WO2007051888A1 - System of organic points, method of obtaining same and use thereof in the production of nanoscopic devices - Google Patents

System of organic points, method of obtaining same and use thereof in the production of nanoscopic devices Download PDF

Info

Publication number
WO2007051888A1
WO2007051888A1 PCT/ES2006/070170 ES2006070170W WO2007051888A1 WO 2007051888 A1 WO2007051888 A1 WO 2007051888A1 ES 2006070170 W ES2006070170 W ES 2006070170W WO 2007051888 A1 WO2007051888 A1 WO 2007051888A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
substrate
islands
points
metal
Prior art date
Application number
PCT/ES2006/070170
Other languages
Spanish (es)
French (fr)
Inventor
Javier MÉNDEZ PÉREZ-CAMARERO
Renaud Caillard
Gonzalo Otero
José Angel MARTÍN-GAGO
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2007051888A1 publication Critical patent/WO2007051888A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B63/00Lakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B3/00Dyes with an anthracene nucleus condensed with one or more carbocyclic rings
    • C09B3/14Perylene derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/045Special non-pigmentary uses, e.g. catalyst, photosensitisers of phthalocyanine dyes or pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0001Post-treatment of organic pigments or dyes
    • C09B67/0004Coated particulate pigments or dyes
    • C09B67/0005Coated particulate pigments or dyes the pigments being nanoparticles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/135OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising mobile ions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes

Definitions

  • Quantum dots lasers and amplifiers
  • the quantum dot lasers contain within them an active region consisting of aggregates (dots, spheres, islands, disks, etc.), a generic name to designate any form of aggregate) of semiconductor material with a few hundred nanometers.
  • These quantum dots are grown by taking advantage of the self-organizing properties of the materials.
  • Devices as everyday as CD or DVD readers work thanks to an active region of semiconductor quantum dots III-V.
  • nanostructures of inorganic semiconductor material commonly referred to as “quantum dots” mentioned above
  • metal nanostructures which have been termed “clusters” or metal aggregates
  • interesting magnetic properties have been obtained in gold metal clusters surrounded by an organic shell [P. Crespo, R. Litrán, TC Rojas, M. Multigner, JM de la Fuente, JC Sánchez-López, MA Garcia, A. Hernando, S. Penadés, and A. Fernández, "Permanent Magnetism, Magnetic Anisotropy, and Hysteresis of Thiol -Capped GoId Nanoparticles ", Phys. Rev. Lett.
  • An object of the present invention is a system of organic points (organic aggregate or compound of metallo-organic coordination), hereinafter referred to as the organic point system of the invention, comprising: a) a substrate with a surface presenting a network of dislocations with nucleation centers, and b) a network of nanoscopic organic points or aggregates consisting of: i) a metal island on the substrate of a), which consists of atoms of a different metal from that of the substrate anchored to the nucleation centers of the substrate, with an ordered network structure of equally spaced islands of similar size, and ii) a series of organic molecules with semiconductor properties, which present photoluminescence and self-organized growth and are fixed as an aggregate to the bi-metallic island).
  • Another object of the present invention is the method of obtaining the organic point system of the invention, hereinafter method of obtaining the invention, which comprises the following steps: a) formation or selection of a metal substrate with a surface having a network of dislocations with nucleation centers, b) formation by means of a metal evaporator by electronic bombardment under ultra-high vacuum conditions of metallic islands on the previous substrate, at an ambient temperature of less than 50 ° C, preferably between 20 and 35 a C , and at a rate of less than one tenth of an angle per minute (0.1 ⁇ / min) for a period of 10 to 30 seconds (up to a coating between 0.01 and 0.02 monolayers), by anchoring atoms of a different metal than the substrate in the substrate nucleation centers, thus creating an orderly network of equally spaced islands of equal size, and c) formation of an organic aggregate network
  • the organic point system or material of the invention can be used in the elaboration of nanotechnological devices such as those belonging, by way of illustration and without limiting the scope of the invention, to the following group: optoelectonic devices, organic lasers, readers of CDs and DVDs, laptop screens, TV photo machines, radios, and dye, dye and paint industries [M. McLean, M. Bader, L. Dalton, R. Devine, and W. Steier, "A photophysical and structural study on dye-type organic molecules with potentially useful nonlinear optical properties" J. phys. chem. 94, 4386-4387 (1990)].
  • Another object of the present invention is an organic dot device, hereinafter the organic dot device of the invention, comprising the organic dot system of the present invention.
  • Another particular object of the invention is the device of organic points in which said device is a light emitter by electric excitation of organic points
  • said device is a light emitter by electric excitation of organic points
  • NTCDA naphthalene-tetracarboxylic dianhydride
  • PTCDA cronyms of perylene) -tetracarboxylic dianhydride
  • the object of the present application consists of a suitable combination of organic and inorganic materials on a substrate so that, spontaneously by self-organization of the materials, it gives rise to organic "aggregates" (organic points) of a few nanometers in size , and, therefore, with special properties due to the small size and for being constituted by organic molecules.
  • organic "aggregates" organic points
  • specific self-organization properties on surfaces have been used. Thanks to these properties and looking for the appropriate conditions, it has been able to form "aggregates" of organic molecules on the surface of a substrate.
  • the substrate temperature is maintained at room temperature (between 20 and 35 degrees Celsius) which causes the metal-substrate-atom bonds to be more stable.
  • room temperature between 20 and 35 degrees Celsius
  • the temperature of the substrate does not reach values that release the metal atoms of the substrate, since the small amounts of iron and cobalt used make the evaporations can be very short and that the substrate barely warms up by evaporator radiation.
  • an object of the present invention is a system of organic points (organic aggregate or metallo-organic coordination compound), hereinafter system of organic points of the invention, comprising: a) a substrate with a surface having a surface dislocation network with nucleation centers, and b) a network of nanoscopic organic aggregates or points consisting of: i) a metal island on the substrate of a), consisting of atoms of a different metal than the substrate anchored to the nucleation centers of the substrate, with an ordered network structure of equally spaced islands of equal size, and ii) a series of organic molecules with semiconductor properties, which present photoluminescence and self-organized growth and are fixed as an aggregate to the bi-metallic island).
  • the term "nanoscopic organic points or aggregates” refers to an organic aggregate or metallo-organic coordination compound smaller than 10 nm in size and having characteristics with potential applications (optimally active semiconductors).
  • a particular object of the invention is an organic point system in which the inorganic substrate of a) is a substrate or surface capable of fixing the metal of bl) at specific points, or what is the same a substrate or a surface which has a network of dislocations with equally spaced nucleation zones and belongs to the following group: metals, for example, gold
  • a particular embodiment of the invention is the organic dot system of the invention in which the metallic substrate of a) is a reconstructed gold surface, Au (IIl) that has reconstruction 22V3.
  • Another particular embodiment of the invention is the organic dot system of the invention in which the metallic substrate of a) is a gold surface evaporated on a mica or quartz substrate [M. Hegner, P. Wagner, and G. Semenza, "Ultralarge atomically f ⁇ at template-stripped Au surfaces for scanning tunneling microscopy", Surface Science 291, 39 (1993)].
  • Another particular object of the invention is the organic point system of the invention in which the metal islands are constituted by metal atoms belonging to the following group: iron, cobalt and nickel.
  • Another particular embodiment of the invention is the organic point system of the invention in which the metal islands of bi) are constituted by iron atoms ( Figure 2).
  • Another particular embodiment of the invention is the organic point system of the invention in which the metal islands of bi) are constituted by cobalt atoms ( Figure 3).
  • Another particular object of the invention is the organic point system of the invention in which the organic molecule of b.ii) is an organic molecule belonging to the following group: molecules of the perilene family (for example, PTCDA (3, 4,9,10 perylene-tetracarboxylic dianhydride), NTCDA (naphthalene tetracarboxylic dianhydride), Di-Me-PTCDI (N, N f- dimethyl-3, 4, 9, 10-perylene-tetracarboxylic-diimide) and perylene ) or thialocyanines (eg, CuPc (copper thialocyanine), MPc).
  • PTCDA 4,9,10 perylene-tetracarboxylic dianhydride
  • NTCDA naphthalene tetracarboxylic dianhydride
  • Di-Me-PTCDI N, N f- dimethyl-3, 4, 9, 10-perylene-tetracarboxylic-diimide
  • Another particular embodiment of the invention is the organic dot system of the invention in which the organic molecule of b.ii) is organic molecules of PTCDA (3,4,9,10 perylene-tetracarboxylic dianhydride) ( Figures 4 and 5) .
  • Another more particular embodiment of the invention is the organic point system of the invention in which the metal islands of bi) are constituted by iron or cobalt atoms and in which the organic molecule of b.ii) are organic molecules of PTCDA (3,4,9,10 perylene tetracarboxylic dianhydride) ( Figures 4 and 5).
  • Another object of the present invention is the method of obtaining the organic point system of the invention, hereinafter method of obtaining the invention, which comprises the following steps: a) formation or selection of a metal substrate with a surface having a network of dislocations with nucleation centers, b) formation by means of a metal evaporator by electronic bombardment under ultra-high vacuum conditions of metallic islands on the previous substrate, preferably at room temperature, between 20 and 35 at C, and at a lower speed at one tenth of an angle per minute (0.1 ⁇ / min) for a period of 10 to 30 seconds (up to coating between 0.01 and 0.02 monolayers), by anchoring atoms of a different metal to that of the substrate in the nucleation centers of the substrate, thus creating an orderly network of equally spaced islands of equal size, and c) forming a network of organic aggregates Optically active semiconductors fixing organic molecules with semiconductor properties on the previous island network, presenting photoluminescence and self-organized growth, by means of a quartz crucible surrounded with
  • the inorganic substrate of a) is a substrate or surface capable of fixing the metal of bl) or what is the same surfaces that present a network of dislocations with zones of equiespaced nucleation, belonging to the following group: metals, for example gold, or with heteroepitaxy surfaces with a network parameter difference (silver or copper on platinum) or semiconductors (for example InAs on GaAs).
  • metals for example gold
  • heteroepitaxy surfaces with a network parameter difference silver or copper on platinum
  • semiconductors for example InAs on GaAs
  • Another particular embodiment of the invention is the process of the invention in which the a) metallic substrate is a reconstructed gold surface, Au (IIl) that presents the 22V3 reconstruction or an evaporated gold surface on a mica or quartz substrate.
  • Another particular object of the invention is the process of the invention in which the metal islands are constituted by a metal atom belonging to the following group: iron, cobalt and nickel.
  • Another particular embodiment of the invention is the process of the invention in which the metal islands of bi) are constituted by iron atoms evaporated by electronic bombardment under ultra-high vacuum conditions at a rate of less than one tenth of an angle per minute ( 0.1 ⁇ / min) for 10-30 seconds, the iron islands forming spontaneously at the corners of the reconstruction and these islands corresponding to a coating of less than 0.01 monolayers (ML) (data not shown), similar to Figure 2 , but with a smaller coating (Figure 2 corresponds to 0.08 monolayers).
  • ML monolayers
  • Another particular embodiment of the invention is the process of the invention in which the metal islands of bi) are constituted by cobalt atoms evaporated by electronic bombardment under ultra-high vacuum conditions and at a rate of less than one tenth of an angle per minute ( 0.1 ⁇ / min) for 10-30 seconds, the cobalt islands forming spontaneously at the corners of the reconstruction and these islands corresponding to a coating less than 0.01 monolayers (ML) (data not shown), similar to Figure 3 , but with a smaller coating (Figure 3 corresponds to 0.08 monolayers).
  • ML monolayers
  • Another particular object of the invention is the process of the invention in which the organic molecule of b.ii) belongs to the following group: organic molecules of the perilene group (PTCDA (3,4,9,10 perylene-tetracarboxylic) dianhydride), NTCDA (naphthalene-tetracarboxylic-dianhydride), Di-Me-PTCDI (N, N f- dimethyl- 3, 4, 9, 10-perylene-tetracarboxylic-diimide), or thialocyanines (e.g., CuPc, MPc).
  • PTCDA organic molecules of the perilene group
  • NTCDA naphthalene-tetracarboxylic-dianhydride
  • Di-Me-PTCDI N, N f- dimethyl- 3, 4, 9, 10-perylene-tetracarboxylic-diimide
  • thialocyanines e.g., CuPc, MPc
  • Another particular embodiment of the invention is the process of the invention in which the organic molecule of b.ii) is organic molecules of PTCDA
  • PTCDA at a speed lower than half an angle per minute (0.5 ⁇ / min), ensuring that the substrate temperature is ambient, between 20 and 35 ° C, preferably between 20 and 35 at C, and avoiding having to heat or cool the substrate, the size of the organic aggregates being between 2 nm and 10 nm, depending on the amount of molecules that evaporate on the substrate ( Figures s 4 and 5).
  • the organic point system or material of the invention can be used in the elaboration of nanotechnological devices such as those belonging, by way of illustration and without limiting the scope of the invention, to the following group: optoelectonic devices, organic lasers , CD and DVD readers, laptop screens, TV photo machines, radios, and dye, dye and paint industries [M. McLean, M. Bader, L. Dalton, R. Devine, and W. Steier, "A photophysical and structural study on dye-type organic molecules with potentially useful nonlinear optical properties" J. phys. chem. 94, 4386-4387 (1990)].
  • Another object of the present invention is an organic dot device, hereinafter the organic dot device of the invention, comprising the organic dot system of the present invention.
  • Another particular object of the invention is the device of organic points in which said device is a light emitter by electric excitation of organic points comprising: a) a system of organic points of the invention, b) a layer of transparent material formed by organic molecules of naphthalene-tetracarboxylic dianhydride (NTCDA) that covers the organic material of a), and c) a gold coating reconstructed on its surface on the transparent layer of b) of the same characteristics to the previous substrate, which fulfills the mission of electrode, together with the substrate, and that allows to establish an electrical circuit through the transparent layer and the aggregates.
  • NTCDA naphthalene-tetracarboxylic dianhydride
  • Another particular object of the invention is a light emitting device by electric excitation of organic multilayer points in which the device comprises more than one layer of organic aggregates, each layer being always covered by its corresponding transparent layer, achieving this stacking of layers that the device can emit light with greater intensity.
  • Another particular object of the invention is the organic point device in which said device is a light sensor comprising: a) an organic point system of the invention, b) a layer of transparent material formed by organic molecules of naphthalene-tetracarboxylic-dianhydride (NTCDA) covering the organic material of a), and c) a gold coating reconstructed on its surface on the transparent layer of b) of equal characteristics to previous substrate, that fulfills the mission of electrode, together with the substrate, and that allows to establish an electrical circuit through the transparent layer and the aggregates.
  • NTCDA naphthalene-tetracarboxylic-dianhydride
  • Another particular object of the invention is a light sensing device in which the device comprises more than one layer of organic aggregates, each layer being always covered by its corresponding transparent layer, this layer stack making the sensor more sensitive against to external light.
  • the device of the invention be it emitter or light sensor, in which the organic material is constituted by: a reconstructed gold substrate, Au (IIl), which has reconstruction 22V3, on on the previous substrate there are iron islands with a coating of less than 0.01 monolayers (ML), formed in the corners of the reconstruction, and on each of the iron islands, optically active semiconductor organic aggregates are formed of organic molecules of PTCDA (3, 4, 9, 10 perylene-tetracarboxylic-dianhydride).
  • the organic material is constituted by: a reconstructed gold substrate, Au (IIl), which has reconstruction 22V3, on on the previous substrate there are iron islands with a coating of less than 0.01 monolayers (ML), formed in the corners of the reconstruction, and on each of the iron islands, optically active semiconductor organic aggregates are formed of organic molecules of PTCDA (3, 4, 9, 10 perylene-tetracarboxylic-dianhydride).
  • Another particular object of the invention is the method of obtaining the organic point device of the invention comprising the following steps: a) the organic point system of the invention is covered with a layer of transparent material, and b) is deposited by evaporation of a metallic element (metallic coating), to obtain a surface equal to that existing in the substrate of a), the base substrate and the metallic coating acting as electrodes when a potential difference is established between them.
  • a metallic element metallic coating
  • Another particular embodiment of the invention is the method of obtaining the device of organic points of the invention in which after the formation of the layer of transparent material a metallic element is deposited by evaporation, to obtain a surface equal to that of the substrate of starting, and the method of obtaining the organic point system of the invention is repeated several times, ending each cycle always with the layer of transparent material and on it the metallic coating.
  • the base substrate and the last coating of the multilayer stacking act as electrodes when a potential difference is established between them, establishing an electric current inside the transparent layers, by the organic aggregates and by the metal islands, current that excites the organic material of all layers and produces light.
  • the metal substrates of the devices of the invention can be so thin that they allow light to pass through them, the light generated in the organic points being able to go outside and the outside light reaching the organic points much more easily.
  • Figure 1 Photograph of the molecule evaporator. aa) Thermocouple type K. ab) Opening, ac) Tantalum ring, ad) Tungsten filament, ae) Quartz crucible.
  • Figure 2. Image of tunnel effect microscopy (STM) of a gold surface Au (IIl) with self-organized iron islands forming islands in the corners of the substrate reconstruction. Image size 70 nm x 36 nm. The iron coating is 0.08 monolayers (ML).
  • Figure 3. - Image of tunnel effect microscopy (STM) of a gold surface Au (IIl) with self-organized cobalt islands forming islands in the corners of the substrate reconstruction. Image size 54 nm X 54 nm.
  • the cobalt coating is 0.08 monolayers (ML).
  • Figure 4. STM image of an Au (IIl) gold surface with iron islands and PTCDA molecules grown around the iron. These islands of organic molecules constitute each of the organic points. Image size 40 nm X 40 nm.
  • the iron coating is less than 0.01 monolayers (ML) while the molecule coating is 0.1 monolayers (ML).
  • Figure 5. STM image of an Au (IIl) gold surface with cobalt islands and PTCDA molecules attached to the cobalt islands.
  • the islands of organic molecules constitute each of the organic points.
  • the cobalt coating is 0.03 monolayers (ML) while the molecule coating is 0.12 monolayers (ML).
  • Figure 6. Scheme of a prototype of an organic point device, a) Gold surface with organic points, b) After covering the organic points with a transparent organic layer and on this a metallic coating (device) .
  • Multilayers of organic dots on metal substrates multilayer device).
  • iron islands of a few atoms were used to form the organic points on a nanostructured surface of Fe / Au (lll).
  • Small amounts of iron in an amount close to one hundredth of monolayer (0.01 ML), (in figure 2 the result of evaporating 0.08 ML is shown since the effect of evaporating 0.01 ML is less graphically appreciable), they evaporated on the face (111) of a gold monocrystal, Au (IIl), which presents the reconstruction
  • the gold surface that presents the reconstruction (22X ⁇ / 3) to be used may be gold evaporated on a mica or quartz substrate.
  • the evaporation of iron was carried out using an iron evaporator by electronic bombardment [Doctoral thesis of Jose Abad, CSIC, Autonomous University of Madrid
  • the iron islands were combined with organic molecules of PTCDA.
  • organic PTCDA molecules were evaporated on top, the iron atoms acting as seeds around which the organic PTCDA molecules are fixed.
  • the typical evaporation temperature of the PTCDA is around two hundred fifty-five degrees Celsius (255 ° C).
  • the evaporation rate used was less than half an angstrom per minute (0.5 ⁇ / min) tenth of an angstrom per minute (0.1 ⁇ / min), for 3 minutes (up to a coating of 0.1 monolayers).
  • PTCDA molecules will spontaneously reorder around the iron islands, resulting in islands of organic material with an iron seed in their inside.
  • the substrate temperature was maintained at room temperature, between 20 ° C and 35 ° C, it being unnecessary to heat or cool the substrate at any time. If the temperature of the substrate exceeds one hundred degrees Celsius (100 °), the iron ceases to be anchored to the corners of the reconstruction of gold and diffuses towards the gold steps, losing its role of fixing the molecules.
  • the substrate temperature does not reach these values in the process of the invention during evaporations, since the small amounts of metal atoms used (coatings much lower than the monolayer) make evaporations very short
  • organic points are what have been called “organic points” (see Figure 4).
  • the size of these organic points is determined by the amount of molecules that have evaporated on the surface, obtaining points of sizes between 2 nm and 10 nm in diameter depending on this parameter.
  • the STM image in Figure 4 shows four organic points of PTCDA, about 4 nanometers in average diameter, consisting of between 20 and 35 molecules each.
  • the molecules are the small bright ovals that constitute the aggregates. These aggregates are located in the corners of the folds of the reconstruction of the substrate where there is an iron seed.
  • the iron core of a few tens of atoms, it can be seen as a brighter central zone than the surrounding molecules.
  • FIG. 3 shows the result of evaporating 0.08 cobalt monolayers (ML) on the gold surface. Cobalt forms islands in the corners of the reconstruction of gold in a similar way to iron. If a smaller amount of cobalt is deposited (0.03 ML monolayers) and PTCDA molecules are evaporated on top, a growth of organic aggregates attached to the cobalt islands is obtained, as shown in Figure 5.
  • ML cobalt monolayers
  • Example 2 Use of the organic material of the invention for the elaboration of an organic knitting device.
  • organic point system there are many applications of the invention organic point system that could be cited.
  • organic point device a device similar to semiconductor quantum dot lasers can be mentioned which is called "organic point device”.
  • This device again in analogy with semiconductor quantum dots, could be an "organic dot laser” or an “organic dot sensor.”
  • the proposed device is constituted in its active region by multilayers of organic points. In this active region, the organic material is nanostructured forming points of nanoscopic size. The procedure for carrying out these devices is shown in Figure 6.
  • the organic point system of the invention and in a manner similar to that performed in other PTCDA-based patents [SR Forest et al.
  • organic PTCDA points are re-formed on its surface, repeating this process as many times as necessary to result in a multilayer of organic points.
  • the organic points will be aligned vertically, just as with semiconductor quantum points [Ch. Teichert, "Self-organization of nanostructures in semiconductor heteroepitaxy ", Phys. Rep.

