1964-10-23 Fabrications Unicum Soc D Improvements to the adjustment device of friction speed variators in particular
JPS441098Y1 (en) 1964-12-24 1969-01-17
JPS422843Y1 (en) 1965-01-18 1967-02-20
US3273468A (en) 1965-01-26 1966-09-20 Fawick Corp Hydraulic system with regenerative position
JPS422844Y1 (en) 1965-02-06 1967-02-20
FR1443948A (en) 1965-03-24 1966-07-01 Advanced folding bicycle
JPS413126Y1 (en) 1965-08-04 1966-02-23
US3340895A (en) 1965-08-27 1967-09-12 Sanders Associates Inc Modular pressure regulating and transfer valve
GB1119988A (en) * 1965-10-14 1968-07-17 Nat Res Dev Transmission system for interconnecting two rotary machines
US3464281A (en) 1965-10-27 1969-09-02 Hiroshi Azuma Friction-type automatic variable speed means
GB1132473A (en) 1965-11-15 1968-11-06 James Robert Young Variable ratio friction transmission and control system therefor
US3280646A (en) 1966-02-02 1966-10-25 Ford Motor Co Control system for an infinitely variable speed friction drive
GB1135141A (en) * 1966-07-04 1968-11-27 Self Changing Gears Ltd Improved auxiliary overdrive gear
JPS47448B1 (en) 1966-07-08 1972-01-07
US3430504A (en) 1966-08-29 1969-03-04 Gen Motors Corp Transmission
GB1195205A (en) 1966-09-12 1970-06-17 Nat Res Dev Improvements in or relating to Toroidal Race Transmission Units.
SE316664B (en) * 1966-11-30 1969-10-27 B Gustavsson
US3407687A (en) 1967-03-27 1968-10-29 Hayashi Tadashi Variable ratio power transmission device
JPS47962Y1 (en) 1967-05-09 1972-01-14
US3477315A (en) 1967-12-18 1969-11-11 Elmer Fred Macks Dynamoelectric device with speed change mechanism
JPS47448Y1 (en) 1967-12-27 1972-01-10
JPS4720535Y1 (en) 1968-06-14 1972-07-10
JPS47207Y1 (en) 1968-06-24 1972-01-07
JPS4912742Y1 (en) 1968-12-18 1974-03-28
JPS4729762Y1 (en) 1969-03-03 1972-09-06
US3574289A (en) 1969-05-06 1971-04-13 Gen Motors Corp Transmission and control system
US3581587A (en) 1969-05-06 1971-06-01 Gen Motors Corp Transmission
BE732960A (en) 1969-05-13 1969-10-16
JPS4912742B1 (en) 1969-10-15 1974-03-27
JPS4941536B1 (en) 1969-11-27 1974-11-09
NL7004605A (en) * 1970-04-01 1971-10-05
US3707888A (en) 1970-07-31 1973-01-02 Roller Gear Ltd Variable speed transmission
JPS4913823Y1 (en) 1970-10-31 1974-04-05
US3695120A (en) 1971-01-14 1972-10-03 Georg Titt Infinitely variable friction mechanism
CH534826A (en) 1971-02-18 1973-03-15 Zuercher Andre Friction gear
US3727473A (en) 1971-04-14 1973-04-17 E Bayer Variable speed drive mechanisms
JPS5235481Y2 (en) 1971-05-13 1977-08-12
US3727474A (en) * 1971-10-04 1973-04-17 Fullerton Transiission Co Automotive transmission
JPS5032867Y2 (en) 1971-10-21 1975-09-25
US3934932A (en) * 1971-10-28 1976-01-27 J.E. Ekornes Fabrikker A/S Adjustable chair
JPS5125903B2 (en) 1971-11-13 1976-08-03
US3749453A (en) 1972-03-29 1973-07-31 Westinghouse Air Brake Co Apparatus for detecting emergency venting of brake pipe
US3768715A (en) 1972-05-01 1973-10-30 Bell & Howell Co Planetary differential and speed servo
JPS5320180B2 (en) 1972-05-09 1978-06-24
US3929838A (en) 1972-05-27 1975-12-30 Bayer Ag N-methyl-n-(3-trifluoromethylphenylmercapto)-carbamic acid dihydrobenzofuranyl esters
JPS5348166Y2 (en) 1972-07-29 1978-11-17
US3769849A (en) 1972-08-02 1973-11-06 E Hagen Bicycle with infinitely variable ratio drive
US3802284A (en) 1972-08-02 1974-04-09 Rotax Ltd Variable-ratio toric drive with hydraulic relief means
US3987681A (en) 1972-08-09 1976-10-26 Gulf & Western Industrial Products Company Clamp for presses
JPS5235481B2 (en) 1972-09-29 1977-09-09
FR2204697B1 (en) 1972-10-30 1975-01-03 Metaux Speciaux Sa
US3810398A (en) 1972-11-16 1974-05-14 Tracor Toric transmission with hydraulic controls and roller damping means
US3820416A (en) 1973-01-05 1974-06-28 Excelermatic Variable ratio rotary motion transmitting device
DE2310880A1 (en) 1973-03-05 1974-09-12 Helmut Koerner RING ADJUSTMENT DEVICE FOR CONTINUOUSLY ADJUSTABLE BALL REVERSING GEAR
IT1016679B (en) 1973-07-30 1977-06-20 Valdenaire J TRANSMISSION DEVICE PARTS COLARLY FOR MOTOR VEHICLES
GB1376057A (en) 1973-08-01 1974-12-04 Allspeeds Ltd Steplessly variable friction transmission gears
US4023442A (en) 1973-08-16 1977-05-17 Oklahoma State University Automatic control means for infinitely variable transmission
JPS5125903Y2 (en) 1973-11-06 1976-07-01
GB1494895A (en) * 1973-12-15 1977-12-14 Raleigh Industries Ltd Epicyclic change speed gears
US3934492A (en) * 1973-12-26 1976-01-27 Timbs Norman E Variable speed drive for bicycles and the like
JPS547337B2 (en) 1974-02-27 1979-04-05
JPS5618748Y2 (en) 1974-02-28 1981-05-01
US3866985A (en) * 1974-03-04 1975-02-18 Caterpillar Tractor Co Track roller
GB1469776A (en) 1974-03-05 1977-04-06 Cam Gears Ltd Speed control devices
GB1461355A (en) 1974-05-29 1977-01-13 Coates Bros Co Ltd Rheological agents
US3891235A (en) * 1974-07-02 1975-06-24 Cordova James De Bicycle wheel drive
US3954282A (en) * 1974-07-15 1976-05-04 Hege Advanced Systems Corporation Variable speed reciprocating lever drive mechanism
US3984129A (en) 1974-07-15 1976-10-05 Hege Advanced Systems Corporation Reciprocating pedal drive mechanism for a vehicle
JPS5125903A (en) 1974-08-28 1976-03-03 Hitachi Ltd
JPS51150380U (en) 1975-05-26 1976-12-01
JPS51150380A (en) 1975-06-18 1976-12-23 Babcock Hitachi Kk Response property variable ae sensor
DE2532661C3 (en) 1975-07-22 1978-03-09 Jean Walterscheid Gmbh, 5204 Lohmar Telescopic shaft, in particular for agricultural machinery
JPS5916719B2 (en) 1975-09-13 1984-04-17 松下電工株式会社 discharge lamp starting device
US4053173A (en) 1976-03-23 1977-10-11 Chase Sr Douglas Bicycle
US4098146A (en) 1976-09-10 1978-07-04 Textron Inc. Traction-drive transmission
JPS5350395U (en) 1976-09-30 1978-04-27
JPS5348166A (en) 1976-10-13 1978-05-01 Toyoda Mach Works Ltd Stepless change gear
JPS5647231Y2 (en) 1977-05-17 1981-11-05
US4177683A (en) 1977-09-19 1979-12-11 Darmo Corporation Power transmission mechanism
US4159653A (en) 1977-10-05 1979-07-03 General Motors Corporation Torque-equalizing means
US4158317A (en) * 1978-01-16 1979-06-19 James Robert G Infinite ratio transmission
US4169609A (en) 1978-01-26 1979-10-02 Zampedro George P Bicycle wheel drive
GB1600646A (en) 1978-03-22 1981-10-21 Olesen H T Power transmission having a continuously variable gear ratio
CA1115218A (en) 1978-09-01 1981-12-29 Yves J. Kemper Hybrid power system and method for operating same
GB2035481B (en) 1978-11-16 1983-01-19 Cam Gears Ltd Speed control systems
US4314485A (en) 1978-11-16 1982-02-09 Cam Gears Limited Speed control systems
CH632071A5 (en) 1978-11-20 1982-09-15 Beka St Aubin Sa VARIATOR.
US4227712A (en) 1979-02-14 1980-10-14 Timber Dick Pedal driven vehicle
JPS5834381Y2 (en) 1979-03-20 1983-08-02 株式会社ガスタ− Solar hot water heating storage device
JPS55135259A (en) 1979-04-05 1980-10-21 Toyota Motor Corp Cup-type stepless speed change gear
FR2460427A1 (en) 1979-06-29 1981-01-23 Seux Jean Speed variator with coaxial input and output shafts - has friction discs on intermediate spheres with variable axes retained by thrust washers
JPS5624251A (en) 1979-07-31 1981-03-07 Mitsubishi Heavy Ind Ltd Rolling transmission planetary roller device with combined clutch function
JPS5647231A (en) 1979-09-25 1981-04-28 Komatsu Metsuku Kk Forming method for fan blade of cooling fan
JPS56101448A (en) 1980-01-10 1981-08-14 Nissan Motor Co Ltd Frictional transmission device
JPS6120285Y2 (en) 1980-02-29 1986-06-18
JPS56127852A (en) 1980-03-12 1981-10-06 Toyoda Mach Works Ltd Stepless transmission device
DE3169011D1 (en) * 1980-05-31 1985-03-28 Bl Tech Ltd Control systems for continuously variable ratio transmissions
GB2080452A (en) 1980-07-17 1982-02-03 Franklin John Warrender Variable speed gear box
US4391156A (en) * 1980-11-10 1983-07-05 William R. Loeffler Electric motor drive with infinitely variable speed transmission
US4382188A (en) 1981-02-17 1983-05-03 Lockheed Corporation Dual-range drive configurations for synchronous and induction generators
US4526255A (en) 1981-03-03 1985-07-02 J. I. Case Company Fluid drive transmission employing lockup clutch
US4631469A (en) 1981-04-14 1986-12-23 Honda Giken Kogyo Kabushiki Kaisha Device for driving electrical current generator for use in motorcycle
DE3215221C2 (en) * 1981-06-09 1984-03-22 Georg 3300 Braunschweig Ortner Sample container for perfume or the like.
