WO2007041248A2 - Integrated transmitter unit and sensor introducer mechanism and methods of use - Google Patents

Integrated transmitter unit and sensor introducer mechanism and methods of use Download PDF

Info

Publication number
WO2007041248A2
WO2007041248A2 PCT/US2006/037928 US2006037928W WO2007041248A2 WO 2007041248 A2 WO2007041248 A2 WO 2007041248A2 US 2006037928 W US2006037928 W US 2006037928W WO 2007041248 A2 WO2007041248 A2 WO 2007041248A2
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
patient
introducer
transmitter unit
skin
Prior art date
Application number
PCT/US2006/037928
Other languages
French (fr)
Other versions
WO2007041248A3 (en
Inventor
Gary Ashley Stafford
Original Assignee
Abbott Diabetes Care, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abbott Diabetes Care, Inc. filed Critical Abbott Diabetes Care, Inc.
Priority to CA002624247A priority Critical patent/CA2624247A1/en
Priority to EP06815715A priority patent/EP1931255A4/en
Publication of WO2007041248A2 publication Critical patent/WO2007041248A2/en
Publication of WO2007041248A3 publication Critical patent/WO2007041248A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6828Leg
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6848Needles
    • A61B5/6849Needles in combination with a needle set
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist

Definitions

  • Continuous glucose monitoring systems generally include a sensor such as a subcutaneous analyte sensor, at least a portion of which is configured for fluid contact with biological fluid, for detecting analyte levels such as for example glucose or lactate levels, a transmitter (such as for example an RF transmitter) in communication with the sensor and configured to receive the sensor signals and to transmit them to a corresponding receiver unit by for example, using RF data transmission protocol.
  • a sensor such as a subcutaneous analyte sensor, at least a portion of which is configured for fluid contact with biological fluid, for detecting analyte levels such as for example glucose or lactate levels
  • a transmitter such as for example an RF transmitter
  • the receiver may be operatively coupled to a glucose monitor that performs glucose related calculations and data analysis.
  • the transmitter may be mounted or adhered to the skin of a patient and also in signal communication with the sensor.
  • the sensor is configured to detect the analyte of the patient over a predetermined period of time
  • the transmitter is configured to transmit the detected analyte information over the predetermined period of time for further analysis.
  • a separate deployment mechanism such as a sensor inserter or introducer is used.
  • a separate base component or mounting unit is provided on the skin of the patient so that the transmitter unit may be mounted thereon, and also, to establish signal communication between the transmitter unit and the analyte sensor.
  • the base component or mounting unit is generally adhered to the skin of the patient using an adhesive layer that is fixedly provided on the bottom surface of the base component or the mounting unit for the transmitter.
  • the transmitter unit securely mounted to the patient, and more importantly, in proper contact with the analyte sensor so as to minimize the potential errors in the monitored data. Indeed, when mounted onto the skin using adhesives, bodily fluid such as sweat and muscle flexure may weaken the adhesive securing the transmitter unit onto the skin surface, and which may potentially cause the transmitter unit to detach from the skin prematurely.
  • Embodiments may include a base portion (e.g., a flexible base portion) for securing the transmitter unit around a body part of the patient, such as the patient's arm or leg and including a detachable disposable sensor introducer providing a low profile integrated data monitoring system.
  • a base portion e.g., a flexible base portion
  • a detachable disposable sensor introducer providing a low profile integrated data monitoring system.
  • an integrated transmitter unit and sensor insertion mechanism that is configured for a multi-use disposable monitoring components for use in continuous glucose monitoring systems. More specifically, several components such as the transmitter unit, the sensor, sensor insertion mechanism (including, for example, a pre-assembled sensor, introducer and protective housing combination) and the skin mounting units are integrated into fewer components (two or less, for example), to simplify the use thereof and also to provide additional ease of use to the patients.
  • an integrated transmitter unit and sensor insertion mechanism of the subject invention may be configured to depart from the reliance upon an adhesive patch as the primary method of transmitter attachment to the patient so that the mounting of the transmitter to the patient is not substantially affected by the patient's bodily fluids, cosmetics, lotions, body hair, skin type/condition or any other factor that may potentially weaken the adhesive condition of an adhesive patch.
  • FIGS. IA, IB and 1C illustrate a top view, a bottom view, and a perspective view, respectively, of the integrated transmitter unit and sensor insertion mechanism for use in data monitoring system in accordance with one embodiment of the present invention
  • FIG. 2 illustrates a sensor introducer unit positioned relative to the integrated transmitter and sensor insertion mechanism in pre-deployment position in accordance with one embodiment of the present invention
  • FIGS. 3A-3B illustrate a front planar view and a perspective view, respectively, of the sensor introducer mechanism in pre-deployment position in accordance with one embodiment of the present invention
  • FIGS. 4A-4B illustrate a front planar view and a perspective view, respectively, of the sensor introducer mechanism in deployed position in accordance with one embodiment of the present invention
  • FIGS. 5A-5B illustrate front planar view and a perspective view, respectively, of the sensor introducer mechanism with the deployed sensor and the introducer in removal position, in accordance with one embodiment of the present invention
  • FIG. 6 illustrates the sensor introducer unit positioned relative to the integrated transmitter and sensor insertion mechanism in post sensor deployment position in accordance with one embodiment of the present invention
  • FIGS. 7A-7C illustrate a front planar view, a perspective view, and a side planar view, respectively of the deployed sensor with the introducer removed in accordance with one embodiment of the present invention
  • FIG. 8 illustrates an introducer assembly for used in angled sensor insertion in accordance with one embodiment of the present invention
  • FIG. 9 illustrates a sensor introducer assembly positioned relative to the integrated transmitter and sensor insertion mechanism in pre-deployment position for angled insertion in accordance with one embodiment of the present invention
  • FIG. 10 illustrates the sensor introducer unit positioned relative to the integrated transmitter and sensor insertion mechanism in post sensor deployment position for angled insertion in accordance with one embodiment of the present invention
  • FIGS. 1 IA-I IB illustrates perspective view and side planar view, respectively of the deployed sensor with the introducer removed for angled sensor insertion in accordance with one embodiment of the present invention.
  • FIGS. IA, IB and 1C illustrate a top view, a bottom view, and a perspective view, respectively, of an integrated transmitter unit and sensor insertion mechanism for use in data monitoring system in accordance with one embodiment of the present invention.
  • an integrated transmitter unit and sensor insertion mechanism 100 in one embodiment includes a substantially elongated and base portion 101, which base portion may be a flexible base portion.
  • the base portion 101 is substantially shaped and configured in one embodiment to be of sufficient length to partially or completely wrap around the patient's arm, wrist, thigh, calf, torso or any other part of the patient's body where the sensor is to be positioned and introduced.
  • the base portion 101 may be made of a material that is pre- formed or molded by the patient, to follow the curvature of the anatomy, or may be made of a flexible form filling or conformable material such as fabric, strap or sleeve.
  • a securing mechanism that includes parts 102 and 103 to the respective ends of the base portion 101 as shown in the Figure, which may be in the form of hook portion 102 and a loop portion 103. More specifically, in the embodiment including a Velcro-type securing mechanism, the hook portion 102 provided at a first end of the base portion 101 includes a Velcro hook which is configured to be mated with the Velcro loop at the loop portion 103 at the second end of the base portion 101. In this manner, the integrated transmitter unit and sensor insertion mechanism 100 may be securely and substantially fixedly positioned around the patient's arm, for example, using the Velcro mechanism provided thereon.
  • the hook portion 102 and the loop portion 103 may comprise any other suitable securing mechanism, including but not limited to, a buckle type securing system, a button type securing system, a hook or latch mechanism, and a zipper type fastening mechanism.
  • the integrated transmitter unit and sensor insertion mechanism 100 in one embodiment is provided with the transmitter electronics 105 substantially embedded within the base material 101.
  • the transmitter electronics 105 is also configured to be in electrical communication with a transmitter antenna 104 (for example, an RF transmission antenna), as well as a power source 106 (for example, a disposable battery) that may also be provided substantially within the base material 101.
  • the integrated transmitter unit and sensor insertion mechanism 100 may be provided to the patient fully assembled with the power source 106, the transmitter antenna 104, and the transmitter electronics 105 embedded or laminated within the layers of the base material 101. In this manner, once positioned, the transmitter unit and sensor insertion mechanism 100 may be worn by the patient and may have a very low profile, with for example, approximately, 4 - 5 mm of thickness so as to advantageously minimize physical hindrance to the patient's daily activities while using the transmitter unit and sensor insertion mechanism 100. However, other dimensions are possible as well. Referring still again to FIGS. 1 A-IC, there is also shown a sensor insertion location 107 provided on the base material 101 of the integrated transmitter unit and sensor insertion mechanism 100.
  • the patient is able to readily determine the proper location of sensor insertion so as to accurately and effectively deploy the sensor to be in signal communication with the transmitter unit electronics (for example, the corresponding contact points for the respective electrodes such a the working, reference, and counter (or reference/counter) electrodes of the sensor, and optionally, the guard trace of the sensor).
  • the transmitter unit electronics for example, the corresponding contact points for the respective electrodes such a the working, reference, and counter (or reference/counter) electrodes of the sensor, and optionally, the guard trace of the sensor.
  • the integrated transmitter unit and sensor insertion mechanism 100 is configured to depart from the reliance upon an adhesive patch as the primary method of transmitter attachment to the patient so that it is not substantially affected by the patient's bodily fluids, cosmetics, lotions, body hair, skin type/condition or any other factor that may potentially weaken the adhesive condition of the adhesive patch.
  • the base material 101 of the integrated transmitter unit and sensor insertion mechanism 100 may be formulated to provide some measure of moisture vapor transmission rate (MVTR) to allow the patient's skin to breath or ventilate.
  • MVTR moisture vapor transmission rate
  • FIG. 2 illustrates a sensor introducer unit positioned relative to the integrated transmitter and sensor insertion mechanism in pre-deployment position in accordance with one embodiment of the present invention.
  • a sensor introducer assembly 200 is provided and includes an introducer mechanism 205 including a handle portion 206 configured for manipulation during manual (or otherwise) sensor insertion process. Also provided in the introducer mechanism 205 is a sensor casing 204 that is operatively coupled to the introducer mechanism 205 and which is configured to house a sensor (not shown) in physical cooperation with the introducer mechanism 205.
  • a tip portion 203 of the introducer mechanism 205 is substantially aligned with the sensor insertion location 107 on a top surface 201 of the base portion 101 of the integrated transmitter unit and sensor insertion mechanism 100. Moreover, it can be further seen from FIG. 2 that a bottom surface 202 of the base portion 101 of the integrated transmitter unit and sensor insertion mechanism 100 is in physical contact with the skin of the patient.
  • the patient may depress upon the handle portion 206 of the introducer mechanism 205 so as to insert the analyte sensor transcutaneously such that at least a portion of the sensor is positioned to be in fluid contact with the patient's biological fluids, such as for example, interstitial fluids.
  • biological fluids such as for example, interstitial fluids.
  • Other manners of activating the introducer may be used within the scope of the present invention.
  • the handle portion 206 may be collapsed into the sensor casing 204, and the sensor casing 204 pivoted approximately 90 degrees substantially about the sensor insertion position 107, so as to collapse the sensor casing 204 onto the upper surface 201 of the base portion 101 of the integrated transmitter unit and sensor insertion mechanism 100 including the sensor electrical contact surface.
  • a low profile, substantially thin sensor and transmitter combination may be provided to the patient to be worn for a predetermined period of time, while minimizing potential interference with the patient's daily physical activities and securely holding the transmitter in place on the patient.
  • FIGS. 3A-3B illustrate a front planar view and a perspective view, respectively, of the sensor introducer mechanism in pre-deployment position in accordance with one embodiment of the present invention.
  • the sensor 301 is provided substantially engaged with the introducer 205, a portion of each of which is guided within and through the inner section of the sensor casing 204.
  • the introducer tip portion 203 is configured to substantially contain the portion of the sensor 301 that is to be placed under the patient's skin, e.g., subcutaneously.
  • FIGS. 4A-4B illustrate a front planar view and a perspective view, respectively, of the sensor introducer mechanism in deployed position in accordance with one embodiment of the present invention.
  • the introducer tip portion 203 upon manual operation of the introducer handle portion 206, by the force applied by the patient thereonto, the introducer tip portion 203 is configured to guide a sensor tip 302 of the sensor 301 through the skin of the patient, so as to position at least a portion of the sensor tip 302 in fluid contact with the patient's biological fluids such as interstitial fluid.
  • the sensor casing 204 in one embodiment may be provided with one or more inner grooves 401 which are configured to substantially guide the movement of the introducer 305 and the sensor 301 through the sensor casing 204, and further, to provide substantially fixed support of the introducer 305 position relative to the sensor insertion position 107 during the operation of the introducer handle portion 206 to transcutaneously deploy the sensor 302.
  • FIGS. 5A-5B illustrate front planar view and a perspective view, respectively, of the sensor introducer mechanism with the deployed sensor and the introducer in removal position, in accordance with one embodiment of the present invention. Referring to FIGS. 5A-5B, it can be seen that the handle portion 206 and the introducer 205 are protruded out of the sensor casing
  • the patient may retract or withdraw the introducer
  • the introducer 205 may be provided with a spring bias mechanism or a similar mechanism which would allow the introducer 205 to be retracted substantially automatically after deployment of the sensor 301.
  • the introducer 205 may be detached from the sensor casing 204 and discarded.
  • the introducer 205 in a further embodiment may be configured and sized so as to be substantially and completely housed within the sensor casing 204 upon deployment of the sensor 301.
  • FIG. 6 illustrates the sensor introducer unit positioned relative to the integrated transmitter and sensor insertion mechanism in post sensor deployment position in accordance with one embodiment of the present invention.
  • FIGS. 7A-7C illustrate a front planar view, a perspective view, and a side planar view, respectively of the deployed sensor with the introducer removed in accordance with one embodiment of the present invention.
  • the sensor casing 204 may be provided in a locked and secure position on the upper surface 201 of the base portion 101 of the integrated transmitter unit and sensor insertion mechanism 100 such that a substantially low profile, sensor and transmitter system may be provided for extended wear and use by the patients to monitor one or more biological fluids and for transmission of data associated with the detected or monitored fluid to a receiver unit for further data processing, health management diagnosis and treatment.
  • FIG. 8 illustrates an introducer assembly for used in angled sensor insertion in accordance with one embodiment of the present invention
  • FIG. 9 illustrates the sensor introducer assembly positioned relative to the integrated transmitter and sensor insertion mechanism in pre-deployment position for angled insertion in accordance with one embodiment of the present invention.
  • the sensor introducer assembly 200 may be configured to provide angled insertion for varying angles of sensor insertion, and which in turn, may correspondingly vary the depth at which the sensor tip 302 is positioned below the patient's skin and in fluid contact with the patient's biological fluids such as interstitial fluid in the subcutaneous space, or the like.
  • FIG. 10 illustrates the sensor introducer unit positioned relative to the integrated transmitter and sensor insertion mechanism in post sensor deployment position for angled insertion
  • FIGS. 1 IA-I IB illustrates perspective view and side planar view, respectively of the deployed sensor with the introducer removed for angled sensor insertion in accordance with one embodiment of the present invention.
  • the base portion 101 is placed on the patient such as around the patient's arm and secured in position using the securing mechanism, e.g., hook portion 102 and the loop portion 103.
  • the securing mechanism e.g., hook portion 102 and the loop portion 103.
  • other methods and devices for securing the base portion 101 may be used such as, for example, metal hooks, medical grade adhesive tape, elastic bands, or straps with buckles or any other equivalent methods or devices for securing the base portion 101 onto the patient.
  • the sensor casing 204 with the introducer 205 and the sensor 301, pre-assembled therein, may be placed on the base portion 101 so as to substantially align the introducer tip 203 with the sensor insertion position 107 of the base portion 101.
  • a plurality of sensor insertion positions may be provided on the upper surface 201 of the base portion 101. This would provide the additional convenience for the patients by providing several insertion site locations on the skin of the patient after the base portion 101 is substantially fixedly positioned on the patient's skin. Additionally, within the scope of the present invention, the base portion may be provided with a plurality of sensor insertion positions 107 such that the integrated transmitter unit and sensor insertion mechanism 100 may be configured for use with multiple sensors either concurrently or sequentially.
  • the transmitter electronics 105 may be configured to selectively shut off or disable the electronics at the sensor insertion positions after the sensor 301 is in use for the prescribed period of time (for example, about 1 day, about 3 days, about 5 days, about 7 days or more, e.g., about 30 days or more).
  • the prescribed period of time for example, about 1 day, about 3 days, about 5 days, about 7 days or more, e.g., about 30 days or more.
  • This option may prevent the patients from multiple usage of the same sensor 301 rather than discarding after the initial usage, and also, for using the integrated transmitter unit and sensor insertion mechanism 100 beyond the recommended periods of usage frequency.
  • the power supply 106 may be provided with a low capacitor disposable battery so as to limit the life of the integrated transmitter unit and sensor insertion mechanism 100 once it has been activated.
  • the insertion process of the sensor may be provided with a low capacitor disposable battery so as to limit the life of the integrated transmitter unit and sensor insertion mechanism 100 once it has been activated.
  • the insertion process of the sensor 301 may be configured with a semi- automated mechanism or a fully automated mechanism provided with an insertion trigger switch, for example.
  • angled insertion of the sensor 301 may be achieved by the design and orientation of the sensor casing 204 at the sensor insertion position 107.
  • the physical dimensions of the sensor casing 204 and the orientation of the introducer 205 in cooperation with the sensor casing 204 may provide the desired sensor insertion depth, and also to control the ease of sensor deployment. Indeed, when the introducer 205 bottoms out at the sensor insertion position 107 within the sensor casing 204, the sensor depth or the below-the-skin position is determined to be reached, and thereafter, the introducer 205 may be safely discarded, for example, by detaching from the sensor casing 204 or substantially completely encasing within the sensor casing 204.
  • the sensor casing 204 may be rotatably pushed substantially about the sensor insertion position 107 so that it may be maintained in a locked position, thus holding the sensor 301 in place, and establishing electrical communication with the transmitter electronics 105 laminated, for example, within the base portion 101 of the integrated transmitter unit and sensor insertion mechanism 100.
  • the sensor casing 204 may be provided with a compressible seal around its perimeter to prevent moisture, particulate, and other foreign materials from contaminating the transmitter electronics 105 or potentially compromising the integrity of the electrical contacts and signal.
  • the detected analyte levels from the sensor 301 may be provided to transmitter electronics 105, which is, in one embodiment, configured to wirelessly transmit data corresponding to the detected analyte levels from the sensor to a receiver unit via the antenna 104, where the receiver unit may include a glucose monitor unit and/or an insulin pump unit and/or a computer terminal, or any other electronic device capable of being configured for wireless (or other) communication.
  • the receiver unit functions may be integrated into portable electronic devices such as a watch, a pager, a mobile telephone, personal digital assistant, and the like. Additional information on the detection, monitoring and analysis of analyte levels are described in further detail in U.S. Patent No.
  • the transmitter electronics 105 may includes a wireless communication unit for wireless transmission of the signal, where the wireless communication unit may include one or more of a radio frequency (RP) communication unit, a Bluetooth communication unit, an infrared communication unit, an 801.1 Ix communication unit, or a Zigbee communication unit.
  • the receiver unit may be configured to support one more or of the above-referenced wireless communication protocols to communicate with the transmitter unit.
  • an integrated transmitter unit and sensor insertion mechanism that is configured for a multi-use disposable monitoring components for use in continuous glucose monitoring systems. More specifically, several components such as the transmitter unit, the sensor, sensor insertion mechanism
  • the skin mounting units are integrated into fewer components (two or less, for example), to simply the use and also to provide additional ease of use to the patients.
  • the handle portion 206 (FIG. 2) for example, is configured to be discarded after the sensor insertion process
  • the handle portion of the sensor introducer assembly may be configured to be integrated within the sensor introducer assembly - for example, within the sensor casing 204.
  • the integrated transmitter unit and sensor insertion mechanism 100 may be configured to depart from the reliance upon an adhesive patch as the primary method of transmitter attachment to the patient so that it is not substantially affected by the patient's bodily fluids, cosmetics, lotions, body hair, skin type/condition or any other factor that may potentially weaken the adhesive condition of the adhesive patch.
  • the base material 101 of the integrated transmitter unit and sensor insertion mechanism 100 may be formulated to provide some measure of moisture vapor transmission rate (MVTR) to allow the patient's skin to breath or ventilate.
  • MVTR moisture vapor transmission rate
  • an integrated sensor and transmitter device including a base unit configured for mounting onto a skin of a patient, a transmitter unit integrally provided in the base unit, a sensor assembly disposed on a surface of the base unit, the sensor assembly including a sensor configured to couple to the transmitter unit.
  • the base unit may be flexible, and further, may include a first end segment and a second end segment, the first end segment configured to couple to the second end segment so as to retain the base unit on the skin of the patient.
  • the first end segment may include a Velcro hook and the second end segment may include Velcro latch.
  • the transmitter unit in one embodiment may include flexible electronic circuitry, where in certain embodiments the electronic circuitry may be laminated into the base unit.
  • the transmitter unit may be configured to substantially conform to the shape of the base unit.
  • the sensor assembly in one embodiment may include an introducer coupled to at least a portion of the sensor, the introducer configured to transcutaneously position at least the portion of the sensor.
  • the introducer may be configured to transcutaneously position at least the portion of the sensor to be in fluid contact with a biological fluid of the patient, where the biological fluid of the patient includes interstitial fluid or blood of the patient.
  • the introducer may be configured to be detachably removed from the sensor assembly after at least the portion of the sensor is transcutaneously positioned.
  • the introducer may be configured to transcutaneously position at least the portion of the sensor at an angle other than about 90 degrees relative to the surface of the patient's skin.
  • the sensor assembly may be configured to substantially pivot onto the base unit so that the sensor is in signal communication with the transmitter unit.
  • the senor in one embodiment is an analyte sensor.
  • the sensor may be configured to detect any analyte such as glucose, lactate, etc. Additional analytes that may be determined include, for example, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketones, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin.
  • analyte such as glucose, lactate, etc.
  • Additional analytes include, for example, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hormone
  • the concentration of drugs may also be determined.
  • a sensor may be configured to detect two or more analytes such as two or more analyte mentioned herein.
  • An apparatus in a further embodiment of the present invention includes a flexible base unit including an outer surface and an inner surface, said inner surface configured to contact a skin of a patient, a sensor assembly including a sensor disposed in the sensor assembly, and an introducer substantially provided in the sensor assembly to couple to at least a portion of the sensor; the introducer configured to position at least a portion of the sensor transcutaneously through the skin of the patient, and a transmitter unit integrally disposed in the base unit, the transmitter unit configured to receive one or more signals from the sensor.
  • the introducer may be configured to be removably detached from the sensor assembly after at least the portion of the sensor is transcutaneously positioned. Moreover, the one or more signals from the sensor may substantially correspond to a respective one or more analyte levels of the patient.
  • the transmitter unit may be configured to wirelessly (or otherwise) transmit data corresponding to the one or more signals received from the sensor, where a receiver unit may be additionally provided and configured to receive data from the transmitter unit, where the received data corresponds to one or more analyte levels of the patient.
  • a transceiver Either or both of the transmitter or receiver may be a transceiver.
  • the base unit in one embodiment may be configured to be securely attached substantially around one of an arm, a torso, a thigh, a calf, a waist or wrist of the patient.
  • the base unit is flexible.
  • a method in accordance with still another embodiment of the present invention includes the steps of securing a transmitter unit substantially around a body part of a patient, and introducing at least a portion of a sensor through the skin of the patient so that the portion of the sensor is in fluid contact with a biological fluid of the patient, and further, where the sensor is in electrical contact with the transmitter unit.
  • a system in accordance with yet a further embodiment of the present invention includes an integrated housing including a transmitter unit and a sensor; the integrated housing configured for mounting onto a skin of a patient, and a sensor introducer assembly mounted onto the integrated housing, the introducer assembly configured to position at least a portion of the sensor under the skin of the patient, where the transmitter unit is in electrical contact with the sensor, and configured to transmit one or more signals corresponding a respective one or more signals received from the sensor.
  • system may further include a receiver unit configured to receive the one or more signals transmitted by the transmitter unit, where the receiver unit may include one of an infusion pump, a monitoring device, a personal digital assistant, a pager, or a mobile telephone.
  • the receiver unit may include one of an infusion pump, a monitoring device, a personal digital assistant, a pager, or a mobile telephone.

