WO2006138053A2 - Breathable non-asphaltic roofing underlayment having tailorable breathability - Google Patents

Breathable non-asphaltic roofing underlayment having tailorable breathability Download PDF

Info

Publication number
WO2006138053A2
WO2006138053A2 PCT/US2006/020827 US2006020827W WO2006138053A2 WO 2006138053 A2 WO2006138053 A2 WO 2006138053A2 US 2006020827 W US2006020827 W US 2006020827W WO 2006138053 A2 WO2006138053 A2 WO 2006138053A2
Authority
WO
WIPO (PCT)
Prior art keywords
building materials
materials composite
scrim
perforated
thermoplastic film
Prior art date
Application number
PCT/US2006/020827
Other languages
French (fr)
Other versions
WO2006138053A3 (en
Inventor
Vinay Mehta
Awdhoot Vasant Kerkar
Original Assignee
Building Materials Investment Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Building Materials Investment Corporation filed Critical Building Materials Investment Corporation
Publication of WO2006138053A2 publication Critical patent/WO2006138053A2/en
Publication of WO2006138053A3 publication Critical patent/WO2006138053A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D12/00Non-structural supports for roofing materials, e.g. battens, boards
    • E04D12/002Sheets of flexible material, e.g. roofing tile underlay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/06Roofs, roof membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1056Perforating lamina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly
    • Y10T156/1074Separate cutting of separate sheets or webs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet
    • Y10T428/24331Composite web or sheet including nonapertured component