US4369667A (en) * 1981-07-10 1983-01-25 Vadetec Corporation Traction surface cooling method and apparatus
JPS5814872U (en) 1981-07-20 1983-01-29 株式会社森本製作所 Automatic thread cutting device for sewing machine
JPS5823560A (en) 1981-07-31 1983-02-12 Seiko Epson Corp Two-stages ejecting and molding device for dies for insert injection molding
EP0073475B1 (en) 1981-08-27 1988-02-03 Nissan Motor Co., Ltd. Control apparatus and method for engine-continuously variable transmission
JPS5865361A (en) 1981-10-09 1983-04-19 Mitsubishi Electric Corp Roller speed change gear
JPS5831883Y2 (en) 1981-10-29 1983-07-14 秀夫 椿 Electroless plating device for thin plates with through holes
JPS5899548A (en) 1981-12-10 1983-06-13 Honda Motor Co Ltd Belt type infinitely variable gear
US4493677A (en) 1981-12-29 1985-01-15 Honda Motor Co., Ltd. Belt transmission having circulated air cooling function
JPS58126965A (en) 1982-01-22 1983-07-28 Hitachi Ltd Shroud for gas turbine
US4700581A (en) 1982-02-05 1987-10-20 William R. Loeffler Single ball traction drive assembly
US4459873A (en) * 1982-02-22 1984-07-17 Twin Disc, Incorporated Marine propulsion system
DE3272965D1 (en) 1982-02-25 1986-10-09 Fiat Auto Spa Epicyclic transmission with steplessly-variable speed control, having tapered planet wheels of dual conicity
US4574649A (en) * 1982-03-10 1986-03-11 B. D. Yim Propulsion and speed change mechanism for lever propelled bicycles
FI69867C (en) 1982-03-29 1986-05-26 Unilever Nv BEHANDLING AV EN TVAETTMEDELSTAONG
US4494524A (en) * 1982-07-19 1985-01-22 Lee Wagner Centrifugal heating unit
JPS5926657A (en) 1982-08-04 1984-02-10 Toyota Motor Corp Control apparatus for vehicle equipped with stepless transmission type power transmitting mechanism
US4501172A (en) 1982-08-16 1985-02-26 Excelermatic Inc. Hydraulic speed control arrangement for an infinitely variable transmission
JPS5969565A (en) 1982-10-13 1984-04-19 Mitsubishi Electric Corp Stepless speed change gear
JPS5969565U (en) 1982-10-29 1984-05-11 コニカ株式会社 Video camera
US4806066A (en) 1982-11-01 1989-02-21 Microbot, Inc. Robotic arm
JPS59144826A (en) 1983-02-02 1984-08-20 Nippon Denso Co Ltd One-way clutch
JPS59190557A (en) 1983-04-13 1984-10-29 Tokyo Gijutsu Kenkyusho:Kk Friction ball type stepless transmission
JPS59217051A (en) 1983-05-23 1984-12-07 Toyota Motor Corp Control for stepless speed change gear for car
JPS59190557U (en) 1983-06-01 1984-12-18 東芝テック株式会社 Printer paper detection device
US4549874A (en) 1983-06-06 1985-10-29 Maz Wen Automatic speed variating means for bicycle
GB2150240B (en) 1983-11-17 1987-03-25 Nat Res Dev Continuously-variable ratio transmission
US4781663A (en) 1984-03-27 1988-11-01 Reswick James B Torque responsive automatic bicycle transmission with hold system
US4617838A (en) 1984-04-06 1986-10-21 Nastec, Inc. Variable preload ball drive
JPS60247011A (en) 1984-05-22 1985-12-06 Nippon Seiko Kk Engine accessory drive device
US4569670A (en) 1984-05-31 1986-02-11 Borg-Warner Corporation Variable pulley accessory drive
US4567781A (en) 1984-06-08 1986-02-04 Norman Russ Steady power
JPS6131754A (en) 1984-07-21 1986-02-14 Yutaka Abe Non-stage transmission with semispherical top
JPS6153423A (en) 1984-08-20 1986-03-17 Diesel Kiki Co Ltd Engine auxiliary machine driving controller
JPS6153423U (en) 1984-09-14 1986-04-10
US4585429A (en) * 1984-09-19 1986-04-29 Yamaha Hatsudoki Kabushiki Kaisha V-belt type continuously variable transmission
US4647060A (en) 1984-11-13 1987-03-03 Philip Tomkinson Bicycle design
JPS61144466A (en) 1984-12-17 1986-07-02 Mitsubishi Electric Corp Auxiliary equipment drive unit for engine
JPH0646900B2 (en) 1985-01-25 1994-06-22 ヤンマー農機株式会社 Nursery facility
JPS61144466U (en) 1985-02-28 1986-09-06
US4713976A (en) 1985-03-22 1987-12-22 Vern Heinrichs Differential having a generally spherical differencing element
JPS61228155A (en) 1985-04-01 1986-10-11 Mitsubishi Electric Corp Auxiliary driving apparatus for engine
JPS61169464U (en) 1985-04-03 1986-10-21
JPH0330583Y2 (en) 1985-04-17 1991-06-27
JPS61270552A (en) 1985-05-25 1986-11-29 Matsushita Electric Works Ltd Transmission
US4630839A (en) 1985-07-29 1986-12-23 Alenax Corp. Propulsion mechanism for lever propelled bicycles
GB8522747D0 (en) * 1985-09-13 1985-10-16 Fellows T G Transmission systems
JPS6275170A (en) 1985-09-28 1987-04-07 Daihatsu Motor Co Ltd Torque cam device
JPH0426603Y2 (en) 1985-10-31 1992-06-25
US4744261A (en) * 1985-11-27 1988-05-17 Honeywell Inc. Ball coupled compound traction drive
JPS62127556A (en) 1985-11-27 1987-06-09 スペリ− コ−ポレイシヨン Ball coupling composite traction drive
US4717368A (en) * 1986-01-23 1988-01-05 Aisin-Warner Kabushiki Kaisha Stepless belt transmission
KR890003459B1 (en) * 1986-03-20 1989-09-21 사까에 리껭 고오교오 가부시기 가이샤 Wheel cover
US4725258A (en) 1986-08-18 1988-02-16 T & M Grinding Corp. Multiple groove variable pitch pulley system
US4838122A (en) * 1986-09-18 1989-06-13 Bridgestone Cycle Co., Ltd. Speed change device for bicycle
JPH0776582B2 (en) 1986-11-15 1995-08-16 シンポ工業株式会社 Vehicle automatic transmission
JPS63160465A (en) 1986-12-24 1988-07-04 Nec Corp Facsimile scanning system
DE3706716A1 (en) 1987-03-02 1988-09-15 Planetroll Antriebe Gmbh TRANSMISSION
JPS63219953A (en) 1987-03-10 1988-09-13 Kubota Ltd Disc type continuously variable transmission
US4869130A (en) * 1987-03-10 1989-09-26 Ryszard Wiecko Winder
JPH0722526Y2 (en) 1987-04-09 1995-05-24 日産自動車株式会社 Variable speed auxiliary drive control device for internal combustion engine
JPS63262877A (en) 1987-04-20 1988-10-31 Semiconductor Energy Lab Co Ltd Superconducting element
DE3872035T2 (en) 1987-04-24 1992-12-03 Honda Motor Co Ltd CONTINUOUSLY ADJUSTABLE BELT GEARBOX FOR MOTOR VEHICLES.
JP2607889B2 (en) 1987-08-04 1997-05-07 光洋精工株式会社 Reduction motor
JPS6439865A (en) 1987-08-05 1989-02-10 Toshiba Corp Private branch exchange
JPS6460440A (en) 1987-08-31 1989-03-07 Fuji Heavy Ind Ltd Control device for constant speed traveling of vehicle with continuously variable transmission
US4900048A (en) * 1987-10-02 1990-02-13 Gleb Derujinsky Integral seamless composite bicycle frame
ES2008251A6 (en) * 1987-10-06 1989-07-16 Aranceta Angoitia Inaki Transmission for bicycles.
JPH01286750A (en) 1988-05-10 1989-11-17 Fuji Heavy Ind Ltd Generator for motorcar
US4909101A (en) * 1988-05-18 1990-03-20 Terry Sr Maurice C Continuously variable transmission
JP2708469B2 (en) 1988-06-01 1998-02-04 マツダ株式会社 Engine charging and generating equipment
US4961477A (en) 1988-06-08 1990-10-09 Sweeney John F Wheel chair transporter
US4857035A (en) 1988-07-21 1989-08-15 Anderson Cyril F Continuous, variable power bicycle transmission device
US5025685A (en) 1988-07-29 1991-06-25 Honda Giken Kogyo Kabushiki Kaisha Controlling device for non-stage transmission for vehicles
US4858374A (en) * 1988-08-08 1989-08-22 Clemons Carl W Bee trap
US5020384A (en) * 1988-10-17 1991-06-04 Excelermatic Inc. Infinitely variable traction roller transmission
US4964312A (en) 1988-10-17 1990-10-23 Excelermatic Inc. Infinitely variable traction roller transmission
JPH02130224A (en) 1988-11-09 1990-05-18 Mitsuboshi Belting Ltd Auxiliary machinery driving device
JPH02157483A (en) 1988-12-07 1990-06-18 Nippon Seiko Kk Wind power generating device
JP2734583B2 (en) 1988-12-16 1998-03-30 日産自動車株式会社 Transmission control device for continuously variable transmission
JPH02182593A (en) 1989-01-10 1990-07-17 Shimpo Ind Co Ltd Automatic speed change device for motorcycle
JPH0650358Y2 (en) 1989-01-27 1994-12-21 共同印刷株式会社 Powder packaging container
US5006093A (en) 1989-02-13 1991-04-09 Toyota Jidosha Kabushiki Kaisha Hydraulic control apparatus for vehicle power transmitting system having continuously variable transmission
JPH02271142A (en) 1989-04-12 1990-11-06 Nippondenso Co Ltd Frictional type continuously variable transmission
JP2568684B2 (en) 1989-04-25 1997-01-08 日産自動車株式会社 Friction wheel type continuously variable transmission
JPH0826924B2 (en) * 1989-09-06 1996-03-21 日産自動車株式会社 Toroidal type continuously variable transmission
JPH03149442A (en) 1989-11-02 1991-06-26 Mitsuo Okamoto Friction type continuously variable transmission
JPH0742799Y2 (en) 1989-11-16 1995-10-04 武藤工業株式会社 Backlight type coordinate analyzer
US5044214A (en) 1989-12-11 1991-09-03 Barber Jr John S Toroidal transmission with split torque and equalization planetary drive
DE3940919A1 (en) 1989-12-12 1991-06-13 Fichtel & Sachs Ag DRIVE HUB WITH CONTINUOUSLY ADJUSTABLE FRICTION GEARBOX
ATE121884T1 (en) 1989-12-12 1995-05-15 Ascom Tech Ag TRANSMISSION DEVICE WITH AN OPTICAL TRANSMISSION LINE.
