WO2007024172A1 - A method and an apparatus for sterilising packages - Google Patents

A method and an apparatus for sterilising packages Download PDF

Info

Publication number
WO2007024172A1
WO2007024172A1 PCT/SE2006/000874 SE2006000874W WO2007024172A1 WO 2007024172 A1 WO2007024172 A1 WO 2007024172A1 SE 2006000874 W SE2006000874 W SE 2006000874W WO 2007024172 A1 WO2007024172 A1 WO 2007024172A1
Authority
WO
WIPO (PCT)
Prior art keywords
package
flow
gas
angled
supplied
Prior art date
Application number
PCT/SE2006/000874
Other languages
French (fr)
Inventor
Ulf Lindblad
Jenny Karolina Olsson
Anders Sundberg
Original Assignee
Tetra Laval Holdings & Finance S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tetra Laval Holdings & Finance S.A. filed Critical Tetra Laval Holdings & Finance S.A.
Priority to CN2006800308124A priority Critical patent/CN101247990B/en
Priority to MX2008000775A priority patent/MX2008000775A/en
Priority to US12/063,219 priority patent/US7784249B2/en
Priority to BRPI0614315-6A priority patent/BRPI0614315B1/en
Priority to JP2008527872A priority patent/JP2009504527A/en
Priority to EP06758056.3A priority patent/EP1919777B1/en
Publication of WO2007024172A1 publication Critical patent/WO2007024172A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B55/00Preserving, protecting or purifying packages or package contents in association with packaging
    • B65B55/02Sterilising, e.g. of complete packages
    • B65B55/04Sterilising wrappers or receptacles prior to, or during, packaging
    • B65B55/10Sterilising wrappers or receptacles prior to, or during, packaging by liquids or gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B39/00Nozzles, funnels or guides for introducing articles or materials into containers or wrappers
    • B65B39/04Nozzles, funnels or guides for introducing articles or materials into containers or wrappers having air-escape, or air-withdrawal, passages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/15Biocide distribution means, e.g. nozzles, pumps, manifolds, fans, baffles, sprayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B39/00Nozzles, funnels or guides for introducing articles or materials into containers or wrappers
    • B65B2039/009Multiple outlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B2210/00Specific aspects of the packaging machine
    • B65B2210/06Sterilising or cleaning machinery or conduits

