WO2007021707A2 - Liquid perfluoropolymers and medical and cosmetic applications incorporating same - Google Patents

Liquid perfluoropolymers and medical and cosmetic applications incorporating same Download PDF

Info

Publication number
WO2007021707A2
WO2007021707A2 PCT/US2006/030955 US2006030955W WO2007021707A2 WO 2007021707 A2 WO2007021707 A2 WO 2007021707A2 US 2006030955 W US2006030955 W US 2006030955W WO 2007021707 A2 WO2007021707 A2 WO 2007021707A2
Authority
WO
WIPO (PCT)
Prior art keywords
pfpe material
subject
curing
pfpe
liquid
Prior art date
Application number
PCT/US2006/030955
Other languages
French (fr)
Other versions
WO2007021707A3 (en
Inventor
Joseph M. Desimone
Richard S. Stack
Original Assignee
Liquidia Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liquidia Technologies, Inc. filed Critical Liquidia Technologies, Inc.
Publication of WO2007021707A2 publication Critical patent/WO2007021707A2/en
Publication of WO2007021707A3 publication Critical patent/WO2007021707A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/06Flowable or injectable implant compositions

Definitions

  • the present invention relates generally to polymers and, more particularly, to medical applications where polymers are utilized.
  • Polymeric materials conventionally utilized in the medical device industry for implantation within the bodies of subjects include, but are not limited to polyurethanes, polyolefins (e.g., polyethylene and polypropylene), poly(meth)acrylates, polyesters ⁇ e.g., polyethyleneterephthalate), polyamides, polyvinyl resins, silicone resins (e.g., silicone rubbers and polysiloxanes), polycarbonates, polyfluorocarbon resins, synthetic resins, polystyrene, and various bioerodible materials.
  • polyurethanes e.g., polyethylene and polypropylene
  • poly(meth)acrylates e.g., polyethyleneterephthalate
  • polyesters ⁇ e.g., polyethyleneterephthalate
  • polyamides polyvinyl resins
  • silicone resins e.g., silicone rubbers and polysiloxanes
  • polycarbonates polyfluorocarbon resins, synthetic resins, polystyrene, and various
  • Silicone is characterized by high lubricity and thermal stability, extreme water repellence and physiological inertness. Accordingly, silicone has been widely used in the medical field in various applications such as adhesives, lubricants, surgical implants and prosthetics. Unfortunately, silicone may swell and/or shrink, particularly when contact occurs with solvents, for example, organic solvents. In addition, the surface energy of silicone may not.be as low as desirable for certain applications where higher lubricity is necessary. Accordingly, a need exists for improved polymeric materials for various medical applications, particularly applications where devices are implanted and inserted within the body of a subject.
  • Lip augmentation is a procedure which uses synthetic or biological products or surgical restructuring to enhance the lips in various ways. For example, a material, such as collagen or fat, is injected into the lips to create a fuller appearance.
  • Cheek augmentation is a procedure which uses implanted synthetic or biological products to bring balance to the facial structure by way of correcting a deficient cheek area due to congenital deficiency, age-related bone resorption or facial trauma. Chin implants are used to improve the underlying bone structure of a person's face to achieve an attractive, more balanced look.
  • Breast implants are placed beneath the skin to replace lost breast tissue or to enhance the breast shape and size.
  • liquid curable perfluoropolyether (PFPE) materials are provided for use as coatings, sealants, flexible fillers, and structural parts for a wide variety of medical applications, particularly where silicone has been utilized conventionally.
  • PFPE materials utilized in accordance with embodiments of the present invention does not swell or shrink when contact occurs with solvents, including organic solvents.
  • the surface energy of PFPE material is very low which allows PFPE material to be utilized for certain applications where high lubricity is necessary.
  • PFPE material is oxygen permeable and bacterial impermeable.
  • a method of repairing damage to skeletal portions of the body of a subject in situ includes positioning an enclosure adjacent a damaged skeletal portion of a subject, injecting a liquid PFPE material into the enclosure, and curing the liquid PFPE material to form a structure that provides support to the skeletal portion.
  • the liquid PFPE material may cure to a rigid state, a flexible state, or portions of the PFPE material may cure to respective rigid and flexible states.
  • Exemplary skeletal damage that may be repaired according to embodiments of the present invention includes bone cracks, damaged vertebral bodies, damaged wear surfaces of joints, and damaged joints including, but not limited to, hips, knees, ankles, phalange joints, elbows, and wrists.
  • One or more pharmacological agents may be elutably trapped within the cured PFPE material (or otherwise attached to the PFPE material), according to embodiments of the present invention.
  • unwanted material such as damaged material of a skeletal portion of a subject may be removed prior to positioning an enclosure and injecting PFPE material into the enclosure.
  • orthopedic devices are provided that are configured to be implanted within the body of a subject and that include an outer surface of oxygen permeable, bacterial impermeable PFPE material. Utilizing PFPE material with removable implants of any type is advantageous because tissue in-growth can be minimized, thus making removal of the implant safer and less traumatic.
  • orthopedic devices are provided that are configured to be implanted within the body of a subject and that include layers of uniaxially and biaxially oriented materials.
  • prosthetic devices deployed within the body of a subject may be repaired in situ using PFPE material. For example, damaged or unwanted material (e.g., a damaged surface portion) from a prosthetics device is removed, an enclosure is positioned at the location of the removed material, and a liquid PFPE material is injected into the enclosure. The PFPE material is then cured and the cured PFPE material serves as a replacement for or repair of prosthetics 5 device material.
  • bandages and other wound healing devices are provided that include oxygen permeable, bacterial impermeable PFPE material.
  • Such wound healing bandages and devices may include one or more pharmacological l o agents for treating damaged tissue.
  • a method of applying a bandage to a portion of a body of a subject includes applying (e.g., spraying, swabbing, etc.) an oxygen permeable, bacterial impermeable liquid PFPE material onto a portion of the body of a subject, and then curing the
  • liquid PFPE material such that the PFPE material forms a protective bandage that facilitates healing of underlying tissue.
  • artificial blood vessels are provided for insertion within the body of a subject and include oxygen permeable, bacterial impermeable PFPE material.
  • pharmacological agents may be elutably trapped within the PFPE material (or otherwise attached to the PFPE material).
  • a method of replacing in situ a portion of a blood vessel within the body of a subject includes injecting an oxygen permeable, bacterial impermeable liquid PfPE
  • the occlusion may be removed prior to injection of the PFPE material.
  • intraluminal prostheses e.g., stents having tubular body portions that include oxygen permeable, bacterial impermeable PFPE material are provided.
  • one or more pharmacological agents may be elutably trapped within the PFPE material (or otherwise attached to the PFPE material) of such an intraluminal prosthesis.
  • the PFPE material may be configured to allow the one or more pharmacological agents to elute therefrom (e.g., at a predetermined rate) when an intraluminal prosthesis is deployed within a body of a subject.
  • a pharmacological agent may be homogeneously distributed on the tubular body portion of an intraluminal prosthesis.
  • a pharmacological agent may be heterogeneously distributed on the tubular body portion of an intraluminal prosthesis.
  • any type of medical device may have a portion that is formed from PFPE material, or is coated with PFPE material.
  • Exemplary medical devices include, but are not limited to, adaptors, applicators, aspirators, bandages, bands, blades, brushes, burrs, cables and cords, calipers, carvers, cases and containers, catheters, chisels, clamps, clips, condoms, connectors, cups, curettes, cutters, defibrillators, depressors, dilators, dissectors, dividers, drills, elevators, excavators, explorers, fasteners, files, fillers, forceps, gauges, gloves, gouges, handles, holders, knives, loops, mallets, markers, mirrors, needles, nippers, pacemakers, patches, picks, pins, plates, pliers, pluggers, probes, punches, pushers, racks, reamers, retainers, retractors, rings, rod
  • PFPE material may be used to hermetically seal implantable electronic devices.
  • a housing of an implantable electronic device that contains one or more electronic components therein can be sealed with PFPE material to deter the ingress of moisture and foreign material into the housing when the electronic device is implanted within the body of a subject.
  • a method of forming a polymeric coating on an interior surface of a hollow organ or tissue lumen includes applying liquid PFPE material to an interior surface of a hollow organ or tissue lumen, and then curing the PFPE material to form an oxygen permeable, bacterial impermeable polymer coating on the surface.
  • a method of repairing in situ a defect (e.g., a defect caused by a surgical procedure, by trauma, etc.) in a lung within the body of a subject includes applying a patch comprising oxygen permeable, bacterial impermeable liquid PFPE material over the lung defect, and then curing the liquid PFPE material to seal the patch to adjacent lung tissue so as to prevent air leakage therethrough.
  • the patch may be applied in various ways including spraying liquid PFPE material onto lung tissue.
  • the patch may be a preformed patch.
  • the patch may include various materials including, but not limited to, collagen, gelatin, albumin, fibrin and elastin.
  • a method of implanting an arterio-venous shunt within the body of a subject includes implanting a mold within the body of a subject, wherein the mold is configured to form a tubular body, injecting an oxygen permeable, bacterial impermeable liquid PFPE material into the mold, curing the liquid PFPE material to form a tubular body, and connecting the tubular body to blood vessels in the body to form a shunt therebetween.
  • the PFPE material may include one or more pharmacological agents, and may be configured to allow the one or more pharmacological agents to elute therefrom when the shunt is deployed within a body of a subject.
  • a method of implanting an arterio-venous shunt within the body of a subject includes implanting a tubular body comprising oxygen permeable, bacterial impermeable PFPE material within the body of a subject, and then connecting the tubular body to blood vessels in the body to form a shunt therebetween.
  • the tubular body may include one or more pharmacological agents and the PFPE material of the tubular body is configured to allow the one or more pharmacological agents to elute therefrom when the shunt is deployed within a body of a subject.
  • a method of forming an arterio-venous shunt within the body of a subject includes applying an oxygen permeable, bacterial impermeable liquid PFPE material onto a surface of an existing vessel within the body of a subject, wherein the vessel serves as a mold, and curing the liquid PFPE material to form an arteriovenous shunt.
  • a method of repairing an arterio-venous shunt within the body of a subject includes applying an oxygen permeable, bacterial impermeable liquid PFPE material onto a surface of a shunt within the body of a subject, and curing the liquid PFPE material.
  • a method of repairing in situ a defect in a passageway (e.g., trachea, esophagus, etc.) within the body of a subject includes applying a patch comprising oxygen permeable, bacterial impermeable liquid PFPE material over the defect, and curing the liquid PFPE material to seal the patch to adjacent tissue so as to prevent leakage therethrough.
  • applying a patch may include spraying liquid PFPE material onto tissue of the passageway.
  • a patch may be a preformed patch.
  • the PFPE material may include one or more pharmacological agents for treating the passageway.
  • an artificial tissue material for use within the lungs of a patient comprises a membrane of PFPE material that simulates alveolar action.
  • a material for use within a heart-lung machine comprises a membrane of PFPE material that enhances gas exchange during artificial respiration.
  • an intraocular implant comprises oxygen permeable, bacterial impermeable liquid PFPE material.
  • a contact lens comprises oxygen permeable, bacterial impermeable liquid PFPE material.
  • a cochlear implant comprises oxygen permeable, bacterial impermeable liquid PFPE material.
  • a method of treating tissue within a body of a subject includes encapsulating tissue with liquid PFPE material, and curing the PFPE material to form an oxygen permeable, bacterial impermeable polymer coating on the tissue.
  • a method of treating tissue within the body of a subject includes forming a passageway in tissue within the body of a subject, inserting liquid PFPE material in the passageway, and curing the PFPE material to form an oxygen permeable, bacterial impermeable polymer material that facilitates growth of the tissue and enhances viability of surrounding tissues during healing and angiogenic phase.
  • the tissue may be heart muscle tissue and the PFPE material may facilitate revascularization of the heart muscle tissue.
  • the steps of inserting and curing PFPE material may be performed as part of a transmyocardial revascularization procedure.
  • the PFPE material may include one or more pharmacological agents for treating the tissue.
  • a method of promoting tissue growth within the body of a subject includes applying liquid PFPE material to tissue, and curing the PFPE material to form an oxygen permeable, bacterial impermeable polymer material that facilitates growth of the tissue.
  • the PFPE material may include one or more pharmacological agents for treating the tissue.
  • a method of producing fabric includes coating a fabric with liquid PFPE material, and curing the liquid PFPE material to form a fabric having low surface energy.
  • Exemplary fabrics include, but are not limited to, polytetrafluoroethylene, polyamides, polyesters, polyolefins, and Lycra. According to embodiments of the present invention, the fabric may comprise non-woven material.
  • curing of liquid PFPE may be performed by exposing the liquid PFPE material to heat, light, or other radiation (e.g., microwave radiation, infrared radiation, etc.).
  • curing initiators that facilitate curing may be added to liquid PFPE material.
  • the curing of the liquid PFPE material may be monitored via any of various known techniques including, but not limited to, magnetic resonance imaging (MRI), X-ray fluoroscopy, and ultrasound imaging.
  • MRI magnetic resonance imaging
  • X-ray fluoroscopy X-ray fluoroscopy
  • PFPE materials may serve as alternatives to existing materials in various cosmetic and medical applications.
  • a method of administering a cosmetic treatment to a subject includes subcutaneously administering (e.g., to the lips, chin, and other facial areas, etc.) liquid PFPE material, and curing the liquid PFPE material to a gel state. Curing may include exposing the liquid PFPE material to light or other types of radiation, either directly or indirectly through, for example, the skin of the subject. Alternatively, curing may be facilitated by thermal energy from the body of the subject and/or from a source external to the subject.
  • PFPE materials may also be utilized to repair or replace various maxillofacial bones and materials (e.g., jawbones, chins, dental crowns, etc.).
  • a liquid PFPE material is applied to a facial bone in the body of a subject and then cured as described above to form a prosthetic for the facial bone.
  • prosthetics for various maxillofacial bones may be formed externally and then implanted within the body of a subject.
  • a non-silicone based liquid PFPE material is cured into a solid state in the form of a prosthetic for a facial bone of a subject, and then applied to the facial bone in the subject.
  • PFPE materials may also be utilized as replacement materials for various silicone-based implants such as, for example, breast implants.
  • a non-silicone based liquid PFPE material is inserted into a breast (or other body portion) of a subject, and then cured as described above to a gel state.
  • a non-silicone based liquid PFPE material is cured into a gel state, and then implanted into a breast (or other body portion) of a subject.
  • a breast implant comprises a shell of PFPE material filled with PFPE gel and/or saline.
  • biocompatible is intended to denote a material that, upon contact with a living element such as a cell or tissue, does not cause toxicity.
  • eluting is used herein to mean the release of a pharmacological agent from a polymeric material. Eluting may also refer to the release of a material from a substrate via diffusional mechanisms or by release from a polymeric material/substrate as a result of the breakdown or erosion of the material/substrate.
  • electrode refers to the ability of a material to maintain its structural integrity for a desired period of time, and thereafter gradually undergo any of numerous processes whereby the material substantially loses tensile strength and mass. Examples of such processes comprise enzymatic and non-enzymatic hydrolysis, oxidation, enzymatically-assisted oxidation, and others, thus including bioresorption, dissolution, and mechanical degradation upon interaction with a physiological environment into components that the patient's tissue can absorb, metabolize, respire, and/or excrete.
  • electroderodible and “degradable” are intended to be used herein interchangeably.
  • fluoropolymer has its conventional meaning in the art. See generally Fluoropolymers (L. Wall, Ed. 1972) (Wiley- lnterscience Division of John Wiley & Sons); see also Fluorine-Containing Polymers, 7 Encyclopedia of Polymer Science and Engineering 256 (H. Mark et al. Eds., 2d Ed. 1985). The formation of fluoropolymers are described in U.S. Patent Nos.: 5,922,833; 5,863,612; 5,739,223; 5,688,879; and 5,496,901 to DeSimone, each of which is incorporated herein by reference in its entirety.
  • hydrophobic is used herein to mean not soluble in water.
  • hydrophilic is used herein to mean soluble in water.
  • lumen is used herein to mean any inner open space or cavity of a body passageway.
  • polymer and “polymeric material” are synonymous and are to be broadly construed to include, but not be limited to, homopolymers, copolymers, terpolymers, and the like.
  • prosthesis is used herein in a broad sense to denote any artificial device used to replace a body part.
  • An intraluminal prosthesis is a device which is implanted in the body of a subject for some therapeutic reason or purpose including, but not limited to, stents, drug delivery devices, etc.
  • subject is used herein to describe both human beings and animals (e.g., mammalian subjects) for medical, veterinary, testing and/or screening purposes.
  • toxic materials is intended to include all types of foreign materials, contaminants, chemicals, physical impurities, and the like, without limitation, that may be harmful to a subject
  • phrases such as "between about X and Y” mean "between about X and about Y.”
  • phrases such as "from about X to Y” mean “from about X to about Y.”
  • liquid curable perfluoropolyether (PFPE) materials are provided for use as coatings, sealants, flexible fillers, structural parts, etc., and in a wide variety of medical applications, particularly where silicone has been utilized conventionally.
  • PFPE material shall include all perfluoropolyethers and all derivatives therefrom.
  • PFPE materials are a unique class of fluoropolymers that are liquids at room temperature, exhibit low surface energy, low modulus, high gas permeability, high lubricity, and low toxicity with the added feature of being extremely chemically resistant. PFPE materials are particularly advantageous for use in medical applications because PFPE materials are oxygen permeable, but impermeable to many pathogens. The synthesis of PFPE materials is described generally in W.C. Bunyard et al., Macromolecules 32, 8224 (1999), which is incorporated by reference in its entirety.
  • fluoropolyethers are polymeric compounds composed of multiple, sequentially linked, fluorinated aliphatic ether units (e.g., polymers of the formula (RO)n R wherein the R groups are the same or different and are linear or branched, saturated or unsaturated C1-C4 alkyl; typically linear or branched saturated C1-C4 alkyl, with the number of repeats "n" giving the desired molecular weight); perfluoropolyether are such polymers in which essentially all of the hydrogens have been substituted with fluorine.
  • fluorinated aliphatic ether units e.g., polymers of the formula (RO)n R wherein the R groups are the same or different and are linear or branched, saturated or unsaturated C1-C4 alkyl; typically linear or branched saturated C1-C4 alkyl, with the number of repeats "n" giving the desired molecular weight