DE3941768C1 (en) * 1989-12-18 1991-02-07 Qingshan 8000 Muenchen De Liu
JPH03223555A (en) 1990-01-26 1991-10-02 Nippon Seiko Kk Troidal type continuously variable transmission
CN1054340A (en) 1990-02-24 1991-09-04 李培基 The differential variable-frequency generating set
JP2832283B2 (en) 1990-04-13 1998-12-09 富士重工業株式会社 Control device for continuously variable transmission
US5059158A (en) 1990-05-08 1991-10-22 E.B.T., Inc. Electronic transmission control system for a bicycle
US5126677A (en) * 1990-08-14 1992-06-30 Electric Power Research Institute, Inc. Apparatus and method for preventing spurious signals to the radio frequency monitor used for early warning of impending failure in electric generators and other equipment
GB9018082D0 (en) * 1990-08-17 1990-10-03 Fellows Thomas G Improvements in or relating to transmissions of the toroidal-race,rolling-traction type
US5121654A (en) * 1990-09-04 1992-06-16 Hector G. Fasce Propulsion and transmission mechanism for bicycles, similar vehicles and exercise apparatus
JPH04151053A (en) * 1990-10-12 1992-05-25 Takashi Takahashi Traction type gear shifter
JPH04166619A (en) 1990-10-30 1992-06-12 Mazda Motor Corp Accessory driving device in power unit
US5125677A (en) 1991-01-28 1992-06-30 Ogilvie Frank R Human powered machine and conveyance with reciprocating pedals
US5156412A (en) 1991-02-08 1992-10-20 Ohannes Meguerditchian Rectilinear pedal movement drive system
US5236211A (en) * 1991-02-08 1993-08-17 Ohannes Meguerditchian Drive system
JPH04272553A (en) 1991-02-26 1992-09-29 Suzuki Motor Corp Friction continuously variable transmission
US5562564A (en) 1991-03-14 1996-10-08 Synkinetics, Inc. Integral balls and cams type motorized speed converter with bearings arrangement
JPH04327055A (en) 1991-04-23 1992-11-16 Nissan Motor Co Ltd Continuously variable transmission
JP2666608B2 (en) 1991-05-28 1997-10-22 日産自動車株式会社 Friction wheel type continuously variable transmission
DE4120540C1 (en) 1991-06-21 1992-11-05 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart, De
DE4127043A1 (en) * 1991-08-16 1993-02-18 Fichtel & Sachs Ag DRIVE HUB WITH CONTINUOUSLY ADJUSTABLE GEAR RATIO
DE4126993A1 (en) 1991-08-16 1993-02-18 Fichtel & Sachs Ag Drive hub for a vehicle, especially a bicycle, with a continuously variable transmission ratio.
DE4127030A1 (en) * 1991-08-16 1993-02-18 Fichtel & Sachs Ag DRIVE HUB WITH CONTINUOUSLY ADJUSTABLE GEAR RATIO
JPH0792107B2 (en) 1991-09-26 1995-10-09 エヌティエヌ株式会社 Torque limiter
JP3200901B2 (en) 1991-12-20 2001-08-20 株式会社日立製作所 Electric vehicle drive
US5138894A (en) 1992-01-06 1992-08-18 Excelermatic Inc. Axial loading cam arrangement in or for a traction roller transmission
JP2578448Y2 (en) * 1992-03-13 1998-08-13 日産自動車株式会社 Loading cam device
WO1993019308A1 (en) * 1992-03-17 1993-09-30 Eryx Limited Continuously variable transmission system
JP3369594B2 (en) * 1992-05-29 2003-01-20 本田技研工業株式会社 Electric traveling car
JP2588342B2 (en) * 1992-07-22 1997-03-05 安徳 佐藤 Bicycle hydraulic drive
JPH0650358A (en) 1992-07-30 1994-02-22 Ntn Corp Torque limitter equipped with automatic reset function
JPH0650169A (en) 1992-07-31 1994-02-22 Koyo Seiko Co Ltd Gear shift unit for driving engine auxiliary machine
TW218909B (en) 1992-09-02 1994-01-11 Song-Tyan Uen A continuous transmission of eccentric slide block clutch type
JPH0650169Y2 (en) 1992-10-19 1994-12-21 池上金型工業株式会社 Multiple molding die device
CA2085022C (en) 1992-12-10 1998-12-08 Irwin W. Knight Transmission having torque converter and planetary gear train
US5330396A (en) 1992-12-16 1994-07-19 The Torax Company, Inc. Loading device for continuously variable transmission
GB9300862D0 (en) 1993-01-18 1993-03-10 Fellows Thomas G Improvements in or relating to transmissions of the toroidal-race,rolling-traction type
US5323570A (en) 1993-01-25 1994-06-28 General Motors Corporation Door opening cable system with cable slack take-up
US5451070A (en) 1993-05-26 1995-09-19 Lindsay; Stuart M. W. Treadle drive system with positive engagement clutch
IL106440A0 (en) 1993-07-21 1993-11-15 Ashot Ashkelon Ind Ltd Wind turbine transmission apparatus
JPH0742799A (en) 1993-08-02 1995-02-10 Koyo Seiko Co Ltd Auxiliary driving device
US5385514A (en) 1993-08-11 1995-01-31 Excelermalic Inc. High ratio planetary transmission
US5375865A (en) * 1993-09-16 1994-12-27 Terry, Sr.; Maurice C. Multiple rider bicycle drive line system including multiple continuously variable transmissions
US5664636A (en) 1993-10-29 1997-09-09 Yamaha Hatsudoki Kabushiki Kaisha Vehicle with electric motor
JPH07133857A (en) 1993-11-10 1995-05-23 Mitsubishi Heavy Ind Ltd Continuously variable transmission for normal and reverse rotation
JPH07139600A (en) 1993-11-15 1995-05-30 Mazda Motor Corp Toroidal type continuously variable transmission
US5383677A (en) * 1994-03-14 1995-01-24 Thomas; Timothy N. Bicycle body support apparatus
JP3448337B2 (en) 1994-03-17 2003-09-22 川崎重工業株式会社 Hydraulic continuously variable transmission
JP3058005B2 (en) * 1994-04-28 2000-07-04 日産自動車株式会社 Control device for continuously variable transmission
ES2122608T3 (en) 1994-05-04 1998-12-16 Jean Valdenaire MECHANICAL TRANSMISSION OF AUTOMATIC CONTINUOUS VARIATION AND ITS PROCEDURE OF PUTTING INTO ACTION.
DE19580740T1 (en) * 1994-05-31 1996-08-22 Ntn Toyo Bearing Co Ltd Infinitely variable transmission of the friction type
JP3456267B2 (en) * 1994-08-26 2003-10-14 日本精工株式会社 Toroidal type continuously variable transmission
JPH08135748A (en) 1994-11-04 1996-05-31 Isao Matsui Automatic continuously variable transmitter
CN1054340C (en) 1994-11-21 2000-07-12 理想科学工业株式会社 Rotary printing machine
US5508574A (en) * 1994-11-23 1996-04-16 Vlock; Alexander Vehicle transmission system with variable speed drive
US5799541A (en) 1994-12-02 1998-09-01 Fichtel & Sachs Ag Twist-grip shifter for bicycles and a bicycle having a twist-grip shifter
JPH08170706A (en) 1994-12-14 1996-07-02 Yasukuni Nakawa Automatic continuously variable transmission
JP3595887B2 (en) 1995-03-07 2004-12-02 光洋精工株式会社 Continuously variable transmission
DE69623086T2 (en) * 1995-03-13 2003-05-08 Sakae Co Ltd CONTROL DEVICE FOR A BICYCLE GEAR
GB9505346D0 (en) 1995-03-16 1995-05-03 Fellows Thomas G Improvements in or relating to continuously-variable-ratio transmissions
JP3404973B2 (en) 1995-03-29 2003-05-12 日産自動車株式会社 Transmission control device for toroidal type continuously variable transmission
JP2973920B2 (en) 1995-05-24 1999-11-08 トヨタ自動車株式会社 Hybrid electric vehicle
US6054844A (en) 1998-04-21 2000-04-25 The Regents Of The University Of California Control method and apparatus for internal combustion engine electric hybrid vehicles
US5632702A (en) * 1995-07-05 1997-05-27 Speed Control, Inc. Continuously variable transmission
JP3097505B2 (en) 1995-07-13 2000-10-10 トヨタ自動車株式会社 Vehicle drive system
JP3414059B2 (en) 1995-07-19 2003-06-09 アイシン・エィ・ダブリュ株式会社 Vehicle drive system
CN2245830Y (en) 1995-07-30 1997-01-22 朱向阳 Electromagnetism-planet driving infinitely speed variator
US5690346A (en) 1995-07-31 1997-11-25 Keskitalo; Antti M. Human powered drive-mechanism with versatile driving modes
JPH0989064A (en) 1995-09-27 1997-03-31 Ntn Corp Friction type continuously variable transmission
WO1997018982A1 (en) 1995-11-20 1997-05-29 Torotrak (Development) Limited Improvements in or relating to position servo systems
RU2149787C1 (en) * 1995-11-20 2000-05-27 Торотрак (Дивелопмент) Лимитед Improvements for positioning servosystems or pertaining to such systems
JP3585617B2 (en) 1995-12-28 2004-11-04 本田技研工業株式会社 Power unit with continuously variable transmission
JP3466201B2 (en) 1996-01-11 2003-11-10 シーメンス アクチエンゲゼルシヤフト Control unit for device in vehicle
JP3911749B2 (en) 1996-03-29 2007-05-09 マツダ株式会社 Control device for automatic transmission
JPH09267647A (en) 1996-04-02 1997-10-14 Honda Motor Co Ltd Power transmitting mechanism for hybrid car
DE19713423C5 (en) 1996-04-03 2015-11-26 Schaeffler Technologies AG & Co. KG Device and method for actuating a transmission
JP3314614B2 (en) * 1996-04-26 2002-08-12 日産自動車株式会社 Loading cam for toroidal type continuously variable transmission
JP3355941B2 (en) 1996-07-16 2002-12-09 日産自動車株式会社 Toroidal type continuously variable transmission
JPH1061739A (en) 1996-08-22 1998-03-06 Mamoru Ishikuri Continuously variable transmission
JPH1078094A (en) 1996-08-30 1998-03-24 Mamoru Ishikuri Continuously variable transmission using casing as pulley
JPH1089435A (en) 1996-09-11 1998-04-07 Mamoru Ishikuri Continuously variable transmission
JP3480261B2 (en) 1996-09-19 2003-12-15 トヨタ自動車株式会社 Electric vehicle drive
JP3284060B2 (en) 1996-09-20 2002-05-20 株式会社シマノ Bicycle shift control method and shift control device thereof
EP0832816A1 (en) 1996-09-26 1998-04-01 Mitsubishi Heavy Industries, Ltd. Driving unit for electric motor driven bicycle
JPH10115355A (en) 1996-10-08 1998-05-06 Mamoru Ishikuri Driven biaxial continuously variable transmission
JPH10115356A (en) 1996-10-11 1998-05-06 Isuzu Motors Ltd Planetary friction wheel type continuously variable transmission
CN1167221A (en) 1996-11-08 1997-12-10 邢万义 Planetary gearing stepless speed regulator
US5888160A (en) * 1996-11-13 1999-03-30 Nsk Ltd. Continuously variable transmission
JP3385882B2 (en) 1996-11-19 2003-03-10 日産自動車株式会社 Hydraulic control device for toroidal type continuously variable transmission
JPH10194186A (en) * 1997-01-13 1998-07-28 Yamaha Motor Co Ltd Motor-assisted bicycle