Abstract

The invention relates to a system of organic points, consisting of a substrate including a surface having a network of dislocations with nucleation centres and a network of nanoscopic organic aggregates or points comprising a metal island and a series of organic molecules with semiconductor properties. The invention also relates to the method of obtaining said system. The inventive system or material of organic points can be used to produce nanotechnological devices, such as, for example, optoelectronic devices, organic lasers, CD and DVD players, displays for portable computers, televisions and radios, and is also suitable for use in the dye, ink and paint industries.

Description

TITULOTITLE
SISTEMA DE PUNTOS ORGÁNICOS, SU PROCEDIMIENTO DE OBTENCIÓN Y SUS APLICACIONES EN LA ELABORACIÓN DE DISPOSITVOS NANOSCÓPICOSORGANIC POINT SYSTEM, ITS PROCESSING PROCEDURE AND ITS APPLICATIONS IN THE DEVELOPMENT OF NANOSCOPIC DEVICES
SECTOR DE LA TÉCNICASECTOR OF THE TECHNIQUE
Los sectores de la técnica donde se situaría son: nanotecnológia, ciencia de los materiales, química orgánica, dispositivos optoelectónicos, láseres orgánicos, pantallas de ordenadores portátiles e industrias de los colorantes, tintes y pinturas .The technical sectors where it would be located are: nanotechnology, materials science, organic chemistry, optoelectonic devices, organic lasers, laptop screens and dye, dye and paint industries.
ESTADO DE LA TÉCNICA ACTUALSTATE OF THE CURRENT TECHNIQUE
Ya en 1965 Gordon Moore, cofundador de la compañía americana Intel, fabricante de microprocesadores, observó que la densidad de transistores de un circuito integrado se duplicaba cada año, por aquel entonces. Este hecho, que recibe el nombre de ley de Moore (http: //www. intel . com/technology/magazine/silicon/moores- law-0405.htm) , se ha convertido en un auténtico requisito para la industria de los ordenadores y se cree que se seguirá cumpliendo al menos en las próximas dos décadas . Sin embargo, la predicción de Moore supone una serie de dificultades tecnológicas que deben ser superadas. En primer lugar, los semiconductores inorgánicos tradicionalesAlready in 1965 Gordon Moore, co-founder of the American company Intel, manufacturer of microprocessors, observed that the density of transistors of an integrated circuit doubled every year, at that time. This fact, which is called Moore's law (http: // www. Intel. Com / technology / magazine / silicon / moores- law-0405.htm), has become a real requirement for the computer industry and it is believed that it will continue to be fulfilled at least in the next two decades. However, Moore's prediction involves a series of technological difficulties that must be overcome. First, traditional inorganic semiconductors
(silicio, germanio, arseniuro de galio) en los que se basan los transistores actuales, tienen un limite de tamaño mínimo por debajo del cual la densidad de portadores es demasiado pequeña. Por lo tanto, es necesario buscar nuevos materiales que sustituyan a estos semiconductores inorgánicos a la hora de realizar transistores cada vez más pequeños. Entre nuevos materiales sustitutos de los semiconductores inorgánicos actuales se barajan los materiales orgánicos como unos buenos candidatos . Los materiales orgánicos empiezan a ser ampliamente utilizados en dispositivos optoelectrónicos(silicon, germanium, gallium arsenide) on which current transistors are based, have a minimum size limit below which carrier density is too small. Therefore, it is necessary to look for new materials that replace these inorganic semiconductors when making smaller and smaller transistors. Among new substitute materials for current inorganic semiconductors, organic materials are considered as good candidates. Organic materials begin to be widely used in optoelectronic devices
(pantallas de ordenador y monitores de televisión, para nombrarlos se ha popularizado en el lenguaje popular el término inglés, display) dadas sus importantes propiedades de electroluminiscencia y fotoluminiscencia. Aparte de las tan populares pantallas de los monitores actuales TFT(computer screens and television monitors, to name them the English term, display) has become popular in the popular language given its important properties of electroluminescence and photoluminescence. Apart from the very popular screens of current TFT monitors
(siglas del inglés; thin film transistor) , basados en polimeros, y de los OLEDs (en inglés, organic light emitting diode; Z. Shen, P. E. Burrows, V. Bulovic, S. R. Forrest, and M. E. Thompson, "Three-color, tunable, organic light-emitting devices", Science 276 (1997) 2009; J.R.Sheats, H.Antoniadis, M.Hueschen, W.Leonard, J.Miller, R.Moon, D.Roitman, A.Stocking, "Organic Electroluminiscent Devices", Science 273, 884 (1996) ) en general, se puede dar como ejemplo de utilización de materiales orgánicos en dispositivos actuales los displays de autoradios (los fabricados por la firma PIONEER) , pantallas de cámaras fotográficas (en desarrollo por las principales compañias del sector) y dispositivos de iluminación (en desarrollo por las compañias PHILIPS y General Electrics) . También, se esta investigando la posibilidad de obtener propiedades láser en materiales orgánicos [M. McGehee, M.A. Diaz-Garcia, F. Hide, R. Gupta, E. K. Miller, D. Moses, A. J. Heeger; "Semiconjugated Polymer Distributed Feedback Lasers"; Appl . Phys . Lett . 72, 1536- 1538 (1998); F. Hide, M.A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei y A. J. Heeger; "Semiconducting Polymers : A New Class of Solid-State Láser Materials"; Science 273, 1833-1836 (1996) ] .(acronym for English; thin film transistor), based on polymers, and OLEDs (in English, organic light emitting diode; Z. Shen, PE Burrows, V. Bulovic, SR Forrest, and ME Thompson, "Three-color, tunable, organic light-emitting devices ", Science 276 (1997) 2009; JRSheats, H. Antoniadis, M.Hueschen, W. Leonard, J.Miller, R.Mon, D.Roitman, A.Stocking," Organic Electroluminiscent Devices ", Science 273, 884 (1996)) in general, you can give as examples of use of organic materials in current devices the displays of radios (those manufactured by the firm PIONEER), screens of cameras (in development by the main companies in the sector) and lighting devices (under development by PHILIPS and General Electrics). Also, the possibility of obtaining laser properties in organic materials is being investigated [M. McGehee, M.A. Diaz-Garcia, F. Hide, R. Gupta, E. K. Miller, D. Moses, A. J. Heeger; "Semiconjugated Polymer Distributed Feedback Lasers"; Appl. Phys. Lett. 72, 1536-1538 (1998); F. Hide, M.A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei and A. J. Heeger; "Semiconducting Polymers: A New Class of Solid-State Laser Materials"; Science 273, 1833-1836 (1996)].
Si se mira a los sucesivos avances tecnológicos y a las nuevas prestaciones que han de aportar los materiales en un futuro próximo, necesariamente se debe considerar a los materiales orgánicos ["Advanced Semiconductor and Organic Techniques" Hardis Morkog, Ed. Academic Press 2003; "Electronic Processes in Organic Crystals and Polymers" M. Pope and Ch. E. Swenberg, Ed. Oxford University Press 1999]. En efecto, sus ventajas y su potencial de utilización en dispositivos son: la mencionada posibilidad de "miniaturización" a tamaños del nanómetro (1 nanómetro=0.000000001 metros), Ia flexibilidad de estos materiales (y, por tanto, su resistencia a golpes) , la facilidad de procesado (es posible utilizar sencillas técnicas de "impresión") , el bajo costo, y la capacidad de formar estructuras ordenadas a partir de pautas de crecimiento propias, denominado "autoensamblado" [J.V. Barth, J. Weckesser, L. Lin, A. Dmitriev and K. Kern, "Supramolecular architectures and nanostructures at metal surfaces", Appl . Phys . A 76, 645 (2003); S. Stepanow, M. Lingenfeider, A. Dmitriev, H. Spillmann, E. Delvigne, N. Lin, X. Deng, C. Cai, J.V. Barth, and K. Kern, "Steering molecular organization and host-guest interactions using two-dimensional nanoporous coordination systems", Nature Mat. 3, 229 (2004)]. Esta última propiedad, es considerada una de las estrategias más adecuadas para abordar la nanotecnologia, ya que para acoplar los dispositivos nanométricos a los actuales, los primeros deben extenderse, bien mediante interminables procesos de réplica, o bien haciendo uso de las propiedades de "autoorganización" de los materiales. Se puede citar, a modo de ejemplo de materiales y dispositivos que hacen uso de las propiedades de autoorganización, los dispositivos optoelectrónicos actuales que están basados en multicapas de materiales semiconductores inorgánicos, tales como los láseres de puntos cuánticos [D. Bimberg and N. Ledentsov, "Quantum dots : lasers and amplifiers" J. Phys. Condens . Matter 15 R1063-R1076 (2003)]. Estos dispositivos, los láseres de puntos cuánticos, contienen en su interior una región activa constituida por agregados (puntos, esferitas, islas, discos, etc., un nombre genérico para designar cualquier forma de agregado) de material semiconductor con unos pocos cientos de nanómetros . Estos puntos cuánticos se crecen aprovechando las propiedades de autoorganización de los materiales. Aparatos tan cotidianos como los lectores de CDs o DVDs, funcionan gracias a una región activa de puntos cuánticos de semiconductores III-V.If one looks at the successive technological advances and the new features that the materials have to contribute in the near future, organic materials must be considered ["Advanced Semiconductor and Organic Techniques" Hardis Morkog, Ed. Academic Press 2003; "Electronic Processes in Organic Crystals and Polymers" M. Pope and Ch. E. Swenberg, Ed. Oxford University Press 1999]. In fact, its advantages and its potential for use in devices are: the aforementioned possibility of "miniaturization" at nanometer sizes (1 nanometer = 0.000000001 meters), the flexibility of these materials (and, therefore, their resistance to shocks), the ease of processing (it is possible to use simple "printing" techniques), the low cost, and the ability to form ordered structures from their own growth patterns, called "self-assembly" [JV Barth, J. Weckesser, L. Lin , A. Dmitriev and K. Kern, "Supramolecular architectures and nanostructures at metal surfaces", Appl. Phys. A 76, 645 (2003); S. Stepanow, M. Lingenfeider, A. Dmitriev, H. Spillmann, E. Delvigne, N. Lin, X. Deng, C. Cai, JV Barth, and K. Kern, "Steering molecular organization and host-guest interactions using two-dimensional nanoporous coordination systems ", Nature Mat. 3, 229 (2004)]. This last property is considered one of the most appropriate strategies to address nanotechnology, since to couple the nanometric devices to the current ones, the first ones must be extended, either through endless replication processes, or using the properties of "self-organization "of the materials. As an example of materials and devices that make use of self-organizing properties, current optoelectronic devices that are based on multilayers of inorganic semiconductor materials, such as quantum dot lasers [D. Bimberg and N. Ledentsov, "Quantum dots: lasers and amplifiers" J. Phys. Condens. Matter 15 R1063-R1076 (2003)]. These devices, the quantum dot lasers, contain within them an active region consisting of aggregates (dots, spheres, islands, disks, etc.), a generic name to designate any form of aggregate) of semiconductor material with a few hundred nanometers. These quantum dots are grown by taking advantage of the self-organizing properties of the materials. Devices as everyday as CD or DVD readers work thanks to an active region of semiconductor quantum dots III-V.
La aparición de estas caracteristicas de baja dimensionalidad en semiconductores inorgánicos tiene lugar a unas dimensiones mucho mayores que en otros materiales. En metales, por ejemplo, cuando el tamaño de un hilo conductorThe appearance of these characteristics of low dimensionality in inorganic semiconductors takes place at much larger dimensions than in other materials. In metals, for example, when the size of a conducting wire
(la sección) se reduce por debajo de un nanómetro (1 nm =(the section) is reduced below one nanometer (1 nm =
10~9 m) , aparecen efectos de conducción cuantizada [J. I.10 ~ 9 m), quantized conduction effects appear [JI
Pascual, J. Méndez, J. Gómez-Herrero, A.M. Baró, N. Garcia,Pascual, J. Méndez, J. Gómez-Herrero, A.M. Baró, N. Garcia,
V. Thien Binh, Quantum contact in gold nanostructures by scanning tunneling microscopy, Phys . Rev. Lett . 71 (1993) 1852-1855; J. I. Pascual, J. Méndez, J. Gómez-Herrero, A.M. Baró, N. Garcia, U. Landman, W. D. Luedtke, E. N. Bogachek, H. -P. Cheng, Properties of metallic nanowires : from conductance quantization to localization, Science 267 (1995) 1793-1795] . Estos efectos aparecen en semiconductores cuando la sección es de hasta 100 nm [B. J. van Wees, H. H. van Houten, CW. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, CT. Foxon, Quantised conductance of point contacts in a two-dimensional electrón gas, Phys. Rev. Lett. 60 (1988) 848-850; D.A. Wharam, T. J. Thornton, R. Newbury,V. Thien Binh, Quantum contact in gold nanostructures by scanning tunneling microscopy, Phys. Rev. Lett. 71 (1993) 1852-1855; J. I. Pascual, J. Méndez, J. Gómez-Herrero, A.M. Baró, N. Garcia, U. Landman, W. D. Luedtke, E. N. Bogachek, H. -P. Cheng, Properties of metallic nanowires: from conductance quantization to localization, Science 267 (1995) 1793-1795]. These effects appear in semiconductors when the section is up to 100 nm [B. J. van Wees, H. H. van Houten, CW. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, CT. Foxon, Quantized conduct of point contacts in a two-dimensional electron gas, Phys. Rev. Lett. 60 (1988) 848-850; GIVES. Wharam, T. J. Thornton, R. Newbury,
M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C Peacock,M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C Peacock,
D.A. Ritchie, G.A. C Jones, One-dimensional transport and the quantisation of the ballistic resistance, J. Phys. C 21GIVES. Ritchie, G.A. C Jones, One-dimensional transport and the quantization of the ballistic resistance, J. Phys. C 21
(1988) L209-L214]. También, se han observado efectos cuánticos de localización en islas metálicas [J. T. Li, W. D. Schneider, R. Berndt, and S. Crampin, "Electron confinement to nanoscale Ag islands on Ag(IIl) : A quantitative study", Phys. Rev. Lett. 80 (1998) 3332-3335] o en agujeros de superficies metálicas [J. Méndez and H. Niehus, "Growth of Chromium on the structured surface of A12O3/NÍA1 (100) ", Appl. Surf. Sci. 142 (1992) 152-158] cuando estos objetos tienen tamaños inferiores o del orden de 10 nanómetros . Como impronta del carácter cuántico de estos objetos nanométricos se ha observado la aparición de nuevos estados en la densidad de estados de estos materiales medida por espectroscopia, o se han observado efectos de interferencia del gas libre de electrones con las paredes del nano-objeto. En los materiales orgánicos también aparecen nuevas propiedades cuando se disminuye el tamaño.(1988) L209-L214]. Also, quantum localization effects have been observed in metallic islands [JT Li, WD Schneider, R. Berndt, and S. Crampin, "Electron confinement to nanoscale Ag islands on Ag (IIl): A quantitative study", Phys. Rev. Lett. 80 (1998) 3332-3335] or in holes metal surfaces [J. Méndez and H. Niehus, "Growth of Chromium on the structured surface of A12O3 / NÍA1 (100)", Appl. Surf. Sci. 142 (1992) 152-158] when these objects have smaller sizes or of the order of 10 nanometers. As an impression of the quantum nature of these nanometric objects, the appearance of new states in the density of states of these materials measured by spectroscopy has been observed, or effects of interference of the electron-free gas with the nano-object walls have been observed. New properties also appear in organic materials when the size is reduced.
En cuanto a los materiales orgánicos, uno de los más estudiados por sus propiedades de fotoluminiscencia, crecimiento autoorganizado, conducción anisotrópica, resistencia a tratamientos y facilidad de manejo, son las moléculas orgánicas de PTCDA (3,4,9,10 perileno- tetracarboxilico-dianhidrido) [S. Forest, "Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques", Chem. Rev. 97, 1793 (1997)]. Estas moléculas, del grupo de los perilenos, crecen de forma ordenada sobre diversos substratos inorgánicos, tales como las superficies metálicas de oro [T. Schmitz-Hübsch, T. Fritz, R. Sellam, R. Staub, and K. Leo, "Epitaxial growth of PTCDA on Au(IIl)", Phys. Rev B 55, 7972 (1997); N. Nicoara, E. Román, J.M. Gómez-Rodriguez, J.A. Martin-Gago, and J. Méndez, "Scanning tunneling and photoemission spectroscopies at the PTCDA/Au(lll) interface", Organic Electronics 7, 287-294 (2006)], plata, cobre [Th. Wagner, A. Bannani, C. Bobisch, H. Karacuban, M. Stóhr, M. Gabriel, R. Móller, "Growth of PTCDA crystallites on noble metal surfaces" Organic Electronics 5 (2004) 35-43], y sobre superficies semiconductoras pasivadas como GaAs (pasivado con azufre) [N. Nicoara, I. Cerrillo, D. Xueming, J.M. Garcia, B. Garcia, C. Gómez, J.Méndez, and A.M. Baró "Preparation and passivation of GaAs(OOl) surfaces for growing organic molecules . " Nanotechnology 13 (2002) 352-356] o silicio pasivado con hidrógeno [Q. Chen, T. Rada, Th. Bitzer, N.V. Richardson "Growth of PTCDA crystals on H-Si(IIl) surfaces" Surface Science 547 (2003) 385-393] . Los fotodiodos realizados con estas moléculas son los que presentan los valores más altos de fotoluminiscencia obtenidos en materiales orgánicos [S. Forest, "Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques", Chem. Rev. 97, 1793 (1997)].As for organic materials, one of the most studied for its photoluminescence properties, self-organized growth, anisotropic conduction, resistance to treatments and ease of handling, are the organic molecules of PTCDA (3,4,9,10 perylene-tetracarboxylic- dianhydride) [S. Forest, "Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques", Chem. Rev. 97, 1793 (1997)]. These molecules, from the perilene group, grow in an orderly manner on various inorganic substrates, such as gold metal surfaces [T. Schmitz-Hübsch, T. Fritz, R. Sellam, R. Staub, and K. Leo, "Epitaxial growth of PTCDA on Au (IIl)", Phys. Rev B 55, 7972 (1997); N. Nicoara, E. Román, JM Gómez-Rodriguez, JA Martin-Gago, and J. Méndez, "Scanning tunneling and photoemission spectroscopies at the PTCDA / Au (lll) interface", Organic Electronics 7, 287-294 (2006) ], silver, copper [Th. Wagner, A. Bannani, C. Bobisch, H. Karacuban, M. Stóhr, M. Gabriel, R. Moller, "Growth of PTCDA crystallites on noble metal surfaces" Organic Electronics 5 (2004) 35-43], and on surfaces semiconductors passivated as GaAs (passivated with sulfur) [N. Nicoara, I. Cerrillo, D. Xueming, JM Garcia, B. Garcia, C. Gómez, J. Mendez, and AM Baró "Preparation and passivation of GaAs (OOl) surfaces for growing organic molecules. "Nanotechnology 13 (2002) 352-356] or hydrogen passivated silicon [Q. Chen, T. Rada, Th. Bitzer, NV Richardson" Growth of PTCDA crystals on H-Si (IIl) surfaces "Surface Science 547 (2003) 385-393] The photodiodes made with these molecules have the highest photoluminescence values obtained in organic materials [S. Forest, "Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques", Chem. Rev. 97 , 1793 (1997)].