Definitions

  • the present invention relates to a method and an apparatus for sterilising at least partly formed packages which are ready-to-fill packages, in a filling machine.
  • sterile is taken to signify in the following disclosure that the package, after sterilisation, attains a level of sterilisation which is designated commercially sterile. More precisely, the present invention relates to a method, prior to filling of such packages, of treating and sterilising them in a filling machine before a subsequent aseptic filling.
  • the packages have an open and a closed end.
  • a first context in which the method according to the present invention may be implemented is in connection with the introductory supply, before filling of such packages, of hot air from the open end of the packages in order to heat them up with a view, in a later sterilisation stage, to preventing sterilisation gas from condensing on the walls of the packages.
  • Another manner of implementing the method is to supply sterile tempered air once the package has been gassed with sterilisation gas. The purpose here is to ventilate off the sterilisation gas.
  • the present invention relates to a method of supplying and removing an optional gas, hence also sterilisation gas to and from the open end of the package.
  • the present invention further relates to an apparatus which is included in a larger context for realising a gas sterilisation of packages in said filling machine
  • the larger context includes, on the one hand, a heating zone, and on the other hand a sterilisation zone or a combination thereof and further a ventilation zone.
  • the sterilisation agent is intended to remain in gas form throughout the entire sterilisation stage and is intended to the greatest possible degree to be reused.
  • One object of the present invention is to disclose a method, with the best conceivable overriding control prior to filling of a ready-to-fill package under aseptic conditions, to carry out a gas sterilisation process of the inside of said package to the preselected level of sterilisation, with a considerably lower gas mass flow of the supplied gases or gas mixtures as compared with the prior art.
  • Yet a further object of the present invention is to disclose an apparatus for, on the one hand, realising a reduction of the risk of re-infection or contamination with a view to better being able to guarantee the shelf-life of the product which is subsequently filled into the package, and, on the other hand, for realising a reduction of the gas mass flow in connection with the sterilisation and thereby improve the economy of the process, whereby considerably improved possibilities will occur for reusing, in particular concerning the supplied sterilisation gas.
  • the unintentional spreading of the sterilisation gas in the aseptic chamber can be restricted to an even higher degree than before.
  • Said chamber consists, on the one hand, of a unit for the supply of hot air, and, on the other hand, of a unit for the supply and removal of sterilisation agent, and also a unit for ventilation of packages of sterilisation gas before they are filled.
  • each respective supplied gas flow in particular the gaseous sterilisation agent, is supplied as a flow which is radially both outwardly and inwardly defined in relation to the package.
  • the flow is angled with respect to the geometric major axis of the package which intersects its opening at a right angle that, since it is defined by the inner wall of the package, it forms a positive helical flow vortex.
  • the vortex which is formed has a very good capability of reaching all pockets and nooks in the package.
  • an apparatus for reducing the method into effect which comprises a nozzle for each respective gas flow, which includes at least one gas supply means which is directed/angled in relation to a plane including that one of the geometric major axes of the package which intersects its opening so that the flow therefrom, when it impinges on the inner wall of the package, develops and maintains a radial both inwardly and outwardly defined, as good as helical flow.
  • the supply means should encompass some ten-odd apertures, where each one of them moreover advantageously should be angled in such a manner that it makes an angle of less than 8° to each one of the two planes of symmetry to the package which have the axis of symmetry intersecting the opening under a right angle as a common line.
  • each aperture is directed in a first direction slightly peripherally and in a second direction slightly towards the centre of the package.
  • Fig. 1 is a cross sectional view of an apparatus according to the invention as an explicit illustration of the function of the invention
  • Fig. 2 is an isometric view of an actual apparatus according to the present invention
  • Fig. 3 is an isometric exploded view of the same apparatus; and Fig. 4 is a cross section through the centre of the apparatus in question with a package intended for sterilisation located beneath.
  • FIG. 1 shows the fundamental function of the invention.
  • a package 1 in a sequence of identical packages and with, in this case, an open bottom runs along a belt for the progressive indexing of, for example, four packages 1 at a time in the machine direction MD.
  • Those stages through which the package at least thereby substantially passes are one for heating the package to about 70°C, one for sterilising the package with gaseous hydrogen peroxide or other sterilisation gas, and one for ventilation thereof with sterile air.
  • these stages need not be wholly single action stages but, if desired, may be "phased" in the sense that, for example, the heating stage may progressively be mixed with the sterilisation stage in an increasing degree in the machine direction so that the number of sterilisation gas apertures increases progressively.
  • the heating stage may progressively be mixed with the sterilisation stage in an increasing degree in the machine direction so that the number of sterilisation gas apertures increases progressively.
  • each respective package 1 Regardless of whether it is hot air, sterilisation gas or sterile ventilation air which is supplied in the channels 2 illustrated in Fig. 1 in an apparatus 3 according to the invention, it may be ascertained that the flow which results in that the channels 2 are, in their lower ends, angled in such a manner that they make an angle of less than or equal to 8° to both of the planes of symmetry which display the symmetry axis H which intersects the opening of the package at a right angle as a common line, hence angled in a first direction somewhat peripherally and in a second direction slightly towards the centre of the package imparts the best conceivable vortex helical form to the gas flow angled down in the package on its way down.
  • the apparatus includes ten channels 2 uniformly distributed along the upper region of the described apparatus 3. It is once again worthy of pointing out that the experiments which have been carried out with water as a medium have demonstrated that the medium which is fed via the channels 2 with this configuration will flow out of the package as a substantially central flow upwards in the package 1 in order, at its upper region 4, to be able to flow into a central return channel 5. As is intimated by broken lines in the upper part of the figure, the channel 5 may discharge straight up at reference numeral 6. The desired effect will thereby be attained depending upon the quantity of supplied gas, either as improved heating, improved sterilisation or improved ventilation.
  • Fig. 2 shows a gassing assembly 8 comprising an apparatus 3 according to the invention in an integrated composite state with the assembly 8.
  • the assembly 8 has an inlet chamber 9 with a central gas inlet connection 10 and a plate 11 for fixing of the assembly to a filling machine (not shown).
  • Fig. 3 is a perspective exploded view of the assembly 8.
  • the apparatus 3 is also shown here in perspective, for which reason its various component parts, above all the channels 2 are clearly apparent.
  • the fact that the channels 2 are ten in number is, as was mentioned above, a coincidence, since the number depends upon the circumference.
  • Fig. 4 shows the assembly 8 as a central cross section in a position corresponding to that which the assembly 8 will have when it is run in production.
  • this figure shows an imaginary flow pattern corresponding to that which is illustrated in the fundamental outline drawing in Fig. 1.
  • the return flow also takes place out of the package of the supplied gas in a controlled manner.
  • this is taken care of in the return channel 5, in whose upper region this is deflected approx. 180° in order to be led out via the outer periphery of the package.
  • the present invention makes for a considerable reduction of the mass flow, whereby this flow no longer constitutes a potential risk for turbulent currents occurring in the interface region beside and beneath the package.