JP3670430B2 (en) 1997-02-05 2005-07-13 株式会社モリック Electric bicycle drive device
US6113513A (en) 1997-02-26 2000-09-05 Nsk Ltd. Toroidal type continuously variable transmission
JP3409669B2 (en) * 1997-03-07 2003-05-26 日産自動車株式会社 Transmission control device for continuously variable transmission
JP3711688B2 (en) 1997-03-22 2005-11-02 マツダ株式会社 Toroidal continuously variable transmission
US6186922B1 (en) * 1997-03-27 2001-02-13 Synkinetics, Inc. In-line transmission with counter-rotating outputs
US6004239A (en) 1997-03-31 1999-12-21 Ntn Corporation Friction type continuously variable speed changing mechanism
US6079726A (en) 1997-05-13 2000-06-27 Gt Bicycles, Inc. Direct drive bicycle
JP3341633B2 (en) 1997-06-27 2002-11-05 日産自動車株式会社 Shift shock reduction device for vehicles with continuously variable transmission
US5995895A (en) 1997-07-15 1999-11-30 Case Corporation Control of vehicular systems in response to anticipated conditions predicted using predetermined geo-referenced maps
US6101895A (en) 1997-07-25 2000-08-15 Shimano, Inc. Grip for a bicycle shift control device
US6119800A (en) 1997-07-29 2000-09-19 The Gates Corporation Direct current electric vehicle drive
JPH1163130A (en) 1997-08-07 1999-03-05 Nidec Shimpo Corp Traction transmission gear
JP3618967B2 (en) * 1997-08-08 2005-02-09 日産自動車株式会社 Toroidal continuously variable transmission for vehicles
US6171210B1 (en) * 1997-08-12 2001-01-09 Nsk Ltd. Toroidal type continuous variable transmission system
US6241636B1 (en) * 1997-09-02 2001-06-05 Motion Technologies, Llc Continuously variable transmission
US6000707A (en) 1997-09-02 1999-12-14 Linear Bicycles, Inc. Linear driving apparatus
US6419608B1 (en) * 1999-10-22 2002-07-16 Motion Technologies, Llc Continuously variable transmission
US6551210B2 (en) * 2000-10-24 2003-04-22 Motion Technologies, Llc. Continuously variable transmission
TW401496B (en) 1997-09-11 2000-08-11 Honda Motor Co Ltd Swash plate type continuously variable transmission
TW379869U (en) 1997-09-17 2000-01-11 Hon Hai Prec Ind Co Ltd Plug electric connector with shielding apparatus
JP3293531B2 (en) 1997-09-19 2002-06-17 日産自動車株式会社 Control device for continuously variable transmission
JPH11108147A (en) 1997-10-02 1999-04-20 Nippon Seiko Kk Continuously variable transmission
US6261200B1 (en) 1997-10-02 2001-07-17 Nsk Ltd. Continuously variable transmission
DE19851995B4 (en) * 1997-11-11 2006-01-12 Nsk Ltd. Continuously adjustable toroidal transmission
ATE382811T1 (en) 1997-11-12 2008-01-15 Folsom Technologies Inc HYDRAULIC MACHINE
CN2320843Y (en) 1997-11-16 1999-05-26 陈金龙 Planetary steel ball stepless speed change device
US6055878A (en) * 1997-12-16 2000-05-02 Speed Control, Inc. Adjustable eccentric shift mechanisms
GB9727295D0 (en) 1997-12-24 1998-02-25 Torotrak Dev Ltd Improvements in or relating to steplessly-variable-ratio transmission apparatus
JP4056130B2 (en) 1997-12-26 2008-03-05 松下電器産業株式会社 Driving assistance device in a battery-assisted bicycle
CN1107177C (en) 1998-01-12 2003-04-30 轨道牵引有限公司 Continuously variable transmission device
JP4478225B2 (en) 1998-01-26 2010-06-09 東京自動機工株式会社 Transmission vehicle
US6119539A (en) 1998-02-06 2000-09-19 Galaxy Shipping Enterprises, Inc. Infinitely and continuously variable transmission system
CA2259771C (en) 1998-02-19 2003-04-01 Hitachi, Ltd. Transmission, and vehicle and bicycle using the same
JPH11257479A (en) 1998-03-10 1999-09-21 Honda Motor Co Ltd Control device for toroidal type continuously variable transmission
JP3853963B2 (en) * 1998-03-20 2006-12-06 本田技研工業株式会社 Power unit
TW360184U (en) 1998-04-18 1999-06-01 Jun-Liang Chen Improved structure for bicycle
GB2337090A (en) 1998-05-08 1999-11-10 Torotrak Dev Ltd Hydraulic control circuit for a continuously-variable ratio transmission
US5967938A (en) * 1998-06-11 1999-10-19 Benford; James R. Multiple speed bicycle having single drive sprocket
JPH11348866A (en) 1998-06-12 1999-12-21 Sony Corp Bicycle
JP3259684B2 (en) 1998-06-22 2002-02-25 日産自動車株式会社 Toroidal type continuously variable transmission for vehicles
JP2000006877A (en) 1998-06-22 2000-01-11 Yamaha Motor Co Ltd Power unit for motor-driven vehicle
JP2000153795A (en) * 1998-06-29 2000-06-06 Yamaha Motor Co Ltd Electrically assisted vehicle
JP3409701B2 (en) 1998-07-03 2003-05-26 日産自動車株式会社 Control device for hybrid vehicle
DE19831502A1 (en) 1998-07-14 2000-01-20 Zahnradfabrik Friedrichshafen Control method for displacement or angle setting device in automobile e.g. for continuously variable drive transmission
JP2000046135A (en) 1998-07-28 2000-02-18 Nissan Motor Co Ltd Speed change control device for toroidal type continuously variable transmission
US6076846A (en) 1998-08-06 2000-06-20 Clardy; Carl S. Bicycle chest rest system
DE19981672D2 (en) 1998-09-09 2001-01-18 Luk Lamellen & Kupplungsbau Powertrain
JP2000120822A (en) 1998-10-21 2000-04-28 Nsk Ltd Continuously variable transmission device
JP3514142B2 (en) 1998-11-04 2004-03-31 日産自動車株式会社 Vehicle control device
DE19851738A1 (en) 1998-11-10 2000-05-18 Getrag Getriebe Zahnrad Drive train for motor vehicle has input for engine connection, wheel drive output and control element that is axially displaceable on shaft by at least one electromechanical actuator
JP2000142549A (en) * 1998-11-11 2000-05-23 Sony Corp Bicycle having auxiliary drive
US6676549B1 (en) 1998-12-18 2004-01-13 Shimano, Inc. Motion sensor for use with a bicycle sprocket assembly
DE19858553A1 (en) 1998-12-18 2000-06-21 Zahnradfabrik Friedrichshafen Infinitely-variable automotive gear reduces the load on the variator through the whole speed range, minimises noise and manufacturing costs
JP3498901B2 (en) * 1998-12-25 2004-02-23 日産自動車株式会社 Control device for belt-type continuously variable transmission
US6095940A (en) 1999-02-12 2000-08-01 The Timken Company Traction drive transmission
JP2000230622A (en) 1999-02-15 2000-08-22 Nissan Motor Co Ltd Continuously variable transmission with infinite transmission gear ratio and its assembling method
DE19908250A1 (en) 1999-02-25 2000-08-31 Zahnradfabrik Friedrichshafen Transmission ratio regulation for continuous automatic gearbox involves correction element taking account of internal and external system parameters in physical mathematical model
TW512211B (en) 1999-03-16 2002-12-01 Sumitomo Heavy Industries Driving device
US6325386B1 (en) 1999-03-30 2001-12-04 Shimano, Inc. Rotatable seal assembly for a bicycle hub transmission
US6099431A (en) 1999-05-06 2000-08-08 Ford Global Technologies, Inc. Method for operating a traction drive automatic transmission for automotive vehicles
DE29908160U1 (en) 1999-05-11 1999-09-02 Giant Mfg Co Ltd Foldable frame structure for a bicycle
US6312358B1 (en) 1999-05-21 2001-11-06 Advanced Technology Institute Of Commuter-Helicopter, Ltd. Constant speed drive apparatus for aircraft generator and traction speed change apparatus
US6045477A (en) 1999-06-14 2000-04-04 General Motors Corporation Continuously variable multi-range powertrain with a geared neutral
DE19929424A1 (en) 1999-06-26 2001-01-11 Bosch Gmbh Robert Friction wheel epicyclic gear with bevel gears
JP2001027298A (en) 1999-07-15 2001-01-30 Nsk Ltd Rotating shaft for toroidal type continuously variable transmission
GB9916761D0 (en) 1999-07-17 1999-09-15 Wielkopolski Thomas W Drive system
JP2001071986A (en) 1999-09-03 2001-03-21 Akebono Brake Ind Co Ltd Automatic transmission for bicycle
AU7707100A (en) 1999-09-20 2001-04-24 Transmission Technologies Corporation Dual strategy control for a toroidal drive type continuously variable transmission
JP3547347B2 (en) 1999-09-20 2004-07-28 株式会社日立製作所 Motor generator for vehicles
JP2001107827A (en) 1999-10-07 2001-04-17 Toyota Motor Corp Starting device and starting method for internal combustion engine
JP3824821B2 (en) 1999-10-08 2006-09-20 本田技研工業株式会社 Regenerative control device for hybrid vehicle
CA2387201C (en) 1999-10-14 2009-05-26 Kaken Pharmaceutical Co., Ltd. Tetrahydroquinoline derivatives
JP2001165296A (en) 1999-12-06 2001-06-19 Nissan Motor Co Ltd Transmission control device of continuously variable transmission with unlimited transmission gear ratio
US6499373B2 (en) 1999-12-17 2002-12-31 Dale E. Van Cor Stack of gears and transmission system utilizing the same
US6375412B1 (en) * 1999-12-23 2002-04-23 Daniel Christopher Dial Viscous drag impeller components incorporated into pumps, turbines and transmissions
EP1114952B1 (en) 2000-01-07 2003-07-02 Nissan Motor Co., Ltd. Infinite speed ratio continuously variable transmission
TW582363U (en) 2000-01-14 2004-04-01 World Ind Co Ltd Apparatus for changing speed of bicycles
JP3804383B2 (en) 2000-01-19 2006-08-02 トヨタ自動車株式会社 Control device for vehicle having fuel cell
JP4511668B2 (en) 2000-02-02 2010-07-28 本田技研工業株式会社 Continuously variable transmission for vehicle
JP3539335B2 (en) 2000-03-10 2004-07-07 トヨタ自動車株式会社 Control device for vehicle with continuously variable transmission
JP2001328466A (en) 2000-03-14 2001-11-27 Nissan Motor Co Ltd Driving force control device for continuously variable transmission with infinite change gear ratio
JP3696474B2 (en) 2000-03-17 2005-09-21 ジヤトコ株式会社 Hydraulic control device for continuously variable transmission
JP3628932B2 (en) 2000-03-21 2005-03-16 ジヤトコ株式会社 Control device for continuously variable transmission
JP3630297B2 (en) 2000-03-23 2005-03-16 日産自動車株式会社 Toroidal continuously variable transmission for automobiles