  • perfluoropolyether are such polymers in which essentially all of the hydrogen
  • perfluoropolyethers examples include perfluoropolymethyl-isopropyl-ethers such as: (i) polymers marketed under the tradename FOMBLIN®; Copolymers marketed under the tradename AFLUNOX®, and (Hi) polymers marketed under the tradename FOMBLIN Z_DOLTM. See, e.g., US Patent No. 6,582,823, which is incorporated herein by reference in its entirety.
  • the synthesis and photocuring of these materials can be done in a manner similar to that based on earlier work done by Bongiovanni et al., which is described in Macromol. Chem. Phys. 198, 1893 (1997) and which is incorporated by reference in its entirety.
  • DMPA 2,2-dimethoxy-2- phenylacetophenone
  • PFPE materials may also be functionalized with various groups, such as with epoxy groups, vinyl groups, hydroxyl groups, isocyanate groups, and amino groups and subsequently cured via various curing mechanisms well known to those skilled in the art including, but not limited to, radical, urethane, epoxy, and cationic curing mechanisms.
  • radical -curing include thermal curing with added free radical initiators, such as azo initiators, peroxides, acyl peroxides, and peroxy dicarbonates.
  • radical curing also include photochemical curing with added photo-generated free radical initiators such as 2,2-dimethoxy-2-phenylacetophenone.
  • Epoxy containing PFPE materials may be cured via the addition of amines or by cationic ring-opening methods.
  • Examples of amines useful for curing epoxy containing PFPE materials include 4,4'-diaminodiphenylsulfone.
  • Examples of cationic ring-opening methods for curing epoxy containing PFPE materials include the use of non-ionic or ionic photoacid generators.
  • Useful nonionic photoacid generators include 2,5-dinitrobenzyl tosylate or 2-perfluorohexyl-6- nitrobenzyl tosylate.
  • Useful ionic photoacid generators include diphenyliodium tetraphenyl borate or diphenyliodonium tetra-[3,5-bis(trifluoromethyi) phenyl] borate.
  • Urethane curing mechanisms may include isocyanate reactions with hydroxyl or amine compounds.
  • PFPE materials according to embodiments of the present invention can be modified and "tuned” to achieve various characteristics and functionalities.
  • reactive monomers can be added to PFPE materials to adjust physical properties including, but not limited to, modulus, wetting, various surface characteristics, etc.
  • Reactive monomers that can be added to modify the properties can include styrenics such as styrene, and para-chloromethylstyrene, t-butylstyrene and divinylbenzene; alkyl (meth)acrylates such as butyl acrylate and methyl methacrylate; functional (meth)acrylates such as hydroxyethylmethacrylate, acryloxyethyltrimethylammonium chloride (AETMAC), hydroxyethylacrylate (HEA), cyanoacrylates, fluoroalky! (meth)acrylates, 2-isocyanatoethyl methacrylate, glycidyl methacrylate, ally! methacrylate and poly(ethylene glycol)diacrylate (PEGdiA); olefins such as norbomene, vinylacetate, 1-vinyl- 2-pyrrolidone, and alkylacrylamides.
  • additives can be added to PFPE materials according to embodiments of the present invention including, but not limited to, pharmacological agents, fillers, bioerodible materials, porogens, deoxyribonucleic acid (DNA), oligonucleotides, peptides, growth hormones, etc.
  • Mechanical fillers that may be added to PFPE materials according to embodiments of the present invention may include, but are not limited to, silica, clay, and other materials of various sizes (e.g., nanoparticles).
  • Additives can be included with PFPE material in various ways including, but not limited to, being chemically attached to PFPE material, being embedded within PFPE material, being dispersed in PFPE material, etc.
  • PFPE materials can be tuned to cure as a rigid structure, as a flexible structure, and/or as a partially rigid and partially flexible structure.
  • degree of rigidity and flexibility can also be designed into the PFPE material via additives.
  • embodiments of the present invention may utilize composite materials having variable layers of rigid and less rigid PFPE materials.
  • layers of uniaxially and biaxially oriented materials may be utilized such that anisotropic properties can be obtained (e.g., flexibility in one direction and strength or rigidity in another direction, etc.).
  • pharmacological agents suitable for use with PFPE materials include, but are not limited to, drugs and other biologically active materials, and may be intended to perform a variety of functions, including, but not limited to: anticancer treatment (e.g., Resan), anti-clotting or anti-platelet formation, the prevention of smooth muscle cell growth, migration, and proliferation within a vessel wall.
  • anticancer treatment e.g., Resan
  • anti-clotting or anti-platelet formation the prevention of smooth muscle cell growth, migration, and proliferation within a vessel wall.
  • pharmacological agents suitable for use with PFPE materials include, but are not limited to, antineoplastics, antimitotics, antiinflammatories, antiplatelets, anticoagulants, antifibrins, antithrombins, antiproliferatives, antibiotics, antioxidants, and antiallergic substances as well as combinations thereof.
  • antineoplastics and/or antimitotics examples include paclitaxel (cytostatic and ant-inflammatory) and it's analogs and all compounds in the TAXOL® (Bristol-Myers Squibb Co., Stamford, CT) family of pharmaceuticals, docetaxel (e.g., TAXOTERE® from Aventis S.
  • doxorubicin hydrochloride e.g., ADRIAMYCIN® from Pharmacia & Upjohn, Peapack, NJ
  • mitomycin e.g., MUTAMYCIN® from Bristol-Myers Squibb Co., Stamford, Conn.
  • antiinflammatories examples include Sirolimus and analogs thereof (including but not limited to Everolimus and all compounds in the Limus" family of pharmaceuticals), glucocorticoids such as dexamethasone, methylprednisolone, hydrocortisone and betamethasone and non-steroidal antiinflammatories such as aspirin, indomethacin and ibuprofen.
  • Sirolimus and analogs thereof including but not limited to Everolimus and all compounds in the Limus” family of pharmaceuticals
  • glucocorticoids such as dexamethasone, methylprednisolone, hydrocortisone and betamethasone
  • non-steroidal antiinflammatories such as aspirin, indomethacin and ibuprofen.
  • antiplatelets examples include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe- pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein llb/llla platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin inhibitors such as AngiomaxTM (Biogen,
  • cytostatic or antiproliferative agents or proliferation inhibitors include everolimus, actinomycin D, as well as derivatives and analogs thereof (manufactured by Sigma-Aldrich, Milwaukee, Wl.; or COSMEGEN® available from Merck & Co., Inc., Whitehouse Station, NJ), angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g., CAPOTEN® and CAPOZIDE® from Bristol-Myers Squibb Co.,
  • cilazapril or lisinopril e.g., Prinivilo and PRINZIDE® from Merck & Co., Inc., Whitehouse Station, NJ
  • calcium channel blockers such as nifedipine
  • colchicine fibroblast growth factor (FGF) antagonists
  • fish oil omega 3-fatty acid
  • histamine antagonists lovastatin (an inhibitor of HMG- CoA reductase, a cholesterol lowering drug, brand name MEVACOR® from Merck & Co., Inc., Whitehouse Station, NJ)
  • calcium channel blockers such as nifedipine
  • colchicine such as nifedipine
  • FGF fibroblast growth factor
  • fish oil omega 3-fatty acid
  • histamine antagonists such as lovastatin (an inhibitor of HMG- CoA reductase, a cholesterol lowering drug, brand name MEVACOR® from a statin (an inhibitor of HMG- CoA reductase,
  • PDGF Platelet-Derived Growth Factor
  • nitroprusside phosphodiesterase inhibitors
  • prostaglandin inhibitors phosphodiesterase inhibitors
  • suramin phosphodiesterase inhibitors
  • serotonin blockers nitroprusside
  • steroids thioprotease inhibitors
  • triazolopyrimidine a PDGF antagonist
  • nitric oxide nitric oxide.
  • an antiallergic agent is permirolast potassium.
  • Other therapeutic substances or agents that may be used include alphainterferon, genetically engineered epithelial cells, and dexamethasone.
  • Pain relief agents may also be added to PFPE materials according to embodiments of the present invention.
  • PFPE materials may be tuned such that, when cured, the PFPE material is contiguous, porous, and/or biphasic.
  • Porous or biphasic materials can be achieved by adding other components that will phase separate such as" salts (e.g., sodium chloride); sugars such as sucrose; water or saline solutions; other polymers such as polyethylene glycols, polyvinyl alcohol, or biodegradable polymers such as polylactides, polyglycolides, polycaprolactone; or added gases or gases that are generated in situ such as through the addition of water to isocynate compounds which releases CO 2 .
  • salts e.g., sodium chloride
  • sugars such as sucrose
  • water or saline solutions other polymers such as polyethylene glycols, polyvinyl alcohol, or biodegradable polymers such as polylactides, polyglycolides, polycaprolactone
  • gases or gases that are generated in situ such as through the addition of water to isocy
  • PFPE materials may be applied neat or by using a solvent to facilitate the coating process prior to curing.
  • Any solvent which can dissolve the PFPE materials is useful.
  • the solvent can reduce the viscosity of the PFPE materials to facilitate the coating process. A lower viscosity can enable the formation of contiguous films or facilitate the formation of thinner films.
  • Exemplary solvents include fluorinated solvents such as FLUORINERT® manufactured by 3M Company (St. Paul, MN).
  • PFPE materials may be used in any application where silicone materials have conventionally been used.
  • PFPE materials may be utilized in coatings, sealants, adhesives, structural parts, fillers, implants, etc.
  • PFPE materials may be utilized in virtually any medical application, product and method. According to embodiments of the present invention, curing of PFPE material(s) in the various applications described herein may be accomplished in various ways including, but not limited to, the use of heat, light and/or other electromagnetic radiation (e.g., microwave, infrared, etc.).
  • PFPE materials may be used in various orthopedic applications, including orthopedic devices and implants, as well as orthopedic surgical procedures. Embodiments of the present invention facilitate building and providing new devices and structures for placement within the body of a subject, in addition to rebuilding and repairing existing devices and structures in situ.
  • PFPE materials may be utilized in building new hip joints and in repairing existing hip joints (e.g., an original hip joint or a replacement hip joint) in situ.
  • the high wear, high lubricity properties of PFPE are particularly beneficial for hip joints.
  • the hip joint ball and socket can be made out of PFPE material or the ball and socket surfaces of a metallic implant can be coated with PFPE material.
  • a method of repairing skeletal or skeletal-related (e.g., ligaments, tendons, cartilage, muscles, etc.) damage within the body of a subject includes inserting and positioning an enclosure is adjacent (e.g., within, next to, on top of, etc.) the damaged skeletal portion (or skeletal-related portion) of a subject, injecting a liquid PFPE material into the enclosure, and curing the liquid PFPE material.
  • an enclosure may be made of durable polymers (which would be removed post cure) such as PE, PET, polycarbonate etc or erodible materials (which would not require removal) such as poly(L-lactide) or its radiosiomers, poly glycolic acid, polyan hydrides etc. Enclosures or molds are inserted minimally invasively or surgically.
  • Curing the liquid PFPE material may be performed in various ways.
  • the liquid PFPE material may be exposed to heat, light or other radiation.
  • localized exposure to light may be provided by fiber optics, "light pipes", etc.
  • Localized exposure to radiation may be provided by devices capable of delivering a directed beam of radiation.
  • curing initiators may be added to the liquid PFPE material.
  • the cured PFPE material forms a rigid structure that provides structural support to the skeletal portion of the subject.
  • the damage may be a crack or other defect in a bone and the enclosure is positioned within the crack.
  • the liquid PFPE material upon curing, seals the crack and provides structural support to the bone.
  • the PFPE material (or one or more portions of the PFPE material) upon curing may remain flexible. Accordingly, the cured, flexible PFPE material may replace portions of ligaments, tendons, cartilage, muscles, etc. and other flexible tissues within the body of a subject.
  • a damaged skeletal portion may be a damaged spinal component, such as discs and vertebral bodies
  • an enclosure as described above may be inserted within the nuclear space of a vertebral body.
  • the liquid PFPE material injected therein upon curing, mimics a native, healthy nucleus and restores normal vertebral function by preventing denaturization of cells and failure of the annular portion of the disc.
  • the skeletal portion may be a joint having a damaged portion.
  • Any joint in the body of a subject may be repaired in accordance with embodiments of the present invention including, but not limited to, hips, knees, ankles, phalange joints, elbows, and wrists.
  • a joint may have a damaged wear surface.
  • Liquid PFPE material is applied to the damaged wear surface and, upon curing, provides a repaired wear surface.
  • PFPE materials may be utilized in conjunction with, or in place of, arthroscopic surgery to repair a damaged joint.
  • Unwanted material e.g., damaged cartilage, etc.
  • Liquid PFPE material is injected into the enclosure and cured.
  • the cured PFPE material serves as a replacement for the original structure or surface.
  • an implantable orthopedic apparatus has an outer surface of oxygen permeable, bacterial impermeable PFPE material.
  • the implantable apparatus may be formed from the PFPE material and/or the PFPE material may be a coating on the apparatus.
  • Implantable orthopedic apparatus may be artificial or may be cadaver parts refurbished using PFPE materials.
  • PFPE materials For example, a knee from a cadaver can be refurbished as described above to improve wear surfaces and to repair damaged areas, etc.
  • Elastic moduli that can be achieved for cured and modified PFPE based materials can range from 1 MPa to 2 GPa.
  • PFPE materials are particularly advantageous for use in various dermatological applications including, but not limited to, bandages, dressings and wound healing applications, burn care, reconstructive surgery, surgical glue, sutures, etc. Because PFPE materials are oxygen permeable and bacterial impermeable, tissue underlying a PFPE bandage can receive oxygen while being protected against the ingress of dirt, bacteria, microbial organisms, pathogens and other forms of contamination and toxicity. Moreover, PFPE materials are non-toxic. In addition, the oxygen permeability and carrying capacity of PFPE materials can also help with preventing necrosis of healthy tissue under bandages and dressings, or under an area being treated.
  • a method of applying "instant skin" to the body of a subject includes applying an oxygen permeable, bacterial impermeable liquid PFPE material onto a portion of the body of a subject, and curing the PFPE material to form a protective bandage that facilitates healing of the underlying tissue.
  • the protective bandage is antiseptic, flexible, waterproof and lets the underlying skin breathe (i.e., it forms a film that is oxygen permeable, but bacteria impermeable).
  • the liquid PFPE material can be applied in various ways including, but not limited to, spraying, swabbing, etc.
  • curing can be performed in various ways including, but not limited to, exposing the liquid PFPE material to light, heat and/or other radiation. Curing may be facilitated by adding curing initiators to the liquid PFPE material.
  • PFPE materials can be modified to include adhesive properties so that the PFPE material can serve the function of a non-toxic, curable liquid bandage for sealing wounds.
  • exemplary material that can be added to PFPE materials to achieve adhesiveness includes cyanoacrylate. When cured, the PFPE material is flexible, yet remains adhered to moving parts such as knees and elbows.
  • bandages formed from this material provide barriers to infection, can reduce pain to the wearer because of lower surface energy, and can control bleeding better than traditional bandages.
  • PFPE materials can be utilized in adhesion prevention products for various postsurgical tissue applications.
  • PFPE material can be applied to post-surgical tissue to prevent other materiajs and tissue from adhering ' to the post-surgical tissue.
  • PFPE material may be applied in post-lung lobectomy, hysterectomy, appendectomy, hernia repair or any application where tissue has been injured and connective growth to surrounding tissues or organs is not desired.
  • PFPE materials according to embodiments of the present invention may be used in various cardiovascular applications and in various other intraluminal applications, including devices and methods. According to embodiments of the present invention, PFPE oils may be used as synthetic blood and/or blood substitutes. Moreover, PFPE materials according to embodiments of the present invention may be utilized in blood analysis and treatment devices.
  • artificial blood vessels having oxygen permeable, bacterial impermeable
  • PFPE materials can be produced for replacing damaged and/or occluded vessels within the body of a subject. Not only can PFPE materials serve as conduits for blood flow, but they also can allow for diffusion of oxygen and nutrients through the vessel wall into surrounding tissues thus functioning much like a normal healthy blood vessel to various areas of the body of a subject.
  • a method of replacing in situ a portion of a blood vessel within the body of a subject includes injecting an oxygen permeable, bacterial impermeable liquid PFPE material into a lumen of a portion of a blood vessel to form an artificial blood vessel.
  • the blood vessel portion serves as a mold for forming the artificial vessel.
  • the PFPE material is then subjected to conditions sufficient to cure the PFPE material such that a working replacement for the blood vessel portion is produced. Curing may be performed in various ways as described above.
  • the original blood vessel portion may be removed from the body of the subject. If the blood vessel portion being replaced is occluded or partially occluded, the occluding material is removed prior to injecting the liquid PFPE material into the lumen.
  • repla ' cement blood vessels (as well as other cardiovascular vessels) incorporating PFPE materials can be produced ex vivo for subsequent surgical implantation within the body of a subject.
  • Embodiments of the present invention are particularly advantageous regarding repair and/or replacement of blood vessels.
  • artificial vessels formed from PFPE materials according to embodiments of the present invention have highly functional properties with synthetic vasavasorum characteristics.
  • PFPE materials allow diffusion of oxygen through the walls and into surrounding dependent tissues, allow diffusion of sustaining nutrients, diffusion of metabolites.
  • PFPE materials mimic vessels mechanically as they are flexible and compliant.
  • embodiments of the present invention are particularly suitable for use in heart by-pass surgery and as artificial arteriovenous shunts.
  • PFPE materials can also be used to repair natural or synthetic a-v shunts by coating the inside surface of the damaged or worn vessel and curing as previously described.
  • PFPE materials according to embodiments of the present invention may be utilized in various intraluminal applications including, but not limited to, stents (and other tissue scaffolding devices), catheters, heart valves, electrical leads associated with rhythm management, balloons and other angioplasty devices, drug delivery devices, etc. Moreover, PFPE materials according to embodiments of the present invention may be embodied in the material(s) of these devices or in coatings on these devices. Intraluminal prostheses provided in accordance with embodiments of the present invention may be employed in sites of the body other than the vasculature including, but not limited to, biliary tree, esophagus, bowels, tracheobronchial tree, urinary tract, etc.
  • Stents are typically used as adjuncts to percutaneous transluminal balloon angioplasty procedures, in the treatment of occluded or partially occluded arteries and other blood vessels.
  • a guiding catheter or sheath is percutaneously introduced into the cardiovascular system of a patient through, for example, the femoral arteries and advanced through the vasculature until the distal end of the guiding catheter is positioned at a point proximal to the lesion site.
  • a guidewire and a dilatation catheter having a balloon on the distal end are introduced through the guiding catheter with the guidewire sliding within the dilatation catheter.
  • the guidewire is first advanced out of the guiding catheter into the patient's vasculature and is directed across the arterial lesion.
  • the dilatation catheter is subsequently advanced over the previously advanced guidewire until the dilatation balloon is properly positioned across the arterial lesion.