Con anterioridad ya se habian preparado nanoestructuras de material semiconductor inorgánico, denominados comúnmente como "puntos cuánticos" mencionados más arriba, y nanoestructuras metálicas, que reciben el término de "clusters" o agregados metálicos. Más recientemente, se han obtenido interesantes propiedades magnéticas en clusters metálicos de oro rodeados de una cubierta orgánica [P. Crespo, R. Litrán, T. C. Rojas, M. Multigner, J. M. de la Fuente, J. C. Sánchez-López, M. A. Garcia, A. Hernando, S. Penadés, and A. Fernández, "Permanent Magnetism, Magnetic Anisotropy, and Hysteresis of Thiol-Capped GoId Nanoparticles", Phys . Rev. Lett . 93, 087204 (2004); I. Carmeli, G. Leitus, R. Naaman, S. Reich, and Z. Vager, "Magnetism induced by the organization of self-assembled monolayers", J. Chem. Phys. 118, 10372 (2003)].Previously, nanostructures of inorganic semiconductor material, commonly referred to as "quantum dots" mentioned above, and metal nanostructures, which have been termed "clusters" or metal aggregates, have already been prepared. More recently, interesting magnetic properties have been obtained in gold metal clusters surrounded by an organic shell [P. Crespo, R. Litrán, TC Rojas, M. Multigner, JM de la Fuente, JC Sánchez-López, MA Garcia, A. Hernando, S. Penadés, and A. Fernández, "Permanent Magnetism, Magnetic Anisotropy, and Hysteresis of Thiol -Capped GoId Nanoparticles ", Phys. Rev. Lett. 93, 087204 (2004); I. Carmeli, G. Leitus, R. Naaman, S. Reich, and Z. Vager, "Magnetism induced by the organization of self-assembled monolayers", J. Chem. Phys. 118, 10372 (2003)].
De aqui el interés en desarrollar nuevos materiales que comprendan este tipo de compuesto orgánico, en especial nanoestructuras con tamaños inferiores a 10 nanómetros .Hence the interest in developing new materials that include this type of organic compound, especially nanostructures with sizes smaller than 10 nanometers.
DESCRIPCIÓN DE LA INVENCIÓN Descripción BreveDESCRIPTION OF THE INVENTION Brief Description
Un objeto de la presente invención lo constituye un sistema de puntos orgánicos (agregado orgánico o compuesto de coordinación metalo-orgánico) , en adelante sistema de puntos orgánicos de la invención, que comprende: a) un substrato con una superficie que presenta una red de dislocaciones con centros de nucleación, y b) una red puntos o agregados orgánicos nanoscópicos constituidos por: i) una isla metálica sobre el substrato de a) , que consiste en átomos de un metal diferente al del substrato anclados a los centros de nucleación del substrato, con una estructura en red ordenada de islas equiespaciadas y de similar tamaño, y ii) una serie de moléculas orgánicas con propiedades semiconductoras, que presenten fotoluminiscencia y crecimiento autoorganizado y que se fijan como un agregado a la isla metálica b.i) .An object of the present invention is a system of organic points (organic aggregate or compound of metallo-organic coordination), hereinafter referred to as the organic point system of the invention, comprising: a) a substrate with a surface presenting a network of dislocations with nucleation centers, and b) a network of nanoscopic organic points or aggregates consisting of: i) a metal island on the substrate of a), which consists of atoms of a different metal from that of the substrate anchored to the nucleation centers of the substrate, with an ordered network structure of equally spaced islands of similar size, and ii) a series of organic molecules with semiconductor properties, which present photoluminescence and self-organized growth and are fixed as an aggregate to the bi-metallic island).
Otro objeto de la presente invención lo constituye el método de obtención del sistema de puntos orgánicos de la invención, en adelante procedimiento de obtención de la invención, que comprende las siguientes etapas: a) formación o selección de un substrato metálico con una superficie que presente una red de dislocaciones con centros de nucleación, b) formación mediante un evaporador de metales por bombardeo electrónico en condiciones de ultra alto vacio de islas metálicas sobre el substrato anterior, a temperatura ambiente menor de 50°C, preferentemente entre 20 y 35aC, y a una velocidad inferior a una décima de ángstrom por minuto (0.1 Á/min) durante un periodo de 10 a 30 segundos (hasta un recubrimiento entre 0.01 y 0.02 monocapas) , mediante el anclaje de átomos de un metal diferente al del substrato en los centros de nucleación del substrato, creando asi una red ordenada de islas equiespaciadas y de igual tamaño, y c) formación de una red de agregados orgánicos semiconductores ópticamente activos fijando sobre la red de islas anterior moléculas orgánicas con propiedades semiconductoras, que presenten fotoluminiscencia y crecimiento autoorganizado, mediante un crisol de cuarzo rodeado con un filamento (Figura 1) o usando un evaporador tipo Knudsen comercial, evaporando el material orgánico a un ritmo tipico de evaporación de 0.1 Á/min durante 3 minutos (hasta un recubrimiento de 0.1 monocapas) .Another object of the present invention is the method of obtaining the organic point system of the invention, hereinafter method of obtaining the invention, which comprises the following steps: a) formation or selection of a metal substrate with a surface having a network of dislocations with nucleation centers, b) formation by means of a metal evaporator by electronic bombardment under ultra-high vacuum conditions of metallic islands on the previous substrate, at an ambient temperature of less than 50 ° C, preferably between 20 and 35 a C , and at a rate of less than one tenth of an angle per minute (0.1 Á / min) for a period of 10 to 30 seconds (up to a coating between 0.01 and 0.02 monolayers), by anchoring atoms of a different metal than the substrate in the substrate nucleation centers, thus creating an orderly network of equally spaced islands of equal size, and c) formation of an organic aggregate network The optically active semiconductors setting over the network of previous islands organic molecules with semiconductor properties, presenting photoluminescence and self-organized growth, by a quartz crucible surrounded with a filament (Figure 1) or using a commercial Knudsen type evaporator, evaporating the organic material at a typical evaporation rate of 0.1 Á / min for 3 minutes (to a coating of 0.1 monolayers).
Además, el sistema o material de puntos orgánicos de la invención puede ser utilizado en la elaboración de dispositivos nanotecnológicos como los pertenecientes, a titulo ilustrativo y sin que limite el alcance de la invención, al siguiente grupo: dispositivos optoelectónicos, láseres orgánicos, lectores de CDs y DVDs, pantallas de ordenadores portátiles, máquinas de fotos TV, radios, e industrias de los colorantes, tintes y pinturas [M. McLean, M. Bader, L. Dalton, R. Devine, and W. Steier, "A photophysical and structural study on dye-type organic molecules with potentially useful nonlinear optical properties" J. phys . chem. 94, 4386-4387 (1990)]. Otro objeto de la presente invención lo constituye un dispositivo de puntos orgánicos, en adelante dispositivo de puntos orgánicos de la invención, que comprende el sistema de puntos orgánicos de la presente invención.In addition, the organic point system or material of the invention can be used in the elaboration of nanotechnological devices such as those belonging, by way of illustration and without limiting the scope of the invention, to the following group: optoelectonic devices, organic lasers, readers of CDs and DVDs, laptop screens, TV photo machines, radios, and dye, dye and paint industries [M. McLean, M. Bader, L. Dalton, R. Devine, and W. Steier, "A photophysical and structural study on dye-type organic molecules with potentially useful nonlinear optical properties" J. phys. chem. 94, 4386-4387 (1990)]. Another object of the present invention is an organic dot device, hereinafter the organic dot device of the invention, comprising the organic dot system of the present invention.
Otro objeto particular de la invención lo constituye el dispositivo de puntos orgánicos en el que dicho dispositivo es un emisor de luz por excitación eléctrica de puntos orgánicos que comprende: a) un sistema de puntos orgánicos de la invención, b) una capa de material transparente formado por moléculas orgánicas de naftaleno-tetracarboxilico- dianhidrido (NTCDA) que cubre el material orgánico de a) , y c) un recubrimiento de oro reconstruido en su superficie sobre la capa transparente de b) de iguales caracteristicas al substrato anterior, que cumple la misión de electrodo, junto con el substrato, y que permite establecer un circuito eléctrico a través de la capa transparente y de los agregados .Another particular object of the invention is the device of organic points in which said device is a light emitter by electric excitation of organic points comprising: a) a system of organic points of the invention, b) a layer of transparent material formed by organic molecules of naphthalene-tetracarboxylic dianhydride (NTCDA) that covers the organic material of a), and c) a gold coating reconstructed on its surface on the transparent layer of b) of the same characteristics to the previous substrate, which fulfills the mission of electrode, together with the substrate, and that allows to establish an electrical circuit through the transparent layer and the aggregates.
Descripción DetalladaDetailed description
La presente invención se basa en que los inventores han observado que es posible la formación de agregados orgánicos nanoscopicos (menores de 10 nm e incluso de 4 nm; 1 nanómetro = 10~9 metros), concretamente de moléculas orgánicas de PTCDA (siglas de perileno-tetracarboxilico- dianhidrido) , de manera espontánea por propia autoorganización de los materiales utilizados, y, más concretamente, usando átomos de metales, por ejemplo, de hierro y cobalto como puntos de anclaje especificos a un substrato o superficie que comprende una red de dislocaciones o puntos de nucleación, por ejemplo, de oro reconstruido Au(IIl) (Ejemplo 1 y 2), y sobre los que se crecen de forma ordenada los agregados orgánicos . Controlando el tiempo de evaporación de los materiales utilizados (del metal de anclaje y de las moléculas orgánicas) se consigue controlar el tamaño de los agregados orgánicos . El tamaño y el orden de estos agregados van a determinar las propiedades resultantes y la posible amplificación de las propiedades existentes. El objeto de la presente solicitud consiste en una adecuada combinación de materiales orgánicos e inorgánicos sobre un substrato de forma que, de manera espontánea por propia autoorganización de los materiales, da lugar a "agregados" orgánicos (puntos orgánicos) de unos pocos nanómetros de tamaño, y, por lo tanto, con propiedades especiales debido al reducido tamaño y por estar constituidos por moléculas orgánicas . Para obtener la nanoestructuración del material orgánico se ha empleado propiedades especificas de autoorganización en superficies. Gracias a estas propiedades y buscando las condiciones apropiadas se ha sido capaz de formar "agregados" de moléculas orgánicas sobre la superficie de un substrato.The present invention is based on the fact that the inventors have observed that the formation of nanoscopic organic aggregates is possible (less than 10 nm and even 4 nm; 1 nanometer = 10 ~ 9 meters), specifically of organic molecules of PTCDA (acronyms of perylene) -tetracarboxylic dianhydride), spontaneously by self-organization of the materials used, and, more specifically, using metal atoms, for example, iron and cobalt as specific anchor points to a substrate or surface comprising a dislocation network or nucleation points, for example, of reconstructed gold Au (IIl) (Example 1 and 2), and on which the organic aggregates are grown in an orderly manner. By controlling the evaporation time of the materials used (the anchor metal and the organic molecules), the size of the organic aggregates is controlled. The size and order of these aggregates will determine the resulting properties and the possible amplification of the existing properties. The object of the present application consists of a suitable combination of organic and inorganic materials on a substrate so that, spontaneously by self-organization of the materials, it gives rise to organic "aggregates" (organic points) of a few nanometers in size , and, therefore, with special properties due to the small size and for being constituted by organic molecules. To obtain the nanostructure of the organic material, specific self-organization properties on surfaces have been used. Thanks to these properties and looking for the appropriate conditions, it has been able to form "aggregates" of organic molecules on the surface of a substrate.
Por otro lado, en todo el proceso, a diferencia de otros métodos, la temperatura del substrato se mantiene a temperatura ambiente (entre 20 y 35 grados centigrados) lo que provoca que las uniones substrato-átomos de metal sean más estables . Durante las evaporaciones que tienen lugar en el procedimiento de fabricación de la invención la temperatura del substrato no llega a alcanzar valores que liberen los átomos de metal del substrato, ya que las pequeñas cantidades de hierro y cobalto empleadas hacen que las evaporaciones puedan ser muy cortas y que el substrato apenas llegue a calentarse por la radiación de los evaporadores . Además, de esta manera no es necesario disminuir la temperatura de trabajo hasta temperaturas de congelación para manejar estructuras metaestables que menos estables a temperatura ambiente (otros autores han fijado moléculas orgánicas en las esquinas de la reconstrucción del oro, pero usando temperaturas de 63 Kelvin [T. Yokohama, S. Yokoyama, T. Kamikado, Y. Okuno and S. Mashiko "Selective assembly on a surface of supramolecular aggregates with controlled size and shape", Nature 413, 619-621 (2001)])), como ocurre en otros métodos en los que dichos materiales se degradan a temperatura ambiente, además de encarecer el proceso .On the other hand, in the whole process, unlike other methods, the substrate temperature is maintained at room temperature (between 20 and 35 degrees Celsius) which causes the metal-substrate-atom bonds to be more stable. During the evaporations that take place in the manufacturing process of the invention the temperature of the substrate does not reach values that release the metal atoms of the substrate, since the small amounts of iron and cobalt used make the evaporations can be very short and that the substrate barely warms up by evaporator radiation. In addition, in this way it is not necessary to lower the working temperature to freezing temperatures to handle metastable structures that are less stable at room temperature (other authors have fixed organic molecules in the corners of the reconstruction of gold, but using temperatures of 63 Kelvin [ T. Yokohama, S. Yokoyama, T. Kamikado, Y. Okuno and S. Mashiko "Selective assembly on a surface of supramolecular aggregates with controlled size and shape", Nature 413, 619-621 (2001)])), as is the case in other methods in which said materials degrade at room temperature, in addition to making the process more expensive.