Abstract

The invention relates to a method of supplying a gas or gas mixture to the inside of partly formed packages which are ready-to-fill, before a subsequent filling and sealing of the packages in a filling machine. The method is characterised in that the gas or gas mixture supplied at any given moment is supplied as a flow which is radially outwardly and inwardly defined in relation to the inner wall of the package, the flow being angled with respect to geometric major longitudinal axis of the package which intersects its opening so that the flow, since it is defined by the inner wall of the package is positively controlled for the formation of a helical flow vortex. The invention also relates to an apparatus.

Description

A METHOD AND AN APPARATUS FOR STERILISING PACKAGES
TECHNICAL FIELD The present invention relates to a method and an apparatus for sterilising at least partly formed packages which are ready-to-fill packages, in a filling machine. The term sterile is taken to signify in the following disclosure that the package, after sterilisation, attains a level of sterilisation which is designated commercially sterile. More precisely, the present invention relates to a method, prior to filling of such packages, of treating and sterilising them in a filling machine before a subsequent aseptic filling. The packages have an open and a closed end. A first context in which the method according to the present invention may be implemented is in connection with the introductory supply, before filling of such packages, of hot air from the open end of the packages in order to heat them up with a view, in a later sterilisation stage, to preventing sterilisation gas from condensing on the walls of the packages. Another manner of implementing the method is to supply sterile tempered air once the package has been gassed with sterilisation gas. The purpose here is to ventilate off the sterilisation gas. More specifically, the present invention relates to a method of supplying and removing an optional gas, hence also sterilisation gas to and from the open end of the package.
The present invention further relates to an apparatus which is included in a larger context for realising a gas sterilisation of packages in said filling machine where the larger context includes, on the one hand, a heating zone, and on the other hand a sterilisation zone or a combination thereof and further a ventilation zone. The sterilisation agent is intended to remain in gas form throughout the entire sterilisation stage and is intended to the greatest possible degree to be reused. For a more detailed description of one type of an apparatus and a method for producing and sterilising a package which is referable to this group, reference is made to published international application WO2004/054883. BACKGROUND ART
In filling machines of said type, use has previously been made of a method of approach which entails that, during the gas sterilisation stage, a sterilisation gas is supplied centrally in conjunction with the open end of each package. For reasons of process engineering, the sterilisation gas flow has been allowed to remain constant, regardless of the necessary movements in the filling machine. This is linked to the situation that the relevant technology is applicable in connection with filling machines of different types, such as also those of the tube filling- or carousel filling type. It has proved that, in certain cases, there may be a minor risk that the sterilisation gas which, in a previously known manner, is supplied to packages of this type in some cases does not reach the small areas and pockets of the package which are located least readily accessible in relation to the sterilisation agent supplying device. This applies particularly to such packages which display a relatively large ratio between their length and their main axis cross section. It has long been assumed that it is possible to reach these small areas and pockets of the packages located least readily accessible by maintaining a high constant gas mass flow in the supplied sterilisation gas. However, it has now been established that, above all in certain cases, there is a risk that the preselected level of sterilisation will not be achieved simply by this measure.
BRIEF SUMMARY OF THE INVENTION
One object of the present invention is to disclose a method, with the best conceivable overriding control prior to filling of a ready-to-fill package under aseptic conditions, to carry out a gas sterilisation process of the inside of said package to the preselected level of sterilisation, with a considerably lower gas mass flow of the supplied gases or gas mixtures as compared with the prior art.
