WO2007009582A1 - Drive train and method for controlling a drive train - Google Patents

Drive train and method for controlling a drive train Download PDF

Info

Publication number
WO2007009582A1
WO2007009582A1 PCT/EP2006/006476 EP2006006476W WO2007009582A1 WO 2007009582 A1 WO2007009582 A1 WO 2007009582A1 EP 2006006476 W EP2006006476 W EP 2006006476W WO 2007009582 A1 WO2007009582 A1 WO 2007009582A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric machine
clutch
combustion engine
internal combustion
drive train
Prior art date
Application number
PCT/EP2006/006476
Other languages
German (de)
French (fr)
Inventor
Siegfried Saenger Zetina
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Publication of WO2007009582A1 publication Critical patent/WO2007009582A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to a drive train for a vehicle according to the preamble of claim 1 and a method for controlling a drive train according to the preamble of patent claim 2.
  • a so-called hybrid powertrain In vehicles with a drive train having an internal combustion engine and at least one electric machine, a so-called hybrid powertrain, can be implemented to drive the vehicle several operating modes.
  • a drive train with an internal combustion engine a first electric machine, a clutch, a second electric machine, a transmission and at least one driven wheel
  • the internal combustion engine is connected to the first electric machine and is connectable by the clutch to the transmission input
  • the second electric machine with the transmission input is connected
  • the transmission output is connected to the at least one driven wheel
  • at least operating modes can be realized in which the vehicle is driven purely electrically or purely internal combustion engine.
  • the purely electric ride is characterized by the fact that the vehicle is driven by the second electric machine, while the clutch is open, thus separating the engine and the first electric machine from the rest of the drive train.
  • the pure combustion engine drive the vehicle is driven only with the clutch closed by the internal combustion engine, the two electric machines can be operated as a generator.
  • the changeover between two operating modes, in which the clutch must be closed takes place by means of a characteristic map control.
  • a synchronization of the rotational speeds of the output shaft of the internal combustion engine and the transmission input shaft and the engagement of the clutch takes place only by a control based on calibrated desired torque characteristics for the internal combustion engine and connected to the transmission input shaft electric machine.
  • the moment of the electric machine or of the internal combustion engine is reduced or increased in such a way for the smoothest possible switching operation, that the sum of the two moments during this entire Verrampung is equal to the entire torque to be transmitted.
  • the object of the invention is to propose a drive train or a method for controlling a drive train, in which a high ride comfort is achieved when switching the clutch.
  • the object is achieved by the features of claim 1 and of claim 4. Accordingly, when switching the clutch, the moments of the internal combustion engine, the first electric machine, the clutch and the second electric machine are controlled by a state controller.
  • the present invention considers, on the one hand, the grinding of the coupling as an additional control variable in the system, on the other hand, it coordinates all the moments in a model-based control.
  • the unmeasured state variables in particular the load torque and the drive train torsions, are estimated by a state observer.
  • a measurement of the rotational speeds of the internal combustion engine, the first and second electric machine and the wheel is sufficient.
  • the regulation of the drive train is carried out with the aid of a cost function.
  • This has the advantage that according to the weighting of individual factors of the cost function, the control in terms of compliance with the driver's desired torque and / or minimizing slippage and / or minimizing friction work and / or minimizing the jerk and / or efficiency can be optimized.
  • the additional degrees of freedom can be used while maintaining the desired torque during all phases to a load point shift, in particular between the engine and the first electric machine, which has a positive effect on the efficiency.
  • FIG. 1 shows an embodiment of a vehicle with a 2 shows a first model underlying a control according to the invention
  • FIG. 3 shows a schematic representation of a control circuit according to the invention
  • FIG. 4 shows a second simplified model.
  • the drive train according to the invention has an internal combustion engine ICE, with its output shaft A, a first electric machine El is rotatably connected.
  • the output shaft A via a clutch Cl with an input shaft GE of a transmission G is connectable.
  • the transmission input shaft GE is connectable via a second clutch KE with a second electric machine E2.
  • the two electric machines El, E2 are electrically connected to a battery B, to from this with electrical energy to be supplied or in regenerative operation to provide them with electrical energy.
  • the output of the transmission G is connected to driven wheels W. It is also possible that only the wheels W of one axle are driven.
  • a serial drive in which the clutch Cl is open, the electric machine El is operated as a generator and the vehicle is driven by the electric motor E2
  • a parallel drive in which the clutch Cl is closed and the internal combustion engine ICE and the two electric machines El , E2 can supply a drive torque, an electric and an internal combustion engine drive can be realized.
  • the clutch Cl is opened and the vehicle is driven by the electric machine E2, wherein the internal combustion engine ICE and the rotor of the electric machine El are at a standstill.
  • the clutch Cl is closed and the vehicle is driven by the internal combustion engine ICE.
  • the rotor of the electric machine El rotates with the output shaft A of the internal combustion engine ICE and the electric machine El can advantageously be operated as a generator, for example, to operate the internal combustion engine ICE in a different load point and thus with a better efficiency.
  • the rotor of the electric machine E2 rotates with the clutch KE with the transmission input shaft GE and can also be operated as a generator.
  • the electric machine E2 can also be decoupled advantageously by the clutch KE from the drive train in order to reduce the electrical idling losses.
  • phase 1 With the clutch Cl open, the engine ICE is started by the electric machine El, while the vehicle is being driven by the electric machine E2.
  • the speed of the internal combustion engine ICE is controlled to that of the electric machine E2 in phase 2.
  • the speed of the internal combustion engine ICE is controlled to a value which is about 30 U / min above the speed of the electric machine E2.
  • the transmitted torque acts accelerating on the driven wheel W.
  • the vehicle is generally accelerated for a short time, which is perceived by the driver as positive.
  • the transmitted torque M C i is the clutch Cl regulated up to the complete closure of the clutch Cl, which in this case likewise accordance with the invention the moments of the engine M lce and the electric machine M E i, M E2 are controlled.
  • M C1 sgn ( ⁇ y, - ⁇ o ) -M c , where M c represents the maximum transmittable torque. Without slip, the transmitted torque M C i of the clutch Cl is dependent on the input torque. The transmitted torque of the clutch Cl is
  • the clutch Cl acts in the closed state like a spring-damper element.
  • the third phase is started earlier, i. at greater slippage.
  • phase 4 the moments of the internal combustion engine Mi ce and the electric machine M E 2 verrampt until the vehicle is predominantly driven by internal combustion engine.
  • the torque sources are controlled in such a way that jerks in the drive train are prevented or reduced.
  • the regulating device R shown in FIG. 1 comprises a state controller ZR and a state observer ZB and is connected to the internal combustion engine ICE, the electric machines E1, E2 and the clutch C1 for regulation purposes.
  • the measured rotational speeds of the internal combustion engine ICE, the electric machines El, E2 and the driven wheels W are transmitted via corresponding lines to the control device R.
  • the powertrain consists of two parts with the clutch Cl open.
  • the left part of the model corresponds to the reduced one Inertia Ji Ce of the internal combustion engine ICE coupled to the torsional damper D and the inertia J e i of the electric machine El.
  • the right side of the drive train is composed of the reduced inertia J g of the transmission G, the propeller shaft and side shafts of the vehicle modeled as spring-damper element S, and the reduced inertia J c of the fourth mass C formed from the vehicle mass and the tire ,
  • the gear ratios i g of the gear G and i d of the differential are assumed to be massless.
  • J moment of inertia
  • angular velocity
  • c spring constant
  • d damping factor
  • FIG 3. A schematic representation of a control circuit according to the invention is shown in FIG 3.
  • the control device R is surrounded by a dashed line.
  • the manipulated variables u are preferably transmitted via the data bus system (CAN bus) of the vehicle to the control units of the transmission G or the clutch Cl, the internal combustion engine ICE and the electric machines El, E2.
  • the measured variables y of the drive train are likewise preferably transmitted via the data bus system of the vehicle to the input of the control device R.
  • State observer ZB preferably a Kalman filter, which filters out measurement noise and process noise, including the observation of vehicle resistances, estimated according to the following equation:
  • Ai, Bi are considered as system matrices
  • Ki Kalman feedback matrix
  • Ci a linear relationship between the measured quantities y and the states Xi.
  • Ki is usually using the solution of a Riccati equation and selectable parameters depending on the process and measurement noise.
  • the resistances of the vehicle are considered, which are mainly from air resistance, rolling friction and slope according to the equation
  • M L F Lufl + F S, e, g + F Roll> WO b ⁇ i gi lt
  • the drive train torsions are right and left of the clutch Cl, the ⁇ from the differences ⁇ ⁇ ce - ⁇ ⁇ and r - ⁇ shown mitgeschatzt.
  • step S2 the cost function J is solved offline with a Riccati equation or online with the aid of square programming, taking into account the driver's desired torque Msoii.
  • the solution of the cost function J is the minimization of an energy function depending on the states x and manipulated variables u.
  • the cost function becomes a sum, taking into account the following factors:
  • L state feedback matrix
  • L r reference matrix r: possible reference behavior, such as
  • the reference vector has the task of interpreting possible driver requests and supplying the driver with the desired overall torque contour total torque command behavior to the controller.
  • the optimum manipulated variables u opt can be adjusted with precontrol values St of a superordinate controller.
  • FIG. 4 shows a simplified model of the drive train, which simplifies the numerical solution of the differential equation system.
  • the reduced inertia Ji ce of the internal combustion engine ICE coupled to the torsional damper D and the inertia J e i of the electric machine El in the inertia Ji have been summarized.
  • the inertias J 2 and J 3 correspond to the inertias J g and J c, respectively.
  • the number of states does not decrease when the clutch Cl is in the closed position because the clutch Cl is treated in the closed position as a spring-damper element.