Definitions

  • the present invention relates to a building materials composite, and more particularly to a non-asphaltic roofing underlayment that is breathable, water resistant skid-resistant, and which may be configured or tailored in order to provide a desired level of breathability.
  • a roofing underlayment is typically applied to the deck of a roof prior to application of shingles or other roofing material.
  • the primary goal of the roofing underlayment is to shield the roofing deck from asphalt (from the back surface of shingles) which otherwise would necessitate tearing up the whole deck instead of just the shingles - a costly option - at the time of reroofing.
  • Underlayments can also help to reduce "picture framing" in which the outline of the deck panels caused by irregularities in the deck surface may be visible through the roofing material applied to the roofing deck.
  • the roofing underlayment comprises a felt material composed of cellulose fibers, glass fibers and a mixture thereof that is saturated with a bituminous material such as asphalt, tar or pitch.
  • a bituminous material such as asphalt, tar or pitch.
  • roofing underlayments that are saturated with a bituminous material are thick composites (typically 20 to 60 mils thick), which can be hazardous to manufacture due to the presence of a flammable bituminous material.
  • Many of the asphaltic underlayments available in the market tend to wrinkle after being applied to a roofing deck. This is especially the case if the underlayments are rained upon. Other common problems are blowing off due to wind (when shingles are yet to be installed) or the formation of splits lengthwise in the underlayments when they are left exposed for several days.
  • non-bituminous underlayments In addition to bituminous-containing underlayments, the roofing industry has also developed non-bituminous, i.e., non-asphaltic, underlayments.
  • the prior art non-bituminous underlayments typically include Triflex 30 (a product made by Flexia Corp. and marketed by W.R. Grace), Titanium UDL (marketed by Interwrap, Inc. of Canada), RoofTopGuard II (marketed by Classic Products, Inc and Drexel Metals), Kaye-Flex UDL (from Kaye Industries, Florida), etc.
  • non-asphaltic underlayments tend to be water-resistant but substantially non-breathable. That is, the non-asphaltic underlayments do not allow air or water vapor to pass through it. As a result, the moisture from the interior of the building is unable to escape to the exterior resulting in damage to the deck and roof over a number of years. Most of the non-asphaltic underlayments also tend to be slippery, especially when wet.
  • existing breathable underlayments are generally of three types: (1) micro-perforated or ("micro-perfed") types in which a coated fabric has mechanical perforations to allow moisture vapor to escape from the building structure; (2) micro- porous types in which a breathable polyolefinic film is sandwiched between two or more layers by means of thermal or ultrasonic or adhesive lamination methods; or (3) a monolithic film extruded using thermoplastic polyurethane or copolyester or its blend resins which provide breathability and waterproofness in a composite structure.
  • micro-perforated or (“micro-perfed") types in which a coated fabric has mechanical perforations to allow moisture vapor to escape from the building structure
  • micro- porous types in which a breathable polyolefinic film is sandwiched between two or more layers by means of thermal or ultrasonic or adhesive lamination methods
  • a monolithic film extruded using thermoplastic polyurethane or copolyester or its blend resins which provide breathability and waterproofness in a composite structure.
  • the present invention provides an improved non-asphaltic underlayment useful in roof assemblies which comprises a substrate (typically non-waterproof, but can be waterproof) in which at least one layer thereof includes a breathable thermoplastic film selected from (1) a polyurethane based thermoplastic film, (2) an ethylene-methacrylate (EMA) copolymer or ethylene acrylic acid (EAA) based thermoplastic film, or (3) a micro-porous polyolef ⁇ nic or polyester film that may be filled or unfilled. Combinations and/or multilayered stacks of such breathable thermoplastic films are also contemplated herein.
  • a breathable thermoplastic film selected from (1) a polyurethane based thermoplastic film, (2) an ethylene-methacrylate (EMA) copolymer or ethylene acrylic acid (EAA) based thermoplastic film, or (3) a micro-porous polyolef ⁇ nic or polyester film that may be filled or unfilled.
  • EMA ethylene-methacrylate
  • EAA ethylene acrylic acid
  • the invention involves combinations of micro-perforated fabric(s) and one or more micro-porous films bonded together by known lamination techniques (such as ultrasonication, thermal, adhesive or a combination thereof) so that desired breathability can be tailored in to the composite structure. Any combination of fabrics or films can be employed.
  • the composite of the present invention comprises a breathable and substantially micro-porous film bonded between a breathable micro- perforated coated woven substrate and a breathable spun-bonded non- woven layer.
  • the coated woven scrim and spun-bonded non-woven layer while breathable, are typically non-waterproof.
  • the substrate can comprise a thermoplastic polymer or copolymer or a felt material. Additionally, by tailoring the micro-perforations (in size, number and type) in the breathable coated woven scrip as micro-pores in the micro-porous film, a suitable combination of layers can be bonded together that affords the desired breathability with a high degree of flexibility and at a relatively lower cost.
  • non- waterproof substrate denotes a material that is pervious to water, i.e., a material that permits water permeation from the exterior of the roofing to the interior of the roofing.
  • breathable refers to a material or materials which is permeable to water vapor or moisture having a minimum moisture vapor transmission rate (MTVR) of 3 perms, i.e., about 172 nanograms/m 2 /P a/sec (or 6.7 g/100 sq.in./atm/24 hours) or greater.
  • the MTVR is measured using a standard ASTM measurement, i.e., ASTM E96-80 Proc. A or other comparable standards such as ASTM D398.
  • the presence of the breathable film on the substrate makes the resultant composite waterproof and yet imparts breathability of the substrate.
  • the inventive non-asphaltic underlayment of the present invention acts as a barrier to moisture, but allows air and water vapor to pass therethrough.
  • the presence of one of the aforementioned breathable thermoplastic underlayment on a top side of the deck substrate also imparts improved skid resistance, i.e., high coefficient of resistance, against the non-asphaltic underlayment.
  • Such an underlayment having a skid-resistant surface will also provide improved adhesion of asphaltic P&S adhesive products (like Liberty from GAF) to the underlayment where the latter is used as a base sheet.
  • non-asphaltic underlayment is used in the present invention to describe a roofing composite containing no asphalt, and which is laid down on a roofing deck prior to shingle application.
  • the present invention also provides a method of manufacturing the non- asphaltic underlayment of the present invention.
  • the method of the present invention comprises applying at least one of the above mentioned breathable thermoplastic films to at least one surface layer of a woven or non- woven, organic or inorganic substrate.
  • the present invention also provides a roofing system that comprises the inventive non-asphaltic, breathable underlayment and one or more shingles laid-up on the uppermost layer of the underlayment.
  • FIG. 1 is a pictorial representation (through a cross-sectional view) illustrating a non-asphaltic underlayment of the present invention.
  • FIG. 2 is a pictorial representation (through a cross-sectional view) illustrating another non-asphaltic underlayment of the present invention.
  • FIG. 3 is a pictorial representation (through a cross-sectional view) illustrating yet another non-asphaltic underlayment of the present invention.
  • FIG. 4 is a pictorial representation (through a cross-sectional view) illustrating yet another non-asphaltic underlayment of the present invention.
  • FIGS. 1-4 of the present application illustrate various embodiments of the present invention. Specifically, FIGS. 1-4 are cross-sectional views showing the non- asphaltic underlayment 10 of the present invention.
  • FIG. 1 illustrates a three-layer non-asphaltic underlayment 10 in accordance with a preferred embodiment of the present invention and which comprises a breathable thermoplastic film (BTF) 14 bonded between a substrate 12 and spun- bonded or needle-punched or other types of non- woven fabrics 18 made from polypropylene, polyester, fiberglass or a blend of difference synthetic fibers.
  • BTF thermoplastic film
  • FIG. 2 there is illustrated a two-piece non-asphaltic underlayment 10 that comprises a substrate 12 having a breathable thermoplastic film 14 bonded to a top surface 1 It of the substrate 12.
  • the substrate 12 is typically substantially non- waterproof.
  • the top surface including the breathable thermoplastic film 14 will face in a direction opposite of the roofing deck such that one or more shingles are laid-up directly on the breathable thermoplastic film 14 of the underlayment 10.
  • FIG. 1 shows the breathable thermoplastic film 14 on an upper surface of the substrate 12, it is also contemplated in the present invention to have an underlayment in which the breathable thermoplastic film 14 is bonded on a bottom surface 1 Ib of the substrate 12.
  • FIG. 3 shows an alternative embodiment of the present invention in which the substrate 12 is sandwiched between two-breathable thermoplastic films 14 using known techniques such as thermal, ultrasonic and/or adhesive bonding. That is, the top surface l it and bottom surface l ib of the substrate 12 both include a breathable thermoplastic film 14 thereon.
  • FIG. 3 thus represents a three-piece underlayment.
  • FIG. 4 there is shown an embodiment in which a tie layer 16 is present between the substrate 12 and the breathable thermoplastic film 14.
  • the presence of the tie layer 16 improves the adhesion of the breathable thermoplastic film 14 to the substrate 12.
  • the tie layer 16 which may also be referred to as a compatibilizer or a bonding agent, may be used in any embodiment of the present invention. If the adhesive bonding agent is non-breathable, it can be applied in discontinuous patterns, e.g. dots or squares.
  • the substrate 12 employed in the present invention comprises an organic or inorganic reinforcement sheet or film that is capable of withstanding high ambient temperatures.
  • the substrate is typically, but not always, non-waterproof.
  • the reinforcement sheet or film can comprise a thermoplastic polymer or copolymer or a felt material.
  • the substrate may be woven or non-woven, with preference given to a coated woven substrate for imparting superior mechanical properties in both machine and cross-machine direction.
  • the substantially non-waterproof woven or non- woven substrate of the present invention is sometimes referred to in the art as a scrim.
  • a woven substrate is preferable since it provides greater tensile and tear strengths compared with that of comparable non- woven substrate. No asphalt or other like bituminous material is present in or on the substrate 12.
