WO2007019110A2 - Spring junction and assembly methods for spinal device - Google Patents

Spring junction and assembly methods for spinal device Download PDF

Info

Publication number
WO2007019110A2
WO2007019110A2 PCT/US2006/029713 US2006029713W WO2007019110A2 WO 2007019110 A2 WO2007019110 A2 WO 2007019110A2 US 2006029713 W US2006029713 W US 2006029713W WO 2007019110 A2 WO2007019110 A2 WO 2007019110A2
Authority
WO
WIPO (PCT)
Prior art keywords
region
spring
structural member
resilient element
weld
Prior art date
Application number
PCT/US2006/029713
Other languages
French (fr)
Other versions
WO2007019110A3 (en
Inventor
Jens Peter Timm
Alvin Johnson
Original Assignee
Applied Spine Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/196,102 external-priority patent/US7713288B2/en
Priority claimed from US11/405,196 external-priority patent/US7699875B2/en
Application filed by Applied Spine Technologies, Inc. filed Critical Applied Spine Technologies, Inc.
Publication of WO2007019110A2 publication Critical patent/WO2007019110A2/en
Publication of WO2007019110A3 publication Critical patent/WO2007019110A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7004Longitudinal elements, e.g. rods with a cross-section which varies along its length
    • A61B17/7007Parts of the longitudinal elements, e.g. their ends, being specially adapted to fit around the screw or hook heads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7019Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
    • A61B17/7026Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a part that is flexible due to its form
    • A61B17/7028Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a part that is flexible due to its form the flexible part being a coil spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0093Welding characterised by the properties of the materials to be welded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7004Longitudinal elements, e.g. rods with a cross-section which varies along its length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7011Longitudinal element being non-straight, e.g. curved, angled or branched
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7035Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7041Screws or hooks combined with longitudinal elements which do not contact vertebrae with single longitudinal rod offset laterally from single row of screws or hooks