Abstract

Method and apparatus for providing an integrated transmitter unit and sensor insertion mechanism is provided.

Description

INTEGRATED TRANSMITTER UNIT AND SENSOR INTRODUCER MECHANISM
AND METHODS OF USE
PRIORITY This PCT application claims priority to United States Patent Application No. 11/240,257, filed September 30, 2005 and is hereby incorporated by reference.
BACKGROUND
Continuous glucose monitoring systems generally include a sensor such as a subcutaneous analyte sensor, at least a portion of which is configured for fluid contact with biological fluid, for detecting analyte levels such as for example glucose or lactate levels, a transmitter (such as for example an RF transmitter) in communication with the sensor and configured to receive the sensor signals and to transmit them to a corresponding receiver unit by for example, using RF data transmission protocol. The receiver may be operatively coupled to a glucose monitor that performs glucose related calculations and data analysis.
The transmitter may be mounted or adhered to the skin of a patient and also in signal communication with the sensor. Generally, the sensor is configured to detect the analyte of the patient over a predetermined period of time, and the transmitter is configured to transmit the detected analyte information over the predetermined period of time for further analysis. To initially deploy the sensor so that the sensor contacts and electrodes are in fluid contact with the patient's analyte fluids, a separate deployment mechanism such as a sensor inserter or introducer is used. Moreover, a separate base component or mounting unit is provided on the skin of the patient so that the transmitter unit may be mounted thereon, and also, to establish signal communication between the transmitter unit and the analyte sensor. As discussed above, the base component or mounting unit is generally adhered to the skin of the patient using an adhesive layer that is fixedly provided on the bottom surface of the base component or the mounting unit for the transmitter.
To minimize data errors in the continuous or semi-continuous monitoring system, it is important to properly insert the sensor through the patient's skin and securely retain the sensor during the time that the sensor is configured to detect analyte levels. In addition to accurate positioning of the sensor through the skin of the patient, it is important to minimize the level of pain associated with the insertion of the sensor through the patient's skin.
Additionally, for the period of continuous or semi-continuous monitoring which can include, for example, 3 days, 5 days or 7 days, it is important to have the transmitter unit securely mounted to the patient, and more importantly, in proper contact with the analyte sensor so as to minimize the potential errors in the monitored data. Indeed, when mounted onto the skin using adhesives, bodily fluid such as sweat and muscle flexure may weaken the adhesive securing the transmitter unit onto the skin surface, and which may potentially cause the transmitter unit to detach from the skin prematurely.
In view of the foregoing, it would be desirable to have methods and apparatuses which would minimize the number of components that are needed for the patient to manipulate in order to deploy the sensor and the transmitter unit to properly be initialized and set-up so that the sensor maybe configured to monitor a biological fluid to detect, for example, analyte levels of the patient and the transmitter unit may be configured to transmit data associated with the detected analyte levels of the patient. Further, it would be desirable to have methods and apparatuses that include an integrated sensor insertion mechanism and transmitter mount or housing portion which may be mounted on the patient's skin securely, with ease and relative little pain to the patient.
SUMMARY OF THE INVENTION
In certain embodiments, there is provided a method and apparatus for providing an integrated transmitter unit and sensor insertion mechanism. Embodiments may include a base portion (e.g., a flexible base portion) for securing the transmitter unit around a body part of the patient, such as the patient's arm or leg and including a detachable disposable sensor introducer providing a low profile integrated data monitoring system.
In this manner, in accordance with the various embodiments of the invention, there is provided an integrated transmitter unit and sensor insertion mechanism that is configured for a multi-use disposable monitoring components for use in continuous glucose monitoring systems. More specifically, several components such as the transmitter unit, the sensor, sensor insertion mechanism (including, for example, a pre-assembled sensor, introducer and protective housing combination) and the skin mounting units are integrated into fewer components (two or less, for example), to simplify the use thereof and also to provide additional ease of use to the patients. Moreover, an integrated transmitter unit and sensor insertion mechanism of the subject invention may be configured to depart from the reliance upon an adhesive patch as the primary method of transmitter attachment to the patient so that the mounting of the transmitter to the patient is not substantially affected by the patient's bodily fluids, cosmetics, lotions, body hair, skin type/condition or any other factor that may potentially weaken the adhesive condition of an adhesive patch.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. IA, IB and 1C illustrate a top view, a bottom view, and a perspective view, respectively, of the integrated transmitter unit and sensor insertion mechanism for use in data monitoring system in accordance with one embodiment of the present invention;
FIG. 2 illustrates a sensor introducer unit positioned relative to the integrated transmitter and sensor insertion mechanism in pre-deployment position in accordance with one embodiment of the present invention; FIGS. 3A-3B illustrate a front planar view and a perspective view, respectively, of the sensor introducer mechanism in pre-deployment position in accordance with one embodiment of the present invention;
FIGS. 4A-4B illustrate a front planar view and a perspective view, respectively, of the sensor introducer mechanism in deployed position in accordance with one embodiment of the present invention;
FIGS. 5A-5B illustrate front planar view and a perspective view, respectively, of the sensor introducer mechanism with the deployed sensor and the introducer in removal position, in accordance with one embodiment of the present invention; - A -
FIG. 6 illustrates the sensor introducer unit positioned relative to the integrated transmitter and sensor insertion mechanism in post sensor deployment position in accordance with one embodiment of the present invention;
FIGS. 7A-7C illustrate a front planar view, a perspective view, and a side planar view, respectively of the deployed sensor with the introducer removed in accordance with one embodiment of the present invention;
FIG. 8 illustrates an introducer assembly for used in angled sensor insertion in accordance with one embodiment of the present invention;
FIG. 9 illustrates a sensor introducer assembly positioned relative to the integrated transmitter and sensor insertion mechanism in pre-deployment position for angled insertion in accordance with one embodiment of the present invention;
FIG. 10 illustrates the sensor introducer unit positioned relative to the integrated transmitter and sensor insertion mechanism in post sensor deployment position for angled insertion in accordance with one embodiment of the present invention; and FIGS. 1 IA-I IB illustrates perspective view and side planar view, respectively of the deployed sensor with the introducer removed for angled sensor insertion in accordance with one embodiment of the present invention.
DETAILED DESCRIPTION FIGS. IA, IB and 1C illustrate a top view, a bottom view, and a perspective view, respectively, of an integrated transmitter unit and sensor insertion mechanism for use in data monitoring system in accordance with one embodiment of the present invention. Referring to FIGS. IA- 1C, an integrated transmitter unit and sensor insertion mechanism 100 in one embodiment includes a substantially elongated and base portion 101, which base portion may be a flexible base portion. The base portion 101 is substantially shaped and configured in one embodiment to be of sufficient length to partially or completely wrap around the patient's arm, wrist, thigh, calf, torso or any other part of the patient's body where the sensor is to be positioned and introduced. In one embodiment, the base portion 101 may be made of a material that is pre- formed or molded by the patient, to follow the curvature of the anatomy, or may be made of a flexible form filling or conformable material such as fabric, strap or sleeve.
Referring back to FIGS. 1 A-IC, in one embodiment of the present invention, there is provided a securing mechanism that includes parts 102 and 103 to the respective ends of the base portion 101 as shown in the Figure, which may be in the form of hook portion 102 and a loop portion 103. More specifically, in the embodiment including a Velcro-type securing mechanism, the hook portion 102 provided at a first end of the base portion 101 includes a Velcro hook which is configured to be mated with the Velcro loop at the loop portion 103 at the second end of the base portion 101. In this manner, the integrated transmitter unit and sensor insertion mechanism 100 may be securely and substantially fixedly positioned around the patient's arm, for example, using the Velcro mechanism provided thereon. Within the scope of the present invention, the hook portion 102 and the loop portion 103 may comprise any other suitable securing mechanism, including but not limited to, a buckle type securing system, a button type securing system, a hook or latch mechanism, and a zipper type fastening mechanism. Referring again to FIGS. 1 A-IC, the integrated transmitter unit and sensor insertion mechanism 100 in one embodiment is provided with the transmitter electronics 105 substantially embedded within the base material 101. Moreover, the transmitter electronics 105 is also configured to be in electrical communication with a transmitter antenna 104 (for example, an RF transmission antenna), as well as a power source 106 (for example, a disposable battery) that may also be provided substantially within the base material 101. In one embodiment, the integrated transmitter unit and sensor insertion mechanism 100 may be provided to the patient fully assembled with the power source 106, the transmitter antenna 104, and the transmitter electronics 105 embedded or laminated within the layers of the base material 101. In this manner, once positioned, the transmitter unit and sensor insertion mechanism 100 may be worn by the patient and may have a very low profile, with for example, approximately, 4 - 5 mm of thickness so as to advantageously minimize physical hindrance to the patient's daily activities while using the transmitter unit and sensor insertion mechanism 100. However, other dimensions are possible as well. Referring still again to FIGS. 1 A-IC, there is also shown a sensor insertion location 107 provided on the base material 101 of the integrated transmitter unit and sensor insertion mechanism 100. In this manner, during the insertion process, the patient is able to readily determine the proper location of sensor insertion so as to accurately and effectively deploy the sensor to be in signal communication with the transmitter unit electronics (for example, the corresponding contact points for the respective electrodes such a the working, reference, and counter (or reference/counter) electrodes of the sensor, and optionally, the guard trace of the sensor).
In the manner described above, in accordance with one embodiment of the present invention, the integrated transmitter unit and sensor insertion mechanism 100 is configured to depart from the reliance upon an adhesive patch as the primary method of transmitter attachment to the patient so that it is not substantially affected by the patient's bodily fluids, cosmetics, lotions, body hair, skin type/condition or any other factor that may potentially weaken the adhesive condition of the adhesive patch. Moreover, in one embodiment, the base material 101 of the integrated transmitter unit and sensor insertion mechanism 100 may be formulated to provide some measure of moisture vapor transmission rate (MVTR) to allow the patient's skin to breath or ventilate.
FIG. 2 illustrates a sensor introducer unit positioned relative to the integrated transmitter and sensor insertion mechanism in pre-deployment position in accordance with one embodiment of the present invention. Referring to FIG. 2, in one embodiment of the present invention, a sensor introducer assembly 200 is provided and includes an introducer mechanism 205 including a handle portion 206 configured for manipulation during manual (or otherwise) sensor insertion process. Also provided in the introducer mechanism 205 is a sensor casing 204 that is operatively coupled to the introducer mechanism 205 and which is configured to house a sensor (not shown) in physical cooperation with the introducer mechanism 205.
Referring back to FIG. 2, it can be seen that a tip portion 203 of the introducer mechanism 205 is substantially aligned with the sensor insertion location 107 on a top surface 201 of the base portion 101 of the integrated transmitter unit and sensor insertion mechanism 100. Moreover, it can be further seen from FIG. 2 that a bottom surface 202 of the base portion 101 of the integrated transmitter unit and sensor insertion mechanism 100 is in physical contact with the skin of the patient.
As will be described in further detail below, upon positioning the tip portion 203 of the introducer mechanism 205 substantially aligned with the sensor insertion position 107 on the base portion 101, the patient may depress upon the handle portion 206 of the introducer mechanism 205 so as to insert the analyte sensor transcutaneously such that at least a portion of the sensor is positioned to be in fluid contact with the patient's biological fluids, such as for example, interstitial fluids. Other manners of activating the introducer may be used within the scope of the present invention.
Thereafter, upon insertion and positioning the sensor, the handle portion 206 may be collapsed into the sensor casing 204, and the sensor casing 204 pivoted approximately 90 degrees substantially about the sensor insertion position 107, so as to collapse the sensor casing 204 onto the upper surface 201 of the base portion 101 of the integrated transmitter unit and sensor insertion mechanism 100 including the sensor electrical contact surface. In this manner, a low profile, substantially thin sensor and transmitter combination may be provided to the patient to be worn for a predetermined period of time, while minimizing potential interference with the patient's daily physical activities and securely holding the transmitter in place on the patient.
FIGS. 3A-3B illustrate a front planar view and a perspective view, respectively, of the sensor introducer mechanism in pre-deployment position in accordance with one embodiment of the present invention. Referring to FIGS. 3A-3B, it can be seen that the sensor 301 is provided substantially engaged with the introducer 205, a portion of each of which is guided within and through the inner section of the sensor casing 204. Moreover, the introducer tip portion 203 is configured to substantially contain the portion of the sensor 301 that is to be placed under the patient's skin, e.g., subcutaneously.
FIGS. 4A-4B illustrate a front planar view and a perspective view, respectively, of the sensor introducer mechanism in deployed position in accordance with one embodiment of the present invention. Referring to FIGS. 4A-4B, upon manual operation of the introducer handle portion 206, by the force applied by the patient thereonto, the introducer tip portion 203 is configured to guide a sensor tip 302 of the sensor 301 through the skin of the patient, so as to position at least a portion of the sensor tip 302 in fluid contact with the patient's biological fluids such as interstitial fluid. Moreover, it can be seen from FIG, 4B that the sensor casing 204 in one embodiment may be provided with one or more inner grooves 401 which are configured to substantially guide the movement of the introducer 305 and the sensor 301 through the sensor casing 204, and further, to provide substantially fixed support of the introducer 305 position relative to the sensor insertion position 107 during the operation of the introducer handle portion 206 to transcutaneously deploy the sensor 302. FIGS. 5A-5B illustrate front planar view and a perspective view, respectively, of the sensor introducer mechanism with the deployed sensor and the introducer in removal position, in accordance with one embodiment of the present invention. Referring to FIGS. 5A-5B, it can be seen that the handle portion 206 and the introducer 205 are protruded out of the sensor casing
204 upon sensor deployment. More specifically, in one embodiment, after the patient applies pressure onto the handle portion 206 so as to deploy the sensor 301, the patient may retract or withdraw the introducer
205 from the deployed position, by retracting or pulling the handle portion 206 in the opposite direction of the sensor deployment direction. Alternatively, the introducer 205 may be provided with a spring bias mechanism or a similar mechanism which would allow the introducer 205 to be retracted substantially automatically after deployment of the sensor 301.
Referring back to FIGS. 5A-5B, after deployment of the sensor 301 and retraction of the introducer 205, the introducer 205 may be detached from the sensor casing 204 and discarded. Alternatively, the introducer 205 in a further embodiment may be configured and sized so as to be substantially and completely housed within the sensor casing 204 upon deployment of the sensor 301.
FIG. 6 illustrates the sensor introducer unit positioned relative to the integrated transmitter and sensor insertion mechanism in post sensor deployment position in accordance with one embodiment of the present invention. Moreover, FIGS. 7A-7C illustrate a front planar view, a perspective view, and a side planar view, respectively of the deployed sensor with the introducer removed in accordance with one embodiment of the present invention. Referring to the Figures, it can be seen that the sensor casing 204 may be provided in a locked and secure position on the upper surface 201 of the base portion 101 of the integrated transmitter unit and sensor insertion mechanism 100 such that a substantially low profile, sensor and transmitter system may be provided for extended wear and use by the patients to monitor one or more biological fluids and for transmission of data associated with the detected or monitored fluid to a receiver unit for further data processing, health management diagnosis and treatment. FIG. 8 illustrates an introducer assembly for used in angled sensor insertion in accordance with one embodiment of the present invention, and FIG. 9 illustrates the sensor introducer assembly positioned relative to the integrated transmitter and sensor insertion mechanism in pre-deployment position for angled insertion in accordance with one embodiment of the present invention. It can be seen that for applications were the insertion is desirable at an angle other than about 90 degrees relative to the surface of the patient's skin, within the scope of the present invention, the sensor introducer assembly 200 may be configured to provide angled insertion for varying angles of sensor insertion, and which in turn, may correspondingly vary the depth at which the sensor tip 302 is positioned below the patient's skin and in fluid contact with the patient's biological fluids such as interstitial fluid in the subcutaneous space, or the like.
For example, it can be seen that given a substantially fixed length of the sensor tip 302, the greater the angle of the insertion (relative to the surface of the patient's skin), the deeper the position of the sensor tip 302 placed under the skin, and where the deepest position of subcutaneous placement of the sensor tip 302 is achieved substantially at about 90 degrees angle relative to the surface of the patient's skin, and as illustrated above in conjunction with the embodiment shown in FIG. 6. Additionally, FIG. 10 illustrates the sensor introducer unit positioned relative to the integrated transmitter and sensor insertion mechanism in post sensor deployment position for angled insertion, and FIGS. 1 IA-I IB illustrates perspective view and side planar view, respectively of the deployed sensor with the introducer removed for angled sensor insertion in accordance with one embodiment of the present invention.
As discussed above, in accordance with the various embodiment of the present invention, the base portion 101 is placed on the patient such as around the patient's arm and secured in position using the securing mechanism, e.g., hook portion 102 and the loop portion 103. Within the scope of the present invention, other methods and devices for securing the base portion 101 may be used such as, for example, metal hooks, medical grade adhesive tape, elastic bands, or straps with buckles or any other equivalent methods or devices for securing the base portion 101 onto the patient. The sensor casing 204 with the introducer 205 and the sensor 301, pre-assembled therein, may be placed on the base portion 101 so as to substantially align the introducer tip 203 with the sensor insertion position 107 of the base portion 101. While one sensor insertion position 107 is shown in the Figures, within the scope of the present invention, a plurality of sensor insertion positions may be provided on the upper surface 201 of the base portion 101. This would provide the additional convenience for the patients by providing several insertion site locations on the skin of the patient after the base portion 101 is substantially fixedly positioned on the patient's skin. Additionally, within the scope of the present invention, the base portion may be provided with a plurality of sensor insertion positions 107 such that the integrated transmitter unit and sensor insertion mechanism 100 may be configured for use with multiple sensors either concurrently or sequentially.
In one aspect of the present invention, the transmitter electronics 105 may be configured to selectively shut off or disable the electronics at the sensor insertion positions after the sensor 301 is in use for the prescribed period of time (for example, about 1 day, about 3 days, about 5 days, about 7 days or more, e.g., about 30 days or more). In this manner, it is possible to provide the additional safety precaution by preventing continued used of the integrated transmitter unit and sensor insertion mechanism 100 after a specified number of use (corresponding to the number of the sensor insertion positions). This option may prevent the patients from multiple usage of the same sensor 301 rather than discarding after the initial usage, and also, for using the integrated transmitter unit and sensor insertion mechanism 100 beyond the recommended periods of usage frequency. Additionally, within the scope of the present invention, the power supply 106 may be provided with a low capacitor disposable battery so as to limit the life of the integrated transmitter unit and sensor insertion mechanism 100 once it has been activated. In addition, within the scope of the present invention, the insertion process of the sensor
301 is described as performed manually by the patient. Alternatively, within the scope of the present invention, the insertion process of the sensor 301 may be configured with a semi- automated mechanism or a fully automated mechanism provided with an insertion trigger switch, for example. Moreover, within the scope of the present invention, angled insertion of the sensor 301 may be achieved by the design and orientation of the sensor casing 204 at the sensor insertion position 107.
Additionally, within the scope of the present invention, the physical dimensions of the sensor casing 204 and the orientation of the introducer 205 in cooperation with the sensor casing 204 may provide the desired sensor insertion depth, and also to control the ease of sensor deployment. Indeed, when the introducer 205 bottoms out at the sensor insertion position 107 within the sensor casing 204, the sensor depth or the below-the-skin position is determined to be reached, and thereafter, the introducer 205 may be safely discarded, for example, by detaching from the sensor casing 204 or substantially completely encasing within the sensor casing 204. Then, the sensor casing 204 may be rotatably pushed substantially about the sensor insertion position 107 so that it may be maintained in a locked position, thus holding the sensor 301 in place, and establishing electrical communication with the transmitter electronics 105 laminated, for example, within the base portion 101 of the integrated transmitter unit and sensor insertion mechanism 100. In one embodiment, the sensor casing 204 may be provided with a compressible seal around its perimeter to prevent moisture, particulate, and other foreign materials from contaminating the transmitter electronics 105 or potentially compromising the integrity of the electrical contacts and signal.
In this manner, the detected analyte levels from the sensor 301 may be provided to transmitter electronics 105, which is, in one embodiment, configured to wirelessly transmit data corresponding to the detected analyte levels from the sensor to a receiver unit via the antenna 104, where the receiver unit may include a glucose monitor unit and/or an insulin pump unit and/or a computer terminal, or any other electronic device capable of being configured for wireless (or other) communication. Within the scope of the present invention, the receiver unit functions may be integrated into portable electronic devices such as a watch, a pager, a mobile telephone, personal digital assistant, and the like. Additional information on the detection, monitoring and analysis of analyte levels are described in further detail in U.S. Patent No. 6,175,752 entitled "Analyte Monitoring Device and Methods of Use" the disclosure of which is incorporated herein by reference for all purposes. In a further embodiment, the transmitter electronics 105 may includes a wireless communication unit for wireless transmission of the signal, where the wireless communication unit may include one or more of a radio frequency (RP) communication unit, a Bluetooth communication unit, an infrared communication unit, an 801.1 Ix communication unit, or a Zigbee communication unit. Similarly, the receiver unit may be configured to support one more or of the above-referenced wireless communication protocols to communicate with the transmitter unit.
In this manner, within the scope of the present invention, there is provided an integrated transmitter unit and sensor insertion mechanism that is configured for a multi-use disposable monitoring components for use in continuous glucose monitoring systems. More specifically, several components such as the transmitter unit, the sensor, sensor insertion mechanism
(including, for example, a pre-assembled sensor, introducer and protective housing combination) and the skin mounting units are integrated into fewer components (two or less, for example), to simply the use and also to provide additional ease of use to the patients.
Accordingly, within the scope of the present invention, it is possible to eliminate the separate system components of the skin attachment system, sensor insertion and the transmitter unit along with the associated safety precautions, material costs, weight, packaging, handling, disposal, and attaching to the skin patch. Furthermore, a low profile integrated system may be provided that would substantially minimize potential interference with the patient's normal daily activities. In the embodiments described above, while the handle portion 206 (FIG. 2) for example, is configured to be discarded after the sensor insertion process, within the scope of the present invention, the handle portion of the sensor introducer assembly may be configured to be integrated within the sensor introducer assembly - for example, within the sensor casing 204. Moreover, the integrated transmitter unit and sensor insertion mechanism 100 may be configured to depart from the reliance upon an adhesive patch as the primary method of transmitter attachment to the patient so that it is not substantially affected by the patient's bodily fluids, cosmetics, lotions, body hair, skin type/condition or any other factor that may potentially weaken the adhesive condition of the adhesive patch. Moreover, in one embodiment, the base material 101 of the integrated transmitter unit and sensor insertion mechanism 100 may be formulated to provide some measure of moisture vapor transmission rate (MVTR) to allow the patient's skin to breath or ventilate.
In the manner described above, in accordance with one embodiment, there is provided an integrated sensor and transmitter device including a base unit configured for mounting onto a skin of a patient, a transmitter unit integrally provided in the base unit, a sensor assembly disposed on a surface of the base unit, the sensor assembly including a sensor configured to couple to the transmitter unit.
The base unit may be flexible, and further, may include a first end segment and a second end segment, the first end segment configured to couple to the second end segment so as to retain the base unit on the skin of the patient. Moreover, in one embodiment, the first end segment may include a Velcro hook and the second end segment may include Velcro latch.
The transmitter unit in one embodiment may include flexible electronic circuitry, where in certain embodiments the electronic circuitry may be laminated into the base unit.
Additionally, the transmitter unit may be configured to substantially conform to the shape of the base unit.
The sensor assembly in one embodiment may include an introducer coupled to at least a portion of the sensor, the introducer configured to transcutaneously position at least the portion of the sensor. The introducer may be configured to transcutaneously position at least the portion of the sensor to be in fluid contact with a biological fluid of the patient, where the biological fluid of the patient includes interstitial fluid or blood of the patient.
Further, the introducer may be configured to be detachably removed from the sensor assembly after at least the portion of the sensor is transcutaneously positioned.
Additionally, the introducer may be configured to transcutaneously position at least the portion of the sensor at an angle other than about 90 degrees relative to the surface of the patient's skin.
In a further embodiment, the sensor assembly may be configured to substantially pivot onto the base unit so that the sensor is in signal communication with the transmitter unit.
Moreover, the sensor in one embodiment is an analyte sensor. The sensor may be configured to detect any analyte such as glucose, lactate, etc. Additional analytes that may be determined include, for example, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketones, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be determined. A sensor may be configured to detect two or more analytes such as two or more analyte mentioned herein. An apparatus in a further embodiment of the present invention includes a flexible base unit including an outer surface and an inner surface, said inner surface configured to contact a skin of a patient, a sensor assembly including a sensor disposed in the sensor assembly, and an introducer substantially provided in the sensor assembly to couple to at least a portion of the sensor; the introducer configured to position at least a portion of the sensor transcutaneously through the skin of the patient, and a transmitter unit integrally disposed in the base unit, the transmitter unit configured to receive one or more signals from the sensor.
The introducer may be configured to be removably detached from the sensor assembly after at least the portion of the sensor is transcutaneously positioned. Moreover, the one or more signals from the sensor may substantially correspond to a respective one or more analyte levels of the patient.
Additionally, the transmitter unit may be configured to wirelessly (or otherwise) transmit data corresponding to the one or more signals received from the sensor, where a receiver unit may be additionally provided and configured to receive data from the transmitter unit, where the received data corresponds to one or more analyte levels of the patient. Either or both of the transmitter or receiver may be a transceiver.
The base unit in one embodiment may be configured to be securely attached substantially around one of an arm, a torso, a thigh, a calf, a waist or wrist of the patient. In certain embodiments, the base unit is flexible.
A method in accordance with still another embodiment of the present invention includes the steps of securing a transmitter unit substantially around a body part of a patient, and introducing at least a portion of a sensor through the skin of the patient so that the portion of the sensor is in fluid contact with a biological fluid of the patient, and further, where the sensor is in electrical contact with the transmitter unit.
A system in accordance with yet a further embodiment of the present invention includes an integrated housing including a transmitter unit and a sensor; the integrated housing configured for mounting onto a skin of a patient, and a sensor introducer assembly mounted onto the integrated housing, the introducer assembly configured to position at least a portion of the sensor under the skin of the patient, where the transmitter unit is in electrical contact with the sensor, and configured to transmit one or more signals corresponding a respective one or more signals received from the sensor.
In another embodiment, the system may further include a receiver unit configured to receive the one or more signals transmitted by the transmitter unit, where the receiver unit may include one of an infusion pump, a monitoring device, a personal digital assistant, a pager, or a mobile telephone.
Various other modifications and alterations in the structure and method of operation of this invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. It is intended that the following claims define the scope of the present invention and that structures and methods within the scope of these claims and their equivalents be covered thereby.