Asi, un objeto de la presente invención lo constituye un sistema de puntos orgánicos (agregado orgánico o compuesto de coordinación metalo-orgánico) , en adelante sistema de puntos orgánicos de la invención, que comprende: a) un substrato con una superficie que presenta una red de dislocaciones con centros de nucleación, y b) una red puntos o agregados orgánicos nanoscópicos constituidos por: i) una isla metálica sobre el substrato de a) , que consiste en átomos de un metal diferente al del substrato anclados a los centros de nucleación del substrato, con una estructura en red ordenada de islas equiespaciadas y de igual tamaño, y ii) una serie de moléculas orgánicas con propiedades semiconductoras, que presenten fotoluminiscencia y crecimiento autoorganizado y que se fijan como un agregado a la isla metálica b.i) . Tal como se utiliza en la presente invención el término "puntos o agregados orgánicos nanoscópicos" se refiere a un agregado orgánico o compuesto de coordinación metalo- orgánico de tamaño menor de 10 nm y que presenta unas caracteristicas con potenciales aplicaciones (semiconductores óptimamente activos) .Thus, an object of the present invention is a system of organic points (organic aggregate or metallo-organic coordination compound), hereinafter system of organic points of the invention, comprising: a) a substrate with a surface having a surface dislocation network with nucleation centers, and b) a network of nanoscopic organic aggregates or points consisting of: i) a metal island on the substrate of a), consisting of atoms of a different metal than the substrate anchored to the nucleation centers of the substrate, with an ordered network structure of equally spaced islands of equal size, and ii) a series of organic molecules with semiconductor properties, which present photoluminescence and self-organized growth and are fixed as an aggregate to the bi-metallic island). As used in the present invention, the term "nanoscopic organic points or aggregates" refers to an organic aggregate or metallo-organic coordination compound smaller than 10 nm in size and having characteristics with potential applications (optimally active semiconductors).
Un objeto particular de la invención lo constituye un sistema de puntos orgánicos en el que el sustrato inorgánico de a) es un substrato o superficie capaz de fijar el metal de b.l) en puntos concretos, o lo que es lo mismo un substrato o una superficie que presenta una red de dislocaciones con zonas de nucleación equiespaciadas y que pertenece al siguiente grupo: metales, por ejemplo, el oroA particular object of the invention is an organic point system in which the inorganic substrate of a) is a substrate or surface capable of fixing the metal of bl) at specific points, or what is the same a substrate or a surface which has a network of dislocations with equally spaced nucleation zones and belongs to the following group: metals, for example, gold
(en su cara (111) es el único metal noble que presenta una reconstrucción) , o en superficies de heteroepitaxia con diferencia de parámetro de red (por ejemplo, como el crecimiento de dos monocapas de plata o de cobre sobre Pt(IIl), donde aparecen redes de dislocación debido a las tensiones en superficie ocasionadas por la diferencia de tamaño de los átomos de los distintos materiales [H. Bruñe, Surf. Sci. Reports 31, (1998)] y materiales semiconductores (como en InAs sobre GaAs(IIl) o GaAs(IlO), donde también se forman redes de dislocaciones [J. BeIk, J. Sudijono, H. Yamaguchi, X. Zhang, D. Pashley, C. McConville, T. Jones, and B. Joyce, "Scanning tunneling microscopy studies of strain relaxation and misfit dislocations in InAs layers grown on GaAs(IlO) and GaAs(IIl)A" J. Vac . Sci. And Technol .(on its face (111) it is the only noble metal that presents a reconstruction), or on heteroepitaxy surfaces with a network parameter difference (for example, such as the growth of two silver or copper monolayers on Pt (IIl), where dislocation networks appear due to surface tensions caused by the difference in the size of the atoms of the different materials [H. Bruñe, Surf. Sci. Reports 31, (1998)] and semiconductor materials (as in InAs on GaAs ( IIl) or GaAs (IlO), where dislocation networks are also formed [J. BeIk, J. Sudijono, H. Yamaguchi, X. Zhang, D. Pashley, C. McConville, T. Jones, and B. Joyce, " Scanning tunneling microscopy studies of strain relaxation and misfit dislocations in InAs layers grown on GaAs (IlO) and GaAs (IIl) A "J. Vac. Sci. And Technol.
A 15, 915 (1997); J. BeIk, J. Sudijono, X. Zhang, J. Neave,A 15, 915 (1997); J. BeIk, J. Sudijono, X. Zhang, J. Neave,
T. Jones, and B. Joyce "Surface Contrast in Two Dimensionally Nucleated Misfit Dislocations in InAsT. Jones, and B. Joyce "Surface Contrast in Two Dimensionally Nucleated Misfit Dislocations in InAs
/GaAs(IlO) Heteroepitaxy", Phys . Rev. Lett . 78, 475/ GaAs (IlO) Heteroepitaxy ", Phys. Rev. Lett. 78, 475
(1997)]), este crecimiento heteroepitaxial es el fundamento de la formación de los puntos cuánticos semiconductores mencionados en el estado de la técnica, que constituyen la región activa de los láseres de puntos cuánticos .(1997)]), this heteroepitaxial growth is the foundation of the formation of semiconductor quantum dots mentioned in the state of the art, which constitute the active region of quantum dot lasers.
Una realización particular de la invención lo constituye sistema de puntos orgánicos de la invención en el que el substrato metálico de a) es una superficie de oro reconstruido, Au(IIl) que presenta la reconstrucción 22V3. Otra realización particular de la invención lo constituye sistema de puntos orgánicos de la invención en el que el substrato metálico de a) es una superficie de oro evaporado sobre un substrato de mica o cuarzo [M. Hegner, P. Wagner, and G. Semenza, "Ultralarge atomically fíat template-stripped Au surfaces for scanning tunneling microscopy", Surface Science 291, 39 (1993)].A particular embodiment of the invention is the organic dot system of the invention in which the metallic substrate of a) is a reconstructed gold surface, Au (IIl) that has reconstruction 22V3. Another particular embodiment of the invention is the organic dot system of the invention in which the metallic substrate of a) is a gold surface evaporated on a mica or quartz substrate [M. Hegner, P. Wagner, and G. Semenza, "Ultralarge atomically fíat template-stripped Au surfaces for scanning tunneling microscopy", Surface Science 291, 39 (1993)].
Otro objeto particular de la invención lo constituye el sistema de puntos orgánicos de la invención en el que las islas metálicas están constituidas por átomos de metal perteneciente al siguiente grupo: hierro, cobalto y niquel .Another particular object of the invention is the organic point system of the invention in which the metal islands are constituted by metal atoms belonging to the following group: iron, cobalt and nickel.
Otra realización particular de la invención lo constituye el sistema de puntos orgánicos de la invención en el que las islas metálicas de b.i) están constituidas por átomos de hierro (Figura 2) . Otra realización particular de la invención lo constituye el sistema de puntos orgánicos de la invención en el que las islas metálicas de b.i) están constituidas por átomos de cobalto (Figura 3) . Otro objeto particular de la invención lo constituye el sistema de puntos orgánicos de la invención en el que la molécula orgánica de b.ii) es una molécula orgánica perteneciente al siguiente grupo: moléculas de la familia de perilenos (por ejemplo, PTCDA (3,4,9,10 perileno- tetracarboxilico-dianhidrido) , NTCDA (naftaleno- tetracarboxilico-dianhidrido) , Di-Me-PTCDI (N, Nf -dimetil- 3, 4, 9, 10-peryleno-tetracarboxilico-diimida) y perileno) o de las tialocianinas (por ejemplo, CuPc (tialocianina de cobre) , MPc) .Another particular embodiment of the invention is the organic point system of the invention in which the metal islands of bi) are constituted by iron atoms (Figure 2). Another particular embodiment of the invention is the organic point system of the invention in which the metal islands of bi) are constituted by cobalt atoms (Figure 3). Another particular object of the invention is the organic point system of the invention in which the organic molecule of b.ii) is an organic molecule belonging to the following group: molecules of the perilene family (for example, PTCDA (3, 4,9,10 perylene-tetracarboxylic dianhydride), NTCDA (naphthalene tetracarboxylic dianhydride), Di-Me-PTCDI (N, N f- dimethyl-3, 4, 9, 10-perylene-tetracarboxylic-diimide) and perylene ) or thialocyanines (eg, CuPc (copper thialocyanine), MPc).
Otra realización particular de la invención lo constituye el sistema de puntos orgánicos de la invención en el que la molécula orgánica de b.ii) son moléculas orgánicas de PTCDA (3,4,9,10 perileno-tetracarboxilico-dianhidrido) (Figuras 4 y 5) .Another particular embodiment of the invention is the organic dot system of the invention in which the organic molecule of b.ii) is organic molecules of PTCDA (3,4,9,10 perylene-tetracarboxylic dianhydride) (Figures 4 and 5) .
Otra realización más particular de la invención lo constituye el sistema de puntos orgánicos de la invención en el que las islas metálicas de b.i) están constituidas por átomos de hierro o cobalto y en el que la molécula orgánica de b.ii) son moléculas orgánicas de PTCDA (3,4,9,10 perileno-tetracarboxilico-dianhidrido) (Figuras 4 y 5) .Another more particular embodiment of the invention is the organic point system of the invention in which the metal islands of bi) are constituted by iron or cobalt atoms and in which the organic molecule of b.ii) are organic molecules of PTCDA (3,4,9,10 perylene tetracarboxylic dianhydride) (Figures 4 and 5).
Otro objeto de la presente invención lo constituye el método de obtención del sistema de puntos orgánicos de la invención, en adelante procedimiento de obtención de la invención, que comprende las siguientes etapas: a) formación o selección de un substrato metálico con una superficie que presente una red de dislocaciones con centros de nucleación, b) formación mediante un evaporador de metales por bombardeo electrónico en condiciones de ultra alto vacio de islas metálicas sobre el substrato anterior, preferentemente a temperatura ambiente, entre 20 y 35aC, y a una velocidad inferior a una décima de ángstrom por minuto (0.1 Á/min) durante un periodo de 10 a 30 segundos (hasta un recubrimiento entre 0.01 y 0.02 monocapas) , mediante el anclaje de átomos de un metal diferente al del substrato en los centros de nucleación del substrato, creando asi una red ordenada de islas equiespaciadas y de igual tamaño, y c) formación de una red de agregados orgánicos semiconductores ópticamente activos fijando sobre la red de islas anterior moléculas orgánicas con propiedades semiconductoras, que presenten fotoluminiscencia y crecimiento autoorganizado, mediante un crisol de cuarzo rodeado con un filamento (Figura 1) o usando un evaporador tipo Knudsen comercial, evaporando el material orgánico a un ritmo tipico de evaporación de 0.1 Á/min durante 3 minutos (hasta un recubrimiento de 0.1 monocapas).Another object of the present invention is the method of obtaining the organic point system of the invention, hereinafter method of obtaining the invention, which comprises the following steps: a) formation or selection of a metal substrate with a surface having a network of dislocations with nucleation centers, b) formation by means of a metal evaporator by electronic bombardment under ultra-high vacuum conditions of metallic islands on the previous substrate, preferably at room temperature, between 20 and 35 at C, and at a lower speed at one tenth of an angle per minute (0.1 Á / min) for a period of 10 to 30 seconds (up to coating between 0.01 and 0.02 monolayers), by anchoring atoms of a different metal to that of the substrate in the nucleation centers of the substrate, thus creating an orderly network of equally spaced islands of equal size, and c) forming a network of organic aggregates Optically active semiconductors fixing organic molecules with semiconductor properties on the previous island network, presenting photoluminescence and self-organized growth, by means of a quartz crucible surrounded with a filament (Figure 1) or using a commercial Knudsen evaporator, evaporating the organic material to a typical evaporation rate of 0.1 Á / min for 3 minutes (to a coating of 0.1 monolayers).
El uso de un evaporador de metales por bombardeo electrónico [J. Nelly, "Electron bombardment apparatus for vacuum evaporation" J. Sci. Instrum. 36, 89-90 (1959)] de b) es una técnica ampliamente conocida en el campo de las técnicas de ultra alto vacio.The use of a metal evaporator by electronic bombardment [J. Nelly, "Electron bombardment apparatus for vacuum evaporation" J. Sci. Instrum. 36, 89-90 (1959)] of b) is a widely known technique in the field of ultrahigh vacuum techniques.
Otro objeto particular de la invención lo constituye el procedimiento de la invención en el que el sustrato inorgánico de a) es un substrato o superficie capaz de fijar el metal de b.l) o lo que es lo mismo superficies que presentan una red de dislocaciones con zonas de nucleación equiespaciadas, perteneciente al siguiente grupo: metales, por ejemplo el oro, o con superficies de heteroepitaxia con diferencia de parámetro de red (plata o cobre sobre platino) o semiconductores (por ejemplo InAs sobre GaAs) . En el caso de materiales semiconductores, este crecimiento heteroepitaxial es el fundamento de la formación de los puntos cuánticos semiconductores mencionados más arriba, que constituyen la región activa de los láseres de puntos cuánticos .Another particular object of the invention is the process of the invention in which the inorganic substrate of a) is a substrate or surface capable of fixing the metal of bl) or what is the same surfaces that present a network of dislocations with zones of equiespaced nucleation, belonging to the following group: metals, for example gold, or with heteroepitaxy surfaces with a network parameter difference (silver or copper on platinum) or semiconductors (for example InAs on GaAs). In the case of semiconductor materials, this heteroepitaxial growth is the foundation of the formation of the semiconductor quantum dots mentioned above, which constitute the active region of quantum dot lasers.
Otra realización particular de la invención lo constituye el procedimiento de la invención en el que el substrato metálico de a) es una superficie de oro reconstruido, Au(IIl) que presenta la reconstrucción 22V3 o una superficie de oro evaporado sobre un substrato de mica o cuarzo . Otro objeto particular de la invención lo constituye el procedimiento de la invención en el que las islas metálicas están constituidas por un átomo de metal perteneciente al siguiente grupo: hierro, cobalto y niquel .Another particular embodiment of the invention is the process of the invention in which the a) metallic substrate is a reconstructed gold surface, Au (IIl) that presents the 22V3 reconstruction or an evaporated gold surface on a mica or quartz substrate. Another particular object of the invention is the process of the invention in which the metal islands are constituted by a metal atom belonging to the following group: iron, cobalt and nickel.
Otra realización particular de la invención lo constituye el procedimiento de la invención en el que las islas metálicas de b.i) están constituidas por átomos de hierro evaporados por bombardeo electrónico en condiciones de ultra alto vacio a una velocidad inferior a una décima de ángstrom por minuto (0.1 Á/min) durante 10-30 segundos, formándose las islas de hierro de manera espontánea en las esquinas de la reconstrucción y correspondiendo estas islas a un recubrimiento menor de 0.01 monocapas (ML) (datos no presentados) , similar a la Figura 2, pero con un recubrimiento menor (la Figura 2 corresponde a 0.08 monocapas) .Another particular embodiment of the invention is the process of the invention in which the metal islands of bi) are constituted by iron atoms evaporated by electronic bombardment under ultra-high vacuum conditions at a rate of less than one tenth of an angle per minute ( 0.1 Á / min) for 10-30 seconds, the iron islands forming spontaneously at the corners of the reconstruction and these islands corresponding to a coating of less than 0.01 monolayers (ML) (data not shown), similar to Figure 2 , but with a smaller coating (Figure 2 corresponds to 0.08 monolayers).
Otra realización particular de la invención lo constituye el procedimiento de la invención en el que las islas metálicas de b.i) están constituidas por átomos de cobalto evaporados por bombardeo electrónico en condiciones de ultra alto vacio y a una velocidad inferior a una décima de ángstrom por minuto (0.1 Á/min) durante 10-30 segundos, formándose las islas de cobalto de manera espontánea en las esquinas de la reconstrucción y correspondiendo estas islas a un recubrimiento menor de 0.01 monocapas (ML) (datos no presentados) , similar a la Figura 3, pero con un recubrimiento menor (la Figura 3 corresponde a 0.08 monocapas) . Otro objeto particular de la invención lo constituye el procedimiento de la invención en el que la molécula orgánica de b.ii) pertenece al siguiente grupo: moléculas orgánicas del grupo de los perilenos (PTCDA (3,4,9,10 perileno- tetracarboxilico-dianhidrido) , NTCDA (naftaleno- tetracarboxilico-dianhidrido) , Di-Me-PTCDI (N, Nf -dimetil- 3, 4, 9, 10-peryleno-tetracarboxilico-diimida) , o de las tialocianinas (por ejemplo, CuPc , MPc) .Another particular embodiment of the invention is the process of the invention in which the metal islands of bi) are constituted by cobalt atoms evaporated by electronic bombardment under ultra-high vacuum conditions and at a rate of less than one tenth of an angle per minute ( 0.1 Á / min) for 10-30 seconds, the cobalt islands forming spontaneously at the corners of the reconstruction and these islands corresponding to a coating less than 0.01 monolayers (ML) (data not shown), similar to Figure 3 , but with a smaller coating (Figure 3 corresponds to 0.08 monolayers). Another particular object of the invention is the process of the invention in which the organic molecule of b.ii) belongs to the following group: organic molecules of the perilene group (PTCDA (3,4,9,10 perylene-tetracarboxylic) dianhydride), NTCDA (naphthalene-tetracarboxylic-dianhydride), Di-Me-PTCDI (N, N f- dimethyl- 3, 4, 9, 10-perylene-tetracarboxylic-diimide), or thialocyanines (e.g., CuPc, MPc).