More specifically, one object of the present invention is to disclose a method which, in particular in the specifically disclosed case, obviates the risk that the sterilisation will be incomplete, at the same time as the mass flow of the supplied gases is greatly reduced compared with the prior art. Yet a further object of the present invention is to realise a method which makes for a considerably higher level of reusing of the supplied sterilisation gas. Yet a further object of the present invention is to disclose an apparatus for, on the one hand, realising a reduction of the risk of re-infection or contamination with a view to better being able to guarantee the shelf-life of the product which is subsequently filled into the package, and, on the other hand, for realising a reduction of the gas mass flow in connection with the sterilisation and thereby improve the economy of the process, whereby considerably improved possibilities will occur for reusing, in particular concerning the supplied sterilisation gas. As a result, the unintentional spreading of the sterilisation gas in the aseptic chamber can be restricted to an even higher degree than before. Said chamber consists, on the one hand, of a unit for the supply of hot air, and, on the other hand, of a unit for the supply and removal of sterilisation agent, and also a unit for ventilation of packages of sterilisation gas before they are filled.
According to the present invention, there is provided a method of the type disclosed by way of introduction of this specification by means of which the above-described purposes are attained in that each respective supplied gas flow, in particular the gaseous sterilisation agent, is supplied as a flow which is radially both outwardly and inwardly defined in relation to the package. The flow is angled with respect to the geometric major axis of the package which intersects its opening at a right angle that, since it is defined by the inner wall of the package, it forms a positive helical flow vortex. The vortex which is formed has a very good capability of reaching all pockets and nooks in the package. The thus created flow vortex forms, as a consequence that it must, by some means, find a way out again, a central return flow thanks to a lower gas pressure in this central region. Hereby, the gas velocity may, regardless of the gas type which is employed, be reduced. One advantage inherent herein is that it is thereby possible to eliminate positive flow vortices in the treatment chamber. Furthermore, there will be provided according to the invention an apparatus for reducing the method into effect which comprises a nozzle for each respective gas flow, which includes at least one gas supply means which is directed/angled in relation to a plane including that one of the geometric major axes of the package which intersects its opening so that the flow therefrom, when it impinges on the inner wall of the package, develops and maintains a radial both inwardly and outwardly defined, as good as helical flow. In order to attain the best possible flow distribution when gas is supplied, it has proved in trials hitherto that the supply means should encompass some ten-odd apertures, where each one of them moreover advantageously should be angled in such a manner that it makes an angle of less than 8° to each one of the two planes of symmetry to the package which have the axis of symmetry intersecting the opening under a right angle as a common line. This implies more precisely that each aperture is directed in a first direction slightly peripherally and in a second direction slightly towards the centre of the package.
There will hereby be attained not only the advantage that a helical flow which reaches all pockets and nooks everywhere inside the package occurs, including the lower region, but also that the supplied gas, in a highly elegant and controlled manner, will depart from the package in a flow which is counter-directed to the helical flow and which takes place in or close to the centre of the package. This implies at the same time that a reuse of the supplied gases may simply be put into effect, for example in that an outlet may be provided in association with the centre of the gas supply apparatus according to the invention.
BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS
The present invention will now be described in greater detail hereinbelow, with reference to one embodiment shown on the accompanying Drawings. In the accompanying Drawings:
Fig. 1 is a cross sectional view of an apparatus according to the invention as an explicit illustration of the function of the invention; Fig. 2 is an isometric view of an actual apparatus according to the present invention;
Fig. 3 is an isometric exploded view of the same apparatus; and Fig. 4 is a cross section through the centre of the apparatus in question with a package intended for sterilisation located beneath.
DETAILED DESCRIPTION OF THE INVENTION