Abstract

The invention relates to a drive train in addition to a method for controlling a drive train, comprising an internal combustion engine (ICE), a first electromachine (El), a coupling (Cl), a second electromachine (E2), a transmission (G) and at least one driven wheel (W). The internal combustion engine (ICE) is connected to the first electromachine (El) and can be connected to the transmission inlet (GE) by means of the coupling (Cl), the second electromachine (E2) can be connected to the transmission inlet (GE), and the transmission outlet is connected to the at least one driven wheel (W). According to the invention, the torque of the internal combustion engine (Mice), the first electromachine (ME1), the coupling (MC1) and the second electromachine are controlled by a state regulator (ZR) when the coupling is switched. The driving comfort is increased due to said switching of the coupling (Cl).

Description

Antriebsstrang und Verfahren zur Regelung eines Powertrain and method for regulating a
Antriebsstrangesdrive train
Die Erfindung betrifft einen Antriebsstrang für ein Fahrzeug gemäß dem Oberbegriff des Patentanspruchs 1 und ein Verfahren zur Regelung eines Antriebsstranges gemäß dem Oberbegriff des Patentanspruchs 2.The invention relates to a drive train for a vehicle according to the preamble of claim 1 and a method for controlling a drive train according to the preamble of patent claim 2.
Bei Fahrzeugen mit einem Antriebsstrang, der einen Verbrennungsmotor und mindestens eine Elektromaschine aufweist, einem so genannten Hybridantriebsstrang, lassen sich zum Antrieb des Fahrzeuges mehrere Betriebsmodi realisieren .In vehicles with a drive train having an internal combustion engine and at least one electric machine, a so-called hybrid powertrain, can be implemented to drive the vehicle several operating modes.
Bei einem Antriebsstrang mit einem Verbrennungsmotor, einer ersten Elektromaschine, einer Kupplung, einer zweiten Elektromaschine, einem Getriebe und mindestens einem angetriebenen Rad, bei dem der Verbrennungsmotor mit der ersten Elektromaschine verbunden ist und durch die Kupplung mit dem Getriebeeingang verbindbar ist, die zweite Elektromaschine mit dem Getriebeeingang verbunden ist, und der Getriebeausgang mit dem mindestens einen angetriebenen Rad verbunden ist, lassen sich zumindest Betriebsmodi realisieren, bei denen das Fahrzeug rein elektrisch oder rein verbrennungsmotorisch angetrieben wird. Die rein elektrische Fahrt zeichnet sich dadurch aus, dass das Fahrzeug durch die zweite Elektromaschine angetrieben wird, wahrend die Kupplung geöffnet ist und somit den Verbrennungsmotor und die erste Elektromaschine vom restlichen Antriebsstrang trennt. Bei der rein verbrennungsmotorischen Fahrt wird das Fahrzeug bei geschlossener Kupplung ausschließlich vom Verbrennungsmotor angetrieben, wobei die beiden Elektromaschinen generatorisch betrieben werden können.In a drive train with an internal combustion engine, a first electric machine, a clutch, a second electric machine, a transmission and at least one driven wheel, wherein the internal combustion engine is connected to the first electric machine and is connectable by the clutch to the transmission input, the second electric machine with the transmission input is connected, and the transmission output is connected to the at least one driven wheel, at least operating modes can be realized in which the vehicle is driven purely electrically or purely internal combustion engine. The purely electric ride is characterized by the fact that the vehicle is driven by the second electric machine, while the clutch is open, thus separating the engine and the first electric machine from the rest of the drive train. In the pure combustion engine drive, the vehicle is driven only with the clutch closed by the internal combustion engine, the two electric machines can be operated as a generator.
Will man zwischen diesen beiden Betriebsmodi wechseln, wahrend das Fahrzeug angetrieben wird, so ist ein Schließen bzw. Offnen der Kupplung derart durchzufuhren, dass die Kupplung möglichst kurz schleifend betrieben wird und somit nicht zu sehr verschlissen wird und dass der Fahrkomfort, beispielsweise durch einen Ruck im Antriebsstrang, nicht negativ beeinflusst wird.If you want to switch between these two operating modes, while the vehicle is driven, so close or open the clutch is durchzufuhren such that the clutch is operated as short as possible grinding and thus not too worn and that the ride comfort, for example, by a jerk in the powertrain, not negatively affected.
Bei bekannten Hybridantriebsstrangen, wie beispie] sweise in der DE 199 30 391 Al beschrieben, erfolgt der Wechsel zwischen zwei Betriebsmodi, bei dem die Kupplung geschlossen werden muss, mittels einer Kennfeld-Steuerung. Eine Synchronisation der Drehzahlen der Abtriebswelle des Verbrennungsmotors und der Getriebeeingangswelle und das Einrücken der Kupplung erfolgt lediglich durch eine Steuerung auf Basis von kalibrierten Sollmoment-Kennlinien für den Verbrennungsmotor und die mit der Getriebeeingangswelle verbundenen Elektromaschine. Das Moment der Elektromaschine bzw. des Verbrennungsmotors wird hierbei für einen möglichst ruckfreien Schaltvorgang derart reduziert bzw. erhöht, dass die Summe der beiden Momente wahrend dieser gesamten Verrampung gleich dem gesamten zu übertragenden Moment ist. Aufgabe der Erfindung ist es, einen Antriebsstrang bzw. ein Verfahren zur Regelung eines Antriebsstranges vorzuschlagen, bei dem beim Schalten der Kupplung ein hoher Fahrkomfort erreicht wird.In known hybrid powertrains, as described for example in DE 199 30 391 A1, the changeover between two operating modes, in which the clutch must be closed, takes place by means of a characteristic map control. A synchronization of the rotational speeds of the output shaft of the internal combustion engine and the transmission input shaft and the engagement of the clutch takes place only by a control based on calibrated desired torque characteristics for the internal combustion engine and connected to the transmission input shaft electric machine. The moment of the electric machine or of the internal combustion engine is reduced or increased in such a way for the smoothest possible switching operation, that the sum of the two moments during this entire Verrampung is equal to the entire torque to be transmitted. The object of the invention is to propose a drive train or a method for controlling a drive train, in which a high ride comfort is achieved when switching the clutch.