Otra realización particular de la invención lo constituye el procedimiento de la invención en el que la molécula orgánica de b.ii) son moléculas orgánicas de PTCDAAnother particular embodiment of the invention is the process of the invention in which the organic molecule of b.ii) is organic molecules of PTCDA
(3,4,9,10 perileno-tetracarboxilico-dianhidrido) , que se depositan sobre las islas metálicas, previa evaporación del(3,4,9,10 perylene-tetracarboxylic dianhydride), which are deposited on the metal islands, after evaporation of the
PTCDA a una velocidad inferior a medio ángstrom por minuto (0.5 Á/min) , lográndose que la temperatura del substrato sea la ambiente, entre 20 y 35°C, preferentemente entre 20 y 35aC, y evitándose tener que calentar o enfriar el substrato, encontrándose el tamaño de los agregados orgánicos entre 2 nm y 10 nm, dependiendo de la cantidad de moléculas que se evaporen sobre el substrato (Figura s 4 y 5) .PTCDA at a speed lower than half an angle per minute (0.5 Á / min), ensuring that the substrate temperature is ambient, between 20 and 35 ° C, preferably between 20 and 35 at C, and avoiding having to heat or cool the substrate, the size of the organic aggregates being between 2 nm and 10 nm, depending on the amount of molecules that evaporate on the substrate (Figures s 4 and 5).
Como se ha comentado anteriormente el sistema o material de puntos orgánicos de la invención puede ser utilizado en la elaboración de dispositivos nanotecnológicos como los pertenecientes, a titulo ilustrativo y sin que limite el alcance de la invención, al siguiente grupo: dispositivos optoelectónicos, láseres orgánicos, lectores de CDs y DVDs, pantallas de ordenadores portátiles, máquinas de fotos TV, radios, e industrias de los colorantes, tintes y pinturas [M. McLean, M. Bader, L. Dalton, R. Devine, and W. Steier, "A photophysical and structural study on dye-type organic molecules with potentially useful nonlinear optical properties" J. phys . chem. 94, 4386-4387 (1990)]. Otro objeto de la presente invención lo constituye un dispositivo de puntos orgánicos, en adelante dispositivo de puntos orgánicos de la invención, que comprende el sistema de puntos orgánicos de la presente invención. Otro objeto particular de la invención lo constituye el dispositivo de puntos orgánicos en el que dicho dispositivo es un emisor de luz por excitación eléctrica de puntos orgánicos que comprende: a) un sistema de puntos orgánicos de la invención, b) una capa de material transparente formado por moléculas orgánicas de naftaleno-tetracarboxilico- dianhidrido (NTCDA) que cubre el material orgánico de a) , y c) un recubrimiento de oro reconstruido en su superficie sobre la capa transparente de b) de iguales caracteristicas al substrato anterior, que cumple la misión de electrodo, junto con el substrato, y que permite establecer un circuito eléctrico a través de la capa transparente y de los agregados .As previously mentioned, the organic point system or material of the invention can be used in the elaboration of nanotechnological devices such as those belonging, by way of illustration and without limiting the scope of the invention, to the following group: optoelectonic devices, organic lasers , CD and DVD readers, laptop screens, TV photo machines, radios, and dye, dye and paint industries [M. McLean, M. Bader, L. Dalton, R. Devine, and W. Steier, "A photophysical and structural study on dye-type organic molecules with potentially useful nonlinear optical properties" J. phys. chem. 94, 4386-4387 (1990)]. Another object of the present invention is an organic dot device, hereinafter the organic dot device of the invention, comprising the organic dot system of the present invention. Another particular object of the invention is the device of organic points in which said device is a light emitter by electric excitation of organic points comprising: a) a system of organic points of the invention, b) a layer of transparent material formed by organic molecules of naphthalene-tetracarboxylic dianhydride (NTCDA) that covers the organic material of a), and c) a gold coating reconstructed on its surface on the transparent layer of b) of the same characteristics to the previous substrate, which fulfills the mission of electrode, together with the substrate, and that allows to establish an electrical circuit through the transparent layer and the aggregates.
Cuando entre ambos electrodos de c) se establece una diferencia de potencial, dicha corriente provoca una excitación del material orgánico y, por tanto, la emisión de luz en los agregados .When a potential difference is established between the two electrodes of c), said current causes an excitation of the organic material and, therefore, the emission of light in the aggregates.
Otro objeto particular de la invención lo constituye un dispositivo emisor de luz por excitación eléctrica de puntos orgánicos en multicapa en el que el dispositivo comprende más de una capa de agregados orgánicos, estando siempre cubierta cada capa por su correspondiente capa transparente, consiguiendo este apilamiento de capas que el dispositivo pueda emitir luz con mayor intensidad. Otro objeto particular de la invención lo constituye el dispositivo de puntos orgánicos en el que dicho dispositivo es un sensor de luz que comprende: a) un sistema de puntos orgánicos de la invención, b) una capa de material transparente formado por moléculas orgánicas de naftaleno-tetracarboxilico- dianhidrido (NTCDA) que cubre el material orgánico de a), y c) un recubrimiento de oro reconstruido en su superficie sobre la capa transparente de b) de iguales caracteristicas al substrato anterior, que cumple la misión de electrodo, junto con el substrato, y que permite establecer un circuito eléctrico a través de la capa transparente y de los agregados .Another particular object of the invention is a light emitting device by electric excitation of organic multilayer points in which the device comprises more than one layer of organic aggregates, each layer being always covered by its corresponding transparent layer, achieving this stacking of layers that the device can emit light with greater intensity. Another particular object of the invention is the organic point device in which said device is a light sensor comprising: a) an organic point system of the invention, b) a layer of transparent material formed by organic molecules of naphthalene-tetracarboxylic-dianhydride (NTCDA) covering the organic material of a), and c) a gold coating reconstructed on its surface on the transparent layer of b) of equal characteristics to previous substrate, that fulfills the mission of electrode, together with the substrate, and that allows to establish an electrical circuit through the transparent layer and the aggregates.
Cuando la luz exterior penetra hasta los puntos orgánicos del dispositivo anterior se genera una diferencia de potencial entre ambos electrodos, tensión eléctrica, pudiendo funcionar como sensores de luz .When the external light penetrates to the organic points of the previous device, a potential difference between both electrodes, electrical voltage, can be generated as light sensors.
Otro objeto particular de la invención lo constituye un dispositivo sensor de luz en el que el dispositivo comprende más de una capa de agregados orgánicos, estando siempre cubierta cada capa por su correspondiente capa transparente, consiguiendo este apilamiento de capas que el sensor tenga mayor sensibilidad frente a la luz externa.Another particular object of the invention is a light sensing device in which the device comprises more than one layer of organic aggregates, each layer being always covered by its corresponding transparent layer, this layer stack making the sensor more sensitive against to external light.
Otra realización particular de la invención lo constituye el dispositivo de la invención, ya sea emisor o sensor de luz, en el que el material orgánico está constituido por: un substrato de oro reconstruido, Au(IIl), que presenta la reconstrucción 22V3 , sobre el substrato anterior existen unas islas de hierro de un recubrimiento menor de 0.01 monocapas (ML) , formadas en las esquinas de la reconstrucción, y sobre cada una de las islas de hierro se forman agregados orgánicos semiconductores ópticamente activos de moléculas orgánicas de PTCDA (3, 4, 9, 10 perileno- tetracarboxílico-dianhídrido) .Another particular embodiment of the invention is the device of the invention, be it emitter or light sensor, in which the organic material is constituted by: a reconstructed gold substrate, Au (IIl), which has reconstruction 22V3, on on the previous substrate there are iron islands with a coating of less than 0.01 monolayers (ML), formed in the corners of the reconstruction, and on each of the iron islands, optically active semiconductor organic aggregates are formed of organic molecules of PTCDA (3, 4, 9, 10 perylene-tetracarboxylic-dianhydride).
Otro objeto particular de la invención lo constituye el método de obtención del dispositivo de puntos orgánicos de la invención que comprende las siguientes etapas: a) el sistema de puntos orgánicos de la invención se cubre con una capa de material transparente, y b) se deposita por evaporación un elemento metálico (recubrimiento metálico) , para obtener una superficie igual a la existente en el substrato de a) , actuando el substrato base y el recubrimiento metálico como electrodos cuando entre ellos se establece una diferencia de potencial.Another particular object of the invention is the method of obtaining the organic point device of the invention comprising the following steps: a) the organic point system of the invention is covered with a layer of transparent material, and b) is deposited by evaporation of a metallic element (metallic coating), to obtain a surface equal to that existing in the substrate of a), the base substrate and the metallic coating acting as electrodes when a potential difference is established between them.
Otra realización particular de la invención lo constituye el método de obtención del dispositivo de puntos orgánicos de la invención en el que tras la formación de la capa de material transparente se deposita por evaporación un elemento metálico, para obtener una superficie igual a la del substrato de partida, y se repite varias veces el método de obtención del sistema de puntos orgánicos de la invención, terminando cada ciclo siempre con la capa de material transparente y sobre ésta el recubrimiento metálico. En este caso el substrato base y el último recubrimiento del apilamiento multicapa actúan como electrodos cuando entre ellos se establece una diferencia de potencial, estableciéndose una corriente eléctrica por el interior de las capas transparentes, por los agregados orgánicos y por las islas metálicas, corriente que excita el material orgánico de todas las capas y produce luz .Another particular embodiment of the invention is the method of obtaining the device of organic points of the invention in which after the formation of the layer of transparent material a metallic element is deposited by evaporation, to obtain a surface equal to that of the substrate of starting, and the method of obtaining the organic point system of the invention is repeated several times, ending each cycle always with the layer of transparent material and on it the metallic coating. In this case the base substrate and the last coating of the multilayer stacking act as electrodes when a potential difference is established between them, establishing an electric current inside the transparent layers, by the organic aggregates and by the metal islands, current that excites the organic material of all layers and produces light.
Finalmente, se debe indicar que los substratos metálicos de los dispositivos de la invención pueden ser tan finos que permitan el paso de la luz a través de ellos, pudiendo la luz generada en los puntos orgánicos salir al exterior y la luz exterior alcanzar los puntos orgánicos mucho más fácilmente. DESCRIPCIÓN DETALLADA DE LOS DIBUJOSFinally, it should be noted that the metal substrates of the devices of the invention can be so thin that they allow light to pass through them, the light generated in the organic points being able to go outside and the outside light reaching the organic points much more easily. DETAILED DESCRIPTION OF THE DRAWINGS
Figura 1.- Fotografía del evaporador de moléculas. aa) Termopar de tipo K. ab) Apertura, ac) Anillo de tántalo, ad) Filamento de Tungsteno, ae) Crisol de Cuarzo. Figura 2.- Imagen de microscopía de efecto túnel (STM) de una superficie de oro Au(IIl) con islas de hierro autoorganizadas formando islas en las esquinas de la reconstrucción del substrato. Tamaño de la imagen 70 nm x 36 nm. El recubrimiento de hierro es de 0.08 monocapas (ML) . Figura 3.- Imagen de microscopía de efecto túnel (STM) de una superficie de oro Au(IIl) con islas de cobalto autoorganizadas formando islas en las esquinas de la reconstrucción del substrato. Tamaño de la imagen 54 nm X 54 nm. El recubrimiento de cobalto es de 0.08 monocapas (ML) . Figura 4.- Imagen STM de una superficie de oro Au(IIl) con islas de hierro y moléculas de PTCDA crecidas alrededor del hierro. Estas islas de moléculas orgánicas constituyen cada uno de los puntos orgánicos. Tamaño de la imagen 40 nm X 40 nm. El recubrimiento de hierro es menor de 0.01 monocapas (ML) mientras que el recubrimiento de moléculas es de 0.1 monocapas (ML) .Figure 1.- Photograph of the molecule evaporator. aa) Thermocouple type K. ab) Opening, ac) Tantalum ring, ad) Tungsten filament, ae) Quartz crucible. Figure 2.- Image of tunnel effect microscopy (STM) of a gold surface Au (IIl) with self-organized iron islands forming islands in the corners of the substrate reconstruction. Image size 70 nm x 36 nm. The iron coating is 0.08 monolayers (ML). Figure 3.- Image of tunnel effect microscopy (STM) of a gold surface Au (IIl) with self-organized cobalt islands forming islands in the corners of the substrate reconstruction. Image size 54 nm X 54 nm. The cobalt coating is 0.08 monolayers (ML). Figure 4.- STM image of an Au (IIl) gold surface with iron islands and PTCDA molecules grown around the iron. These islands of organic molecules constitute each of the organic points. Image size 40 nm X 40 nm. The iron coating is less than 0.01 monolayers (ML) while the molecule coating is 0.1 monolayers (ML).
Figura 5.- Imagen STM de una superficie de oro Au(IIl) con islas de cobalto y moléculas de PTCDA fijadas a las islas de cobalto. Las islas de moléculas orgánicas constituyen cada uno de los puntos orgánicos. Tamaño de la imagen 41 nm X 41 nm. El recubrimiento de cobalto es de 0.03 monocapas (ML) mientras que el recubrimiento de moléculas es de 0.12 monocapas (ML) . Figura 6.- Esquema de un prototipo de un dispositivo de puntos orgánico, a) Superficie de oro con puntos orgánicos, b) Tras cubrir los puntos orgánicos con una capa orgánica transparente y sobre esta un recubrimiento metálico (dispositivo) . c) Multicapas de puntos orgánicos en substratos metálicos (dispositivo multicapa) .Figure 5.- STM image of an Au (IIl) gold surface with cobalt islands and PTCDA molecules attached to the cobalt islands. The islands of organic molecules constitute each of the organic points. Image size 41 nm X 41 nm. The cobalt coating is 0.03 monolayers (ML) while the molecule coating is 0.12 monolayers (ML). Figure 6.- Scheme of a prototype of an organic point device, a) Gold surface with organic points, b) After covering the organic points with a transparent organic layer and on this a metallic coating (device) . c) Multilayers of organic dots on metal substrates (multilayer device).
EJEMPLO DE REALIZACIÓN DE LA INVENCIÓN Ejemplo 1.- Elaboración de moléculas orgánicas de PTCDA de la invenciónEXAMPLE OF EMBODIMENT OF THE INVENTION Example 1.- Preparation of organic PTCDA molecules of the invention
1.1.- Moléculas orgánicas de la invención de hierro y PTCDA sobre sustrato de oro .1.1.- Organic molecules of the invention of iron and PTCDA on gold substrate.
En un primer paso del procedimiento de la invención, se emplearon islas de hierro de unos pocos átomos (mucho más pequeñas que las mostradas en la Figura 2) para formar los puntos orgánicos sobre una superficie nanoestructurada de Fe/Au(lll). Pequeñas cantidades de hierro, en una cantidad próxima a una centésima de monocapa (0.01 ML), (en la figura 2 se muestra el resultado de evaporar 0.08 ML ya que el efecto de evaporar 0.01 ML es menos apreciable gráficamente) , se evaporaron sobre la cara (111) de un monocristal de oro, Au(IIl), que presenta la reconstrucciónIn a first step of the process of the invention, iron islands of a few atoms (much smaller than those shown in Figure 2) were used to form the organic points on a nanostructured surface of Fe / Au (lll). Small amounts of iron, in an amount close to one hundredth of monolayer (0.01 ML), (in figure 2 the result of evaporating 0.08 ML is shown since the effect of evaporating 0.01 ML is less graphically appreciable), they evaporated on the face (111) of a gold monocrystal, Au (IIl), which presents the reconstruction