  • reinforcement thermoplastic polymeric materials that can be employed in the present invention as the substrate 12 include, but are not limited to: polyolefms, such as, for example, polyethylene (high density, linear low density, low density or medium density) and polypropylene; polyethylene terephthalate (PET); polyamides; polyvinyl chlorides (PVCs); polystyrenes; polyacrylics; and any copolymers thereof.
  • polyolefms such as, for example, polyethylene (high density, linear low density, low density or medium density) and polypropylene
  • PET polyethylene terephthalate
  • PVCs polyamides
  • PVCstyrenes polystyrenes
  • polyacrylics polyacrylics
  • high density polyethylene denotes a polyethylene composition having a density of about 0.941 g/cc of higher
  • medium density polyethylene denotes a polyethylene composition having a density of about 0.926 to about 0.940 g/cc
  • low density or linear low density polyethylene denote a polyethylene composition having a density of about 0.90 to about 0.925 g/cc.
  • thermoplastic polymeric materials it is preferable to use a thermoplastic reinforcement material that comprises polyethylene, polypropylene or PET.
  • the thermoplastic reinforcement material used as the substrate 12 is made using techniques well-known in the art.
  • the substrate 12 may also be a felt material such as a cellulose fiber mat or a glass fiber mat. These types of substrates are made using techniques well known to those practicing the art.
  • the substrate 12 may have any thickness associated therewith, but typically the thickness of the substrate 12 is from about 6 to about 60 mils.
  • the substrate 12 is breathable and is usually, but not always, non-waterproof.
  • the breathable thermoplastic film 14 is a polyurethane based thermoplastic monolithic film (or thermoplastic polyurethane (TPU)).
  • the polyurethane based thermoplastic film is a polymeric material obtained by first forming a prepolymer of polyether or polyester diols or polyols with excess diisocyanate and then chain-extending the prepolymer by reacting with a diamine or a diol. Copolymers including the TPU are also contemplated as the breathable thermoplastic film 14.
  • Suitable TPU's that can be employed as the breathable thermoplastic film 14 are available from Noveon (Esthane ® ), Merquinsa NA Inc. (Pearlthane ® /Pearlcoat ® ), Dow Chemical Company (Pellethane ® ), BASF (Elastollan ® ), Bayer (TEXIN/DESMOPAN ® ) or Huntsman (AVALON ® or IROGRAN ® ).
  • the breathable thermoplastic monolithic film 14 is an ethylene methacrylate (EMA) copolymer (such as Elvaloy from DuPont), a polyolef ⁇ n-based EMAC (such as SP2220 from Eastman Chemical Co.), or an ethylene acrylic acid (EAA) based copolymer.
  • EMA ethylene methacrylate
  • EMAC polyolef ⁇ n-based EMAC
  • EAA ethylene acrylic acid
  • the breathable thermoplastic film 14 is a micro-porous polyolefinic (polyethylene, polypropylene and other like polyolefins including copolymers thereof) or polyester polymer which may or may not contain a filler therein.
  • the breathable thermoplastic film 14 is a multilayered stack that includes any combination of above- mentioned breathable thermoplastic materials.
  • the underlayment in accordance with the various embodiments of the present invention may take on, but are not limited to, the following forms and layer combinations: (a) micro-perforated coated woven scrim/micro-porous film/spun- bonded non-woven layer, (b) micro-perforated coated non-woven scrim/micro-porous film/micro-perforated coated woven layer, (c) micro-perforated coated woven scrim/micro-porous film.
  • micro-perforated fabric(s) and one or more micro-porous films may be bonded together by an adhesive or by thermal bonding, however, other known lamination techniques (such as ultrasonication, adhesive or a combination thereof) may be used, such that desired breathability can be tailored in to the composite structure.
  • an adhesive is non-breathable, it can be applied in a discontinuous manner such as dots or squares, in which case the specific pattern with the number of such dots per unit area, and the spacing between them can be varied to design required breathability.
  • the thickness of the breathable thermoplastic film 14 may vary, but typically it is from about 0.5 to about 10 mils, with a thickness from about 1 to about 3 mils being more highly preferred. Thicker breathable thermoplastic films 14 are also contemplated.
  • the tie layer 16 comprises a bonding agent, such as, for example, a polyamide, an ethylene copolymer such as ethylene vinyl acetate (EVA), ethylene ethyl acrylate (EEA), ethylene acrylic acid (EAA), ethylene methyl acrylate (EMA) (such as SP2207, SP2403, or SP 1307 grades from Voridian) and ethylene normal-butyl acrylate (ENBA).
  • EVA ethylene vinyl acetate
  • EAA ethylene ethyl acrylate
  • EAA ethylene acrylic acid
  • EMA ethylene methyl acrylate
  • the most- preferred material as a tie layer 16 is EMA having a methyl acrylate level of about 18% or greater.
  • the tie layer 16 may be applied during formation of the substrate by including the bonding agent within the polymerization process, during the formation of the breathable thermoplastic film, or after substrate formation using one of the methods described below.
  • the breathable thermoplastic film 14 may also be bonded to the substrate 12 by chemical bonding, mechanical bonding and/or thermal bonding.
  • the breathable thermoplastic film 14 may also be bonded using a nip such as that generated by a pair of heat calendar roll, or by using an ultrasoni cation chamber.
  • polystyrene foams having filler induced micro-pores
  • those materials are made breathable upon stretching the film under appropriate conditions well known to those well versed in the art.
  • polypropylene with CaCO 3 fillers having micro-pores coated onto a glass mat is envisaged as a roofing underlayment that is breathable and yet waterproof.
  • polyolef ⁇ ns such as polyethylene (PE) or polypropylene (PP) and glass mat - necessary for enhanced abrasion resistance - the following specific options are envisaged:
  • MAgPP Maleic anhydride grafted PP (blended up to 10%, but more preferably up to 5%) to regular PP batch.
  • MAgPP is commercially available from DuPont (as Fusabond ® ), Atofina (as LotadarTM or OrevacTM) and other vendors.
  • Titanate or Zirconate coupling agents such as those available from Kenrich Petrochemicals, Inc. for improving the PP (preferably with fillers such as carbon black) bond to glass fibers.
  • Ken-React's CAPS NZ 12/L (zirconate based) or CAPS L 38/L (titanate based) at 5% CAPS by weight of PP or lower, but more preferably 1 to 3% by weight can be used.
  • Slight lowering of extrusion temperatures typically about 10% to create high shear for reactive compounding and dispersion of the titanate or zirconate masterbatch in the PP melt so that fiberglass mat can be subsequently coated uniformly.
  • silane agents are aminoalkyltrialkoxysilanes such as l-dimethylamino-2-propanol or 2-dimethylamino-2-methyl-l -propanol or 3-aminopropyl triethoxysilane in the presence of a salifying agent (KOH) and an emulsifier such as polyoxyethylene octylphenyl ether.
  • KOH salifying agent
  • emulsifier such as polyoxyethylene octylphenyl ether.
  • Skid-resistance of polyolefinic coated underlayments can be increased by incorporating ethyl-vinyl acetate (EVA) or modified EVA such as maleic anhydride grafted EVA (like Fusabond C series sold by DuP ont) up to 10% (most preferably 1-3%) by weight of PP.
  • EVA ethyl-vinyl acetate
  • modified EVA such as maleic anhydride grafted EVA (like Fusabond C series sold by DuP ont) up to 10% (most preferably 1-3%) by weight of PP.
  • the underlayments of the present invention can also be coated or sprayed with an algaecide such as, for example, zinc powder, or copper oxide powder; a herbicide; an antifungal material such as Micro-Chek 1 IP; an antibacterial material such as Micro-Chek 11 -S-160; a surface friction agent such as Byk-375, a flame retardant material such as ATH (aluminum trihydrate) available from, e.g., Akzo Chemicals and antimony oxide available from, e.g., Laurel Industries and/or a coloring dye such as T-1133 A and iron oxide red pigments, and other products which can impart specific surface functions.
  • an algaecide such as, for example, zinc powder, or copper oxide powder
  • a herbicide such as Micro-Chek 1 IP
  • an antibacterial material such as Micro-Chek 11 -S-160
  • a surface friction agent such as Byk-375
  • a flame retardant material such as ATH (aluminum trihydrate) available from,
  • Byk-375 may be obtained from Wacker Silicone Corporation of Adrian, Mich, and T-1133 A is sold by Abco Enterprises Inc. of Allegan, Mich.
  • the additional coatings of, e.g., water repellent material, antifungal material, antibacterial material, etc., may be applied to one or both sides of underlayment of the present invention.
  • the waterproof and breathable underlayment 10 of the present invention is used as a component of a roofing system together with one or more conventional shingles.
  • the underlayment of the present invention is first applied to the roofing deck and then secured thereto using securing means well-known to those skilled in the art, such as by nail or staple application.
  • securing means well-known to those skilled in the art, such as by nail or staple application.
  • one or more shingles are laid-up on the uppermost layer of the underlayment 10 and thereafter the shingle is secured to the roofing deck.
  • the lay up and securing steps are well-known to those skilled in the art.
  • Types of shingles that can be used in the present invention include, but are not limited to: asphalt-containing single or multi-ply organic or inorganic shingles.
  • micro-perfed coated woven scrim layer 12 will be applied on a roof deck with layer 12 facing the roof and non- woven layer 18 as the exposed surface upon which roofers will walk.
  • Underlayment 10 applied in this manner provides a satisfactory frictional surface for roofer to walk on.
  • the underlayment 10 can be flipped with micro-perfed coated scrim layer 12 on the upper exposed side coated with an anti-skid substance.
  • the micro-perforations in underlayment 10 of the present invention are typically formed using pinned perforating rollers.
  • the present invention is not, however, limited in the manner in which the micro-perforations are formed and other methods for perforation are contemplated, including: (1) perforation by heat embossing at temperatures over the melting point of the fiber; (2) perforation by friction calendaring between an appropriately engraved and a smooth roller; (3) perforation by slitting and extension perpendicular to the slits; (4) perforation by passing male-/female rollers; (5) hot needle perforation; and (6) perforation by water jets onto suitable supporting means such as coarse mesh screens or perforated drainage drums with projections in order to provide clear holes.
  • the micro- perforations can be easily manipulated in shape (e.g., oval square, circular, etc.), size (e.g., diameter, area) and density so as to control the degree of breathability of underlayment 10.
  • pin density can be of different shapes (instead of circular).
  • the pin tip (apex) can be of different shapes (instead of circular).
  • micro-perf ⁇ ng is possible by electrostatic perforation (ESP) or laser- based techniques.
  • ESP electrostatic perforation
  • the location of the pin roller can be varied as well.
  • the pin roller may be temperature controlled depending on the line speed and material being perforated.
  • a bank of pin rollers may be employed if necessary.
  • the substrate, fabric or film may run against a support roller to provide additional stability and consistency ofperforations.