Definitions

  • the present disclosure relates to advantageous devices, systems and methods for spinal stabilization. More particularly, the present disclosure relates to devices, systems and methods for providing dynamic stabilization to the spine with systems/devices that include one or more enhanced spring junctions so as to provide clinically efficacious results.
  • motion preservation devices New treatment modalities, collectively called motion preservation devices, are currently being developed to address these limitations. Some promising therapies are in the form of nucleus, disc or facet replacements.
  • Other motion preservation devices provide dynamic internal stabilization of the injured and/or degenerated spine, e.g., the Dynesys stabilization system (Zimmer, Inc.; Warsaw, IN) and the Graf Ligament.
  • Zimmer, Inc. Warsaw, IN
  • Graf Ligament A major goal of this concept is the stabilization of the spine to prevent pain while preserving near normal spinal function.
  • motion preservation devices may advantageously include dynamic junctions that exhibit multiple degrees of freedom and commonly include active force-absorbing/force-generating structures.
  • Such structures may include one or more resilient elements, e.g., torsion springs and/or coil springs, designed and deployed so as to contribute strength and flexibility to the overall device. While the flexibility afforded by such resilient elements is plainly critical to the effectiveness of the respective devices of which they form a part, the elevated force levels associated with the use of such resilient elements can result in such resilient elements developing significant levels of internal stress. Depending on the magnitude and location thereof, internal stresses may pose the potential for stress-induced fatigue, material deformation and/or cracks.
  • resilient elements e.g., torsion springs and/or coil springs
  • the FDA has promulgated rules (e.g., Title 21, Subchapter H, Part 888, Subpart D, Section 888.3070 regarding pedicle screw spinal systems) that, in relevant part, require manufacturers to demonstrate compliance with special controls, including but not limited to applicable mechanical testing standards geared toward high reliability and durability.
  • the disclosed devices, systems and methods include a spring junction that promotes reliable and efficacious spinal stabilization.
  • the disclosed spring junction includes a structural member that is mounted or mountable with respect to a spine attachment fastener such as a pedicle screw, and a resilient element affixed to the structural member.
  • the resilient element has an attachment region, along which the resilient element, e.g., a spring, is affixed to the structural member, and an active region.
  • the attachment region of the resilient element is physically separately disposed with respect to the active region thereof.
  • the spring junction includes a weld region.
  • a heat-affected zone of the resilient element and associated with the weld region is disposed adjacent the weld region, but is physically separately disposed with respect to the active region of the resilient element.
  • the active region of the resilient element is generally subjected to cyclical stress, e.g., during in situ use of the disclosed spinal stabilization device, hi exemplary embodiments, the weld region is produced via a welding process, such as electron-beam welding, and accordingly may be subjected to welding temperatures of about 1000° F or higher.
  • the resilient element takes the form of a spring, e.g., a coil spring or helical spring, which extends into the weld region and which is mounted with respect to the structural member to form the spring junction.
  • a spring e.g., a coil spring or helical spring
  • the resilient element includes a bend region disposed between the weld region and an adjacent coil of the resilient element that extends along a helically-shaped path.
  • the bend region is sized and shaped so as to initially bend away from the helically-shaped path before bending back toward the helically-shaped path and terminating at or in the weld region.
  • the direction of the initial bend away from the helically-shaped path includes an axial component, but does not include a radial component.
  • the bend region may further be sized and shaped so as to remain substantially peripherally aligned with such helically-shaped path when viewed in an axial direction with respect to the helically-shaped path.
  • such spring junctions may be formed at opposite ends of the resilient element such that the resilient element/spring is mounted between spaced-apart structural members that are permitted to move relative to each other.
  • a weld cap is configured and dimensioned to interact with the resilient element and the structural member so as to securely position the resilient element relative to the structural member. Moreover, the weld cap functions to advantageously distance the welding process and associated welding energy from the resilient element, thereby avoiding and/or minimizing any potentially undesirable annealing effect associated with securing/welding the resilient element relative to the structural member.
  • a first weld cap interacts with the resilient element at a first end region thereof, and a second weld cap interacts with the resilient element at a second end region thereof, thereby effectively securing the resilient element with respect to opposed structural members at either end of an elongated spinal stabilization device.
  • the spring junction includes a weld region wherein the weld cap is affixed to an underlying structural member.
  • the weld cap and the underlying structural member are advantageously configured and dimensioned to interact with the resilient element such that the resilient element is positioned in a predefined location.
  • an exemplary weld cap and structural member according to the present disclosure include opposed channels or grooves that are sized and oriented to receive the resilient element therewithin. In this way, the resilient element is properly and effectively aligned during the assembly process, and is fixed between the weld cap and the structural member upon welding of the weld cap with respect to the structural member.
  • the resilient element is captured between the weld cap and the structural member and maintained in a fixed orientation relative to the weld cap/structural member assembly due to compressive forces exerted therebetween.
  • one or both cooperating surfaces of the weld cap/structural member may be subjected to surface treatment(s), e.g., grip blasting, to enhance the frictional force exerted between such surface(s) and the resilient element.
  • the resilient element generally defines an active region intermediate a first end region and a second end region.
  • the weld cap is used to secure the first end region of the resilient element with respect to a first structural member
  • a second weld cap is used to secure the second end region with respect to a second structural member, with the active region extending therebetween.
  • the first and second weld caps are generally fixed with respect to the associated structural member through conventional welding processes, such as electron-beam welding.
  • the weld cap and structural member are generally subjected to welding temperatures of about 1000° F or higher.
  • the spacing of the weld region from the resilient element which generally takes the form of a spring, e.g., a coil spring or helical spring, reduces or eliminates undesirable annealing effects on the spring.
  • the bend regions advantageously facilitate positioning of the resilient element/spring relative to the underlying structural member and weld cap.
  • the structural member and the weld cap define cooperating channels or grooves that cooperate with the bend regions of the resilient element/spring for alignment and/or relatively secure positioning in advance of the welding process.
  • a fixture is employed to fix the weld cap, resilient element and structural member during the welding process, thereby minimizing the potential for misalignment and/or reorientation during the assembly/welding processes.
  • a rod is mounted with respect to (or integrally formed with) the structural member.
  • the rod maybe advantageously adapted to mount with respect to an upwardly-extending structure associated with a pedicle screw.
  • the rod/pedicle screw may be mounted with respect to each other such that relative movement of the rod relative to the pedicle screw is permitted in at least one plane.
  • a method for producing a spring junction in which a resilient element is welded to a structural member such that an active region of the resilient element is disposed physically separately with respect to the heat-affected zone associated with such welding.
  • a further step is disclosed in which a resilient element is provided that defines an active region and a bend region, and wherein such welding results in the bend region being disposed between the active region and the heat-affected zone.
  • a resilient element can include a coil extending along a helically-shaped path, and in which the bend region is configured so as to initially bend away from such helical path defined before bending back toward such helical path.
  • a method for producing a spring junction in which a weld cap and structural member with an end region of a resilient element positioned therebetween, and the weld cap is welded with respect to the structural member, thereby securing/capturing the end region of the resilient element therebetween.
  • the resilient element can include a coil extending along a helically-shaped path, and in which a bend region is configured so as to initially bend away from such helical path defined before bending back toward such helical path.
  • the bend region can extend into and/or define the end region, such that the weld cap and structural member interact with and capture, in whole or in part, the bend region of the resilient element therebetween.
  • a combination in a still further embodiment, includes a structural member having a first end, a second end opposite the first end, an aperture between the first end and the second end, and a notch formed in the second end.
  • the combination also includes a resilient element having a bend region at an end thereof, the bend region terminating at a termination.
  • the resilient element is secured to the first end of the structural member such that the bend region extends through the aperture and the termination is lodged in the notch.
  • the resilient element is further affixed to the structural member via a weld formed with respect to the termination and the structural member at the notch.
  • the termination is configured and dimensioned so as to extend at least partially in the direction of the first end of the structural member, and the bend region is configured and dimensioned such that the termination can be threaded through the aperture, and thereby rotated toward and into the notch.
  • the structural member includes a helical groove formed in the first end and terminating adjacent the aperture
  • the resilient element includes an active region adjacent the bend region and spaced apart from the termination, and the active region includes a coil threaded along the helical groove to an extent of the aperture.
  • the resilient element is secured to the first end of the structural member such that one of the end regions is captured between a weld cap and the structural member.
  • the spring junction(s) of the present disclosure are typically employed as part of a spinal stabilization system that may advantageously include one or more of the following structural and/or functional attributes:
  • Exemplary embodiments of the spring junction are capable of undergoing at least approximately 10,000,000 cycles of combined extension/contraction and bending (e.g., during mechanical testing);
  • bend region advantageously facilitate and/or enhance the mechanical integrity of the junction between the resilient element and the associated channels/grooves.
  • a bend region having the noted geometric characteristics has reduced freedom of movement relative to the associated channels/grooves, e.g., in terms of rotation around the axis of the resilient element in the region of the junction.
  • Advantageous spine stabilization devices, systems and methods may incorporate one or more of the foregoing structural and/or functional attributes.
  • a system, device and/or method may utilize only one of the advantageous structures/functions set forth above, a plurality of the advantageous structures/functions described herein, or all of the foregoing structures/functions, without departing from the spirit or scope of the present disclosure.
  • each of the structures and functions described herein is believed to offer benefits, e.g., clinical advantages to clinicians and/or patients, whether used alone or in combination with others of the disclosed structures/functions.
  • FIG. 1 is a perspective exploded assembly view of a spinal stabilization device/system, according to the present disclosure
  • FIG. 2 is an exploded assembly view of a spinal stabilization device/system, including pedicle screws and associated mounting structures, in accordance with an embodiment of the present disclosure
  • FIG. 3 is an unexploded assembly view of the exemplary spinal stabilization device/system of FIG. 2;
  • FIGS. 4, 5 and 6 are interior end, exterior end, and cross-sectional views of a structural member associated with the exemplary spinal stabilization device/system of FIGS. 2-3;
  • FIGS. 7, 8 and 9 are interior end, exterior end, and cross sectional views of another structural member associated with exemplary spinal stabilization device/system of FIGS. 2-3;
  • FIG. 10 is a side view of a resilient element that may be employed in forming one or more spring junctions according to the present disclosure
  • FIG. 11 is a side assembly view of the exemplary spinal stabilization device/system of FIGS. 2-3 illustrating assembly of the components of FIGS. 4-9;
  • FIG. 12 is a perspective detail view of the interface between the structural member of FIGS. 7-9 and the resilient element of FIG. 10;
  • FIG. 13 is a top view of the interface between the structural member of FIGS. 7-9 and the resilient element of FIG. 10;
  • FIG. 14 is a sectional view of the interface between the structural member of FIGS. 7- 9 and the resilient element of FIG. 10 taken along the line 14—14 of FIG. 13;
  • FIGS. 15 and 16 illustrate various exemplary types and ranges of motion associated with exemplary spinal stabilization devices/assemblies of the present disclosure
  • FIG. 17 is an exploded assembly view of a spinal stabilization device/system, including pedicle screws and associated mounting structures, in accordance with an exemplary embodiment of the present disclosure
  • FIG. 18 is a side view (from the left side) of the spinal stabilization device schematically depicted in FIG. 17 according to an exemplary embodiment of the present disclosure
  • FIG. 19 is a side view of a portion of the spinal stabilization device of FIGS. 17 and 18 showing interaction between an exemplary weld cap and associated structural members;
  • FIG. 20 is a further side view of a portion of the exemplary spinal stabilization device schematically depicted in the foregoing figures;
  • FIG. 21 is a side view of an exemplary spinal stabilization device, with parts removed for clarity;
  • FIG. 22 is a perspective view of an exemplary spinal stabilization device that schematically depicts welding of a weld cap with respect to an underlying structural member according to the present disclosure
  • FIG. 23 is a perspective view of an assembled spinal stabilization device/system according to an exemplary embodiment of the present disclosure.
  • FIG. 24 is a top perspective view of a portion of the exemplary spinal stabilization device/system of FIG. 23.
  • the present disclosure provides advantageous devices, systems and methods for improving the reliability, dependability and/or durability of spinal stabilization systems. More particularly, the present disclosure provides advantageous devices, systems and methods for mechanically mounting resilient elements (e.g., torsion springs and/or coil springs) to, and/or for coupling resilient elements between, structural members (e.g., plates, caps, flanges, rods, and/or bars) associated with dynamic spinal stabilization systems.
  • resilient elements e.g., torsion springs and/or coil springs
  • structural members e.g., plates, caps, flanges, rods, and/or bars
  • the mounting and/or coupling methods/techniques of the present disclosure provide enhanced reliability, dependability and/or durability without significantly increasing material weight or volume requirements and without compromising the important functions of the dynamic spinal stabilization devices/systems of which they form a part.
  • the exemplary embodiments disclosed herein are illustrative of the advantageous spinal stabilization devices/systems and surgical implants of the present disclosure, and of methods/techniques for implementation thereof. It should be understood, however, that the disclosed embodiments are merely exemplary of the present invention, which may be embodied in various forms. Therefore, the details disclosed herein with reference to exemplary dynamic spinal stabilization systems and associated methods/techniques of assembly and use are not to be interpreted as limiting, but merely as the basis for teaching one skilled in the art how to make and use the advantageous dynamic spinal stabilization systems and alternative surgical implants of the present disclosure.
  • the dynamic stabilization element 10 includes two structural elements in the form of a spring cap 12 and a spring cap 14, and two resilient elements in the form of an inner spring 16 and an outer spring 18.
  • the spring cap 12 is affixed to an attachment member 20 that is configured to be coupled to the head of a pedicle screw (not shown) via a dynamic joint (not shown).
  • the spring cap 14 is affixed to a rod 22 that is configured to be attached to another attachment member (not shown) that is in turn coupled to the head of another pedicle screw (not shown) via another dynamic joint (not shown).
  • the dynamic stabilization element 10 permits relative axial/longitudinal motion, as well as angular/rotational motion, of the rod 20 relative to the attachment member 20, as part of a larger spinal stabilization system (shown only in relevant part).
  • the spring cap 12 includes an interior end 24, an exterior end 26 opposite the interior end, a post 28 axially positioned on the interior end 24, an annular channel 30 formed in the interior end 24 around the post 28, a helically-shaped groove 32 formed in the interior end 24 around the annular channel 30, and an aperture 34 passing through the spring cap 12 between the interior and exterior ends 24, 26 thereof at an end 36 of the helically-shaped groove 32.
  • the spring cap 14 includes an interior end 38, an exterior end 40 opposite the interior end 38, a post 42 axially positioned on the interior end 38 around the post 42, a helically-shaped groove 46 formed in the interior end 38 around the annular channel 44, and an aperture 48 passing through the spring cap 14 between the interior and exterior ends 38, 40 thereof at an end 50 of the helically-shaped groove 46.
  • the inner spring 16 consists of coils 52 sharing a common diameter and arranged sequentially about a common axis between a coil termination 54 (obscured) at an end 56 of the inner spring 16 and a coil termination 58 at another end 60 thereof opposite the end 56.
  • the outer spring 18 consists of coils 62 sharing a common diameter and arranged sequentially about a common axis between a coil termination 64 (obscured) at an end 66 of the outer spring 18 and a coil termination 68 at another end 70 thereof opposite the end 66.
  • the inner spring 16 is positioned within the outer spring 18.
  • the coil 52 at the end 56 of the inner spring 16 is positioned on or around the post 28 of the spring cap 12, and against the interior end 24 of the spring cap 12 so as to occupy (at least in part) the annular channel 30 formed therein.