DE10014464A1 (en) * 2000-03-23 2001-09-27 Zahnradfabrik Friedrichshafen Precision assembly process for planet wheel unit involves setting tolerance, clamping in tool, closing tool and pressing on bolt journal
KR200195466Y1 (en) * 2000-03-29 2000-09-01 비에이텍주식회사 Continuous variable speed change transmission
JP3458818B2 (en) 2000-03-30 2003-10-20 日産自動車株式会社 Control device for infinitely variable speed ratio transmission
DE10021912A1 (en) 2000-05-05 2001-11-08 Daimler Chrysler Ag Drive train for motor vehicle has second planet wheel with diameter such that for stepping up of variable speed gear contact point of second planet wheel with driven element corresponds to center of rotation of second planet wheel
JP3738665B2 (en) * 2000-05-19 2006-01-25 トヨタ自動車株式会社 Hydraulic control device for transmission
JP3785901B2 (en) 2000-05-19 2006-06-14 トヨタ自動車株式会社 Shift control device for continuously variable transmission
JP3855599B2 (en) 2000-05-23 2006-12-13 トヨタ自動車株式会社 Control device for continuously variable transmission for vehicle
US6492785B1 (en) 2000-06-27 2002-12-10 Deere & Company Variable current limit control for vehicle electric drive system
JP3473554B2 (en) 2000-06-28 2003-12-08 日産自動車株式会社 Infinite transmission ratio transmission
US6358178B1 (en) * 2000-07-07 2002-03-19 General Motors Corporation Planetary gearing for a geared neutral traction drive
JP3458830B2 (en) * 2000-07-21 2003-10-20 日産自動車株式会社 Control device for infinitely variable speed ratio transmission
JP2002039319A (en) 2000-07-27 2002-02-06 Honda Motor Co Ltd Continuously variable transmission for vehicle
US6406399B1 (en) * 2000-07-28 2002-06-18 The Timken Company Planetary traction drive transmission
DE10040039A1 (en) * 2000-08-11 2002-02-21 Daimler Chrysler Ag Change gear assembly
US6371878B1 (en) 2000-08-22 2002-04-16 New Venture Gear, Inc. Electric continuously variable transmission
JP3672808B2 (en) 2000-09-06 2005-07-20 松下電器産業株式会社 Wireless communication terminal apparatus and interference canceling method
DE10139119A1 (en) * 2000-09-08 2002-03-21 Luk Lamellen & Kupplungsbau Torque sensor for continuously variable transmission, has transmission body between input part receiving torque and output part providing corresponding pressure
US6367833B1 (en) 2000-09-13 2002-04-09 Shimano, Inc. Automatic shifting control device for a bicycle
SE520904C2 (en) 2000-09-28 2003-09-09 Seco Tools Ab Publ Drill with a countersunk connected to the chip channel in two halves
JP3415601B2 (en) 2000-10-23 2003-06-09 本田技研工業株式会社 Control device for hybrid vehicle
JP3726670B2 (en) 2000-10-25 2005-12-14 日産自動車株式会社 Toroidal continuously variable transmission
JP4254051B2 (en) 2000-11-15 2009-04-15 日本精工株式会社 Toroidal continuously variable transmission
GB2369164A (en) 2000-11-16 2002-05-22 Torotrak Dev Ltd Hydraulic control of a continuously-variable ratio transmission
DE10059450A1 (en) * 2000-11-30 2002-06-13 Zf Batavia Llc Variator slip detection method for continuously variable transmission uses detection and analysis of vibration noise
JP2002250421A (en) 2000-12-21 2002-09-06 Kayseven Co Ltd Variable speed change gear
KR100368658B1 (en) 2000-12-27 2003-01-24 현대자동차주식회사 Clutch of vehicle
JP3531607B2 (en) 2000-12-28 2004-05-31 トヨタ自動車株式会社 Toroidal continuously variable transmission and full toroidal continuously variable transmission
CA2433420A1 (en) 2001-01-03 2002-07-25 The Regents Of The University Of California Method for controlling the operating characteristics of a hybrid electric vehicle
JP3680739B2 (en) 2001-02-06 2005-08-10 日産自動車株式会社 Shift control device for continuously variable transmission
JP3638876B2 (en) 2001-03-01 2005-04-13 株式会社日立製作所 Vehicle drive device and vehicle
JP3942836B2 (en) 2001-03-09 2007-07-11 ジヤトコ株式会社 Hydraulic oil cooling device for automatic transmission for vehicle
US6482094B2 (en) 2001-03-16 2002-11-19 Schenck Rotec Gmbh Self-aligning splined male shaft head and engagement method
JP3992448B2 (en) 2001-03-29 2007-10-17 東洋電機製造株式会社 Speed control method for motor drive system
JP2002307956A (en) 2001-04-11 2002-10-23 Suzuki Motor Corp Driving device for vehicle
US6390945B1 (en) 2001-04-13 2002-05-21 Ratio Disc Corp. Friction gearing continuously variable transmission
US6966570B2 (en) 2001-04-18 2005-11-22 Ping-Tien Wang Bike handle securing device for a collapsible bike frame
JP3914999B2 (en) 2001-04-19 2007-05-16 川崎重工業株式会社 Shift control method and shift control apparatus
CN101526127B (en) * 2001-04-26 2011-08-17 瀑溪技术公司 A continuously variable transmission and member support, support frame and frame manufacture method
JP3838052B2 (en) 2001-05-08 2006-10-25 日産自動車株式会社 Toroidal continuously variable transmission
JP4378898B2 (en) 2001-05-08 2009-12-09 日本精工株式会社 Toroidal continuously variable transmission and continuously variable transmission
DE10124265B4 (en) 2001-05-18 2015-10-29 Gustav Klauke Gmbh pump
US20020179348A1 (en) 2001-05-30 2002-12-05 Goro Tamai Apparatus and method for controlling a hybrid vehicle
GB0113523D0 (en) 2001-06-04 2001-07-25 Torotrak Dev Ltd An Hydraulic control circuit for a continuosly variable transmission
JP2002372114A (en) 2001-06-13 2002-12-26 Ntn Corp Frictional continuously variable transmission
US6532890B2 (en) * 2001-06-14 2003-03-18 Ad-Ii Engineering Inc. Speed indicator for a shifting device of bicycle
US6523223B2 (en) 2001-06-29 2003-02-25 Ping-Tien Wang Hinge for a foldable bicycle
US6434960B1 (en) 2001-07-02 2002-08-20 Carrier Corporation Variable speed drive chiller system
US6814170B2 (en) * 2001-07-18 2004-11-09 Nissan Motor Co., Ltd. Hybrid vehicle
JP3632634B2 (en) * 2001-07-18 2005-03-23 日産自動車株式会社 Control device for hybrid vehicle
JP2003028258A (en) 2001-07-19 2003-01-29 Nsk Ltd Toroidal type continuously variable transmission
JP4186438B2 (en) * 2001-07-26 2008-11-26 トヨタ自動車株式会社 Vehicle control apparatus equipped with continuously variable transmission
JP2003056662A (en) 2001-08-09 2003-02-26 Nsk Ltd Toroidal continuously variable transmission
GB0121739D0 (en) 2001-09-08 2001-10-31 Milner Peter J An improved continuously variable transmission
JP2003097669A (en) 2001-09-27 2003-04-03 Jatco Ltd Torque split type continuously variable transmission with infinite gear ratio
JP3758546B2 (en) 2001-10-05 2006-03-22 日本精工株式会社 Continuously variable transmission
JP3535490B2 (en) 2001-10-19 2004-06-07 本田技研工業株式会社 Power transmission device
JP3714226B2 (en) * 2001-10-19 2005-11-09 日本精工株式会社 Toroidal continuously variable transmission
DE10155372A1 (en) 2001-11-10 2003-05-22 Bosch Gmbh Robert System and method for specifying an engine torque and a transmission ratio in a vehicle with a continuously variable transmission
JP3758151B2 (en) 2001-11-22 2006-03-22 日本精工株式会社 Toroidal continuously variable transmission
JP2003161357A (en) 2001-11-27 2003-06-06 Ntn Corp Speed-increasing gear for wind power generator
TWI268320B (en) * 2001-12-04 2006-12-11 Yamaha Motor Co Ltd Continuously variable transmission and method of controlling it allowing for control of the axial position of a movable sheave without a sensor for measuring the axial position of the movable sheave on a rotational shaft and for stable control with the movable sheave being held in position
JP4284905B2 (en) 2001-12-04 2009-06-24 日産自動車株式会社 Shift control device for continuously variable transmission
JP2003194207A (en) 2001-12-25 2003-07-09 Nsk Ltd Toroidal type continuously variable transmission
US6932739B2 (en) 2001-12-25 2005-08-23 Nsk Ltd. Continuously variable transmission apparatus
JP3980352B2 (en) 2001-12-28 2007-09-26 ジヤトコ株式会社 Torque shift compensator for toroidal continuously variable transmission
JP3775660B2 (en) 2002-01-17 2006-05-17 日本精工株式会社 Cage for loading cam device of toroidal type continuously variable transmission
CN1434229A (en) 2002-01-19 2003-08-06 刘亚军 Multiple transmission pair stepless speed variation transmission device
US6709355B2 (en) 2002-01-28 2004-03-23 O'hora Gerard M. Continuously variable transmission
EP1474623A2 (en) 2002-02-07 2004-11-10 LuK Lamellen und Kupplungsbau Beteiligungs KG Methods for regulating the gear ratio of an automatic power-branched transmission, and automatic power-branched transmission
US7147583B2 (en) 2002-02-19 2006-12-12 Lemanski Alphonse J Variable speed power transmission
JP3654868B2 (en) 2002-02-21 2005-06-02 株式会社シマノ Bicycle shift control device and bicycle shift control method
US7011592B2 (en) 2002-03-08 2006-03-14 Shimano, Inc. Sprocket assembly for a bicycle
US20030176247A1 (en) 2002-03-15 2003-09-18 Gottschalk Joseph Herbert Human-powered drive system
US6839617B2 (en) 2002-04-11 2005-01-04 Nissan Motor Co., Ltd. Extension of operating range of feedback in CVT ratio control
JP4168785B2 (en) 2002-04-18 2008-10-22 日本精工株式会社 Method and apparatus for controlling gear ratio of toroidal continuously variable transmission unit for continuously variable transmission
US6740003B2 (en) 2002-05-02 2004-05-25 Shimano, Inc. Method and apparatus for controlling a bicycle transmission
JP4198937B2 (en) 2002-05-17 2008-12-17 株式会社豊田中央研究所 Toroidal CVT shift control device
DE10223425A1 (en) 2002-05-25 2003-12-04 Bayerische Motoren Werke Ag Infinitely variable friction roller toroidal gear
JP4115166B2 (en) * 2002-05-31 2008-07-09 本田技研工業株式会社 Bicycle with continuously variable transmission
US6931316B2 (en) 2002-06-05 2005-08-16 Nissan Motor Co., Ltd. Toroidal continuously variable transmission control apparatus
