WO2006126598A1 - Cis系薄膜太陽電池の高抵抗バッファ層・窓層(透明導電膜)連続製膜方法及びその連続製膜方法を実施するための連続製膜装置 - Google Patents

Cis系薄膜太陽電池の高抵抗バッファ層・窓層(透明導電膜)連続製膜方法及びその連続製膜方法を実施するための連続製膜装置 Download PDF

Info

Publication number
WO2006126598A1
WO2006126598A1 PCT/JP2006/310371 JP2006310371W WO2006126598A1 WO 2006126598 A1 WO2006126598 A1 WO 2006126598A1 JP 2006310371 W JP2006310371 W JP 2006310371W WO 2006126598 A1 WO2006126598 A1 WO 2006126598A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
buffer layer
solar cell
window layer
Prior art date
Application number
PCT/JP2006/310371
Other languages
English (en)
French (fr)
Inventor
Katsumi Kushiya
Original Assignee
Showa Shell Sekiyu K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu K.K. filed Critical Showa Shell Sekiyu K.K.
Priority to EP06746802.5A priority Critical patent/EP1898469A4/en
Priority to US11/915,423 priority patent/US8093096B2/en
Publication of WO2006126598A1 publication Critical patent/WO2006126598A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • C23C16/306AII BVI compounds, where A is Zn, Cd or Hg and B is S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a continuous film forming method for continuously forming a high-resistance buffer layer and a window layer (transparent conductive film) of a CIS-based thin film solar cell by a MOCVD method, and the continuous film forming method.
  • the present invention relates to a continuous film forming apparatus.
  • Patent Document 1 discloses a high-resistance buffer layer on a light-absorbing layer made of a CuInSe thin film.
  • the solution growth method for film formation involves immersing the CuInSe thin film light absorption layer in the solution.
  • a high-quality heterojunction is formed with the CuInSe thin film light absorption layer by etching or selective cleaning effect on the surface of the thin film light absorption layer.
  • Patent Document 2 a zinc mixed crystal compound containing oxygen, ion and hydroxyl group chemically grown on a p-type light absorption layer, that is, zinc (0, S, OH) x is also included.
  • a manufacturing method is disclosed that can be used as a high-resistance buffer layer to obtain a thin-film solar cell with high conversion efficiency equivalent to that obtained when a CdS layer is used as a buffer layer.
  • Patent Document 2 discloses a manufacturing method effective for eliminating the CdS buffer layer, which is understood to be essential for a manufacturing method of a thin film solar cell with high conversion efficiency.
  • Patent Document 1 US Patent No. 4611091 (Class 136Z260, issued September 9, 1986)
  • Patent Document 2 Japanese Patent No. 3249342 (JP-A-8-330614)
  • the present invention is for solving the above-mentioned problems, and the object of the present invention is to achieve output characteristics (conversion efficiency) equivalent to that of a conventional film growth method using a solution growth method, by a film formation method using a MOCVD method. , Open circuit voltage, short circuit current density, fill factor), and simplify manufacturing method, reduce raw material cost and waste disposal cost, and greatly reduce manufacturing cost. Means for solving the problem
  • the present invention includes a glass substrate, a metal back electrode layer, a p-type conductive CIS-based (CuInSe-based) chalcopyrite multicomponent compound semiconductor thin film, a transparent high-resistance sub-layer
  • the buffer is formed on the light absorption layer of a semi-finished solar cell substrate in which a metal back electrode layer and a light absorption layer are formed in this order on the glass substrate.
  • a high-resistance buffer layer / window layer transparent conductive film
  • the present invention has a structure in which the buffer layer and the window layer have a structure in which a plurality of preheating steps and film forming steps are connected in-line by a metal organic chemical vapor deposition (MOC VD) method.
  • MOC VD metal organic chemical vapor deposition
  • the buffer layer and the window layer are adjacent to each other in the same MOCVD film forming apparatus, and are continuously formed by independent buffer layer forming process and window layer forming process.
  • This is a method for continuously forming a high-resistance buffer layer / window layer (transparent conductive film) of the CIS-based thin-film solar cell described in (1) above.
  • the film forming step of the buffer layer and the window layer uses a metal organic compound of zinc and pure water as a film forming raw material, and these are filled in a bubbler and the like, and helium, argon Inactivity High-resistance buffer layer and window layer (transparent conductive film) of CIS-based thin-film solar cell as described in (2) or (3) above. It is a continuous film forming method.