Abstract

A building materials composite is provided, having a first perforated coated scrim, a second perforated coated scrim, and a breathable thermoplastic film bonded to and sandwiched between the first and the second perforated coated scrims. Further, a method of manufacturing a building materials composite is provided, the method having the steps of coating a fabric, perforating the coated fabric to make a perforated coated scrim, bonding one side of the perforated coated scrim to one side of a breathable thermoplastic film, and bonding a non- woven fabric to a second side of the breathable thermoplastic film.

Description

BREATHABLE NON-ASPHALTIC ROOFING UNDERLA YMENT HAVING TAILORABLE BREATHABILITY
Field of the Invention
The present invention relates to a building materials composite, and more particularly to a non-asphaltic roofing underlayment that is breathable, water resistant skid-resistant, and which may be configured or tailored in order to provide a desired level of breathability.
Background of the Invention
In the roofing industry, a roofing underlayment is typically applied to the deck of a roof prior to application of shingles or other roofing material. The primary goal of the roofing underlayment is to shield the roofing deck from asphalt (from the back surface of shingles) which otherwise would necessitate tearing up the whole deck instead of just the shingles - a costly option - at the time of reroofing. Underlayments can also help to reduce "picture framing" in which the outline of the deck panels caused by irregularities in the deck surface may be visible through the roofing material applied to the roofing deck.
In most cases, the roofing underlayment comprises a felt material composed of cellulose fibers, glass fibers and a mixture thereof that is saturated with a bituminous material such as asphalt, tar or pitch. Roofing underlayments that are saturated with a bituminous material are thick composites (typically 20 to 60 mils thick), which can be hazardous to manufacture due to the presence of a flammable bituminous material. Many of the asphaltic underlayments available in the market tend to wrinkle after being applied to a roofing deck. This is especially the case if the underlayments are rained upon. Other common problems are blowing off due to wind (when shingles are yet to be installed) or the formation of splits lengthwise in the underlayments when they are left exposed for several days. In addition to bituminous-containing underlayments, the roofing industry has also developed non-bituminous, i.e., non-asphaltic, underlayments. The prior art non- bituminous underlayments typically include Triflex 30 (a product made by Flexia Corp. and marketed by W.R. Grace), Titanium UDL (marketed by Interwrap, Inc. of Canada), RoofTopGuard II (marketed by Classic Products, Inc and Drexel Metals), Kaye-Flex UDL (from Kaye Industries, Florida), etc.
Currently, all non-asphaltic underlayments tend to be water-resistant but substantially non-breathable. That is, the non-asphaltic underlayments do not allow air or water vapor to pass through it. As a result, the moisture from the interior of the building is unable to escape to the exterior resulting in damage to the deck and roof over a number of years. Most of the non-asphaltic underlayments also tend to be slippery, especially when wet.
Furthermore, existing breathable underlayments are generally of three types: (1) micro-perforated or ("micro-perfed") types in which a coated fabric has mechanical perforations to allow moisture vapor to escape from the building structure; (2) micro- porous types in which a breathable polyolefinic film is sandwiched between two or more layers by means of thermal or ultrasonic or adhesive lamination methods; or (3) a monolithic film extruded using thermoplastic polyurethane or copolyester or its blend resins which provide breathability and waterproofness in a composite structure.
Existing micro-perfed films, however, fail the water shower test as mandated by ASTM D 4869-00. Existing microporous films and monolithic film based concepts - while providing breathability as well as waterproofhess - are limited by the properties of the film itself. Hence, tailorability of properties is severely limited especially in the case of monolithic film concepts since resin blend compositions required for a particular breathability and mechanical properties can be difficult to predict. Extrusion coated film may act as a waterproof barrier, a breathable layer, as well as bonding agent between the two protective layers. However, in such cases, the breathability is severely limited (usually less than 10 perms). Additionally, such extrusion coatings tend to be prohibitively expensive. In view of the drawbacks mentioned above with prior art non-asphaltic breathable underlayments, there is a need for providing a non-asphaltic roofing underlayment that is breathable thereby allowing moisture to escape from inside the building, while preventing water and/or moisture from entering the building. In addition, skid-resistance is a highly desirable property of an underlayment to avoid injuries from roofers sliding off of the roof. Also, sealing around nails or other roof penetrations would provide additional protection towards waterproofing the system.
Summary of the Invention
The present invention provides an improved non-asphaltic underlayment useful in roof assemblies which comprises a substrate (typically non-waterproof, but can be waterproof) in which at least one layer thereof includes a breathable thermoplastic film selected from (1) a polyurethane based thermoplastic film, (2) an ethylene-methacrylate (EMA) copolymer or ethylene acrylic acid (EAA) based thermoplastic film, or (3) a micro-porous polyolefϊnic or polyester film that may be filled or unfilled. Combinations and/or multilayered stacks of such breathable thermoplastic films are also contemplated herein. Furthermore, the invention involves combinations of micro-perforated fabric(s) and one or more micro-porous films bonded together by known lamination techniques (such as ultrasonication, thermal, adhesive or a combination thereof) so that desired breathability can be tailored in to the composite structure. Any combination of fabrics or films can be employed.
In a preferred embodiment, the composite of the present invention comprises a breathable and substantially micro-porous film bonded between a breathable micro- perforated coated woven substrate and a breathable spun-bonded non- woven layer. The coated woven scrim and spun-bonded non-woven layer, while breathable, are typically non-waterproof. The substrate can comprise a thermoplastic polymer or copolymer or a felt material. Additionally, by tailoring the micro-perforations (in size, number and type) in the breathable coated woven scrip as micro-pores in the micro-porous film, a suitable combination of layers can be bonded together that affords the desired breathability with a high degree of flexibility and at a relatively lower cost. The term "non- waterproof substrate denotes a material that is pervious to water, i.e., a material that permits water permeation from the exterior of the roofing to the interior of the roofing.
The terms "breathability" or "breathable" refers to a material or materials which is permeable to water vapor or moisture having a minimum moisture vapor transmission rate (MTVR) of 3 perms, i.e., about 172 nanograms/m2/P a/sec (or 6.7 g/100 sq.in./atm/24 hours) or greater. The MTVR is measured using a standard ASTM measurement, i.e., ASTM E96-80 Proc. A or other comparable standards such as ASTM D398.
The presence of the breathable film on the substrate makes the resultant composite waterproof and yet imparts breathability of the substrate. The inventive non-asphaltic underlayment of the present invention acts as a barrier to moisture, but allows air and water vapor to pass therethrough. In addition to providing waterproofing to the deck substrate, the presence of one of the aforementioned breathable thermoplastic underlayment on a top side of the deck substrate also imparts improved skid resistance, i.e., high coefficient of resistance, against the non-asphaltic underlayment. Such an underlayment having a skid-resistant surface will also provide improved adhesion of asphaltic P&S adhesive products (like Liberty from GAF) to the underlayment where the latter is used as a base sheet.
The term "non-asphaltic underlayment" is used in the present invention to describe a roofing composite containing no asphalt, and which is laid down on a roofing deck prior to shingle application.
The present invention also provides a method of manufacturing the non- asphaltic underlayment of the present invention. In broad terms, the method of the present invention comprises applying at least one of the above mentioned breathable thermoplastic films to at least one surface layer of a woven or non- woven, organic or inorganic substrate.
The present invention also provides a roofing system that comprises the inventive non-asphaltic, breathable underlayment and one or more shingles laid-up on the uppermost layer of the underlayment. Brief Description of the Drawings
FIG. 1 is a pictorial representation (through a cross-sectional view) illustrating a non-asphaltic underlayment of the present invention.
FIG. 2 is a pictorial representation (through a cross-sectional view) illustrating another non-asphaltic underlayment of the present invention.
FIG. 3 is a pictorial representation (through a cross-sectional view) illustrating yet another non-asphaltic underlayment of the present invention.
FIG. 4 is a pictorial representation (through a cross-sectional view) illustrating yet another non-asphaltic underlayment of the present invention.
Detailed Description of the Invention
The present invention, which provides a non-asphaltic underlayment that is breathable, waterproof and skid resistant, and which encompasses tailorable breathability characteristics, will now be described in greater detail by referring to the following description and drawings that accompany the present application. In the accompanying drawings, like and/or corresponding elements are referred to by like reference numerals.
FIGS. 1-4 of the present application illustrate various embodiments of the present invention. Specifically, FIGS. 1-4 are cross-sectional views showing the non- asphaltic underlayment 10 of the present invention.
FIG. 1 illustrates a three-layer non-asphaltic underlayment 10 in accordance with a preferred embodiment of the present invention and which comprises a breathable thermoplastic film (BTF) 14 bonded between a substrate 12 and spun- bonded or needle-punched or other types of non- woven fabrics 18 made from polypropylene, polyester, fiberglass or a blend of difference synthetic fibers.
In FIG. 2, there is illustrated a two-piece non-asphaltic underlayment 10 that comprises a substrate 12 having a breathable thermoplastic film 14 bonded to a top surface 1 It of the substrate 12. The substrate 12 is typically substantially non- waterproof. In this embodiment, the top surface including the breathable thermoplastic film 14 will face in a direction opposite of the roofing deck such that one or more shingles are laid-up directly on the breathable thermoplastic film 14 of the underlayment 10. Although FIG. 1 shows the breathable thermoplastic film 14 on an upper surface of the substrate 12, it is also contemplated in the present invention to have an underlayment in which the breathable thermoplastic film 14 is bonded on a bottom surface 1 Ib of the substrate 12.
FIG. 3 shows an alternative embodiment of the present invention in which the substrate 12 is sandwiched between two-breathable thermoplastic films 14 using known techniques such as thermal, ultrasonic and/or adhesive bonding. That is, the top surface l it and bottom surface l ib of the substrate 12 both include a breathable thermoplastic film 14 thereon. FIG. 3 thus represents a three-piece underlayment.
In FIG. 4, there is shown an embodiment in which a tie layer 16 is present between the substrate 12 and the breathable thermoplastic film 14. The presence of the tie layer 16 improves the adhesion of the breathable thermoplastic film 14 to the substrate 12. The tie layer 16, which may also be referred to as a compatibilizer or a bonding agent, may be used in any embodiment of the present invention. If the adhesive bonding agent is non-breathable, it can be applied in discontinuous patterns, e.g. dots or squares.