Claims

WHAT IS CLAIMED IS:
1. An apparatus including an integrated sensor and transmitter device, comprising: a base unit configured for mounting onto a skin of a patient; a transmitter unit integrally provided in the base unit; and a sensor assembly disposed on a surface of the base unit, the sensor assembly including a sensor configured to couple to the transmitter unit.
2. The apparatus of claim 1 wherein the base unit is flexible.
3. The apparatus of claim 1 wherein the base unit includes a first end segment and a second end segment, the first end segment configured to couple to the second end segment so as to retain the base unit on the skin of the patient.
4. The apparatus of claim 3 wherein the first end segment includes Velcro hook and the second end segment includes Velcro latch.
5. The apparatus of claim 1 wherein the transmitter unit comprises flexible electronic circuitry.
6. The apparatus of claim 1 wherein the transmitter unit is laminated into the base unit.
7. The apparatus of claim 1 wherein the transmitter unit is configured to substantially conform to the shape of the base unit.
8. The apparatus of claim 1 wherein the sensor assembly includes an introducer coupled to at least a portion of the sensor, the introducer configured to position at least a portion of the sensor under the skin of the patient.
9. The apparatus of claim 8 wherein the introducer is configured to transcutaneously position at least the portion of the sensor to be in fluid contact with a biological fluid of the patient.
10. The apparatus of claim 9 wherein the biological fluid of the patient includes interstitial fluid of the patient.
11. The apparatus of claim 8 wherein the introducer is configured to be detachably removed from the sensor assembly after at least a portion of the sensor is positioned under the skin of the patient.
12. The apparatus of claim 8 wherein the introducer is configured to transcutaneously position at least a portion of the sensor at an angle between approximately 5 degrees to approximately 90 degrees relative to the surface of the patient's skin.
13. The apparatus of claim 1 wherein the sensor assembly is configured to substantially pivot onto the base unit.
14. The apparatus of claim 1 wherein the sensor is an analyte sensor.
15. The apparatus of claim 1 wherein the sensor is a glucose sensor
16. An apparatus, comprising: a base unit including an outer surface and an inner surface, said inner surface configured to contact a skin of a patient; a sensor assembly, comprising: a sensor disposed in the sensor assembly; and an introducer substantially provided in the sensor assembly to couple to at least a portion of the sensor; the introducer configured to position at least a portion of the sensor transcutaneously through the skin of the patient; and a transmitter unit integrally disposed in the base unit, the transmitter unit configured to receive one or more signals from the sensor.
17. The apparatus of claim 16 wherein the introducer is configured to be removably detached from the sensor assembly after at least the portion of the sensor is transcutaneously positioned.
18. The apparatus of claim 16 wherein the one or more signals from the sensor substantially corresponds to a respective one or more analyte levels of the patient.
19. The apparatus of claim 16 wherein the transmitter unit is configured to wirelessly transmit data corresponding to the one or more signals received from the sensor.
20. The apparatus of claim 16 further including a receiver unit configured to receive data from the transmitter unit, wherein the received data corresponds to one or more analyte levels of the patient.
21. The apparatus of claim 16 wherein the flexible base unit is configured to be securely attached substantially around one of an arm, a torso, a thigh, a calf, or a waist of the patient.
22. A method, comprising the steps of: securing a transmitter unit substantially around a body part of a patient; and introducing at least a portion of a sensor through the skin of the patient so that the portion of the sensor is in fluid contact with a biological fluid of the patient, and further, wherein the sensor is in electrical contact with the transmitter unit.
23. The method of claim 22 wherein the body part of the patient includes one of an arm, a leg, a calf, a torso, a neck, a thigh, an ankle, or a wrist.
24. The method of claim 22 wherein the biological fluid of the patient is one of interstitial fluid, blood or oxygen.
25. The method of claim 22 wherein the sensor is a glucose sensor.
26. A system, comprising: an integrated housing including a transmitter unit and a sensor; the integrated housing configured for mounting onto a skin of a patient; and a sensor introducer assembly mounted onto the integrated housing, the introducer assembly configured to position at least a portion of the sensor under the skin of the patient; wherein the transmitter unit is in electrical contact with the sensor, and configured to transmit one or more signals corresponding a respective one or more signals received from the sensor.
27. The system of claim 26 further including a receiver unit configured to receive the one or more signals transmitted by the transmitter unit.
28. The system of claim 27 wherein the receiver unit includes one of an infusion pump, a monitoring device, a personal digital assistant, a pager, or a mobile telephone.
PCT/US2006/037928 2005-09-30 2006-09-28 Integrated transmitter unit and sensor introducer mechanism and methods of use WO2007041248A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA002624247A CA2624247A1 (en) 2005-09-30 2006-09-28 Integrated transmitter unit and sensor introducer mechanism and methods of use
EP06815715A EP1931255A4 (en) 2005-09-30 2006-09-28 Integrated transmitter unit and sensor introducer mechanism and methods of use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/240,257 2005-09-30
US11/240,257 US7883464B2 (en) 2005-09-30 2005-09-30 Integrated transmitter unit and sensor introducer mechanism and methods of use

Publications (2)

Publication Number Publication Date
WO2007041248A2 true WO2007041248A2 (en) 2007-04-12
WO2007041248A3 WO2007041248A3 (en) 2009-04-09

Family

ID=37902742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/037928 WO2007041248A2 (en) 2005-09-30 2006-09-28 Integrated transmitter unit and sensor introducer mechanism and methods of use

Country Status (4)

Country Link
US (4) US7883464B2 (en)
EP (1) EP1931255A4 (en)
CA (1) CA2624247A1 (en)
WO (1) WO2007041248A2 (en)

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8862198B2 (en) 2006-09-10 2014-10-14 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US8924159B2 (en) 2008-05-30 2014-12-30 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8937540B2 (en) 2007-04-14 2015-01-20 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
US8993331B2 (en) 2009-08-31 2015-03-31 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
US9000929B2 (en) 2007-05-08 2015-04-07 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9031630B2 (en) 2006-02-28 2015-05-12 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US9035767B2 (en) 2007-05-08 2015-05-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9039975B2 (en) 2006-03-31 2015-05-26 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US9060719B2 (en) 2007-05-14 2015-06-23 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9066709B2 (en) 2009-01-29 2015-06-30 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US9069536B2 (en) 2011-10-31 2015-06-30 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
US9095290B2 (en) 2007-03-01 2015-08-04 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
EP2826419B1 (en) 2006-09-28 2015-08-19 Abbott Diabetes Care Inc. Apparatus for providing analyte sensor insertion
US9113828B2 (en) 2006-10-25 2015-08-25 Abbott Diabetes Care Inc. Method and system for providing analyte monitoring
US9125548B2 (en) 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9177456B2 (en) 2007-05-08 2015-11-03 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9226701B2 (en) 2009-04-28 2016-01-05 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
US9314195B2 (en) 2009-08-31 2016-04-19 Abbott Diabetes Care Inc. Analyte signal processing device and methods
US9320461B2 (en) 2009-09-29 2016-04-26 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
US9320468B2 (en) 2008-01-31 2016-04-26 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
US9326709B2 (en) 2010-03-10 2016-05-03 Abbott Diabetes Care Inc. Systems, devices and methods for managing glucose levels
US9357959B2 (en) 2006-10-02 2016-06-07 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US9408566B2 (en) 2006-08-09 2016-08-09 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US9414777B2 (en) 2004-07-13 2016-08-16 Dexcom, Inc. Transcutaneous analyte sensor
US9480421B2 (en) 2005-09-30 2016-11-01 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US9541556B2 (en) 2008-05-30 2017-01-10 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US9572934B2 (en) 2008-08-31 2017-02-21 Abbott DiabetesCare Inc. Robust closed loop control and methods
US9574914B2 (en) 2007-05-08 2017-02-21 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US9610046B2 (en) 2008-08-31 2017-04-04 Abbott Diabetes Care Inc. Closed loop control with improved alarm functions
US9615780B2 (en) 2007-04-14 2017-04-11 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US9662056B2 (en) 2008-09-30 2017-05-30 Abbott Diabetes Care Inc. Optimizing analyte sensor calibration
US9743865B2 (en) 2007-10-23 2017-08-29 Abbott Diabetes Care Inc. Assessing measures of glycemic variability
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US9795326B2 (en) 2009-07-23 2017-10-24 Abbott Diabetes Care Inc. Continuous analyte measurement systems and systems and methods for implanting them
US9797880B2 (en) 2007-05-14 2017-10-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9801571B2 (en) 2007-05-14 2017-10-31 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US9804150B2 (en) 2007-05-14 2017-10-31 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9882660B2 (en) 2006-10-26 2018-01-30 Abbott Diabetes Care Inc. Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors
US9936910B2 (en) 2009-07-31 2018-04-10 Abbott Diabetes Care Inc. Method and apparatus for providing analyte monitoring and therapy management system accuracy
US9943644B2 (en) 2008-08-31 2018-04-17 Abbott Diabetes Care Inc. Closed loop control with reference measurement and methods thereof
US9986942B2 (en) 2004-07-13 2018-06-05 Dexcom, Inc. Analyte sensor
US10002233B2 (en) 2007-05-14 2018-06-19 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US10031002B2 (en) 2007-05-14 2018-07-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US10028680B2 (en) 2006-04-28 2018-07-24 Abbott Diabetes Care Inc. Introducer assembly and methods of use
US10039881B2 (en) 2002-12-31 2018-08-07 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US10111608B2 (en) 2007-04-14 2018-10-30 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US10136816B2 (en) 2009-08-31 2018-11-27 Abbott Diabetes Care Inc. Medical devices and methods
US10173007B2 (en) 2007-10-23 2019-01-08 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
US10194863B2 (en) 2005-09-30 2019-02-05 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US10226207B2 (en) 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
USRE47315E1 (en) 2009-08-31 2019-03-26 Abbott Diabetes Care Inc. Displays for a medical device
US10349877B2 (en) 2007-04-14 2019-07-16 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US10363363B2 (en) 2006-10-23 2019-07-30 Abbott Diabetes Care Inc. Flexible patch for fluid delivery and monitoring body analytes
US10610136B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10813577B2 (en) 2005-06-21 2020-10-27 Dexcom, Inc. Analyte sensor
US10874338B2 (en) 2010-06-29 2020-12-29 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US11006872B2 (en) 2009-02-03 2021-05-18 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US11264133B2 (en) 2007-06-21 2022-03-01 Abbott Diabetes Care Inc. Health management devices and methods
US11793936B2 (en) 2009-05-29 2023-10-24 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations

Families Citing this family (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
US7041468B2 (en) 2001-04-02 2006-05-09 Therasense, Inc. Blood glucose tracking apparatus and methods
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
EP1578262A4 (en) 2002-12-31 2007-12-05 Therasense Inc Continuous glucose monitoring system and methods of use
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US7299082B2 (en) 2003-10-31 2007-11-20 Abbott Diabetes Care, Inc. Method of calibrating an analyte-measurement device, and associated methods, devices and systems
USD914881S1 (en) 2003-11-05 2021-03-30 Abbott Diabetes Care Inc. Analyte sensor electronic mount
CA2572455C (en) 2004-06-04 2014-10-28 Therasense, Inc. Diabetes care host-client architecture and data management system
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US20100331646A1 (en) * 2009-06-30 2010-12-30 Abbott Diabetes Care Inc. Health Management Devices and Methods
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
EP1921980A4 (en) 2005-08-31 2010-03-10 Univ Virginia Improving the accuracy of continuous glucose sensors
US8880138B2 (en) 2005-09-30 2014-11-04 Abbott Diabetes Care Inc. Device for channeling fluid and methods of use
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US11298058B2 (en) 2005-12-28 2022-04-12 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
EP1968432A4 (en) 2005-12-28 2009-10-21 Abbott Diabetes Care Inc Medical device insertion
US7736310B2 (en) 2006-01-30 2010-06-15 Abbott Diabetes Care Inc. On-body medical device securement
US7981034B2 (en) 2006-02-28 2011-07-19 Abbott Diabetes Care Inc. Smart messages and alerts for an infusion delivery and management system
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
US8374668B1 (en) 2007-10-23 2013-02-12 Abbott Diabetes Care Inc. Analyte sensor with lag compensation
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
US8346335B2 (en) 2008-03-28 2013-01-01 Abbott Diabetes Care Inc. Analyte sensor calibration management
US9675290B2 (en) 2012-10-30 2017-06-13 Abbott Diabetes Care Inc. Sensitivity calibration of in vivo sensors used to measure analyte concentration
US7801582B2 (en) 2006-03-31 2010-09-21 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
US8224415B2 (en) 2009-01-29 2012-07-17 Abbott Diabetes Care Inc. Method and device for providing offset model based calibration for analyte sensor
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8140312B2 (en) 2007-05-14 2012-03-20 Abbott Diabetes Care Inc. Method and system for determining analyte levels
US20080071158A1 (en) 2006-06-07 2008-03-20 Abbott Diabetes Care, Inc. Analyte monitoring system and method
US20090171269A1 (en) * 2006-06-29 2009-07-02 Abbott Diabetes Care, Inc. Infusion Device and Methods Therefor
US8932216B2 (en) 2006-08-07 2015-01-13 Abbott Diabetes Care Inc. Method and system for providing data management in integrated analyte monitoring and infusion system
US8206296B2 (en) 2006-08-07 2012-06-26 Abbott Diabetes Care Inc. Method and system for providing integrated analyte monitoring and infusion system therapy management
US8121857B2 (en) 2007-02-15 2012-02-21 Abbott Diabetes Care Inc. Device and method for automatic data acquisition and/or detection
US20080199894A1 (en) 2007-02-15 2008-08-21 Abbott Diabetes Care, Inc. Device and method for automatic data acquisition and/or detection
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8140142B2 (en) 2007-04-14 2012-03-20 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
WO2008130896A1 (en) 2007-04-14 2008-10-30 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in medical communication system
US8444560B2 (en) 2007-05-14 2013-05-21 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US7996158B2 (en) 2007-05-14 2011-08-09 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
WO2008150917A1 (en) 2007-05-31 2008-12-11 Abbott Diabetes Care, Inc. Insertion devices and methods
CA2690870C (en) 2007-06-21 2017-07-11 Abbott Diabetes Care Inc. Health monitor
US8641618B2 (en) 2007-06-27 2014-02-04 Abbott Diabetes Care Inc. Method and structure for securing a monitoring device element
US8160900B2 (en) 2007-06-29 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US7768386B2 (en) 2007-07-31 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
US8216138B1 (en) 2007-10-23 2012-07-10 Abbott Diabetes Care Inc. Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration
US20090164239A1 (en) 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Dynamic Display Of Glucose Information
EP3659628A1 (en) 2008-04-10 2020-06-03 Abbott Diabetes Care, Inc. Method and system for sterilizing an analyte sensor
US7826382B2 (en) 2008-05-30 2010-11-02 Abbott Diabetes Care Inc. Close proximity communication device and methods
US8876755B2 (en) 2008-07-14 2014-11-04 Abbott Diabetes Care Inc. Closed loop control system interface and methods
US8700114B2 (en) * 2008-07-31 2014-04-15 Medtronic Minmed, Inc. Analyte sensor apparatuses comprising multiple implantable sensor elements and methods for making and using them
US8622988B2 (en) 2008-08-31 2014-01-07 Abbott Diabetes Care Inc. Variable rate closed loop control and methods
US9326707B2 (en) 2008-11-10 2016-05-03 Abbott Diabetes Care Inc. Alarm characterization for analyte monitoring devices and systems
US8497777B2 (en) 2009-04-15 2013-07-30 Abbott Diabetes Care Inc. Analyte monitoring system having an alert
WO2010121229A1 (en) 2009-04-16 2010-10-21 Abbott Diabetes Care Inc. Analyte sensor calibration management
US8368556B2 (en) 2009-04-29 2013-02-05 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US8483967B2 (en) 2009-04-29 2013-07-09 Abbott Diabetes Care Inc. Method and system for providing real time analyte sensor calibration with retrospective backfill
US8595607B2 (en) * 2009-06-04 2013-11-26 Abbott Diabetes Care Inc. Method and system for updating a medical device
US8613892B2 (en) 2009-06-30 2013-12-24 Abbott Diabetes Care Inc. Analyte meter with a moveable head and methods of using the same
EP3284494A1 (en) 2009-07-30 2018-02-21 Tandem Diabetes Care, Inc. Portable infusion pump system
WO2011041531A1 (en) 2009-09-30 2011-04-07 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
EP2494323A4 (en) 2009-10-30 2014-07-16 Abbott Diabetes Care Inc Method and apparatus for detecting false hypoglycemic conditions
USD924406S1 (en) 2010-02-01 2021-07-06 Abbott Diabetes Care Inc. Analyte sensor inserter
WO2011162843A1 (en) 2010-03-24 2011-12-29 Abbott Diabetes Care Inc. Medical device inserters and processes of inserting and using medical devices
US8635046B2 (en) 2010-06-23 2014-01-21 Abbott Diabetes Care Inc. Method and system for evaluating analyte sensor response characteristics
US10092229B2 (en) 2010-06-29 2018-10-09 Abbott Diabetes Care Inc. Calibration of analyte measurement system
JP5748595B2 (en) 2010-08-30 2015-07-15 アークレイ株式会社 Sensor insertion / recovery device
EP2624745A4 (en) 2010-10-07 2018-05-23 Abbott Diabetes Care, Inc. Analyte monitoring devices and methods
CA3177983A1 (en) 2011-02-28 2012-11-15 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US10136845B2 (en) 2011-02-28 2018-11-27 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US20120226122A1 (en) * 2011-03-04 2012-09-06 Arturo Meuniot Inserter for in-vitro analyte sensor
WO2012142502A2 (en) 2011-04-15 2012-10-18 Dexcom Inc. Advanced analyte sensor calibration and error detection
US9622691B2 (en) 2011-10-31 2017-04-18 Abbott Diabetes Care Inc. Model based variable risk false glucose threshold alarm prevention mechanism
WO2013070794A2 (en) 2011-11-07 2013-05-16 Abbott Diabetes Care Inc. Analyte monitoring device and methods
US8710993B2 (en) 2011-11-23 2014-04-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
US9317656B2 (en) 2011-11-23 2016-04-19 Abbott Diabetes Care Inc. Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
WO2013078426A2 (en) 2011-11-25 2013-05-30 Abbott Diabetes Care Inc. Analyte monitoring system and methods of use
US9402570B2 (en) 2011-12-11 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor devices, connections, and methods
US9180242B2 (en) 2012-05-17 2015-11-10 Tandem Diabetes Care, Inc. Methods and devices for multiple fluid transfer
EP2668902A1 (en) * 2012-05-31 2013-12-04 Roche Diagniostics GmbH Sensor cartridge and inserter
US10132793B2 (en) 2012-08-30 2018-11-20 Abbott Diabetes Care Inc. Dropout detection in continuous analyte monitoring data during data excursions
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
EP2901153A4 (en) 2012-09-26 2016-04-27 Abbott Diabetes Care Inc Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data
US9173998B2 (en) 2013-03-14 2015-11-03 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
US10433773B1 (en) 2013-03-15 2019-10-08 Abbott Diabetes Care Inc. Noise rejection methods and apparatus for sparsely sampled analyte sensor data
US9474475B1 (en) 2013-03-15 2016-10-25 Abbott Diabetes Care Inc. Multi-rate analyte sensor data collection with sample rate configurable signal processing
US10076285B2 (en) 2013-03-15 2018-09-18 Abbott Diabetes Care Inc. Sensor fault detection using analyte sensor data pattern comparison
US9338819B2 (en) * 2013-05-29 2016-05-10 Medtronic Minimed, Inc. Variable data usage personal medical system and method
CA2933166C (en) 2013-12-31 2020-10-27 Abbott Diabetes Care Inc. Self-powered analyte sensor and devices using the same
US20170185748A1 (en) 2014-03-30 2017-06-29 Abbott Diabetes Care Inc. Method and Apparatus for Determining Meal Start and Peak Events in Analyte Monitoring Systems
CA2984939A1 (en) 2015-05-14 2016-11-17 Abbott Diabetes Care Inc. Compact medical device inserters and related systems and methods
US10213139B2 (en) 2015-05-14 2019-02-26 Abbott Diabetes Care Inc. Systems, devices, and methods for assembling an applicator and sensor control device
EP3298479A1 (en) * 2015-05-21 2018-03-28 Cakmak, Tuncay Sexual interaction device and method for providing an enhanced computer mediated sexual experience to a user
US11553883B2 (en) 2015-07-10 2023-01-17 Abbott Diabetes Care Inc. System, device and method of dynamic glucose profile response to physiological parameters
WO2018136898A1 (en) 2017-01-23 2018-07-26 Abbott Diabetes Care Inc. Systems, devices and methods for analyte sensor insertion
WO2018175489A1 (en) 2017-03-21 2018-09-27 Abbott Diabetes Care Inc. Methods, devices and system for providing diabetic condition diagnosis and therapy
CA3077720A1 (en) 2017-10-24 2019-05-02 Dexcom, Inc. Pre-connected analyte sensors
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
SE541788C2 (en) * 2017-12-22 2019-12-17 Brighter Ab Publ Skin patch for diagnosis comprising an evaporation layer
US10736037B2 (en) 2018-12-26 2020-08-04 Tandem Diabetes Care, Inc. Methods of wireless communication in an infusion pump system
USD1002852S1 (en) 2019-06-06 2023-10-24 Abbott Diabetes Care Inc. Analyte sensor device
CN114430688A (en) * 2019-10-01 2022-05-03 豪夫迈·罗氏有限公司 Holder for medical devices
USD999913S1 (en) 2020-12-21 2023-09-26 Abbott Diabetes Care Inc Analyte sensor inserter
CN116236192A (en) * 2021-12-07 2023-06-09 上海微创生命科技有限公司 Continuous blood glucose monitoring device and continuous blood glucose monitoring system