  • the film forming step of the window layer includes an organometallic compound of zinc and pure water (H 2 O).
  • the organometallic compound of zinc is dimethyl zinc or jetyl zinc, preferably jetyl zinc (DEZ), which is filled in a bubbler, and helium or argon.
  • the CIS thin film solar cell according to (4) or (5) described above is supplied to the MOCVD film forming apparatus in the window layer forming process by bubbling and entraining an inert gas such as Resistance buffer layer / window layer (transparent conductive film) This is a continuous film forming method.
  • the present invention relates to the dopant force described in the above (5) used for adjusting the resistivity, hydrogenated or gas produced as an organometallic compound, or volatile (or high vapor pressure).
  • CIS-based thin films that are liquids, each diluted with an inert gas such as helium or argon, mixed with a carrier gas accompanied by manufacturing raw materials, and supplied into the MOCVD film forming apparatus in the film forming process of the window layer
  • the buffer layer is in the pre-heating step before step a buffer layer forming step, in a vacuum of up to 10- 3 Torr, a temperature range of 100 to 200 ° C, preferably Heated to 120 to 160 ° C, and immediately after reaching that temperature, it is transported to the buffer layer forming step maintained in the temperature range of 120 to 160 ° C.
  • a buffer layer forming step Using water as a film-forming raw material, a film thickness containing a small amount of zinc hydroxide at a molar ratio of 0.5 to 0.7 DEZ / HO 2
  • the window layer is a preheating step before the window layer forming step, and the substrate is placed in a temperature range of 140 to 250 ° C. in a vacuum up to lO or r, preferably Is heated to 160-190 ° C, and immediately after reaching that temperature, it is transported to the window layer forming process maintained in the temperature range of 160-190 ° C.
  • the sheet resistance is 10 ⁇ or less.
  • a low-resistance ZnO-based transparent conductive film having a transmittance of 85% or more and a film thickness in the range of 0.5 to 2.5 m, preferably in the range of 1 to 1.5 m is formed (1
  • the present invention includes a glass substrate, a metal back electrode layer, a p-type conductive CIS-based (CuInSe-based) chalcopyrite multicomponent compound semiconductor thin film, a transparent and high-resistance layer
  • the buffer layer and the window layer are sequentially formed in a laminated structure by the MOCVD method.
  • the substrate introduction part for introducing the solar cell semi-finished product substrate, the solar A preheating chamber for preheating the battery semi-finished substrate, a high resistance buffer layer deposition chamber for forming a high resistance buffer layer on the preheated solar cell semi-finished substrate, and the high resistance buffer layer are formed.
  • Dry and spare solar cell substrate Vacuum drying chamber / preheating chamber for heating, window layer film forming chamber for forming a window layer on the dried and preheated semi-finished solar cell substrate, solar cell on which the buffer layer and the window layer are formed
  • High-resistance buffer layer of CIS-based thin-film solar cell for carrying out the method 'window layer (transparent conductive film) continuous film forming device.
  • the present invention provides the high-resistance buffer layer / window layer (transparent conductive film) continuous film-forming apparatus for the CIS-based thin film solar cell according to (10), wherein the high-resistance buffer layer is formed.
  • the room is Jechil Zinc and pure water are used as raw materials for film formation. These are filled into a bubbler, etc., and an inert gas such as helium or argon is used as a carrier gas to pass through the bubbler and supplied onto a heated solar cell semi-finished product substrate.
  • a ZnO thin film having a thickness of 2 to 50 nm is formed by MOCVD, and a CIS-based thin film solar cell for carrying out the continuous film forming method described in (4) and (8) above.
  • High resistance buffer layer / window layer transparent conductive film
  • the present invention relates to the high resistance buffer layer / window layer (transparent conductive film) continuous film forming apparatus of the CIS-based thin film solar cell according to (10), wherein the window layer film forming chamber includes
  • the resistivity is adjusted by using an organometallic compound of zinc and pure water as a film-forming raw material, filling them into a bubbler, and using an inert gas such as helium or argon as a carrier gas through the bubbler. Therefore, a group III element in the periodic table, for example, any one of boron, aluminum, indium, and gallium or a combination thereof is used as a dopant in the method described in the above (7), and the MOCVD method is used.
  • a ZnO-based transparent conductive film is formed, and a high-resistance buffer layer / window layer (transparent conductive film) of a CIS-based thin-film solar cell for carrying out the continuous film-forming method described in (5) above It is a membrane device.