The substrate 12 employed in the present invention comprises an organic or inorganic reinforcement sheet or film that is capable of withstanding high ambient temperatures. The substrate is typically, but not always, non-waterproof. The reinforcement sheet or film can comprise a thermoplastic polymer or copolymer or a felt material. The substrate may be woven or non-woven, with preference given to a coated woven substrate for imparting superior mechanical properties in both machine and cross-machine direction. The substantially non-waterproof woven or non- woven substrate of the present invention is sometimes referred to in the art as a scrim. A woven substrate is preferable since it provides greater tensile and tear strengths compared with that of comparable non- woven substrate. No asphalt or other like bituminous material is present in or on the substrate 12.
Illustrative examples of reinforcement thermoplastic polymeric materials that can be employed in the present invention as the substrate 12 include, but are not limited to: polyolefms, such as, for example, polyethylene (high density, linear low density, low density or medium density) and polypropylene; polyethylene terephthalate (PET); polyamides; polyvinyl chlorides (PVCs); polystyrenes; polyacrylics; and any copolymers thereof.
For purposes of definition herein, the term "high density polyethylene" denotes a polyethylene composition having a density of about 0.941 g/cc of higher; the term "medium density polyethylene" denotes a polyethylene composition having a density of about 0.926 to about 0.940 g/cc; and the terms "low density or linear low density polyethylene" denote a polyethylene composition having a density of about 0.90 to about 0.925 g/cc.
Of the various thermoplastic polymeric materials mentioned above, it is preferable to use a thermoplastic reinforcement material that comprises polyethylene, polypropylene or PET. The thermoplastic reinforcement material used as the substrate 12 is made using techniques well-known in the art. The substrate 12 may also be a felt material such as a cellulose fiber mat or a glass fiber mat. These types of substrates are made using techniques well known to those practicing the art.
The substrate 12 may have any thickness associated therewith, but typically the thickness of the substrate 12 is from about 6 to about 60 mils. The substrate 12 is breathable and is usually, but not always, non-waterproof.
In one embodiment, the breathable thermoplastic film 14 is a polyurethane based thermoplastic monolithic film (or thermoplastic polyurethane (TPU)). The polyurethane based thermoplastic film is a polymeric material obtained by first forming a prepolymer of polyether or polyester diols or polyols with excess diisocyanate and then chain-extending the prepolymer by reacting with a diamine or a diol. Copolymers including the TPU are also contemplated as the breathable thermoplastic film 14.
Suitable TPU's that can be employed as the breathable thermoplastic film 14 are available from Noveon (Esthane®), Merquinsa NA Inc. (Pearlthane®/Pearlcoat®), Dow Chemical Company (Pellethane®), BASF (Elastollan®), Bayer (TEXIN/DESMOPAN®) or Huntsman (AVALON® or IROGRAN®). In another embodiment of the present invention, the breathable thermoplastic monolithic film 14 is an ethylene methacrylate (EMA) copolymer (such as Elvaloy from DuPont), a polyolefϊn-based EMAC (such as SP2220 from Eastman Chemical Co.), or an ethylene acrylic acid (EAA) based copolymer. These copolymer films offer similar properties as the TPU, i.e., breathable and yet waterproofing.
In yet another embodiment of the present invention, the breathable thermoplastic film 14 is a micro-porous polyolefinic (polyethylene, polypropylene and other like polyolefins including copolymers thereof) or polyester polymer which may or may not contain a filler therein.
In yet another embodiment of the present invention, the breathable thermoplastic film 14 is a multilayered stack that includes any combination of above- mentioned breathable thermoplastic materials.
The underlayment in accordance with the various embodiments of the present invention may take on, but are not limited to, the following forms and layer combinations: (a) micro-perforated coated woven scrim/micro-porous film/spun- bonded non-woven layer, (b) micro-perforated coated non-woven scrim/micro-porous film/micro-perforated coated woven layer, (c) micro-perforated coated woven scrim/micro-porous film.
The combinations of micro-perforated fabric(s) and one or more micro-porous films may be bonded together by an adhesive or by thermal bonding, however, other known lamination techniques (such as ultrasonication, adhesive or a combination thereof) may be used, such that desired breathability can be tailored in to the composite structure. In the event that that such an adhesive is non-breathable, it can be applied in a discontinuous manner such as dots or squares, in which case the specific pattern with the number of such dots per unit area, and the spacing between them can be varied to design required breathability.
The thickness of the breathable thermoplastic film 14 may vary, but typically it is from about 0.5 to about 10 mils, with a thickness from about 1 to about 3 mils being more highly preferred. Thicker breathable thermoplastic films 14 are also contemplated. In embodiments in which a tie layer 16 is present, the tie layer 16 comprises a bonding agent, such as, for example, a polyamide, an ethylene copolymer such as ethylene vinyl acetate (EVA), ethylene ethyl acrylate (EEA), ethylene acrylic acid (EAA), ethylene methyl acrylate (EMA) (such as SP2207, SP2403, or SP 1307 grades from Voridian) and ethylene normal-butyl acrylate (ENBA). However, the most- preferred material as a tie layer 16 is EMA having a methyl acrylate level of about 18% or greater.
The tie layer 16 may be applied during formation of the substrate by including the bonding agent within the polymerization process, during the formation of the breathable thermoplastic film, or after substrate formation using one of the methods described below.
The breathable thermoplastic film 14 may also be bonded to the substrate 12 by chemical bonding, mechanical bonding and/or thermal bonding. The breathable thermoplastic film 14 may also be bonded using a nip such as that generated by a pair of heat calendar roll, or by using an ultrasoni cation chamber.
In the case of polyolefinic based materials having filler induced micro-pores, those materials are made breathable upon stretching the film under appropriate conditions well known to those well versed in the art. In one embodiment, polypropylene with CaCO3 fillers having micro-pores coated onto a glass mat is envisaged as a roofing underlayment that is breathable and yet waterproof. In order to improve the adhesion between filled or unfilled extrusion coated polyolefϊns such as polyethylene (PE) or polypropylene (PP) and glass mat - necessary for enhanced abrasion resistance - the following specific options are envisaged:
(1) Maleic anhydride grafted PP (blended up to 10%, but more preferably up to 5%) to regular PP batch. MAgPP is commercially available from DuPont (as Fusabond®), Atofina (as Lotadar™ or Orevac™) and other vendors. (2) Titanate or Zirconate coupling agents such as those available from Kenrich Petrochemicals, Inc. for improving the PP (preferably with fillers such as carbon black) bond to glass fibers. Ken-React's CAPS NZ 12/L (zirconate based) or CAPS L 38/L (titanate based) at 5% CAPS by weight of PP or lower, but more preferably 1 to 3% by weight can be used. Slight lowering of extrusion temperatures (typically about 10%) to create high shear for reactive compounding and dispersion of the titanate or zirconate masterbatch in the PP melt so that fiberglass mat can be subsequently coated uniformly.
(3) In addition to (1) and (2) above, additional silane treatment to glass may become necessary as intimate mixing of glass fibers with PP (as in an extruder) cannot be done in composite process described herein. The well-known silane agents are aminoalkyltrialkoxysilanes such as l-dimethylamino-2-propanol or 2-dimethylamino-2-methyl-l -propanol or 3-aminopropyl triethoxysilane in the presence of a salifying agent (KOH) and an emulsifier such as polyoxyethylene octylphenyl ether.
Skid-resistance of polyolefinic coated underlayments can be increased by incorporating ethyl-vinyl acetate (EVA) or modified EVA such as maleic anhydride grafted EVA (like Fusabond C series sold by DuP ont) up to 10% (most preferably 1-3%) by weight of PP.
The underlayments of the present invention can also be coated or sprayed with an algaecide such as, for example, zinc powder, or copper oxide powder; a herbicide; an antifungal material such as Micro-Chek 1 IP; an antibacterial material such as Micro-Chek 11 -S-160; a surface friction agent such as Byk-375, a flame retardant material such as ATH (aluminum trihydrate) available from, e.g., Akzo Chemicals and antimony oxide available from, e.g., Laurel Industries and/or a coloring dye such as T-1133 A and iron oxide red pigments, and other products which can impart specific surface functions. The Micro-Chek products are available from the Ferro Corporation of Walton Hills, Ohio. Byk-375 may be obtained from Wacker Silicone Corporation of Adrian, Mich, and T-1133 A is sold by Abco Enterprises Inc. of Allegan, Mich. The additional coatings of, e.g., water repellent material, antifungal material, antibacterial material, etc., may be applied to one or both sides of underlayment of the present invention.
The waterproof and breathable underlayment 10 of the present invention is used as a component of a roofing system together with one or more conventional shingles. In this application, the underlayment of the present invention is first applied to the roofing deck and then secured thereto using securing means well-known to those skilled in the art, such as by nail or staple application. Next, one or more shingles are laid-up on the uppermost layer of the underlayment 10 and thereafter the shingle is secured to the roofing deck. The lay up and securing steps are well-known to those skilled in the art. Types of shingles that can be used in the present invention include, but are not limited to: asphalt-containing single or multi-ply organic or inorganic shingles.
It is anticipated that the micro-perfed coated woven scrim layer 12 will be applied on a roof deck with layer 12 facing the roof and non- woven layer 18 as the exposed surface upon which roofers will walk. Underlayment 10 applied in this manner provides a satisfactory frictional surface for roofer to walk on. Alternatively the underlayment 10 can be flipped with micro-perfed coated scrim layer 12 on the upper exposed side coated with an anti-skid substance.
The micro-perforations in underlayment 10 of the present invention are typically formed using pinned perforating rollers. The present invention is not, however, limited in the manner in which the micro-perforations are formed and other methods for perforation are contemplated, including: (1) perforation by heat embossing at temperatures over the melting point of the fiber; (2) perforation by friction calendaring between an appropriately engraved and a smooth roller; (3) perforation by slitting and extension perpendicular to the slits; (4) perforation by passing male-/female rollers; (5) hot needle perforation; and (6) perforation by water jets onto suitable supporting means such as coarse mesh screens or perforated drainage drums with projections in order to provide clear holes. The micro- perforations can be easily manipulated in shape (e.g., oval square, circular, etc.), size (e.g., diameter, area) and density so as to control the degree of breathability of underlayment 10.
Other factors that influence the extent of perforations are pin density, diameter of the pins at the tips, pin height, and pin profile from the apex to the base. Additionally, the pin tip (apex) can be of different shapes (instead of circular). Alternatively, micro-perfϊng is possible by electrostatic perforation (ESP) or laser- based techniques. The location of the pin roller can be varied as well. The pin roller may be temperature controlled depending on the line speed and material being perforated. A bank of pin rollers may be employed if necessary. The substrate, fabric or film may run against a support roller to provide additional stability and consistency ofperforations.
While the present invention has been particularly described and illustrated with respect to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in forms and details may be made without departing from the spirit and scope of the present invention. It is therefore intended that the present invention is not limited to the exact forms and details described and illustrated.