  • the expandable balloon is inflated to a predetermined size with a radiopaque liquid at relatively high pressure to radially compress the atherosclerotic plaque of the lesion against the inside of the artery wall and thereby dilate the lumen of the artery.
  • the balloon is then deflated to a small profile so that the dilatation catheter can be withdrawn from the patient's vasculature and blood flow resumed through the dilated artery.
  • Balloon angioplasty sometimes results in short or long term failure (restenosis). That is, vessels may abruptly close shortly after the procedure or restenosis may occur gradually over a period of months thereafter.
  • implantable intraluminal prostheses commonly referred to as stents, are used to achieve long term vessel patency.
  • a stent functions as scaffolding to structurally support the vessel wall and thereby maintain luminal patency, and are transported to a lesion site by means of a delivery catheter.
  • Types of stents may include balloon expandable stents, springlike, self-expandable stents, and thermally expandable stents.
  • Balloon expandable stents are delivered by a dilitation catheter and are plastically deformed by an expandable member, such as an inflation balloon, from a small initial diameter to a larger expanded diameter.
  • Self-expanding stents are formed as spring elements which are radially compressible about a delivery catheter. A compressed self-expanding stent is typically held in the compressed state by a delivery sheath. Upon delivery to a lesion site, the delivery sheath is retracted allowing the stent to expand.
  • Thermally expandable stents are formed from shape memory alloys which have the ability to expand from a small initial diameter to a second larger diameter upon the application of heat to the alloy.
  • PFPE materials may be used with all of the above-described cardiovascular and intraluminal devices. PFPE materials may be utilized in the material(s) of these devices and/or may be provided as a coating on these devices. It may be desirable to provide localized pharmacological treatment of a vessel at the site being supported by a stent or other intraluminal device. Thus, sometimes it is desirable to utilize a stent both as a support for a lumen wall as a well as a delivery vehicle for one or more pharmacological agents. PFPE materials according to embodiments of the present invention may be configured to carry and release pharmacological agents. PFPE materials may be impregnated with pharmacological agents for delivery within a body of a subject. The impregnation of polymer materials is . described in commonly assigned U.S. Patent Application Publication No.: 2004-0098106-A1, which is incorporated herein by reference in its entirety.
  • liquid PFPE materials may be utilized in endoluminal seaiing processes wherein the interior surfaces of tissue lumens are covered or sealed with polymeric material. Liquid PFPE materials are especially suitable for these procedures because of high lubricity and high permeability to oxygen.
  • a catheter or other instrument is configured to deliver liquid PFPE material to a tissue lumen and to cause the PFPE material to conform to the interior surface of the lumen. Upon curing, the PFPE material provides an improved interior surface. Lumen paving procedures and apparatus are described in U.S. Patent Nos.
  • PFPE materials may be incorporated into various types of patches utilized in lung surgical procedures. Patches according to embodiments of the present invention include spray-on patches wherein PFPE material is sprayed directly on lung tissue. Preformed patches configured to be attached and secured to lung tissue via conventional methods may also include PFPE material, according to embodiments of the present invention.
  • PFPE materials may be used in conjunction with sutures and staples to provide additional sealing over the mechanical closures, for example, over the staple or suture line of a lobectomy.
  • the oxygen carrying ability and permeability of PFPE materials makes them particularly suitable for use in lung repair.
  • PFPE materials can be cured to a flexible state, they are particularly suitable for use as patches for lungs where expansion of a lung requires a flexible and strong bond with a gas-tight seal.
  • PFPE materials may include one or more pharmacological agents that are configured to elute therefrom, as described above, when a patch is implanted within a subject's body.
  • PFPE materials can be utilized in arterio-venous ("AV") shunts.
  • AV shunts are utilized to join an artery and vein, allowing arterial blood to flow directly into the vein.
  • PFPE materials according to embodiments of the present invention can be utilized to repair AV shunts or create artificial ones, and this can be done both in vivo and ex vivo.
  • PFPE materials may include one or more pharmacological agents that are configured to elute therefrom, as described above, when a shunt is implanted within a subject's body.
  • AV shunts utilized in dialysis treatment of patients may be replaced and/or repaired using PFPE materials.
  • AV shunts implanted within dialysis patients periodically require replacement or repair.
  • a damaged or worn AV shunt can be repaired in situ by coating the shunt with PFPE material and then curing the PFPE material as described above.
  • existing shunts can be removed and replaced with shunts containing PFPE materials.
  • PFPE material may be utilized in trachea and esophagus patches and repair procedures therefor. Patches according to embodiments of the present invention can be effective in preventing or reducing air leakage and/or food leakage from a damaged trachea and esophagus. Patches according to embodiments of the present invention may include spray-on patches wherein PFPE material is sprayed directly on trachea/esophagus tissue. Preformed patches configured to be attached and secured to trachea/esophagus tissue via conventional methods may also include PFPE material, according to embodiments of the present invention. According to embodiments of the present invention, PFPE materials may include one or more pharmacological agents that are configured to elute therefrom when a patch is implanted within a subject's body.
  • PFPE materials may be utilized as artificial lung material because they can enhance gas exchange during respiration.
  • PFPE materials may be utilized as substitute alveolar membrane material, both for an actual lung and for artificial lung machines and heart-lung machines.
  • the alveoli are components within the lung which facilitate oxygen/carbon dioxide exchange and the alveolus is a terminal sacule of an alveolar duct where gases are exchanged during respiration.
  • the high oxygen exchange capacity of PFPE materials helps simulate the alveolar action of lung material, including alveoli and alveolus.
  • PFPE materials may be utilized in transmyocardial revascularization (TMR).
  • TMR transmyocardial revascularization
  • revascularization new blood vessels
  • PFPE materials can be injected into holes produced during a TMR procedure to facilitate revascularization of the heart tissue.
  • one or more pharmacological agents for facilitating revascularization, as well as for various other purposes, can be included with the PFPE material injected into the holes.
  • ocular implants and contact lenses are formed from PFPE material. These devices are advantageous over conventional ocular implants and contact lenses because the PFPE material is permeable to oxygen and resistant to bio- fouling. In addition, because of the lower surface energy, there is more comfort to the wearer because of lower friction. In addition, the refractive index of PFPE materials can be tuned (adjusted/precisely controlled) for optimum performance for ocular implants and contact lenses.
  • cochlear implants utilizing PFPE material are advantageous over implants formed from conventional materials. Utilizing PFPE material, tissue in-growth can be minimized, thus making removal of the device safer and less traumatic.
  • liquid PFPE materials and blends thereof may be applied to various areas within the body of a subject.
  • the PFPE material may serve as an oxygen permeable, bacterial impermeable protective coating.
  • oxygen- deprived tissue may be encapsulated with PFPE material.
  • Tissue may also be replaced with PFPE material.
  • PFPE materials can be utilized for scaffolding for new tissue growth according to embodiments of the present invention. The high oxygen permeability of PFPE materials are particularly suitable for promoting tissue growth.
  • PFPE material may incorporate PFPE material as described above.
  • Exemplary devices include tubing, fabrics, filters, balloons, catheters, needles and other surgical tools, clamps and devices. These devices can be made from all types of materials including ceramics, glass, metals, polymers and composites thereof.
  • the PFPE material may be used as coatings, adhesives, sealants or structural components or space-filling additives.
  • electronic devices configured to be implanted within the body of a subject are sealed with PFPE material.
  • PFPE material may be hermetically sealed with PFPE material which prevents the ingress of moisture and bio-fouling into the housing when the electronics device is implanted within the body of a subject.
  • individual electronic components such as batteries, capacitors, etc. that are implanted within the body may be hermetically sealed via PFPE materials.
  • PFPE materials can have high dielectric strength and thus can serve as very good electrical insulators.
  • medical tools and devices may be coated, sealed or comprised of PFPE material(s).
  • Any type of medical instrument and device may be coated, sealed or comprised of PFPE material(s) including, but not limited to, instruments and devices utilized in cosmetic surgery, cardiology, dentistry and oral surgery, dermatology, ENT/otolaryngology, gynecology, laparoscopy, neurosurgery, orthopedics, ophthalmology, podiatry, urology, veterinary.
  • natural and synthetic fabrics and clothes may be coated, sealed and/or comprised of
  • PFPE material(s) may be used to coat expanded polytetrafluoroethylene (also known as a GORETEX® membrane by W.L. Gore) materials and their derivatives and then cured.
  • Other fabrics that can be coated include polyamides, polyesters, polyolefins, Lycra, etc.
  • PFPE material(s) can make fabrics have a very low surface energy, and can change various fabrics performance properties.
  • a non-woven fabric of Nylon 6,6 can be coated with a PFPE material to produce a material having similar surface and barrier properties as a GORETEX® membrane, but at a reduced cost.
  • embodiments of the current invention include the tools and systems required to deliver or use PFPE materials in medical devices and tools.
  • This includes catheters; syringes; delivery cartridges for resins, curing agents; heat sources; light sources including directed light sources such as wands, light pipes and lasers and indirect light sources such as wide-area bulbs and arrays.
  • These tools and systems can be used for the in situ delivery of PFPE materials or for the use or delivery of PFPE materials ex situ such as at a factory or custom manufacturing facility.
  • Techniques can be used for monitoring or inspecting the delivery or use of PFPE materials such as magnetic resonance imaging, ultrasound imaging, x-ray fluoroscopy, Fourier transform infrared spectroscopy, ultraviolet or visible spectroscopy.
  • PFPE materials are non ferromagnetic materials and, thus, are compatible with MRI.
  • PFPE materials also have distinctive IR bands and have a very low optical density in the ultraviolet and visible wave lengths.
  • PFPE materials can serve as a substitute for collagen and other conventional materials utilized in various cosmetic and medical applications, such as lip and cheek augmentation.
  • PFPE materials are advantageous substitutes for collagen and other materials because PFPE materials are non- toxic, non-allergenic and are very durable.
  • Lip augmentation utilizing PFPE materials can create fuller, plumper lips and can reduce fine wrinkles around the mouth.
  • Cheek augmentation utilizing PFPE materials can strengthen a weak cheek structure, e.g., to make a person's face appear less drawn and gaunt, and to make bulges under the eyes less prominent, etc..
  • a method of administering a cosmetic treatment includes subcutaneously administering an amount of liquid PFPE material into a portion of the body of a subject (e.g., into the lips, into the cheeks, into other portions of the face, etc.), and then curing the liquid PFPE material to a gel state.
  • Curing may include exposing the liquid PFPE material to light or other types of radiation, either directly or indirectly through, for example, the skin of the subject.
  • curing may be facilitated by thermal energy from the body of the subject and/or from a source external to the subject. Curing may also be facilitated by providing curing initiators within the PFPE material, as described above.
  • the liquid PFPE material may be provided as a two-component system that cures after the two components are mixed together.
  • various additives can be added to PFPE materials according to embodiments of the present invention including, but not limited to, pharmacological agents, fillers, bioerodible materials, etc.
  • liquid PFPE material may be formed and cured into a desired shape and then implanted within various portions of the-body of a subject, e.g., into the lips, into the cheeks, and/or into other portions of the face, etc.
  • PFPE material implants can be formed and partially cured and then implanted within various portions of the body of a subject. The implant can be removed one or more times before final curing in order to customize the implant to better fit a patient's face (or other body portion).
  • PFPE materials can be utilized as implants for chin surgery, also known as genioplasty.
  • cured or partially cured PFPE material implants are situated directly on top of a chin bone and may be sutured or screwed into place.
  • the implant, if partially cured, may be removed and replaced multiple times prior to final curing in order to ascertain a custom fit.
  • liquid if partially cured, may be removed and replaced multiple times prior to final curing in order to ascertain a custom fit.
  • PFPE material is injected onto a chin bone and/or portions adjacent thereto and then cured.
  • Curing may include exposing the liquid PFPE material to light or other types of radiation, either directly or indirectly through, for example, the skin of the subject.
  • curing may be facilitated by thermal energy from the body of the subject and/or from a source external to the subject. Curing may also be facilitated by providing curing initiators within the PFPE material, as described above.
  • the liquid PFPE material may be provided as a two-component system that cures after the two components are mixed together.
  • various additives can be added to PFPE materials according to embodiments of the present invention including, but not limited to, pharmacological agents, fillers, bioerodible materials, etc.
  • PFPE materials may also be utilized to repair or replace various maxillofacial bones and materials (e.g., jawbones, dental crowns, cartilage, etc.) in a subject.
  • a liquid PFPE material is applied to a facial bone (or other material) in the body of a subject and then cured as described above to form a prosthetic for the facial bone.
  • Curing may include exposing the liquid PFPE material to light or other types of radiation, either directly or indirectly through, for example, the skin of the subject. Alternatively, curing may be facilitated by thermal energy from the body of the subject and/or from a source external to the subject.
  • Curing may also be facilitated by providing curing initiators within the PFPE material, as described above.
  • the liquid PFPE material may be provided as a two-component system that cures after the two components are mixed together.
  • various additives can be added to PFPE materials according to embodiments of the present invention including, but not limited to, pharmacological agents, fillers, bioerodible materials, etc.
  • prosthetics for various maxillofacial bones and materials may be formed externally and then implanted within the body of a subject.
  • a non-silicone based liquid PFPE material is cured into a solid state in the form of a prosthetic for a facial bone or other material of a subject, and then applied to the facial bone or other material in the subject.
  • Breast Augmentation Breast augmentation or "breast enlargement” is a surgical procedure to enhance the size and shape of a woman's breasts. This surgery can improve the body contour of a woman who feels her breasts are too small by increasing the bustline by one or more bra cup sizes. It may also be used to correct a reduction in breast volume after pregnancy or weight loss, to balance a difference in breast size, or simply as a reconstructive follow-up on breast surgery. The method of inserting and positioning a breast implant will depend on a patient's anatomy.
  • a breast implant comprises a PFPE shell filled with PFPE gel and/or a saline solution.
  • An incision is made either in the crease where the breast meets the chest, around the areola (the dark skin surrounding the nipple), or in the armpit.
  • the breast tissue and skin is lifted to create a pocket, either directly behind the breast tissue or underneath the chest wall muscle (the pectoral muscle).
  • the PFPE implants are then centered beneath the nipples.
  • a non- silicone based liquid PFPE material is inserted into a breast (or other body portion) of a subject, and then cured as described above to a gel state.
  • Curing may include exposing the liquid PFPE material to light or other types of radiation, either directly or indirectly through, for example, the skin of the subject.
  • curing may be facilitated by thermal energy from the body of a subject and/or from a source external to the subject.
  • Curing may also be facilitated by providing curing initiators within the PFPE material, as described above.
  • the liquid PFPE material may be provided as a two-component system that cures after the two components are mixed together.
  • various additives can be added to PFPE materials according to embodiments of the present invention including, but not limited to, pharmacological agents, fillers, bioerodible materials, etc.
  • PFPE- based restylane and perlane injectables/fillers are provided. These materials can be used to reduce the appearance of facial lines, wrinkles, scars and also to enhance the lip border. Cured or partially cured PFPE implants are injected through a tiny needle just below the surface of the skin to smooth wrinkles or define the lip border.
  • liquid PFPE-based restylane and perlane material is subcutaneously injected into a subject and then cured.
  • Curing may include exposing the liquid PFPE material to light or other types of radiation, either directly or indirectly through, for example, the skin of the subject.
  • curing may be facilitated by thermal energy from the body of the subject and/or from a source external to the subject. Curing may also be facilitated by providing curing initiators within the PFPE material, as described above.
  • the liquid PFPE material may be provided as a two-component system that cures after the two components are mixed together.
  • various additives can be added to PFPE materials according to embodiments of the present invention including, but not limited to, pharmacological agents, fillers, bioerodible materials, etc.
  • PFPE materials may include photoinitiators to facilitate curing via light including, but not limited to, ultraviolet light, visible light and infrared light.
  • Photoinitiators which absorb light energy to form free radicals or other reactive intermediates, initiate polymerization.
  • Type 1 photoinitiators produce free radicals via intramolecular bond cleavage, e.g., arylalkyl ketones.
  • Type Il photoinitiators produce free radicals via intermolecular electron transfer and hydrogen abstraction.
  • Embodiments of the present invention may utilize any type of photoinitiator including Type I and Type Il photoinitiators.
  • Photoinitiators that permit use of near infrared radiation are particularly useful because biologic tissues, hemoglobin, water, and fat are least absorbent in this range.
  • Exemplary photoinitiators that can be used in accordance with embodiments of the present invention and that can utilize near infrared radiation include, but are not limited to, photoinitiators for two-photon induced polymerizations such as 1-hydroxycyclohexyl phenyl ketone; 2,2-diethoxyacetophenone, benzophenone, Esacure TZT, blends of 4-methylbenzophenone and 2,4,6- trimethylbenzophenone; 4,4'-bis(diethylamino)benzophenone; 2-amino-5- nitrobenzophenone; isopropylthioxanthone; a mixture of the 2- and 4-isomers with triethanolamine as co-initiator; all of which are described in Near-IR Two- Photon Induced Polymerization
  • Another exemplary two-photon free-radical photopolymerization initiator that may be used in accordance with embodiments of the present invention is (E,E)-4- ⁇ 2-[p -( ⁇ /, ⁇ /-di- ⁇ -butylamino)stilben-p-yl]vinyl ⁇ pyridine (abbreviated to DBASVP) (see, Synthesis, Structure and Properties of a New Two-Photon Photopolymerization Initiator, Ren et al., Journal of Materials Chemistry,