(22xv3) , preferentemente, un monocristal de Au(IIl), produjeron la formación espontánea de islas de hierro sobre las esquinas de la reconstrucción de oro [B. Voigtlánder et al. "Epitaxial growth of Fe on Au(IIl) : a scanning tunneling investigation", Surf. Sci. 255, L529 (1991); H. Bruñe, Surf. Sci. Reports 31, 121 (1998)] tal y como muestra la Figura 2 para un recubrimiento mayor. Los átomos de hierro depositados sobre la superficie de oro, difunden sobre el substrato hasta encontrar los minimos de energia que suponen las esquinas de la reconstrucción (22*V3) del oro. Estos puntos actúan como centros de nucleación de las islas de hierro dando lugar a una red de islas de hierro distribuida sobre la superficie. Igualmente, la superficie de oro que presenta la reconstrucción (22XΛ/3) a utilizar, puede ser oro evaporado sobre un substrato de mica o cuarzo. La evaporación de hierro se llevó a cabo usando un evaporador de hierro por bombardeo electrónico [Tesis doctoral de José Abad, CSIC, Universidad Autónoma de Madrid(22xv3), preferably, a single crystal of Au (IIl), produced the spontaneous formation of iron islands on the corners of the gold reconstruction [B. Voigtlánder et al. "Epitaxial growth of Fe on Au (IIl): a scanning tunneling investigation", Surf. Sci. 255, L529 (1991); H. Bruñe, Surf. Sci. Reports 31, 121 (1998)] as shown in Figure 2 for a larger coating. The iron atoms deposited on the surface of gold diffuse on the substrate until the minimum energy levels of the reconstruction corners (22 * V3) of gold are found. These points act as nucleation centers of the iron islands giving rise to a network of iron islands distributed over the surface. Likewise, the gold surface that presents the reconstruction (22XΛ / 3) to be used may be gold evaporated on a mica or quartz substrate. The evaporation of iron was carried out using an iron evaporator by electronic bombardment [Doctoral thesis of José Abad, CSIC, Autonomous University of Madrid
2005] , con una velocidad tipicamente inferior a una décima de ángstrom por minuto (0.1 Á/min) .2005], with a speed typically less than one tenth of an angle per minute (0.1 Á / min).
La microscopia STM muestra claramente (Figura 2) cómo se han formado islas de hierro fijadas a puntos especificos del substrato de oro. Las islas de hierro son los objetos más brillantes de la imagen. Las lineas claras que cruzan la imagen en "zig-zag" son los pliegues debidos a la reconstrucción del substrato de oro, Au(IIl). La imagen muestra cómo las islas de hierro están situadas en las esquinas de los pliegues de la reconstrucción de oro.STM microscopy clearly shows (Figure 2) how iron islands formed at specific points of the gold substrate have formed. The iron islands are the brightest objects in the image. The clear lines that cross the image in "zigzag" are the folds due to the reconstruction of the gold substrate, Au (IIl). The image shows how the iron islands are located at the corners of the gold reconstruction folds.
Estas islas de hierro de formas regulares, tienen tamaños muy regulares dependiendo de la cantidad de hierro que se evapora y están separadas por distancias también muy regulares formando una red ordenada de islas de hierro equiespaciadas .These iron islands of regular forms, have very regular sizes depending on the amount of iron that evaporates and are also separated by very regular distances forming an orderly network of equiespaced iron islands.
Posteriormente, en el presente procedimiento se combinaron las islas de hierro con moléculas orgánicas de PTCDA. Asi, sobre este sustrato, usando un recubrimiento menor de hierro, se evaporaron encima moléculas orgánicas de PTCDA, actuando los átomos de hierro como semillas alrededor de las cuales se fijan las moléculas orgánicas de PTCDA. En este caso desde un crisol de cuarzo rodeado con un filamento como muestra la Figura 1. La temperatura tipica de evaporación del PTCDA está entorno a doscientos cincuenta y cinco grados centigrados (255°C) . El ritmo de evaporación utilizado fue inferior a medio ángstrom por minuto (0.5 Á/min) décima de ángstrom por minuto (0.1 Á/min), durante 3 minutos (hasta un recubrimiento de 0.1 monocapas) . Las moléculas de PTCDA van a ordenarse nuevamente de forma espontánea alrededor de las islas de hierro, dando lugar a islas de material orgánico con una semilla de hierro en su interior. En todo el proceso, a diferencia de otros métodos, la temperatura del substrato se mantuvo a temperatura ambiente, entre 20°C y 35°C, no siendo necesario calentar o enfriar el substrato en ningún momento. Si la temperatura del substrato supera los cien grados centigrados (100°), el hierro deja de estar anclado a las esquinas de la reconstrucción del oro y difunde hacia los escalones del oro, perdiendo su papel de fijación de las moléculas. La temperatura del substrato no llega a alcanzar en el procedimiento de la invención estos valores durante las evaporaciones, ya que las pequeñas cantidades de átomos de metal empleadas (recubrimientos muy inferiores a la monocapa) hacen que las evaporaciones sean muy cortasSubsequently, in the present procedure the iron islands were combined with organic molecules of PTCDA. Thus, on this substrate, using a smaller iron coating, organic PTCDA molecules were evaporated on top, the iron atoms acting as seeds around which the organic PTCDA molecules are fixed. In this case, from a quartz crucible surrounded with a filament as shown in Figure 1. The typical evaporation temperature of the PTCDA is around two hundred fifty-five degrees Celsius (255 ° C). The evaporation rate used was less than half an angstrom per minute (0.5 Á / min) tenth of an angstrom per minute (0.1 Á / min), for 3 minutes (up to a coating of 0.1 monolayers). PTCDA molecules will spontaneously reorder around the iron islands, resulting in islands of organic material with an iron seed in their inside. Throughout the process, unlike other methods, the substrate temperature was maintained at room temperature, between 20 ° C and 35 ° C, it being unnecessary to heat or cool the substrate at any time. If the temperature of the substrate exceeds one hundred degrees Celsius (100 °), the iron ceases to be anchored to the corners of the reconstruction of gold and diffuses towards the gold steps, losing its role of fixing the molecules. The substrate temperature does not reach these values in the process of the invention during evaporations, since the small amounts of metal atoms used (coatings much lower than the monolayer) make evaporations very short
(tiempos de evaporación de pocos minutos) y que el substrato apenas llegue a calentarse por la radiación de los evaporadores (la temperatura de la muestra no supera los 50°C) .(evaporation times of a few minutes) and that the substrate barely warms up by evaporator radiation (the sample temperature does not exceed 50 ° C).
Una vez fijadas las primeras moléculas orgánicas, otras moléculas se fijan a las primeras dando lugar a un agregado orgánico que va creciendo mientras dura la evaporación. Estos agregados orgánicos son lo que se han denominado "puntos orgánicos" (ver Figura 4) . El tamaño de estos puntos orgánicos queda determinado por la cantidad de moléculas que se han evaporado sobre la superficie, obteniendo puntos de tamaños entre 2 nm y 10 nm de diámetro en función de este parámetro. La imagen STM de la Figura 4 muestra cuatro puntos orgánicos de PTCDA, de unos 4 nanómetros de diámetro promedio, constituidos por entre 20 y 35 moléculas cada uno de ellos . Las moléculas son los pequeños óvalos brillantes que constituyen los agregados . Estos agregados se encuentran situados en las esquinas de los pliegues de la reconstrucción del substrato donde hay una semilla de hierro. El núcleo de hierro, de unas pocas decenas de átomos, se puede observar como una zona central más brillante que las moléculas que lo rodean.Once the first organic molecules are fixed, other molecules are fixed to the first, giving rise to an organic aggregate that grows while evaporation lasts. These organic aggregates are what have been called "organic points" (see Figure 4). The size of these organic points is determined by the amount of molecules that have evaporated on the surface, obtaining points of sizes between 2 nm and 10 nm in diameter depending on this parameter. The STM image in Figure 4 shows four organic points of PTCDA, about 4 nanometers in average diameter, consisting of between 20 and 35 molecules each. The molecules are the small bright ovals that constitute the aggregates. These aggregates are located in the corners of the folds of the reconstruction of the substrate where there is an iron seed. The iron core, of a few tens of atoms, it can be seen as a brighter central zone than the surrounding molecules.
1.2.- Moléculas orgánicas de la invención de cobalto y PTCDA sobre sustrato de oro1.2.- Organic molecules of the invention of cobalt and PTCDA on gold substrate
Anteriormente se han descrito la formación de islas de Cobalto y Niquel sobre la reconstrucción del oro [S. Padovani, I. Chado, F. J. P. Bucher, "Transition from zero- dimensional superparamagnetism to two-dimensional ferromagnetism of Co clusters on Au(IIl)". Phys . Rev. B 59, 11887-11891 (1999); D. Chambliss, R. Wilson, and S. Chiang, "Nucleation of ordered Ni island arrays on Au(IIl) by surface-lattice dislocations" Phys. Rev. Lett . 66, 1721-1724 (1991); W. Cullen, and P. First, "Island shapes and intermixing for submonolayer nickel on Au(IIl)" Surf. Sci . 420, 53-64 (1999) ] .Previously, the formation of Cobalt and Nickel Islands on the reconstruction of gold has been described [S. Padovani, I. Chado, F. J. P. Bucher, "Transition from zero-dimensional superparamagnetism to two-dimensional ferromagnetism of Co clusters on Au (IIl)". Phys. Rev. B 59, 11887-11891 (1999); D. Chambliss, R. Wilson, and S. Chiang, "Nucleation of ordered Ni island arrays on Au (IIl) by surface-lattice dislocations" Phys. Rev. Lett. 66, 1721-1724 (1991); W. Cullen, and P. First, "Island shapes and intermixing for submonolayer nickel on Au (IIl)" Surf. Sci. 420, 53-64 (1999)].
Se ha utilizado un evaporador de Cobalto, con parámetros muy similares a los descritos en el ejemplo 1.1., comprobando que se obtienen similares agregados orgánicos. La Figura 3 muestra el resultado de evaporar 0.08 monocapas (ML) de cobalto sobre la superficie de oro. El cobalto forma islas en las esquinas de la reconstrucción del oro de forma similar a como ocurre con el hierro. Si se deposita una cantidad menor de cobalto (0.03 monocapas ML) y encima se evaporan moléculas de PTCDA, se obtiene un crecimiento de agregados orgánicos fijados a las islas de cobalto, como se observa en la Figura 5.A Cobalt evaporator has been used, with parameters very similar to those described in example 1.1., Verifying that similar organic aggregates are obtained. Figure 3 shows the result of evaporating 0.08 cobalt monolayers (ML) on the gold surface. Cobalt forms islands in the corners of the reconstruction of gold in a similar way to iron. If a smaller amount of cobalt is deposited (0.03 ML monolayers) and PTCDA molecules are evaporated on top, a growth of organic aggregates attached to the cobalt islands is obtained, as shown in Figure 5.
Ejemplo 2.- Uso del material orgánico de la invención para la elaboración de un dispositivo de punto orgánico.Example 2.- Use of the organic material of the invention for the elaboration of an organic knitting device.
Muchas son las aplicaciones del sistema de puntos orgánicos invención que se podrian citar. A modo de ejemplo y por su actualidad se puede mencionar un dispositivo similar a los láseres de puntos cuánticos semiconductores que se denomina "dispositivo de puntos orgánicos". Este dispositivo, nuevamente en analogia con los puntos cuánticos semiconductores, podria ser un "láser de puntos orgánicos" o un "sensor de puntos orgánicos". El dispositivo que se propone está constituido en su región activa por multicapas de puntos orgánicos . En esta región activa, el material orgánico se encuentra nanoestructurado formando puntos de tamaño nanoscópico. En la Figura 6 se muestra el procedimiento de realización de estos dispositivos. En la primera fase, el sistema de puntos orgánicos de la invención, y de manera similar a como se realiza en otras patentes basadas en PTCDA [S. R. Forest et al. "Organic optoelectronic devices and methods" United States Patent #5315129 (1994)], se cubre con una capa de un material transparente como son las moléculas orgánicas de naftaleno-tetracarboxilico-dianhidrido (NTCDA) , y se obtiene el primer prototipo del dispositivo, tal como se muestra en la Figura 6b. A continuación, sobre la capa transparente se deposita por evaporación un recubrimiento de oro reconstruido en su superficie, de iguales caracteristicas al substrato Au(IIl), que cumple la misión de electrodo, junto con el substrato, para establecer un circuito eléctrico a través de la capa transparente y de los agregados, cuando entre ambos electrodos se establece una diferencia de potencial, provocando dicha corriente la emisión de luz en los agregados .There are many applications of the invention organic point system that could be cited. As an example and for its actuality, a device similar to semiconductor quantum dot lasers can be mentioned which is called "organic point device". This device, again in analogy with semiconductor quantum dots, could be an "organic dot laser" or an "organic dot sensor." The proposed device is constituted in its active region by multilayers of organic points. In this active region, the organic material is nanostructured forming points of nanoscopic size. The procedure for carrying out these devices is shown in Figure 6. In the first phase, the organic point system of the invention, and in a manner similar to that performed in other PTCDA-based patents [SR Forest et al. "Organic optoelectronic devices and methods" United States Patent # 5315129 (1994)], is covered with a layer of a transparent material such as organic naphthalene-tetracarboxylic-dianhydride (NTCDA) molecules, and the first prototype of the device is obtained, as shown in Figure 6b. Then, on the transparent layer, a reconstructed gold coating on its surface is deposited by evaporation, of equal characteristics to the Au (IIl) substrate, which fulfills the electrode mission, together with the substrate, to establish an electrical circuit through the transparent and aggregates layer, when a potential difference is established between the two electrodes, said current causing light emission in the aggregates.
Si se quiere obtener un dispositivo con multicapas a continuación de la formación por evaporación del oro se vuelve a formar puntos orgánicos de PTCDA sobre su superficie, repetiéndose este proceso las veces necesarias para resultar una multicapa de puntos orgánicos . En este proceso, los puntos orgánicos se van a alinear verticalmente, tal y como ocurre con los puntos cuánticos semiconductores [Ch. Teichert, "Self-organization of nanostructures in semiconductor heteroepitaxy", Phys . Rep.If you want to obtain a device with multilayers after the formation by evaporation of gold, organic PTCDA points are re-formed on its surface, repeating this process as many times as necessary to result in a multilayer of organic points. In this process, the organic points will be aligned vertically, just as with semiconductor quantum points [Ch. Teichert, "Self-organization of nanostructures in semiconductor heteroepitaxy ", Phys. Rep.
365, 335 (2002)] mejorando las propiedades del dispositivo365, 335 (2002)] improving device properties
(mejor señal de fondo en un láser o mayor independencia de la dirección de incidencia en un sensor ["Advanced Semiconductor and Organic Techniques" Hardis Morkog, Ed.(better background signal in a laser or greater independence of the direction of incidence in a sensor ["Advanced Semiconductor and Organic Techniques" Hardis Morkog, Ed.
Academic Press 2003; "Electronic Processes in OrganicAcademic Press 2003; "Electronic Processes in Organic
Crystals and Polymers" M. Pope and Ch. E. Swenberg, Ed.Crystals and Polymers "M. Pope and Ch. E. Swenberg, Ed.
Oxford University Press 1999] . Como resultado del crecimiento de multicapas de puntos orgánicos se tiene el segundo tipo de dispositivo que se muestra en la Figura 6c. El substrato base y la última capa de oro actúan como contactos metálicos del dispositivo. A dichos contactos metálicos se realizan las conexiones eléctricas. En caso de un dispositivo láser de puntos orgánicos, aplicando tensión a dichos contactos se obtiene emisión de luz desde los puntos orgánicos. En caso de un dispositivo sensor, la luz produce una diferencia de potencial que se mide entre los contactos. Las distintas capas de oro pueden hacerse tan finas que permitan el paso de la luz a través del dispositivo. Cambiando el oro por una combinación de dos materiales semiconductores de distinto parámetro de red, se puede disponer de un dispositivo similar pero de distintas propiedades. Finalmente, si se usan otros materiales orgánicos como separadores se obtiene un dispositivo de puntos orgánicos flexible y barato. Oxford University Press 1999]. As a result of the growth of multilayers of organic dots there is the second type of device shown in Figure 6c. The base substrate and the last layer of gold act as metallic contacts of the device. To these metallic contacts the electrical connections are made. In the case of a laser device of organic points, applying voltage to said contacts, light emission from the organic points is obtained. In the case of a sensor device, the light produces a potential difference that is measured between the contacts. The different layers of gold can be made so thin that they allow light to pass through the device. By exchanging gold for a combination of two semiconductor materials of different network parameters, a similar device with different properties can be available. Finally, if other organic materials are used as separators, a flexible and cheap organic dot device is obtained.