The cross sectional view illustrated in Fig. 1 shows the fundamental function of the invention. A package 1 in a sequence of identical packages and with, in this case, an open bottom runs along a belt for the progressive indexing of, for example, four packages 1 at a time in the machine direction MD. Those stages through which the package at least thereby substantially passes are one for heating the package to about 70°C, one for sterilising the package with gaseous hydrogen peroxide or other sterilisation gas, and one for ventilation thereof with sterile air. In this context, it should be observed that these stages need not be wholly single action stages but, if desired, may be "phased" in the sense that, for example, the heating stage may progressively be mixed with the sterilisation stage in an increasing degree in the machine direction so that the number of sterilisation gas apertures increases progressively. With such a modification of the method of approach, a favourable effect in the form of a temporarily longer and thereby more efficient sterilisation will be achieved.
Once these stages have been passed through, filling takes place followed by sealing of each respective package 1. Regardless of whether it is hot air, sterilisation gas or sterile ventilation air which is supplied in the channels 2 illustrated in Fig. 1 in an apparatus 3 according to the invention, it may be ascertained that the flow which results in that the channels 2 are, in their lower ends, angled in such a manner that they make an angle of less than or equal to 8° to both of the planes of symmetry which display the symmetry axis H which intersects the opening of the package at a right angle as a common line, hence angled in a first direction somewhat peripherally and in a second direction slightly towards the centre of the package imparts the best conceivable vortex helical form to the gas flow angled down in the package on its way down. In order moreover when gas is supplied to achieve the best possible flow distribution all the way down in the "bottom" of the package 1 , the number of channels should, as experiments have also demonstrated, be adapted to the volume of the packages or their circumference in association with the open end of the packages; the larger the volume/circumference the greater the number of channels. In the embodiment illustrated here, the apparatus includes ten channels 2 uniformly distributed along the upper region of the described apparatus 3. It is once again worthy of pointing out that the experiments which have been carried out with water as a medium have demonstrated that the medium which is fed via the channels 2 with this configuration will flow out of the package as a substantially central flow upwards in the package 1 in order, at its upper region 4, to be able to flow into a central return channel 5. As is intimated by broken lines in the upper part of the figure, the channel 5 may discharge straight up at reference numeral 6. The desired effect will thereby be attained depending upon the quantity of supplied gas, either as improved heating, improved sterilisation or improved ventilation.
Fig. 2 shows a gassing assembly 8 comprising an apparatus 3 according to the invention in an integrated composite state with the assembly 8. The assembly 8 has an inlet chamber 9 with a central gas inlet connection 10 and a plate 11 for fixing of the assembly to a filling machine (not shown). In association with Fig. 2, Fig. 3 is a perspective exploded view of the assembly 8. Thus, the apparatus 3 is also shown here in perspective, for which reason its various component parts, above all the channels 2 are clearly apparent. The fact that the channels 2 are ten in number is, as was mentioned above, a coincidence, since the number depends upon the circumference.
Finally, Fig. 4 shows the assembly 8 as a central cross section in a position corresponding to that which the assembly 8 will have when it is run in production. With a view to making a comparison with Fig. 1 possible, this figure shows an imaginary flow pattern corresponding to that which is illustrated in the fundamental outline drawing in Fig. 1.
A brief description will be given below of the fundamental operation of the apparatus. Supply with gas of the desired type takes place continuously at the central inflow connection 10. In that the supplied gas first fills the inflow chamber 9, the flow which is fed to the package 1 via the channels 2 will be able to maintain a uniform and constant pressure. The channels 2 are obliquely inclined in the above described manner (less than 8° in relation to two mutually right angled planes of symmetry) thereby gives rise to a helical gas flow 13 along the inner periphery 14 of the package. When the gas flow reaches the bottom 15 of the package 1 , the flow will, as a consequence of the lower gas pressure in the centre of the package, strive to leave the package in this section. Thus, the return flow also takes place out of the package of the supplied gas in a controlled manner. When the return flow reaches the bottom opening of the package 1 , this is taken care of in the return channel 5, in whose upper region this is deflected approx. 180° in order to be led out via the outer periphery of the package. The present invention makes for a considerable reduction of the mass flow, whereby this flow no longer constitutes a potential risk for turbulent currents occurring in the interface region beside and beneath the package.