Abstract

Liquid curable perfluoropolyether (PFPE) materials are provided for use as coatings, sealants, flexible fillers, and structural parts for a wide variety of medical and cosmetic applications, particularly where silicone has been utilized conventionally. The PFPE material is oxygen permeable and bacterial impermeable and may contain one or more pharmacological agents elutably trapped therewithin for delivery within the body of a subject.

Description

LIQUID PERFLUOROPOLYMERS AND MEDICAL AND COSMETIC APPLICATIONS INCORPORATING SAME
RELATED APPLICATION
This application is a continuation-in-part application of U.S. Patent Application No. 11/020,779, filed December 22, 2004, which claims the benefit of U.S. Provisional Application No. 60/532,853 filed December 24, 2003, and U.S. Provisional Application No. 60/535,765 filed January 12, 2004, the disclosures of which are incorporated herein by reference in their entireties as if set forth fully herein.
FIELD OF THE INVENTION The present invention relates generally to polymers and, more particularly, to medical applications where polymers are utilized.
BACKGROUND OF THE INVENTION Many devices, such as surgical instruments, medical devices, prosthetic implants, contact lenses, and the like, are formed from polymeric materials. Polymeric materials conventionally utilized in the medical device industry for implantation within the bodies of subjects include, but are not limited to polyurethanes, polyolefins (e.g., polyethylene and polypropylene), poly(meth)acrylates, polyesters {e.g., polyethyleneterephthalate), polyamides, polyvinyl resins, silicone resins (e.g., silicone rubbers and polysiloxanes), polycarbonates, polyfluorocarbon resins, synthetic resins, polystyrene, and various bioerodible materials.
Silicone is characterized by high lubricity and thermal stability, extreme water repellence and physiological inertness. Accordingly, silicone has been widely used in the medical field in various applications such as adhesives, lubricants, surgical implants and prosthetics. Unfortunately, silicone may swell and/or shrink, particularly when contact occurs with solvents, for example, organic solvents. In addition, the surface energy of silicone may not.be as low as desirable for certain applications where higher lubricity is necessary. Accordingly, a need exists for improved polymeric materials for various medical applications, particularly applications where devices are implanted and inserted within the body of a subject.
Augmentations to body parts for reconstructive and cosmetic reasons is an important and growing area. For example, an increasing number of women are undergoing procedures to cosmetically augment their lips, chins, cheeks and breasts. Lip augmentation is a procedure which uses synthetic or biological products or surgical restructuring to enhance the lips in various ways. For example, a material, such as collagen or fat, is injected into the lips to create a fuller appearance. Cheek augmentation is a procedure which uses implanted synthetic or biological products to bring balance to the facial structure by way of correcting a deficient cheek area due to congenital deficiency, age-related bone resorption or facial trauma. Chin implants are used to improve the underlying bone structure of a person's face to achieve an attractive, more balanced look. Breast implants are placed beneath the skin to replace lost breast tissue or to enhance the breast shape and size.
Various drawbacks and concerns are associated with materials currently utilized in cosmetic and reconstructive procedures. For example, some of these materials are known to cause allergic reactions in some patients. Moreover, there is increasing public concern about the perceived health risks of silicone-based materials, such as silicone-gel breast implants.
As such, the medical industry is continuously seeking safer and improved materials for use in reconstructive and cosmetic procedures.
SUMMARY OF THE INVENTION In view of the above discussion, liquid curable perfluoropolyether (PFPE) materials are provided for use as coatings, sealants, flexible fillers, and structural parts for a wide variety of medical applications, particularly where silicone has been utilized conventionally. PFPE materials utilized in accordance with embodiments of the present invention does not swell or shrink when contact occurs with solvents, including organic solvents. In addition, the surface energy of PFPE material is very low which allows PFPE material to be utilized for certain applications where high lubricity is necessary. Moreover, PFPE material is oxygen permeable and bacterial impermeable.
According to embodiments of the present invention, a method of repairing damage to skeletal portions of the body of a subject in situ, according to embodiments of the present invention, includes positioning an enclosure adjacent a damaged skeletal portion of a subject, injecting a liquid PFPE material into the enclosure, and curing the liquid PFPE material to form a structure that provides support to the skeletal portion. The liquid PFPE material may cure to a rigid state, a flexible state, or portions of the PFPE material may cure to respective rigid and flexible states. Exemplary skeletal damage that may be repaired according to embodiments of the present invention includes bone cracks, damaged vertebral bodies, damaged wear surfaces of joints, and damaged joints including, but not limited to, hips, knees, ankles, phalange joints, elbows, and wrists. One or more pharmacological agents may be elutably trapped within the cured PFPE material (or otherwise attached to the PFPE material), according to embodiments of the present invention. In addition, unwanted material, such as damaged material of a skeletal portion of a subject may be removed prior to positioning an enclosure and injecting PFPE material into the enclosure.
According to embodiments of the present invention, orthopedic devices are provided that are configured to be implanted within the body of a subject and that include an outer surface of oxygen permeable, bacterial impermeable PFPE material. Utilizing PFPE material with removable implants of any type is advantageous because tissue in-growth can be minimized, thus making removal of the implant safer and less traumatic.
According to embodiments of the present invention, orthopedic devices are provided that are configured to be implanted within the body of a subject and that include layers of uniaxially and biaxially oriented materials. According to embodiments of the present invention, prosthetic devices deployed within the body of a subject may be repaired in situ using PFPE material. For example, damaged or unwanted material (e.g., a damaged surface portion) from a prosthetics device is removed, an enclosure is positioned at the location of the removed material, and a liquid PFPE material is injected into the enclosure. The PFPE material is then cured and the cured PFPE material serves as a replacement for or repair of prosthetics 5 device material.
According to embodiments of the present invention, bandages and other wound healing devices (e.g., sutures) are provided that include oxygen permeable, bacterial impermeable PFPE material. Such wound healing bandages and devices may include one or more pharmacological l o agents for treating damaged tissue.
According to embodiments of the present invention, a method of applying a bandage to a portion of a body of a subject includes applying (e.g., spraying, swabbing, etc.) an oxygen permeable, bacterial impermeable liquid PFPE material onto a portion of the body of a subject, and then curing the
15 liquid PFPE material such that the PFPE material forms a protective bandage that facilitates healing of underlying tissue.
According to embodiments of the present invention, artificial blood vessels are provided for insertion within the body of a subject and include oxygen permeable, bacterial impermeable PFPE material. One or
20 more pharmacological agents may be elutably trapped within the PFPE material (or otherwise attached to the PFPE material).
According to embodiments of the present invention, a method of replacing in situ a portion of a blood vessel within the body of a subject includes injecting an oxygen permeable, bacterial impermeable liquid PfPE
25 material into the lumen of a portion of an existing blood vessel to form an artificial blood vessel, and then curing the liquid PFPE material to produce a replacement for the blood vessel portion. The existing blood vessel serves as a mold for the liquid PFPE material. The replaced portion of the existing blood vessel may then be removed. If the lumen of the existing blood vessel portion
30 is occluded or partially occluded, the occlusion may be removed prior to injection of the PFPE material.
According to embodiments of the present invention, intraluminal prostheses (e.g., stents) having tubular body portions that include oxygen permeable, bacterial impermeable PFPE material are provided. According to embodiments of the present invention, one or more pharmacological agents may be elutably trapped within the PFPE material (or otherwise attached to the PFPE material) of such an intraluminal prosthesis. The PFPE material may be configured to allow the one or more pharmacological agents to elute therefrom (e.g., at a predetermined rate) when an intraluminal prosthesis is deployed within a body of a subject. According to embodiments of the present invention, a pharmacological agent may be homogeneously distributed on the tubular body portion of an intraluminal prosthesis. Alternatively, a pharmacological agent may be heterogeneously distributed on the tubular body portion of an intraluminal prosthesis.
According to embodiments of the present invention, virtually any type of medical device may have a portion that is formed from PFPE material, or is coated with PFPE material. Exemplary medical devices include, but are not limited to, adaptors, applicators, aspirators, bandages, bands, blades, brushes, burrs, cables and cords, calipers, carvers, cases and containers, catheters, chisels, clamps, clips, condoms, connectors, cups, curettes, cutters, defibrillators, depressors, dilators, dissectors, dividers, drills, elevators, excavators, explorers, fasteners, files, fillers, forceps, gauges, gloves, gouges, handles, holders, knives, loops, mallets, markers, mirrors, needles, nippers, pacemakers, patches, picks, pins, plates, pliers, pluggers, probes, punches, pushers, racks, reamers, retainers, retractors, rings, rods, saws, scalpels, scissors, scrapers, screws, separators, spatulas, spoons, spreaders, stents, syringes, tapes, trays, tubes and tubing, tweezers, and wires. According to embodiments of the present invention, PFPE material may be used to hermetically seal implantable electronic devices. For example, a housing of an implantable electronic device that contains one or more electronic components therein can be sealed with PFPE material to deter the ingress of moisture and foreign material into the housing when the electronic device is implanted within the body of a subject.
According to embodiments of the present invention, a method of forming a polymeric coating on an interior surface of a hollow organ or tissue lumen includes applying liquid PFPE material to an interior surface of a hollow organ or tissue lumen, and then curing the PFPE material to form an oxygen permeable, bacterial impermeable polymer coating on the surface.
According to embodiments of the present invention, a method of repairing in situ a defect (e.g., a defect caused by a surgical procedure, by trauma, etc.) in a lung within the body of a subject includes applying a patch comprising oxygen permeable, bacterial impermeable liquid PFPE material over the lung defect, and then curing the liquid PFPE material to seal the patch to adjacent lung tissue so as to prevent air leakage therethrough. The patch may be applied in various ways including spraying liquid PFPE material onto lung tissue. Alternatively, the patch may be a preformed patch. According to embodiments of the present invention, the patch may include various materials including, but not limited to, collagen, gelatin, albumin, fibrin and elastin.
According to embodiments of the present invention, a method of implanting an arterio-venous shunt within the body of a subject includes implanting a mold within the body of a subject, wherein the mold is configured to form a tubular body, injecting an oxygen permeable, bacterial impermeable liquid PFPE material into the mold, curing the liquid PFPE material to form a tubular body, and connecting the tubular body to blood vessels in the body to form a shunt therebetween. The PFPE material may include one or more pharmacological agents, and may be configured to allow the one or more pharmacological agents to elute therefrom when the shunt is deployed within a body of a subject.
According to embodiments of the present invention, a method of implanting an arterio-venous shunt within the body of a subject includes implanting a tubular body comprising oxygen permeable, bacterial impermeable PFPE material within the body of a subject, and then connecting the tubular body to blood vessels in the body to form a shunt therebetween. The tubular body may include one or more pharmacological agents and the PFPE material of the tubular body is configured to allow the one or more pharmacological agents to elute therefrom when the shunt is deployed within a body of a subject.
According to embodiments of the.present invention, a method of forming an arterio-venous shunt within the body of a subject includes applying an oxygen permeable, bacterial impermeable liquid PFPE material onto a surface of an existing vessel within the body of a subject, wherein the vessel serves as a mold, and curing the liquid PFPE material to form an arteriovenous shunt.
According to embodiments of the present invention, a method of repairing an arterio-venous shunt within the body of a subject includes applying an oxygen permeable, bacterial impermeable liquid PFPE material onto a surface of a shunt within the body of a subject, and curing the liquid PFPE material.
According to embodiments of the present invention, a method of repairing in situ a defect in a passageway (e.g., trachea, esophagus, etc.) within the body of a subject includes applying a patch comprising oxygen permeable, bacterial impermeable liquid PFPE material over the defect, and curing the liquid PFPE material to seal the patch to adjacent tissue so as to prevent leakage therethrough. According to embodiments of the present invention, applying a patch may include spraying liquid PFPE material onto tissue of the passageway. According to embodiments of the present invention, a patch may be a preformed patch. According to embodiments of the present invention, the PFPE material may include one or more pharmacological agents for treating the passageway. According to embodiments of the present invention, an artificial tissue material for use within the lungs of a patient comprises a membrane of PFPE material that simulates alveolar action.
According to embodiments of the present invention, a material for use within a heart-lung machine, comprises a membrane of PFPE material that enhances gas exchange during artificial respiration.
According to embodiments of the present invention, an intraocular implant comprises oxygen permeable, bacterial impermeable liquid PFPE material.
According to embodiments of the present invention, a contact lens comprises oxygen permeable, bacterial impermeable liquid PFPE material.
According to embodiments of the present invention, a cochlear implant comprises oxygen permeable, bacterial impermeable liquid PFPE material. According to embodiments of the present invention, a method of treating tissue within a body of a subject includes encapsulating tissue with liquid PFPE material, and curing the PFPE material to form an oxygen permeable, bacterial impermeable polymer coating on the tissue. According to embodiments of the present invention, a method of treating tissue within the body of a subject includes forming a passageway in tissue within the body of a subject, inserting liquid PFPE material in the passageway, and curing the PFPE material to form an oxygen permeable, bacterial impermeable polymer material that facilitates growth of the tissue and enhances viability of surrounding tissues during healing and angiogenic phase. For example, the tissue may be heart muscle tissue and the PFPE material may facilitate revascularization of the heart muscle tissue. According to embodiments of the present invention, the steps of inserting and curing PFPE material may be performed as part of a transmyocardial revascularization procedure. The PFPE material may include one or more pharmacological agents for treating the tissue.
According to embodiments of the present invention, a method of promoting tissue growth within the body of a subject includes applying liquid PFPE material to tissue, and curing the PFPE material to form an oxygen permeable, bacterial impermeable polymer material that facilitates growth of the tissue. The PFPE material may include one or more pharmacological agents for treating the tissue.
According to embodiments of the present invention, a method of producing fabric includes coating a fabric with liquid PFPE material, and curing the liquid PFPE material to form a fabric having low surface energy.
Exemplary fabrics include, but are not limited to, polytetrafluoroethylene, polyamides, polyesters, polyolefins, and Lycra. According to embodiments of the present invention, the fabric may comprise non-woven material.
In each of the embodiments described herein, curing of liquid PFPE may be performed by exposing the liquid PFPE material to heat, light, or other radiation (e.g., microwave radiation, infrared radiation, etc.). In addition, curing initiators that facilitate curing may be added to liquid PFPE material. Also, in embodiments where liquid PFPE material is applied within the body of a subject, the curing of the liquid PFPE material may be monitored via any of various known techniques including, but not limited to, magnetic resonance imaging (MRI), X-ray fluoroscopy, and ultrasound imaging.
PFPE materials may serve as alternatives to existing materials in various cosmetic and medical applications. According to embodiments of the present invention, a method of administering a cosmetic treatment to a subject includes subcutaneously administering (e.g., to the lips, chin, and other facial areas, etc.) liquid PFPE material, and curing the liquid PFPE material to a gel state. Curing may include exposing the liquid PFPE material to light or other types of radiation, either directly or indirectly through, for example, the skin of the subject. Alternatively, curing may be facilitated by thermal energy from the body of the subject and/or from a source external to the subject.
PFPE materials may also be utilized to repair or replace various maxillofacial bones and materials (e.g., jawbones, chins, dental crowns, etc.). According to an embodiment of the present invention, a liquid PFPE material is applied to a facial bone in the body of a subject and then cured as described above to form a prosthetic for the facial bone. According to other embodiments of the present invention, prosthetics for various maxillofacial bones may be formed externally and then implanted within the body of a subject. For example, a non-silicone based liquid PFPE material is cured into a solid state in the form of a prosthetic for a facial bone of a subject, and then applied to the facial bone in the subject.
PFPE materials may also be utilized as replacement materials for various silicone-based implants such as, for example, breast implants. According to embodiments of the present invention, a non-silicone based liquid PFPE material is inserted into a breast (or other body portion) of a subject, and then cured as described above to a gel state. According to other embodiments of the present invention, a non-silicone based liquid PFPE material is cured into a gel state, and then implanted into a breast (or other body portion) of a subject. According to other embodiments of the present invention, a breast implant comprises a shell of PFPE material filled with PFPE gel and/or saline. DETAILED DESCRIPTION OF THE INVENTION
The present invention now is described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
The term "biocompatible" as used herein, is intended to denote a material that, upon contact with a living element such as a cell or tissue, does not cause toxicity.
The term "eluting" is used herein to mean the release of a pharmacological agent from a polymeric material. Eluting may also refer to the release of a material from a substrate via diffusional mechanisms or by release from a polymeric material/substrate as a result of the breakdown or erosion of the material/substrate.
The term "erodible" as used herein refers to the ability of a material to maintain its structural integrity for a desired period of time, and thereafter gradually undergo any of numerous processes whereby the material substantially loses tensile strength and mass. Examples of such processes comprise enzymatic and non-enzymatic hydrolysis, oxidation, enzymatically-assisted oxidation, and others, thus including bioresorption, dissolution, and mechanical degradation upon interaction with a physiological environment into components that the patient's tissue can absorb, metabolize, respire, and/or excrete. The terms "erodible" and "degradable" are intended to be used herein interchangeably.
The term "fluoropolymer," as used herein, has its conventional meaning in the art. See generally Fluoropolymers (L. Wall, Ed. 1972) (Wiley- lnterscience Division of John Wiley & Sons); see also Fluorine-Containing Polymers, 7 Encyclopedia of Polymer Science and Engineering 256 (H. Mark et al. Eds., 2d Ed. 1985). The formation of fluoropolymers are described in U.S. Patent Nos.: 5,922,833; 5,863,612; 5,739,223; 5,688,879; and 5,496,901 to DeSimone, each of which is incorporated herein by reference in its entirety. The term "hydrophobic" is used herein to mean not soluble in water.
The term "hydrophilic" is used herein to mean soluble in water..
The term "lumen" is used herein to mean any inner open space or cavity of a body passageway.
The terms "polymer" and "polymeric material" are synonymous and are to be broadly construed to include, but not be limited to, homopolymers, copolymers, terpolymers, and the like.
The term "prosthesis" is used herein in a broad sense to denote any artificial device used to replace a body part. An intraluminal prosthesis is a device which is implanted in the body of a subject for some therapeutic reason or purpose including, but not limited to, stents, drug delivery devices, etc.
The term "subject" is used herein to describe both human beings and animals (e.g., mammalian subjects) for medical, veterinary, testing and/or screening purposes.
The term "toxic materials" is intended to include all types of foreign materials, contaminants, chemicals, physical impurities, and the like, without limitation, that may be harmful to a subject As used herein, phrases such as "between X and Y" and
"between about X and Y" should be interpreted to include X and Y.
As used herein, phrases such as "between about X and Y" mean "between about X and about Y."
As used herein, phrases such as "from about X to Y" mean "from about X to about Y."
As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
According to embodiments of the present invention, liquid curable perfluoropolyether (PFPE) materials, and derivatives therefrom, are provided for use as coatings, sealants, flexible fillers, structural parts, etc., and in a wide variety of medical applications, particularly where silicone has been utilized conventionally. Hereinafter, the term 11PFPE material" shall include all perfluoropolyethers and all derivatives therefrom.