Erfindungsgemäß wird die Aufgabe durch die Merkmale des Anspruchs 1 bzw. des Anspruchs 4 gelöst. Demgemäß werden beim Schalten der Kupplung die Momente des Verbrennungsmotors, der ersten Elektromaschine, der Kupplung und der zweiten Elektromaschine durch einen Zustandsregler geregelt.According to the invention the object is achieved by the features of claim 1 and of claim 4. Accordingly, when switching the clutch, the moments of the internal combustion engine, the first electric machine, the clutch and the second electric machine are controlled by a state controller.
Die vorliegende Erfindung betrachtet bei Bedarf zum einen das Schleifen der Kupplung als zusätzliche Stellgröße im System zum anderen koordiniert sie alle Momente in einer modellgestützten Regelung.The present invention considers, on the one hand, the grinding of the coupling as an additional control variable in the system, on the other hand, it coordinates all the moments in a model-based control.
Durch die vorteilhafte Regelung sämtlicher Momentenquellen des Antriebsstranges, nämlich des Verbrennungsmotors, der ersten und zweiten Elektromaschine sowie der Kupplung, durch einen Zustandsregler kann ein Wechsel zwischen zwei Betriebsmodi, bei dem die Kupplung geschaltet werden muss, komfortabler, flexibler, dynamischer und den Fahrerwünschen entsprechend gestaltet werden.Due to the advantageous control of all torque sources of the drive train, namely the internal combustion engine, the first and second electric machine and the clutch by a state controller, a change between two operating modes in which the clutch must be switched, comfortable, flexible, dynamic and designed according to the driver's wishes become.
In einer bevorzugten Weiterbildung werden die nicht gemessenen Zustandsgrößen, insbesondere das Lastmoment und die Antriebsstrangtorsionen, durch einen Zustandsbeobachter geschätzt. Hierdurch ist eine Messung der Drehzahlen des Verbrennungsmotors, der ersten und zweiten Elektromaschine sowie des Rades ausreichend.In a preferred development, the unmeasured state variables, in particular the load torque and the drive train torsions, are estimated by a state observer. As a result, a measurement of the rotational speeds of the internal combustion engine, the first and second electric machine and the wheel is sufficient.
In einer besonders bevorzugten Weiterbildung erfolgt die Regelung des Antriebsstranges mit Hilfe einer Kostenfunktion. Dies hat den Vorteil, dass entsprechend der Gewichtung der einzelnen Faktoren der Kostenfunktion die Regelung in Bezug auf die Einhaltung des Fahrersollmoments und/oder der Minimierung des Schlupfes und/oder Minimierung der Reibarbeit und/oder der Minimierung des Rucks und/oder des Wirkungsgrades optimiert werden kann.In a particularly preferred development, the regulation of the drive train is carried out with the aid of a cost function. This has the advantage that according to the weighting of individual factors of the cost function, the control in terms of compliance with the driver's desired torque and / or minimizing slippage and / or minimizing friction work and / or minimizing the jerk and / or efficiency can be optimized.
Des Weiteren können die zusätzlichen Freiheitsgrade bei Einhaltung des Sollmoments während allen Phasen zu einer Lastpunktverschiebung, insbesondere zwischen Verbrennungsmotor und der ersten Elektromaschine, genutzt werden, die sich positiv auf den Wirkungsgrad auswirkt.Furthermore, the additional degrees of freedom can be used while maintaining the desired torque during all phases to a load point shift, in particular between the engine and the first electric machine, which has a positive effect on the efficiency.
Weitere Vorteile der Erfindung gehen aus der Beschreibung und den Zeichnungen hervor. Konkrete Ausführungsbeispiele der Erfindung sind in den Zeichnungen vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigenFurther advantages of the invention will become apparent from the description and the drawings. Concrete embodiments of the invention are shown in simplified form in the drawings and explained in more detail in the following description. Show it
Fig. 1 ein Ausführungsbeispiel eines Fahrzeuges mit einem
Figure imgf000006_0001
Antriebsstrsπ" Fig. 2 ein erstes einer erfindungsgemäßen Regelung zugrunde liegendes Modell, Fig. 3 eine schematische Darstellung eines erfindungsgemäßen Regelkreises und Fig. 4 ein zweites vereinfachtes Modell.
Fig. 1 shows an embodiment of a vehicle with a
Figure imgf000006_0001
2 shows a first model underlying a control according to the invention, FIG. 3 shows a schematic representation of a control circuit according to the invention, and FIG. 4 shows a second simplified model.
Bei dem in Figur 1 dargestellten Fahrzeug weist der erfindungsgemäße Antriebsstrang einen Verbrennungsmotor ICE auf, mit dessen Abtriebswelle A eine erste Elektromaschine El drehfest verbunden ist. Im Weiteren ist die Abtriebswelle A über eine Kupplung Cl mit einer Eingangswelle GE eines Getriebes G verbindbar. Die Getriebeeingangswelle GE ist über eine zweite Kupplung KE mit einer zweiten Elektromaschine E2 verbindbar. Die beiden Elektromaschinen El, E2 sind elektrisch mit einer Batterie B verbunden, um von dieser mit elektrischer Energie versorgt zu werden oder im generatorischen Betrieb diese mit elektrischer Energie zu versorgen. Der Ausgang des Getriebes G ist mit angetriebenen Rädern W verbunden. Es ist ebenfalls möglich, dass nur die Räder W einer Achse angetrieben werden.In the vehicle shown in Figure 1, the drive train according to the invention has an internal combustion engine ICE, with its output shaft A, a first electric machine El is rotatably connected. In addition, the output shaft A via a clutch Cl with an input shaft GE of a transmission G is connectable. The transmission input shaft GE is connectable via a second clutch KE with a second electric machine E2. The two electric machines El, E2 are electrically connected to a battery B, to from this with electrical energy to be supplied or in regenerative operation to provide them with electrical energy. The output of the transmission G is connected to driven wheels W. It is also possible that only the wheels W of one axle are driven.
Neben einer seriellen Fahrt, bei der die Kupplung Cl geöffnet ist, die Elektromaschine El generatorisch betrieben wird und das Fahrzeug von der Elektromaschine E2 angetrieben wird, und einer parallelen Fahrt, bei der die Kupplung Cl geschlossen ist und der Verbrennungsmotor ICE sowie die beiden Elektromaschinen El, E2 ein Antriebsmoment liefern können, können auch eine elektrische und eine verbrennungsmotorische Fahrt realisiert werden.In addition to a serial drive, in which the clutch Cl is open, the electric machine El is operated as a generator and the vehicle is driven by the electric motor E2, and a parallel drive, in which the clutch Cl is closed and the internal combustion engine ICE and the two electric machines El , E2 can supply a drive torque, an electric and an internal combustion engine drive can be realized.