  • the coil 52 at the end 60 of the inner spring 16 is positioned on or around the post 42 of the spring cap 14 and against the interior end 38 of the spring cap 14 so as to occupy (at least in part) the annular channel 44 formed therein. In this way, the inner spring 16 is effectively captured between the spring cap 12 and the spring cap 14 and effectively floats relative to the opposing posts 28, 42.
  • the coil 62 at the end 66 of the outer spring 18 is threaded into the interior end 24 of the spring cap 12 along the helically-shaped groove 32 at least until the coil termination 64 reaches the aperture 34 of the spring cap 12.
  • the outer spring 18 is fixed with respect to the spring cap 12, e.g., by welding, and may be trimmed so as to be flush relative to an edge formed at the interface between the aperture 34 and the exterior end 26 of the spring cap 12.
  • the coil 62 at the end 70 of the outer spring 18 is threaded into the interior end 38 of the spring cap 14 along the helically-shaped groove 46 at least until the coil termination 68 reaches the aperture 48 of the spring cap 14.
  • the outer spring 18 is fixed with respect to the spring cap 14, e.g., by welding, and may be trimmed so as to be flush relative to an edge formed at the interface between the aperture 48 and the exterior end 40 of the spring cap 14.
  • the outer spring 18 is typically shorter than the inner spring 16, such that as the spring cap 12 and the spring cap 14 are brought toward each other (i.e., to permit the outer spring 18 to be mounted on both), the inner spring 16 is placed in compression.
  • the degree to which the inner spring 16 is compressed is generally dependent on the difference in length as between the inner and outer springs 16, 18.
  • the preload compression of the inner spring 16 may be controlled and/or adjusted in part through selection of the relative lengths of the inner and outer springs 16, 18.
  • the mounting of the outer spring 18 with respect to the spring caps 12, 14 includes placing the outer spring 18 in tension.
  • the overall preload of the dynamic stabilization element 10 corresponds to equal and opposite forces experienced by and/or contained within the inner and outer springs 16, 18.
  • the inner spring 16 reaches its free length (i.e., non compressed state) at or about the point at which a patient's movement exceeds a "neutral zone" (as described more completely in the '270 Application). Beyond this point, the inner spring 16 is free floating (e.g., on the opposing posts 28, 42), while the outer spring 18, already in tension, extends in length even further.
  • heat-affected zone is believed to arise as a result of an annealing effect brought about by the migration of excess heat arising from an electronic-beam welding process, hi accordance with such electronic beam or E-beam welding processes, elevated temperatures in a range of approximately 1000° F or higher are used to affix the outer spring 18 to the spring cap 14 by essentially melting such components together.
  • the heat-affected zone so produced can be at least .005"-.03O" in axial length, and is located immediately adjacent the weld formed at the end 70 of the outer spring 18, and along the active region of the outer spring 18.
  • the heat-affected zone can include a soft or weak point on the coil 62 at which a Rockwell hardness of the material of the outer spring 18, ordinarily falling within a range of from approximately 46 to approximately 54, dips sharply; e.g., to a value in a range of from approximately 20 to approximately 24.
  • geometric/structural modifications to the outer spring 18 and the spring cap 14 have been found to advantageously enhance the reliability and durability of dynamic stabilization element 10.
  • Exemplary embodiments of the advantageous geometric/structural modifications to the outer spring 18 and the spring cap 14 are described herein below with reference to FIGS. 2-14, as is a beneficial cooling/supercooling step involving the modified outer spring and the modified spring caps associated therewith.
  • a durability standard of 10,000,000+ failure-free cycles has been achieved with apparatus in which an outer spring has been welded to its associated spring caps to form a dynamic stabilization device as described herein.
  • the geometric/structural modifications include the creation of a substantial physical separation of the active portion of the outer spring from the heat-affected zone associated with the E-beam welding process, and/or from the actual site of the weld formed between the attached components.
  • this separation to the extent that any region of the outer spring becomes significantly annealed, and/or is brought to a significantly lowered Rockwell hardness value as a result of E-beam welding, the amount of cyclic stress to which that softened or annealed portion is exposed is substantially reduced and/or brought to such a low level that the respective junctions between the outer spring and its associated spring caps can exhibit very high levels of reliability/durability.
  • the spinal stabilization system 100 includes attachment members 102, 104, pedicle screws 106, 108, dynamic joints (e.g., ball/spherical elements) 110, 112, and set screws 114, 116.
  • the attachment member 102 is configured to receive the ball/spherical element 110.
  • the ball/spherical element 110 then receives the head of the pedicle screw 106 such that a global/dynamic joint is formed between the attachment member 102 and the head of the pedicle screw 106 (see also FIG. 3).
  • the set screw 114 is then inserted into the head of the pedicle screw 106 (see also FIG.
  • the attachment member 104 is configured to receive the ball/spherical element 112.
  • the ball/spherical element 112 then receives the head of the pedicle screw 108 such that a global/dynamic joint is formed between the attachment member 104 and the head of the pedicle screw 108 (see also FIG. 3).
  • the set screw 116 is then inserted into the head of the pedicle screw 108 (see also FIG. 3), thereby securing the head of the pedicle screw 108 within the ball/spherical element 112.
  • the spinal stabilization system 100 also includes a rod 118.
  • the rod is configured to be inserted into the attachment member 104, which includes a transverse aperture 120 to accommodate the rod 118, and a set screw 122 to secure the rod 118 at a desired position within the transverse aperture 120 (see also FIG. 3, in which a hex driver 124 is shown turning the set screw 122 against the rod 118).
  • the spinal stabilization system 100 further includes a dynamic stabilization element 126 between the rod 118 and the attachment member 102.
  • the dynamic stabilization element 126 includes structural members 128, 130, an inner resilient element 132, an outer resilient element 134, a sheath member 136, and two end clamps 138. As shown in FIG. 3, the inner resilient element 132 (obscured) and outer resilient element 134 (partially obscured) are positioned within the sheath member 136, and an end clamp 138 secures the sheath member 136 to each of the structural members 128, 130. This prevents undesirable interaction or interference between the inner and outer resilient elements 132, 134 and anatomical structures in situ. Referring again to FIG.
  • the inner resilient element 132 is constructed and functions in manners substantially similar to those of the inner spring 16 described hereinabove with reference to the dynamic stabilization element 10.
  • the inner resilient element 132 is also deployed and employed in the dynamic stabilization element 126 in manners substantially similar to those in which the inner spring 16 is deployed and employed in the dynamic stabilization element 10 described hereinabove.
  • the dynamic stabilization element 126 will now be described in greater detail: the structural member 128 (with reference to FIGS. 4-6), the structural member 130 (with reference to FIGS. 7-9), and the outer resilient element 134 (with reference to FIG. 10).
  • the manner in which the structural members 128, 130 and the outer resilient element 134 are assembled will be discussed (with particular reference to FIGS. 11-14).
  • the functions of the dynamic stabilization element 126 will be discussed, followed by a discussion of the characteristic advantages of the dynamic stabilization element 126. Referring now to FIGS.
  • the structural member 128 is affixed to (e.g., is of unitary construction with) the attachment member 102 (the ball/spherical element 110 is also shown within the attachment member 102) and takes the form of a plate having multiple features permitting the structural member 128 to function in the manner of an end cap or spring cap with respect to the inner and outer resilient elements 132, 134 (FIG. 2).
  • the structural member 128 includes an interior end 140, an exterior end 142 opposite the interior end 140, a post 143 axially positioned on the interior end 140, an annular channel 144 formed in the interior end 140 around the post 143, a helically-shaped groove 146 formed in the interior end 140 around the annular channel 144, an aperture 148 passing through the structural member 128 between the interior and exterior ends 140, 142 thereof at an end 150 of the helically- shaped groove 146, a short groove 152 formed in the exterior end 142 adjacent the aperture 148, and a notch 154 formed in the exterior end 142 at an end 156 of the short groove 152.
  • the structure and function of the structural member 128 will be described in greater detail hereinafter.
  • the structural member 130 is affixed to (e.g., is of unitary construction with) the rod 118 (which is positioned off-axis or off-center with respect to the structural member 130), and takes the form of a plate having multiple features permitting the structural member 130 to function in the manner of an end cap or spring cap with respect to the inner and outer resilient elements 132, 134 (FIG. 2).
  • the structural member 130 includes an interior end 158, an exterior end 160 opposite the interior end 158, a post 162 axially positioned on the interior end 158, an annular channel 164 formed in the interior end 158 around the post 162, a helically-shaped groove 166 formed in the interior end 158 around the annular channel 164, an aperture 168 passing through the structural member 130 between the interior and exterior ends 158, 160 thereof at an end 170 of the helically-shaped groove 166, a short groove 172 formed in the exterior end 160 adjacent the aperture 168, and a notch 174 formed in the exterior end 160 at an end 176 of the short groove 172.
  • the structure and function of the structural member 130 will be described in greater detail hereinafter.
  • the outer resilient element 134 consists of coils 178 sharing a common diameter and arranged sequentially about a common axis between a coil termination 180 at an end 182 of the outer resilient element 134 and a coil termination 184 at another end 186 thereof opposite the end 182. Extending from the coil termination 180, and substantially continuous therewith, is a bend region 188 of the outer resilient element 134. Extending from the coil termination 184, and substantially continuous therewith, is a bend region 190 of the outer resilient element 134.
  • the bend regions 188, 190 of the outer resilient element 134 extend peripherally from the respective coil terminations 180, 184 along respective paths which, when viewed axially (see, e.g., FIG. 13) from either end 182, 186 of the outer resilient element 134, are defined by respective single radii that extend from the common axis of the coils 178 of the outer resilient element 134 and that have extents approximately half that of the common diameter of the coils 178.
  • the bend regions 188, 190 of the outer resilient element 134 remain within the same peripheral outline defined by the coils 178 of the outer resilient element 134.
  • the bend regions 188, 190 of the outer resilient element 134 are seen to depart from the helical path defined by the coils 178.
  • the bend region 188 when viewed from the side as in FIG. 10, is seen to include a curve or bend in the path of extension of the bend region 188, according to which the material of the outer resilient element 134: (1) initially curves away from the adjacent coil 178 at the coil termination 180; (2) reaches an apex 192 representing a point of maximum departure from the adjacent coil 178; (3) curves therefrom back toward the adjacent coil 178; and (4) terminates at a bend region termination 194 without fully returning to the helical path defined by the coils 178.
  • the bend region 190 when viewed from the side as in FIG.
  • the outer resilient element 134 is seen to include a curve or bend in the path of extension of the bend region 190, according to which the material of the outer resilient element 134: (1) initially curves away from the adjacent coil 178 at the coil termination 184; (2) reaches an apex 196 representing a point of maximum departure from the adjacent coil 178; (3) curves therefrom back toward the adjacent coil 178; and (4) terminates at a bend region termination 198 without fully returning to the helical path defined by the coils 178.
  • the structure and function of the outer resilient element 134 will be described in greater detail hereinafter.
  • the inner resilient element 132 (obscured, see FIG. 2) is positioned within the outer resilient element 134, between the respective posts 143 (FIG. 4), 162 (FIG. 7), and within the respective annular channels 146 (FIG. 4), 164 (FIG. 7) of the structural elements 128, 130.
  • the bend region 190 and the coil 178 at the end 186 (FIG. 10) of the outer resilient element 134 are threaded into the interior end 140 (FIG. 6) of the structural element 128 until the bend region 190 has substantially passed into or through the aperture 148 of the structural element 128 and the bend region termination 198 has been caused to drop or snap into place within the notch 154 (FIG.
  • the bend region 188 and the coil 178 at the end 182 (FIG. 10) of the outer resilient element 134 are threaded into the interior end 158 (FIG. 9) of the structural element 130 until the bend region 188 has substantially passed into or through the aperture 168 of the structural element 130 and the bend region termination 194 (obscured, see FIG. 10) has been caused to drop or snap into place within the notch 174 (FIG. 8) formed in the exterior end 160 of the structural element 130.
  • FIG. 12 the interface or spring junction between the outer resilient element 134 and the structural element 130 is shown in greater detail.
  • the bend region 188 largely or completely extends into or through the aperture 168 formed in the structural element 130, and the bend region termination 194 is lodged within the notch 174 formed in the exterior end 160 of the structural element 130. More particularly, a portion 200 of the bend region 188 of the outer resilient element 134 near the coil termination 180 is lodged within the short groove 172 (FIG.
  • a portion 202 of the bend region 188 associated with the apex 192 thereof is lodged within the short groove 172 and in longitudinal contact with the exterior end 160 of the structural element 130, and a portion 204 of the bend region 188 associated with the bend region termination 194 is lodged within the short groove 172 to an extent of the notch 174.
  • the outer resilient element 134 is welded to the exterior end 160 of the structural element 130 in the vicinity of the notch 174, e.g., via electronic-beam welding along an extent of the portion 204 of the bend region 188 that is lodged within the notch 174.
  • the outer resilient element 134 can be placed in a state of full compression in advance of such welding so as to ensure that after such welding, the portion 202 of the bend region 188 associated with the apex 192 thereof is biased in favor of continuous longitudinal contact with the exterior end 160 of the structural element 130 during normal in situ use of, and/or during representative mechanical testing of, the dynamic stabilization element 126.
  • a portion (not separately shown) of the bend region 190 (FIG. 10) near the coil termination 184 (FIG. 10) is similarly lodged within the short groove 152 (FIG. 5) formed in the exterior end 142 (FIG. 6) of the structural element 128, a portion (not separately shown) of the bend region 190 (FIG. 10) associated with the apex 196 (FIG. 10) thereof is lodged within the short groove 152 and in longitudinal contact with the exterior end 142 of the structural element 128, and a portion (not separately shown) of the bend region 190 associated with the bend region termination 198 is lodged within the short groove 152 to an extent of the notch 154.
  • the outer resilient element 134 is welded to the exterior end 142 of the structural element 128 in the vicinity of the notch 154, e.g., via electronic-beam welding along an extent of the portion (not separately shown) of the bend region 190 that is lodged within the notch 154 (FIG. 5).
  • the outer resilient element 134 can be placed in a state of full compression in advance of such welding for the same reasons and to achieve a similar biasing effect in the bend region 190 as is described above with reference to the bend region 188.
  • a cooling/supercooling step maybe advantageously undertaken in advance of welding such as is described immediately hereinabove.
  • the outer resilient element 134 and the structural members 128, 130 are immersed in a bath of liquid nitrogen, and are withdrawn therefrom shortly before the resilient element 134 is welded to the structural elements 128, 130.
  • Cooling/supercooling of the outer resilient element 134 and the structural members 128, 130 functions to reduce the likelihood that high levels of heat will be experienced at a distance from the respective weld regions associated therewith. Accordingly, a given heat- affected zone associated with the migration of heat generated by electronic beam welding can be shrunken and/or reduced in extent, as can any soft or weak spot in such heat-affected zone associated with sharply reduced Rockwell hardness. This cooling/supercooling step was observed to increase resilient element durability during representative mechanical testing.
  • the above-described welding process produces a weld region 206 incorporating portions of the exterior end 160 of the structural element 130 at the end 176 of the short groove 172 in the vicinity of the notch 174, as well as portions of the bend termination 194 of the bend region 188 of the outer resilient element 134.
  • the portion 204 of the bend region 188 is long enough, and the corresponding portion of the short groove 172 is long enough, such that weld region 206 terminates at a point 208 along the extent of the bend region 188 well short of the apex 192 thereof.
  • the weld region 206 also terminates well short of a corresponding apex 210 of the short groove 172 against which the portion 202 of the bend region 188 is biased.
  • the portion 204 of the bend region 188 includes a heat-affected zone 212 associated with the process used to affix the outer resilient element 134 to the structural element 130, such region 212 also terminates at a point 214 along the extent of the bend region 188 well short of the apex 192 thereof, as well as well short of the apex 210 of the short groove 172.
  • the portion 202 of the bend region 188 and the exterior end 160 of the structural member 130 are in intimate and continuous longitudinal contact along the short groove 172 at least from the apex 210 thereof and for an extent 216 extending toward the aperture 168. Beyond the extent 216, the short groove 172 tends to depart from intimate contact from the portion 200 of the bend region 188 for an extent 218 extending fully to the aperture 168.
  • the significance and functional benefits of such structure and/or such assembly arrangement between the bend region 188 of the outer resilient element 134 and the exterior end 160 of the structural element 130 will be explained more fully hereinafter.