PFPE materials are a unique class of fluoropolymers that are liquids at room temperature, exhibit low surface energy, low modulus, high gas permeability, high lubricity, and low toxicity with the added feature of being extremely chemically resistant. PFPE materials are particularly advantageous for use in medical applications because PFPE materials are oxygen permeable, but impermeable to many pathogens. The synthesis of PFPE materials is described generally in W.C. Bunyard et al., Macromolecules 32, 8224 (1999), which is incorporated by reference in its entirety. In general, fluoropolyethers are polymeric compounds composed of multiple, sequentially linked, fluorinated aliphatic ether units (e.g., polymers of the formula (RO)n R wherein the R groups are the same or different and are linear or branched, saturated or unsaturated C1-C4 alkyl; typically linear or branched saturated C1-C4 alkyl, with the number of repeats "n" giving the desired molecular weight); perfluoropolyether are such polymers in which essentially all of the hydrogens have been substituted with fluorine. Examples of perfluoropolyethers are illustrated below in Table 1 and include perfluoropolymethyl-isopropyl-ethers such as: (i) polymers marketed under the tradename FOMBLIN®; Copolymers marketed under the tradename AFLUNOX®, and (Hi) polymers marketed under the tradename FOMBLIN Z_DOL™. See, e.g., US Patent No. 6,582,823, which is incorporated herein by reference in its entirety.
Table 1
Figure imgf000013_0001
The synthesis and photocuring of these materials can be done in a manner similar to that based on earlier work done by Bongiovanni et al., which is described in Macromol. Chem. Phys. 198, 1893 (1997) and which is incorporated by reference in its entirety. The reaction involves the methacrylate-functionalization of a commercially available PFPE diol [Mn = 3,800 g/mol) with isocyanato-ethyl methacrylate. Subsequent photocuring of the material is accomplished by blending it with 1 wt% of 2,2-dimethoxy-2- phenylacetophenone (DMPA) and exposing it to UV radiation (λ = 365 nm) as illustrated below in Table 2.
Table 2
Figure imgf000014_0001
PFPE materials may also be functionalized with various groups, such as with epoxy groups, vinyl groups, hydroxyl groups, isocyanate groups, and amino groups and subsequently cured via various curing mechanisms well known to those skilled in the art including, but not limited to, radical, urethane, epoxy, and cationic curing mechanisms. Examples of radical -curing include thermal curing with added free radical initiators, such as azo initiators, peroxides, acyl peroxides, and peroxy dicarbonates. Examples of radical curing also include photochemical curing with added photo-generated free radical initiators such as 2,2-dimethoxy-2-phenylacetophenone. Epoxy containing PFPE materials may be cured via the addition of amines or by cationic ring-opening methods. Examples of amines useful for curing epoxy containing PFPE materials include 4,4'-diaminodiphenylsulfone. Examples of cationic ring-opening methods for curing epoxy containing PFPE materials include the use of non-ionic or ionic photoacid generators. Useful nonionic photoacid generators include 2,5-dinitrobenzyl tosylate or 2-perfluorohexyl-6- nitrobenzyl tosylate. Useful ionic photoacid generators include diphenyliodium tetraphenyl borate or diphenyliodonium tetra-[3,5-bis(trifluoromethyi) phenyl] borate. Urethane curing mechanisms may include isocyanate reactions with hydroxyl or amine compounds. PFPE materials according to embodiments of the present invention can be modified and "tuned" to achieve various characteristics and functionalities. For example, reactive monomers can be added to PFPE materials to adjust physical properties including, but not limited to, modulus, wetting, various surface characteristics, etc. Reactive monomers that can be added to modify the properties can include styrenics such as styrene, and para-chloromethylstyrene, t-butylstyrene and divinylbenzene; alkyl (meth)acrylates such as butyl acrylate and methyl methacrylate; functional (meth)acrylates such as hydroxyethylmethacrylate, acryloxyethyltrimethylammonium chloride (AETMAC), hydroxyethylacrylate (HEA), cyanoacrylates, fluoroalky! (meth)acrylates, 2-isocyanatoethyl methacrylate, glycidyl methacrylate, ally! methacrylate and poly(ethylene glycol)diacrylate (PEGdiA); olefins such as norbomene, vinylacetate, 1-vinyl- 2-pyrrolidone, and alkylacrylamides.
In addition, various additives can be added to PFPE materials according to embodiments of the present invention including, but not limited to, pharmacological agents, fillers, bioerodible materials, porogens, deoxyribonucleic acid (DNA), oligonucleotides, peptides, growth hormones, etc. Mechanical fillers that may be added to PFPE materials according to embodiments of the present invention may include, but are not limited to, silica, clay, and other materials of various sizes (e.g., nanoparticles). Additives can be included with PFPE material in various ways including, but not limited to, being chemically attached to PFPE material, being embedded within PFPE material, being dispersed in PFPE material, etc. The term "attached", as used herein, encompasses all methods of adding additives to PFPE materials. In addition, PFPE materials can be tuned to cure as a rigid structure, as a flexible structure, and/or as a partially rigid and partially flexible structure. Moreover, the degree of rigidity and flexibility can also be designed into the PFPE material via additives.
In addition, embodiments of the present invention may utilize composite materials having variable layers of rigid and less rigid PFPE materials. For example, layers of uniaxially and biaxially oriented materials may be utilized such that anisotropic properties can be obtained (e.g., flexibility in one direction and strength or rigidity in another direction, etc.). In general, pharmacological agents suitable for use with PFPE materials (and according to embodiments of the present invention) include, but are not limited to, drugs and other biologically active materials, and may be intended to perform a variety of functions, including, but not limited to: anticancer treatment (e.g., Resan), anti-clotting or anti-platelet formation, the prevention of smooth muscle cell growth, migration, and proliferation within a vessel wall. According to embodiments of the present invention, pharmacological agents suitable for use with PFPE materials include, but are not limited to, antineoplastics, antimitotics, antiinflammatories, antiplatelets, anticoagulants, antifibrins, antithrombins, antiproliferatives, antibiotics, antioxidants, and antiallergic substances as well as combinations thereof.
Examples of antineoplastics and/or antimitotics include paclitaxel (cytostatic and ant-inflammatory) and it's analogs and all compounds in the TAXOL® (Bristol-Myers Squibb Co., Stamford, CT) family of pharmaceuticals, docetaxel (e.g., TAXOTERE® from Aventis S. A., Frankfurt, Germany) methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g., ADRIAMYCIN® from Pharmacia & Upjohn, Peapack, NJ), and mitomycin (e.g., MUTAMYCIN® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of antiinflammatories include Sirolimus and analogs thereof (including but not limited to Everolimus and all compounds in the Limus" family of pharmaceuticals), glucocorticoids such as dexamethasone, methylprednisolone, hydrocortisone and betamethasone and non-steroidal antiinflammatories such as aspirin, indomethacin and ibuprofen. Examples of antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe- pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein llb/llla platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin inhibitors such as Angiomax™ (Biogen,
Inc., Cambridge, MA) Examples of cytostatic or antiproliferative agents or proliferation inhibitors include everolimus, actinomycin D, as well as derivatives and analogs thereof (manufactured by Sigma-Aldrich, Milwaukee, Wl.; or COSMEGEN® available from Merck & Co., Inc., Whitehouse Station, NJ), angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g., CAPOTEN® and CAPOZIDE® from Bristol-Myers Squibb Co.,
Stamford, CT), cilazapril or lisinopril (e.g., Prinivilo and PRINZIDE® from Merck & Co., Inc., Whitehouse Station, NJ); calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG- CoA reductase, a cholesterol lowering drug, brand name MEVACOR® from
Merck & Co., Inc., Whitehouse Station, NJ), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents that may be used include alphainterferon, genetically engineered epithelial cells, and dexamethasone.
Pain relief agents may also be added to PFPE materials according to embodiments of the present invention.
According to embodiments of the present invention, PFPE materials may be tuned such that, when cured, the PFPE material is contiguous, porous, and/or biphasic. Porous or biphasic materials can be achieved by adding other components that will phase separate such as" salts (e.g., sodium chloride); sugars such as sucrose; water or saline solutions; other polymers such as polyethylene glycols, polyvinyl alcohol, or biodegradable polymers such as polylactides, polyglycolides, polycaprolactone; or added gases or gases that are generated in situ such as through the addition of water to isocynate compounds which releases CO2. According to embodiments of the present invention, PFPE materials may be applied neat or by using a solvent to facilitate the coating process prior to curing. Any solvent which can dissolve the PFPE materials is useful. The solvent can reduce the viscosity of the PFPE materials to facilitate the coating process. A lower viscosity can enable the formation of contiguous films or facilitate the formation of thinner films. Exemplary solvents include fluorinated solvents such as FLUORINERT® manufactured by 3M Company (St. Paul, MN).
According to embodiments of the present invention, PFPE materials may be used in any application where silicone materials have conventionally been used. For example, PFPE materials may be utilized in coatings, sealants, adhesives, structural parts, fillers, implants, etc.
PFPE materials, according to embodiments of the present invention, may be utilized in virtually any medical application, product and method. According to embodiments of the present invention, curing of PFPE material(s) in the various applications described herein may be accomplished in various ways including, but not limited to, the use of heat, light and/or other electromagnetic radiation (e.g., microwave, infrared, etc.).
The following sections describe a few exemplary embodiments of the present invention. These examples are not intended to encompass the entire scope of embodiments of the present invention.
Orthopedic Applications
PFPE materials may be used in various orthopedic applications, including orthopedic devices and implants, as well as orthopedic surgical procedures. Embodiments of the present invention facilitate building and providing new devices and structures for placement within the body of a subject, in addition to rebuilding and repairing existing devices and structures in situ. For example, PFPE materials may be utilized in building new hip joints and in repairing existing hip joints (e.g., an original hip joint or a replacement hip joint) in situ. The high wear, high lubricity properties of PFPE are particularly beneficial for hip joints. The hip joint ball and socket can be made out of PFPE material or the ball and socket surfaces of a metallic implant can be coated with PFPE material. According to embodiments of the present invention, a method of repairing skeletal or skeletal-related (e.g., ligaments, tendons, cartilage, muscles, etc.) damage within the body of a subject includes inserting and positioning an enclosure is adjacent (e.g., within, next to, on top of, etc.) the damaged skeletal portion (or skeletal-related portion) of a subject, injecting a liquid PFPE material into the enclosure, and curing the liquid PFPE material. Such an enclosure may be made of durable polymers (which would be removed post cure) such as PE, PET, polycarbonate etc or erodible materials (which would not require removal) such as poly(L-lactide) or its radiosiomers, poly glycolic acid, polyan hydrides etc. Enclosures or molds are inserted minimally invasively or surgically.
Curing the liquid PFPE material may be performed in various ways. For example, the liquid PFPE material may be exposed to heat, light or other radiation. For example, localized exposure to light may be provided by fiber optics, "light pipes", etc. Localized exposure to radiation may be provided by devices capable of delivering a directed beam of radiation. In addition, curing initiators may be added to the liquid PFPE material.
The cured PFPE material forms a rigid structure that provides structural support to the skeletal portion of the subject. For example, the damage may be a crack or other defect in a bone and the enclosure is positioned within the crack. The liquid PFPE material, upon curing, seals the crack and provides structural support to the bone. Alternatively, depending on the functionality of the PFPE material, the PFPE material (or one or more portions of the PFPE material) upon curing may remain flexible. Accordingly, the cured, flexible PFPE material may replace portions of ligaments, tendons, cartilage, muscles, etc. and other flexible tissues within the body of a subject.
According to other embodiments of the present invention, a damaged skeletal portion may be a damaged spinal component, such as discs and vertebral bodies, In an application of the present invention, an enclosure as described above may be inserted within the nuclear space of a vertebral body. The liquid PFPE material injected therein, upon curing, mimics a native, healthy nucleus and restores normal vertebral function by preventing denaturization of cells and failure of the annular portion of the disc.
According to other embodiments of the present invention, the skeletal portion may be a joint having a damaged portion. Any joint in the body of a subject may be repaired in accordance with embodiments of the present invention including, but not limited to, hips, knees, ankles, phalange joints, elbows, and wrists.
According to an embodiment of the present invention, a joint may have a damaged wear surface. Liquid PFPE material is applied to the damaged wear surface and, upon curing, provides a repaired wear surface.
According to other embodiments of the present invention, PFPE materials may be utilized in conjunction with, or in place of, arthroscopic surgery to repair a damaged joint. Unwanted material (e.g., damaged cartilage, etc.) is removed from a joint and an enclosure as described above is positioned at the location of the unwanted material. Liquid PFPE material is injected into the enclosure and cured. The cured PFPE material serves as a replacement for the original structure or surface. According to other embodiments of the present invention, an implantable orthopedic apparatus has an outer surface of oxygen permeable, bacterial impermeable PFPE material. The implantable apparatus may be formed from the PFPE material and/or the PFPE material may be a coating on the apparatus. Implantable orthopedic apparatus according to embodiments of the present invention may be artificial or may be cadaver parts refurbished using PFPE materials. For example, a knee from a cadaver can be refurbished as described above to improve wear surfaces and to repair damaged areas, etc. Elastic moduli that can be achieved for cured and modified PFPE based materials can range from 1 MPa to 2 GPa.
Dermatological Applications
PFPE materials are particularly advantageous for use in various dermatological applications including, but not limited to, bandages, dressings and wound healing applications, burn care, reconstructive surgery, surgical glue, sutures, etc. Because PFPE materials are oxygen permeable and bacterial impermeable, tissue underlying a PFPE bandage can receive oxygen while being protected against the ingress of dirt, bacteria, microbial organisms, pathogens and other forms of contamination and toxicity. Moreover, PFPE materials are non-toxic. In addition, the oxygen permeability and carrying capacity of PFPE materials can also help with preventing necrosis of healthy tissue under bandages and dressings, or under an area being treated.
According to an embodiment of the present invention, a method of applying "instant skin" to the body of a subject includes applying an oxygen permeable, bacterial impermeable liquid PFPE material onto a portion of the body of a subject, and curing the PFPE material to form a protective bandage that facilitates healing of the underlying tissue. The protective bandage is antiseptic, flexible, waterproof and lets the underlying skin breathe (i.e., it forms a film that is oxygen permeable, but bacteria impermeable).
The liquid PFPE material can be applied in various ways including, but not limited to, spraying, swabbing, etc. As described above, curing can be performed in various ways including, but not limited to, exposing the liquid PFPE material to light, heat and/or other radiation. Curing may be facilitated by adding curing initiators to the liquid PFPE material.
According to other embodiments of the present invention, PFPE materials can be modified to include adhesive properties so that the PFPE material can serve the function of a non-toxic, curable liquid bandage for sealing wounds. Exemplary material that can be added to PFPE materials to achieve adhesiveness includes cyanoacrylate. When cured, the PFPE material is flexible, yet remains adhered to moving parts such as knees and elbows. In addition, bandages formed from this material provide barriers to infection, can reduce pain to the wearer because of lower surface energy, and can control bleeding better than traditional bandages.
According to embodiments of the present invention, PFPE materials can be utilized in adhesion prevention products for various postsurgical tissue applications. For example, PFPE material can be applied to post-surgical tissue to prevent other materiajs and tissue from adhering'to the post-surgical tissue. PFPE material may be applied in post-lung lobectomy, hysterectomy, appendectomy, hernia repair or any application where tissue has been injured and connective growth to surrounding tissues or organs is not desired.
Cardiovascular and Intraluminal Applications
PFPE materials according to embodiments of the present invention may be used in various cardiovascular applications and in various other intraluminal applications, including devices and methods. According to embodiments of the present invention, PFPE oils may be used as synthetic blood and/or blood substitutes. Moreover, PFPE materials according to embodiments of the present invention may be utilized in blood analysis and treatment devices.
According to other embodiments of the present invention, artificial blood vessels having oxygen permeable, bacterial impermeable
PFPE materials can be produced for replacing damaged and/or occluded vessels within the body of a subject. Not only can PFPE materials serve as conduits for blood flow, but they also can allow for diffusion of oxygen and nutrients through the vessel wall into surrounding tissues thus functioning much like a normal healthy blood vessel to various areas of the body of a subject.
According to embodiments of the present invention, a method of replacing in situ a portion of a blood vessel within the body of a subject includes injecting an oxygen permeable, bacterial impermeable liquid PFPE material into a lumen of a portion of a blood vessel to form an artificial blood vessel. The blood vessel portion serves as a mold for forming the artificial vessel. The PFPE material is then subjected to conditions sufficient to cure the PFPE material such that a working replacement for the blood vessel portion is produced. Curing may be performed in various ways as described above. The original blood vessel portion may be removed from the body of the subject. If the blood vessel portion being replaced is occluded or partially occluded, the occluding material is removed prior to injecting the liquid PFPE material into the lumen.
According to embodiments of the present invention, repla'cement blood vessels (as well as other cardiovascular vessels) incorporating PFPE materials can be produced ex vivo for subsequent surgical implantation within the body of a subject.
Embodiments of the present invention are particularly advantageous regarding repair and/or replacement of blood vessels. Given their high oxygen carrying ability and permeability, artificial vessels formed from PFPE materials according to embodiments of the present invention have highly functional properties with synthetic vasavasorum characteristics. PFPE materials allow diffusion of oxygen through the walls and into surrounding dependent tissues, allow diffusion of sustaining nutrients, diffusion of metabolites. PFPE materials mimic vessels mechanically as they are flexible and compliant. Moreover, embodiments of the present invention are particularly suitable for use in heart by-pass surgery and as artificial arteriovenous shunts. PFPE materials can also be used to repair natural or synthetic a-v shunts by coating the inside surface of the damaged or worn vessel and curing as previously described.
PFPE materials according to embodiments of the present invention may be utilized in various intraluminal applications including, but not limited to, stents (and other tissue scaffolding devices), catheters, heart valves, electrical leads associated with rhythm management, balloons and other angioplasty devices, drug delivery devices, etc. Moreover, PFPE materials according to embodiments of the present invention may be embodied in the material(s) of these devices or in coatings on these devices. Intraluminal prostheses provided in accordance with embodiments of the present invention may be employed in sites of the body other than the vasculature including, but not limited to, biliary tree, esophagus, bowels, tracheobronchial tree, urinary tract, etc.
Stents are typically used as adjuncts to percutaneous transluminal balloon angioplasty procedures, in the treatment of occluded or partially occluded arteries and other blood vessels. As an example of a balloon angioplasty procedure, a guiding catheter or sheath is percutaneously introduced into the cardiovascular system of a patient through, for example, the femoral arteries and advanced through the vasculature until the distal end of the guiding catheter is positioned at a point proximal to the lesion site. A guidewire and a dilatation catheter having a balloon on the distal end are introduced through the guiding catheter with the guidewire sliding within the dilatation catheter. The guidewire is first advanced out of the guiding catheter into the patient's vasculature and is directed across the arterial lesion. The dilatation catheter is subsequently advanced over the previously advanced guidewire until the dilatation balloon is properly positioned across the arterial lesion. Once in position across the lesion, the expandable balloon is inflated to a predetermined size with a radiopaque liquid at relatively high pressure to radially compress the atherosclerotic plaque of the lesion against the inside of the artery wall and thereby dilate the lumen of the artery. The balloon is then deflated to a small profile so that the dilatation catheter can be withdrawn from the patient's vasculature and blood flow resumed through the dilated artery.
Balloon angioplasty sometimes results in short or long term failure (restenosis). That is, vessels may abruptly close shortly after the procedure or restenosis may occur gradually over a period of months thereafter. To counter restenosis following angioplasty, implantable intraluminal prostheses, commonly referred to as stents, are used to achieve long term vessel patency. A stent functions as scaffolding to structurally support the vessel wall and thereby maintain luminal patency, and are transported to a lesion site by means of a delivery catheter.
Types of stents may include balloon expandable stents, springlike, self-expandable stents, and thermally expandable stents. Balloon expandable stents are delivered by a dilitation catheter and are plastically deformed by an expandable member, such as an inflation balloon, from a small initial diameter to a larger expanded diameter. Self-expanding stents are formed as spring elements which are radially compressible about a delivery catheter. A compressed self-expanding stent is typically held in the compressed state by a delivery sheath. Upon delivery to a lesion site, the delivery sheath is retracted allowing the stent to expand. Thermally expandable stents are formed from shape memory alloys which have the ability to expand from a small initial diameter to a second larger diameter upon the application of heat to the alloy.