JP4214720B2 (en) 2002-06-10 2009-01-28 日産自動車株式会社 Toroidal continuously variable transmission
TWI235214B (en) 2002-06-18 2005-07-01 Yung-Tung Chen Transmission system
JP2004038722A (en) 2002-07-05 2004-02-05 Sunstar Eng Inc Server system for providing power-assisted bicycle
US7207918B2 (en) 2002-07-10 2007-04-24 Tadahiro Shimazu Continuously variable transmission
US6852064B2 (en) 2002-07-18 2005-02-08 Sauer-Danfoss, Inc. Hydromechanical transmission electronic control system for high speed vehicles
US6781510B2 (en) 2002-07-24 2004-08-24 Shimano, Inc. Bicycle computer control arrangement and method
US7303503B2 (en) 2002-08-02 2007-12-04 Nsk Ltd. Toroidal-type continuously variable transmission
JP3921148B2 (en) * 2002-08-07 2007-05-30 ジヤトコ株式会社 Power split type continuously variable transmission
US20050233846A1 (en) 2002-08-12 2005-10-20 Green Arthur G Variable radius continuously variable transmission
JP4123869B2 (en) * 2002-08-23 2008-07-23 日本精工株式会社 Toroidal continuously variable transmission and continuously variable transmission
US6682432B1 (en) 2002-09-04 2004-01-27 Kinzou Shinozuka Multiple shaft diameter flexible coupling system
DE10241006A1 (en) 2002-09-05 2004-03-25 Zf Friedrichshafen Ag Electromagnetic switching device of a two-stage planetary gear
CA2401474C (en) 2002-09-05 2011-06-21 Ecole De Technologie Superieure Drive roller control for toric-drive transmission
CN1578890B (en) * 2002-09-30 2010-05-26 乌尔里克·罗斯 Transmission mechanism
DE10249485A1 (en) 2002-10-24 2004-05-06 Zf Friedrichshafen Ag Power split transmission
US7111860B1 (en) 2002-10-25 2006-09-26 Jorge Grimaldos Treadle scooter
JP2004162652A (en) 2002-11-14 2004-06-10 Nsk Ltd Wind power generation device
JP3832424B2 (en) 2002-11-28 2006-10-11 日本精工株式会社 Continuously variable transmission
JP3951904B2 (en) * 2002-11-29 2007-08-01 株式会社エクォス・リサーチ Hybrid vehicle drive system
JP3896958B2 (en) 2002-12-05 2007-03-22 日本精工株式会社 Continuously variable transmission
DE60218186T2 (en) 2002-12-06 2007-10-31 Campagnolo S.R.L. Electronic, servo-operated bicycle transmission and associated method
JP4064806B2 (en) * 2002-12-19 2008-03-19 ヤマハモーターエレクトロニクス株式会社 Structure of synchronous motor for power assist
JP3817516B2 (en) 2002-12-26 2006-09-06 本田技研工業株式会社 Drive control apparatus for hybrid vehicle
US7028570B2 (en) 2003-01-21 2006-04-18 Honda Motor Co., Ltd. Transmission
JP2004232776A (en) 2003-01-31 2004-08-19 Honda Motor Co Ltd Toroidal type continuously variable transmission
US6868949B2 (en) 2003-02-06 2005-03-22 Borgwarner, Inc. Start-up clutch assembly
EP1593879A4 (en) 2003-02-10 2009-01-14 Ntn Toyo Bearing Co Ltd Traction drive type continuously variable transmission
JP2004245326A (en) * 2003-02-14 2004-09-02 Nsk Ltd Continuously variable transmission
US6808053B2 (en) 2003-02-21 2004-10-26 New Venture Gear, Inc. Torque transfer device having an electric motor/brake actuator and friction clutch
JP4216093B2 (en) 2003-02-26 2009-01-28 日本トムソン株式会社 Manufacturing method of rolling bearing with solid lubricant
US6991053B2 (en) 2003-02-27 2006-01-31 Ford Global Technologies, Llc Closed-loop power control for hybrid electric vehicles
US7011600B2 (en) 2003-02-28 2006-03-14 Fallbrook Technologies Inc. Continuously variable transmission
CN1283258C (en) 2003-03-11 2006-11-08 北京金桥时代生物医药研究发展中心 Medicine for preventing fibrous liver and preparing method thereof
EP1606134A4 (en) 2003-03-19 2008-10-08 Univ California Method and system for controlling rate of change of ratio in a continuously variable transmission
GB0307038D0 (en) 2003-03-27 2003-04-30 Torotrak Dev Ltd System and method for controlling a continuously variable transmission
JP2004301251A (en) 2003-03-31 2004-10-28 Koyo Seiko Co Ltd Full toroidal-type continuously variable transmission
NL1023319C2 (en) 2003-05-01 2004-11-03 Govers Henricus Johannes Anton Road vehicle with auxiliary device.
US7028475B2 (en) 2003-05-20 2006-04-18 Denso Corporation Fluid machine
JP2005003063A (en) 2003-06-11 2005-01-06 Nissan Motor Co Ltd Vibration reducing device for internal combustion engine
JP4370842B2 (en) * 2003-07-14 2009-11-25 日本精工株式会社 Continuously variable transmission
US7166052B2 (en) 2003-08-11 2007-01-23 Fallbrook Technologies Inc. Continuously variable planetary gear set
US7214159B2 (en) * 2003-08-11 2007-05-08 Fallbrook Technologies Inc. Continuously variable planetary gear set
US7070530B2 (en) 2003-08-26 2006-07-04 The Timken Company Method and apparatus for power flow management in electro-mechanical transmissions
TWI225912B (en) 2003-09-12 2005-01-01 Ind Tech Res Inst The mechanism for reverse gear of a belt-type continuously variable transmission
JP4054739B2 (en) 2003-09-24 2008-03-05 株式会社シマノ Bicycle shift control device
DE20315691U1 (en) * 2003-10-09 2004-01-08 Warszewski, Jaroslaw Hub control gear with foot pedal for use in bicycles, comprises a rotary hub shaft housed in the hub sleeve, and has hollow shaft which carries the sun wheel, and which is connected to hub sleeve via a free-wheel clutch
CN1300355C (en) 2003-12-16 2007-02-14 兰州理工大学 Aluminium and bronze alloy and process for preparing same
JP2005188694A (en) 2003-12-26 2005-07-14 Koyo Seiko Co Ltd Toroidal continuously variable transmission
US7316628B2 (en) 2004-01-13 2008-01-08 The Gates Corporation Ip Law Dept. Two speed transmission and belt drive system
US7010406B2 (en) 2004-02-14 2006-03-07 General Motors Corporation Shift inhibit control for multi-mode hybrid drive
US7086981B2 (en) 2004-02-18 2006-08-08 The Gates Corporation Transmission and constant speed accessory drive
US7029075B2 (en) 2004-02-20 2006-04-18 Shimano Inc. Bicycle hub sealing assembly
JP4588333B2 (en) 2004-02-27 2010-12-01 株式会社モートロン・ドライブ Rotating cam pressure regulator
US7163483B2 (en) * 2004-03-24 2007-01-16 General Motors Corporation Three speed transfer case with two transfer chains
WO2005098276A1 (en) 2004-04-01 2005-10-20 Bhsci Llc Continuously variable transmission
JP4332796B2 (en) 2004-04-19 2009-09-16 トヨタ自動車株式会社 Rotating electric machine having planetary gear transmission and method for manufacturing rotor support shaft constituting the same
DE102004022356B3 (en) 2004-04-30 2005-12-01 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg toroidal
EP1759321A4 (en) 2004-05-01 2009-10-28 Cadence Design Systems Inc Method and apparatus for designing integrated circuit layouts
JP4151607B2 (en) 2004-05-06 2008-09-17 トヨタ自動車株式会社 Belt type continuously variable transmission
CN2714896Y (en) 2004-05-08 2005-08-03 颜广博 Electronic multifunctional stepless speed change device
DE102004024031A1 (en) 2004-05-11 2005-12-08 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Hydraulic circuit for a toroidal transmission
US7383748B2 (en) 2004-05-28 2008-06-10 Rankin Charles G Automotive drivetrain having deflection compensation
US7475758B2 (en) 2004-06-18 2009-01-13 Hayes Bicycle Group, Inc. Bicycle disc brake having non-continuous spline surface for quick connection to or release from a wheel hub
DE102005063529B4 (en) 2004-06-21 2020-01-16 Schaeffler Technologies AG & Co. KG Wet-running double clutch in multi-plate design
JP4729753B2 (en) 2004-07-02 2011-07-20 独立行政法人海上技術安全研究所 Manual wheelchair with continuously variable transmission mechanism
JP2006046633A (en) 2004-07-02 2006-02-16 Yamaha Motor Co Ltd Vehicle
CN1985109B (en) 2004-07-07 2010-10-27 易通公司 Shift point strategy for hybrid electric vehicle transmission
EP1774199B1 (en) 2004-07-21 2013-06-12 Fallbrook Intellectual Property Company LLC Rolling traction planetary drive
US7063195B2 (en) 2004-07-27 2006-06-20 Ford Global Technologies, Llc Dual clutch assembly for a motor vehicle powertrain
JP4553298B2 (en) 2004-08-05 2010-09-29 本田技研工業株式会社 Motor cooling structure for electric vehicles
CA2479890A1 (en) 2004-09-27 2006-03-27 Samuel Beaudoin High efficiency generator system and continuously variable transmission therefor
CA2522685C (en) * 2004-10-01 2011-09-20 Laboratoires Mobilis Inc. Continuously variable transmission
JP4974896B2 (en) * 2004-10-05 2012-07-11 フォールブルック テクノロジーズ インコーポレイテッド Continuously variable transmission
US7332881B2 (en) 2004-10-28 2008-02-19 Textron Inc. AC drive system for electrically operated vehicle
TWM275872U (en) 2004-12-02 2005-09-21 Wan Way Co Ltd Improved structure of roller skate frame
DE102004060351A1 (en) 2004-12-15 2006-07-06 Siemens Ag Electric motor for rotation and axial movement
US7238139B2 (en) 2005-01-06 2007-07-03 Ford Global Technologies, Inc. Electric and hybrid electric powertrain for motor vehicles
JP2006200549A (en) 2005-01-18 2006-08-03 Fujitsu Ten Ltd Control method for continuously variable transmission and its device
CN1651801A (en) * 2005-02-01 2005-08-10 王玉鸿 Steel ball stepless speed changer capable of automatically regulating gear ratio
TWI302501B (en) 2005-02-15 2008-11-01 Honda Motor Co Ltd Power control unit
KR101341275B1 (en) 2005-02-22 2013-12-12 코요 베어링즈 유에스에이, 엘엘씨 Thrust bearing assembly
JP4637632B2 (en) 2005-03-31 2011-02-23 株式会社エクォス・リサーチ Continuously variable transmission
JP2006283900A (en) 2005-04-01 2006-10-19 Nsk Ltd Toroidal continuously variable transmission and continuously variable transmisson
DE502005006690D1 (en) 2005-04-07 2009-04-09 Getrag Ford Transmissions Gmbh Shift valve device for a shift system of a manual transmission
JP4867192B2 (en) 2005-04-14 2012-02-01 三菱自動車工業株式会社 Control device for continuously variable transmission