  • the dynamic stabilization element 126 of the spinal stabilization system 100 permits relative rotational motion, as well as relative translational motion, as between the rod 118 and the attachment member 102, and/or as between the rod 118 and the ball/spherical element 110, while providing enhanced spinal support for the patient, e.g., in the "neutral zone" described more folly in the '270 Application. More particularly, the dynamic stabilization element 126 as a unit, and/or the outer resilient element 134 by itself, supports either and/or both of spinal extension and spinal flexion. Referring to FIG.
  • the dynamic stabilization element 126 is shown as it would appear while supporting spinal extension, wherein an extent 220 of, for example, less than 5° of relative rotation as between the rod 118 and the ball/spherical element 110 is produced.
  • spinal extension can also produce approximately one millimeter of travel in the resilient element 134 relative to the initial position thereof (i.e., wherein the resilient element 134 is preloaded in tension so as to be slightly extended), such that the resilient element 134 may now actually assume a fully compressed state.
  • the dynamic stabilization element 126 is shown as it would appear while supporting spinal flexion, wherein an extent 222 of, for example, greater than 10° of relative rotation as between the rod 118 and the ball/spherical element 110 is produced.
  • Such spinal flexion can produce approximately one and one-half millimeters of travel (i.e., additional extension) in the resilient element 134 relative to the initial position thereof.
  • the outer resilient element 134 is shown in a state of full compression against the interior end 158 of the structural element 130.
  • the bend region 188 of the outer resilient element 134 is biased toward contact with the exterior end 160 of the structural element 130.
  • this bias is not relaxed. Rather, this bias is only reinforced by such torsional and/or bending forces as may tend to urge the portion 200 of the bend region 188 further through the aperture 168 in the direction of the interior end 158.
  • the portion 200 of the bend region 188 can tend to bend and/or twist close to/closer to the angled exterior surface associated with the extent 218 of the short groove 172).
  • the portion 202 of the bend region 188 remains lodged in the short groove 172, where it remains in intimate contact with the exterior end 160 of structural element 130, and as such is not capable of being deflected any further in the direction of the interior end 158 by such axial and/or lateral forces. Accordingly, such axial and/or lateral forces are prevented from directly acting upon either of the weld region 206 or the heat- affected zone 212 of the outer resilient element 134.
  • the consistent, continuous longitudinal contact between the portion 202 of the bend region 188 and the exterior end 160 of the structural element 130 along the short groove 172 thereof acts as a permanent 'fulcrum', beyond which the torsional and/or bending forces arising in the portion 200 of the bend region 188 are not necessarily transmitted as such to the weld region 206 or the heat-affected zone 212, at least not in a form capable of producing fatigue-inducing stress in such region/zone.
  • the active region of the outer resilient element 134 extends no further toward the weld region 206 or the heat-affected zone 212 than the apex 192 of the bend region 188.
  • a fulcrum e.g., the extent 216 within the short groove 172 provides the weld region 206 with significant mechanical advantage by which to resist such forces without experiencing undue internal stress.
  • the dynamic stabilization element 126 associated with the spinal stabilization system 100 described hereinabove with regard to FIGS. 2-14 provides numerous advantages in comparison to other spinal stabilization systems associated therewith. Referring again to FIGS. 11 and 14, and while not necessarily intending to be bound by theory, improved reliability and durability is achieved with the disclosed dynamic stabilization element based at least in part on the fact that the heat-affected zone associated with the process of joining the outer resilient element 134 to the structural elements 128, 130 via welding is physically separated from the active region of the outer resilient element 134, and is therefore isolated from the cyclical stress associated with repeated extension/contraction and/or bending during normal use and/or representative mechanical testing.
  • the portion 202 of the bend region 188 of the outer resilient element 134 fully separates the portion 202 of the outer resilient element 134 from the portion 204 thereof at which the outer resilient element 134 is welded to the structural member 130.
  • the welded and threaded connection between the outer resilient element 134 and the structural member 128 provides similar advantages.
  • the heat-affected zone in exemplary embodiments of the present disclosure is observed to extend axially approximately .005"-.03O" from the weld region along the material of the outer resilient element 134, and the active region of the outer resilient element 134 extends no farther in the direction of the welded interfaces than the respective apexes 192, 196 of the bend regions 188, 190.
  • the increased reliability/durability found in the dynamic stabilization element of the present disclosure has been shown to be at least partially due to the fact that the active region of the outer resilient element 134 is substantially completely shielded from any material degradation that may result from the assembly step, e.g., via electronic-beam welding, hi other words, to the extent the use of E-beam welding reduces the Rockwell hardness of a portion or portions of the outer resilient element 134, such portion or portions are substantially completely shielded from fatigue-producing levels of cyclic stress.
  • the dynamic stabilization element 126 associated with the spinal stabilization system 100 described hereinabove with regard to FIGS. 2-14 can be the subject of numerous modifications and variations while still exhibiting the above-discussed advantages over other dynamic junctions for spinal stabilization systems.
  • the rod 118 can be repositioned to an axial position with respect to the structural member 130.
  • the bend region termination 194 can be affixed to the structural member 130 by other welding processes than E-beam welding, and/or by one or more non- welding means of attachment, such as by clamping or the use of mechanical fasteners appropriate for use in conjunction with small gage springs, by an adhesive-based process, or via the use of a single mold to form the two components together as a single piece.
  • outer resilient element 134 need not necessarily be configured in the manner of a coil spring, but may instead take the form of one or more other types of resilient elements, such as a leaf spring, a torsion spring or bar, etc. Additionally, the outer resilient element 134 maybe employed in a dynamic junction that does not also include the inner resilient element 132. Many other variations and/or modifications are possible.
  • the dynamic stabilization system 100 includes dynamic stabilization device 126 that includes two structural elements in the form of first spring cap 128 and second spring cap 130, and two resilient elements in the form of inner spring 132 and outer spring 134.
  • the first spring cap 128 is affixed to attachment member 102 that is configured to be coupled to the head of pedicle screw 106, preferably via dynamic joint 110.
  • the second spring cap 130 is affixed to rod 118 that is configured to be attached to another attachment member 104 that is in turn coupled to the head of another pedicle screw 108, preferably via another dynamic joint 112.
  • the dynamic stabilization system 100, and particularly the dynamic stabilization device 126 permits limited degrees of relative axial/longitudinal motion as well as angular/rotational motion.
  • the inner spring 132 consists of a plurality of coils sharing a common diameter and arranged sequentially about a common axis.
  • the outer spring 134 also consists of a plurality of coils sharing a common diameter and arranged sequentially about a common axis. In the assembled state, the inner spring 132 is positioned within the outer spring 134. The coil at the end of the inner spring 132 is positioned on or around post 119 that extends from spring cap 128, and against the interior end of spring cap 128 so as to occupy (at least in part) an annular channel formed therein.
  • a coil at the opposite end of the inner spring 132 is positioned on or around post 121 of the spring cap 130 and against the interior end of the spring cap 130 so as to occupy (at least in part) an annular channel formed therein. In this way, the inner spring 132 is effectively captured between the first spring cap 128 and the second spring cap 130 and effectively floats relative to the opposing posts 119, 121.
  • the spinal stabilization device 126 further includes sheath member 136 and two end clamps 138.
  • the inner resilient element 132 and outer resilient element 134 are positioned within the sheath member 136, and an end clamp 138 secures the sheath member 136 to each of the structural members 128, 130. This prevents undesirable interaction or interference between the inner and outer resilient elements 132, 134 and anatomical structures in situ.
  • peripheral groove 146 may be formed in the structural member, e.g., end cap 128, to facilitate positioning of end clamp 138. Once positioned in or adjacent peripheral groove 146, end clamp 138 is advantageously crimped or swaged into engagement with end cap 128.
  • weld caps 240 and 242 function to secure outer resilient element/spring 134 relative to structural members/end caps 128 and 130, respectively.
  • weld cap 240 and end cap 128 cooperate to capture an end region 244 of outer spring 134 therebetween, thereby positively securing outer spring 134 with respect to end cap 128.
  • the coil at the end of the outer spring 134 is threaded into spring cap 128.
  • helically-shaped grooves 248, 248' are defined in end caps 128, 130, respectively.
  • the dimensional parameters associated with grooves 248, 248' are advantageously selected to cooperate with the diameter of the spring wire defining outer spring 134.
  • FIG. 22 schematically depicts welding material 250 interacting with weld cap 242 so as to secure/capture outer spring 134 relative to end cap 130.
  • geometric/structural modifications to the outer spring 134 and the spring caps 128, 130 together with incorporation of weld caps 240, 242 into the overall assembly, have been found to advantageously enhance the reliability and durability of dynamic stabilization device 126.
  • a durability standard of 10,000,000+ failure-free cycles is believed to be achievable on a sustained and reliable basis.
  • the outer resilient element 134 consists of a plurality of coils sharing a common diameter and arranged sequentially about a common axis between coil termination 180 at an end of the outer resilient element 134 and a coil termination (not shown) at an opposite end thereof. Extending from the coil termination 180, and substantially continuous therewith, is bend region 188 of the outer resilient element 134. According to exemplary embodiments of the present disclosure, a corresponding coil termination and bend region are defined at the opposite end of the outer resilient element 134. As shown in FIG. 20, weld cap 240 advantageously includes a substantially arcuate geometry 141 to track the bend region 188 of spring 134.
  • the bend regions, e.g., bend region 188, of the outer resilient element/spring 134 extend peripherally from the respective coil terminations, e.g., coil termination 180, along respective paths which, when viewed axially from either end of the outer resilient element/spring 134, are defined by respective single radii that extend from the common axis of the coils of the outer resilient element 134 and that have extents approximately half that of the common diameter of the coils.
  • the bend regions, e.g., bend region 188, of the outer resilient element/spring 134 remain within the same peripheral outline defined by the coils of the outer resilient element 134.
  • bend region 188 of the outer resilient element 134 is seen to depart from the helical path defined by the coils.
  • the bend region 188 when viewed from the side as in FIG. 20, is seen to include a curve or bend in the path of extension of the bend region 188, according to which the material of the outer resilient element/spring 134: (1) initially curves away from the adjacent coil at the coil termination 180; (2) reaches an apex representing a point of maximum departure from the adjacent coil; and (3) curves therefrom back toward the adjacent coil to return to the helical path defined by the coils.
  • the inner resilient element 132 is positioned within the outer resilient element 134, between the respective posts 119, 121, and within the respective annular channels of the structural elements 128, 130.
  • the bend region 188 and the coil at the end of the outer resilient element 134 are threaded into the interior end of the structural element 130 until the bend region 188 has substantially passed into or through an aperture formed in the structural element 130 (see, e.g., aperture 292 defined in structural member 128, as shown in FIG. 21) and the bend region termination has been caused to drop or snap into place within a notch formed in the exterior end of the structural element 130.
  • exemplary weld caps 240, 242 define a geometry that includes a variable height/thickness. More particularly, a reduced height/thickness region 252 is defined radially inward of a greater height/thickness region 254. An arcuate transition region 256 is generally provided to transition between regions 252 and 254. The reduced height/thickness region 252 advantageously provides an effective geometry for welding of the weld caps 240, 242 relative to the underlying structural members, i.e., end caps 128, 130.
  • end caps 128, 130 i.e., end caps 128, 130.
  • the weld material 250 typically interacts with the weld cap in the reduced height/thickness region 252, defining a generally sloped and/or arcuate geometry relative to the axis of the spinal stabilization device 126.
  • the greater height/thickness region 254 in turn provides sufficient material to ensure effective compression/capture of outer spring 134.
  • helical channels 258, 258' is defined in the undersurface of region 254 of weld caps 240, 242 to facilitate alignment and capture of the end region (e.g., bend region 188) of outer spring 134.
  • Weld caps 240, 242 are generally fabricated from an appropriate metal, e.g., cobalt chrome, titanium, stainless steel or the like.
  • the circumferential/angular extent of weld caps 240, 242 are generally selected to ensure sufficient clamping/compressive force is exerted on outer spring 134, e.g., to ensure that the end region of the outer spring is without freedom of movement in any axis, e.g., axial, rotational or a combination thereof.
  • surface treatment(s) maybe undertaken to increase/enhance the gripping forces associated with the weld cap and/or opposed grove/channel surfaces associated with the corresponding end cap.
  • surfaces 248' and 258' may be advantageously grip blasted to increase the frictional forces imparted thereby when clamped/compressed into engagement with a resilient member, e.g., spring 134.
  • Alternative surface treatment modalities may also be employed, e.g., sand blasting, abrasive blasting, surface etching and the like, as will be apparent to persons skilled in the art.
  • weld caps 240, 242 define a circumferential/angular extent of about 90° to about 160°, although geometries outside the noted range are contemplated based on the overall design of the spinal stabilization device/system and the forces to be encountered thereby.
  • Exemplary heights in region 254 are between about 0.45 inches and 0.55 inches, while exemplary heights in region 252 are between 30% and 60% of the height of region 254.
  • the geometry of weld caps 240, 242 in region 252 may be substantially planar or non-planar, provided adequate surface geometry is provided to accommodate and effect a desired welding operation.
  • components that define the spinal stabilization device 126 i.e., inner spring 132, outer spring 134, and end caps 128, 130, are combined to define a sub- assembly.
  • Weld caps 240, 242 are positioned with respect to the sub-assembly such that the end regions of the outer spring 134 are aligned with the channels/grooves 258, 258' formed in the underside of the weld caps, and the sub-assembly is then generally fixtured so as to place the weld cap/end cap region in compression.
  • a minimal clearance may exist between the region 254 and the corresponding end caps 128, 130, e.g., about 0.0005 to about 0.003 inches, prior to application of the fixturing compression.
  • a welding operation is generally initiated such that welding material 250 is applied to the weld cap/end cap interface as schematically depicted in FIG. 22, thereby securing the weld caps 240, 242 with respect to the corresponding end caps 128, 130 and locking outer spring 134 therebetween.
  • the disclosed assembly technique advantageously maintains a distance or spacing between the welding heat effects and the outer spring 134, such that undesirable annealing effects are avoided in the active region of the outer spring 134.
  • the disclosed system design and assembly technique provides an efficient, reliable and effective approach to ensuring product integrity while avoiding any deleterious effects on the disclosed dynamic/spring system.
  • Sheath assembly 260 generally includes sheath member 136 and end clamps 138.
  • exemplary end clamps 138 include circumferentially spaced notches 262 that facilitate interaction between the end clamps 138 and the sheath member 136, and further facilitate assembly of the sheath assembly 260 with respect to the underlying end cap 128.
  • the weld material 250 has been omitted for clarity purposes.
  • the dynamic stabilization device 126 associated with the spinal stabilization system 100 described hereinabove provides numerous advantages. For example, improved reliability and durability may be achieved with the disclosed dynamic stabilization device based at least in part on the fact that the heat-affected zone associated with the process of securing the outer resilient element 134 with respect to the structural elements 128, 130 via welding and use of weld caps 240, 242 is physically separated from the active region of the outer resilient element 134, and is therefore isolated from the cyclical stress associated with repeated extension/contraction and/or bending during normal use and/or representative mechanical testing.
  • the dynamic stabilization device 126 associated with the spinal stabilization system 100 described hereinabove can be the subject of numerous modifications and variations while still exhibiting the above-discussed advantages over other dynamic junctions for spinal stabilization systems.
  • the rod 118 can be repositioned to an axial position with respect to the structural member 130.
  • the weld caps 240, 242 can be affixed to the structural members 128, 130 by other welding processes than E-beam welding, and/or by one or more non- welding means of attachment, such as by clamping or the use of mechanical fasteners appropriate for use in conjunction with small gage springs, by an adhesive-based process, or via the use of a single mold to form the two components together as a single piece.
  • attachment regions are similarly disposed physically separately relative to the respective active region of the outer resilient element 134 (whether or not heat-affected zones are present), and are thereby similarly shielded from the types and levels of cyclical stress known to produce fatigue failure.
  • the outer resilient element 134 need not necessarily be configured in the manner of a coil spring, but may instead take the form of one or more other types of resilient elements, such as a leaf spring, a torsion spring or bar, etc. Additionally, the outer resilient element 134 maybe employed in a dynamic junction that does not also include the inner resilient element 132. Many other variations and/or modifications are possible.