Bei der elektrischen Fahrt ist die Kupplung Cl geöffnet und das Fahrzeug wird von der Elektromaschine E2 angetrieben, wobei sich der Verbrennungsmotor ICE und der Rotor der Elektromaschine El im Stillstand befinden.In the electric drive, the clutch Cl is opened and the vehicle is driven by the electric machine E2, wherein the internal combustion engine ICE and the rotor of the electric machine El are at a standstill.
Bei der verbrennungsmotorischen Fahrt ist die Kupplung Cl geschlossen und das Fahrzeug wird vom Verbrennungsmotor ICE angetrieben. Der Rotor der Elektromaschine El dreht sich mit der Abtriebswelle A des Verbrennungsmotors ICE und die Elektromaschine El kann vorteilhaft generatorisch betrieben werden, um beispielsweise den Verbrennungsmotor ICE in einem anderen Lastpunkt und somit mit einem besseren Wirkungsgrad zu betreiben. Der Rotor der Elektromaschine E2 dreht sich bei geschlossener Kupplung KE mit der Getriebeeingangswelle GE und kann ebenfalls generatorisch betrieben werden. Die Elektromaschine E2 kann jedoch auch vorteilhaft durch die Kupplung KE vom Antriebsstrang abgekoppelt werden, um die elektrischen LeerlaufVerluste zu reduzieren. Soll von der elektrischen Fahrt in den Betriebsmodus der verbrennungsmotorischen Fahrt gewechselt werden, ausgelost beispielsweise durch einen Fahrerwunsch nach erhöhter Leistung, für den die Leistung der Elektromaschine E2 nicht ausreicht oder aufgrund eines niedrigen Batterieladezustands, so muss die geschlossen werden. Dieser Schaltvorgang der Kupplung Cl lasst sich in vier Phasen untergliedern, die allerdings durchaus überlappend sein können.During the combustion engine drive, the clutch Cl is closed and the vehicle is driven by the internal combustion engine ICE. The rotor of the electric machine El rotates with the output shaft A of the internal combustion engine ICE and the electric machine El can advantageously be operated as a generator, for example, to operate the internal combustion engine ICE in a different load point and thus with a better efficiency. The rotor of the electric machine E2 rotates with the clutch KE with the transmission input shaft GE and can also be operated as a generator. However, the electric machine E2 can also be decoupled advantageously by the clutch KE from the drive train in order to reduce the electrical idling losses. If it is to be changed from the electric drive into the operating mode of the internal combustion engine drive, triggered for example by a driver request for increased power, for which the power of the electric machine E2 is insufficient or due to a low battery state of charge, it must be closed. This switching operation of the clutch C1 can be subdivided into four phases, which, however, can be quite overlapping.
In Phase 1 wird bei geöffneter Kupplung Cl der Verbrennungsmotor ICE durch die Elektromaschine El gestartet, wahrend das Fahrzeug durch die Elektromaschine E2 angetrieben wird.In phase 1, with the clutch Cl open, the engine ICE is started by the electric machine El, while the vehicle is being driven by the electric machine E2.
Nach dem Starten wird in Phase 2 die Drehzahl des Verbrennungsmotors ICE auf die der Elektromaschine E2 geregelt. Vorzugsweise wird die Drehzahl des Verbrennungsmotors ICE auf einen Wert, der um etwa 30 U/min über der Drehzahl der Elektromaschine E2 liegt, geregelt. Hierdurch wirkt das übertragene Moment beschleunigend auf das angetriebene Rad W. Das Fahrzeug wird im Allgemeinen kurzzeitig beschleunigt, was vom Fahrer als positiv empfunden wird.After starting, the speed of the internal combustion engine ICE is controlled to that of the electric machine E2 in phase 2. Preferably, the speed of the internal combustion engine ICE is controlled to a value which is about 30 U / min above the speed of the electric machine E2. As a result, the transmitted torque acts accelerating on the driven wheel W. The vehicle is generally accelerated for a short time, which is perceived by the driver as positive.
In Phase 3 wird das übertragene Moment MCi der Kupplung Cl geregelt bis zur vollständigen Schließung der Kupplung Cl, wobei hierbei erfindungsgemaß ebenfalls die Momente des Verbrennungsmotors Mlce und der Elektromaschinen MEi, ME2 geregelt werden.In phase 3, the transmitted torque M C i is the clutch Cl regulated up to the complete closure of the clutch Cl, which in this case likewise accordance with the invention the moments of the engine M lce and the electric machine M E i, M E2 are controlled.
Wird die Kupplung Cl schlupfend betrieben, so wird das Moment über die Reibkraft übertragen. Das übertragene Moment MCi wird alsoIf clutch Cl is operated slipping, the torque is transmitted via the frictional force. The transmitted torque M C i will be so
MC1 =sgn(<y, -ωo)-Mc, wobei Mc das maximal übertragbare Moment darstellt. Ohne Schlupf ist das übertragenen Moment MCi der Kupplung Cl abhängig vom Eingangsdrehmoment. Das übertragene Moment der Kupplung Cl istM C1 = sgn (<y, -ω o ) -M c , where M c represents the maximum transmittable torque. Without slip, the transmitted torque M C i of the clutch Cl is dependent on the input torque. The transmitted torque of the clutch Cl is
Figure imgf000009_0001
mit Mc als übertragbarem Moment (Kupplungskapazität) und Mi als Eingangsdrehmoment. Die Kupplung Cl wirkt im geschlossenen Zustand wie ein Feder-Dämpfer-Element.
Figure imgf000009_0001
with M c as the transmittable torque (clutch capacity) and Mi as the input torque. The clutch Cl acts in the closed state like a spring-damper element.
Handelt es sich um eine Nass-Anfahrkupplung wird die dritte Phase früher gestartet, d.h. bei größerem Schlupf.If it is a wet-start clutch, the third phase is started earlier, i. at greater slippage.
In Phase 4 werden die Momente des Verbrennungsmotors Mice und der Elektromaschine ME2 verrampt bis das Fahrzeug überwiegend verbrennungsmotorisch angetrieben wird.In phase 4, the moments of the internal combustion engine Mi ce and the electric machine M E 2 verrampt until the vehicle is predominantly driven by internal combustion engine.
Des Weiteren werden die Momentenquellen derart geregelt, dass Ruck≤chwingungen im Antriebsstrang verhindert bzw. reduziert werden .Furthermore, the torque sources are controlled in such a way that jerks in the drive train are prevented or reduced.