Claims

CLAIMS:
1. In an apparatus in. a filling machine, a method of supplying a gas or gas mixture to the inside of partly formed packages which are ready- to-fill, before a subsequent filling and sealing of the packages, characterised in that the gas or gas mixture supplied at any given moment is supplied as a flow which is radially outwardly and inwardly defined in relation to the inner wall of the package, the flow being angled with respect to geometric major longitudinal axis of the package which intersects its opening so that the flow, since it is defined by the inner wall of the package is positively controlled for the formation of a helical flow vortex.
2. The method as claimed in Claim 1 , characterised in that the interior of the packages is supplied, progressively via the open end of each package, on the one hand with a sterile hot air flow, on the other hand with a gaseous sterilisation agent flow, and also a sterile air flow.
3. The method as claimed in Claim 1 , characterised in that a gaseous sterilisation agent is progressively admixed to the initially supplied hot air gas flow in the machine direction (MD).
4. The method as claimed in Claim 1 , characterised in that the radial defining of the flow inwardly in the package is restricted by a return flow in the central region of each package.
5. The method as claimed in any of the preceding Claims, characterised in that the flow is supplied by means of two or more channels (2) per open package end.
6. The method as claimed in Claim 4, characterised in that the channels (2) are angled so that the flow directions therefrom fall outside both of the planes of symmetry which have the axis of symmetry (H) which at right angles intersects the opening of the package as a common line, i.e. are angled in a first direction somewhat peripherally and are angled in a second direction slightly towards the centre of the package.
7. The method as claimed in Claim 6, characterised in that the channels (2) are angled less than or equal to 8° in each of the first and second directions, respectively.
8. The method as claimed in any of the preceding Claims, characterised in that the flow from the nozzles is maintained continuously over time.
9. The method as claimed in any of the preceding Claims, characterised in that the supplied gas flow, at least when it exclusively consists of sterilisation agent, is recycled for reuse in that an outlet (6) is provided centrally at the mouth of each respective package.
10.An apparatus in a filling machine for supplying gas or gas mixtures to the inside of packages (1 ) before a subsequent filling and sealing thereof (1 ), characterised in that it includes a nozzle (3) for flow of gas or gas mixture which includes at least one channel (2) for gas or gas mixture which is angled in relation to at least one plane containing that one of the geometric major axes (H) of the package which intersects the opening of the package at a right angle such that the flow therefrom, when it impinges on the inner wall of the package, develops a both radially inwardly and outwardly defined flow while forming a positively driven helical flow vortex.
11 .The apparatus as claimed in Claim 10, characterised in that the channels (2) are angled so that their flow direction falls outside planes which are parallel with any of the planes of symmetry which have the axis of symmetry (H) which intersects the opening of the package (1 ) at right angles as a common line, and are directed in a first direction somewhat peripherally and in a second direction slightly towards the centre of the package (1 ). 12. The apparatus as claimed in Claim 11 , characterised in that the angling of the channels (2) is less than or equal to 8° in each respective direction.
3. The apparatus as claimed in any of Claims 10 to 12, characterised in that it includes a gas recycling equipment in the form of an outlet (6) which is centrally placed in association with the mouth of each respective package (1 ).
PCT/SE2006/000874 2005-08-23 2006-07-13 A method and an apparatus for sterilising packages WO2007024172A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2006800308124A CN101247990B (en) 2005-08-23 2006-07-13 Method and an apparatus for sterilising packages
MX2008000775A MX2008000775A (en) 2005-08-23 2006-07-13 A method and an apparatus for sterilising packages.
US12/063,219 US7784249B2 (en) 2005-08-23 2006-07-13 Method and an apparatus for sterilising packages
BRPI0614315-6A BRPI0614315B1 (en) 2005-08-23 2006-07-13 METHOD OF PROVIDING GAS OR GAS MIXTURE FOR PARTIALLY FORMED PACKAGES AND APPARATUS FOR SUPPLY GAS OR MIXTURES FOR PACKAGING
JP2008527872A JP2009504527A (en) 2005-08-23 2006-07-13 Method and apparatus for sterilizing packages
EP06758056.3A EP1919777B1 (en) 2005-08-23 2006-07-13 A method and an apparatus for sterilising packages