Abstract

Spinal stabilization devices, systems and methods are provided. Included is a spring junction wherein a structural member may mount to a spine attachment fastener and a resilient element may be affixed to the structural member at an attachment region of said element. The attachment region of said resilient element may include a weld region wherein a heat-affected zone adjacent to the weld region is separated from the active region the element. The resilient element may be a spring including bends configured to facilitate positioning prior to welding. A weld cap may be configured and dimensioned to interact with the resilient element and said structural member so as to securely position the spring relative to the member. Said weld cap functioning to minimize undesirable annealing due to the welding process. Alignment grooves or channels may be provided to orient the spring.

Description

SPRING JUNCTION AND ASSEMBLY METHODS FOR SPINAL DEVICE
BACKGROUND
1. Technical Field
The present disclosure relates to advantageous devices, systems and methods for spinal stabilization. More particularly, the present disclosure relates to devices, systems and methods for providing dynamic stabilization to the spine with systems/devices that include one or more enhanced spring junctions so as to provide clinically efficacious results.
2. Background Art
Each year, over 200,000 patients undergo lumbar fusion surgery in the United States. While fusion is effective about seventy percent of the time, there are consequences even to these successful procedures, including a reduced range of motion and an increased load transfer to adjacent levels of the spine, which may accelerate degeneration at those levels. Further, a significant number of back-pain patients, estimated to exceed seven million in the U.S., simply endure chronic low-back pain, rather than risk procedures that may not be appropriate or effective in alleviating their symptoms.
New treatment modalities, collectively called motion preservation devices, are currently being developed to address these limitations. Some promising therapies are in the form of nucleus, disc or facet replacements. Other motion preservation devices provide dynamic internal stabilization of the injured and/or degenerated spine, e.g., the Dynesys stabilization system (Zimmer, Inc.; Warsaw, IN) and the Graf Ligament. A major goal of this concept is the stabilization of the spine to prevent pain while preserving near normal spinal function. To provide dynamic internal spinal stabilization, motion preservation devices may advantageously include dynamic junctions that exhibit multiple degrees of freedom and commonly include active force-absorbing/force-generating structures. Such structures may include one or more resilient elements, e.g., torsion springs and/or coil springs, designed and deployed so as to contribute strength and flexibility to the overall device. While the flexibility afforded by such resilient elements is plainly critical to the effectiveness of the respective devices of which they form a part, the elevated force levels associated with the use of such resilient elements can result in such resilient elements developing significant levels of internal stress. Depending on the magnitude and location thereof, internal stresses may pose the potential for stress-induced fatigue, material deformation and/or cracks. The FDA has promulgated rules (e.g., Title 21, Subchapter H, Part 888, Subpart D, Section 888.3070 regarding pedicle screw spinal systems) that, in relevant part, require manufacturers to demonstrate compliance with special controls, including but not limited to applicable mechanical testing standards geared toward high reliability and durability.
With the foregoing in mind, those skilled in the art will understand that a need exists for devices, systems and methods for motion-preserving spinal stabilization devices and systems having reliable, durable constructions. In addition, a need exists for manufacturing processes and/or techniques that may be used to reliably and efficiently produce motion- preserving spinal stabilization devices and systems. These and other needs are satisfied by the disclosed devices and systems that include advantageous spring junctions, as well as the associate methods for manufacture/assembly thereof. SUMMARY OF THE DISCLOSURE
According to the present disclosure, advantageous devices, systems and methods for spinal stabilization are provided. According to exemplary embodiments of the present disclosure, the disclosed devices, systems and methods include a spring junction that promotes reliable and efficacious spinal stabilization. The disclosed spring junction includes a structural member that is mounted or mountable with respect to a spine attachment fastener such as a pedicle screw, and a resilient element affixed to the structural member. The resilient element has an attachment region, along which the resilient element, e.g., a spring, is affixed to the structural member, and an active region. The attachment region of the resilient element is physically separately disposed with respect to the active region thereof.
According to exemplary embodiments of the present disclosure, the spring junction includes a weld region. A heat-affected zone of the resilient element and associated with the weld region is disposed adjacent the weld region, but is physically separately disposed with respect to the active region of the resilient element. The active region of the resilient element is generally subjected to cyclical stress, e.g., during in situ use of the disclosed spinal stabilization device, hi exemplary embodiments, the weld region is produced via a welding process, such as electron-beam welding, and accordingly may be subjected to welding temperatures of about 1000° F or higher. In addition, in exemplary embodiments of the present disclosure, the resilient element takes the form of a spring, e.g., a coil spring or helical spring, which extends into the weld region and which is mounted with respect to the structural member to form the spring junction.
According to further exemplary embodiments of the present disclosure, the resilient element includes a bend region disposed between the weld region and an adjacent coil of the resilient element that extends along a helically-shaped path. The bend region is sized and shaped so as to initially bend away from the helically-shaped path before bending back toward the helically-shaped path and terminating at or in the weld region. In some such embodiments, the direction of the initial bend away from the helically-shaped path includes an axial component, but does not include a radial component. The bend region may further be sized and shaped so as to remain substantially peripherally aligned with such helically-shaped path when viewed in an axial direction with respect to the helically-shaped path. Of note, such spring junctions may be formed at opposite ends of the resilient element such that the resilient element/spring is mounted between spaced-apart structural members that are permitted to move relative to each other.
According to the present disclosure, a weld cap is configured and dimensioned to interact with the resilient element and the structural member so as to securely position the resilient element relative to the structural member. Moreover, the weld cap functions to advantageously distance the welding process and associated welding energy from the resilient element, thereby avoiding and/or minimizing any potentially undesirable annealing effect associated with securing/welding the resilient element relative to the structural member. According to exemplary embodiments of the present disclosure, a first weld cap interacts with the resilient element at a first end region thereof, and a second weld cap interacts with the resilient element at a second end region thereof, thereby effectively securing the resilient element with respect to opposed structural members at either end of an elongated spinal stabilization device.
According to exemplary embodiments of the present disclosure, the spring junction includes a weld region wherein the weld cap is affixed to an underlying structural member. The weld cap and the underlying structural member are advantageously configured and dimensioned to interact with the resilient element such that the resilient element is positioned in a predefined location. For example, an exemplary weld cap and structural member according to the present disclosure include opposed channels or grooves that are sized and oriented to receive the resilient element therewithin. In this way, the resilient element is properly and effectively aligned during the assembly process, and is fixed between the weld cap and the structural member upon welding of the weld cap with respect to the structural member. Indeed, according to exemplary embodiments of the present disclosure, the resilient element is captured between the weld cap and the structural member and maintained in a fixed orientation relative to the weld cap/structural member assembly due to compressive forces exerted therebetween. Additionally, one or both cooperating surfaces of the weld cap/structural member may be subjected to surface treatment(s), e.g., grip blasting, to enhance the frictional force exerted between such surface(s) and the resilient element.
Of note, the resilient element generally defines an active region intermediate a first end region and a second end region. In exemplary embodiments, the weld cap is used to secure the first end region of the resilient element with respect to a first structural member, and a second weld cap is used to secure the second end region with respect to a second structural member, with the active region extending therebetween. The first and second weld caps are generally fixed with respect to the associated structural member through conventional welding processes, such as electron-beam welding. As such, the weld cap and structural member are generally subjected to welding temperatures of about 1000° F or higher. However, the spacing of the weld region from the resilient element, which generally takes the form of a spring, e.g., a coil spring or helical spring, reduces or eliminates undesirable annealing effects on the spring.
According to further exemplary embodiments of the present disclosure, the bend regions advantageously facilitate positioning of the resilient element/spring relative to the underlying structural member and weld cap. Indeed, in exemplary embodiments of the present disclosure, the structural member and the weld cap define cooperating channels or grooves that cooperate with the bend regions of the resilient element/spring for alignment and/or relatively secure positioning in advance of the welding process. Typically, a fixture is employed to fix the weld cap, resilient element and structural member during the welding process, thereby minimizing the potential for misalignment and/or reorientation during the assembly/welding processes.
According to further exemplary embodiments of the present disclosure, a rod is mounted with respect to (or integrally formed with) the structural member. The rod maybe advantageously adapted to mount with respect to an upwardly-extending structure associated with a pedicle screw. The rod/pedicle screw may be mounted with respect to each other such that relative movement of the rod relative to the pedicle screw is permitted in at least one plane.
In a still further embodiment, a method is disclosed for producing a spring junction in which a resilient element is welded to a structural member such that an active region of the resilient element is disposed physically separately with respect to the heat-affected zone associated with such welding. In some such embodiments, a further step is disclosed in which a resilient element is provided that defines an active region and a bend region, and wherein such welding results in the bend region being disposed between the active region and the heat-affected zone. Such a resilient element can include a coil extending along a helically-shaped path, and in which the bend region is configured so as to initially bend away from such helical path defined before bending back toward such helical path.
In a still further embodiment, a method is disclosed for producing a spring junction in which a weld cap and structural member with an end region of a resilient element positioned therebetween, and the weld cap is welded with respect to the structural member, thereby securing/capturing the end region of the resilient element therebetween. The resilient element can include a coil extending along a helically-shaped path, and in which a bend region is configured so as to initially bend away from such helical path defined before bending back toward such helical path. The bend region can extend into and/or define the end region, such that the weld cap and structural member interact with and capture, in whole or in part, the bend region of the resilient element therebetween.
In a still further embodiment, a combination is provided that includes a structural member having a first end, a second end opposite the first end, an aperture between the first end and the second end, and a notch formed in the second end. The combination also includes a resilient element having a bend region at an end thereof, the bend region terminating at a termination. The resilient element is secured to the first end of the structural member such that the bend region extends through the aperture and the termination is lodged in the notch. In some such embodiments, the resilient element is further affixed to the structural member via a weld formed with respect to the termination and the structural member at the notch. In other such embodiments, the termination is configured and dimensioned so as to extend at least partially in the direction of the first end of the structural member, and the bend region is configured and dimensioned such that the termination can be threaded through the aperture, and thereby rotated toward and into the notch. In some such cases the structural member includes a helical groove formed in the first end and terminating adjacent the aperture, and the resilient element includes an active region adjacent the bend region and spaced apart from the termination, and the active region includes a coil threaded along the helical groove to an extent of the aperture. In a further embodiment, the resilient element is secured to the first end of the structural member such that one of the end regions is captured between a weld cap and the structural member. The spring junction(s) of the present disclosure are typically employed as part of a spinal stabilization system that may advantageously include one or more of the following structural and/or functional attributes:
• Exemplary embodiments of the spring junction (and associated spring/structural member subassembly) are capable of undergoing at least approximately 10,000,000 cycles of combined extension/contraction and bending (e.g., during mechanical testing);
• Implementation of the disclosed spring junctions have no substantial effect on the footprint of the dynamic stabilization devices in which they are incorporated, e.g., the resilient elements (e.g., springs) of such spinal stabilization devices do not extend radially inwardly or outwardly to a greater extent than the dynamic stabilization devices that do not include the disclosed spring junctions, thereby preserving compatibility with existing components and/or proven or preferred geometries;
• An outwardly/upwardly, then inwardly/downwardly extending bend region at each end of the resilient element, combined with a notch on the external end of each spring cap plate provides a snap-fit system which positively locates the ends of the resilient element within their respective notches during pre- welding assembly, and presents a convenient face for purposes of electronic-beam welding without undue risk of annealing and/or other types of damage to the active region of the resilient element;
• The noted geometric aspects of the bend region advantageously facilitate and/or enhance the mechanical integrity of the junction between the resilient element and the associated channels/grooves. Of note, a bend region having the noted geometric characteristics has reduced freedom of movement relative to the associated channels/grooves, e.g., in terms of rotation around the axis of the resilient element in the region of the junction.
Advantageous spine stabilization devices, systems and methods may incorporate one or more of the foregoing structural and/or functional attributes. Thus, it is contemplated that a system, device and/or method may utilize only one of the advantageous structures/functions set forth above, a plurality of the advantageous structures/functions described herein, or all of the foregoing structures/functions, without departing from the spirit or scope of the present disclosure. Stated differently, each of the structures and functions described herein is believed to offer benefits, e.g., clinical advantages to clinicians and/or patients, whether used alone or in combination with others of the disclosed structures/functions.
Additional advantageous features and functions associated with the devices, systems and methods of the present disclosure will be apparent to persons skilled in the art from the detailed description which follows, particularly when read in conjunction with the figures appended hereto. Such additional features and functions, including the structural and mechanistic characteristics associated therewith, are expressly encompassed within the scope of the present invention.
BRIEF DESCRIPTION OF THE DRAWINGS
To assist those of ordinary skill in the art in making and using the disclosed devices, systems and methods for achieving enhanced reliability, dependability, and/or durability, e.g., in a dynamic spinal stabilization device, reference is made to the appended figures wherein:
FIG. 1 is a perspective exploded assembly view of a spinal stabilization device/system, according to the present disclosure; FIG. 2 is an exploded assembly view of a spinal stabilization device/system, including pedicle screws and associated mounting structures, in accordance with an embodiment of the present disclosure;
FIG. 3 is an unexploded assembly view of the exemplary spinal stabilization device/system of FIG. 2;
FIGS. 4, 5 and 6 are interior end, exterior end, and cross-sectional views of a structural member associated with the exemplary spinal stabilization device/system of FIGS. 2-3;
FIGS. 7, 8 and 9 are interior end, exterior end, and cross sectional views of another structural member associated with exemplary spinal stabilization device/system of FIGS. 2-3;
FIG. 10 is a side view of a resilient element that may be employed in forming one or more spring junctions according to the present disclosure;
FIG. 11 is a side assembly view of the exemplary spinal stabilization device/system of FIGS. 2-3 illustrating assembly of the components of FIGS. 4-9;
FIG. 12 is a perspective detail view of the interface between the structural member of FIGS. 7-9 and the resilient element of FIG. 10;
FIG. 13 is a top view of the interface between the structural member of FIGS. 7-9 and the resilient element of FIG. 10;
FIG. 14 is a sectional view of the interface between the structural member of FIGS. 7- 9 and the resilient element of FIG. 10 taken along the line 14—14 of FIG. 13; and
FIGS. 15 and 16 illustrate various exemplary types and ranges of motion associated with exemplary spinal stabilization devices/assemblies of the present disclosure; FIG. 17 is an exploded assembly view of a spinal stabilization device/system, including pedicle screws and associated mounting structures, in accordance with an exemplary embodiment of the present disclosure;
FIG. 18 is a side view (from the left side) of the spinal stabilization device schematically depicted in FIG. 17 according to an exemplary embodiment of the present disclosure;
FIG. 19 is a side view of a portion of the spinal stabilization device of FIGS. 17 and 18 showing interaction between an exemplary weld cap and associated structural members;
FIG. 20 is a further side view of a portion of the exemplary spinal stabilization device schematically depicted in the foregoing figures;
FIG. 21 is a side view of an exemplary spinal stabilization device, with parts removed for clarity;
FIG. 22 is a perspective view of an exemplary spinal stabilization device that schematically depicts welding of a weld cap with respect to an underlying structural member according to the present disclosure;
FIG. 23 is a perspective view of an assembled spinal stabilization device/system according to an exemplary embodiment of the present disclosure; and
FIG. 24 is a top perspective view of a portion of the exemplary spinal stabilization device/system of FIG. 23.
DESCRIPTION OF EXEMPLARY EMBODIMENTS
The present disclosure provides advantageous devices, systems and methods for improving the reliability, dependability and/or durability of spinal stabilization systems. More particularly, the present disclosure provides advantageous devices, systems and methods for mechanically mounting resilient elements (e.g., torsion springs and/or coil springs) to, and/or for coupling resilient elements between, structural members (e.g., plates, caps, flanges, rods, and/or bars) associated with dynamic spinal stabilization systems. The mounting and/or coupling methods/techniques of the present disclosure provide enhanced reliability, dependability and/or durability without significantly increasing material weight or volume requirements and without compromising the important functions of the dynamic spinal stabilization devices/systems of which they form a part.
The exemplary embodiments disclosed herein are illustrative of the advantageous spinal stabilization devices/systems and surgical implants of the present disclosure, and of methods/techniques for implementation thereof. It should be understood, however, that the disclosed embodiments are merely exemplary of the present invention, which may be embodied in various forms. Therefore, the details disclosed herein with reference to exemplary dynamic spinal stabilization systems and associated methods/techniques of assembly and use are not to be interpreted as limiting, but merely as the basis for teaching one skilled in the art how to make and use the advantageous dynamic spinal stabilization systems and alternative surgical implants of the present disclosure.
With reference to FIG. 1, components of a dynamic stabilization element 10 disclosed in commonly assigned U.S. Non-Provisional Patent Application Serial No. 11/027,270 filed December 31, 2004 and published as US2005-0171543 on August 4, 2005 (hereinafter "the '270 Application"), are shown in an exploded view. The disclosure of the '270 Application is hereby incorporated herein by reference in its entirety. As shown in FIG. 1, the dynamic stabilization element 10 includes two structural elements in the form of a spring cap 12 and a spring cap 14, and two resilient elements in the form of an inner spring 16 and an outer spring 18. The spring cap 12 is affixed to an attachment member 20 that is configured to be coupled to the head of a pedicle screw (not shown) via a dynamic joint (not shown). The spring cap 14 is affixed to a rod 22 that is configured to be attached to another attachment member (not shown) that is in turn coupled to the head of another pedicle screw (not shown) via another dynamic joint (not shown). The dynamic stabilization element 10 permits relative axial/longitudinal motion, as well as angular/rotational motion, of the rod 20 relative to the attachment member 20, as part of a larger spinal stabilization system (shown only in relevant part).