Family Cites Families (782)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123790A (en) * 1964-03-03 tyler
US2402306A (en) * 1943-10-07 1946-06-18 Turkel Henry Retaining guard guide for needles
US3211001A (en) 1961-08-01 1965-10-12 Barber Colman Co Temperature sensing device
US3260656A (en) 1962-09-27 1966-07-12 Corning Glass Works Method and apparatus for electrolytically determining a species in a fluid
GB1191363A (en) 1968-02-19 1970-05-13 Pavelle Ltd Improvements in or relating to Electronic Thermostats.
US3653841A (en) 1969-12-19 1972-04-04 Hoffmann La Roche Methods and compositions for determining glucose in blood
US3776832A (en) 1970-11-10 1973-12-04 Energetics Science Electrochemical detection cell
US3719564A (en) 1971-05-10 1973-03-06 Philip Morris Inc Method of determining a reducible gas concentration and sensor therefor
US3837339A (en) 1972-02-03 1974-09-24 Whittaker Corp Blood glucose level monitoring-alarm system and method therefor
US3949388A (en) 1972-11-13 1976-04-06 Monitron Industries, Inc. Physiological sensor and transmitter
US3908657A (en) 1973-01-15 1975-09-30 Univ Johns Hopkins System for continuous withdrawal of blood
US4100048A (en) 1973-09-20 1978-07-11 U.S. Philips Corporation Polarographic cell
US3926760A (en) 1973-09-28 1975-12-16 Du Pont Process for electrophoretic deposition of polymer
US3972320A (en) 1974-08-12 1976-08-03 Gabor Ujhelyi Kalman Patient monitoring system
US4245634A (en) 1975-01-22 1981-01-20 Hospital For Sick Children Artificial beta cell
US4036749A (en) 1975-04-30 1977-07-19 Anderson Donald R Purification of saline water
US3979274A (en) 1975-09-24 1976-09-07 The Yellow Springs Instrument Company, Inc. Membrane for enzyme electrodes
DE2645048A1 (en) 1975-10-08 1977-04-21 Gen Electric PLANTABLE ELECTROCHEMICAL SENSOR
US4016866A (en) 1975-12-18 1977-04-12 General Electric Company Implantable electrochemical sensor
US4055175A (en) 1976-05-07 1977-10-25 Miles Laboratories, Inc. Blood glucose control apparatus
DE2625834B2 (en) 1976-06-09 1978-10-12 Boehringer Mannheim Gmbh, 6800 Mannheim Method for the determination of substrates or enzyme activities
US4059406A (en) 1976-07-12 1977-11-22 E D T Supplies Limited Electrochemical detector system
US4076596A (en) 1976-10-07 1978-02-28 Leeds & Northrup Company Apparatus for electrolytically determining a species in a fluid and method of use
US4129128A (en) 1977-02-23 1978-12-12 Mcfarlane Richard H Securing device for catheter placement assembly
FR2387659A1 (en) 1977-04-21 1978-11-17 Armines GLYCEMIA CONTROL AND REGULATION DEVICE
US4098574A (en) 1977-08-01 1978-07-04 Eastman Kodak Company Glucose detection system free from fluoride-ion interference
US4178916A (en) 1977-09-26 1979-12-18 Mcnamara Elger W Diabetic insulin alarm system
JPS5912135B2 (en) 1977-09-28 1984-03-21 松下電器産業株式会社 enzyme electrode
US4151845A (en) 1977-11-25 1979-05-01 Miles Laboratories, Inc. Blood glucose control apparatus
DK151000C (en) 1978-02-17 1988-06-13 Radiometer As PROCEDURE AND APPARATUS FOR DETERMINING A PATIENT'S IN VIVO PLASMA-PH VALUE
FR2420331A1 (en) 1978-03-23 1979-10-19 Claude Bernard COMBINED MEASURING HEAD, INTENDED TO BE PLACED ON OR IN BODY PARTS, ALLOWING THE SIMULTANEOUS OBTAINING OF MEASUREMENT SIGNALS RELATING TO AN ELECTRICAL ACTIVITY ON THE ONE HAND AND AN IONIC ACTIVITY ON THE OTHER HAND
US4172770A (en) 1978-03-27 1979-10-30 Technicon Instruments Corporation Flow-through electrochemical system analytical method
DE2817363C2 (en) 1978-04-20 1984-01-26 Siemens AG, 1000 Berlin und 8000 München Method for determining the concentration of sugar and a suitable electrocatalytic sugar sensor
US4344438A (en) 1978-08-02 1982-08-17 The United States Of America As Represented By The Department Of Health, Education And Welfare Optical sensor of plasma constituents
HU177369B (en) 1978-09-08 1981-09-28 Radelkis Electrokemiai Industrial molecule-selective sensing device and method for producing same
US4240438A (en) 1978-10-02 1980-12-23 Wisconsin Alumni Research Foundation Method for monitoring blood glucose levels and elements
AU530979B2 (en) 1978-12-07 1983-08-04 Aus. Training Aids Pty. Ltd., Detecting position of bullet fired at target
US4247297A (en) 1979-02-23 1981-01-27 Miles Laboratories, Inc. Test means and method for interference resistant determination of oxidizing substances
US4573994A (en) 1979-04-27 1986-03-04 The Johns Hopkins University Refillable medication infusion apparatus
US4373527B1 (en) * 1979-04-27 1995-06-27 Univ Johns Hopkins Implantable programmable medication infusion system
US4365637A (en) 1979-07-05 1982-12-28 Dia-Med, Inc. Perspiration indicating alarm for diabetics
CS210174B1 (en) 1979-07-12 1982-01-29 Ivan Emmer Method of making the electric hygrometric sensor
US4401122A (en) 1979-08-02 1983-08-30 Children's Hospital Medical Center Cutaneous methods of measuring body substances
US4458686A (en) 1979-08-02 1984-07-10 Children's Hospital Medical Center Cutaneous methods of measuring body substances
US4450842A (en) 1980-04-25 1984-05-29 Cordis Corporation Solid state reference electrode
US4340458A (en) 1980-06-02 1982-07-20 Joslin Diabetes Center, Inc. Glucose sensor
US4404066A (en) 1980-08-25 1983-09-13 The Yellow Springs Instrument Company Method for quantitatively determining a particular substrate catalyzed by a multisubstrate enzyme
US4356074A (en) 1980-08-25 1982-10-26 The Yellow Springs Instrument Company, Inc. Substrate specific galactose oxidase enzyme electrodes
USRE32947E (en) 1980-09-30 1989-06-13 Baptist Medical Center Of Oklahoma, Inc. Magnetic transcutaneous mount for external device of an associated implant
US4352960A (en) 1980-09-30 1982-10-05 Baptist Medical Center Of Oklahoma, Inc. Magnetic transcutaneous mount for external device of an associated implant
US4425920A (en) 1980-10-24 1984-01-17 Purdue Research Foundation Apparatus and method for measurement and control of blood pressure
US4327725A (en) 1980-11-25 1982-05-04 Alza Corporation Osmotic device with hydrogel driving member
US4390621A (en) 1980-12-15 1983-06-28 Miles Laboratories, Inc. Method and device for detecting glucose concentration
US4436094A (en) 1981-03-09 1984-03-13 Evreka, Inc. Monitor for continuous in vivo measurement of glucose concentration
AT369254B (en) 1981-05-07 1982-12-27 Otto Dipl Ing Dr Tech Prohaska MEDICAL PROBE
FR2508305B1 (en) 1981-06-25 1986-04-11 Slama Gerard DEVICE FOR CAUSING A LITTLE BITE TO COLLECT A BLOOD DROP
US4440175A (en) 1981-08-10 1984-04-03 University Patents, Inc. Membrane electrode for non-ionic species
DE3138194A1 (en) 1981-09-25 1983-04-14 Basf Ag, 6700 Ludwigshafen WATER-INSOLUBLE POROESES PROTEIN MATERIAL, THEIR PRODUCTION AND USE
DE3278334D1 (en) 1981-10-23 1988-05-19 Genetics Int Inc Sensor for components of a liquid mixture
US4431004A (en) 1981-10-27 1984-02-14 Bessman Samuel P Implantable glucose sensor
US4418148A (en) 1981-11-05 1983-11-29 Miles Laboratories, Inc. Multilayer enzyme electrode membrane
US4494950A (en) 1982-01-19 1985-01-22 The Johns Hopkins University Plural module medication delivery system
JPS58153154A (en) 1982-03-09 1983-09-12 Ajinomoto Co Inc Qualified electrode
US4581336A (en) 1982-04-26 1986-04-08 Uop Inc. Surface-modified electrodes
FI831399L (en) 1982-04-29 1983-10-30 Agripat Sa KONTAKTLINS AV HAERDAD POLYVINYL ALCOHOL
DE3221339A1 (en) 1982-06-05 1983-12-08 Basf Ag, 6700 Ludwigshafen METHOD FOR THE ELECTROCHEMICAL HYDRATION OF NICOTINAMIDADENINE-DINUCLEOTIDE
US4427770A (en) 1982-06-14 1984-01-24 Miles Laboratories, Inc. High glucose-determining analytical element
EP0098592A3 (en) 1982-07-06 1985-08-21 Fujisawa Pharmaceutical Co., Ltd. Portable artificial pancreas
US4509531A (en) 1982-07-28 1985-04-09 Teledyne Industries, Inc. Personal physiological monitor
DE3228551A1 (en) 1982-07-30 1984-02-02 Siemens AG, 1000 Berlin und 8000 München METHOD FOR DETERMINING SUGAR CONCENTRATION
US4534356A (en) 1982-07-30 1985-08-13 Diamond Shamrock Chemicals Company Solid state transcutaneous blood gas sensors
US4571292A (en) 1982-08-12 1986-02-18 Case Western Reserve University Apparatus for electrochemical measurements
US4552840A (en) 1982-12-02 1985-11-12 California And Hawaiian Sugar Company Enzyme electrode and method for dextran analysis
US4527240A (en) 1982-12-29 1985-07-02 Kvitash Vadim I Balascopy method for detecting and rapidly evaluating multiple imbalances within multi-parametric systems
US4461691A (en) 1983-02-10 1984-07-24 The United States Of America As Represented By The United States Department Of Energy Organic conductive films for semiconductor electrodes
US4679562A (en) 1983-02-16 1987-07-14 Cardiac Pacemakers, Inc. Glucose sensor
IT1170375B (en) 1983-04-19 1987-06-03 Giuseppe Bombardieri Implantable device for measuring body fluid parameters
US5509410A (en) 1983-06-06 1996-04-23 Medisense, Inc. Strip electrode including screen printing of a single layer
CA1219040A (en) 1983-05-05 1987-03-10 Elliot V. Plotkin Measurement of enzyme-catalysed reactions
CA1226036A (en) 1983-05-05 1987-08-25 Irving J. Higgins Analytical equipment and sensor electrodes therefor
US5682884A (en) 1983-05-05 1997-11-04 Medisense, Inc. Strip electrode with screen printing
CA1218704A (en) 1983-05-05 1987-03-03 Graham Davis Assay systems using more than one enzyme
US4484987A (en) 1983-05-19 1984-11-27 The Regents Of The University Of California Method and membrane applicable to implantable sensor
US4650547A (en) 1983-05-19 1987-03-17 The Regents Of The University Of California Method and membrane applicable to implantable sensor
US4524114A (en) 1983-07-05 1985-06-18 Allied Corporation Bifunctional air electrode
US4538616A (en) 1983-07-25 1985-09-03 Robert Rogoff Blood sugar level sensing and monitoring transducer
US4655880A (en) 1983-08-01 1987-04-07 Case Western Reserve University Apparatus and method for sensing species, substances and substrates using oxidase
US4543955A (en) 1983-08-01 1985-10-01 Cordis Corporation System for controlling body implantable action device
SE8305704D0 (en) 1983-10-18 1983-10-18 Leo Ab Cuvette
US4560534A (en) 1983-11-02 1985-12-24 Miles Laboratories, Inc. Polymer catalyst transducers
US4522690A (en) 1983-12-01 1985-06-11 Honeywell Inc. Electrochemical sensing of carbon monoxide
US6017335A (en) 1983-12-12 2000-01-25 Burnham; Warren R. Method for making a tubular product, especially a catheter, and article made thereby
WO1985002627A1 (en) 1983-12-16 1985-06-20 Genetics International, Inc. Assay for nucleic acids
DE3571456D1 (en) 1984-04-30 1989-08-17 Stiftung R E Process for the sensitization of an oxidoreduction photocalatyst, and photocatalyst thus obtained
US5141868A (en) 1984-06-13 1992-08-25 Internationale Octrooi Maatschappij "Octropa" Bv Device for use in chemical test procedures
DK8601218A (en) 1984-07-18 1986-03-17
DE3429596A1 (en) 1984-08-10 1986-02-20 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR THE PHYSIOLOGICAL FREQUENCY CONTROL OF A PACEMAKER PROVIDED WITH A PICTURE ELECTRODE
US4820399A (en) 1984-08-31 1989-04-11 Shimadzu Corporation Enzyme electrodes
CA1254091A (en) 1984-09-28 1989-05-16 Vladimir Feingold Implantable medication infusion system
JPS61111428A (en) * 1984-11-06 1986-05-29 Terumo Corp Electronic clinical thermometer
US4717673A (en) 1984-11-23 1988-01-05 Massachusetts Institute Of Technology Microelectrochemical devices
US4721601A (en) 1984-11-23 1988-01-26 Massachusetts Institute Of Technology Molecule-based microelectronic devices
JPH0617889B2 (en) 1984-11-27 1994-03-09 株式会社日立製作所 Biochemical sensor
EP0186210B1 (en) 1984-12-28 1992-04-22 TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION Ion sensor
GB8500729D0 (en) 1985-01-11 1985-02-13 Hill H A O Surface-modified electrode
DE3502913C1 (en) * 1985-01-29 1986-07-03 Günter Prof. Dr.rer.nat. 5100 Aachen Rau Sensor for non-invasive detection of electrophysiological values
AU5481786A (en) 1985-03-20 1986-09-25 Hochmair, E.S. Transcutaneous power and signal transmission system
US5279294A (en) 1985-04-08 1994-01-18 Cascade Medical, Inc. Medical diagnostic system
US4627445A (en) 1985-04-08 1986-12-09 Garid, Inc. Glucose medical monitoring system
US4781798A (en) 1985-04-19 1988-11-01 The Regents Of The University Of California Transparent multi-oxygen sensor array and method of using same
US4671288A (en) 1985-06-13 1987-06-09 The Regents Of The University Of California Electrochemical cell sensor for continuous short-term use in tissues and blood
DE3687646T3 (en) 1985-06-21 2001-05-31 Matsushita Electric Ind Co Ltd BIOSENSOR AND THEIR PRODUCTION.
US4938860A (en) 1985-06-28 1990-07-03 Miles Inc. Electrode for electrochemical sensors
US4796634A (en) 1985-08-09 1989-01-10 Lawrence Medical Systems, Inc. Methods and apparatus for monitoring cardiac output
US4805624A (en) 1985-09-09 1989-02-21 The Montefiore Hospital Association Of Western Pa Low-potential electrochemical redox sensors
US4680268A (en) 1985-09-18 1987-07-14 Children's Hospital Medical Center Implantable gas-containing biosensor and method for measuring an analyte such as glucose
US4890620A (en) 1985-09-20 1990-01-02 The Regents Of The University Of California Two-dimensional diffusion glucose substrate sensing electrode
US4627908A (en) 1985-10-24 1986-12-09 Chevron Research Company Process for stabilizing lube base stocks derived from bright stock
US4830959A (en) 1985-11-11 1989-05-16 Medisense, Inc. Electrochemical enzymic assay procedures
GB8529300D0 (en) 1985-11-28 1986-01-02 Ici Plc Membrane
US4755173A (en) 1986-02-25 1988-07-05 Pacesetter Infusion, Ltd. Soft cannula subcutaneous injection set
US4776944A (en) 1986-03-20 1988-10-11 Jiri Janata Chemical selective sensors utilizing admittance modulated membranes
US4685463A (en) 1986-04-03 1987-08-11 Williams R Bruce Device for continuous in vivo measurement of blood glucose concentrations
US4726378A (en) 1986-04-11 1988-02-23 Minnesota Mining And Manufacturing Company Adjustable magnetic supercutaneous device and transcutaneous coupling apparatus
US4994167A (en) 1986-04-15 1991-02-19 Markwell Medical Institute, Inc. Biological fluid measuring device
US4757022A (en) 1986-04-15 1988-07-12 Markwell Medical Institute, Inc. Biological fluid measuring device
US4711247A (en) * 1986-04-18 1987-12-08 Henry Fishman Allergy testing method and apparatus
US4909908A (en) 1986-04-24 1990-03-20 Pepi Ross Electrochemical cncentration detector method
DE3614821A1 (en) 1986-05-02 1987-11-05 Siemens Ag IMPLANTABLE, CALIBRABLE MEASURING DEVICE FOR A BODY SUBSTANCE AND CALIBRATION METHOD
US4703756A (en) 1986-05-06 1987-11-03 The Regents Of The University Of California Complete glucose monitoring system with an implantable, telemetered sensor module
US4731726A (en) 1986-05-19 1988-03-15 Healthware Corporation Patient-operated glucose monitor and diabetes management system
GB8612861D0 (en) 1986-05-27 1986-07-02 Cambridge Life Sciences Immobilised enzyme biosensors
US4969468A (en) 1986-06-17 1990-11-13 Alfred E. Mann Foundation For Scientific Research Electrode array for use in connection with a living body and method of manufacture
AU598820B2 (en) 1986-06-20 1990-07-05 Molecular Devices Corporation Zero volume electrochemical cell
JPS636451A (en) 1986-06-27 1988-01-12 Terumo Corp Enzyme sensor
US4764416A (en) 1986-07-01 1988-08-16 Mitsubishi Denki Kabushiki Kaisha Electric element circuit using oxidation-reduction substances
US4784736A (en) 1986-07-07 1988-11-15 Bend Research, Inc. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers
US4917800A (en) 1986-07-07 1990-04-17 Bend Research, Inc. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers
US4726716A (en) 1986-07-21 1988-02-23 Mcguire Thomas V Fastener for catheter
US4894137A (en) 1986-09-12 1990-01-16 Omron Tateisi Electronics Co. Enzyme electrode
US5055171A (en) 1986-10-06 1991-10-08 T And G Corporation Ionic semiconductor materials and applications thereof
US4865038A (en) 1986-10-09 1989-09-12 Novametrix Medical Systems, Inc. Sensor appliance for non-invasive monitoring
US4897162A (en) 1986-11-14 1990-01-30 The Cleveland Clinic Foundation Pulse voltammetry
DE3700119A1 (en) 1987-01-03 1988-07-14 Inst Diabetestechnologie Gemei IMPLANTABLE ELECTROCHEMICAL SENSOR
US4934369A (en) 1987-01-30 1990-06-19 Minnesota Mining And Manufacturing Company Intravascular blood parameter measurement system
GB2201248B (en) 1987-02-24 1991-04-17 Ici Plc Enzyme electrode sensors
US4854322A (en) 1987-02-25 1989-08-08 Ash Medical Systems, Inc. Capillary filtration and collection device for long-term monitoring of blood constituents
US5002054A (en) 1987-02-25 1991-03-26 Ash Medical Systems, Inc. Interstitial filtration and collection device and method for long-term monitoring of physiological constituents of the body
US4777953A (en) 1987-02-25 1988-10-18 Ash Medical Systems, Inc. Capillary filtration and collection method for long-term monitoring of blood constituents
US4848351A (en) 1987-03-04 1989-07-18 Sentry Medical Products, Inc. Medical electrode assembly
US4923586A (en) 1987-03-31 1990-05-08 Daikin Industries, Ltd. Enzyme electrode unit
US4935345A (en) 1987-04-07 1990-06-19 Arizona Board Of Regents Implantable microelectronic biochemical sensor incorporating thin film thermopile
US4759828A (en) 1987-04-09 1988-07-26 Nova Biomedical Corporation Glucose electrode and method of determining glucose
US5352348A (en) 1987-04-09 1994-10-04 Nova Biomedical Corporation Method of using enzyme electrode
US4749985A (en) 1987-04-13 1988-06-07 United States Of America As Represented By The United States Department Of Energy Functional relationship-based alarm processing
US4781683A (en) 1987-04-22 1988-11-01 The Johns Hopkins University Single-use, self-annulling injection syringe
EP0290683A3 (en) 1987-05-01 1988-12-14 Diva Medical Systems B.V. Diabetes management system and apparatus
US5286364A (en) 1987-06-08 1994-02-15 Rutgers University Surface-modified electochemical biosensor
US4822337A (en) 1987-06-22 1989-04-18 Stanley Newhouse Insulin delivery method and apparatus
JPH07122624B2 (en) 1987-07-06 1995-12-25 ダイキン工業株式会社 Biosensor
GB8718430D0 (en) 1987-08-04 1987-09-09 Ici Plc Sensor
US4874500A (en) 1987-07-15 1989-10-17 Sri International Microelectrochemical sensor and sensor array
JPS6423155A (en) 1987-07-17 1989-01-25 Daikin Ind Ltd Electrode refreshing device for biosensor
DE3854650T2 (en) 1987-08-11 1996-03-21 Terumo Corp AUTOMATIC SPHYGMOMANOMETER.
US4974929A (en) 1987-09-22 1990-12-04 Baxter International, Inc. Fiber optical probe connector for physiologic measurement devices
NL8702370A (en) 1987-10-05 1989-05-01 Groningen Science Park METHOD AND SYSTEM FOR GLUCOSE DETERMINATION AND USEABLE MEASURING CELL ASSEMBLY.
US4815469A (en) 1987-10-08 1989-03-28 Siemens-Pacesetter, Inc. Implantable blood oxygen sensor and method of use
GB8725936D0 (en) 1987-11-05 1987-12-09 Genetics Int Inc Sensing system
JPH01140054A (en) 1987-11-26 1989-06-01 Nec Corp Glucose sensor
US4813424A (en) 1987-12-23 1989-03-21 University Of New Mexico Long-life membrane electrode for non-ionic species
US5108564A (en) 1988-03-15 1992-04-28 Tall Oak Ventures Method and apparatus for amperometric diagnostic analysis
DE68924026T3 (en) 1988-03-31 2008-01-10 Matsushita Electric Industrial Co., Ltd., Kadoma BIOSENSOR AND ITS MANUFACTURE.
GB8817421D0 (en) 1988-07-21 1988-08-24 Medisense Inc Bioelectrochemical electrodes
US4954129A (en) 1988-07-25 1990-09-04 Abbott Laboratories Hydrodynamic clot flushing
US4925268A (en) 1988-07-25 1990-05-15 Abbott Laboratories Fiber-optic physiological probes
EP0353328A1 (en) 1988-08-03 1990-02-07 Dräger Nederland B.V. A polarographic-amperometric three-electrode sensor
US5340722A (en) 1988-08-24 1994-08-23 Avl Medical Instruments Ag Method for the determination of the concentration of an enzyme substrate and a sensor for carrying out the method
US5264106A (en) 1988-10-07 1993-11-23 Medisense, Inc. Enhanced amperometric sensor
US5108889A (en) 1988-10-12 1992-04-28 Thorne, Smith, Astill Technologies, Inc. Assay for determining analyte using mercury release followed by detection via interaction with aluminum
US4895147A (en) * 1988-10-28 1990-01-23 Sherwood Medical Company Lancet injector
US5360404A (en) 1988-12-14 1994-11-01 Inviro Medical Devices Ltd. Needle guard and needle assembly for syringe
EP0384504A1 (en) 1989-02-24 1990-08-29 Duphar International Research B.V Detection strip for detecting and identifying chemical air contaminants, and portable detection kit comprising said strips
DE69027233T2 (en) 1989-03-03 1996-10-10 Edward W Stark Signal processing method and apparatus
US5205920A (en) 1989-03-03 1993-04-27 Noboru Oyama Enzyme sensor and method of manufacturing the same
US5089112A (en) 1989-03-20 1992-02-18 Associated Universities, Inc. Electrochemical biosensor based on immobilized enzymes and redox polymers
JPH02298855A (en) 1989-03-20 1990-12-11 Assoc Univ Inc Electrochemical biosensor using immobilized enzyme and redox polymer
US4953552A (en) 1989-04-21 1990-09-04 Demarzo Arthur P Blood glucose monitoring system
EP0396788A1 (en) 1989-05-08 1990-11-14 Dräger Nederland B.V. Process and sensor for measuring the glucose content of glucosecontaining fluids
US4988341A (en) * 1989-06-05 1991-01-29 Eastman Kodak Company Sterilizing dressing device and method for skin puncture
US5198367A (en) 1989-06-09 1993-03-30 Masuo Aizawa Homogeneous amperometric immunoassay
FR2648353B1 (en) 1989-06-16 1992-03-27 Europhor Sa MICRODIALYSIS PROBE
CH677149A5 (en) 1989-07-07 1991-04-15 Disetronic Ag
US5431160A (en) 1989-07-19 1995-07-11 University Of New Mexico Miniature implantable refillable glucose sensor and material therefor
US4986271A (en) 1989-07-19 1991-01-22 The University Of New Mexico Vivo refillable glucose sensor
US5013161A (en) 1989-07-28 1991-05-07 Becton, Dickinson And Company Electronic clinical thermometer
US5264105A (en) 1989-08-02 1993-11-23 Gregg Brian A Enzyme electrodes
US5264104A (en) 1989-08-02 1993-11-23 Gregg Brian A Enzyme electrodes
US5320725A (en) 1989-08-02 1994-06-14 E. Heller & Company Electrode and method for the detection of hydrogen peroxide
US5262035A (en) 1989-08-02 1993-11-16 E. Heller And Company Enzyme electrodes
US4944299A (en) 1989-08-08 1990-07-31 Siemens-Pacesetter, Inc. High speed digital telemetry system for implantable device
US5190041A (en) 1989-08-11 1993-03-02 Palti Yoram Prof System for monitoring and controlling blood glucose
US5101814A (en) 1989-08-11 1992-04-07 Palti Yoram Prof System for monitoring and controlling blood glucose
US5095904A (en) 1989-09-08 1992-03-17 Cochlear Pty. Ltd. Multi-peak speech procession
US5050612A (en) 1989-09-12 1991-09-24 Matsumura Kenneth N Device for computer-assisted monitoring of the body
FR2652736A1 (en) 1989-10-06 1991-04-12 Neftel Frederic IMPLANTABLE DEVICE FOR EVALUATING THE RATE OF GLUCOSE.
US5036860A (en) 1989-11-24 1991-08-06 Medical Device Technologies, Inc. Disposable soft tissue biopsy apparatus
EP0429076B1 (en) 1989-11-24 1996-01-31 Matsushita Electric Industrial Co., Ltd. Preparation of biosensor
US5140985A (en) * 1989-12-11 1992-08-25 Schroeder Jon M Noninvasive blood glucose measuring device
US5082550A (en) 1989-12-11 1992-01-21 The United States Of America As Represented By The Department Of Energy Enzyme electrochemical sensor electrode and method of making it
US5342789A (en) 1989-12-14 1994-08-30 Sensor Technologies, Inc. Method and device for detecting and quantifying glucose in body fluids
AU634863B2 (en) 1989-12-15 1993-03-04 Roche Diagnostics Operations Inc. Redox mediator reagent and biosensor
US5286362A (en) 1990-02-03 1994-02-15 Boehringer Mannheim Gmbh Method and sensor electrode system for the electrochemical determination of an analyte or an oxidoreductase as well as the use of suitable compounds therefor
US5109850A (en) 1990-02-09 1992-05-05 Massachusetts Institute Of Technology Automatic blood monitoring for medication delivery method and apparatus
US5161532A (en) 1990-04-19 1992-11-10 Teknekron Sensor Development Corporation Integral interstitial fluid sensor
US5165407A (en) 1990-04-19 1992-11-24 The University Of Kansas Implantable glucose sensor
US5202261A (en) 1990-07-19 1993-04-13 Miles Inc. Conductive sensors and their use in diagnostic assays
US5250439A (en) 1990-07-19 1993-10-05 Miles Inc. Use of conductive sensors in diagnostic assays
EP0550641B1 (en) 1990-09-28 1994-05-25 Pfizer Inc. Dispensing device containing a hydrophobic medium
US5058592A (en) 1990-11-02 1991-10-22 Whisler G Douglas Adjustable mountable doppler ultrasound transducer device
DE69126885T3 (en) 1990-12-12 2001-10-18 Sherwood Serv Ag CALIBRATION OF AN INFRARED THERMOMETER BY MEANS OF AREA CALIBRATION DISPLAY
FR2673289B1 (en) 1991-02-21 1994-06-17 Asulab Sa SENSOR FOR MEASURING THE QUANTITY OF A COMPONENT IN SOLUTION.
US5262305A (en) 1991-03-04 1993-11-16 E. Heller & Company Interferant eliminating biosensors
US5593852A (en) 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
JPH04278450A (en) 1991-03-04 1992-10-05 Adam Heller Biosensor and method for analyzing subject
US5469855A (en) 1991-03-08 1995-11-28 Exergen Corporation Continuous temperature monitor
US5238729A (en) 1991-04-05 1993-08-24 Minnesota Mining And Manufacturing Company Sensors based on nanosstructured composite films
US5208154A (en) 1991-04-08 1993-05-04 The United States Of America As Represented By The Department Of Energy Reversibly immobilized biological materials in monolayer films on electrodes
US5192416A (en) 1991-04-09 1993-03-09 New Mexico State University Technology Transfer Corporation Method and apparatus for batch injection analysis
US5293546A (en) 1991-04-17 1994-03-08 Martin Marietta Corporation Oxide coated metal grid electrode structure in display devices
US5122925A (en) 1991-04-22 1992-06-16 Control Products, Inc. Package for electronic components
JP3118015B2 (en) 1991-05-17 2000-12-18 アークレイ株式会社 Biosensor and separation and quantification method using the same
US5209229A (en) 1991-05-20 1993-05-11 Telectronics Pacing Systems, Inc. Apparatus and method employing plural electrode configurations for cardioversion of atrial fibrillation in an arrhythmia control system
FI88223C (en) 1991-05-22 1993-04-13 Polar Electro Oy Telemetric transmitter unit
JP2816262B2 (en) 1991-07-09 1998-10-27 工業技術院長 Carbon microsensor electrode and method of manufacturing the same
US5284156A (en) 1991-08-30 1994-02-08 M3 Systems, Inc. Automatic tissue sampling apparatus
GB9120144D0 (en) 1991-09-20 1991-11-06 Imperial College A dialysis electrode device
US5234835A (en) 1991-09-26 1993-08-10 C.R. Bard, Inc. Precalibrated fiber optic sensing method
US5322063A (en) 1991-10-04 1994-06-21 Eli Lilly And Company Hydrophilic polyurethane membranes for electrochemical glucose sensors
US5264103A (en) 1991-10-18 1993-11-23 Matsushita Electric Industrial Co., Ltd. Biosensor and a method for measuring a concentration of a substrate in a sample
US5217595A (en) 1991-10-25 1993-06-08 The Yellow Springs Instrument Company, Inc. Electrochemical gas sensor
US5415164A (en) 1991-11-04 1995-05-16 Biofield Corp. Apparatus and method for screening and diagnosing trauma or disease in body tissues
DE4139122C1 (en) 1991-11-28 1993-04-08 Fenzlein, Paul-Gerhard, 8500 Nuernberg, De
US5372427A (en) 1991-12-19 1994-12-13 Texas Instruments Incorporated Temperature sensor
US5271815A (en) 1991-12-26 1993-12-21 Via Medical Corporation Method for measuring glucose
US5285792A (en) 1992-01-10 1994-02-15 Physio-Control Corporation System for producing prioritized alarm messages in a medical instrument
US5246867A (en) 1992-01-17 1993-09-21 University Of Maryland At Baltimore Determination and quantification of saccharides by luminescence lifetimes and energy transfer
NL9200207A (en) 1992-02-05 1993-09-01 Nedap Nv IMPLANTABLE BIOMEDICAL SENSOR DEVICE, IN PARTICULAR FOR MEASUREMENT OF THE GLUCOSE CONCENTRATION.
US5328927A (en) 1992-03-03 1994-07-12 Merck Sharpe & Dohme, Ltd. Hetercyclic compounds, processes for their preparation and pharmaceutical compositions containing them
US5263244A (en) 1992-04-17 1993-11-23 Gould Inc. Method of making a flexible printed circuit sensor assembly for detecting optical pulses