US7473202B2 (en) 2005-04-15 2009-01-06 Eaton Corporation Continuously variable dual mode transmission
TW200637745A (en) 2005-04-18 2006-11-01 Sanyang Industry Co Ltd Motorbike mixed power apparatus
JP2006300241A (en) 2005-04-21 2006-11-02 Pentax Corp One-way input/output rotation transmission mechanism
JP4641222B2 (en) * 2005-06-30 2011-03-02 本田技研工業株式会社 Continuously variable transmission control device
DE102005031764A1 (en) 2005-07-07 2007-01-18 Zf Friedrichshafen Ag A method of controlling a drive train of a vehicle having a prime mover and a transmission
JP4157883B2 (en) 2005-07-29 2008-10-01 株式会社シマノ Cap member for bicycle internal gear shifting hub
EP1937965A2 (en) * 2005-08-22 2008-07-02 Viryd Technologies Inc. Tubular fluid energy converter
KR101227862B1 (en) * 2005-08-24 2013-01-31 폴브룩 테크놀로지즈 인크 Continuously variable transmission
JP4814598B2 (en) 2005-09-20 2011-11-16 ヤンマー株式会社 Hydraulic continuously variable transmission
JP2007085514A (en) 2005-09-26 2007-04-05 Nidec-Shimpo Corp Gearless drive mechanism
CN101312867B (en) 2005-09-30 2012-07-04 株式会社捷太格特 Drive control device for vehicle
US7343236B2 (en) 2005-10-24 2008-03-11 Autocraft Industries, Inc. Electronic control system
US7285068B2 (en) 2005-10-25 2007-10-23 Yamaha Hatsudoki Kabushiki Kaisha Continuously variable transmission and engine
KR101327190B1 (en) 2005-10-28 2013-11-06 폴브룩 테크놀로지즈 인크 Electromotive drives
JP4375321B2 (en) 2005-10-31 2009-12-02 トヨタ自動車株式会社 Shift control device for continuously variable transmission
TWM294598U (en) 2005-11-08 2006-07-21 Tuan Huei Improved continuous stepless transmission structure
US20070155567A1 (en) 2005-11-22 2007-07-05 Fallbrook Technologies Inc. Continuously variable transmission
CA2976893C (en) 2005-12-09 2019-03-12 Fallbrook Intellectual Property Company Llc Continuously variable transmission
EP1811202A1 (en) 2005-12-30 2007-07-25 Fallbrook Technologies, Inc. A continuously variable gear transmission
US7882762B2 (en) 2006-01-30 2011-02-08 Fallbrook Technologies Inc. System for manipulating a continuously variable transmission
US7770674B2 (en) 2006-03-14 2010-08-10 Fallbrook Technologies Inc. Wheel chair
EP2674644B1 (en) 2006-03-14 2019-07-24 Fallbrook Intellectual Property Company LLC Scooter shifter
JP4731505B2 (en) 2006-03-17 2011-07-27 ジヤトコ株式会社 Hydraulic control device for belt type continuously variable transmission
US20070228687A1 (en) 2006-03-17 2007-10-04 Rodger Parker Bicycle propulsion mechanism
CN101484350A (en) * 2006-05-11 2009-07-15 瀑溪技术公司 Continuously variable drivetrain
JP2007321931A (en) 2006-06-02 2007-12-13 Nsk Ltd Toroidal type continuously variable transmission
JP5443984B2 (en) 2006-06-26 2014-03-19 フォールブルック インテレクチュアル プロパティー カンパニー エルエルシー Front-end accessory drive (FEAD) system
JP2008014412A (en) 2006-07-06 2008-01-24 Jtekt Corp Vehicle drive control device
US7479090B2 (en) 2006-07-06 2009-01-20 Eaton Corporation Method and apparatus for controlling a continuously variable transmission
US7547264B2 (en) 2006-08-14 2009-06-16 Gm Global Technology Operations, Inc. Starter alternator accessory drive system for a hybrid vehicle
JP2008057614A (en) 2006-08-30 2008-03-13 Yamaha Motor Co Ltd Belt type continuously variable transmission
US8251863B2 (en) 2006-09-01 2012-08-28 Hdt Robotics, Inc. Continuously variable transmission with multiple outputs
EP2089642B1 (en) 2006-11-08 2013-04-10 Fallbrook Intellectual Property Company LLC Clamping force generator
JP4928239B2 (en) 2006-11-28 2012-05-09 株式会社クボタ Work vehicle
US7860631B2 (en) 2006-12-08 2010-12-28 Sauer-Danfoss, Inc. Engine speed control for a low power hydromechanical transmission
FR2909938B1 (en) 2006-12-15 2009-07-17 Valeo Equip Electr Moteur COUPLING BETWEEN THE THERMAL MOTOR AND THE AIR CONDITIONING COMPRESSOR OF A MOTOR VEHICLE
JP2008155802A (en) 2006-12-25 2008-07-10 Toyota Motor Corp Control device of vehicle driving device
DE102008003047A1 (en) 2007-01-24 2008-07-31 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Adjusting device for use in vehicle e.g. motor vehicle and drive train, has adjusting unit connected with sun wheel on axial drive in such manner that adjusting unit is axially adjusted relative to wheel during rotation
US7641588B2 (en) 2007-01-31 2010-01-05 Caterpillar Inc. CVT system having discrete selectable speed ranges
EP2125469A2 (en) 2007-02-01 2009-12-02 Fallbrook Technologies Inc. System and methods for control of transmission and/or prime mover
US20100093479A1 (en) 2007-02-12 2010-04-15 Fallbrook Technologies Inc. Continuously variable transmissions and methods therefor
WO2008101070A2 (en) 2007-02-16 2008-08-21 Fallbrook Technologies Inc. Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
EP2142826B1 (en) 2007-04-24 2015-10-28 Fallbrook Intellectual Property Company LLC Electric traction drives
US7679207B2 (en) 2007-05-16 2010-03-16 V3 Technologies, L.L.C. Augmented wind power generation system using continuously variable transmission and method of operation
DE102008026862B4 (en) 2007-06-06 2013-02-21 Nsk Ltd. Stepless toroidal transmission
US8641577B2 (en) 2007-06-11 2014-02-04 Fallbrook Intellectual Property Company Llc Continuously variable transmission
CN101796327B (en) 2007-07-05 2014-01-29 福博科技术公司 Continuously variable transmission
KR100992771B1 (en) 2007-09-05 2010-11-05 기아자동차주식회사 Method for controlling idle stop mode of HEV
JP2008002687A (en) 2007-09-25 2008-01-10 Fujitsu Ten Ltd Control device for continuously variable transmission
JP5029290B2 (en) 2007-10-29 2012-09-19 日産自動車株式会社 Variable compression ratio engine
US7887032B2 (en) 2007-11-07 2011-02-15 Fallbrook Technologies Inc. Self-centering control rod
US8996263B2 (en) 2007-11-16 2015-03-31 Fallbrook Intellectual Property Company Llc Controller for variable transmission
CN102317146B (en) 2007-12-21 2015-11-25 福博科知识产权有限责任公司 Automatic transmission and for its method
CA2942806C (en) 2008-02-29 2018-10-23 Fallbrook Intellectual Property Company Llc Continuously and/or infinitely variable transmissions and methods therefor
GB0805213D0 (en) 2008-03-20 2008-04-30 Torotrak Dev Ltd An electric controller for a continuously variable transmission and a method of control of a continuously variable transmission
US8957032B2 (en) 2008-05-06 2015-02-17 Alba Therapeutics Corporation Inhibition of gliadin peptides
US8317651B2 (en) 2008-05-07 2012-11-27 Fallbrook Intellectual Property Company Llc Assemblies and methods for clamping force generation
CN102112778B (en) 2008-06-06 2013-10-16 福博科技术公司 Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
EP2304272B1 (en) 2008-06-23 2017-03-08 Fallbrook Intellectual Property Company LLC Continuously variable transmission
WO2010017242A1 (en) 2008-08-05 2010-02-11 Fallbrook Technologies Inc. Methods for control of transmission and prime mover
US8469856B2 (en) 2008-08-26 2013-06-25 Fallbrook Intellectual Property Company Llc Continuously variable transmission
JP4668307B2 (en) 2008-08-29 2011-04-13 ジヤトコ株式会社 transmission
JP4603607B2 (en) 2008-09-18 2010-12-22 国立大学法人東北大学 Wheel drive wheel drive swivel
BRPI0805746B1 (en) 2008-10-02 2020-06-09 Luis Andre Parise continuous transition exchange - ctc
US8167759B2 (en) 2008-10-14 2012-05-01 Fallbrook Technologies Inc. Continuously variable transmission
JP2010144906A (en) 2008-12-22 2010-07-01 Equos Research Co Ltd Continuously variable transmission
US20100181130A1 (en) 2009-01-21 2010-07-22 Wen-Cheng Chou Dual-Drivetrain of Power-Assist Vehicle
EP2397723A4 (en) 2009-02-10 2012-07-18 Toyota Motor Co Ltd Continuously variable transmission mechanism and gearbox employing continuously variable transmission mechanism
KR101763655B1 (en) 2009-04-16 2017-08-01 폴브룩 인텔렉츄얼 프로퍼티 컴퍼니 엘엘씨 Stator assembly and shifting mechanism for a continuously variable transmission
DE112009005214B3 (en) 2009-04-23 2020-08-20 Toyota Jidosha Kabushiki Kaisha Shift control system for a transmission of a vehicle
WO2010135407A2 (en) 2009-05-19 2010-11-25 Carrier Corporation Variable speed compressor
WO2011041851A1 (en) 2009-10-08 2011-04-14 Durack M J Full toroidal traction drive
US8230961B2 (en) 2009-11-04 2012-07-31 Toyota Motor Engineering & Manufacturing North America, Inc. Energy recovery systems for vehicles and wheels comprising the same
GB0920546D0 (en) 2009-11-24 2010-01-06 Torotrak Dev Ltd Drive mechanism for infinitely variable transmission
US8172022B2 (en) 2009-11-30 2012-05-08 Toyota Motor Engineering & Manufacturing North America, Inc. Energy recovery systems for vehicles and vehicle wheels comprising the same
US8585529B2 (en) 2010-01-29 2013-11-19 Wayne Paul Bishop Positive drive infinitely variable transmission
WO2011101991A1 (en) 2010-02-22 2011-08-25 トヨタ自動車株式会社 Power transmission device
US8512195B2 (en) 2010-03-03 2013-08-20 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US8613684B2 (en) 2010-03-18 2013-12-24 Toyota Jidosha Kabushiki Kaisha Continuously variable transmission
WO2011121743A1 (en) 2010-03-30 2011-10-06 トヨタ自動車株式会社 Engine start-up control device for hybrid vehicle
US8581463B2 (en) 2010-06-01 2013-11-12 Lawrence Livermore National Laboratory, Llc Magnetic bearing element with adjustable stiffness
US8382631B2 (en) 2010-07-21 2013-02-26 Ford Global Technologies, Llc Accessory drive and engine restarting system
US20120035011A1 (en) 2010-08-09 2012-02-09 Menachem Haim Electro mechanical bicycle derailleur actuator system and method
NL2005297C2 (en) 2010-09-01 2012-03-05 Fides5 B V BICYCLE WITH ELECTRIC DRIVE.