Die in Figur 1 gezeigte Regeleinrichtung R umfasst einen Zustandsregler ZR und einen Zustandsbeobachter ZB und ist zur Regelung mit dem Verbrennungsmotor ICE, den Elektro- maschinen El, E2 und der Kupplung Cl verbunden. Die gemessenen Drehzahlen des Verbrennungsmotors ICE, der Elektromaschinen El, E2 und der angetriebenen Räder W werden über entsprechende Leitungen an die Regeleinrichtung R übermittelt .The regulating device R shown in FIG. 1 comprises a state controller ZR and a state observer ZB and is connected to the internal combustion engine ICE, the electric machines E1, E2 and the clutch C1 for regulation purposes. The measured rotational speeds of the internal combustion engine ICE, the electric machines El, E2 and the driven wheels W are transmitted via corresponding lines to the control device R.
Zur Regelung des in Figur 1 gezeigten Antriebsstranges wird das in Figur 2 dargestellte Modell zugrunde gelegt. Der Antriebsstrang besteht bei geöffneter Kupplung Cl aus zwei Teilen. Der linke Teil des Modells entspricht der reduzierten Trägheit JiCe des Verbrennungsmotors ICE angekoppelt an den Torsionsdämpfer D und der Trägheit Jei der Elektro- maschine El. Die rechte Seite des Antriebsstranges setzt sich aus der reduzierten Trägheit Jg des Getriebes G, den als Feder-Dämpfer-Element S modellierten Kardanwelle und Seitenwellen des Fahrzeuges sowie aus der reduzierten Trägheit Jc der aus der Fahrzeugmasse und den Reifen gebildeten vierten Masse C zusammen. Die Übersetzungen ig des Getriebes G und id des Differentials werden als masselos, angenommen .To control the drive train shown in Figure 1, the model shown in Figure 2 is used. The powertrain consists of two parts with the clutch Cl open. The left part of the model corresponds to the reduced one Inertia Ji Ce of the internal combustion engine ICE coupled to the torsional damper D and the inertia J e i of the electric machine El. The right side of the drive train is composed of the reduced inertia J g of the transmission G, the propeller shaft and side shafts of the vehicle modeled as spring-damper element S, and the reduced inertia J c of the fourth mass C formed from the vehicle mass and the tire , The gear ratios i g of the gear G and i d of the differential are assumed to be massless.
Des Weiteren gelten die folgenden Bezeichnungen: J: Trägheitsmoment, ω : Winkelgeschwindigkeit, c: Federkonstante, d: Dämpfungsfaktor.Furthermore, the following terms apply: J: moment of inertia, ω: angular velocity, c: spring constant, d: damping factor.
Daraus ergibt sich unter Verwendung der gängigen Bewegungsgleichungen folgende Zustandsraumdarstellung :This results in the following state space representation using the usual equations of motion:
Figure imgf000010_0001
mit den
Figure imgf000010_0001
with the
Zuständen: x = (φιceeι, O)11x, ωel, φsc, ωg, ωc, ML)T,States: x = (φ ιcee ι, O) 11x , ω el , φ sc , ω g , ω c , M L ) T ,
Messgrößen: y = (θ, ωwe, ωe], O, ωg) ωcf ,Measured quantities: y = (θ, ω we , ω e] , O, ω g) ω c f,
Stellgrößen: u = (Mlce M Me2 MclJ und der Störung : z = ML = (FMlg + Froll + Fluß )• rdyn ; wobei gilt: i = ig-id und die Änderung der Störung (Z) unabhängig von den anderen Zuständen für den Synchronisationsvorgang bleibt. Manipulated variables: u = (M lce M M e2 M cl J and the perturbation: z = M L = (F Mlg + F roll + F flux ) • r dyn , where i = i g -i d and the change the disturbance (Z) remains independent of the other states for the synchronization process.
Eine schematische Darstellung eines erfindungsgemäßen Regelkreises zeigt Figur 3. Hierbei ist die Regeleinrichtung R mit einer gestrichelten Linie umrandet. Am Ausgang der Regeleinrichtung R werden die Stellgrößen u vorzugsweise über das Datenbus-System (CAN-Bus) des Fahrzeuges an die Steuereinheiten des Getriebes G bzw. der Kupplung Cl, des Verbrennungsmotors ICE und der Elektro- maschinen El, E2 übermittelt. Die Messgrößen y des Antriebsstranges werden ebenfalls vorzugsweise über das Datenbus-System des Fahrzeuges an den Eingang der Regeleinrichtung R übermittelt.A schematic representation of a control circuit according to the invention is shown in FIG 3. Here, the control device R is surrounded by a dashed line. At the output of the control device R, the manipulated variables u are preferably transmitted via the data bus system (CAN bus) of the vehicle to the control units of the transmission G or the clutch Cl, the internal combustion engine ICE and the electric machines El, E2. The measured variables y of the drive train are likewise preferably transmitted via the data bus system of the vehicle to the input of the control device R.
In einem Schritt Sl wird der Zustandsvektor x, durch denIn a step Sl, the state vector x, by the
Zustandsbeobachter ZB, vorzugsweise einem Kaiman-Filter, das Messrauschen und Prozessrauschen ausfiltert, inklusive der Beobachtung der Fahrzeugwiderstände, gemäß der folgenden Gleichung geschätzt:
Figure imgf000011_0001
State observer ZB, preferably a Kalman filter, which filters out measurement noise and process noise, including the observation of vehicle resistances, estimated according to the following equation:
Figure imgf000011_0001
Hierbei gelten Ai, Bi als Systemmatrizen, Ki als Kalmanrückführmatrix und Ci als linearer Zusammenhang zwischen den gemessenen Größen y und den Zuständen Xi . Ki wird gewöhnlich mit Hilfe der Lösung einer Riccati-Gleichung und wahlbaren Parametern abhangig vom Prozess- und Messrauschen bestimmt .Here, Ai, Bi are considered as system matrices, Ki as Kalman feedback matrix and Ci as a linear relationship between the measured quantities y and the states Xi. Ki is usually using the solution of a Riccati equation and selectable parameters depending on the process and measurement noise.
Unter dem Lastmoment M1 werden die Widerstände des Fahrzeugs betrachtet, die sich hauptsachlich aus Luftwiderstand, Rollreibung und Steigung nach der GleichungUnder the load moment M 1 , the resistances of the vehicle are considered, which are mainly from air resistance, rolling friction and slope according to the equation
ML = FLufl + FS,e,g + FRoll > WObβi gi l t M L = F Lufl + F S, e, g + F Roll> WO b β i gi lt
A cA c
F Luf, = -^- v2 ■ pLuf, ' Fs,e,g = rn - g - sm a und FRoll = FR v , errechnen. Hierdurch kann das Lastmoment sehr schlecht für die Reglerauslegung mitbetrachtet oder abgeschätzt werden. Es ist möglich, dieses an einem Arbeitspunkt zu linearisieren wobei es bevorzugt als zusatzlicher Zustand und nicht als Systemeingang betrachtet wird. F Lu f, = - ^ - v 2 ■ p Lu f, ' F s, e , g = rn - g - sm a and F Roll = F R v. As a result, the load torque can be very poorly considered or estimated for the controller design. It is possible to linearize it at an operating point, which is preferably regarded as an additional state and not as a system input.