PFPE materials, according to embodiments of the present invention, may be used with all of the above-described cardiovascular and intraluminal devices. PFPE materials may be utilized in the material(s) of these devices and/or may be provided as a coating on these devices. It may be desirable to provide localized pharmacological treatment of a vessel at the site being supported by a stent or other intraluminal device. Thus, sometimes it is desirable to utilize a stent both as a support for a lumen wall as a well as a delivery vehicle for one or more pharmacological agents. PFPE materials according to embodiments of the present invention may be configured to carry and release pharmacological agents. PFPE materials may be impregnated with pharmacological agents for delivery within a body of a subject. The impregnation of polymer materials is . described in commonly assigned U.S. Patent Application Publication No.: 2004-0098106-A1, which is incorporated herein by reference in its entirety.
According to other embodiments of the present invention, liquid PFPE materials may be utilized in endoluminal seaiing processes wherein the interior surfaces of tissue lumens are covered or sealed with polymeric material. Liquid PFPE materials are especially suitable for these procedures because of high lubricity and high permeability to oxygen. According to an embodiment of the present invention, a catheter or other instrument is configured to deliver liquid PFPE material to a tissue lumen and to cause the PFPE material to conform to the interior surface of the lumen. Upon curing, the PFPE material provides an improved interior surface. Lumen paving procedures and apparatus are described in U.S. Patent Nos. 6,443,941; 5,800,538; 5,749,922; 5,674,287; and 5,213,580 to Slepian et al., each of which is incorporated herein by reference in its entirety. According to embodiments of the present invention, PFPE materials may be incorporated into various types of patches utilized in lung surgical procedures. Patches according to embodiments of the present invention include spray-on patches wherein PFPE material is sprayed directly on lung tissue. Preformed patches configured to be attached and secured to lung tissue via conventional methods may also include PFPE material, according to embodiments of the present invention.
The use of a patch secured to lung tissue, such as over a wound from tumor removal or a rough surface of the lung, provides a seal to close the wound and prevent air leakage. Additionally, a patch incorporating PFPE materials may be used in conjunction with sutures and staples to provide additional sealing over the mechanical closures, for example, over the staple or suture line of a lobectomy. The oxygen carrying ability and permeability of PFPE materials makes them particularly suitable for use in lung repair. Moreover, because PFPE materials can be cured to a flexible state, they are particularly suitable for use as patches for lungs where expansion of a lung requires a flexible and strong bond with a gas-tight seal. According to embodiments of the present invention, PFPE materials may include one or more pharmacological agents that are configured to elute therefrom, as described above, when a patch is implanted within a subject's body. According to embodiments of the present invention, PFPE materials can be utilized in arterio-venous ("AV") shunts. As known to those skilled in the art, AV shunts are utilized to join an artery and vein, allowing arterial blood to flow directly into the vein. PFPE materials according to embodiments of the present invention can be utilized to repair AV shunts or create artificial ones, and this can be done both in vivo and ex vivo. According to embodiments of the present invention, PFPE materials may include one or more pharmacological agents that are configured to elute therefrom, as described above, when a shunt is implanted within a subject's body. According to embodiments of the present invention, AV shunts utilized in dialysis treatment of patients may be replaced and/or repaired using PFPE materials. AV shunts implanted within dialysis patients periodically require replacement or repair. According to embodiments of the present invention, a damaged or worn AV shunt can be repaired in situ by coating the shunt with PFPE material and then curing the PFPE material as described above. According to other embodiments of the present invention, existing shunts can be removed and replaced with shunts containing PFPE materials.
According to embodiments of the present invention, PFPE material may be utilized in trachea and esophagus patches and repair procedures therefor. Patches according to embodiments of the present invention can be effective in preventing or reducing air leakage and/or food leakage from a damaged trachea and esophagus. Patches according to embodiments of the present invention may include spray-on patches wherein PFPE material is sprayed directly on trachea/esophagus tissue. Preformed patches configured to be attached and secured to trachea/esophagus tissue via conventional methods may also include PFPE material, according to embodiments of the present invention. According to embodiments of the present invention, PFPE materials may include one or more pharmacological agents that are configured to elute therefrom when a patch is implanted within a subject's body.
According to embodiments of the present invention, PFPE materials may be utilized as artificial lung material because they can enhance gas exchange during respiration. For example, PFPE materials may be utilized as substitute alveolar membrane material, both for an actual lung and for artificial lung machines and heart-lung machines. As known to those skilled in the art, the alveoli are components within the lung which facilitate oxygen/carbon dioxide exchange and the alveolus is a terminal sacule of an alveolar duct where gases are exchanged during respiration. The high oxygen exchange capacity of PFPE materials helps simulate the alveolar action of lung material, including alveoli and alveolus.
According to embodiments of the present invention, PFPE materials may be utilized in transmyocardial revascularization (TMR). As known to those skilled in the art, TMR is a procedure used to relieve severe angina or chest pain in very ill patients who are not candidates for bypass surgery or angioplasty. TMR involves drilling a series of holes from the outside or from the inside of the ventricles of the heart into the heart's pumping chamber, typically via a laser. These holes can stimulate the growth of new blood vessels ("revascularization") and can destroy nerve fibers in the heart, thereby making a patient unable to feel chest pain.
According to embodiments of the present invention, PFPE materials can be injected into holes produced during a TMR procedure to facilitate revascularization of the heart tissue. Moreover, one or more pharmacological agents for facilitating revascularization, as well as for various other purposes, can be included with the PFPE material injected into the holes.
Vision and Hearing Applications
According to embodiments of the present invention, ocular implants and contact lenses are formed from PFPE material. These devices are advantageous over conventional ocular implants and contact lenses because the PFPE material is permeable to oxygen and resistant to bio- fouling. In addition, because of the lower surface energy, there is more comfort to the wearer because of lower friction. In addition, the refractive index of PFPE materials can be tuned (adjusted/precisely controlled) for optimum performance for ocular implants and contact lenses.
According to embodiments of the present invention, cochlear implants utilizing PFPE material are advantageous over implants formed from conventional materials. Utilizing PFPE material, tissue in-growth can be minimized, thus making removal of the device safer and less traumatic.
Tissue Treatment
According to embodiments of the present invention, liquid PFPE materials and blends thereof may be applied to various areas within the body of a subject. Upon curing, the PFPE material may serve as an oxygen permeable, bacterial impermeable protective coating. Moreover, oxygen- deprived tissue may be encapsulated with PFPE material. Tissue may also be replaced with PFPE material. PFPE materials can be utilized for scaffolding for new tissue growth according to embodiments of the present invention. The high oxygen permeability of PFPE materials are particularly suitable for promoting tissue growth.
Other Devices, Systems and Tools
Various devices, including tools and implants, may incorporate PFPE material as described above. Exemplary devices include tubing, fabrics, filters, balloons, catheters, needles and other surgical tools, clamps and devices. These devices can be made from all types of materials including ceramics, glass, metals, polymers and composites thereof. The PFPE material may be used as coatings, adhesives, sealants or structural components or space-filling additives.
According to embodiments of the present invention, electronic devices configured to be implanted within the body of a subject are sealed with PFPE material. For example, a housing containing one or more electronic components therein may be hermetically sealed with PFPE material which prevents the ingress of moisture and bio-fouling into the housing when the electronics device is implanted within the body of a subject.
According to embodiments of the present invention, individual electronic components such as batteries, capacitors, etc. that are implanted within the body may be hermetically sealed via PFPE materials. PFPE materials can have high dielectric strength and thus can serve as very good electrical insulators.
According to embodiments of the present invention, medical tools and devices may be coated, sealed or comprised of PFPE material(s). Any type of medical instrument and device may be coated, sealed or comprised of PFPE material(s) including, but not limited to, instruments and devices utilized in cosmetic surgery, cardiology, dentistry and oral surgery, dermatology, ENT/otolaryngology, gynecology, laparoscopy, neurosurgery, orthopedics, ophthalmology, podiatry, urology, veterinary. The following is a non-exhaustive list of instruments and devices that may be coated, sealed or comprised of PFPE materials as described herein: adaptors, applicators, aspirators, bandages, bands, blades, brushes, burrs, cables and cords, calipers, carvers, cases and containers, catheters, chisels, clamps, clips, condoms, connectors, cups, curettes, cutters, defibrillators, depressors, dilators, dissectors, dividers, drills, elevators, excavators, explorers, fasteners, files, fillers, forceps, gauges, gloves, gouges, handles, holders, knives, loops, mallets, markers, mirrors, needles, nippers, pacemakers, patches, picks, pins, plates, pliers, pluggers, probes, punches, pushers, racks, reamers, retainers, retractors, rings, rods, saws, scalpels, scissors, scrapers, screws, separators, spatulas, spoons, spreaders, stents, syringes, tapes, trays, tubes and tubing, tweezers, and wires.
According to embodiments of the present invention, natural and synthetic fabrics and clothes may be coated, sealed and/or comprised of
PFPE material(s). In particular, PFPE material(s) may be used to coat expanded polytetrafluoroethylene (also known as a GORETEX® membrane by W.L. Gore) materials and their derivatives and then cured. Other fabrics that can be coated include polyamides, polyesters, polyolefins, Lycra, etc. PFPE material(s) can make fabrics have a very low surface energy, and can change various fabrics performance properties. For example, a non-woven fabric of Nylon 6,6 can be coated with a PFPE material to produce a material having similar surface and barrier properties as a GORETEX® membrane, but at a reduced cost.
Tools and Systems for Applying. Curing, and Monitoring the Application and Curing of PFPE Materials
In addition to the materials and processes described above, embodiments of the current invention include the tools and systems required to deliver or use PFPE materials in medical devices and tools. This includes catheters; syringes; delivery cartridges for resins, curing agents; heat sources; light sources including directed light sources such as wands, light pipes and lasers and indirect light sources such as wide-area bulbs and arrays. These tools and systems can be used for the in situ delivery of PFPE materials or for the use or delivery of PFPE materials ex situ such as at a factory or custom manufacturing facility. Techniques can be used for monitoring or inspecting the delivery or use of PFPE materials such as magnetic resonance imaging, ultrasound imaging, x-ray fluoroscopy, Fourier transform infrared spectroscopy, ultraviolet or visible spectroscopy. PFPE materials are non ferromagnetic materials and, thus, are compatible with MRI. PFPE materials also have distinctive IR bands and have a very low optical density in the ultraviolet and visible wave lengths.
Lip and Cheek Augmentation
PFPE materials can serve as a substitute for collagen and other conventional materials utilized in various cosmetic and medical applications, such as lip and cheek augmentation. PFPE materials are advantageous substitutes for collagen and other materials because PFPE materials are non- toxic, non-allergenic and are very durable. Lip augmentation utilizing PFPE materials, according to embodiments of the present invention, can create fuller, plumper lips and can reduce fine wrinkles around the mouth. Cheek augmentation utilizing PFPE materials, according to embodiments of the present invention, can strengthen a weak cheek structure, e.g., to make a person's face appear less drawn and gaunt, and to make bulges under the eyes less prominent, etc..
According to embodiments of the present invention, a method of administering a cosmetic treatment includes subcutaneously administering an amount of liquid PFPE material into a portion of the body of a subject (e.g., into the lips, into the cheeks, into other portions of the face, etc.), and then curing the liquid PFPE material to a gel state. Curing may include exposing the liquid PFPE material to light or other types of radiation, either directly or indirectly through, for example, the skin of the subject. Alternatively, curing may be facilitated by thermal energy from the body of the subject and/or from a source external to the subject. Curing may also be facilitated by providing curing initiators within the PFPE material, as described above. Alternatively, the liquid PFPE material may be provided as a two-component system that cures after the two components are mixed together. As described above, various additives can be added to PFPE materials according to embodiments of the present invention including, but not limited to, pharmacological agents, fillers, bioerodible materials, etc.
According to other embodiments of the present invention, liquid PFPE material may be formed and cured into a desired shape and then implanted within various portions of the-body of a subject, e.g., into the lips, into the cheeks, and/or into other portions of the face, etc. In addition, PFPE material implants, according to embodiments of the present invention, can be formed and partially cured and then implanted within various portions of the body of a subject. The implant can be removed one or more times before final curing in order to customize the implant to better fit a patient's face (or other body portion).
Chin Augmentation
According to embodiments of the present invention, PFPE materials can be utilized as implants for chin surgery, also known as genioplasty. For example, cured or partially cured PFPE material implants, are situated directly on top of a chin bone and may be sutured or screwed into place. The implant, if partially cured, may be removed and replaced multiple times prior to final curing in order to ascertain a custom fit. According to other embodiments of the present invention, liquid
PFPE material is injected onto a chin bone and/or portions adjacent thereto and then cured. Curing may include exposing the liquid PFPE material to light or other types of radiation, either directly or indirectly through, for example, the skin of the subject. Alternatively, curing may be facilitated by thermal energy from the body of the subject and/or from a source external to the subject. Curing may also be facilitated by providing curing initiators within the PFPE material, as described above. Alternatively, the liquid PFPE material may be provided as a two-component system that cures after the two components are mixed together. As described above, various additives can be added to PFPE materials according to embodiments of the present invention including, but not limited to, pharmacological agents, fillers, bioerodible materials, etc.
Maxillofacial Applications
PFPE materials may also be utilized to repair or replace various maxillofacial bones and materials (e.g., jawbones, dental crowns, cartilage, etc.) in a subject. According to an embodiment of the present invention, a liquid PFPE material is applied to a facial bone (or other material) in the body of a subject and then cured as described above to form a prosthetic for the facial bone.
Curing may include exposing the liquid PFPE material to light or other types of radiation, either directly or indirectly through, for example, the skin of the subject. Alternatively, curing may be facilitated by thermal energy from the body of the subject and/or from a source external to the subject.
Curing may also be facilitated by providing curing initiators within the PFPE material, as described above. Alternatively, the liquid PFPE material may be provided as a two-component system that cures after the two components are mixed together. As described above, various additives can be added to PFPE materials according to embodiments of the present invention including, but not limited to, pharmacological agents, fillers, bioerodible materials, etc.
According to other embodiments of the present invention, prosthetics for various maxillofacial bones and materials may be formed externally and then implanted within the body of a subject. For example, a non-silicone based liquid PFPE material is cured into a solid state in the form of a prosthetic for a facial bone or other material of a subject, and then applied to the facial bone or other material in the subject.
Breast Augmentation Breast augmentation or "breast enlargement" is a surgical procedure to enhance the size and shape of a woman's breasts. This surgery can improve the body contour of a woman who feels her breasts are too small by increasing the bustline by one or more bra cup sizes. It may also be used to correct a reduction in breast volume after pregnancy or weight loss, to balance a difference in breast size, or simply as a reconstructive follow-up on breast surgery. The method of inserting and positioning a breast implant will depend on a patient's anatomy.
According to embodiments of the present invention, a breast implant comprises a PFPE shell filled with PFPE gel and/or a saline solution.
An incision is made either in the crease where the breast meets the chest, around the areola (the dark skin surrounding the nipple), or in the armpit. The breast tissue and skin is lifted to create a pocket, either directly behind the breast tissue or underneath the chest wall muscle (the pectoral muscle). The PFPE implants are then centered beneath the nipples.
According to other embodiments of the present invention, a non- silicone based liquid PFPE material is inserted into a breast (or other body portion) of a subject, and then cured as described above to a gel state. Curing may include exposing the liquid PFPE material to light or other types of radiation, either directly or indirectly through, for example, the skin of the subject. Alternatively, curing may be facilitated by thermal energy from the body of a subject and/or from a source external to the subject. Curing may also be facilitated by providing curing initiators within the PFPE material, as described above. Alternatively, the liquid PFPE material may be provided as a two-component system that cures after the two components are mixed together. As described above, various additives can be added to PFPE materials according to embodiments of the present invention including, but not limited to, pharmacological agents, fillers, bioerodible materials, etc.
Restylane and Perlane Injectables/Fillers
According to embodiments of the present invention, PFPE- based restylane and perlane injectables/fillers are provided. These materials can be used to reduce the appearance of facial lines, wrinkles, scars and also to enhance the lip border. Cured or partially cured PFPE implants are injected through a tiny needle just below the surface of the skin to smooth wrinkles or define the lip border.
According to other embodiments of the present invention, liquid PFPE-based restylane and perlane material is subcutaneously injected into a subject and then cured. Curing may include exposing the liquid PFPE material to light or other types of radiation, either directly or indirectly through, for example, the skin of the subject. Alternatively, curing may be facilitated by thermal energy from the body of the subject and/or from a source external to the subject. Curing may also be facilitated by providing curing initiators within the PFPE material, as described above. Alternatively, the liquid PFPE material may be provided as a two-component system that cures after the two components are mixed together. As described above, various additives can be added to PFPE materials according to embodiments of the present invention including, but not limited to, pharmacological agents, fillers, bioerodible materials, etc.
Photoinitiators
PFPE materials, according to embodiments of the present invention, and particularly for embodiments where PFPE materials are inserted within the body of a subject, beneath the skin of a subject, etc., may include photoinitiators to facilitate curing via light including, but not limited to, ultraviolet light, visible light and infrared light. Photoinitiators, which absorb light energy to form free radicals or other reactive intermediates, initiate polymerization. As known to those skilled in the art, Type 1 photoinitiators produce free radicals via intramolecular bond cleavage, e.g., arylalkyl ketones. As known to those skilled in the art, Type Il photoinitiators produce free radicals via intermolecular electron transfer and hydrogen abstraction. Embodiments of the present invention may utilize any type of photoinitiator including Type I and Type Il photoinitiators.
Photoinitiators that permit use of near infrared radiation (e.g., 650 to 900 nanometers) are particularly useful because biologic tissues, hemoglobin, water, and fat are least absorbent in this range. Exemplary photoinitiators that can be used in accordance with embodiments of the present invention and that can utilize near infrared radiation include, but are not limited to, photoinitiators for two-photon induced polymerizations such as 1-hydroxycyclohexyl phenyl ketone; 2,2-diethoxyacetophenone, benzophenone, Esacure TZT, blends of 4-methylbenzophenone and 2,4,6- trimethylbenzophenone; 4,4'-bis(diethylamino)benzophenone; 2-amino-5- nitrobenzophenone; isopropylthioxanthone; a mixture of the 2- and 4-isomers with triethanolamine as co-initiator; all of which are described in Near-IR Two- Photon Induced Polymerizations Using Either Benzophenone or Thioxanthone-BasedPhotoinitiators, by Brott et al., (Air Force Research Laboratory, 2001), which is incorporated herein by reference in its entirety.
Another exemplary two-photon free-radical photopolymerization initiator that may be used in accordance with embodiments of the present invention is (E,E)-4-{2-[p -(Λ/,Λ/-di-π-butylamino)stilben-p-yl]vinyl}pyridine (abbreviated to DBASVP) (see, Synthesis, Structure and Properties of a New Two-Photon Photopolymerization Initiator, Ren et al., Journal of Materials Chemistry,
2002).
The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although a few exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the claims. The invention is defined by the following claims, with equivalents of the claims to be included therein.