US8888643B2 (en) 2010-11-10 2014-11-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
JP2012107725A (en) 2010-11-18 2012-06-07 Toyota Motor Corp Continuously variable transmission
US8376889B2 (en) 2010-12-07 2013-02-19 Ford Global Technologies, Llc Transmission producing continuously variable speed ratios
JP2012122568A (en) 2010-12-09 2012-06-28 Toyota Motor Corp Continuously variable transmission
CN103370560B (en) 2010-12-23 2016-04-13 范戴尼超级涡轮有限公司 Symmetrical traction drive, machinery-turbosupercharger and in symmetrical traction drive, transmit the method for rotating mechanical energy
US8517888B1 (en) 2011-01-07 2013-08-27 Ernie Brookins Mechanical power transmission system and method
EP2677198B1 (en) 2011-02-03 2018-04-04 NSK Ltd. Toroidal continuously variable transmission
JP2012172685A (en) 2011-02-17 2012-09-10 Nsk Ltd Toroidal type continuously variable transmission
JP5201272B2 (en) 2011-03-29 2013-06-05 トヨタ自動車株式会社 Continuously variable transmission
JP5626076B2 (en) 2011-03-30 2014-11-19 トヨタ自動車株式会社 Continuously variable transmission and method of assembling continuously variable transmission
AU2012240435B2 (en) 2011-04-04 2016-04-28 Fallbrook Intellectual Property Company Llc Auxiliary power unit having a continuously variable transmission
DE102011016672A1 (en) 2011-04-09 2012-10-11 Peter Strauss Stepless gearbox for e.g. pedal electric cycle, has frictional bodies whose rotational axis is inclined to main axis and lies tangential or perpendicular to imaginary cylindrical periphery of main axis
JP5500118B2 (en) 2011-04-18 2014-05-21 トヨタ自動車株式会社 Continuously variable transmission
EP2702299A1 (en) 2011-04-28 2014-03-05 Transmission CVT Corp Inc. Drivetrain provided with a cvt
JP5720781B2 (en) 2011-06-10 2015-05-20 トヨタ自動車株式会社 Continuously variable transmission
JP5783260B2 (en) 2011-09-21 2015-09-24 トヨタ自動車株式会社 Continuously variable transmission
EP2767728A4 (en) 2011-09-22 2016-04-13 Toyota Motor Co Ltd Continuously variable transmission
AU2013212557C1 (en) 2012-01-23 2017-09-21 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
KR101541673B1 (en) 2012-02-24 2015-08-03 도요타지도샤가부시키가이샤 Continuously variable transmission
GB201214316D0 (en) 2012-08-10 2012-09-26 Torotrak Dev Ltd Infinitely-variable transmission for a vehicle
WO2014039447A1 (en) 2012-09-06 2014-03-13 Dana Limited Transmission having a continuously or infinitely variable variator drive
CN104769328B (en) 2012-09-07 2017-08-25 德纳有限公司 Ball-type CVT/IVT including planetary gearsets
JP5590098B2 (en) 2012-10-31 2014-09-17 トヨタ自動車株式会社 Continuously variable transmission
DE102012023551A1 (en) 2012-12-01 2014-06-05 Peter Strauss Infinitely variable gear system for e.g. bicycles, has chain drive whose gear is located outside gear housing, and pinion bolt driven over chain of chain ring that is rotationally and axial fixedly connected to drive wheel of bicycle
US9689482B2 (en) 2013-03-14 2017-06-27 Dana Limited Ball type continuously variable transmission
US8827856B1 (en) 2013-03-14 2014-09-09 Team Industries, Inc. Infinitely variable transmission with an IVT stator controlling assembly
US8814739B1 (en) 2013-03-14 2014-08-26 Team Industries, Inc. Continuously variable transmission with an axial sun-idler controller
EP2986494A1 (en) 2013-04-19 2016-02-24 Fallbrook Intellectual Property Company LLC Continuously variable transmission
WO2014186732A1 (en) 2013-05-17 2014-11-20 Dana Limited 3-mode front-wheel drive continuously variable planetary transmission with stacked gearsets
DE102014007271A1 (en) 2013-06-15 2014-12-18 Peter Strauss Stepless bottom bracket gearbox for LEVs (Light electric vehicles) with integrated electric motor
JP2015227691A (en) 2014-05-30 2015-12-17 トヨタ自動車株式会社 Continuously variable transmission
JP2015227690A (en) 2014-05-30 2015-12-17 トヨタ自動車株式会社 Continuously variable transmission
JP5880624B2 (en) 2014-05-30 2016-03-09 トヨタ自動車株式会社 Continuously variable transmission
JP2016014435A (en) 2014-07-02 2016-01-28 株式会社デンソー Shift range switching control unit
US9682744B2 (en) 2014-07-30 2017-06-20 Shimano Inc. Bicycle shifting control apparatus
US20170225742A1 (en) 2014-08-05 2017-08-10 Fallbrook Intellectual Property Company Llc Components, systems and methods of bicycle-based network connectivity and methods for controlling a bicycle having network connectivity
JP2017523079A (en) 2014-08-05 2017-08-17 フォールブルック インテレクチュアル プロパティー カンパニー エルエルシー Bicycle-based network connectivity components, systems, and methods and methods for controlling bicycles with network connectivity
DE102014221514A1 (en) 2014-10-23 2016-04-28 Robert Bosch Gmbh Adjustable friction-ring gearbox for a motor-powered and / or pedal-operated vehicle
CN107428393B (en) 2015-02-13 2020-05-15 斯沃莱茨德塞格尔公司 Electric bicycle transmission system, method and apparatus
US10400872B2 (en) 2015-03-31 2019-09-03 Fallbrook Intellectual Property Company Llc Balanced split sun assemblies with integrated differential mechanisms, and variators and drive trains including balanced split sun assemblies
US9896152B2 (en) 2015-05-25 2018-02-20 Shimano Inc. Bicycle transmission system
US10502289B2 (en) 2015-06-27 2019-12-10 Supra Lumina Technologies Inc. Asymmetric toroidal transmission system
US10030594B2 (en) 2015-09-18 2018-07-24 Dana Limited Abuse mode torque limiting control method for a ball-type continuously variable transmission
US10546052B2 (en) 2015-10-12 2020-01-28 Sugarcrm Inc. Structured touch screen interface for mobile forms generation for customer relationship management (CRM)
US10047861B2 (en) 2016-01-15 2018-08-14 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
WO2017161278A1 (en) 2016-03-18 2017-09-21 Fallbrook Intellectual Property Company Llc Continuously variable transmissions systems and methods
US10023266B2 (en) 2016-05-11 2018-07-17 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmissions
US10253881B2 (en) 2016-05-20 2019-04-09 Fallbrook Intellectual Property Company Llc Systems and methods for axial force generation
JP6477656B2 (en) 2016-10-14 2019-03-06 トヨタ自動車株式会社 Oil passage structure of power transmission device
US20180306283A1 (en) 2017-04-24 2018-10-25 Fallbrook Intellectual Property Company Llc Disc with insertable pins and method of manufacture for same
US10173757B2 (en) 2017-05-11 2019-01-08 Jimmy Styks Llc Watersport board fins with fin retention systems and watersport boards containing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735430A (en) 1984-11-13 1988-04-05 Philip Tomkinson Racing bicycle having a continuously variable traction drive
US5051106A (en) 1990-07-05 1991-09-24 Fritsch Joseph E Transverse axis infinitely variable transmission
GB2339863A (en) 1998-07-23 2000-02-09 Milner Peter J A continuously-variable transmission device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1954959A4

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11454303B2 (en) 2005-12-09 2022-09-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US11598397B2 (en) 2005-12-30 2023-03-07 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
WO2008154437A1 (en) * 2007-06-11 2008-12-18 Fallbrook Technologies Inc. Continuously variable transmission
CN101796327B (en) * 2007-07-05 2014-01-29 福博科技术公司 Continuously variable transmission
US11125329B2 (en) 2007-11-16 2021-09-21 Fallbrook Intellectual Property Company Llc Controller for variable transmission
TWI622520B (en) * 2010-03-02 2018-05-01 福柏克智慧財產有限責任公司 Method of assembling a shifting mechanism for an infinitely variable transission and method of controlling an infinitely variable transission
EP3021004A1 (en) * 2010-03-03 2016-05-18 Fallbrook Intellectual Property Company LLC Infinitely variable transmissions, methods.
RU2584635C2 (en) * 2010-03-03 2016-05-20 Фаллброок Интеллектуал Проперти Компани Ллц Switching mechanism for continuously variable transmission
WO2011109444A1 (en) * 2010-03-03 2011-09-09 Fallbrook Technologies Inc. Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
EP2699470A1 (en) * 2011-04-18 2014-02-26 Kalle Tanskanen Speed regulator
EP2699470A4 (en) * 2011-04-18 2014-10-01 Kalle Tanskanen Speed regulator
WO2014147055A1 (en) * 2013-03-18 2014-09-25 Campus Rex GmbH & Co. KG Power-split transmission and method for optimizing the efficiency of and/or the range of gear ratios in a power-split transmission
FR3003924A1 (en) * 2013-03-27 2014-10-03 Peugeot Citroen Automobiles Sa VARIATION TRANSMISSION CONTINUES
US9677650B2 (en) 2013-04-19 2017-06-13 Fallbrook Intellectual Property Company Llc Continuously variable transmission
TWI622522B (en) * 2013-04-19 2018-05-01 福柏克智慧財產有限責任公司 Continuously variable transmissions and systems with continuously variable transmissions for coupling with electric motors and human powered machines
WO2014172422A1 (en) * 2013-04-19 2014-10-23 Fallbrook Intellectual Property Company Llc Continuously variable transmission
TWI667170B (en) * 2013-04-19 2019-08-01 美商福柏克智慧財產有限責任公司 Continuously variable transmissions and systems with continuously variable transmissions for coupling with electric motors and human powered machines
FR3010166A1 (en) * 2013-08-27 2015-03-06 Peugeot Citroen Automobiles Sa CONTINUOUS VARIATION TRANSMISSION WITH POWER RECIRCULATION
WO2015028726A1 (en) * 2013-08-27 2015-03-05 Peugeot Citroen Automobiles Sa Continuous variation transmission with power recirculation
WO2016062436A1 (en) * 2014-10-23 2016-04-28 Robert Bosch Gmbh Coaxially arranged friction ring-type transmission for a vehicle operated by motor and/or pedal force
WO2016062461A1 (en) * 2014-10-23 2016-04-28 Robert Bosch Gmbh Adjustable friction ring-type transmission for a vehicle operated using motor power and/or pedal force
US11306818B2 (en) 2016-01-15 2022-04-19 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US11667351B2 (en) 2016-05-11 2023-06-06 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission
US11215268B2 (en) 2018-11-06 2022-01-04 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11624432B2 (en) 2018-11-06 2023-04-11 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11174922B2 (en) 2019-02-26 2021-11-16 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
US11530739B2 (en) 2019-02-26 2022-12-20 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions

Also Published As

Publication number Publication date
TWI434788B (en) 2014-04-21
EP1954959A4 (en) 2009-11-25
CN101495777A (en) 2009-07-29
DK1954959T3 (en) 2013-08-26
TW200734238A (en) 2007-09-16
EP1954959B1 (en) 2013-05-15
PL1954959T3 (en) 2013-10-31
US9341246B2 (en) 2016-05-17
US20080141810A1 (en) 2008-06-19
WO2007061993A3 (en) 2009-04-23
ES2424652T3 (en) 2013-10-07
US20140323260A1 (en) 2014-10-30
US9709138B2 (en) 2017-07-18
EP1954959A2 (en) 2008-08-13
KR101422475B1 (en) 2014-07-28
US8708360B2 (en) 2014-04-29
US7914029B2 (en) 2011-03-29
US20080141809A1 (en) 2008-06-19
US20070155567A1 (en) 2007-07-05
HK1137498A1 (en) 2010-07-30
US10711869B2 (en) 2020-07-14
CN101495777B (en) 2011-12-14
US20170314655A1 (en) 2017-11-02
US20160273627A1 (en) 2016-09-22
KR20080079274A (en) 2008-08-29

Similar Documents

Publication Publication Date Title
US10711869B2 (en) Continuously variable transmission
JP6503491B2 (en) Continuously variable transmission

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680051050.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006838127

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087014990

Country of ref document: KR