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0501872A SE528989C8 (en) 2005-08-23 2005-08-23 Methods and apparatus for sterilizing packaging materials
SE0501872-6 2005-08-23

Publications (1)

Publication Number Publication Date
WO2007024172A1 true WO2007024172A1 (en) 2007-03-01

Family

ID=37771848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2006/000874 WO2007024172A1 (en) 2005-08-23 2006-07-13 A method and an apparatus for sterilising packages

Country Status (10)

Country Link
US (1) US7784249B2 (en)
EP (1) EP1919777B1 (en)
JP (1) JP2009504527A (en)
CN (1) CN101247990B (en)
BR (1) BRPI0614315B1 (en)
MX (1) MX2008000775A (en)
SA (1) SA06270276B1 (en)
SE (1) SE528989C8 (en)
TW (1) TWI296992B (en)
WO (1) WO2007024172A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504527A (en) * 2005-08-23 2009-02-05 テトラ ラバル ホールデイングス エ フイナンス ソシエテ アノニム Method and apparatus for sterilizing packages
WO2018099644A1 (en) * 2016-11-30 2018-06-07 Sig Technology Ag Method and filling machine for filling packages open on one side

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2913021B1 (en) * 2007-02-27 2012-08-31 Biomerieux Sa COATED POLYAMIDE FILM FOR BAGGING PROLONGED CONSERVATION PRODUCTS
DE102012014957A1 (en) * 2012-07-30 2014-05-15 Khs Gmbh Filling element and filling machine
JP6397731B2 (en) * 2014-11-05 2018-09-26 株式会社フロンティア Preform dust removal method and dust removal mechanism, blow molding machine, and container blow molding / filling system
JP2018104031A (en) * 2016-12-27 2018-07-05 株式会社トクヤマ Container sterilization method and container sterilization device
DE102017104153A1 (en) * 2017-02-28 2018-08-30 Sig Technology Ag Method and filling machine for filling unilaterally open packages

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2492873A (en) * 1948-09-04 1949-12-27 C M Ambrose Company Valved nozzle
US2771645A (en) * 1950-12-04 1956-11-27 Dole Eng Co James Apparatus for sterilizing food containers
US5141035A (en) * 1990-10-24 1992-08-25 Servi-Tech, Inc. Fill valve adapter and methods
JP2000202388A (en) * 1999-01-20 2000-07-25 Masemachitsuku Kk Cleaning apparatus of package container and cleaning of package container
JP2002102813A (en) * 2000-09-28 2002-04-09 Toyo Seikan Kaisha Ltd Plastic bottle disinfecting and cleaning method, and apparatus
WO2004054883A1 (en) 2002-12-13 2004-07-01 Tetra Laval Holdings & Finance S.A. Device and method for sterilizing packages