US5711001A (en) 1992-05-08 1998-01-20 Motorola, Inc. Method and circuit for acquisition by a radio receiver
US6785568B2 (en) 1992-05-18 2004-08-31 Non-Invasive Technology Inc. Transcranial examination of the brain
GB9211402D0 (en) 1992-05-29 1992-07-15 Univ Manchester Sensor devices
US6283761B1 (en) 1992-09-08 2001-09-04 Raymond Anthony Joao Apparatus and method for processing and/or for providing healthcare information and/or healthcare-related information
US5400782A (en) 1992-10-07 1995-03-28 Graphic Controls Corporation Integral medical electrode including a fusible conductive substrate
CA2107852C (en) 1992-10-09 2004-09-07 Gerald Leigh Metcalf Trocar
US5421816A (en) 1992-10-14 1995-06-06 Endodermic Medical Technologies Company Ultrasonic transdermal drug delivery system
US5387327A (en) 1992-10-19 1995-02-07 Duquesne University Of The Holy Ghost Implantable non-enzymatic electrochemical glucose sensor
US5320098A (en) 1992-10-20 1994-06-14 Sun Microsystems, Inc. Optical transdermal link
WO1994010553A1 (en) 1992-10-23 1994-05-11 Optex Biomedical, Inc. Fibre-optic probe for the measurement of fluid parameters
US5601435A (en) 1994-11-04 1997-02-11 Intercare Method and apparatus for interactively monitoring a physiological condition and for interactively providing health related information
US5918603A (en) 1994-05-23 1999-07-06 Health Hero Network, Inc. Method for treating medical conditions using a microprocessor-based video game
US5956501A (en) 1997-01-10 1999-09-21 Health Hero Network, Inc. Disease simulation system and method
US5899855A (en) 1992-11-17 1999-05-04 Health Hero Network, Inc. Modular microprocessor-based health monitoring system
ZA938555B (en) 1992-11-23 1994-08-02 Lilly Co Eli Technique to improve the performance of electrochemical sensors
DK148592D0 (en) 1992-12-10 1992-12-10 Novo Nordisk As APPARATUS
US5299571A (en) 1993-01-22 1994-04-05 Eli Lilly And Company Apparatus and method for implantation of sensors
FR2701117B1 (en) 1993-02-04 1995-03-10 Asulab Sa Electrochemical measurement system with multizone sensor, and its application to glucose measurement.
DE59410066D1 (en) * 1993-04-23 2002-04-11 Boehringer Mannheim Gmbh System for analyzing the contents of liquid samples
US5540664A (en) 1993-05-27 1996-07-30 Washington Biotech Corporation Reloadable automatic or manual emergency injection system
DE4318519C2 (en) 1993-06-03 1996-11-28 Fraunhofer Ges Forschung Electrochemical sensor
US5575563A (en) 1993-07-15 1996-11-19 Chiu; Job Multiusage thermometer
DE4329898A1 (en) * 1993-09-04 1995-04-06 Marcus Dr Besson Wireless medical diagnostic and monitoring device
US5582184A (en) 1993-10-13 1996-12-10 Integ Incorporated Interstitial fluid collection and constituent measurement
US5885211A (en) 1993-11-15 1999-03-23 Spectrix, Inc. Microporation of human skin for monitoring the concentration of an analyte
US5997501A (en) 1993-11-18 1999-12-07 Elan Corporation, Plc Intradermal drug delivery device
US5791344A (en) 1993-11-19 1998-08-11 Alfred E. Mann Foundation For Scientific Research Patient monitoring system
US5497772A (en) 1993-11-19 1996-03-12 Alfred E. Mann Foundation For Scientific Research Glucose monitoring system
US5724968A (en) 1993-12-29 1998-03-10 First Opinion Corporation Computerized medical diagnostic system including meta function
US5589326A (en) 1993-12-30 1996-12-31 Boehringer Mannheim Corporation Osmium-containing redox mediator
US5320715A (en) 1994-01-14 1994-06-14 Lloyd Berg Separation of 1-pentanol from cyclopentanol by extractive distillation
DE4401400A1 (en) 1994-01-19 1995-07-20 Ernst Prof Dr Pfeiffer Method and arrangement for continuously monitoring the concentration of a metabolite
US5437999A (en) 1994-02-22 1995-08-01 Boehringer Mannheim Corporation Electrochemical sensor
US5543326A (en) 1994-03-04 1996-08-06 Heller; Adam Biosensor including chemically modified enzymes
US5536249A (en) 1994-03-09 1996-07-16 Visionary Medical Products, Inc. Pen-type injector with a microprocessor and blood characteristic monitor
US5391250A (en) 1994-03-15 1995-02-21 Minimed Inc. Method of fabricating thin film sensors
US5390671A (en) 1994-03-15 1995-02-21 Minimed Inc. Transcutaneous sensor insertion set
US5609575A (en) * 1994-04-11 1997-03-11 Graseby Medical Limited Infusion pump and method with dose-rate calculation
JP3061351B2 (en) 1994-04-25 2000-07-10 松下電器産業株式会社 Method and apparatus for quantifying specific compounds
US5569186A (en) 1994-04-25 1996-10-29 Minimed Inc. Closed loop infusion pump system with removable glucose sensor
DE4415896A1 (en) 1994-05-05 1995-11-09 Boehringer Mannheim Gmbh Analysis system for monitoring the concentration of an analyte in the blood of a patient
US5545191A (en) 1994-05-06 1996-08-13 Alfred E. Mann Foundation For Scientific Research Method for optimally positioning and securing the external unit of a transcutaneous transducer of the skin of a living body
US5472317A (en) 1994-06-03 1995-12-05 Minimed Inc. Mounting clip for a medication infusion pump
US5494562A (en) 1994-06-27 1996-02-27 Ciba Corning Diagnostics Corp. Electrochemical sensors
CA2159052C (en) 1994-10-28 2007-03-06 Rainer Alex Injection device
IE72524B1 (en) 1994-11-04 1997-04-23 Elan Med Tech Analyte-controlled liquid delivery device and analyte monitor
US5632557A (en) 1994-12-16 1997-05-27 Weed Instrument Company, Inc. Modular temperature sensing apparatus
US5562713A (en) 1995-01-18 1996-10-08 Pacesetter, Inc. Bidirectional telemetry apparatus and method for implantable device
US5551427A (en) 1995-02-13 1996-09-03 Altman; Peter A. Implantable device for the effective elimination of cardiac arrhythmogenic sites
US5568806A (en) 1995-02-16 1996-10-29 Minimed Inc. Transcutaneous sensor insertion set
US5586553A (en) 1995-02-16 1996-12-24 Minimed Inc. Transcutaneous sensor insertion set
US5651869A (en) 1995-02-28 1997-07-29 Matsushita Electric Industrial Co., Ltd. Biosensor
US5596150A (en) 1995-03-08 1997-01-21 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Capacitance probe for fluid flow and volume measurements
JPH08247987A (en) 1995-03-15 1996-09-27 Omron Corp Portable measuring instrument
US5582697A (en) 1995-03-17 1996-12-10 Matsushita Electric Industrial Co., Ltd. Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same
US5788833A (en) 1995-03-27 1998-08-04 California Institute Of Technology Sensors for detecting analytes in fluids
US5752512A (en) 1995-05-10 1998-05-19 Massachusetts Institute Of Technology Apparatus and method for non-invasive blood analyte measurement
US5628310A (en) 1995-05-19 1997-05-13 Joseph R. Lakowicz Method and apparatus to perform trans-cutaneous analyte monitoring
US5567302A (en) 1995-06-07 1996-10-22 Molecular Devices Corporation Electrochemical system for rapid detection of biochemical agents that catalyze a redox potential change
US5743262A (en) 1995-06-07 1998-04-28 Masimo Corporation Blood glucose monitoring system
US5584813A (en) 1995-06-07 1996-12-17 Minimed Inc. Subcutaneous injection set
US5638832A (en) 1995-06-07 1997-06-17 Interval Research Corporation Programmable subcutaneous visible implant
US5995860A (en) 1995-07-06 1999-11-30 Thomas Jefferson University Implantable sensor and system for measurement and control of blood constituent levels
US5613071A (en) * 1995-07-14 1997-03-18 Intel Corporation Method and apparatus for providing remote memory access in a distributed memory multiprocessor system
US6001065A (en) 1995-08-02 1999-12-14 Ibva Technologies, Inc. Method and apparatus for measuring and analyzing physiological signals for active or passive control of physical and virtual spaces and the contents therein
US5766131A (en) 1995-08-04 1998-06-16 Seiko Epson Corporation Pulse-wave measuring apparatus
US5749656A (en) 1995-08-11 1998-05-12 General Motors Corporation Thermal probe assembly with mold-over crimp sensor packaging
DE19530376C2 (en) 1995-08-18 1999-09-02 Fresenius Ag Biosensor
US5682233A (en) 1995-09-08 1997-10-28 Integ, Inc. Interstitial fluid sampler
IE77523B1 (en) 1995-09-11 1997-12-17 Elan Med Tech Medicament delivery device
DE19534887B4 (en) * 1995-09-20 2004-04-15 Robert Bosch Gmbh temperature sensor
US5628890A (en) 1995-09-27 1997-05-13 Medisense, Inc. Electrochemical sensor
US5972199A (en) 1995-10-11 1999-10-26 E. Heller & Company Electrochemical analyte sensors using thermostable peroxidase
US5665222A (en) 1995-10-11 1997-09-09 E. Heller & Company Soybean peroxidase electrochemical sensor
US5741211A (en) 1995-10-26 1998-04-21 Medtronic, Inc. System and method for continuous monitoring of diabetes-related blood constituents
US5711861A (en) 1995-11-22 1998-01-27 Ward; W. Kenneth Device for monitoring changes in analyte concentration
ZA9610374B (en) 1995-12-11 1997-06-23 Elan Med Tech Cartridge-based drug delivery device
US5827184A (en) 1995-12-29 1998-10-27 Minnesota Mining And Manufacturing Company Self-packaging bioelectrodes
US5746697A (en) 1996-02-09 1998-05-05 Nellcor Puritan Bennett Incorporated Medical diagnostic apparatus with sleep mode
FI118509B (en) 1996-02-12 2007-12-14 Nokia Oyj A method and apparatus for predicting blood glucose levels in a patient
FI960636A (en) 1996-02-12 1997-08-13 Nokia Mobile Phones Ltd A procedure for monitoring the health of a patient
US5708247A (en) 1996-02-14 1998-01-13 Selfcare, Inc. Disposable glucose test strips, and methods and compositions for making same
WO1997037618A1 (en) 1996-04-08 1997-10-16 Medtronic, Inc. Method of fixing a physiologic mitral valve bioprosthesis
US5733262A (en) * 1996-04-18 1998-03-31 Paul; Kamaljit S. Blood vessel cannulation device
DE19618597B4 (en) 1996-05-09 2005-07-21 Institut für Diabetestechnologie Gemeinnützige Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm Method for determining the concentration of tissue glucose
US5954685A (en) 1996-05-24 1999-09-21 Cygnus, Inc. Electrochemical sensor with dual purpose electrode
US5735285A (en) * 1996-06-04 1998-04-07 Data Critical Corp. Method and hand-held apparatus for demodulating and viewing frequency modulated biomedical signals
US5613978A (en) 1996-06-04 1997-03-25 Palco Laboratories Adjustable tip for lancet device
US6230051B1 (en) 1996-06-18 2001-05-08 Alza Corporation Device for enhancing transdermal agent delivery or sampling
AU3596597A (en) 1996-07-08 1998-02-02 Animas Corporation Implantable sensor and system for in vivo measurement and control of fluid constituent levels
US5771001A (en) 1996-11-18 1998-06-23 Cobb; Marlon J. Personal alarm system
US6004278A (en) 1996-12-05 1999-12-21 Mdc Investment Holdings, Inc. Fluid collection device with retractable needle
US6071249A (en) 1996-12-06 2000-06-06 Abbott Laboratories Method and apparatus for obtaining blood for diagnostic tests
US5964993A (en) 1996-12-19 1999-10-12 Implanted Biosystems Inc. Glucose sensor
US6122351A (en) 1997-01-21 2000-09-19 Med Graph, Inc. Method and system aiding medical diagnosis and treatment
US7329239B2 (en) 1997-02-05 2008-02-12 Medtronic Minimed, Inc. Insertion device for an insertion set and method of using the same
US6607509B2 (en) 1997-12-31 2003-08-19 Medtronic Minimed, Inc. Insertion device for an insertion set and method of using the same
US20070142776A9 (en) 1997-02-05 2007-06-21 Medtronic Minimed, Inc. Insertion device for an insertion set and method of using the same
US5851197A (en) 1997-02-05 1998-12-22 Minimed Inc. Injector for a subcutaneous infusion set
US6093172A (en) 1997-02-05 2000-07-25 Minimed Inc. Injector for a subcutaneous insertion set
EP0958495B1 (en) 1997-02-06 2002-11-13 Therasense, Inc. Small volume in vitro analyte sensor
EP1011426A1 (en) 1997-02-26 2000-06-28 Diasense, Inc. Individual calibration of blood glucose for supporting noninvasive self-monitoring blood glucose
US6159147A (en) 1997-02-28 2000-12-12 Qrs Diagnostics, Llc Personal computer card for collection of real-time biological data
US6558321B1 (en) 1997-03-04 2003-05-06 Dexcom, Inc. Systems and methods for remote monitoring and modulation of medical devices
US6741877B1 (en) 1997-03-04 2004-05-25 Dexcom, Inc. Device and method for determining analyte levels
US7192450B2 (en) 2003-05-21 2007-03-20 Dexcom, Inc. Porous membranes for use with implantable devices
US7657297B2 (en) * 2004-05-03 2010-02-02 Dexcom, Inc. Implantable analyte sensor
US9155496B2 (en) 1997-03-04 2015-10-13 Dexcom, Inc. Low oxygen in vivo analyte sensor
US6862465B2 (en) 1997-03-04 2005-03-01 Dexcom, Inc. Device and method for determining analyte levels
US7899511B2 (en) 2004-07-13 2011-03-01 Dexcom, Inc. Low oxygen in vivo analyte sensor
US20050033132A1 (en) 1997-03-04 2005-02-10 Shults Mark C. Analyte measuring device
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US6554795B2 (en) 1997-03-06 2003-04-29 Medtronic Ave, Inc. Balloon catheter and method of manufacture
US6270455B1 (en) 1997-03-28 2001-08-07 Health Hero Network, Inc. Networked system for interactive communications and remote monitoring of drug delivery
US6026321A (en) * 1997-04-02 2000-02-15 Suzuki Motor Corporation Apparatus and system for measuring electrical potential variations in human body
US5942979A (en) 1997-04-07 1999-08-24 Luppino; Richard On guard vehicle safety warning system
US5961451A (en) 1997-04-07 1999-10-05 Motorola, Inc. Noninvasive apparatus having a retaining member to retain a removable biosensor
US5987353A (en) 1997-04-10 1999-11-16 Khatchatrian; Robert G. Diagnostic complex for measurement of the condition of biological tissues and liquids
US6059946A (en) 1997-04-14 2000-05-09 Matsushita Electric Industrial Co., Ltd. Biosensor
US6186982B1 (en) 1998-05-05 2001-02-13 Elan Corporation, Plc Subcutaneous drug delivery device with improved filling system
US5779665A (en) 1997-05-08 1998-07-14 Minimed Inc. Transdermal introducer assembly
US5954643A (en) 1997-06-09 1999-09-21 Minimid Inc. Insertion set for a transcutaneous sensor
US7267665B2 (en) 1999-06-03 2007-09-11 Medtronic Minimed, Inc. Closed loop system for controlling insulin infusion
CA2294610A1 (en) 1997-06-16 1998-12-23 George Moshe Katz Methods of calibrating and testing a sensor for in vivo measurement of an analyte and devices for use in such methods
US5865804A (en) 1997-07-16 1999-02-02 Bachynsky; Nicholas Rotary cam syringe
US6232950B1 (en) 1997-08-28 2001-05-15 E Ink Corporation Rear electrode structures for displays
US6764581B1 (en) 1997-09-05 2004-07-20 Abbott Laboratories Electrode with thin working layer
US6071391A (en) * 1997-09-12 2000-06-06 Nok Corporation Enzyme electrode structure
US6117290A (en) 1997-09-26 2000-09-12 Pepex Biomedical, Llc System and method for measuring a bioanalyte such as lactate
US20020013538A1 (en) * 1997-09-30 2002-01-31 David Teller Method and apparatus for health signs monitoring
US5904671A (en) * 1997-10-03 1999-05-18 Navot; Nir Tampon wetness detection system
US5938679A (en) 1997-10-14 1999-08-17 Hewlett-Packard Company Apparatus and method for minimally invasive blood sampling
US6736957B1 (en) 1997-10-16 2004-05-18 Abbott Laboratories Biosensor electrode mediators for regeneration of cofactors and process for using
US6088608A (en) 1997-10-20 2000-07-11 Alfred E. Mann Foundation Electrochemical sensor and integrity tests therefor
US6119028A (en) 1997-10-20 2000-09-12 Alfred E. Mann Foundation Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces
FI107080B (en) 1997-10-27 2001-05-31 Nokia Mobile Phones Ltd measuring device
US6068399A (en) 1997-11-12 2000-05-30 K-Jump Health Co., Ltd. Cost-effective electronic thermometer
CA2305366C (en) 1997-11-12 2007-10-16 Lightouch Medical, Inc. Method for non-invasive measurement of an analyte
US6482176B1 (en) 1997-11-27 2002-11-19 Disetronic Licensing Ag Method and device for controlling the introduction depth of an injection needle
US6036924A (en) * 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6579690B1 (en) 1997-12-05 2003-06-17 Therasense, Inc. Blood analyte monitoring through subcutaneous measurement
DK1743667T3 (en) 1997-12-31 2012-06-18 Medtronic Minimed Inc Insertion device for an insertion set
CA2312919C (en) 1997-12-31 2004-12-14 Minimed, Inc. Insertion device for an insertion set and method of using the same
US6804543B2 (en) 1998-02-05 2004-10-12 Hema Metrics, Inc. Sensor for transcutaneous measurement of vascular access blood flow
US6056718A (en) 1998-03-04 2000-05-02 Minimed Inc. Medication infusion set
US6134461A (en) 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US6103033A (en) 1998-03-04 2000-08-15 Therasense, Inc. Process for producing an electrochemical biosensor
US6024699A (en) 1998-03-13 2000-02-15 Healthware Corporation Systems, methods and computer program products for monitoring, diagnosing and treating medical conditions of remotely located patients
US6197181B1 (en) 1998-03-20 2001-03-06 Semitool, Inc. Apparatus and method for electrolytically depositing a metal on a microelectronic workpiece
US6091975A (en) * 1998-04-01 2000-07-18 Alza Corporation Minimally invasive detecting device
US6728560B2 (en) * 1998-04-06 2004-04-27 The General Hospital Corporation Non-invasive tissue glucose level monitoring
JPH11296598A (en) 1998-04-07 1999-10-29 Seizaburo Arita System and method for predicting blood-sugar level and record medium where same method is recorded
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
GB2337122B (en) 1998-05-08 2002-11-13 Medisense Inc Test strip
CA2311487C (en) 1998-05-13 2004-02-10 Cygnus, Inc. Signal processing for measurement of physiological analytes
DE19821723C2 (en) 1998-05-14 2000-07-06 Disetronic Licensing Ag Catheter head for subcutaneous administration of an active ingredient
US6121611A (en) 1998-05-20 2000-09-19 Molecular Imaging Corporation Force sensing probe for scanning probe microscopy
US5951582A (en) 1998-05-22 1999-09-14 Specialized Health Products, Inc. Lancet apparatus and methods
US6837885B2 (en) 1998-05-22 2005-01-04 Scimed Life Systems, Inc. Surgical probe for supporting inflatable therapeutic devices in contact with tissue in or around body orifices and within tumors
GB9812472D0 (en) 1998-06-11 1998-08-05 Owen Mumford Ltd A dose setting device for medical injectors
US5993423A (en) 1998-08-18 1999-11-30 Choi; Soo Bong Portable automatic syringe device and injection needle unit thereof
US6248067B1 (en) 1999-02-05 2001-06-19 Minimed Inc. Analyte sensor and holter-type monitor system and method of using the same
US6558320B1 (en) 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
US6554798B1 (en) * 1998-08-18 2003-04-29 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
US5951521A (en) 1998-09-25 1999-09-14 Minimed Inc. Subcutaneous implantable sensor set having the capability to remove deliver fluids to an insertion site
US6254586B1 (en) 1998-09-25 2001-07-03 Minimed Inc. Method and kit for supplying a fluid to a subcutaneous placement site
DK1102559T3 (en) 1998-09-30 2003-09-29 Cygnus Therapeutic Systems Method and apparatus for predicting physiological values
US6591125B1 (en) 2000-06-27 2003-07-08 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
AU6255699A (en) 1998-10-08 2000-04-26 Minimed, Inc. Telemetered characteristic monitor system
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US5948006A (en) 1998-10-14 1999-09-07 Advanced Bionics Corporation Transcutaneous transmission patch
EP1130996B1 (en) 1998-11-20 2005-04-13 The University of Connecticut Generic integrated implantable potentiostat telemetry unit for electrochemical sensors
US6377894B1 (en) 1998-11-30 2002-04-23 Abbott Laboratories Analyte test instrument having improved calibration and communication processes
US6773671B1 (en) 1998-11-30 2004-08-10 Abbott Laboratories Multichemistry measuring device and test strips
US6022368A (en) * 1998-11-30 2000-02-08 Gavronsky; Stas Acupuncture method and device
US6161095A (en) 1998-12-16 2000-12-12 Health Hero Network, Inc. Treatment regimen compliance and efficacy with feedback
US6433728B1 (en) 1999-01-22 2002-08-13 Lear Automotive Dearborn, Inc. Integrally molded remote entry transmitter
CA2365609A1 (en) 1999-02-12 2000-08-17 Cygnus, Inc. Devices and methods for frequent measurement of an analyte present in a biological system
US6424847B1 (en) 1999-02-25 2002-07-23 Medtronic Minimed, Inc. Glucose monitor calibration methods
US6360888B1 (en) 1999-02-25 2002-03-26 Minimed Inc. Glucose sensor package system
ATE552771T1 (en) 1999-02-25 2012-04-15 Medtronic Minimed Inc TEST PLUG AND CABLE FOR GLUCOSE MONITORING DEVICE
US6959211B2 (en) * 1999-03-10 2005-10-25 Optiscan Biomedical Corp. Device for capturing thermal spectra from tissue
GB9907815D0 (en) 1999-04-06 1999-06-02 Univ Cambridge Tech Implantable sensor
US6285897B1 (en) 1999-04-07 2001-09-04 Endonetics, Inc. Remote physiological monitoring system
US6200265B1 (en) 1999-04-16 2001-03-13 Medtronic, Inc. Peripheral memory patch and access method for use with an implantable medical device
FR2793021B1 (en) 1999-04-30 2001-08-03 Siemens Automotive Sa TEMPERATURE SENSOR AND METHOD FOR MANUFACTURING SUCH A SENSOR
US6669663B1 (en) 1999-04-30 2003-12-30 Medtronic, Inc. Closed loop medicament pump
US6359444B1 (en) * 1999-05-28 2002-03-19 University Of Kentucky Research Foundation Remote resonant-circuit analyte sensing apparatus with sensing structure and associated method of sensing
US6546268B1 (en) 1999-06-02 2003-04-08 Ball Semiconductor, Inc. Glucose sensor
US6256533B1 (en) * 1999-06-09 2001-07-03 The Procter & Gamble Company Apparatus and method for using an intracutaneous microneedle array
US6423035B1 (en) 1999-06-18 2002-07-23 Animas Corporation Infusion pump with a sealed drive mechanism and improved method of occlusion detection
GB2351153B (en) 1999-06-18 2003-03-26 Abbott Lab Electrochemical sensor for analysis of liquid samples
WO2000078992A2 (en) 1999-06-18 2000-12-28 Therasense, Inc. Mass transport limited in vivo analyte sensor
US6368274B1 (en) 1999-07-01 2002-04-09 Medtronic Minimed, Inc. Reusable analyte sensor site and method of using the same
US6413393B1 (en) 1999-07-07 2002-07-02 Minimed, Inc. Sensor including UV-absorbing polymer and method of manufacture
US6514460B1 (en) * 1999-07-28 2003-02-04 Abbott Laboratories Luminous glucose monitoring device
US7113821B1 (en) 1999-08-25 2006-09-26 Johnson & Johnson Consumer Companies, Inc. Tissue electroperforation for enhanced drug delivery
AT408182B (en) 1999-09-17 2001-09-25 Schaupp Lukas Dipl Ing Dr Tech DEVICE FOR VIVO MEASURING SIZES IN LIVING ORGANISMS
EP1217942A1 (en) 1999-09-24 2002-07-03 Healthetech, Inc. Physiological monitor and associated computation, display and communication unit
US6478736B1 (en) 1999-10-08 2002-11-12 Healthetech, Inc. Integrated calorie management system
DE19948759A1 (en) 1999-10-09 2001-04-12 Roche Diagnostics Gmbh Blood lancet device for drawing blood for diagnostic purposes
US6283982B1 (en) 1999-10-19 2001-09-04 Facet Technologies, Inc. Lancing device and method of sample collection
US20060091006A1 (en) 1999-11-04 2006-05-04 Yi Wang Analyte sensor with insertion monitor, and methods
US6616819B1 (en) 1999-11-04 2003-09-09 Therasense, Inc. Small volume in vitro analyte sensor and methods
JP3985022B2 (en) 1999-11-08 2007-10-03 アークレイ株式会社 Body fluid measuring device and insertion body used by being inserted into the body fluid measuring device
DK1230249T3 (en) 1999-11-15 2004-08-30 Therasense Inc Transition metal complexes with bidentate ligand having an imidazole ring
GB9927842D0 (en) 1999-11-26 2000-01-26 Koninkl Philips Electronics Nv Improved fabric antenna
US6522927B1 (en) * 1999-12-01 2003-02-18 Vertis Neuroscience, Inc. Electrode assembly for a percutaneous electrical therapy system
ATE508687T1 (en) * 1999-12-13 2011-05-15 Arkray Inc BODY FLUID MEASUREMENT DEVICE WITH LANCET AND LANCET HOLDER USED THEREFOR
US6733446B2 (en) 2000-01-21 2004-05-11 Medtronic Minimed, Inc. Ambulatory medical apparatus and method using a telemetry system with predefined reception listening periods
US7369635B2 (en) 2000-01-21 2008-05-06 Medtronic Minimed, Inc. Rapid discrimination preambles and methods for using the same
JP4703083B2 (en) 2000-01-21 2011-06-15 メドトロニック ミニメド インコーポレイテッド Medical system
WO2001052935A1 (en) 2000-01-21 2001-07-26 Medical Research Group, Inc. Ambulatory medical apparatus and method having telemetry modifiable control software
US7003336B2 (en) 2000-02-10 2006-02-21 Medtronic Minimed, Inc. Analyte sensor method of making the same
US6484045B1 (en) 2000-02-10 2002-11-19 Medtronic Minimed, Inc. Analyte sensor and method of making the same
US6895263B2 (en) 2000-02-23 2005-05-17 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
US6706159B2 (en) 2000-03-02 2004-03-16 Diabetes Diagnostics Combined lancet and electrochemical analyte-testing apparatus
DE10010587A1 (en) 2000-03-03 2001-09-06 Roche Diagnostics Gmbh System for the determination of analyte concentrations in body fluids
US6551496B1 (en) 2000-03-03 2003-04-22 Ysi Incorporated Microstructured bilateral sensor
US6435017B1 (en) 2000-03-16 2002-08-20 Motorola, Inc. Snap-fit sensing apparatus
US6610012B2 (en) 2000-04-10 2003-08-26 Healthetech, Inc. System and method for remote pregnancy monitoring
US6440068B1 (en) 2000-04-28 2002-08-27 International Business Machines Corporation Measuring user health as measured by multiple diverse health measurement devices utilizing a personal storage device
US7404815B2 (en) 2000-05-01 2008-07-29 Lifescan, Inc. Tissue ablation by shear force for sampling biological fluids and delivering active agents
AU2001263022A1 (en) 2000-05-12 2001-11-26 Therasense, Inc. Electrodes with multilayer membranes and methods of using and making the electrodes
US6442413B1 (en) 2000-05-15 2002-08-27 James H. Silver Implantable sensor
US7181261B2 (en) 2000-05-15 2007-02-20 Silver James H Implantable, retrievable, thrombus minimizing sensors
US6540675B2 (en) 2000-06-27 2003-04-01 Rosedale Medical, Inc. Analyte monitor
US7530964B2 (en) 2000-06-30 2009-05-12 Elan Pharma International Limited Needle device and method thereof
US6589229B1 (en) 2000-07-31 2003-07-08 Becton, Dickinson And Company Wearable, self-contained drug infusion device
US6633772B2 (en) 2000-08-18 2003-10-14 Cygnus, Inc. Formulation and manipulation of databases of analyte and associated values
CA2408338C (en) 2000-08-18 2009-09-08 Cygnus, Inc. Methods and devices for prediction of hypoglycemic events
EP1311189A4 (en) 2000-08-21 2005-03-09 Euro Celtique Sa Near infrared blood glucose monitoring system
US6827899B2 (en) 2000-08-30 2004-12-07 Hypoguard Limited Test device
EP1335764B1 (en) 2000-09-08 2007-06-06 Insulet Corporation Device and system for patient infusion
US6712025B2 (en) 2000-10-13 2004-03-30 Dogwatch, Inc. Receiver/stimulus unit for an animal control system
EP1330178A1 (en) 2000-11-01 2003-07-30 3M Innovative Properties Company Electrical sensing and/or signal application device
US6695860B1 (en) 2000-11-13 2004-02-24 Isense Corp. Transcutaneous sensor insertion device
CA2430590C (en) 2000-11-30 2012-08-14 Biovalve Technologies, Inc. Fluid delivery and measurement systems and methods
US6439446B1 (en) 2000-12-01 2002-08-27 Stephen J. Perry Safety lockout for actuator shaft
US7052483B2 (en) 2000-12-19 2006-05-30 Animas Corporation Transcutaneous inserter for low-profile infusion sets
GB0030929D0 (en) 2000-12-19 2001-01-31 Inverness Medical Ltd Analyte measurement
US6416332B1 (en) 2000-12-20 2002-07-09 Nortel Networks Limited Direct BGA socket for high speed use
EP1353594B1 (en) 2000-12-29 2008-10-29 Ares Medical, Inc. Sleep apnea risk evaluation
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
CN100593390C (en) 2001-01-19 2010-03-10 松下电器产业株式会社 Lancet-integrated sensor
AU2002247008B2 (en) 2001-01-22 2006-02-09 F. Hoffmann-La Roche Ag Lancet device having capillary action
US20030023461A1 (en) * 2001-03-14 2003-01-30 Dan Quintanilla Internet based therapy management system
US6968294B2 (en) 2001-03-15 2005-11-22 Koninklijke Philips Electronics N.V. Automatic system for monitoring person requiring care and his/her caretaker
US7041468B2 (en) 2001-04-02 2006-05-09 Therasense, Inc. Blood glucose tracking apparatus and methods
DK3210637T3 (en) 2001-04-06 2021-04-06 Hoffmann La Roche Infusion set