Ebenso werden die Antriebsstrangtorsionen rechts und links der Kupplung Cl, die sich aus den Differenzen φιceΛ und φ,-φr ergeben, mitgeschatzt .Likewise, the drive train torsions are right and left of the clutch Cl, the φ from the differences φ ιce Λ and r -φ shown mitgeschatzt.
Im Schritt S2 wird die Kostenfunktion J mit einer Riccati- Gleichung offline oder mit Hilfe der Quadratischen Programmierung online unter Berücksichtigung des Fahrersollmoments Msoii gelost. Die Losung der Kostenfunktion J ist die Minimierung eines Energiefunktionais abhängig von den Zustanden x und Stellgroßen u.In step S2, the cost function J is solved offline with a Riccati equation or online with the aid of square programming, taking into account the driver's desired torque Msoii. The solution of the cost function J is the minimization of an energy function depending on the states x and manipulated variables u.
J =±)f{x,u)2ώ,J = ±) f {x, u) 2 ώ,
J =i |[(x(0{t)γQ.(*(,)_?(/))+ u(ty .R.M(Oμ J = i |.? [(X (0{t) γ Q (* (,) _ (/)) + u (t y R M (O μ..
(0(0
Für einen zeitdiskreten Regler wird die Kostenfunktion zu einer Summe, wobei folgende Faktoren berücksichtigt werden:
Figure imgf000013_0001
For a discrete-time controller, the cost function becomes a sum, taking into account the following factors:
Figure imgf000013_0001
wobei durch die Parametervektoren λ und γ die einzelnen Faktoren der Kostenfunktion gewichtet werden. Es können also hierdurch beispielsweise das Ansprechverhalten der Aktuatoren oder Regelfehler begrenz bzw. bestraft werden. Ebenso ist vorteilhaft eine Änderung der Gewichtungen während des Fahrbetriebes beispielsweise in Abhängigkeit vom Fahrersollmoment MSoii möglich.wherein the individual factors of the cost function are weighted by the parameter vectors λ and γ. It can thus be limited or punished, for example, the response of the actuators or control errors. Likewise advantageous is a change in the weightings during driving, for example, depending on the driver's desired torque M So ii possible.
Mit Ni und N2 als Prädiktionshorizont im Falle, dass die Quadratische Gütefunktion (Kostenfunktion) online (im Mikrokontroller ) bestimmt wird oder als Ni = 0 und N2=00, wenn die Gütefunktion offline berechnet wird. In beiden Fällen wird das Differential der Funktion als Nullstellensuche gelöst .With Ni and N 2 as the prediction horizon in case the quadratic merit function (cost function) is determined online (in the microcontroller) or as Ni = 0 and N 2 = 00 if the merit function is calculated off-line. In both cases, the differential of the function is solved as a zero search.
Im Schritt S3 werden durch die Summe der Zustandsrückführung und eines Referenzvektors die optimalen Stellgrößen uopt gebildet : opt = -Lx + VrIn step S3, the sum of the state feedback and a reference vector forms the optimum manipulated variables u opt : opt = -Lx + Vr
Zustandsrückfiihmng Referenzvektor,State feedback reference vector,
wobei gilt: L: Zustandsrückführmatrix Lr : Referenzmatrix r: mögliches Referenzverhalten, wiewhere: L: state feedback matrix L r : reference matrix r: possible reference behavior, such as
Drehmomentvorgabe und Schlupfvorgäbe, abhängig vom Fahrerwunsch Hierbei hat der Referenzvektor die Aufgabe, mögliche Fahrerwünsche zu interpretieren und als dem Fahrerwunschmoment entsprechenden Kontur-Gesamtdrehmoment- Soll-Verhalten dem Regler zuzuführen.Torque specification and slip presupposition, depending on the driver's request In this case, the reference vector has the task of interpreting possible driver requests and supplying the driver with the desired overall torque contour total torque command behavior to the controller.
Optional können die optimalen Stellgrößen uopt mit Vorsteuerungswerten St eines übergeordneten Reglers abgeglichen werden.Optionally, the optimum manipulated variables u opt can be adjusted with precontrol values St of a superordinate controller.
Figur 4 zeigt ein vereinfachtes Modell des Antriebsstranges, wodurch die numerische Lösung des Differentialgleichungssystems vereinfacht wird. Bei gleichen Bezugszeichen wird auf die vorangegangenen Erläuterungen verwiesen. Auf der linken Seite der Kupplung Cl wurden die reduzierte Trägheit Jice des Verbrennungsmotors ICE angekoppelt an den Torsionsdämpfer D und die Trägheit Jei der Elektromaschine El in der Trägheit Ji zusammengefasst . Die Trägheiten J2 bzw. J3 entsprechen den Trägheiten Jg bzw. Jc.FIG. 4 shows a simplified model of the drive train, which simplifies the numerical solution of the differential equation system. For the same reference numerals, reference is made to the preceding explanations. On the left side of the clutch Cl, the reduced inertia Ji ce of the internal combustion engine ICE coupled to the torsional damper D and the inertia J e i of the electric machine El in the inertia Ji have been summarized. The inertias J 2 and J 3 correspond to the inertias J g and J c, respectively.
Für eine vereinfachte Modellierung werden die Bewegungsgleichungen nach Newton/Euler verwendet und in eine lineare Zustandsraumform zusammengefasst . x(t) = A(t) x(0 + B(O u(0 + H(O z(0 y(0 = C(0-x(0 mit A und B als Systemmatrizen für die Zustandsgrößen x und H als Störmatrix für die Störung 1.For simplified modeling, the equations of motion according to Newton / Euler are used and combined into a linear state space form. x (t) = A (t) x (0 + B (O u (0 + H (0 z (0 y (0 = C (0-x (0 with A and B as system matrices for the state variables x and H as a disturbance matrix for the disturbance 1.
Das Zustandsraummodell des Systems im geschlossenen Zustand beträgt damit:The state space model of the system when closed is thus:
Figure imgf000014_0001
In dem Zustandsraummodell verringert sich die Anzahl der Zustände nicht, wenn sich die Kupplung Cl in geschlossener Stellung befindet, da die Kupplung Cl in geschlossener Stellung als Feder-Dämpfer-Element behandelt wird. Darüber hinaus besteht die Möglichkeit, das System mit Dauerschlupf wie eine Überbrückungskupplung im Drehmomentwandler zu betreiben.
Figure imgf000014_0001
In the state space model, the number of states does not decrease when the clutch Cl is in the closed position because the clutch Cl is treated in the closed position as a spring-damper element. In addition, it is possible to operate the system with permanent slip as a lock-up clutch in the torque converter.