Claims

THATWHICH IS CLAIMED IS:
1. A method of performing cosmetic treatment, comprising: subcutaneously administering an amount of liquid PFPE material to a predetermined location of the body of a subject; and curing the liquid PFPE material to a gel state.
2. The method of Claim 1 , wherein the predetermined location comprises the lips, cheeks, chin and other facial areas of the subject.
3. The method of Claim 1 , wherein curing the liquid PFPE material to a gel state comprises exposing the liquid PFPE material to light.
4. The method of Claim 1, wherein curing the liquid PFPE material to a gel state comprises exposing the liquid PFPE material to light through the skin of the subject.
5. The method of Claim 1 , wherein curing the liquid PFPE material to a gel state comprises exposing the liquid PFPE material to radiation.
6. The method of Claim 1, wherein curing the liquid PFPE material to a gel state comprises exposing the liquid PFPE material to radiation through the skin of the subject.
7. The method of Claim 1, wherein curing the liquid PFPE material to a gel state is facilitated via thermal energy from the body of the subject.
8. The method of Claim 1 , wherein curing the liquid PFPE material to a gel state is facilitated via thermal energy from a source external to the body of the subject.
9. The method of Claim 1 , wherein the liquid PFPE material comprises curing initiators.
10. The method of Claim 1 , wherein the PFPE material comprises one or more pharmacological agents elutably trapped therein.
11. The method of Claim 1 , wherein the liquid PFPE material comprises a two-component system that cures after the two components are mixed together.
12. A method of performing facial surgery, comprising: applying a liquid PFPE material to a facial bone in the body of a subject; curing the liquid PFPE material to form a prosthetic for the facial bone; and securing the prosthetic to the bone.
13. The method of Claim 12, wherein the facial bone is a jawbone or chin bone.
14. The method of Claim 12, wherein curing the liquid PFPE material comprises exposing the liquid PFPE material to light.
15. The method of Claim 12, wherein curing the liquid PFPE material comprises exposing the liquid PFPE material to light through the skin of the subject.
16. The method of Claim 12, wherein curing the liquid PFPE material comprises exposing the liquid PFPE material to radiation.
17. The method of Claim 12, wherein curing the liquid PFPE material comprises exposing the liquid PFPE material to radiation through the skin of the subject.
18. The method of Claim 11 , wherein curing the liquid PFPE material is facilitated via thermal energy from the body of the subject.
19. The method of Claim 12, wherein curing the liquid PFPE material is facilitated via thermal energy from a source external to the body of the subject.
20. The method of Claim 12, wherein the liquid PFPE material comprises curing initiators.
21. The method of Claim 12, wherein the PFPE material comprises one or more pharmacological agents elutably trapped therein.
22. The method of Claim 12, wherein the liquid PFPE material comprises a two-component system that cures after the two components are mixed together.
23. A method of performing facial surgery, comprising: curing a non-silicone based liquid PFPE material into the form of a prosthetic for a facial bone of a subject; applying the prosthetic to the facial bone in the body of a subject; and securing the prosthetic to the bone.
24. A method of performing facial surgery, comprising:" partially curing a non-silicone based liquid PFPE material into the form of a prosthetic for a facial bone of a subject; applying the prosthetic to the facial bone in the body of a subject; removing the prosthetic from the body of the subject and modifying the form of the prosthetic; and reapplying the prosthetic to the facial bone in the body.of the subject; and securing the prosthetic to the bone.
25. A breast implant, comprising a shell of PFPE material filled with material selected from the group consisting of PFPE gel and saline.
26. A method of surgically implanting material within the breast of a subject, comprising: forming a breast implant, comprising a shell of PFPE material filled with material selected from the group consisting of PFPE gel and saline; and inserting the implant into a breast of a subject.
27. A method of surgically implanting material within the breast of a subject, comprising: inserting a non-silicone based PFPE material into a breast of a subject; and curing the PFPE material to a gel state.
28. The method of Claim 27, wherein curing the PFPE material to a gel state comprises exposing the PFPE material to light.
29. The method of Claim 27, wherein curing the PFPE material to a gel state comprises exposing the PFPE material to light through the skin of the subject.
30. The method of Claim 27, wherein curing the PFPE- material to a gel state comprises exposing the liquid PFPE material to radiation.
31. The method of Claim 27, wherein curing the PFPE material to a gel state comprises exposing the PFPE material to radiation through the skin of the subject.
32. The method of Claim 27, wherein curing the PFPE material to a gel state is facilitated via thermal energy from the body of the subject.
33. The method of Claim 27, wherein curing the PFPE material to a gel state is facilitated via thermal energy from a source external to the body of the subject.
34. The method of Claim 27, wherein the PFPE material comprises curing initiators.
PCT/US2006/030955 2005-08-09 2006-08-04 Liquid perfluoropolymers and medical and cosmetic applications incorporating same WO2007021707A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/200,218 2005-08-09
US11/200,218 US20050271794A1 (en) 2003-12-24 2005-08-09 Liquid perfluoropolymers and medical and cosmetic applications incorporating same

Publications (2)

Publication Number Publication Date
WO2007021707A2 true WO2007021707A2 (en) 2007-02-22
WO2007021707A3 WO2007021707A3 (en) 2008-01-31

Family

ID=37671244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/030955 WO2007021707A2 (en) 2005-08-09 2006-08-04 Liquid perfluoropolymers and medical and cosmetic applications incorporating same

Country Status (2)

Country Link
US (1) US20050271794A1 (en)
WO (1) WO2007021707A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116006A1 (en) * 2008-03-20 2009-09-24 L'oreal A cosmetic treatment method involving photo- polymerization of a composition
US8771725B2 (en) 2007-10-12 2014-07-08 Chesson Laboratory Associates, Inc. Poly(urea-urethane) compositions useful as topical medicaments and methods of using the same
US9402860B2 (en) 2002-08-20 2016-08-02 Chesson Laboratory Associates, Inc. Methods of inhibiting the growth of onychomycosis and urushiol-induced allergic contact dermatitis