Claims

REIVINDICACIONES
1.- Sistema de puntos orgánicos caracterizado porque comprende : a) un substrato inorgánico con una superficie que presenta una red de dislocaciones con centros de nucleación,1.- Organic point system characterized in that it comprises: a) an inorganic substrate with a surface that has a network of dislocations with nucleation centers,
Y b) una red puntos o agregados orgánicos nanoscópicos constituidos por: i) una isla metálica sobre el substrato de a) , que consiste en átomos de un metal diferente al del substrato anclados a los centros de nucleación del substrato, con una estructura en red ordenada de islas equiespaciadas y de similar tamaño, y ii) una serie de moléculas orgánicas con propiedades semiconductoras, que presenten fotoluminiscencia y crecimiento autoorganizado y que se fijan como un agregado a la isla metálica b.i) .And b) a network of nanoscopic organic points or aggregates consisting of: i) a metal island on the substrate of a), consisting of atoms of a different metal than the substrate anchored to the nucleation centers of the substrate, with a network structure ordinate of equispaced islands and of similar size, and ii) a series of organic molecules with semiconductor properties, which present photoluminescence and self-organized growth and that are fixed as an aggregate to the bi-metallic island).
2.- Sistema de puntos orgánicos según la reivindicación 1 caracterizado porque el sustrato inorgánico de a) es un substrato o superficie capaz de fijar el metal de b.l) en puntos concretos, o lo que es lo mismo un substrato o una superficie que presenta una red de dislocaciones con zonas de nucleación equiespaciadas y que pertenece al siguiente grupo: metales, por ejemplo, el oro, o en superficies de heteroepitaxia con diferencia de parámetro de red (por ejemplo, monocapas de plata o de cobre sobre Pt(IIl) y materiales semiconductores (por ejemplo, InAs sobre GaAs(IIl) o GaAs(IlO). 2. Organic points system according to claim 1 characterized in that the inorganic substrate of a) is a substrate or surface capable of fixing the metal of bl) at specific points, or what is the same a substrate or a surface that has a dislocation network with equiespaced nucleation zones and belonging to the following group: metals, for example, gold, or on heteroepitaxy surfaces with a network parameter difference (for example, silver or copper monolayers on Pt (IIl) and semiconductor materials (for example, InAs on GaAs (IIl) or GaAs (IlO).
3.- Sistema de puntos orgánicos según la reivindicación 1 caracterizado porque el substrato metálico de a) es una superficie de oro reconstruido, Au(IIl) que presenta la reconstrucción 22V3. 3. Organic point system according to claim 1, characterized in that the metallic substrate of a) is a reconstructed gold surface, Au (IIl), which has reconstruction 22V3.
4.- Sistema de puntos orgánicos según la reivindicación 1 caracterizado porque el substrato metálico de a) es una superficie de oro evaporado sobre un substrato de mica o cuarzo . 5.- Sistema de puntos orgánicos según la reivindicación 1 caracterizado porque las islas metálicas de b.l) están constituidas por átomos de un metal perteneciente al siguiente grupo: hierro, cobalto y niquel . 4. Organic points system according to claim 1 characterized in that the metallic substrate of a) is a surface of gold evaporated on a substrate of mica or quartz. 5. Organic points system according to claim 1, characterized in that the metal islands of b.l) are constituted by atoms of a metal belonging to the following group: iron, cobalt and nickel.
5.- Sistema de puntos orgánicos según la reivindicación 1 caracterizado porque las islas metálicas de b.i) están constituidas por átomos de hierro.5. Organic points system according to claim 1 characterized in that the metal islands of b.i) are constituted by iron atoms.
6.- Sistema de puntos orgánicos según la reivindicación 1 caracterizado porque las islas metálicas de b.i) están constituidas por átomos de cobalto. 6. Organic points system according to claim 1, characterized in that the metallic islands of b.i) are made up of cobalt atoms.
7.- Sistema de puntos orgánicos según la reivindicación 1 caracterizado porque la molécula orgánica de b.ii) es una molécula orgánica perteneciente al siguiente grupo: moléculas de la familia de perilenos (por ejemplo, PTCDA7. Organic point system according to claim 1 characterized in that the organic molecule of b.ii) is an organic molecule belonging to the following group: molecules of the perilene family (for example, PTCDA
(3,4,9,10 perileno-tetracarboxilico-dianhidrido) , NTCDA (naftaleno-tetracarboxilico-dianhidrido) , Di-Me-PTCDI (N, N'- dimetil-3, 4, 9, 10-peryleno-tetracarboxilico-diimida) y perileno) o de las tialocianinas (por ejemplo, CuPc, MPc) . (3,4,9,10 perylene-tetracarboxylic-dianhydride), NTCDA (naphthalene-tetracarboxylic-dianhydride), Di-Me-PTCDI (N, N'-dimethyl-3, 4, 9, 10-perylene-tetracarboxylic-diimide ) and perylene) or thialocyanines (eg, CuPc, MPc).
8.- Sistema de puntos orgánicos según la reivindicación 1 caracterizado porque la molécula orgánica de b.ii) son moléculas orgánicas de PTCDA (3,4,9,10 perileno- tetracarboxilico-dianhidrido) .8. Organic point system according to claim 1 characterized in that the organic molecule of b.ii) are organic molecules of PTCDA (3,4,9,10 perylene tetracarboxylic dianhydride).
9.- Sistema de puntos orgánicos según la reivindicación 1 caracterizado porque las islas metálicas de b.i) están constituidas por átomos de hierro o cobalto y en el que la molécula orgánica de b.ii) son moléculas orgánicas de PTCDA (3,4,9,10 perileno-tetracarboxilico-dianhidrido) . 9. Organic point system according to claim 1 characterized in that the metal islands of bi) are constituted by iron or cobalt atoms and in which the organic molecule of b.ii) are organic molecules of PTCDA (3,4,9 , 10 perylene-tetracarboxylic dianhydride).
10.- Método de obtención del sistema de puntos orgánicos según las reivindicaciones 1 a la 9 caracterizado porque comprende las siguientes etapas: a) formación o selección de un substrato con una superficie que presente una red de dislocaciones con centros de nucleación, b) formación mediante un evaporador de metales por bombardeo electrónico en condiciones de ultra alto vacio de islas metálicas sobre el substrato anterior, a temperatura ambiente menor de 50°C, preferentemente entre 20 y 35aC, y a una velocidad inferior a una décima de ángstrom por minuto (0.1 Á/min) durante un periodo de 10 a 30 segundos (hasta un recubrimiento entre 0.01 y 0.02 monocapas) , mediante el anclaje de átomos de un metal diferente al del substrato en los centros de nucleación del substrato, y c) formación mediante evaporación de una red de agregados orgánicos semiconductores ópticamente activos sobre la red de islas metálicas deb) con propiedades semiconductoras, que presenten fotoluminiscencia y crecimiento autoorganizado, a un ritmo tipico de evaporación de 0.1 Á/min durante 3 minutos (hasta un recubrimiento de 0.1 monocapas) . 10. Method of obtaining the organic point system according to claims 1 to 9, characterized in that it comprises the following steps: a) formation or selection of a substrate with a surface presenting a network of dislocations with nucleation centers, b) formation by means of a metal evaporator by electronic bombardment under ultra-high vacuum conditions of metal islands on the previous substrate, at room temperature less than 50 ° C, preferably between 20 and 35 a C, and at a rate of less than one tenth of an angle per minute (0.1 Á / min) for a period of 10 to 30 seconds (up to a coating between 0.01 and 0.02 monolayers), by anchoring atoms of a different metal to that of the substrate in the nucleation centers of the substrate, and c) formation by evaporation of a network of optically active semiconductor organic aggregates on the network of deb metal islands) with semiconductor properties, which have photoluminescence and self-organized growth, at a typical evaporation rate of 0.1 Á / min for 3 minutes (to a coating of 0.1 monolayers).
11.- Método de obtención del sistema de puntos orgánicos según la reivindicación 10 caracterizado porque la formación mediante evaporación de c) se lleva a cabo mediante un crisol de cuarzo rodeado con un filamento o usando un evaporador tipo Knudsen. 11. Method of obtaining the organic point system according to claim 10 characterized in that the formation by evaporation of c) is carried out by a quartz crucible surrounded with a filament or using a Knudsen type evaporator.
12.- Método de obtención del sistema de puntos orgánicos según la reivindicación 10 caracterizado porque el sustrato inorgánico de a) es un substrato o superficie capaz de fijar el metal de b.l) o lo que es lo mismo superficies que presentan una red de dislocaciones con zonas de nucleación equiespaciadas, perteneciente al siguiente grupo: metales, por ejemplo el oro, o con superficies de heteroepitaxia con diferencia de parámetro de red (plata o cobre sobre platino) o semiconductores (por ejemplo, InAs sobre GaAs) . 12. Method of obtaining the organic point system according to claim 10 characterized in that the inorganic substrate of a) is a substrate or surface capable of fixing the metal of bl) or what is the same surfaces that have a network of dislocations with Equispaced nucleation zones, belonging to the following group: metals, for example gold, or with heteroepitaxy surfaces with a network parameter difference (silver or copper on platinum) or semiconductors (for example, InAs on GaAs).
13.- Método de obtención del sistema de puntos orgánicos según la reivindicación 10 caracterizado porque el substrato metálico de a) es una superficie de oro reconstruido, Au(IIl) que presenta la reconstrucción o una superficie de oro evaporado sobre un substrato de mica o cuarzo. 13. Method of obtaining the organic point system according to claim 10 characterized in that the substrate a) metallic is a reconstructed gold surface, Au (IIl) that presents the reconstruction or an evaporated gold surface on a mica or quartz substrate.
14.- Método de obtención del sistema de puntos orgánicos según la reivindicación 10 caracterizado porque las islas metálicas están constituidas por un átomo de metal perteneciente al siguiente grupo: hierro, cobalto y niquel . 14. Method of obtaining the organic point system according to claim 10 characterized in that the metal islands are constituted by a metal atom belonging to the following group: iron, cobalt and nickel.
15.- Método de obtención del sistema de puntos orgánicos según la reivindicación 10 caracterizado porque las islas metálicas de b.i) están constituidas por átomos de hierro evaporados por bombardeo electrónico en condiciones de ultra alto vacio a una velocidad inferior a una décima de ángstrom por minuto (0.1 Á/min) durante 10-30 segundos, formándose las islas de hierro de manera espontánea en las esquinas de la reconstrucción y correspondiendo estas islas a un recubrimiento menor de 0.01 monocapas (ML), pero con un recubrimiento menor.15. Method of obtaining the organic point system according to claim 10, characterized in that the metal islands of bi) are constituted by iron atoms evaporated by electronic bombardment under ultra-high vacuum conditions at a rate of less than one tenth of an angle per minute. (0.1 Á / min) for 10-30 seconds, the iron islands forming spontaneously in the corners of the reconstruction and these islands corresponding to a coating less than 0.01 monolayers (ML), but with a smaller coating.
16.- Método de obtención del sistema de puntos orgánicos según la reivindicación 10 caracterizado porque las islas metálicas de b.i) están constituidas por átomos de cobalto evaporados por bombardeo electrónico en condiciones de ultra alto vacio y a una velocidad inferior a una décima de ángstrom por minuto (0.1 Á/min) durante 10-30 segundos, formándose las islas de cobalto de manera espontánea en las esquinas de la reconstrucción y correspondiendo estas islas a un recubrimiento menor de 0.01 monocapas (ML), pero con un recubrimiento menor.16. Method of obtaining the organic point system according to claim 10, characterized in that the metal islands of bi) are constituted by cobalt atoms evaporated by electronic bombardment under ultra-high vacuum conditions and at a rate of less than one tenth of angstrom per minute. (0.1 Á / min) for 10-30 seconds, the cobalt islands forming spontaneously at the corners of the reconstruction and these islands corresponding to a coating smaller than 0.01 monolayers (ML), but with a smaller coating.
17.- Método de obtención del sistema de puntos orgánicos según la reivindicación 10 caracterizado porque la molécula orgánica de b.ii) pertenece al siguiente grupo: moléculas orgánicas del grupo de los perilenos (PTCDA (3,4,9,10 perileno-tetracarboxilico-dianhidrido) , NTCDA (naftaleno- tetracarboxilico-dianhidrido) , Di-Me-PTCDI (N, Nf -dimetil- 3, 4, 9, 10-peryleno-tetracarboxílico-diimida) , o de las tialocianinas (por ejemplo, CuPc, MPc) .17. Method of obtaining the organic point system according to claim 10 characterized in that the organic molecule of b.ii) belongs to the following group: organic molecules of the perilene group (PTCDA (3,4,9,10 perylene-tetracarboxylic) -dianhydride), NTCDA (naphthalene-tetracarboxylic-dianhydride), Di-Me-PTCDI (N, N f- dimethyl- 3, 4, 9, 10-perylene-tetracarboxylic-diimide), or of the thialocyanines (for example, CuPc, MPc).
18.- Método de obtención del sistema de puntos orgánicos según la reivindicación 10 caracterizado porque la molécula orgánica de b.ii) son moléculas orgánicas de PTCDA (3,4,9,10 perileno-tetracarboxilico-dianhidrido) , que se depoitan sobre las islas metálicas, previa evaporación del PTCDA a una velocidad inferior a medio ángstrom por minuto (0.5 Á/min) , lográndose que la temperatura del substrato sea la ambiente, por debajo de 50°C, preferentemente entre 20 y 35aC.18. Method of obtaining the organic point system according to claim 10 characterized in that the organic molecule of b.ii) are organic molecules of PTCDA (3,4,9,10 perylene-tetracarboxylic-dianhydride), which are depopulated on the metal islands, after evaporation of the PTCDA at a speed lower than half an angle per minute (0.5 Á / min), achieving that the temperature of the substrate is the environment, below 50 ° C, preferably between 20 and 35 a C.