Claims

Claims:
1. A building materials composite, comprising: a first perforated coated scrim; a second perforated coated scrim; and a breathable thermoplastic film bonded to and sandwiched between the first and the second perforated coated scrims.
2. The building materials composite of claim 1 , wherein perforations in the first perforated coated scrim or the second perforated coated scrim or both can be varied in number, size or shape so as to allow tailoring of breathability of the building materials composite.
3. The building materials composite of claim 1, wherein the breathable thermoplastic film is selected from a group consisting of a polyurethane based thermoplastic film, an ethylenemethacrylate copolymer based thermoplastic film, an ethylene acrylic acid based thermoplastic film, a micro-porous polyolefinic film and a micro-porous polyester film.
4. The building materials composite of claim 1, wherein the first perforated scrim is a woven fabric.
5. The building materials composite of claim 1 , wherein the woven fabric is a leno fabric.
6. The building materials composite of claim 1 , wherein the second perforated scrim is a woven fabric.
7. The building materials composite of claim 6, wherein the woven fabric is a leno fabric.
8. The building materials composite of claim 1, wherein the first perforated scrim is a non-woven fabric.
9. The building materials composite of claim 8, wherein the non-woven fabric is a spun-bonded or needle-punched non-woven fabric.
10. The building materials composite of claim 8, wherein the non- woven fabric is made from polypropylene, polyester, fiberglass or a blend of synthetic fibers.
11. The building materials composite of claim 1 , wherein the second perforated scrim is a non-woven fabric.
12. The building materials composite of claim 11, wherein the non- woven fabric is a spun-bonded or needle-punched non-woven fabric.
13. The building materials composite of claim 11 , wherein the non- woven fabric is made from polypropylene, polyester, fiberglass or a blend of synthetic fibers.
14. The building materials composite of claim 1 , wherein the breathable thermoplastic film is micro-porous.
15. The building materials composite of claim 1 , wherein the building materials composite is used as a roofing underlayment.
16. The building materials composite of claim 1 , wherein the building materials composite is used as a weather barrier.
17. The building materials composite of claim 1, wherein the first and second perforated coated scrims are bonded to the breathable thermoplastic film by lamination techniques selected from a group consisting of ultrasonication, thermal, adhesive, or a combination of these.
18. A building materials composite, comprising: a perforated coated scrim; a first non-woven scrim; and a breathable thermoplastic film sandwiched between the perforated coated scrim and the non-woven scrim.
19. The building materials composite of claim 15, further comprising: a second non- woven scrim bonded on top of the perforated coated scrim.
20. A method of manufacturing a building materials composite, comprising the steps of: coating a fabric; perforating the coated fabric to make a perforated coated scrim; bonding one side of the perforated coated scrim to one side of a breathable thermoplastic film; and bonding a non- woven fabric to a second side of the breathable thermoplastic film.
21. The method of manufacturing a building materials composite of claim 17, wherein the perforated coated scrim and the non-woven fabric is simultaneously bonded to the first and second sides of the breathable thermoplastic film, respectively.
22. The method of manufacturing a building materials composite of claim 17, wherein the perforated coated scrim and non- woven fabric are bonded to the breathable thermoplastic film by lamination techniques selected from a group consisting of ultrasonication, thermal, adhesive, or a combination of these.
23. The method of manufacturing a building materials composite of claim 17, further comprising: bonding a second non-woven fabric to another side of the perforated coated scrim.
24. A method of manufacturing a building materials composite, comprising the steps of: coating a first fabric and a second fabric; perforating the first and second coated fabric to make a first and a second perforated coated scrims; and bonding the first and second perforated coated scrims to a first side and a second side of a breathable thermoplastic film, respectively.
PCT/US2006/020827 2005-06-17 2006-05-25 Breathable non-asphaltic roofing underlayment having tailorable breathability WO2006138053A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US69202805P 2005-06-17 2005-06-17
US60/692,028 2005-06-17
US11/332,914 US8323770B2 (en) 2005-06-17 2006-01-17 Breathable non-asphaltic roofing underlayment having tailorable breathability
US11/332,914 2006-01-17