The spring cap 12 includes an interior end 24, an exterior end 26 opposite the interior end, a post 28 axially positioned on the interior end 24, an annular channel 30 formed in the interior end 24 around the post 28, a helically-shaped groove 32 formed in the interior end 24 around the annular channel 30, and an aperture 34 passing through the spring cap 12 between the interior and exterior ends 24, 26 thereof at an end 36 of the helically-shaped groove 32. The spring cap 14 includes an interior end 38, an exterior end 40 opposite the interior end 38, a post 42 axially positioned on the interior end 38 around the post 42, a helically-shaped groove 46 formed in the interior end 38 around the annular channel 44, and an aperture 48 passing through the spring cap 14 between the interior and exterior ends 38, 40 thereof at an end 50 of the helically-shaped groove 46.
The inner spring 16 consists of coils 52 sharing a common diameter and arranged sequentially about a common axis between a coil termination 54 (obscured) at an end 56 of the inner spring 16 and a coil termination 58 at another end 60 thereof opposite the end 56. The outer spring 18 consists of coils 62 sharing a common diameter and arranged sequentially about a common axis between a coil termination 64 (obscured) at an end 66 of the outer spring 18 and a coil termination 68 at another end 70 thereof opposite the end 66. In the assembled state of the dynamic stabilization element 10, the inner spring 16 is positioned within the outer spring 18. The coil 52 at the end 56 of the inner spring 16 is positioned on or around the post 28 of the spring cap 12, and against the interior end 24 of the spring cap 12 so as to occupy (at least in part) the annular channel 30 formed therein. The coil 52 at the end 60 of the inner spring 16 is positioned on or around the post 42 of the spring cap 14 and against the interior end 38 of the spring cap 14 so as to occupy (at least in part) the annular channel 44 formed therein. In this way, the inner spring 16 is effectively captured between the spring cap 12 and the spring cap 14 and effectively floats relative to the opposing posts 28, 42. The coil 62 at the end 66 of the outer spring 18 is threaded into the interior end 24 of the spring cap 12 along the helically-shaped groove 32 at least until the coil termination 64 reaches the aperture 34 of the spring cap 12. The outer spring 18 is fixed with respect to the spring cap 12, e.g., by welding, and may be trimmed so as to be flush relative to an edge formed at the interface between the aperture 34 and the exterior end 26 of the spring cap 12. The coil 62 at the end 70 of the outer spring 18 is threaded into the interior end 38 of the spring cap 14 along the helically-shaped groove 46 at least until the coil termination 68 reaches the aperture 48 of the spring cap 14. The outer spring 18 is fixed with respect to the spring cap 14, e.g., by welding, and may be trimmed so as to be flush relative to an edge formed at the interface between the aperture 48 and the exterior end 40 of the spring cap 14.
As described in the '270 Application, the outer spring 18 is typically shorter than the inner spring 16, such that as the spring cap 12 and the spring cap 14 are brought toward each other (i.e., to permit the outer spring 18 to be mounted on both), the inner spring 16 is placed in compression. The degree to which the inner spring 16 is compressed is generally dependent on the difference in length as between the inner and outer springs 16, 18. Thus, the preload compression of the inner spring 16 may be controlled and/or adjusted in part through selection of the relative lengths of the inner and outer springs 16, 18. In addition to the preload compression of the inner spring 16, the mounting of the outer spring 18 with respect to the spring caps 12, 14 includes placing the outer spring 18 in tension. The overall preload of the dynamic stabilization element 10 corresponds to equal and opposite forces experienced by and/or contained within the inner and outer springs 16, 18.
The inner spring 16 reaches its free length (i.e., non compressed state) at or about the point at which a patient's movement exceeds a "neutral zone" (as described more completely in the '270 Application). Beyond this point, the inner spring 16 is free floating (e.g., on the opposing posts 28, 42), while the outer spring 18, already in tension, extends in length even further.
In the overall design of the disclosed spinal stabilization system, optimization of the attachment between the outer spring 18 and the spring cap 14 is desirable. In experimental studies associated with spinal stabilization devices of the type disclosed herein, it has been noted that direct welding of the outer spring 18 and the spring cap 14 may not provide an optimal means of attachment. While not intending to be bound by theory, it is believed that a "heat-affected" zone may be created in the coil 62 at the end 70 of the outer spring 18 as a result of the process of welding the outer spring 18 to the spring cap 14. More particularly, such heat-affected zone is believed to arise as a result of an annealing effect brought about by the migration of excess heat arising from an electronic-beam welding process, hi accordance with such electronic beam or E-beam welding processes, elevated temperatures in a range of approximately 1000° F or higher are used to affix the outer spring 18 to the spring cap 14 by essentially melting such components together. The heat-affected zone so produced can be at least .005"-.03O" in axial length, and is located immediately adjacent the weld formed at the end 70 of the outer spring 18, and along the active region of the outer spring 18. (As used herein in reference to a spring or resilient element, the term "active region" or "active portion" refers to a region, portion, or part of the spring or resilient element which, during normal in-situ use and/or representative mechanical testing of the spring or resilient element, actively contributes to the characteristic stiffness of the spring or resilient element, and/or actively participates in the axial travel and/or lateral bending thereof.) The heat-affected zone can include a soft or weak point on the coil 62 at which a Rockwell hardness of the material of the outer spring 18, ordinarily falling within a range of from approximately 46 to approximately 54, dips sharply; e.g., to a value in a range of from approximately 20 to approximately 24.
According to the present disclosure, geometric/structural modifications to the outer spring 18 and the spring cap 14 have been found to advantageously enhance the reliability and durability of dynamic stabilization element 10. Exemplary embodiments of the advantageous geometric/structural modifications to the outer spring 18 and the spring cap 14 are described herein below with reference to FIGS. 2-14, as is a beneficial cooling/supercooling step involving the modified outer spring and the modified spring caps associated therewith. As a result of these geometric/structural modifications, and/or of the cooling/super-cooling step, a durability standard of 10,000,000+ failure-free cycles has been achieved with apparatus in which an outer spring has been welded to its associated spring caps to form a dynamic stabilization device as described herein.
According to exemplary embodiments of the present disclosure, the geometric/structural modifications include the creation of a substantial physical separation of the active portion of the outer spring from the heat-affected zone associated with the E-beam welding process, and/or from the actual site of the weld formed between the attached components. As a result of this separation, to the extent that any region of the outer spring becomes significantly annealed, and/or is brought to a significantly lowered Rockwell hardness value as a result of E-beam welding, the amount of cyclic stress to which that softened or annealed portion is exposed is substantially reduced and/or brought to such a low level that the respective junctions between the outer spring and its associated spring caps can exhibit very high levels of reliability/durability.
With reference to FIGS. 2 and 3, a dynamic spinal stabilization system 100 is shown in accordance with an exemplary embodiment of the present disclosure. Referring to FIG. 2, the spinal stabilization system 100 includes attachment members 102, 104, pedicle screws 106, 108, dynamic joints (e.g., ball/spherical elements) 110, 112, and set screws 114, 116. The attachment member 102 is configured to receive the ball/spherical element 110. The ball/spherical element 110 then receives the head of the pedicle screw 106 such that a global/dynamic joint is formed between the attachment member 102 and the head of the pedicle screw 106 (see also FIG. 3). The set screw 114 is then inserted into the head of the pedicle screw 106 (see also FIG. 3), thereby securing the head of the pedicle screw 106 within the ball/spherical element 110. The attachment member 104 is configured to receive the ball/spherical element 112. The ball/spherical element 112 then receives the head of the pedicle screw 108 such that a global/dynamic joint is formed between the attachment member 104 and the head of the pedicle screw 108 (see also FIG. 3). The set screw 116 is then inserted into the head of the pedicle screw 108 (see also FIG. 3), thereby securing the head of the pedicle screw 108 within the ball/spherical element 112.
The spinal stabilization system 100 also includes a rod 118. The rod is configured to be inserted into the attachment member 104, which includes a transverse aperture 120 to accommodate the rod 118, and a set screw 122 to secure the rod 118 at a desired position within the transverse aperture 120 (see also FIG. 3, in which a hex driver 124 is shown turning the set screw 122 against the rod 118).
The spinal stabilization system 100 further includes a dynamic stabilization element 126 between the rod 118 and the attachment member 102. The dynamic stabilization element 126 includes structural members 128, 130, an inner resilient element 132, an outer resilient element 134, a sheath member 136, and two end clamps 138. As shown in FIG. 3, the inner resilient element 132 (obscured) and outer resilient element 134 (partially obscured) are positioned within the sheath member 136, and an end clamp 138 secures the sheath member 136 to each of the structural members 128, 130. This prevents undesirable interaction or interference between the inner and outer resilient elements 132, 134 and anatomical structures in situ. Referring again to FIG. 2, the inner resilient element 132 is constructed and functions in manners substantially similar to those of the inner spring 16 described hereinabove with reference to the dynamic stabilization element 10. The inner resilient element 132 is also deployed and employed in the dynamic stabilization element 126 in manners substantially similar to those in which the inner spring 16 is deployed and employed in the dynamic stabilization element 10 described hereinabove.
The following components of the dynamic stabilization element 126 will now be described in greater detail: the structural member 128 (with reference to FIGS. 4-6), the structural member 130 (with reference to FIGS. 7-9), and the outer resilient element 134 (with reference to FIG. 10). Next, the manner in which the structural members 128, 130 and the outer resilient element 134 are assembled will be discussed (with particular reference to FIGS. 11-14). Then, the functions of the dynamic stabilization element 126 will be discussed, followed by a discussion of the characteristic advantages of the dynamic stabilization element 126. Referring now to FIGS. 4-6, the structural member 128 is affixed to (e.g., is of unitary construction with) the attachment member 102 (the ball/spherical element 110 is also shown within the attachment member 102) and takes the form of a plate having multiple features permitting the structural member 128 to function in the manner of an end cap or spring cap with respect to the inner and outer resilient elements 132, 134 (FIG. 2). The structural member 128 includes an interior end 140, an exterior end 142 opposite the interior end 140, a post 143 axially positioned on the interior end 140, an annular channel 144 formed in the interior end 140 around the post 143, a helically-shaped groove 146 formed in the interior end 140 around the annular channel 144, an aperture 148 passing through the structural member 128 between the interior and exterior ends 140, 142 thereof at an end 150 of the helically- shaped groove 146, a short groove 152 formed in the exterior end 142 adjacent the aperture 148, and a notch 154 formed in the exterior end 142 at an end 156 of the short groove 152. The structure and function of the structural member 128 will be described in greater detail hereinafter.
Referring now to FIGS. 7-9, the structural member 130 is affixed to (e.g., is of unitary construction with) the rod 118 (which is positioned off-axis or off-center with respect to the structural member 130), and takes the form of a plate having multiple features permitting the structural member 130 to function in the manner of an end cap or spring cap with respect to the inner and outer resilient elements 132, 134 (FIG. 2). The structural member 130 includes an interior end 158, an exterior end 160 opposite the interior end 158, a post 162 axially positioned on the interior end 158, an annular channel 164 formed in the interior end 158 around the post 162, a helically-shaped groove 166 formed in the interior end 158 around the annular channel 164, an aperture 168 passing through the structural member 130 between the interior and exterior ends 158, 160 thereof at an end 170 of the helically-shaped groove 166, a short groove 172 formed in the exterior end 160 adjacent the aperture 168, and a notch 174 formed in the exterior end 160 at an end 176 of the short groove 172. The structure and function of the structural member 130 will be described in greater detail hereinafter.
Referring now to FIG. 10, the outer resilient element 134 consists of coils 178 sharing a common diameter and arranged sequentially about a common axis between a coil termination 180 at an end 182 of the outer resilient element 134 and a coil termination 184 at another end 186 thereof opposite the end 182. Extending from the coil termination 180, and substantially continuous therewith, is a bend region 188 of the outer resilient element 134. Extending from the coil termination 184, and substantially continuous therewith, is a bend region 190 of the outer resilient element 134.
The bend regions 188, 190 of the outer resilient element 134 extend peripherally from the respective coil terminations 180, 184 along respective paths which, when viewed axially (see, e.g., FIG. 13) from either end 182, 186 of the outer resilient element 134, are defined by respective single radii that extend from the common axis of the coils 178 of the outer resilient element 134 and that have extents approximately half that of the common diameter of the coils 178. As a result, the bend regions 188, 190 of the outer resilient element 134 remain within the same peripheral outline defined by the coils 178 of the outer resilient element 134. When viewed from the side, however, as in FIG. 10, the bend regions 188, 190 of the outer resilient element 134 are seen to depart from the helical path defined by the coils 178.
More particularly, the bend region 188, when viewed from the side as in FIG. 10, is seen to include a curve or bend in the path of extension of the bend region 188, according to which the material of the outer resilient element 134: (1) initially curves away from the adjacent coil 178 at the coil termination 180; (2) reaches an apex 192 representing a point of maximum departure from the adjacent coil 178; (3) curves therefrom back toward the adjacent coil 178; and (4) terminates at a bend region termination 194 without fully returning to the helical path defined by the coils 178. Also, the bend region 190, when viewed from the side as in FIG. 10, is seen to include a curve or bend in the path of extension of the bend region 190, according to which the material of the outer resilient element 134: (1) initially curves away from the adjacent coil 178 at the coil termination 184; (2) reaches an apex 196 representing a point of maximum departure from the adjacent coil 178; (3) curves therefrom back toward the adjacent coil 178; and (4) terminates at a bend region termination 198 without fully returning to the helical path defined by the coils 178. The structure and function of the outer resilient element 134 will be described in greater detail hereinafter.
In the assembled state of the dynamic stabilization element 126 shown in FIG. 11, the inner resilient element 132 (obscured, see FIG. 2) is positioned within the outer resilient element 134, between the respective posts 143 (FIG. 4), 162 (FIG. 7), and within the respective annular channels 146 (FIG. 4), 164 (FIG. 7) of the structural elements 128, 130. The bend region 190 and the coil 178 at the end 186 (FIG. 10) of the outer resilient element 134 are threaded into the interior end 140 (FIG. 6) of the structural element 128 until the bend region 190 has substantially passed into or through the aperture 148 of the structural element 128 and the bend region termination 198 has been caused to drop or snap into place within the notch 154 (FIG. 5) formed in the exterior end 142 of the structural element 128. The bend region 188 and the coil 178 at the end 182 (FIG. 10) of the outer resilient element 134 are threaded into the interior end 158 (FIG. 9) of the structural element 130 until the bend region 188 has substantially passed into or through the aperture 168 of the structural element 130 and the bend region termination 194 (obscured, see FIG. 10) has been caused to drop or snap into place within the notch 174 (FIG. 8) formed in the exterior end 160 of the structural element 130. Referring now to FIG. 12, the interface or spring junction between the outer resilient element 134 and the structural element 130 is shown in greater detail. As indicated above, the bend region 188 largely or completely extends into or through the aperture 168 formed in the structural element 130, and the bend region termination 194 is lodged within the notch 174 formed in the exterior end 160 of the structural element 130. More particularly, a portion 200 of the bend region 188 of the outer resilient element 134 near the coil termination 180 is lodged within the short groove 172 (FIG. 9) formed in the exterior end 160 of the structural element 130, a portion 202 of the bend region 188 associated with the apex 192 thereof is lodged within the short groove 172 and in longitudinal contact with the exterior end 160 of the structural element 130, and a portion 204 of the bend region 188 associated with the bend region termination 194 is lodged within the short groove 172 to an extent of the notch 174. The outer resilient element 134 is welded to the exterior end 160 of the structural element 130 in the vicinity of the notch 174, e.g., via electronic-beam welding along an extent of the portion 204 of the bend region 188 that is lodged within the notch 174. The outer resilient element 134 can be placed in a state of full compression in advance of such welding so as to ensure that after such welding, the portion 202 of the bend region 188 associated with the apex 192 thereof is biased in favor of continuous longitudinal contact with the exterior end 160 of the structural element 130 during normal in situ use of, and/or during representative mechanical testing of, the dynamic stabilization element 126.
Though not shown in FIG. 12, a portion (not separately shown) of the bend region 190 (FIG. 10) near the coil termination 184 (FIG. 10) is similarly lodged within the short groove 152 (FIG. 5) formed in the exterior end 142 (FIG. 6) of the structural element 128, a portion (not separately shown) of the bend region 190 (FIG. 10) associated with the apex 196 (FIG. 10) thereof is lodged within the short groove 152 and in longitudinal contact with the exterior end 142 of the structural element 128, and a portion (not separately shown) of the bend region 190 associated with the bend region termination 198 is lodged within the short groove 152 to an extent of the notch 154. The outer resilient element 134 is welded to the exterior end 142 of the structural element 128 in the vicinity of the notch 154, e.g., via electronic-beam welding along an extent of the portion (not separately shown) of the bend region 190 that is lodged within the notch 154 (FIG. 5). The outer resilient element 134 can be placed in a state of full compression in advance of such welding for the same reasons and to achieve a similar biasing effect in the bend region 190 as is described above with reference to the bend region 188.
A cooling/supercooling step maybe advantageously undertaken in advance of welding such as is described immediately hereinabove. In accordance with such a step, the outer resilient element 134 and the structural members 128, 130 are immersed in a bath of liquid nitrogen, and are withdrawn therefrom shortly before the resilient element 134 is welded to the structural elements 128, 130. Cooling/supercooling of the outer resilient element 134 and the structural members 128, 130 functions to reduce the likelihood that high levels of heat will be experienced at a distance from the respective weld regions associated therewith. Accordingly, a given heat- affected zone associated with the migration of heat generated by electronic beam welding can be shrunken and/or reduced in extent, as can any soft or weak spot in such heat-affected zone associated with sharply reduced Rockwell hardness. This cooling/supercooling step was observed to increase resilient element durability during representative mechanical testing.
Referring to FIGS. 13 and 14, the above-described welding process produces a weld region 206 incorporating portions of the exterior end 160 of the structural element 130 at the end 176 of the short groove 172 in the vicinity of the notch 174, as well as portions of the bend termination 194 of the bend region 188 of the outer resilient element 134. The portion 204 of the bend region 188 is long enough, and the corresponding portion of the short groove 172 is long enough, such that weld region 206 terminates at a point 208 along the extent of the bend region 188 well short of the apex 192 thereof. Accordingly, the weld region 206 also terminates well short of a corresponding apex 210 of the short groove 172 against which the portion 202 of the bend region 188 is biased. To the extent the portion 204 of the bend region 188 includes a heat-affected zone 212 associated with the process used to affix the outer resilient element 134 to the structural element 130, such region 212 also terminates at a point 214 along the extent of the bend region 188 well short of the apex 192 thereof, as well as well short of the apex 210 of the short groove 172. The portion 202 of the bend region 188 and the exterior end 160 of the structural member 130 are in intimate and continuous longitudinal contact along the short groove 172 at least from the apex 210 thereof and for an extent 216 extending toward the aperture 168. Beyond the extent 216, the short groove 172 tends to depart from intimate contact from the portion 200 of the bend region 188 for an extent 218 extending fully to the aperture 168. The significance and functional benefits of such structure and/or such assembly arrangement between the bend region 188 of the outer resilient element 134 and the exterior end 160 of the structural element 130 will be explained more fully hereinafter.