Claims

Patentansprüche claims
1. Antriebsstrang für ein Fahrzeug mit einem Verbrennungsmotor (ICE), einer ersten1. powertrain for a vehicle with an internal combustion engine (ICE), a first
Elektromaschine (El), einer Kupplung (Cl), einer zweiten Elektromaschine (E2), einem Getriebe (G) und mindestens einem angetriebenen Rad (W) , wobei der Verbrennungsmotor (ICE) mit der ersten Elektromaschine (El) verbunden ist und durch die Kupplung (Cl) mit dem Getriebeeingang (GE) verbindbar ist,Electric machine (El), a clutch (Cl), a second electric machine (E2), a transmission (G) and at least one driven wheel (W), wherein the internal combustion engine (ICE) with the first electric machine (El) is connected and through the Clutch (Cl) is connectable to the transmission input (GE),
/-J -! o T i f IT1 1
Figure imgf000016_0001
O \ m -ϊ +- r^
/ -J -! o T if IT 1 1
Figure imgf000016_0001
O \ m -ϊ + - r ^
Getriebeeingang (GE) verbindbar ist, und der Getriebeausgang mit dem mindestens einen angetriebenen Rad (W) verbunden ist, dadurch gekennzeichnet, dass beim Schalten der Kupplung (Cl) die Momente desTransmission input (GE) is connectable, and the transmission output to the at least one driven wheel (W) is connected, characterized in that when switching the clutch (Cl) the moments of
Verbrennungsmotors (Mlce) , der erstenInternal combustion engine (M lce ), the first
Elektromaschine (MEi) , der Kupplung (MCi) und der zweitenElectric machine (M E i), the clutch (M C i) and the second
Elektromaschine (ME2) durch einen Zustandsregler (ZR) regelbar sind.Electric machine (M E2 ) by a state controller (ZR) are adjustable.
2. Verfahren zur Regelung eines Antriebsstranges, mit einem Verbrennungsmotor (ICE), einer ersten2. A method for controlling a drive train, with an internal combustion engine (ICE), a first
Elektromaschine (El), einer Kupplung (Cl), einer zweiten Elektromaschine (E2), einem Getriebe (G) und mindestens einem angetriebenen Rad (W) , wobei der Verbrennungsmotor (ICE) mit der erstenElectric machine (El), a clutch (Cl), a second electric machine (E2), a transmission (G) and at least one driven wheel (W), the internal combustion engine (ICE) with the first
Elektromaschine (El) verbunden ist und durch dieElectric machine (El) is connected and through the
Kupplung (Cl) mit dem Getriebeeingang (GE) verbindbar ist, die zweite Elektromaschine (E2) mit demCoupling (Cl) with the transmission input (GE) is connectable, the second electric machine (E2) with the
Getriebeeingang (GE) verbindbar ist, und der Getriebeausgang mit dem mindestens einen angetriebenen Rad (W) verbunden ist, dadurch gekennzeichnet, dass beim Schalten der Kupplung (Cl) die Momente desTransmission input (GE) is connectable, and the transmission output to the at least one driven wheel (W) is connected, characterized in that when switching the clutch (Cl) the moments of
Verbrennungsmotors (Mj.ce) , der erstenInternal combustion engine (Mj. Ce ), the first
Elektromaschine (MEi) , der Kupplung (MCi) und der zweitenElectric machine (M E i), the clutch (M C i) and the second
Elektromaschine (ME2) durch einen Zustandsregler (ZR) geregelt werden.Electric machine (M E 2) are controlled by a state controller (ZR).
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass nicht gemessene Zustandsgrößen durch einen Zustandsbecbachter (ZB) geschätzt werden.3. The method according to claim 2, characterized in that non-measured state variables are estimated by a Statebecbachter (ZB).
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass ein Lastmoment (ML) und Antriebsstrangtorsionen durch den Zustandsbeobachter (ZB) geschätzt werden.4. The method according to claim 3, characterized in that a load torque (M L ) and Antriebsstrangtorsionen by the state observer (ZB) are estimated.
5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Regelung des Antriebsstranges mit Hilfe einer Kostenfunktion erfolgt.5. The method according to any one of claims 2 to 4, characterized in that the regulation of the drive train is carried out by means of a cost function.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Gewichtung der Faktoren der Kostenfunktion in Abhängigkeit vom Fahrerwunsch verändert wird. 6. The method according to claim 5, characterized in that the weighting of the factors of the cost function is changed in dependence on the driver's request.
7. Verfahren nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass das Schalten der Kupplung (Cl) bei einem Wechsel von einem ersten Betriebsmodus, bei dem das Fahrzeug rein elektrisch angetrieben wird, in einen zweiten Betriebsmodus, bei dem das Fahrzeug rein verbrennungsmotorisch angetrieben wird, erfolgt. 7. The method according to any one of claims 2 to 6, characterized in that the switching of the clutch (Cl) in a change from a first operating mode in which the vehicle is driven purely electrically, in a second operating mode in which the vehicle is purely internal combustion engine is driven takes place.
PCT/EP2006/006476 2005-07-15 2006-07-04 Drive train and method for controlling a drive train WO2007009582A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005033723.6 2005-07-15
DE102005033723A DE102005033723A1 (en) 2005-07-15 2005-07-15 Drive train and method for controlling an Antriesstranges

Publications (1)

Publication Number Publication Date
WO2007009582A1 true WO2007009582A1 (en) 2007-01-25

Family

ID=37106400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/006476 WO2007009582A1 (en) 2005-07-15 2006-07-04 Drive train and method for controlling a drive train

Country Status (2)