US6535764B2 (en) 2001-05-01 2003-03-18 Intrapace, Inc. Gastric treatment and diagnosis device and method
JP2004532526A (en) 2001-05-03 2004-10-21 マシモ・コーポレイション Flex circuit shield optical sensor and method of manufacturing the flex circuit shield optical sensor
US6613379B2 (en) 2001-05-08 2003-09-02 Isense Corp. Implantable analyte sensor
US6932894B2 (en) 2001-05-15 2005-08-23 Therasense, Inc. Biosensor membranes composed of polymers containing heterocyclic nitrogens
US6837988B2 (en) 2001-06-12 2005-01-04 Lifescan, Inc. Biological fluid sampling and analyte measurement devices and methods
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
US7179226B2 (en) * 2001-06-21 2007-02-20 Animas Corporation System and method for managing diabetes
US8016847B2 (en) 2001-07-11 2011-09-13 Arkray, Inc. Lancet and lancing apparatus
US6702857B2 (en) 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
US20030032874A1 (en) * 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US6544212B2 (en) 2001-07-31 2003-04-08 Roche Diagnostics Corporation Diabetes management system
US6827718B2 (en) 2001-08-14 2004-12-07 Scimed Life Systems, Inc. Method of and apparatus for positioning and maintaining the position of endoscopic instruments
CN1311781C (en) * 2001-08-20 2007-04-25 因弗内斯医疗有限公司 Wireless diabetes management devices and methods for using the same
US7025760B2 (en) 2001-09-07 2006-04-11 Medtronic Minimed, Inc. Method and system for non-vascular sensor implantation
US6740072B2 (en) 2001-09-07 2004-05-25 Medtronic Minimed, Inc. System and method for providing closed loop infusion formulation delivery
JP2003084101A (en) 2001-09-17 2003-03-19 Dainippon Printing Co Ltd Resin composition for optical device, optical device and projection screen
US7052591B2 (en) 2001-09-21 2006-05-30 Therasense, Inc. Electrodeposition of redox polymers and co-electrodeposition of enzymes by coordinative crosslinking
US6830562B2 (en) 2001-09-27 2004-12-14 Unomedical A/S Injector device for placing a subcutaneous infusion set
US6613015B2 (en) 2001-10-04 2003-09-02 Deltec, Inc. Right angle safety needle
US20030069510A1 (en) * 2001-10-04 2003-04-10 Semler Herbert J. Disposable vital signs monitor
US6748254B2 (en) 2001-10-12 2004-06-08 Nellcor Puritan Bennett Incorporated Stacked adhesive optical sensor
AU2002346399A1 (en) 2001-11-14 2003-05-26 Medical Instill Technologies, Inc. Intradermal delivery device and method
US20030145062A1 (en) 2002-01-14 2003-07-31 Dipanshu Sharma Data conversion server for voice browsing system
US20030155656A1 (en) 2002-01-18 2003-08-21 Chiu Cindy Chia-Wen Anisotropically conductive film
US8364229B2 (en) 2003-07-25 2013-01-29 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US7613491B2 (en) 2002-05-22 2009-11-03 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US8010174B2 (en) 2003-08-22 2011-08-30 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8260393B2 (en) * 2003-07-25 2012-09-04 Dexcom, Inc. Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US9282925B2 (en) 2002-02-12 2016-03-15 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
DE10208575C1 (en) 2002-02-21 2003-08-14 Hartmann Paul Ag Blood analyzer device comprises needles, test media, analyzer and display, and has carrier turned with respect to main body, to position needle and test media
AU2003213638A1 (en) 2002-02-26 2003-09-09 Sterling Medivations, Inc. Insertion device for an insertion set and method of using the same
US20030212379A1 (en) 2002-02-26 2003-11-13 Bylund Adam David Systems and methods for remotely controlling medication infusion and analyte monitoring
DE10392369B4 (en) 2002-03-06 2011-12-15 HTL-STREFA Spólka z o. o. Device for puncturing the skin of a patient
US6998247B2 (en) 2002-03-08 2006-02-14 Sensys Medical, Inc. Method and apparatus using alternative site glucose determinations to calibrate and maintain noninvasive and implantable analyzers
US6936006B2 (en) 2002-03-22 2005-08-30 Novo Nordisk, A/S Atraumatic insertion of a subcutaneous device
GB2388898B (en) 2002-04-02 2005-10-05 Inverness Medical Ltd Integrated sample testing meter
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7485128B2 (en) 2002-04-19 2009-02-03 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7410468B2 (en) 2002-04-19 2008-08-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7141058B2 (en) 2002-04-19 2006-11-28 Pelikan Technologies, Inc. Method and apparatus for a body fluid sampling device using illumination
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7226978B2 (en) 2002-05-22 2007-06-05 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US8641715B2 (en) 2002-05-31 2014-02-04 Vidacare Corporation Manual intraosseous device
WO2004004565A1 (en) 2002-07-02 2004-01-15 Arkray, Inc. Unit for piercing, and piercing device
US20040010207A1 (en) 2002-07-15 2004-01-15 Flaherty J. Christopher Self-contained, automatic transcutaneous physiologic sensing system
AU2003302720B9 (en) 2002-07-19 2008-08-21 Smiths Detection-Pasadena, Inc. Non-specific sensor array detectors
US7058719B2 (en) 2002-07-22 2006-06-06 Ricoh Company, Ltd. System, computer program product and method for managing and controlling a local network of electronic devices and reliably and securely adding an electronic device to the network
US7278983B2 (en) 2002-07-24 2007-10-09 Medtronic Minimed, Inc. Physiological monitoring device for controlling a medication infusion device
US7637891B2 (en) 2002-09-12 2009-12-29 Children's Hospital Medical Center Method and device for painless injection of medication
US7736309B2 (en) 2002-09-27 2010-06-15 Medtronic Minimed, Inc. Implantable sensor method and system
US7192405B2 (en) 2002-09-30 2007-03-20 Becton, Dickinson And Company Integrated lancet and bodily fluid sensor
TW557352B (en) * 2002-10-07 2003-10-11 Actherm Inc Electronic clinical thermometer with rapid response
US7014625B2 (en) 2002-10-07 2006-03-21 Novo Nordick A/S Needle insertion device
US20040138688A1 (en) 2002-10-09 2004-07-15 Jean Pierre Giraud Lancet system including test strips and cassettes for drawing and sampling bodily material
DK1575656T3 (en) 2002-10-11 2009-09-14 Becton Dickinson Co Insulin delivery system with sensor
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
US7572237B2 (en) 2002-11-06 2009-08-11 Abbott Diabetes Care Inc. Automatic biological analyte testing meter with integrated lancing device and methods of use
US6676290B1 (en) * 2002-11-15 2004-01-13 Hsueh-Yu Lu Electronic clinical thermometer
US7833170B2 (en) 2002-12-13 2010-11-16 Arkray, Inc. Needle-insertion device
EP1618920A3 (en) * 2002-12-16 2007-05-30 Meagan Medical, Inc. Controlling the depth of percuataneous applications
US20040116866A1 (en) 2002-12-17 2004-06-17 William Gorman Skin attachment apparatus and method for patient infusion device
US20040122353A1 (en) 2002-12-19 2004-06-24 Medtronic Minimed, Inc. Relay device for transferring information between a sensor system and a fluid delivery system
US7395117B2 (en) 2002-12-23 2008-07-01 Cardiac Pacemakers, Inc. Implantable medical device having long-term wireless capabilities
US20040127818A1 (en) 2002-12-27 2004-07-01 Roe Steven N. Precision depth control lancing tip
EP1578262A4 (en) 2002-12-31 2007-12-05 Therasense Inc Continuous glucose monitoring system and methods of use
US20040138544A1 (en) 2003-01-13 2004-07-15 Ward W. Kenneth Body fluid trap anlyte sensor
US20040140211A1 (en) 2003-01-21 2004-07-22 Broy Stephen H. Modular interface and coupling system and method
US20040171910A1 (en) 2003-02-27 2004-09-02 Moore-Steele Robin B. Sexually stimulating panty insert
US20040186373A1 (en) 2003-03-21 2004-09-23 Dunfield John Stephen Method and device for targeted epithelial delivery of medicinal and related agents
US20050070819A1 (en) * 2003-03-31 2005-03-31 Rosedale Medical, Inc. Body fluid sampling constructions and techniques
US7134999B2 (en) 2003-04-04 2006-11-14 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
EP1614382B1 (en) 2003-04-11 2012-07-11 ARKRAY, Inc. Needle insertion device
US6797877B1 (en) 2003-04-28 2004-09-28 Jonn Maneely Company Electrical metallic tube, coupling, and connector apparatus and method
ATE474611T1 (en) 2003-05-08 2010-08-15 Novo Nordisk As AN INJECTION DEVICE THAT CAN BE APPLIED TO THE SKIN WITH A SEPARABLE ACTUATING PART FOR INSERTING THE NEEDLE
US7875293B2 (en) 2003-05-21 2011-01-25 Dexcom, Inc. Biointerface membranes incorporating bioactive agents
US8066639B2 (en) * 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US8460243B2 (en) 2003-06-10 2013-06-11 Abbott Diabetes Care Inc. Glucose measuring module and insulin pump combination
US20040254433A1 (en) 2003-06-12 2004-12-16 Bandis Steven D. Sensor introducer system, apparatus and method
US7604592B2 (en) 2003-06-13 2009-10-20 Pelikan Technologies, Inc. Method and apparatus for a point of care device
JP4041018B2 (en) 2003-06-25 2008-01-30 Tdk株式会社 Temperature sensor
US7510564B2 (en) 2003-06-27 2009-03-31 Abbott Diabetes Care Inc. Lancing device
US7108778B2 (en) 2003-07-25 2006-09-19 Dexcom, Inc. Electrochemical sensors including electrode systems with increased oxygen generation
US8423113B2 (en) 2003-07-25 2013-04-16 Dexcom, Inc. Systems and methods for processing sensor data
EP1648298A4 (en) 2003-07-25 2010-01-13 Dexcom Inc Oxygen enhancing membrane systems for implantable devices
US7424318B2 (en) 2003-12-05 2008-09-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US20050176136A1 (en) 2003-11-19 2005-08-11 Dexcom, Inc. Afinity domain for analyte sensor
US7460898B2 (en) 2003-12-05 2008-12-02 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7467003B2 (en) 2003-12-05 2008-12-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
WO2005012873A2 (en) 2003-07-25 2005-02-10 Dexcom, Inc. Electrode systems for electrochemical sensors
US7761130B2 (en) 2003-07-25 2010-07-20 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7366556B2 (en) * 2003-12-05 2008-04-29 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US20100168543A1 (en) 2003-08-01 2010-07-01 Dexcom, Inc. System and methods for processing analyte sensor data
US7774145B2 (en) 2003-08-01 2010-08-10 Dexcom, Inc. Transcutaneous analyte sensor
US8369919B2 (en) 2003-08-01 2013-02-05 Dexcom, Inc. Systems and methods for processing sensor data
US7494465B2 (en) * 2004-07-13 2009-02-24 Dexcom, Inc. Transcutaneous analyte sensor
US8060173B2 (en) 2003-08-01 2011-11-15 Dexcom, Inc. System and methods for processing analyte sensor data
US9135402B2 (en) 2007-12-17 2015-09-15 Dexcom, Inc. Systems and methods for processing sensor data
US8626257B2 (en) 2003-08-01 2014-01-07 Dexcom, Inc. Analyte sensor
US8886273B2 (en) 2003-08-01 2014-11-11 Dexcom, Inc. Analyte sensor
US7986986B2 (en) 2003-08-01 2011-07-26 Dexcom, Inc. System and methods for processing analyte sensor data
DE10336933B4 (en) 2003-08-07 2007-04-26 Roche Diagnostics Gmbh Blood Collection system
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US9133024B2 (en) 2003-09-03 2015-09-15 Brigitte Chau Phan Personal diagnostic devices including related methods and systems
JP4356088B2 (en) * 2003-09-26 2009-11-04 日本光電工業株式会社 Telemeter system for multi-channel biological signals
US20050090607A1 (en) 2003-10-28 2005-04-28 Dexcom, Inc. Silicone composition for biocompatible membrane
US6928380B2 (en) 2003-10-30 2005-08-09 International Business Machines Corporation Thermal measurements of electronic devices during operation
US7299082B2 (en) 2003-10-31 2007-11-20 Abbott Diabetes Care, Inc. Method of calibrating an analyte-measurement device, and associated methods, devices and systems
JP2005137416A (en) 2003-11-04 2005-06-02 Sysmex Corp Percutaneous analyte extraction system and percutaneous analyte analysis system
WO2005046477A2 (en) 2003-11-12 2005-05-26 Facet Technologies, Llc Lancing device and multi-lancet cartridge
DE602004028649D1 (en) * 2003-11-13 2010-09-23 Medtronic Minimed Inc LONG-TERM ARRANGEMENT ANALYTENSENSOR
WO2005051170A2 (en) 2003-11-19 2005-06-09 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US8364230B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US8423114B2 (en) * 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US20080197024A1 (en) 2003-12-05 2008-08-21 Dexcom, Inc. Analyte sensor
US8364231B2 (en) * 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US20100185071A1 (en) 2003-12-05 2010-07-22 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US20080200788A1 (en) 2006-10-04 2008-08-21 Dexcorn, Inc. Analyte sensor
US8425417B2 (en) 2003-12-05 2013-04-23 Dexcom, Inc. Integrated device for continuous in vivo analyte detection and simultaneous control of an infusion device
US8774886B2 (en) 2006-10-04 2014-07-08 Dexcom, Inc. Analyte sensor
EP2239567B1 (en) * 2003-12-05 2015-09-02 DexCom, Inc. Calibration techniques for a continuous analyte sensor
US8287453B2 (en) 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
US8425416B2 (en) 2006-10-04 2013-04-23 Dexcom, Inc. Analyte sensor
EP3241490A1 (en) 2003-12-08 2017-11-08 DexCom, Inc. Systems and methods for improving electrochemical analyte sensors
EP2329763B1 (en) * 2003-12-09 2017-06-21 DexCom, Inc. Signal processing for continuous analyte sensor
US7763042B2 (en) 2003-12-16 2010-07-27 Panasonic Corporation Lancet for blood collection and puncture needle unit
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US7637868B2 (en) 2004-01-12 2009-12-29 Dexcom, Inc. Composite material for implantable device
US8465696B2 (en) 2004-02-03 2013-06-18 Polymer Technology Systems, Inc. Dry test strip with controlled flow and method of manufacturing same
US8165651B2 (en) 2004-02-09 2012-04-24 Abbott Diabetes Care Inc. Analyte sensor, and associated system and method employing a catalytic agent
US7699964B2 (en) 2004-02-09 2010-04-20 Abbott Diabetes Care Inc. Membrane suitable for use in an analyte sensor, analyte sensor, and associated method
US7364592B2 (en) 2004-02-12 2008-04-29 Dexcom, Inc. Biointerface membrane with macro-and micro-architecture
WO2005089103A2 (en) 2004-02-17 2005-09-29 Therasense, Inc. Method and system for providing data communication in continuous glucose monitoring and management system
CN1921803B (en) 2004-02-23 2011-01-26 伊西康公司 Diagnostic swab and biopsy punch systems, and diagnostic caps for use in such systems
WO2005084257A2 (en) * 2004-02-26 2005-09-15 Vpn Solutions, Llc Composite thin-film glucose sensor
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
JP4593129B2 (en) 2004-02-26 2010-12-08 オリンパス株式会社 Endoscope
WO2005084557A1 (en) 2004-03-02 2005-09-15 Facet Technologies, Llc Compact multi-use lancing device
US6971274B2 (en) 2004-04-02 2005-12-06 Sierra Instruments, Inc. Immersible thermal mass flow meter
US20050222518A1 (en) 2004-04-06 2005-10-06 Genocell, Llc Biopsy and injection catheters
US20060009727A1 (en) 2004-04-08 2006-01-12 Chf Solutions Inc. Method and apparatus for an extracorporeal control of blood glucose
US20050245799A1 (en) * 2004-05-03 2005-11-03 Dexcom, Inc. Implantable analyte sensor
US9101302B2 (en) 2004-05-03 2015-08-11 Abbott Diabetes Care Inc. Analyte test device
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US8277713B2 (en) * 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
US9380975B2 (en) 2004-05-07 2016-07-05 Becton, Dickinson And Company Contact activated lancet device
US7727147B1 (en) 2004-05-14 2010-06-01 Flint Hills Scientific Llc Method and system for implantable glucose monitoring and control of a glycemic state of a subject
CA2572455C (en) * 2004-06-04 2014-10-28 Therasense, Inc. Diabetes care host-client architecture and data management system
US7289855B2 (en) 2004-06-09 2007-10-30 Medtronic, Inc. Implantable medical device package antenna
US7299081B2 (en) 2004-06-15 2007-11-20 Abbott Laboratories Analyte test device
US7585287B2 (en) 2004-06-16 2009-09-08 Smiths Medical Md, Inc. Device and method for insertion of a cannula of an infusion device
SI1765288T1 (en) 2004-06-18 2013-02-28 Novartis Ag Tobramycin formualtions for treatment of endobronchial infections
US20060001538A1 (en) 2004-06-30 2006-01-05 Ulrich Kraft Methods of monitoring the concentration of an analyte
US8343074B2 (en) * 2004-06-30 2013-01-01 Lifescan Scotland Limited Fluid handling devices
US20060015020A1 (en) 2004-07-06 2006-01-19 Dexcom, Inc. Systems and methods for manufacture of an analyte-measuring device including a membrane system
US20080242961A1 (en) 2004-07-13 2008-10-02 Dexcom, Inc. Transcutaneous analyte sensor
US20060270922A1 (en) * 2004-07-13 2006-11-30 Brauker James H Analyte sensor
US7857760B2 (en) 2004-07-13 2010-12-28 Dexcom, Inc. Analyte sensor
US7310544B2 (en) * 2004-07-13 2007-12-18 Dexcom, Inc. Methods and systems for inserting a transcutaneous analyte sensor
US7783333B2 (en) 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US8452368B2 (en) 2004-07-13 2013-05-28 Dexcom, Inc. Transcutaneous analyte sensor
EP3524142B1 (en) 2004-07-13 2021-04-28 Dexcom, Inc. Transcutaneous analyte sensor
US20090048499A1 (en) 2004-10-18 2009-02-19 Novo Nordisk A/S Sensor film for transcutaneous insertion and a method for making the sensor film
CN101087625B (en) 2004-11-22 2012-02-22 因特利杰克特有限公司 Devices and systems for medicament delivery
DE102004059491B4 (en) 2004-12-10 2008-11-06 Roche Diagnostics Gmbh Lancet device for creating a puncture wound and lancet drive assembly
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US7697967B2 (en) * 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US20070027381A1 (en) 2005-07-29 2007-02-01 Therasense, Inc. Inserter and methods of use
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US20090105569A1 (en) 2006-04-28 2009-04-23 Abbott Diabetes Care, Inc. Introducer Assembly and Methods of Use
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US20090082693A1 (en) * 2004-12-29 2009-03-26 Therasense, Inc. Method and apparatus for providing temperature sensor module in a data communication system
US7470237B2 (en) 2005-01-10 2008-12-30 Ethicon Endo-Surgery, Inc. Biopsy instrument with improved needle penetration
US20060166629A1 (en) 2005-01-24 2006-07-27 Therasense, Inc. Method and apparatus for providing EMC Class-B compliant RF transmitter for data monitoring an detection systems
EP1848476A1 (en) 2005-01-24 2007-10-31 Novo Nordisk A/S Transcutaneous device assembly
US7545272B2 (en) 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
US7499002B2 (en) 2005-02-08 2009-03-03 International Business Machines Corporation Retractable string interface for stationary and portable devices
US20090076360A1 (en) * 2007-09-13 2009-03-19 Dexcom, Inc. Transcutaneous analyte sensor
BRPI0610446B1 (en) 2005-04-07 2023-05-16 Becton, Dickinson And Company LANCET DEVICE
WO2006110193A2 (en) * 2005-04-08 2006-10-19 Dexcom, Inc. Cellulosic-based interference domain for an analyte sensor
EP1877116A1 (en) 2005-04-13 2008-01-16 Novo Nordisk A/S Medical skin mountable device and system
US8060174B2 (en) 2005-04-15 2011-11-15 Dexcom, Inc. Analyte sensing biointerface
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US7955305B2 (en) 2005-05-06 2011-06-07 Medtronic Minimed, Inc. Needle inserter and method for infusion device
US7905868B2 (en) 2006-08-23 2011-03-15 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
WO2006133305A2 (en) 2005-06-08 2006-12-14 Sensors For Medicine And Science, Inc. Insertion device and method
DK2260759T3 (en) 2005-06-17 2015-08-17 Hoffmann La Roche Feel and conditioning device and method for monitoring a connection, in particular glucose, in body tissue
WO2007005759A2 (en) 2005-06-30 2007-01-11 Mc3, Inc. Analyte sensors and compositions for use therein
US8298389B2 (en) 2005-09-12 2012-10-30 Abbott Diabetes Care Inc. In vitro analyte sensor, and methods
DE502005009907D1 (en) 2005-09-15 2010-08-26 Roche Diagnostics Gmbh Insertion head with handle
US9072476B2 (en) 2005-09-23 2015-07-07 Medtronic Minimed, Inc. Flexible sensor apparatus
US7846311B2 (en) 2005-09-27 2010-12-07 Abbott Diabetes Care Inc. In vitro analyte sensor and methods of use
US7761165B1 (en) 2005-09-29 2010-07-20 Boston Scientific Neuromodulation Corporation Implantable stimulator with integrated plastic housing/metal contacts and manufacture and use
US8545445B2 (en) 2006-02-09 2013-10-01 Deka Products Limited Partnership Patch-sized fluid delivery systems and methods
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US7550053B2 (en) 2006-01-26 2009-06-23 Ilh, Llc Catheters with lubricious linings and methods for making and using them
US20070095661A1 (en) 2005-10-31 2007-05-03 Yi Wang Method of making, and, analyte sensor
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US8182444B2 (en) 2005-11-04 2012-05-22 Medrad, Inc. Delivery of agents such as cells to tissue
US20070173706A1 (en) 2005-11-11 2007-07-26 Isense Corporation Method and apparatus for insertion of a sensor
US7918975B2 (en) 2005-11-17 2011-04-05 Abbott Diabetes Care Inc. Analytical sensors for biological fluid
US8815175B2 (en) 2005-11-30 2014-08-26 Abbott Diabetes Care Inc. Integrated meter for analyzing biological samples
US7922971B2 (en) 2005-11-30 2011-04-12 Abbott Diabetes Care Inc. Integrated meter for analyzing biological samples
EP1968432A4 (en) 2005-12-28 2009-10-21 Abbott Diabetes Care Inc Medical device insertion
US8515518B2 (en) 2005-12-28 2013-08-20 Abbott Diabetes Care Inc. Analyte monitoring
US8195267B2 (en) 2006-01-26 2012-06-05 Seymour John P Microelectrode with laterally extending platform for reduction of tissue encapsulation
US7826879B2 (en) 2006-02-28 2010-11-02 Abbott Diabetes Care Inc. Analyte sensors and methods of use
EP1991110B1 (en) * 2006-03-09 2018-11-07 DexCom, Inc. Systems and methods for processing analyte sensor data
US7801582B2 (en) * 2006-03-31 2010-09-21 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
US7653425B2 (en) * 2006-08-09 2010-01-26 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US7559899B2 (en) * 2006-04-12 2009-07-14 Salutron, Inc. Power saving techniques for continuous heart rate monitoring
US20080071158A1 (en) 2006-06-07 2008-03-20 Abbott Diabetes Care, Inc. Analyte monitoring system and method
EP2023818A2 (en) 2006-06-07 2009-02-18 Unomedical A/S Inserter for transcutaneous sensor
US7909842B2 (en) 2006-06-15 2011-03-22 Abbott Diabetes Care Inc. Lancing devices having depth adjustment assembly
US7866026B1 (en) * 2006-08-01 2011-01-11 Abbott Diabetes Care Inc. Method for making calibration-adjusted sensors
MX2009000876A (en) 2006-08-02 2009-02-04 Unomedical As Insertion device.
US7789857B2 (en) 2006-08-23 2010-09-07 Medtronic Minimed, Inc. Infusion medium delivery system, device and method with needle inserter and needle inserter device and method
US8234706B2 (en) 2006-09-08 2012-07-31 Microsoft Corporation Enabling access to aggregated software security information
US8298142B2 (en) 2006-10-04 2012-10-30 Dexcom, Inc. Analyte sensor
US8478377B2 (en) 2006-10-04 2013-07-02 Dexcom, Inc. Analyte sensor
US8562528B2 (en) 2006-10-04 2013-10-22 Dexcom, Inc. Analyte sensor
US8275438B2 (en) 2006-10-04 2012-09-25 Dexcom, Inc. Analyte sensor
US7831287B2 (en) 2006-10-04 2010-11-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8449464B2 (en) 2006-10-04 2013-05-28 Dexcom, Inc. Analyte sensor
US8447376B2 (en) 2006-10-04 2013-05-21 Dexcom, Inc. Analyte sensor
US8158081B2 (en) 2006-10-31 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring devices
US8696570B2 (en) 2006-11-28 2014-04-15 Roche Diagnostics Operations Inc. Insertion device and method for inserting a subcutaneously insertable element into body
WO2008115409A1 (en) 2007-03-19 2008-09-25 Bayer Healthcare Llc Continuous analyte monitoring assembly and method of forming the same
US20080262300A1 (en) 2007-04-20 2008-10-23 Usgi Medical, Inc. Endoscopic system with disposable sheath
US20080269673A1 (en) 2007-04-27 2008-10-30 Animas Corporation Cellular-Enabled Medical Monitoring and Infusion System
WO2008133702A1 (en) 2007-04-30 2008-11-06 Medtronic Minimed, Inc. Needle inserting and fluid flow connection for infusion medium delivery system
JP5102350B2 (en) 2007-04-30 2012-12-19 メドトロニック ミニメド インコーポレイテッド Reservoir filling / bubble management / infusion medium delivery system and method using the system
DE102007026083A1 (en) 2007-05-25 2008-11-27 Haselmeier S.A.R.L. injection device
WO2008150917A1 (en) 2007-05-31 2008-12-11 Abbott Diabetes Care, Inc. Insertion devices and methods
EP2152350A4 (en) 2007-06-08 2013-03-27 Dexcom Inc Integrated medicament delivery device for use with continuous analyte sensor
US20080319327A1 (en) 2007-06-25 2008-12-25 Triage Wireless, Inc. Body-worn sensor featuring a low-power processor and multi-sensor array for measuring blood pressure
US8002752B2 (en) 2007-06-25 2011-08-23 Medingo, Ltd. Protector apparatus
RU2010105684A (en) 2007-07-18 2011-08-27 Уномедикал А/С (Dk) TURNING INTRODUCTION DEVICE
US8303545B2 (en) 2007-09-07 2012-11-06 Stat Medical Devices, Inc. Infusion device and method of using and making the same
CA2699875A1 (en) 2007-09-17 2009-03-26 Icu Medical, Inc. Insertion devices for infusion devices
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
EP2060284A1 (en) 2007-11-13 2009-05-20 F.Hoffmann-La Roche Ag Medical injection device having data input means and a pivotable display
US8290559B2 (en) 2007-12-17 2012-10-16 Dexcom, Inc. Systems and methods for processing sensor data
WO2009097450A1 (en) 2008-01-30 2009-08-06 Dexcom. Inc. Continuous cardiac marker sensor system
EP2452709B1 (en) 2008-02-08 2022-01-19 Unomedical A/S Cannula part
US20110046456A1 (en) 2008-02-08 2011-02-24 Hoerdum Elo Lau Assembly Comprising Inserter, Cannula Part and Base Part
WO2009105337A2 (en) 2008-02-20 2009-08-27 Dexcom, Inc. Continuous medicament sensor system for in vivo use
US8229535B2 (en) 2008-02-21 2012-07-24 Dexcom, Inc. Systems and methods for blood glucose monitoring and alert delivery
US8122783B2 (en) 2008-02-22 2012-02-28 Sauer-Danfoss Inc. Joystick and method of manufacturing the same
US20090242399A1 (en) 2008-03-25 2009-10-01 Dexcom, Inc. Analyte sensor
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US20090247856A1 (en) 2008-03-28 2009-10-01 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9924898B2 (en) 2008-04-15 2018-03-27 Becton, Dickinson And Company Flash activated passive shielding needle assembly
WO2010003886A1 (en) 2008-07-07 2010-01-14 Unomedical A/S Inserter for transcutaneous device
EP4227675A3 (en) * 2008-09-19 2023-09-06 DexCom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US20100331644A1 (en) 2008-11-07 2010-12-30 Dexcom, Inc. Housing for an intravascular sensor
US20100198033A1 (en) 2009-02-05 2010-08-05 Peter Krulevitch Flexible indwelling biosensor, flexible indwelling biosensor insertion device, and related methods
WO2010111660A1 (en) 2009-03-27 2010-09-30 Dexcom, Inc. Methods and systems for promoting glucose management
EP2272553A1 (en) 2009-06-29 2011-01-12 Unomedical A/S Inserter Assembly
WO2010127169A2 (en) 2009-04-30 2010-11-04 Dexcom, Inc. Performance reports associated with continuous sensor data from multiple analysis time periods
US10376213B2 (en) 2009-06-30 2019-08-13 Waveform Technologies, Inc. System, method and apparatus for sensor insertion
US9237864B2 (en) 2009-07-02 2016-01-19 Dexcom, Inc. Analyte sensors and methods of manufacturing same
US8882710B2 (en) 2009-09-02 2014-11-11 Medtronic Minimed, Inc. Insertion device systems and methods
CN102724913A (en) 2009-09-30 2012-10-10 德克斯康公司 Transcutaneous analyte sensor
US9041730B2 (en) 2010-02-12 2015-05-26 Dexcom, Inc. Receivers for analyzing and displaying sensor data
GB201003581D0 (en) * 2010-03-04 2010-04-21 Bacon Raymond J Medicament dispenser
US9591971B2 (en) 2010-04-05 2017-03-14 Helen Of Troy Limited Insertion detector for medical probe
US9336353B2 (en) 2010-06-25 2016-05-10 Dexcom, Inc. Systems and methods for communicating sensor data between communication devices of a glucose monitoring system
DK2621339T3 (en) 2010-09-29 2020-02-24 Dexcom Inc ADVANCED SYSTEM FOR CONTINUOUS ANALYTICAL MONITORING
EP3744249A1 (en) 2010-10-27 2020-12-02 Dexcom, Inc. Continuous analyte monitor data recording device operable in a blinded mode