Turning now to FIGS. 15 and 16, in operation, the dynamic stabilization element 126 of the spinal stabilization system 100 (FIG. 2) permits relative rotational motion, as well as relative translational motion, as between the rod 118 and the attachment member 102, and/or as between the rod 118 and the ball/spherical element 110, while providing enhanced spinal support for the patient, e.g., in the "neutral zone" described more folly in the '270 Application. More particularly, the dynamic stabilization element 126 as a unit, and/or the outer resilient element 134 by itself, supports either and/or both of spinal extension and spinal flexion. Referring to FIG. 15, the dynamic stabilization element 126 is shown as it would appear while supporting spinal extension, wherein an extent 220 of, for example, less than 5° of relative rotation as between the rod 118 and the ball/spherical element 110 is produced. Such spinal extension can also produce approximately one millimeter of travel in the resilient element 134 relative to the initial position thereof (i.e., wherein the resilient element 134 is preloaded in tension so as to be slightly extended), such that the resilient element 134 may now actually assume a fully compressed state. Referring to FIG. 16, the dynamic stabilization element 126 is shown as it would appear while supporting spinal flexion, wherein an extent 222 of, for example, greater than 10° of relative rotation as between the rod 118 and the ball/spherical element 110 is produced. Such spinal flexion can produce approximately one and one-half millimeters of travel (i.e., additional extension) in the resilient element 134 relative to the initial position thereof.
Referring again to FIG. 14, the outer resilient element 134 is shown in a state of full compression against the interior end 158 of the structural element 130. As discussed above, when the outer resilient element 134 is in this condition, the bend region 188 of the outer resilient element 134 is biased toward contact with the exterior end 160 of the structural element 130. To the extent the outer resilient element 134 is caused to expand from its fully compressed state, this bias is not relaxed. Rather, this bias is only reinforced by such torsional and/or bending forces as may tend to urge the portion 200 of the bend region 188 further through the aperture 168 in the direction of the interior end 158. (For example, depending on the particular axial and/or lateral forces imposed upon the outer resilient element 134, the portion 200 of the bend region 188 can tend to bend and/or twist close to/closer to the angled exterior surface associated with the extent 218 of the short groove 172). At the same time, the portion 202 of the bend region 188 remains lodged in the short groove 172, where it remains in intimate contact with the exterior end 160 of structural element 130, and as such is not capable of being deflected any further in the direction of the interior end 158 by such axial and/or lateral forces. Accordingly, such axial and/or lateral forces are prevented from directly acting upon either of the weld region 206 or the heat- affected zone 212 of the outer resilient element 134. More particularly, the consistent, continuous longitudinal contact between the portion 202 of the bend region 188 and the exterior end 160 of the structural element 130 along the short groove 172 thereof acts as a permanent 'fulcrum', beyond which the torsional and/or bending forces arising in the portion 200 of the bend region 188 are not necessarily transmitted as such to the weld region 206 or the heat-affected zone 212, at least not in a form capable of producing fatigue-inducing stress in such region/zone. Li other words, the active region of the outer resilient element 134 extends no further toward the weld region 206 or the heat-affected zone 212 than the apex 192 of the bend region 188. Since such regions are physically separated from the apex 192 via corresponding structural features of the outer resilient element 134 and the structural member 130, and/or via the manner in which the same are affixed to each other, such forces as are applied to the weld region 206 and the heat-affected zone 212 during in situ use or representative mechanical testing will have been channeled into a cantilevered arrangement. In accordance with such cantilevered arrangement, a fulcrum (e.g., the extent 216 within the short groove 172) provides the weld region 206 with significant mechanical advantage by which to resist such forces without experiencing undue internal stress.
The dynamic stabilization element 126 associated with the spinal stabilization system 100 described hereinabove with regard to FIGS. 2-14 provides numerous advantages in comparison to other spinal stabilization systems associated therewith. Referring again to FIGS. 11 and 14, and while not necessarily intending to be bound by theory, improved reliability and durability is achieved with the disclosed dynamic stabilization element based at least in part on the fact that the heat-affected zone associated with the process of joining the outer resilient element 134 to the structural elements 128, 130 via welding is physically separated from the active region of the outer resilient element 134, and is therefore isolated from the cyclical stress associated with repeated extension/contraction and/or bending during normal use and/or representative mechanical testing. More particularly, the portion 202 of the bend region 188 of the outer resilient element 134 fully separates the portion 202 of the outer resilient element 134 from the portion 204 thereof at which the outer resilient element 134 is welded to the structural member 130. In like measure, and in a similar fashion, the welded and threaded connection between the outer resilient element 134 and the structural member 128 provides similar advantages.
Typically, due to the particular structures and assembly methods described above, the heat-affected zone in exemplary embodiments of the present disclosure is observed to extend axially approximately .005"-.03O" from the weld region along the material of the outer resilient element 134, and the active region of the outer resilient element 134 extends no farther in the direction of the welded interfaces than the respective apexes 192, 196 of the bend regions 188, 190. Since the bend regions 188, 190 are each approximately .150 inches in length, the increased reliability/durability found in the dynamic stabilization element of the present disclosure has been shown to be at least partially due to the fact that the active region of the outer resilient element 134 is substantially completely shielded from any material degradation that may result from the assembly step, e.g., via electronic-beam welding, hi other words, to the extent the use of E-beam welding reduces the Rockwell hardness of a portion or portions of the outer resilient element 134, such portion or portions are substantially completely shielded from fatigue-producing levels of cyclic stress.
The dynamic stabilization element 126 associated with the spinal stabilization system 100 described hereinabove with regard to FIGS. 2-14 can be the subject of numerous modifications and variations while still exhibiting the above-discussed advantages over other dynamic junctions for spinal stabilization systems. For example, the rod 118 can be repositioned to an axial position with respect to the structural member 130. The bend region termination 194 can be affixed to the structural member 130 by other welding processes than E-beam welding, and/or by one or more non- welding means of attachment, such as by clamping or the use of mechanical fasteners appropriate for use in conjunction with small gage springs, by an adhesive-based process, or via the use of a single mold to form the two components together as a single piece. To the extent such attachment schemes result in respective attachment regions along which the bend region termination 194 is affixed to the structural member, such attachment regions are similarly disposed physically separately relative to the respective active region of the outer resilient element 134 (whether or not heat- affected zones are present), and are thereby similarly shielded from the types and levels of cyclical stress known to produce fatigue failure. The outer resilient element 134 need not necessarily be configured in the manner of a coil spring, but may instead take the form of one or more other types of resilient elements, such as a leaf spring, a torsion spring or bar, etc. Additionally, the outer resilient element 134 maybe employed in a dynamic junction that does not also include the inner resilient element 132. Many other variations and/or modifications are possible.
With reference to FIG. 17, components of a further exemplary dynamic stabilization system 100 disclosed in the '270 Application, are shown in an exploded view. As shown in FIG. 17, the dynamic stabilization system 100 includes dynamic stabilization device 126 that includes two structural elements in the form of first spring cap 128 and second spring cap 130, and two resilient elements in the form of inner spring 132 and outer spring 134. The first spring cap 128 is affixed to attachment member 102 that is configured to be coupled to the head of pedicle screw 106, preferably via dynamic joint 110. The second spring cap 130 is affixed to rod 118 that is configured to be attached to another attachment member 104 that is in turn coupled to the head of another pedicle screw 108, preferably via another dynamic joint 112. The dynamic stabilization system 100, and particularly the dynamic stabilization device 126, permits limited degrees of relative axial/longitudinal motion as well as angular/rotational motion.
The inner spring 132 consists of a plurality of coils sharing a common diameter and arranged sequentially about a common axis. The outer spring 134 also consists of a plurality of coils sharing a common diameter and arranged sequentially about a common axis. In the assembled state, the inner spring 132 is positioned within the outer spring 134. The coil at the end of the inner spring 132 is positioned on or around post 119 that extends from spring cap 128, and against the interior end of spring cap 128 so as to occupy (at least in part) an annular channel formed therein. A coil at the opposite end of the inner spring 132 is positioned on or around post 121 of the spring cap 130 and against the interior end of the spring cap 130 so as to occupy (at least in part) an annular channel formed therein. In this way, the inner spring 132 is effectively captured between the first spring cap 128 and the second spring cap 130 and effectively floats relative to the opposing posts 119, 121.
The spinal stabilization device 126 further includes sheath member 136 and two end clamps 138. When assembled, the inner resilient element 132 and outer resilient element 134 are positioned within the sheath member 136, and an end clamp 138 secures the sheath member 136 to each of the structural members 128, 130. This prevents undesirable interaction or interference between the inner and outer resilient elements 132, 134 and anatomical structures in situ. As shown in FIGS. 19 and 20, peripheral groove 146 may be formed in the structural member, e.g., end cap 128, to facilitate positioning of end clamp 138. Once positioned in or adjacent peripheral groove 146, end clamp 138 is advantageously crimped or swaged into engagement with end cap 128.
With reference to FIGS. 17-24, weld caps 240 and 242 function to secure outer resilient element/spring 134 relative to structural members/end caps 128 and 130, respectively. With particular reference to FIGS. 18-20 and 22, weld cap 240 and end cap 128 cooperate to capture an end region 244 of outer spring 134 therebetween, thereby positively securing outer spring 134 with respect to end cap 128. As best seen in FIG. 20, the coil at the end of the outer spring 134 is threaded into spring cap 128. With reference to FIG. 21, helically-shaped grooves 248, 248' are defined in end caps 128, 130, respectively. The dimensional parameters associated with grooves 248, 248' are advantageously selected to cooperate with the diameter of the spring wire defining outer spring 134. FIG. 22 schematically depicts welding material 250 interacting with weld cap 242 so as to secure/capture outer spring 134 relative to end cap 130.
According to the present disclosure, geometric/structural modifications to the outer spring 134 and the spring caps 128, 130, together with incorporation of weld caps 240, 242 into the overall assembly, have been found to advantageously enhance the reliability and durability of dynamic stabilization device 126. Exemplary embodiments of the advantageous geometric/structural modifications to the outer spring 134 and spring caps 128, 130, as well as the incorporation of weld caps 240, 242, are described hereinbelow with reference to FIGS. 18-23. As a result of these geometric/structural modifications and the incorporation of weld caps 240, 242, a durability standard of 10,000,000+ failure-free cycles is believed to be achievable on a sustained and reliable basis.
Referring now to FIG. 20, the outer resilient element 134 consists of a plurality of coils sharing a common diameter and arranged sequentially about a common axis between coil termination 180 at an end of the outer resilient element 134 and a coil termination (not shown) at an opposite end thereof. Extending from the coil termination 180, and substantially continuous therewith, is bend region 188 of the outer resilient element 134. According to exemplary embodiments of the present disclosure, a corresponding coil termination and bend region are defined at the opposite end of the outer resilient element 134. As shown in FIG. 20, weld cap 240 advantageously includes a substantially arcuate geometry 141 to track the bend region 188 of spring 134.
In exemplary embodiments of the present disclosure, the bend regions, e.g., bend region 188, of the outer resilient element/spring 134 extend peripherally from the respective coil terminations, e.g., coil termination 180, along respective paths which, when viewed axially from either end of the outer resilient element/spring 134, are defined by respective single radii that extend from the common axis of the coils of the outer resilient element 134 and that have extents approximately half that of the common diameter of the coils. As a result, the bend regions, e.g., bend region 188, of the outer resilient element/spring 134 remain within the same peripheral outline defined by the coils of the outer resilient element 134. When viewed from the side, however, as in FIG. 20, bend region 188 of the outer resilient element 134 is seen to depart from the helical path defined by the coils.
More particularly, the bend region 188, when viewed from the side as in FIG. 20, is seen to include a curve or bend in the path of extension of the bend region 188, according to which the material of the outer resilient element/spring 134: (1) initially curves away from the adjacent coil at the coil termination 180; (2) reaches an apex representing a point of maximum departure from the adjacent coil; and (3) curves therefrom back toward the adjacent coil to return to the helical path defined by the coils.
In the assembled state of the dynamic stabilization device 126, the inner resilient element 132 is positioned within the outer resilient element 134, between the respective posts 119, 121, and within the respective annular channels of the structural elements 128, 130. The bend region 188 and the coil at the end of the outer resilient element 134 are threaded into the interior end of the structural element 130 until the bend region 188 has substantially passed into or through an aperture formed in the structural element 130 (see, e.g., aperture 292 defined in structural member 128, as shown in FIG. 21) and the bend region termination has been caused to drop or snap into place within a notch formed in the exterior end of the structural element 130.
With particular reference to FIGS. 19 and 22, it is noted that exemplary weld caps 240, 242 according to the present disclosure define a geometry that includes a variable height/thickness. More particularly, a reduced height/thickness region 252 is defined radially inward of a greater height/thickness region 254. An arcuate transition region 256 is generally provided to transition between regions 252 and 254. The reduced height/thickness region 252 advantageously provides an effective geometry for welding of the weld caps 240, 242 relative to the underlying structural members, i.e., end caps 128, 130. Thus, as schematically depicted in FIG. 22, the weld material 250 typically interacts with the weld cap in the reduced height/thickness region 252, defining a generally sloped and/or arcuate geometry relative to the axis of the spinal stabilization device 126. The greater height/thickness region 254 in turn provides sufficient material to ensure effective compression/capture of outer spring 134. As shown in FIGS. 19 and 21, helical channels 258, 258' is defined in the undersurface of region 254 of weld caps 240, 242 to facilitate alignment and capture of the end region (e.g., bend region 188) of outer spring 134.
Weld caps 240, 242 are generally fabricated from an appropriate metal, e.g., cobalt chrome, titanium, stainless steel or the like. The circumferential/angular extent of weld caps 240, 242 are generally selected to ensure sufficient clamping/compressive force is exerted on outer spring 134, e.g., to ensure that the end region of the outer spring is without freedom of movement in any axis, e.g., axial, rotational or a combination thereof. Indeed, to enhance the clamping/compressive force exerted on outer spring 134, surface treatment(s) maybe undertaken to increase/enhance the gripping forces associated with the weld cap and/or opposed grove/channel surfaces associated with the corresponding end cap. Thus, for example and with reference to FIG. 21, surfaces 248' and 258' may be advantageously grip blasted to increase the frictional forces imparted thereby when clamped/compressed into engagement with a resilient member, e.g., spring 134. Alternative surface treatment modalities may also be employed, e.g., sand blasting, abrasive blasting, surface etching and the like, as will be apparent to persons skilled in the art.
In exemplary embodiments of the present disclosure, weld caps 240, 242 define a circumferential/angular extent of about 90° to about 160°, although geometries outside the noted range are contemplated based on the overall design of the spinal stabilization device/system and the forces to be encountered thereby. Exemplary heights in region 254 are between about 0.45 inches and 0.55 inches, while exemplary heights in region 252 are between 30% and 60% of the height of region 254. Of note, the geometry of weld caps 240, 242 in region 252 may be substantially planar or non-planar, provided adequate surface geometry is provided to accommodate and effect a desired welding operation. In the assembly process, components that define the spinal stabilization device 126, i.e., inner spring 132, outer spring 134, and end caps 128, 130, are combined to define a sub- assembly. Weld caps 240, 242 are positioned with respect to the sub-assembly such that the end regions of the outer spring 134 are aligned with the channels/grooves 258, 258' formed in the underside of the weld caps, and the sub-assembly is then generally fixtured so as to place the weld cap/end cap region in compression. Of note, in exemplary embodiments of the present disclosure, a minimal clearance may exist between the region 254 and the corresponding end caps 128, 130, e.g., about 0.0005 to about 0.003 inches, prior to application of the fixturing compression. Once fixtured, a welding operation is generally initiated such that welding material 250 is applied to the weld cap/end cap interface as schematically depicted in FIG. 22, thereby securing the weld caps 240, 242 with respect to the corresponding end caps 128, 130 and locking outer spring 134 therebetween. The disclosed assembly technique advantageously maintains a distance or spacing between the welding heat effects and the outer spring 134, such that undesirable annealing effects are avoided in the active region of the outer spring 134. Thus, the disclosed system design and assembly technique provides an efficient, reliable and effective approach to ensuring product integrity while avoiding any deleterious effects on the disclosed dynamic/spring system.
With reference to FIGS. 23 and 24, exemplary embodiments of the present disclosure further contemplate incorporation of a sheath assembly 260 over or concentrically around the spring members 132, 134. Sheath assembly 260 generally includes sheath member 136 and end clamps 138. With particular reference to FIG. 24, exemplary end clamps 138 include circumferentially spaced notches 262 that facilitate interaction between the end clamps 138 and the sheath member 136, and further facilitate assembly of the sheath assembly 260 with respect to the underlying end cap 128. Of note with respect to the schematic depiction of FIG. 24, the weld material 250 has been omitted for clarity purposes.
The dynamic stabilization device 126 associated with the spinal stabilization system 100 described hereinabove provides numerous advantages. For example, improved reliability and durability may be achieved with the disclosed dynamic stabilization device based at least in part on the fact that the heat-affected zone associated with the process of securing the outer resilient element 134 with respect to the structural elements 128, 130 via welding and use of weld caps 240, 242 is physically separated from the active region of the outer resilient element 134, and is therefore isolated from the cyclical stress associated with repeated extension/contraction and/or bending during normal use and/or representative mechanical testing. In other words, to the extent the use of E-beam welding reduces the Rockwell hardness of a portion or portions of the outer resilient element 134, it is expected that, according to the present disclosure, such portion or portions will be substantially completely shielded from fatigue-producing levels of cyclic stress.
The dynamic stabilization device 126 associated with the spinal stabilization system 100 described hereinabove can be the subject of numerous modifications and variations while still exhibiting the above-discussed advantages over other dynamic junctions for spinal stabilization systems. For example, the rod 118 can be repositioned to an axial position with respect to the structural member 130. The weld caps 240, 242 can be affixed to the structural members 128, 130 by other welding processes than E-beam welding, and/or by one or more non- welding means of attachment, such as by clamping or the use of mechanical fasteners appropriate for use in conjunction with small gage springs, by an adhesive-based process, or via the use of a single mold to form the two components together as a single piece. To the extent such attachment schemes result in respective attachment regions, such attachment regions are similarly disposed physically separately relative to the respective active region of the outer resilient element 134 (whether or not heat-affected zones are present), and are thereby similarly shielded from the types and levels of cyclical stress known to produce fatigue failure. The outer resilient element 134 need not necessarily be configured in the manner of a coil spring, but may instead take the form of one or more other types of resilient elements, such as a leaf spring, a torsion spring or bar, etc. Additionally, the outer resilient element 134 maybe employed in a dynamic junction that does not also include the inner resilient element 132. Many other variations and/or modifications are possible.
Although the present disclosure has been disclosed with reference to exemplary embodiments and implementations thereof, those skilled in the art will appreciate that the present disclosure is susceptible to various modifications, refinements and/or implementations without departing from the spirit or scope of the present invention. In fact, it is contemplated the disclosed connection structure may be employed in a variety of environments and clinical settings without departing from the spirit or scope of the present invention. Accordingly, while exemplary embodiments of the present disclosure have been shown and described, it will be understood that there is no intent to limit the invention by such disclosure, but rather, the present invention is intended to cover and encompass all modifications and alternate constructions falling within the spirit and scope hereof.