19.- Utilización del sistema de puntos orgánicos según las reivindicaciones 1 a la 9 en la elaboración de dispositivos nanotecnológicos como los pertenecientes al siguiente grupo: dispositivos optoelectónicos, láseres orgánicos, lectores de CDs y DVDs, pantallas de ordenadores portátiles, máquinas de fotos TV, radios, e industrias de los colorantes, tintes y pinturas . 19. Use of the organic point system according to claims 1 to 9 in the elaboration of nanotechnological devices such as those belonging to the following group: optoelectonic devices, organic lasers, CD and DVD readers, laptop screens, photo machines TV , radios, and dye, dye and paint industries.
20.- Dispositivo de puntos orgánicos caracterizado porque comprende el sistema de puntos orgánicos según las reivindicaciones 1 a la 9.20.- Organic points device characterized in that it comprises the organic points system according to claims 1 to 9.
21.- Dispositivo de puntos orgánicos según la reivindicación 20 caracterizado porque es un emisor de luz por excitación eléctrica de puntos orgánicos y porque comprende: a) un sistema de puntos orgánicos según las reivindicaciones 1 a la 9, b) una capa de material transparente formado por moléculas orgánicas de naftaleno-tetracarboxilico-dianhidrido (NTCDA) que cubre el material orgánico de a) , y c) un recubrimiento de oro reconstruido en su superficie sobre la capa transparente de b) de iguales caracteristicas al substrato anterior, que cumple la misión de electrodo, junto con el substrato, y que permite establecer un circuito eléctrico a través de la capa transparente y de los agregados .21. Device of organic points according to claim 20 characterized in that it is a light emitter by electric excitation of organic points and in that it comprises: a) a system of organic points according to claims 1 to 9, b) a layer of transparent material formed by organic molecules of naphthalene-tetracarboxylic-dianhydride (NTCDA) that covers the organic material of a), and c) a gold coating reconstructed on its surface on the transparent layer of b) of the same characteristics to the previous substrate, which fulfills the mission electrode, together with the substrate, and that allows to establish a circuit electrical through the transparent layer and aggregates.
22.- Dispositivo de puntos orgánicos según la reivindicación 21 caracterizado porque es un emisor de luz de puntos orgánicos en multicapa en el que el dispositivo comprende más de una capa de agregados orgánicos, estando siempre cubierta cada capa por su correspondiente capa transparente. 22.- Organic point device according to claim 21, characterized in that it is a multilayer organic point light emitter in which the device comprises more than one layer of organic aggregates, each layer being always covered by its corresponding transparent layer.
23.- Dispositivo de puntos orgánicos según la reivindicación 20 caracterizado porque es un sensor de luz y porque comprende : a) un sistema de puntos orgánicos según las reivindicaciones 1 a la 9, b) una capa de material transparente formado por moléculas orgánicas de naftaleno-tetracarboxilico-dianhidrido (NTCDA) que cubre el material orgánico de a), y c) un recubrimiento de oro reconstruido en su superficie sobre la capa transparente de b) de iguales caracteristicas al substrato anterior, que cumple la misión de electrodo, junto con el substrato, y que permite establecer un circuito eléctrico a través de la capa transparente y de los agregados .23.- Organic point device according to claim 20 characterized in that it is a light sensor and in that it comprises: a) an organic point system according to claims 1 to 9, b) a layer of transparent material formed by organic naphthalene molecules -tetracarboxylic-dianhydride (NTCDA) covering the organic material of a), and c) a gold coating reconstructed on its surface on the transparent layer of b) of the same characteristics to the previous substrate, which fulfills the electrode mission, together with the substrate, and that allows to establish an electrical circuit through the transparent layer and the aggregates.
24.- Dispositivo de puntos orgánicos según la reivindicación 23 caracterizado porque es un sensor de luz de puntos orgánicos en multicapa, estando siempre cubierta cada capa por su correspondiente capa transparente.24.- Organic point device according to claim 23, characterized in that it is a multilayer organic point light sensor, each layer being always covered by its corresponding transparent layer.
25.- Dispositivo de puntos orgánicos según la reivindicación 20 caracterizado porque la parte orgánica está constituido por: a) un substrato de oro reconstruido, Au(IIl), que presenta la reconstrucción 22V3 , b) unas islas de hierro de un recubrimiento menor de 0.01 monocapas (ML) , formadas sobre las esquinas de la reconstrucción 22V3 de a) , y c) unos agregados orgánicos semiconductores ópticamente activos de moléculas orgánicas de PTCDA (3, 4, 9, 10 perileno-tetracarboxilico-dianhidrido) sobre las islas de b) . 25.- Device of organic points according to claim 20 characterized in that the organic part is constituted by: a) a reconstructed gold substrate, Au (IIl), which has reconstruction 22V3, b) iron islands of a smaller coating of 0.01 monolayers (ML), formed on the corners of reconstruction 22V3 of a), and c) optically active semiconductor organic aggregates of organic molecules of PTCDA (3, 4, 9, 10 perylene-tetracarboxylic-dianhydride) on the islands of b).
26.- Método de obtención del dispositivo de puntos orgánicos según las reivindicaciones 20 a la 25 caracterizado porque comprende las siguientes etapas: a) el sistema de puntos orgánicos de la invención se cubre con una capa de material transparente, y b) se deposita por evaporación un elemento metálico26.- Method of obtaining the device of organic points according to claims 20 to 25 characterized in that it comprises the following steps: a) the organic point system of the invention is covered with a layer of transparent material, and b) is deposited by evaporation a metallic element
(recubrimiento metálico) , para obtener una superficie igual a la existente en el substrato de a) , actuando el substrato base y el recubrimiento metálico como electrodos cuando entre ellos se establece una diferencia de potencial. (metallic coating), to obtain a surface equal to that existing in the substrate of a), the base substrate and the metallic coating acting as electrodes when a potential difference is established between them.
27.- Método de obtención del dispositivo de puntos orgánicos según la reivindicación 26 caracterizado porque tras la formación de la capa de material transparente se deposita por evaporación un elemento metálico, para obtener una superficie igual a la del substrato de partida, y se repite varias veces el método de obtención del sistema de puntos orgánicos de la invención, terminando cada ciclo siempre con la capa de material transparente y sobre ésta el recubrimiento metálico. 27.- Method of obtaining the device of organic points according to claim 26 characterized in that after the formation of the layer of transparent material a metallic element is deposited by evaporation, to obtain a surface equal to that of the starting substrate, and several are repeated Sometimes the method of obtaining the organic point system of the invention, ending each cycle always with the layer of transparent material and on it the metallic coating.
PCT/ES2006/070170 2005-11-07 2006-11-07 System of organic points, method of obtaining same and use thereof in the production of nanoscopic devices WO2007051888A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200502706A ES2274720B1 (en) 2005-11-07 2005-11-07 METHOD OF OBTAINING CONTROLLED BY EVAPORATION IN EMPTY OF ORGANIC POINTS OF NANOSCOPIC SIZE OF PERILEN-TETRACARBOXILICO-DIANHIDRIDO (PTCDA), AND ITS APPLICATIONS.
ESP200502706 2005-11-07

Publications (1)

Publication Number Publication Date
WO2007051888A1 true WO2007051888A1 (en) 2007-05-10

Family

ID=38005469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/070170 WO2007051888A1 (en) 2005-11-07 2006-11-07 System of organic points, method of obtaining same and use thereof in the production of nanoscopic devices

Country Status (2)

Country Link
ES (1) ES2274720B1 (en)
WO (1) WO2007051888A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031600A1 (en) * 2007-07-06 2009-01-15 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Array of vertical UV light-emitting diodes and method for its production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004027890A2 (en) * 2002-09-17 2004-04-01 Advanced Micro Devices, Inc. Organic thin film zener diodes
WO2005027201A1 (en) * 2003-09-12 2005-03-24 Københavns Universitet Method of fabrication and device comprising elongated nanosize elements

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004027890A2 (en) * 2002-09-17 2004-04-01 Advanced Micro Devices, Inc. Organic thin film zener diodes
WO2005027201A1 (en) * 2003-09-12 2005-03-24 Københavns Universitet Method of fabrication and device comprising elongated nanosize elements

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHIZHOV I. ET AL.: "Initial growth of 3,4,9,10-Perylenetetracarboxylic-dianhydride (PTCDA) on Au(1 1 1) a scanning tunneling microscopy study", JOURNAL OF CRYSTAL GROWTH, vol. 208, 2002, pages 449 - 458, XP004252165 *
CLAIR S. ET AL.: "Mesoscopic Metallosupramolecular Texturing by Hierarchie Assembly", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 44, 2005, pages 7294 - 7297, XP003012750 *
HARA M. ET AL.: "Ordered nucleation of a self-assembled monolayer on Au(1 1 1) studied by scanning tunneling microscopy", THIN SOLID FILMS, vol. 273, 1996, pages 66 - 69, XP004017471 *
MENDEZ J. ET AL.: "Nanostructuring Organic Material", TRENDS IN NANOTECHNOLOGY. OVIEDO (ESPANA), August 2005 (2005-08-01) - September 2005 (2005-09-01), Retrieved from the Internet <URL:http://www.phantomsnet.net/files/abstracts/TNT2005/TNT05_ORAL/MendezJavier.pdf?Fundacion=216457f9f941382d7b99dd0c5303d348> *
MEYER J.-P. ET AL.: "Charge transport in thin films of molecular semiconductors as investigated by measurements of thermoelectric power and electrical conductivity", THIN SOLID FILMS, vol. 258, 1995, pages 317 - 324, XP004010938 *
SALVAN G. ET AL.: "Structural and morphological properties of N,N'-perylenetetracarboxylic diimide films on passivated GaAs(1 0 0) substrates", JOURNAL OF CRYSTAL GROWTH, vol. 275, no. 1-2, February 2005 (2005-02-01), pages E1155 - E1162, XP004823407 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031600A1 (en) * 2007-07-06 2009-01-15 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Array of vertical UV light-emitting diodes and method for its production
DE102007031600B4 (en) * 2007-07-06 2015-10-15 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Array of vertical UV light-emitting diodes and method for its production

Also Published As

Publication number Publication date
ES2274720A1 (en) 2007-05-16
ES2274720B1 (en) 2008-06-01

Similar Documents

Publication Publication Date Title
Ma et al. Chiral perovskites for next‐generation photonics: from chirality transfer to chiroptical activity
Bertolazzi et al. Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides
Yao et al. Wafer‐Scale Fabrication of High‐Performance n‐Type Polymer Monolayer Transistors Using a Multi‐Level Self‐Assembly Strategy
Zhang et al. Towards single molecule switches
Fu et al. Unravelling the self-assembly of hydrogen bonded NDI semiconductors in 2D and 3D
Huang et al. Gas phase-based growth of highly sensitive single-crystal rectangular micro-and nanotubes
Sun et al. Tailoring two-dimensional PTCDA–melamine self-assembled architectures at room temperature by tuning molecular ratio
Bashir et al. Charge carrier mobilities in organic semiconductors: crystal engineering and the importance of molecular contacts
Zhang et al. Non-covalent interaction controlled 2D organic semiconductor films: Molecular self-assembly, electronic and optical properties, and electronic devices
Park et al. Highly bright and sharp light emission of a single nanoparticle of crystalline rubrene
Makarova et al. Self-assembled diacetylene molecular wire polymerization on an insulating hexagonal boron nitride (0001) surface
Bouzid et al. Multiple Magnetic Phases in Van Der Waals Mn‐Doped SnS2 Semiconductor
Kratzer et al. Adsorption and epitaxial growth of small organic semiconductors on hexagonal boron nitride
Kim et al. Intrinsic magnetic order of chemically exfoliated 2D Ruddlesden–Popper organic–inorganic halide perovskite ultrathin films
Sharma et al. Essential Amino Acid–Enabled Lead Bromide Perovskite Nanocrystals with High Stability
He et al. Organic multilayer films studied by scanning tunneling microscopy
Qiao et al. Effect of Cd-phosphonate complex on the self-assembly structure of colloidal nanorods
WO2007051888A1 (en) System of organic points, method of obtaining same and use thereof in the production of nanoscopic devices
Jo et al. Inducement of Azimuthal Molecular Orientation of Pentacene by Imprinted Periodic Groove Patterns for Organic Thin‐Film Transistors
Azeredo et al. Synergistic photo optical and magnetic properties of a hybrid nanocomposite consisting of a zinc oxide nanorod array decorated with iron oxide nanoparticles
Lee et al. Large‐Scale Assembly of Peptide‐Based Hierarchical Nanostructures and Their Antiferroelectric Properties
Mehta et al. Constraints in post-synthesis ligand exchange for hybrid organic (MEH-PPV)–inorganic (CdSe) nanocomposites
Koch et al. On-Surface Polymerization: From Polyarylenes to Graphene Nanoribbons and Two-Dimensional Networks
Hwang et al. Structural and optical properties of 6, 13-pentacenequinone thin films
Welchel et al. Properties of tris (8-hydroxyquinoline) aluminum thin films fabricated by spin coating from static and dynamic dispense methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06820042

Country of ref document: EP

Kind code of ref document: A1