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007056561A2 (en) * 2005-11-09 2007-05-18 Liquidia Technologies, Inc. Medical device, materials, and methods
US8944804B2 (en) * 2006-01-04 2015-02-03 Liquidia Technologies, Inc. Nanostructured surfaces for biomedical/biomaterial applications and processes thereof
US20090131959A1 (en) * 2006-04-20 2009-05-21 Liquidia Technologies Inc. Biological Vessel Flow Control Devices and Methods
EP2094352A4 (en) 2006-12-06 2010-05-19 Cleveland Clinic Foundation Method and system for treating acute heart failure by neuromodulation
CN101795840B (en) 2007-09-06 2013-08-07 3M创新有限公司 Methods of forming molds and methods of forming articles using said molds
WO2009032813A2 (en) 2007-09-06 2009-03-12 3M Innovative Properties Company Lightguides having light extraction structures providing regional control of light output
US8451457B2 (en) 2007-10-11 2013-05-28 3M Innovative Properties Company Chromatic confocal sensor
EP2232531B1 (en) * 2007-12-12 2018-09-19 3M Innovative Properties Company Method for making structures with improved edge definition
US8808314B2 (en) 2008-02-18 2014-08-19 Covidien Lp Device and method for deploying and attaching an implant to a biological tissue
US9393002B2 (en) 2008-02-18 2016-07-19 Covidien Lp Clip for implant deployment device
US9301826B2 (en) 2008-02-18 2016-04-05 Covidien Lp Lock bar spring and clip for implant deployment device
US9034002B2 (en) 2008-02-18 2015-05-19 Covidien Lp Lock bar spring and clip for implant deployment device
US8317808B2 (en) 2008-02-18 2012-11-27 Covidien Lp Device and method for rolling and inserting a prosthetic patch into a body cavity
US9833240B2 (en) 2008-02-18 2017-12-05 Covidien Lp Lock bar spring and clip for implant deployment device
CA2715740C (en) 2008-02-18 2014-05-27 Polytouch Medical Ltd. A device and method for deploying and attaching a patch to a biological tissue
US9044235B2 (en) 2008-02-18 2015-06-02 Covidien Lp Magnetic clip for implant deployment device
US8758373B2 (en) 2008-02-18 2014-06-24 Covidien Lp Means and method for reversibly connecting a patch to a patch deployment device
US9398944B2 (en) 2008-02-18 2016-07-26 Covidien Lp Lock bar spring and clip for implant deployment device
US9393093B2 (en) 2008-02-18 2016-07-19 Covidien Lp Clip for implant deployment device
US8605256B2 (en) * 2008-02-26 2013-12-10 3M Innovative Properties Company Multi-photon exposure system
EP2337502B1 (en) 2008-10-20 2014-08-06 Covidien LP A device for attaching a patch to a biological tissue
WO2011021082A1 (en) 2009-08-17 2011-02-24 PolyTouch Medical, Inc. Means and method for reversibly connecting an implant to a deployment device
US8906045B2 (en) 2009-08-17 2014-12-09 Covidien Lp Articulating patch deployment device and method of use
US8986596B2 (en) 2012-11-18 2015-03-24 International Business Machines Corporation Methods of forming nanoparticles using semiconductor manufacturing infrastructure
JP6580068B2 (en) 2014-05-22 2019-09-25 カーディオノミック,インク. Catheter and catheter system for electrical neuromodulation
AU2015315570B2 (en) 2014-09-08 2020-05-14 CARDIONOMIC, Inc. Methods for electrical neuromodulation of the heart
WO2016040037A1 (en) 2014-09-08 2016-03-17 CARDIONOMIC, Inc. Catheter and electrode systems for electrical neuromodulation
CN109568786A (en) 2015-01-05 2019-04-05 卡迪诺米克公司 Heart, which is adjusted, promotes method and system
JP2019513032A (en) 2016-03-09 2019-05-23 カーディオノミック,インク. Cardiac contraction stimulation system and method
EP3664703A4 (en) 2017-09-13 2021-05-12 Cardionomic, Inc. Neurostimulation systems and methods for affecting cardiac contractility
EP3836859A4 (en) 2018-08-13 2022-05-11 Cardionomic, Inc. Systems and methods for affecting cardiac contractility and/or relaxation
WO2020227234A1 (en) 2019-05-06 2020-11-12 CARDIONOMIC, Inc. Systems and methods for denoising physiological signals during electrical neuromodulation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996031548A1 (en) * 1995-04-04 1996-10-10 Novartis Ag Cell growth substrate polymer
US5705179A (en) * 1994-02-10 1998-01-06 Vivante Internatinale, Inc. Tissue augmentation with perfluoropolyether compounds
EP1074243A2 (en) * 1999-08-04 2001-02-07 Ausimont S.p.A. Cosmetic compositions
WO2003078516A1 (en) * 2002-03-15 2003-09-25 Greene, Tweed Of Delaware, Inc. Cellular perfluoroelastomeric compositions, sealing members, methods of making the same and cellular materials for medical applications
FR2862871A1 (en) * 2003-12-01 2005-06-03 Camet Anne Dupouy The use of perfluoropolyethers in cosmetic or dermatological anti-pollution compositions to improve the effectiveness of anti-radical agents.
WO2005065324A2 (en) * 2003-12-24 2005-07-21 Synecor, Llc Liquid perfluoropolymers and medical applications incorporating same

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022928A (en) * 1975-05-22 1977-05-10 Piwcyzk Bernhard P Vacuum deposition methods and masking structure
US4642246A (en) * 1985-11-12 1987-02-10 Magnetic Peripherals, Inc. Process for chemically bonding a lubricant to a magnetic disk
IT1188439B (en) * 1986-03-14 1988-01-14 Ausimont Spa REPRODUCTION PROCESS OF ARTWORKS IN LITHOID MATERIAL
US4830910A (en) * 1987-11-18 1989-05-16 Minnesota Mining And Manufacturing Company Low adhesion compositions of perfluoropolyethers
US5169862A (en) * 1989-07-07 1992-12-08 Peptide Technologies Corporation Analogs of viscosin and their uses
US5316686A (en) * 1993-01-11 1994-05-31 The United States Of America As Represented By The Secretary Of The Air Force Perfluoroalkylether tertiary alcohols
US5268405A (en) * 1993-03-31 1993-12-07 E. I. Du Pont De Nemours And Company Low temperature perfluoroelastomers
US5578241A (en) * 1993-05-18 1996-11-26 Merck Patent Gesellschaft Mit Beschrankter Haftung Liquid crystal display
US5760100B1 (en) * 1994-09-06 2000-11-14 Ciba Vision Corp Extended wear ophthalmic lens
JPH08106628A (en) * 1994-10-07 1996-04-23 Fuji Photo Film Co Ltd Magnetic recording medium
US5506677A (en) * 1995-02-21 1996-04-09 The United States Of America As Represented By The Secretary Of The Air Force Analysis of wear metals in perfluorinated fluids
AUPN215995A0 (en) * 1995-04-04 1995-04-27 Ciba-Geigy Ag Novel materials
TW585882B (en) * 1995-04-04 2004-05-01 Novartis Ag A method of using a contact lens as an extended wear lens and a method of screening an ophthalmic lens for utility as an extended-wear lens
US5624713A (en) * 1996-01-25 1997-04-29 Zardoz Llc Method of increasing lubricity of snow ski bases
EP0889923B1 (en) * 1996-03-27 2003-11-19 Novartis AG High water content porous polymer
US6060530A (en) * 1996-04-04 2000-05-09 Novartis Ag Process for manufacture of a porous polymer by use of a porogen
CA2248162A1 (en) * 1996-04-04 1997-10-02 Novartis Ag Process for manufacture of a porous polymer from a mixture
US20010051131A1 (en) * 1996-06-19 2001-12-13 Evan C. Unger Methods for delivering bioactive agents
US5807944A (en) * 1996-06-27 1998-09-15 Ciba Vision Corporation Amphiphilic, segmented copolymer of controlled morphology and ophthalmic devices including contact lenses made therefrom
US5718942A (en) * 1996-06-28 1998-02-17 Stormedia, Inc. Thin film disc lubrication utilizing disparate lubricant solvent
US5952497A (en) * 1996-07-10 1999-09-14 University Of Georgia Research Foundation N.sup.α -Bpoc amino acid pentafluorophenyl (Pfp) esters and 3,4-dihydro-4-oxo-1,2,3-benzotriazin-3-yl (ODhbt) esters
US6075141A (en) * 1996-07-10 2000-06-13 University Of Georgia Research Foundation, Inc. N.sup.α -α, α-dimethyl-3,5-dialkoxybenzylcarbonyl amino acid 3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazin-3-yl and pentafluorophenyl esters
EP1230902A1 (en) * 1996-11-15 2002-08-14 Advanced Bio Surfaces, Inc. Biomaterial system for in situ tissue repair
US6060284A (en) * 1997-07-25 2000-05-09 Schering Corporation DNA encoding interleukin-B30
US6238796B1 (en) * 1998-02-17 2001-05-29 Seagate Technology Llc Magnetic recording media
US6589650B1 (en) * 2000-08-07 2003-07-08 3M Innovative Properties Company Microscope cover slip materials
US6184187B1 (en) * 1998-04-07 2001-02-06 E. I. Dupont De Nemours And Company Phosphorus compounds and their use as corrosion inhibitors for perfluoropolyethers
US6099937A (en) * 1998-05-11 2000-08-08 Seagate Technology, Inc. High molecular weight fractioned lubricant for use with thin film magnetic media
TWI230712B (en) * 1998-09-15 2005-04-11 Novartis Ag Polymers
JP3563980B2 (en) * 1998-10-07 2004-09-08 ポーラ化成工業株式会社 Skin cosmetics for wrinkle improvement
US6268073B1 (en) * 1998-11-09 2001-07-31 Seagate Technology Llc Flash layer overcoat for magnetically-induced super resolution magneto-optical media
US6381200B1 (en) * 1998-11-18 2002-04-30 Seagate Technology Llc Flash layer overcoat for first surface magneto-optical media
US6355342B1 (en) * 1998-11-18 2002-03-12 Seagate Technology Llc Flash layer overcoat for high density multilayer magneto-optical media
US6815097B2 (en) * 1999-01-29 2004-11-09 Showa Denko K.K. Magnetic recording medium
US6562944B1 (en) * 1999-03-23 2003-05-13 Lexicon Pharmaceuticals Amide library formation using a “by-product-free” activation/coupling sequence
US6245107B1 (en) * 1999-05-28 2001-06-12 Bret A. Ferree Methods and apparatus for treating disc herniation
US6335224B1 (en) * 2000-05-16 2002-01-01 Sandia Corporation Protection of microelectronic devices during packaging
US6753301B2 (en) * 2000-07-19 2004-06-22 E. I. Du Pont De Nemours And Company Thermally stable perfluoropolyethers and processes therefor and therewith
US6620196B1 (en) * 2000-08-30 2003-09-16 Sdgi Holdings, Inc. Intervertebral disc nucleus implants and methods
US6326337B1 (en) * 2001-04-04 2001-12-04 The United States Of America As Represented By The Secretary Of The Air Force Perfluoropolyalkylether lubricant formulation with improved stability
US20020163629A1 (en) * 2001-05-07 2002-11-07 Michael Switkes Methods and apparatus employing an index matching medium
US6828284B2 (en) * 2001-08-06 2004-12-07 E. I. Du Pont De Nemours And Company Flourinated compositions comprising phosphorus
KR100640710B1 (en) * 2001-08-21 2006-10-31 교와 핫꼬 케미칼 가부시키가이샤 Oily ingredient for cosmetic preparation and cosmetic preparation
US6767592B2 (en) * 2001-12-05 2004-07-27 Seagate Technology Llc Method for thin film protective overcoat
US6878418B2 (en) * 2002-03-29 2005-04-12 Seagate Technology Llc Method for making zone-bonded lubricant layer for magnetic hard discs
US7018681B2 (en) * 2002-03-29 2006-03-28 Seagate Technology Llc Reducing UV process time on storage media
US6984422B2 (en) * 2002-05-14 2006-01-10 Seagate Technology Llc Photo process to improve tribological performance of thin lubricant film
EP1364663A1 (en) * 2002-05-21 2003-11-26 Commonwealth Scientific And Industrial Research Organisation Ocular devices with functionalized surface with adhesive properties
US6942683B2 (en) * 2002-05-24 2005-09-13 3M Innovative Properties Company Wound closure system and method
US6860924B2 (en) * 2002-06-07 2005-03-01 Nanoscale Materials, Inc. Air-stable metal oxide nanoparticles
US7476398B1 (en) * 2002-06-28 2009-01-13 Universite Laval Corneal implant and uses thereof
WO2005034781A1 (en) * 2003-09-29 2005-04-21 Promethean Surgical Devices Llc Devices and methods for spine repair
US20070231268A1 (en) * 2004-11-24 2007-10-04 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of orally administered pharmaceutical products

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705179A (en) * 1994-02-10 1998-01-06 Vivante Internatinale, Inc. Tissue augmentation with perfluoropolyether compounds
WO1996031548A1 (en) * 1995-04-04 1996-10-10 Novartis Ag Cell growth substrate polymer
EP1074243A2 (en) * 1999-08-04 2001-02-07 Ausimont S.p.A. Cosmetic compositions
WO2003078516A1 (en) * 2002-03-15 2003-09-25 Greene, Tweed Of Delaware, Inc. Cellular perfluoroelastomeric compositions, sealing members, methods of making the same and cellular materials for medical applications
FR2862871A1 (en) * 2003-12-01 2005-06-03 Camet Anne Dupouy The use of perfluoropolyethers in cosmetic or dermatological anti-pollution compositions to improve the effectiveness of anti-radical agents.
WO2005065324A2 (en) * 2003-12-24 2005-07-21 Synecor, Llc Liquid perfluoropolymers and medical applications incorporating same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200032 Derwent Publications Ltd., London, GB; AN 2000-369613 XP002436694 & JP 2000 119159 A (POLA CHEM IND INC) 25 April 2000 (2000-04-25) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9402860B2 (en) 2002-08-20 2016-08-02 Chesson Laboratory Associates, Inc. Methods of inhibiting the growth of onychomycosis and urushiol-induced allergic contact dermatitis
US8771725B2 (en) 2007-10-12 2014-07-08 Chesson Laboratory Associates, Inc. Poly(urea-urethane) compositions useful as topical medicaments and methods of using the same
US9259436B2 (en) 2007-10-12 2016-02-16 Chesson Laboratory Associates, Inc. Poly(urea-urethane) compositions useful as topical medicaments and methods of using the same
WO2009116006A1 (en) * 2008-03-20 2009-09-24 L'oreal A cosmetic treatment method involving photo- polymerization of a composition
FR2928834A1 (en) * 2008-03-20 2009-09-25 Oreal COSMETIC TREATMENT PROCESS COMPRISING THE PHOTOPOLYMERIZATION, IN PARTICULAR BI-PHOTONIC, OF A COMPOSITION

Also Published As

Publication number Publication date
WO2007021707A3 (en) 2008-01-31
US20050271794A1 (en) 2005-12-08

Similar Documents

Publication Publication Date Title
US20050271794A1 (en) Liquid perfluoropolymers and medical and cosmetic applications incorporating same
US20050142315A1 (en) Liquid perfluoropolymers and medical applications incorporating same
US20050273146A1 (en) Liquid perfluoropolymers and medical applications incorporating same
US20090216104A1 (en) Use of acid derivatives of fluoropolymers for fouling-resistant surfaces
Hasirci et al. Fundamentals of biomaterials
JP2007526797A5 (en)
US5876743A (en) Biocompatible adhesion in tissue repair
CN105377963B (en) Hydrophobic tissue sticker
Cvrček et al. Plasma modified polymeric materials for implant applications
CN112190236A (en) Devices, systems, and methods for using and monitoring medical devices
Gunatillake et al. Nondegradable synthetic polymers for medical devices and implants
JP7439052B2 (en) Applicators and applicator assemblies including such applicators for depositing layers of adhesive or sealant compositions at target sites of biological and/or prosthetic tissues
Heimann Materials for medical application
Babbar et al. Additive manufacturing for the development of biological implants, scaffolds, and prosthetics
Sherepo et al. Use of zirconium-based and zirconium-coated implants in traumatology and orthopedics
Kumar et al. Coatings on Surgical Tools and How to Promote Adhesion of Bio‐Friendly Coatings on Their Surfaces
Helmus Biomaterials in the design and reliability of medical devices
Magnani Erythrocyte engineering for drug delivery and targeting
Sivakumar On the relevance and requirements of biomaterials
Dubuc et al. Opinions from five oral specialists on 3D printing in the challenge of customized oral healthcare. What can plasma technology bring?
Woo et al. Biomaterials: Historical overview and current directions
WO2022025225A1 (en) Implant using nanocomposite hydrogel
Hemavathi et al. Epoxy-Based Composite Materials for Innovative Biomedical Applications
Ramzan et al. Three-Dimensional Hydrogel Bioprinting Technology as a Scaffold of Novel Drug Delivery and Biomedical Devices: A Comprehensive Review
Balakrishnan et al. An Introduction to Biomaterials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06801004

Country of ref document: EP

Kind code of ref document: A2