Claims

1. A spring junction as part of a spinal stabilization system, said spring junction comprising:
(a) a structural member that is configured and dimensioned to be mounted with respect a spine attachment fastener; and
(b) a resilient element defining an active region, said resilient element further having an attachment region at which said resilient element is affixed to said structural member, wherein said attachment region is disposed physically separately with respect to said active region.
2. A spring junction according to claim 1, wherein said attachment region includes a weld region, and further comprising a heat-affected zone of said resilient element, said heat- affected zone being disposed adjacent said weld region and physically separately with respect to said active region.
3. A spring junction according to claim 1 , wherein said weld region is formed by an electronic-beam welding process.
4. A spring junction according to claim 1 , wherein said resilient element is a spring.
5. A spring junction according to claim 4, wherein said spring is a coil spring.
6. A spring junction according to claim 5, wherein said resilient element includes a bend region disposed between said weld region and said active region.
7. A spring junction according to claim 6, wherein said active region includes a coil adjacent said bend region and extending along a helically-shaped path, and wherein said bend region is configured so as to initially bend away from said helical path before bending back toward said helical path and terminating at said weld region.
8. A spring junction according to claim 7, wherein said bend region is configured and dimensioned such that said initial bend away from said helical path is a bend in an axial direction with respect to said helically-shaped path.
9. A spring junction according to claim 8, wherein said bend region is configured and dimensioned such that said initial bend away from said helical path does not include a substantial radial component with respect to said helically-shaped path.
10. A spring junction according to claim 9, wherein said bend region is configured and dimensioned so as to remain substantially peripherally aligned with said helical path when viewed in an axial direction with respect to said helically-shaped path.
11. A spring junction according to claim 1 , wherein said structural member is mountable with respect to an upwardly extending structure of a pedicle screw.
12. A spring junction according to claim 1, further comprising a second structural member, said resilient element being operatively coupled to said second structural member.
13. A method for producing a spring junction, comprising welding a resilient element to a structural member such that an active region of the resilient element is disposed physically separately with respect to heat-affected zone associated with such welding.
14. A method according to claim 13, further including the step of providing a resilient element that defines an active region and a bend region, and wherein said welding results in said bend region being disposed between said active region and said heat-affected zone.
15. A method according to claim 14, wherein said resilient element includes a coil extending along a helically-shaped path, and wherein said bend region is configured so as to initially bend away from said helical path defined before bending back toward said helical path.
16. In combination:
(a) a structural member having a first end, a second end opposite said first end, an aperture between said first end and said second end, and a notch formed in said second end; and
(b) a resilient element having a bend region at an end thereof, said bend region terminating at a termination; wherein said resilient element is secured to said first end of said structural member such that said bend region extends through said aperture and said termination is lodged in said notch.
17. A combination according to claim 16, wherein said resilient element is further affixed to said structural member via a weld formed with respect to said termination and said structural member at said notch.
18. A combination according to claim 16, wherein said termination is configured and dimensioned so as to extend at least partially in the direction of said first end of said structural member, and said bend region of said resilient element is configured and dimensioned such that said termination can be threaded through said aperture, and thereby rotated toward and into said notch.
19. A combination according to claim 18, wherein said structural member includes a helical groove formed in said first end and terminating adjacent said aperture, said resilient element includes an active region adjacent said bend region and distal to said termination, and said active region includes a coil threaded along said helical groove to an extent of said aperture.
20. A spinal stabilization device comprising:
(a) at least one spring member defining an end region; (b) a structural member that includes a face for interaction with the end region of the at least one spring member; and
(c) a weld cap configured and dimensioned for capturing the end region of the at least one spring member between the weld cap and the face of the structural member; wherein the weld cap is welded with respect to the structural member, thereby securing the end region of the at least one spring member between the weld cap and the structural member.
21. A spinal stabilization device according to claim 20, wherein the structural member is an end cap.
22. A spinal stabilization device according to claim 20, wherein the at least one spring member is a helical spring.
23. A spinal stabilization device according to claim 20, wherein the at least one spring member defines a bend region that is adapted to interact with the face of the structural member.
24. A spinal stabilization device according to claim 23, wherein the bend region functions to maintain alignment of the at least one spring member relative to the structural member prior to the welding of the weld cap with respect to the structural member.
25. A spinal stabilization device according to claim 23, wherein the bend region is effective to reduce freedom of movement of the at least one spring member relative to the structural member.
26. A spinal stabilization device according to claim 20, wherein the face of the structural member defines a channel for interaction with the at least one spring member.
27. A spinal stabilization device according to claim 26, wherein the channel defines a surface, and wherein the surface includes a surface treatment.
28. A spinal stabilization device according to claim 27, wherein the surface treatment is effective to increase frictional forces imparted to the at least one spring member.
29. A spinal stabilization device according to claim 27, wherein the surface treatment is effected by grip blasting.
30. A spinal stabilization device according to claim 20, wherein the weld cap includes a greater height region and a radially inward region of lesser height.
31. A spinal stabilization device according to claim 30, wherein an arcuate or angled transition region is defined between the greater height region and the lesser height region.
32. A spinal stabilization device according to claim 20, wherein the weld cap defines a groove in an underside face that is configured and dimensioned to receive the end region of the at least one spring member.
33. A spinal stabilization device according to claim 20, wherein the weld cap is fabricated from a metal selected from the group consisting of cobalt chrome, titanium and stainless steel.
34. A spinal stabilization device according to claim 20, wherein the weld cap defines an angular extent of between about 90° and 160°.
35. A spinal stabilization device according to claim 20, further comprising a second spring member positioned concentrically internal to said at least one spring member.
36. A spinal stabilization device according to claim 20, further comprising a sheath assembly positioned around said at least one spring member.
37. A spinal stabilization device according to claim 20, further comprising a second structural member spaced from said structural member, and a second weld cap configured and dimensioned for capturing an opposite end of said at least one spring member between the second weld cap and the second structural member.
38. A spinal stabilization device according to claim 20, wherein welding of the weld cap with respect to the structural member does not affect spring properties of an active region of the at least one spring member.
39. A spinal stabilization system, comprising:
(a) a spinal stabilization device including (i) at least one spring member defining an end region at each end thereof; (ii) a pair of structural members, each of which includes a face for interaction with one of the end regions of the at least one spring member; and (iii) a pair of weld caps, each of the weld caps configured and dimensioned for capturing an end region of the at least one spring member between such weld cap and the face of the structural member; wherein each weld cap is welded with respect to a structural member, thereby securing each end region of the at least one spring member between a weld cap and an associated structural member; and
(b) a pedicle screw mounted with respect to each of the structural members.
40. A method for fabricating a spinal stabilization device, comprising:
(a) providing at least one spring member defining an end region;
(b) positioning the end region with respect to a structural member;
(c) positioning a weld cap with respect to the end region of the at least one spring member and the structural member such that the end region is captured therebetween; and
(d) welding the weld cap with respect to the structural member such that the end region is fixed therebetween.
41. A fabrication method according to claim 40, further comprising fϊxturing the weld cap with respect to the structural member before the welding step.
42. A fabrication method according to claim 40, further comprising positioning a second weld cap with respect to a second end region of the at least one spring member at an opposite end thereof and a second structural member, and welding the second weld cap with respect to the second structural member such that the second end region is fixed therebetween.
43. A fabrication method according to claim 40, further comprising grip blasting the structural member and the weld cap in the regions to be placed adjacent the end region so as to impart additional frictional forces with respect to the end region.
PCT/US2006/029713 2005-08-03 2006-07-27 Spring junction and assembly methods for spinal device WO2007019110A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/196,102 US7713288B2 (en) 2005-08-03 2005-08-03 Spring junction and assembly methods for spinal device
US11/196,102 2005-08-03
US11/405,196 2006-04-17
US11/405,196 US7699875B2 (en) 2006-04-17 2006-04-17 Spinal stabilization device with weld cap

Publications (2)

Publication Number Publication Date
WO2007019110A2 true WO2007019110A2 (en) 2007-02-15
WO2007019110A3 WO2007019110A3 (en) 2007-10-11

Family

ID=37727854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/029713 WO2007019110A2 (en) 2005-08-03 2006-07-27 Spring junction and assembly methods for spinal device

Country Status (1)

Country Link
WO (1) WO2007019110A2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6371465B1 (en) * 2000-07-10 2002-04-16 William O. Willis Coil spring assembly and mounting device with bend control
US20030078667A1 (en) * 1999-06-04 2003-04-24 Depuy Acromed, Incorporated Orthopedic implant
US20030171749A1 (en) * 2000-07-25 2003-09-11 Regis Le Couedic Semirigid linking piece for stabilizing the spine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030078667A1 (en) * 1999-06-04 2003-04-24 Depuy Acromed, Incorporated Orthopedic implant
US6371465B1 (en) * 2000-07-10 2002-04-16 William O. Willis Coil spring assembly and mounting device with bend control
US20030171749A1 (en) * 2000-07-25 2003-09-11 Regis Le Couedic Semirigid linking piece for stabilizing the spine

Also Published As

Publication number Publication date
WO2007019110A3 (en) 2007-10-11

Similar Documents

Publication Publication Date Title
US7699875B2 (en) Spinal stabilization device with weld cap
US7713288B2 (en) Spring junction and assembly methods for spinal device
US20060229613A1 (en) Sheath assembly for spinal stabilization device
JP4465251B2 (en) Rod-type element for connecting bone anchoring elements, stabilization device for bone with bone anchoring element, and method for manufacturing rod-shaped element
US8449574B2 (en) Elastic element for the use in a stabilization device for bones and vertebrae and method for the manufacture of such elastic element
US20060229608A1 (en) Apparatus and methods for spinal implant with dynamic stabilization system
US7967845B2 (en) Head-to-head connector spinal fixation system
US7727259B2 (en) Bio-flexible spinal fixation apparatus with shape memory alloy
US20070093813A1 (en) Dynamic spinal stabilizer
KR101584178B1 (en) Material combinations for a pedicle screw assembly
US20080125787A1 (en) Dynamic rod
US20070093815A1 (en) Dynamic spinal stabilizer
JP2012500061A (en) Rear dynamic stabilization system
US8267979B2 (en) Load-sharing bone anchor having a deflectable post and axial spring and method for dynamic stabilization of the spine
WO2009108618A1 (en) Multi-axial screw assembly
AU2007292832A1 (en) Spinal rod characterized by a time-varying stiffness
WO2006002359A2 (en) Spinal stabilization devices and systems
JP2009285492A (en) Stabilization device for bone
US20110118783A1 (en) Load-sharing bone anchor having a flexible post and method for dynamic stabilization of the spine
WO2007019110A2 (en) Spring junction and assembly methods for spinal device
WO2007121095A1 (en) Non-locking multi-axial joints in a vertebral implants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06788968

Country of ref document: EP

Kind code of ref document: A2