Publications (2)

Publication Number Publication Date
WO2006138053A2 true WO2006138053A2 (en) 2006-12-28
WO2006138053A3 WO2006138053A3 (en) 2007-03-22

Family

ID=37570949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/020827 WO2006138053A2 (en) 2005-06-17 2006-05-25 Breathable non-asphaltic roofing underlayment having tailorable breathability

Country Status (2)

Country Link
US (1) US8323770B2 (en)
WO (1) WO2006138053A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010009359A1 (en) * 2008-07-17 2010-01-21 E. I. Du Pont De Nemours And Company Roof underlayment
EP2256266A1 (en) * 2009-05-22 2010-12-01 Caplast Kunststoffverarbeitungs GmbH Roof underlay for a sloping roof
WO2011003052A1 (en) * 2009-07-02 2011-01-06 Fiberweb, Inc. Roofing underlayment
EP2733277A3 (en) * 2012-11-20 2016-05-25 Monier Roofing Components GmbH Roof lining membrane with fabric strip grid
WO2022060679A1 (en) * 2020-09-18 2022-03-24 Gcp Applied Technologies Inc. Reactive cold-applied thermoplastic bond coat

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100119784A1 (en) 2005-09-29 2010-05-13 Northern Elastomeric, Inc. Rubberized roof underlayment
US20080028689A1 (en) * 2006-08-04 2008-02-07 Joseph Sporta Method and assembly for preventing the production of windborne debris
US8062985B2 (en) * 2007-03-26 2011-11-22 Owens Corning Intellectual Capital, Llc Flexible composite multiple layer fire-resistant insulation structure
US20100227103A1 (en) * 2009-03-04 2010-09-09 Mitek Holdings, Inc. Roofing underlayment
US20110104461A1 (en) * 2009-09-28 2011-05-05 Owens Corning Intellectual Capital, Llc Underlayment with slip-resistant surface
JP6715008B2 (en) * 2016-01-14 2020-07-01 フクビ化学工業株式会社 Architectural tarpaulin
CA3019595C (en) 2016-04-01 2021-06-08 Certainteed Gypsum, Inc. Building board having high fastener sealability
CA3086492C (en) 2017-12-19 2023-11-14 Saint-Gobain Adfors Canada, Ltd. A reinforcing layer, a cementitious board, and method of forming the cementitious board
AU2019265889A1 (en) * 2018-05-11 2020-11-26 Owens Corning Intellectual Capital, Llc Reinforced breathable sheet
JP7297205B2 (en) 2018-11-02 2023-06-26 ロータリー株式会社 Breathable cushioning sheet for waterproof construction
WO2020146806A1 (en) * 2019-01-10 2020-07-16 Building Materials Investment Corporation Non-asphaltic coatings, non-asphaltic roofing materials, and methods of making thereof
CA3084635A1 (en) * 2019-06-24 2020-12-24 Owens Corning Intellectual Capital, Llc Roofing underlayment with hydrophobic nonwoven core
US11447962B2 (en) * 2019-10-31 2022-09-20 Mp Global Products, L.L.C. Floor underlayment that allows water flow therethrough in only one direction
CA3162720A1 (en) 2019-11-26 2021-06-03 Bmic Llc Roofing panels with water shedding features
US11407209B2 (en) 2020-06-08 2022-08-09 Bmic Llc Protective packaging membranes as integrated layer in building system components
MX2023002607A (en) * 2020-09-03 2023-05-17 Bmic Llc Adhesive formulations that are free of asphalt or substantially free of asphalt, methods of making the same, and roofing systems utilizing the same.
US11866940B2 (en) 2021-02-10 2024-01-09 Bmic Llc Roofing systems utilizing embedded decorative layer
US11608640B2 (en) 2021-05-25 2023-03-21 Bmic Llc Panelized roofing system
US11761209B2 (en) * 2021-07-09 2023-09-19 Bmic Llc Coatings for roofing materials and related methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040106345A1 (en) * 2002-11-29 2004-06-03 Zafiroglu Dimitri Peter Textured composite material
US20050124240A1 (en) * 2002-12-10 2005-06-09 Porter John F. Breathable, waterproofing, tear-resistant fabric