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE355339B (en) * 1967-03-06 1973-04-16 Tetra Pak Int
US3640072A (en) * 1968-07-20 1972-02-08 Lutz Tilo Kayser Rocket engine
DE2612958C2 (en) * 1976-03-26 1985-01-10 Robert Bosch Gmbh, 7000 Stuttgart Device for flushing atmospheric oxygen from packaging containers
SE429092B (en) * 1980-10-30 1983-08-15 Tetra Pak Dev WAY TO PREPARE AND PACKAGE FOOD PRODUCTS, PREFERRED FISH PRODUCTS WITH LONG HALLABILITY
DE3339930A1 (en) * 1983-11-04 1985-05-23 Hamba-Maschinenfabrik Hans A.Müller GmbH & Co KG, 5600 Wuppertal Method and device for sterilization of cup-shaped containers intended for accommodation of dairy products
JPS63134903A (en) * 1986-11-26 1988-06-07 Sumitomo Metal Ind Ltd Measuring instrument for flatness of rolled stock
GB9022268D0 (en) * 1990-10-13 1990-11-28 Cmb Foodcan Plc Sterilising apparatus
AU5084396A (en) 1995-05-01 1996-11-14 Johnson & Johnson Vision Products, Inc. On-line steam sanitization system
FR2774912B1 (en) * 1998-02-16 2000-09-01 Sidel Sa METHOD FOR STERILIZING HOLLOW BODIES AND DEVICE FOR IMPLEMENTING SAME
SE511861C2 (en) * 1998-04-07 1999-12-06 Tetra Laval Holdings & Finance Method and apparatus for producing a sterile packaging container
DE19817735C1 (en) * 1998-04-21 1999-11-11 Fehland Engineering Gmbh Beverage filling device
US6601380B2 (en) * 1999-03-24 2003-08-05 Orbital Technologies Corporation Hybrid rocket engine and method of propelling a rocket
DE10205458A1 (en) 2002-02-08 2003-08-28 Sig Combibloc Sys Gmbh Process for sterilizing a product packaged in a package
SE528989C8 (en) * 2005-08-23 2007-05-08 Tetra Laval Holdings & Finance Methods and apparatus for sterilizing packaging materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2492873A (en) * 1948-09-04 1949-12-27 C M Ambrose Company Valved nozzle
US2771645A (en) * 1950-12-04 1956-11-27 Dole Eng Co James Apparatus for sterilizing food containers
US5141035A (en) * 1990-10-24 1992-08-25 Servi-Tech, Inc. Fill valve adapter and methods
JP2000202388A (en) * 1999-01-20 2000-07-25 Masemachitsuku Kk Cleaning apparatus of package container and cleaning of package container
JP2002102813A (en) * 2000-09-28 2002-04-09 Toyo Seikan Kaisha Ltd Plastic bottle disinfecting and cleaning method, and apparatus
WO2004054883A1 (en) 2002-12-13 2004-07-01 Tetra Laval Holdings & Finance S.A. Device and method for sterilizing packages

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1919777A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504527A (en) * 2005-08-23 2009-02-05 テトラ ラバル ホールデイングス エ フイナンス ソシエテ アノニム Method and apparatus for sterilizing packages
WO2018099644A1 (en) * 2016-11-30 2018-06-07 Sig Technology Ag Method and filling machine for filling packages open on one side

Also Published As

Publication number Publication date
JP2009504527A (en) 2009-02-05
SE528989C8 (en) 2007-05-08
SE528989C2 (en) 2007-04-03
SE0501872L (en) 2007-02-24
TW200716444A (en) 2007-05-01
EP1919777B1 (en) 2019-03-06
BRPI0614315A2 (en) 2012-11-27
US20080190072A1 (en) 2008-08-14
EP1919777A4 (en) 2014-07-09
CN101247990B (en) 2010-06-02
SA06270276B1 (en) 2009-02-07
CN101247990A (en) 2008-08-20
BRPI0614315B1 (en) 2018-02-27
EP1919777A1 (en) 2008-05-14
TWI296992B (en) 2008-05-21
MX2008000775A (en) 2008-03-10
US7784249B2 (en) 2010-08-31

Similar Documents

Publication Publication Date Title
EP1934098B1 (en) A method and an apparatus for sterilising packages
EP1919777B1 (en) A method and an apparatus for sterilising packages
US7938639B2 (en) Installation for the manufacture of containers comprising a secure enclosure provided with a system for the insufflation of filtered air
BR112017012194B1 (en) Apparatus and method for loading product into containers
EP2957414A1 (en) Method and device for blow-moulding sterilized containers
US10836527B2 (en) Device and a method for maintaining a gas flow barrier between two interconnected volumes
RU2694248C1 (en) Beverage dispensing apparatus
CN114650907A (en) Method and device for producing and processing sterile plastic containers
JP6116633B2 (en) Apparatus and method for maintaining a gas flow barrier between two spaces in a passage
RU2740572C1 (en) Beverage dispensing apparatus
CN209583036U (en) A kind of air blowing type lid discharger
CN217525861U (en) Bottle blank sterilization device
EP3865411A1 (en) A filling machine with a sterilisation station
EA040059B1 (en) BEVERAGE FILLING PLANT
JP2020164197A (en) Lid sterilization device
EP0502645B1 (en) Method and apparatus for drying a container with a hot gaseous fluid
KR20180050367A (en) Mixer, Vacuum Processor
DE10045064A1 (en) Preheating setup for a linear filler
TW200930474A (en) Airflow guiding device and cooling device with the airflow guiding device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680030812.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006758056

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/000775

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 12063219

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008527872

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0614315

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080213