Country Link
DE (1) DE102005033723A1 (en)
WO (1) WO2007009582A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011054637A1 (en) * 2009-11-04 2011-05-12 Zf Friedrichshafen Ag Hybrid vehicle transmission
CN104918811A (en) * 2013-01-11 2015-09-16 本田技研工业株式会社 Hybrid vehicle and method for controlling same
EP2727788A4 (en) * 2011-06-29 2016-12-28 Toyota Motor Co Ltd Control device for vehicle drive device
EP2727789A4 (en) * 2011-06-28 2016-12-28 Toyota Motor Co Ltd Control device for vehicle drive device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007047802A1 (en) * 2007-11-16 2009-05-20 Zf Friedrichshafen Ag Method for clutch control in hybridized manual transmission, involves connecting electrical machine with gearbox input shaft and starting clutch is arranged between internal combustion engine and gearbox input shaft
US8185281B2 (en) 2009-06-26 2012-05-22 Bayerische Motoren Werke Aktiengesellschaft Method and controller for controlling a power train of a vehicle
DE102011081174A1 (en) * 2011-08-18 2013-02-21 Robert Bosch Gmbh Power electronics device i.e. inverter, for use in hybrid powertrain of motor car to supply electrical power to electric machine, has combining unit forming position value based on pilot control value and control portion
DE102013020759A1 (en) * 2013-12-09 2015-06-11 Audi Ag Method and device for controlling a hybrid drive in a vehicle
DE102019132437B4 (en) * 2019-11-29 2021-07-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method and drive system for estimating propeller shaft torques in drive trains
DE102020119553A1 (en) 2020-07-24 2022-01-27 Audi Aktiengesellschaft Method for operating a motor vehicle, control device and motor vehicle
DE102020215394A1 (en) * 2020-12-07 2022-06-09 Robert Bosch Gesellschaft mit beschränkter Haftung Driving and braking system for a vehicle
DE102021212035A1 (en) 2021-10-26 2023-04-27 Robert Bosch Gesellschaft mit beschränkter Haftung Method of operating a vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0916547A2 (en) * 1997-11-18 1999-05-19 Honda Giken Kogyo Kabushiki Kaisha Hybrid vehicle
EP0925981A2 (en) * 1997-12-26 1999-06-30 Fuji Jukogyo Kabushiki Kaisha Power transmitting system for a hybrid motor vehicle
DE19930391A1 (en) 1998-07-03 2000-01-13 Nissan Motor Hybrid drive system for vehicle has at least one driven wheel, a first electric motor with a first rotor with a drive relationship to the driven wheel and fuel-driven thermal power machine
US20020123836A1 (en) * 2001-03-01 2002-09-05 Nissan Motor Co., Ltd. Vehicle drive system and vehicle controlling method
DE10204982A1 (en) * 2002-02-06 2003-08-14 Daimler Chrysler Ag Hybrid drive for motor vehicles has an internal combustion engine linked to a gearbox via a clutch and first/second electric motors acting as drives/generators linked to the engine and gearbox
US20040155468A1 (en) * 2003-02-12 2004-08-12 Tai-Her Yang Series and parallel combined dual power drive system
DE10319880A1 (en) * 2003-05-03 2004-11-18 Daimlerchrysler Ag Powertrain with an internal combustion engine and two electric drive units
WO2004106100A2 (en) * 2003-05-23 2004-12-09 Renault S.A.S. Control device and method for a motor propulsion unit with separate mechanical and electrical controls

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0916547A2 (en) * 1997-11-18 1999-05-19 Honda Giken Kogyo Kabushiki Kaisha Hybrid vehicle
EP0925981A2 (en) * 1997-12-26 1999-06-30 Fuji Jukogyo Kabushiki Kaisha Power transmitting system for a hybrid motor vehicle
DE19930391A1 (en) 1998-07-03 2000-01-13 Nissan Motor Hybrid drive system for vehicle has at least one driven wheel, a first electric motor with a first rotor with a drive relationship to the driven wheel and fuel-driven thermal power machine
US20020123836A1 (en) * 2001-03-01 2002-09-05 Nissan Motor Co., Ltd. Vehicle drive system and vehicle controlling method
DE10204982A1 (en) * 2002-02-06 2003-08-14 Daimler Chrysler Ag Hybrid drive for motor vehicles has an internal combustion engine linked to a gearbox via a clutch and first/second electric motors acting as drives/generators linked to the engine and gearbox
US20040155468A1 (en) * 2003-02-12 2004-08-12 Tai-Her Yang Series and parallel combined dual power drive system
DE10319880A1 (en) * 2003-05-03 2004-11-18 Daimlerchrysler Ag Powertrain with an internal combustion engine and two electric drive units
WO2004106100A2 (en) * 2003-05-23 2004-12-09 Renault S.A.S. Control device and method for a motor propulsion unit with separate mechanical and electrical controls

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011054637A1 (en) * 2009-11-04 2011-05-12 Zf Friedrichshafen Ag Hybrid vehicle transmission
US8480525B2 (en) 2009-11-04 2013-07-09 Zf Friedrichshafen Ag Hybrid vehicle transmission
EP2727789A4 (en) * 2011-06-28 2016-12-28 Toyota Motor Co Ltd Control device for vehicle drive device
EP2727788A4 (en) * 2011-06-29 2016-12-28 Toyota Motor Co Ltd Control device for vehicle drive device
CN104918811A (en) * 2013-01-11 2015-09-16 本田技研工业株式会社 Hybrid vehicle and method for controlling same
EP2944496A4 (en) * 2013-01-11 2016-10-12 Honda Motor Co Ltd Hybrid vehicle and method for controlling same

Also Published As

Publication number Publication date
DE102005033723A1 (en) 2007-02-01

Similar Documents

Publication Publication Date Title
WO2007009582A1 (en) Drive train and method for controlling a drive train
DE102010014971B4 (en) Method for operating a motor vehicle with at least two drives and motor vehicle with at least two drives
DE102004028103B4 (en) drive arrangement
EP1458586B1 (en) Device and method for adjusting the speed of a vehicle
WO2010031678A1 (en) Method for setting a motor drive unit in a motor vehicle
EP1651460B1 (en) Regulating strategy for electromechanically power-branching hybrid drives
EP2079620B1 (en) Method for operating a parallel hybrid drive
DE112009004352T5 (en) Control device for a power transmission system of a motor vehicle with four-wheel drive
EP2588354B1 (en) Method for controlling a hybrid vehicle
WO2017084889A1 (en) Operating a drive device of a hybrid vehicle and hybrid vehicle
DE102004043589A1 (en) Apparatus and method for determining the drive power distribution in a hybrid powertrain of a vehicle
DE10008344A1 (en) Hybrid vehicle control system regulates output of auxiliary electric motor in synchronism with operation of clutch and gear changing of automatic transmission
DE4037237A1 (en) METHOD FOR OPERATING A DRIVE UNIT CONSISTING OF INTERNAL COMBUSTION ENGINE AND AUTOMATIC GEARBOX
WO2009021913A2 (en) Method for load point displacement during hybrid operation in a parallel hybrid vehicle
DE102007049253A1 (en) Method for controlling a power split transmission
DE102013219085A1 (en) Method and control device for operating a road-locked hybrid vehicle
DE102015108067A1 (en) Method for starting an internal combustion engine
EP2328788A1 (en) Method and device for operating a hybrid drive device during the starting of an internal combustion engine
EP1467886B1 (en) Method for controlling the hybrid drive of a vehicle
DE102006010223A1 (en) Regulating hybrid drive torque distribution for hybrid vehicle involves distributing load demand according to torque demand if first variably coupled mode is selected, taking into account reaction of hybrid drive to distribution
DE102006036217A1 (en) Method for improving the driving characteristics of a hybrid drive
DE102010048548A1 (en) Method and apparatus for operating a hybrid vehicle and computer program product and vehicle
DE102006008641A1 (en) Vehicle-operating method for operating a hybrid vehicle uses two or more units with one unit as an internal combustion engine to provide torque for a hybrid vehicle&#39;s driving mechanism
DE102009020794A1 (en) Method for coordination of power train of motor vehicle, involves determining target wheel torque depending on target and actual accelerations, and providing torque requirements of drive and delay units depending on wheel torque
WO2004106104A1 (en) Motor vehicle and associated electronic control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06762370

Country of ref document: EP

Kind code of ref document: A1