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3531369A (en) * 1966-06-16 1970-09-29 Union Carbide Corp Glass reinforced thermoplastic sheet
US4073998A (en) * 1977-01-24 1978-02-14 Bay Mills Limited Scrim/foil laminate
US4232620A (en) * 1978-10-16 1980-11-11 Milton Kurz Thermal insulating material
US4282283A (en) * 1979-10-29 1981-08-04 Textured Products, Inc. Laminated fiberglass fabric
US4440816A (en) * 1980-07-14 1984-04-03 Owens-Corning Fiberglas Corporation Rubber-modified asphalt composition
US4301204A (en) * 1980-11-24 1981-11-17 Cooley Incorporated Sheet useful as roofing
DE3150021C1 (en) * 1981-12-17 1987-11-12 Dynamit Nobel Ag, 5210 Troisdorf Multi-layer sealing membrane made of elastomeric plastics and a reinforcement insert
DE3375907D1 (en) 1982-09-24 1988-04-14 Ppg Industries Inc Treated glass fibers for use in an aqueous dispersion to manufacture nonwoven mat
US4585682A (en) * 1983-05-23 1986-04-29 W. R. Grace & Co. Roofing membranes
US4684568A (en) * 1986-04-21 1987-08-04 E. I. Du Pont De Nemours And Company Vapor-permeable liquid-impermeable fabric
DE3633647A1 (en) * 1986-10-03 1988-04-14 Ruetgerswerke Ag BITUMINOESE ROOF RAILWAY
US5230950A (en) * 1988-08-31 1993-07-27 Rohm And Haas Company Extended polymer compositions and textile materials manufactured therewith
ATE124908T1 (en) * 1989-11-17 1995-07-15 Minnesota Mining & Mfg ELASTOMERIC COMPOSITES WITH MICRO-TEXTURED SURFACE LAYERS.
US5164258A (en) * 1990-10-29 1992-11-17 Mitsuzo Shida Multi-layered structure
US5291712A (en) * 1991-08-01 1994-03-08 Curran Laurence E Vapor permeable shingles and underlayment sheeting for a roof covering
CA2116081C (en) * 1993-12-17 2005-07-26 Ann Louise Mccormack Breathable, cloth-like film/nonwoven composite
FR2721320B1 (en) * 1994-06-20 1996-08-14 Atochem Elf Sa Waterproof-breathable film.
US5451619A (en) * 1994-08-19 1995-09-19 Shell Oil Company Asphalt composition containing epoxidized polymers
US6071834A (en) * 1994-11-22 2000-06-06 Martz; Joel D. Dimensionally stabilized breathable membrane
AU5895396A (en) 1995-05-22 1996-12-11 Akzo Nobel N.V. Air barrier and use thereof in roofs
CA2157337C (en) * 1995-06-07 2006-01-31 Debbie O'haver-Smith Improved fibrous mat and mat-faced gypsum board
US5687517A (en) * 1995-09-21 1997-11-18 W. R. Grace & Co.-Conn. Skid-resistant roofing underlayment
US6677258B2 (en) * 1996-05-29 2004-01-13 E. I. Du Pont De Nemours And Company Breathable composite sheet structure and absorbent articles utilizing same
DE19838507C2 (en) * 1998-08-25 2002-04-25 Borealis Gmbh Schwechat Mannsw Extrusion coated nonwoven webs
US6191221B1 (en) * 1998-09-29 2001-02-20 Polymer Group, Inc. Breathable film compositions and articles and method
US6308482B1 (en) * 1999-03-15 2001-10-30 Mark C. Strait Reinforced roof underlayment and method of making the same
US6770578B2 (en) * 1999-06-07 2004-08-03 Bradford Industries, Inc. Laminated textile fabrics for use in air holding vehicle restraint systems
US6239046B1 (en) * 1999-06-07 2001-05-29 Bradford Industries, Inc. Polysiloxane coated fabrics for use in air bags
US6734123B2 (en) * 1999-06-07 2004-05-11 Bradford Industries, Inc. Polyurethane coated fabrics for use in air-holding vehicle restraint systems
US6740607B2 (en) * 1999-06-07 2004-05-25 Bradford Industries, Inc. Substrate with stretch and heat sealing properties to make a multidirectional restraint module design
US6458724B1 (en) * 1999-06-07 2002-10-01 Bradford Industries, Inc. Coated multi-layered woven textile fabrics for use in air-holding vehicle restraint system
US6698458B1 (en) * 1999-06-17 2004-03-02 Milliken & Company Low permeability airbag cushions having film coatings of extremely low thickness
US6701971B1 (en) * 1999-06-17 2004-03-09 Mililken & Company Low permeability side curtain airbag cushions having extremely low coating levels
CA2379619A1 (en) * 1999-09-27 2001-04-05 E.I. Du Pont De Nemours And Company Extrusion coating process
US6479154B1 (en) * 1999-11-01 2002-11-12 Kimberly-Clark Worldwide, Inc. Coextruded, elastomeric breathable films, process for making same and articles made therefrom
US6500560B1 (en) * 1999-11-30 2002-12-31 Elk Corporation Of Dallas Asphalt coated structural article
US6990779B2 (en) * 1999-11-30 2006-01-31 Elk Premium Building Products, Inc. Roofing system and roofing shingles
US6586353B1 (en) * 1999-11-30 2003-07-01 Elk Corp. Of Dallas Roofing underlayment
US6350709B1 (en) * 1999-11-30 2002-02-26 Bradford Industries, Inc. Heat sealable coated textile fabric for inflatable vehicle restraint systems
US6641896B2 (en) * 2000-12-21 2003-11-04 The Garland Company, Inc. Water resistant fire retardant roof underlayment sheet material
US6797356B2 (en) * 2001-02-27 2004-09-28 Cgi Silvercote Inc. Reflective insulation
JP2002293973A (en) 2001-03-30 2002-10-09 Tokuyama Corp Porous polypropylene film and method for producing the same
US6645887B2 (en) * 2001-05-17 2003-11-11 Burlington Industries, Inc. Durable waterproof breathable laminate
EP1857497B1 (en) * 2002-04-12 2008-08-13 The Procter and Gamble Company Liquid impermeable, moisture vapour permeable layers and films comprising thermoplastic hydrophilic polymeric compositions and having improved strength
US6864195B2 (en) * 2002-08-15 2005-03-08 Bfs Diversified Products, Llc Heat weldable roofing membrane
US7202322B2 (en) * 2002-11-08 2007-04-10 Noveon, Inc. Heat resistant high moisture vapor transmission thermoplastic polyurethane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040106345A1 (en) * 2002-11-29 2004-06-03 Zafiroglu Dimitri Peter Textured composite material
US20050124240A1 (en) * 2002-12-10 2005-06-09 Porter John F. Breathable, waterproofing, tear-resistant fabric

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010009359A1 (en) * 2008-07-17 2010-01-21 E. I. Du Pont De Nemours And Company Roof underlayment
EP2256266A1 (en) * 2009-05-22 2010-12-01 Caplast Kunststoffverarbeitungs GmbH Roof underlay for a sloping roof
WO2011003052A1 (en) * 2009-07-02 2011-01-06 Fiberweb, Inc. Roofing underlayment
EP2733277A3 (en) * 2012-11-20 2016-05-25 Monier Roofing Components GmbH Roof lining membrane with fabric strip grid
WO2022060679A1 (en) * 2020-09-18 2022-03-24 Gcp Applied Technologies Inc. Reactive cold-applied thermoplastic bond coat
GB2608348A (en) * 2020-09-18 2022-12-28 Gcp Applied Tech Inc Reactive cold-applied thermoplastic bond coat

Also Published As

Publication number Publication date
US8323770B2 (en) 2012-12-04
US20060286347A1 (en) 2006-12-21
WO2006138053A3 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
US8323770B2 (en) Breathable non-asphaltic roofing underlayment having tailorable breathability
CA2544568C (en) Breathable non-asphaltic roofing underlayment
US7786028B2 (en) Nonwoven polymeric fiber mat composites and method
US7148160B2 (en) Water vapor breathable, liquid water resistant material
US8091310B2 (en) Sheet-like building and construction materials with high wet slip resistance and high water penetration resistance, and methods of making same
US7977259B2 (en) Roofing underlayment and method of producing same
CA2418498C (en) Multilayer slip resistant sheet material
US7803725B2 (en) Carrier membrane, coated membrane composite, and method
US20060199453A1 (en) Modified bitumen and thermoplastic composite roofing membrane
US20120096791A1 (en) Roofing Underlayment
US9415563B2 (en) Anti-skid roof underlayment
WO2006080907A1 (en) Water vapor breathable, liquid water resistant material
US20040127120A1 (en) High strength polymeric composite laminate for use as a roofing underlayment
US11597185B2 (en) Fire resistant non-breathable roofing underlayment
US11629498B2 (en) Reinforced breathable sheet
GB2355430A (en) Breathable building membrane
JPH1150609A (en) Substrate member of roof
JP3788243B2 (en) Roof base material
JP3994311B2 (en) Roofing material
JP2005113678A (en) Roofing base material having adhesive surface
EP1990478B1 (en) A building roof structure
EP1601526B1 (en) Multilayer slip resistant sheet material
WO2022094383A1 (en) Self-adhered roofing systems and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06771532

Country of ref document: EP

Kind code of ref document: A2