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP1931255A4

Cited By (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10039881B2 (en) 2002-12-31 2018-08-07 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US9414777B2 (en) 2004-07-13 2016-08-16 Dexcom, Inc. Transcutaneous analyte sensor
US10918313B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US11883164B2 (en) 2004-07-13 2024-01-30 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US11045120B2 (en) 2004-07-13 2021-06-29 Dexcom, Inc. Analyte sensor
US11026605B1 (en) 2004-07-13 2021-06-08 Dexcom, Inc. Analyte sensor
US10827956B2 (en) 2004-07-13 2020-11-10 Dexcom, Inc. Analyte sensor
US10993641B2 (en) 2004-07-13 2021-05-04 Dexcom, Inc. Analyte sensor
US10993642B2 (en) 2004-07-13 2021-05-04 Dexcom, Inc. Analyte sensor
US10524703B2 (en) 2004-07-13 2020-01-07 Dexcom, Inc. Transcutaneous analyte sensor
US10932700B2 (en) 2004-07-13 2021-03-02 Dexcom, Inc. Analyte sensor
US10709363B2 (en) 2004-07-13 2020-07-14 Dexcom, Inc. Analyte sensor
US10799158B2 (en) 2004-07-13 2020-10-13 Dexcom, Inc. Analyte sensor
US10709362B2 (en) 2004-07-13 2020-07-14 Dexcom, Inc. Analyte sensor
US9986942B2 (en) 2004-07-13 2018-06-05 Dexcom, Inc. Analyte sensor
US10918314B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US10918315B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US10813576B2 (en) 2004-07-13 2020-10-27 Dexcom, Inc. Analyte sensor
US10799159B2 (en) 2004-07-13 2020-10-13 Dexcom, Inc. Analyte sensor
US10980452B2 (en) 2004-07-13 2021-04-20 Dexcom, Inc. Analyte sensor
US11064917B2 (en) 2004-07-13 2021-07-20 Dexcom, Inc. Analyte sensor
US10722152B2 (en) 2004-07-13 2020-07-28 Dexcom, Inc. Analyte sensor
US10226207B2 (en) 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
US10925524B2 (en) 2005-03-10 2021-02-23 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610137B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10743801B2 (en) 2005-03-10 2020-08-18 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918316B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US11051726B2 (en) 2005-03-10 2021-07-06 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10716498B2 (en) 2005-03-10 2020-07-21 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10898114B2 (en) 2005-03-10 2021-01-26 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918318B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918317B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10617336B2 (en) 2005-03-10 2020-04-14 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10709364B2 (en) 2005-03-10 2020-07-14 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610135B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610136B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10856787B2 (en) 2005-03-10 2020-12-08 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US11000213B2 (en) 2005-03-10 2021-05-11 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10813577B2 (en) 2005-06-21 2020-10-27 Dexcom, Inc. Analyte sensor
US10342489B2 (en) 2005-09-30 2019-07-09 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US9775563B2 (en) 2005-09-30 2017-10-03 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US9480421B2 (en) 2005-09-30 2016-11-01 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US10194863B2 (en) 2005-09-30 2019-02-05 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US9332933B2 (en) 2005-12-28 2016-05-10 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US9795331B2 (en) 2005-12-28 2017-10-24 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US9844329B2 (en) 2006-02-28 2017-12-19 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US9031630B2 (en) 2006-02-28 2015-05-12 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US9625413B2 (en) 2006-03-31 2017-04-18 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US9039975B2 (en) 2006-03-31 2015-05-26 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US10028680B2 (en) 2006-04-28 2018-07-24 Abbott Diabetes Care Inc. Introducer assembly and methods of use
US10736547B2 (en) 2006-04-28 2020-08-11 Abbott Diabetes Care Inc. Introducer assembly and methods of use
US9408566B2 (en) 2006-08-09 2016-08-09 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US9808186B2 (en) 2006-09-10 2017-11-07 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US8862198B2 (en) 2006-09-10 2014-10-14 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US10362972B2 (en) 2006-09-10 2019-07-30 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
EP2826419B1 (en) 2006-09-28 2015-08-19 Abbott Diabetes Care Inc. Apparatus for providing analyte sensor insertion
US9357959B2 (en) 2006-10-02 2016-06-07 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US9629578B2 (en) 2006-10-02 2017-04-25 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US10070810B2 (en) 2006-10-23 2018-09-11 Abbott Diabetes Care Inc. Sensor insertion devices and methods of use
US11234621B2 (en) 2006-10-23 2022-02-01 Abbott Diabetes Care Inc. Sensor insertion devices and methods of use
US10363363B2 (en) 2006-10-23 2019-07-30 Abbott Diabetes Care Inc. Flexible patch for fluid delivery and monitoring body analytes
US11724029B2 (en) 2006-10-23 2023-08-15 Abbott Diabetes Care Inc. Flexible patch for fluid delivery and monitoring body analytes
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US9113828B2 (en) 2006-10-25 2015-08-25 Abbott Diabetes Care Inc. Method and system for providing analyte monitoring
US11722229B2 (en) 2006-10-26 2023-08-08 Abbott Diabetes Care Inc. Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors
US9882660B2 (en) 2006-10-26 2018-01-30 Abbott Diabetes Care Inc. Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors
US10903914B2 (en) 2006-10-26 2021-01-26 Abbott Diabetes Care Inc. Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US9095290B2 (en) 2007-03-01 2015-08-04 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US9801545B2 (en) 2007-03-01 2017-10-31 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US9615780B2 (en) 2007-04-14 2017-04-11 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US8937540B2 (en) 2007-04-14 2015-01-20 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US11039767B2 (en) 2007-04-14 2021-06-22 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US10111608B2 (en) 2007-04-14 2018-10-30 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US10349877B2 (en) 2007-04-14 2019-07-16 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US9177456B2 (en) 2007-05-08 2015-11-03 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9574914B2 (en) 2007-05-08 2017-02-21 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US9000929B2 (en) 2007-05-08 2015-04-07 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9949678B2 (en) 2007-05-08 2018-04-24 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US9035767B2 (en) 2007-05-08 2015-05-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US10031002B2 (en) 2007-05-14 2018-07-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9737249B2 (en) 2007-05-14 2017-08-22 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US10002233B2 (en) 2007-05-14 2018-06-19 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9804150B2 (en) 2007-05-14 2017-10-31 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9060719B2 (en) 2007-05-14 2015-06-23 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US11076785B2 (en) 2007-05-14 2021-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9125548B2 (en) 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9801571B2 (en) 2007-05-14 2017-10-31 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US9797880B2 (en) 2007-05-14 2017-10-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US10463310B2 (en) 2007-05-14 2019-11-05 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US11276492B2 (en) 2007-06-21 2022-03-15 Abbott Diabetes Care Inc. Health management devices and methods
US11264133B2 (en) 2007-06-21 2022-03-01 Abbott Diabetes Care Inc. Health management devices and methods
US10173007B2 (en) 2007-10-23 2019-01-08 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
US11083843B2 (en) 2007-10-23 2021-08-10 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
US9743865B2 (en) 2007-10-23 2017-08-29 Abbott Diabetes Care Inc. Assessing measures of glycemic variability
US9320468B2 (en) 2008-01-31 2016-04-26 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
US8924159B2 (en) 2008-05-30 2014-12-30 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US9541556B2 (en) 2008-05-30 2017-01-10 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US9943644B2 (en) 2008-08-31 2018-04-17 Abbott Diabetes Care Inc. Closed loop control with reference measurement and methods thereof
US9610046B2 (en) 2008-08-31 2017-04-04 Abbott Diabetes Care Inc. Closed loop control with improved alarm functions
US9572934B2 (en) 2008-08-31 2017-02-21 Abbott DiabetesCare Inc. Robust closed loop control and methods
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
US9662056B2 (en) 2008-09-30 2017-05-30 Abbott Diabetes Care Inc. Optimizing analyte sensor calibration
US9066709B2 (en) 2009-01-29 2015-06-30 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US11166656B2 (en) 2009-02-03 2021-11-09 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US11202591B2 (en) 2009-02-03 2021-12-21 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US11213229B2 (en) 2009-02-03 2022-01-04 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US11006872B2 (en) 2009-02-03 2021-05-18 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US11006870B2 (en) 2009-02-03 2021-05-18 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US11006871B2 (en) 2009-02-03 2021-05-18 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US9226701B2 (en) 2009-04-28 2016-01-05 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
US11793936B2 (en) 2009-05-29 2023-10-24 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
US11872370B2 (en) 2009-05-29 2024-01-16 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
US9795326B2 (en) 2009-07-23 2017-10-24 Abbott Diabetes Care Inc. Continuous analyte measurement systems and systems and methods for implanting them
US10660554B2 (en) 2009-07-31 2020-05-26 Abbott Diabetes Care Inc. Methods and devices for analyte monitoring calibration
US9936910B2 (en) 2009-07-31 2018-04-10 Abbott Diabetes Care Inc. Method and apparatus for providing analyte monitoring and therapy management system accuracy
US11234625B2 (en) 2009-07-31 2022-02-01 Abbott Diabetes Care Inc. Method and apparatus for providing analyte monitoring and therapy management system accuracy
USRE47315E1 (en) 2009-08-31 2019-03-26 Abbott Diabetes Care Inc. Displays for a medical device
US10136816B2 (en) 2009-08-31 2018-11-27 Abbott Diabetes Care Inc. Medical devices and methods
US9314195B2 (en) 2009-08-31 2016-04-19 Abbott Diabetes Care Inc. Analyte signal processing device and methods
US8993331B2 (en) 2009-08-31 2015-03-31 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
US9320461B2 (en) 2009-09-29 2016-04-26 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
US9326709B2 (en) 2010-03-10 2016-05-03 Abbott Diabetes Care Inc. Systems, devices and methods for managing glucose levels
US10973449B2 (en) 2010-06-29 2021-04-13 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US11064921B2 (en) 2010-06-29 2021-07-20 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US10959653B2 (en) 2010-06-29 2021-03-30 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US10966644B2 (en) 2010-06-29 2021-04-06 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US10874338B2 (en) 2010-06-29 2020-12-29 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US9069536B2 (en) 2011-10-31 2015-06-30 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof

Also Published As

Publication number Publication date
US20110144464A1 (en) 2011-06-16
US10194863B2 (en) 2019-02-05
US20200315536A1 (en) 2020-10-08
EP1931255A2 (en) 2008-06-18
WO2007041248A3 (en) 2009-04-09
EP1931255A4 (en) 2009-12-02
US7883464B2 (en) 2011-02-08
US20190223800A1 (en) 2019-07-25
US11457869B2 (en) 2022-10-04
CA2624247A1 (en) 2007-04-12
US20070078320A1 (en) 2007-04-05

Similar Documents

Publication Publication Date Title
US11457869B2 (en) Integrated transmitter unit and sensor introducer mechanism and methods of use
US20190380650A1 (en) Method and apparatus for providing analyte sensor and data processing device
US20210007639A1 (en) Method and system for providing an integrated analyte sensor insertion device and data processing unit
US9775563B2 (en) Integrated introducer and transmitter assembly and methods of use
CA2622526C (en) Flexible sensor apparatus
US20150025338A1 (en) Medical Device Inserters and Processes of Inserting and Using Medical Devices
CA2698933A1 (en) Glucose sensor transceiver
RU2749244C2 (en) Medical sensor system for continuous monitoring of glycemia
JP2004208727A (en) Living body puncture apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2624247

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006815715

Country of ref document: EP