  • the film formation method by the MOCVD method of the present invention can obtain output characteristics (conversion efficiency, open-circuit voltage, short-circuit current density, fill factor) equivalent to those of the conventional film formation method by the solution growth method, High resistance buffer layer 1D and window layer (transparent conductive film) 1E are continuously formed by the MOCVD method, simplifying the manufacturing method and reducing raw material costs and waste disposal costs. Can be greatly reduced.
  • the present invention relates to a method for continuously forming a high resistance buffer layer / window layer (transparent conductive film) of a CIS-based thin film solar cell and a continuous film forming apparatus for carrying out the continuous film forming method.
  • the CIS thin film solar cell is composed of a glass substrate 1A (thickness 1 to 3 mm) and a metal back electrode layer 1B (thickness 1 to 2 / ⁇ ⁇ molybdenum). , Titanium, etc.), vertical CIS light absorption layer 1C, high resistance buffer layer 1D, n-type window layer (transparent conductive film) 1E This is a pn heterojunction device with a substrate structure stacked in this order.
  • the light-absorbing layer has a p-type conductivity Cu-III VI group chalcopyrite structure with a thickness of 1 to 3 m.
  • CuInSe Cu (InGa) Se
  • Cu (InGa) (SSe) Cu (InGa) (SSe), etc.
  • the p-type CIS light absorption layer 1C includes a selenium-containing CIS light absorption layer, a sulfide-based CIS light absorption layer, and a sulfur / selenium-containing CIS light absorption layer.
  • the selenide-based CIS-based light absorption layer is made of CuInSe, Cu (InGa) Se, or CuGaSe, and
  • the sulfide-based CIS-based light absorption layer is made of CuInS, Cu (InGa) S, CuGaS, and the sulfur
  • Selenide-based CIS-based light absorption layers are Culn (SSe), Cu (InGa) (SSe), CuGa (SSe).
  • the high-resistance buffer layer / window layer (transparent conductive film) continuous film forming method is a solar cell semi-finished product additional substrate A (hereinafter referred to as a metal back electrode layer 1B and a light absorption layer 1C) formed in this order on a glass substrate 1A.
  • This is a method in which a high-resistance buffer layer 1D and a window layer (transparent conductive film) 1E are continuously formed on the substrate by MOCVD.
  • the high-resistance buffer layer 1D is a transparent, high-resistance (10 4 ⁇ 'cm or more) and intrinsic acid-zinc thin film
  • the window layer (transparent conductive film) 1E has a wide forbidden band with n-type conductivity. It is a semiconducting thin film that is transparent, has low resistance, and has a thickness of 0.5 to 2.5 m and has a strength of acid and zinc.
  • a high-resistance buffer layer is formed by a solution growth method in which solution force is also chemically grown on the light absorption layer 1C of the substrate A. 1D is grown, and then a window layer (transparent conductive film) 1E is grown thereon in another process.
  • the film formation method by the MOCVD method of the present invention uses the high resistance buffer layer 1D on the light absorption layer 1C of the substrate A by MOCVD method using jetyl zinc and pure water as raw materials.
  • a low-resistance window layer (transparent conductive film) using the same raw material in the same MOCVD deposition apparatus and using diborane-powered boron as a dopant. Grow.
  • the buffer layer 1D is formed on the light absorption layer 1C of the solar cell semi-finished product substrate A formed on the glass substrate 1A in the order of the metal back electrode layer 1B and the light absorption layer 1C.
  • This is a continuous film forming method in which the film is continuously formed in a laminated structure in the order of the window layer 1E.
  • the buffer layer 1D and the window layer 1E are manufactured by a metal organic chemical vapor deposition (MOCVD) method in which a plurality of preheating steps and film forming steps are connected in-line.
  • MOCVD metal organic chemical vapor deposition
  • the buffer layer 1D and the window layer 1E are successively formed in the same MOCVD film forming apparatus in an adjacent and independent buffer layer forming process and window layer forming process.
  • an organometallic compound of zinc and pure water are used as film forming raw materials, and these are filled in a bubbler or the like, and an inert gas such as helium or argon is used. It is used as a carrier gas that passes through the bubbler and is deposited by MOCVD.
  • the organometallic compound of zinc is dimethyl zinc or jetyl zinc, preferably jetyl zinc, which is filled in a bubbler, and an inert gas such as helium or argon is bubbled there and entrained.
  • the buffer layer 1D and the window layer 1E are supplied to the film forming step (in the MOCVD film forming apparatus). Dimethyl zinc and jetyl zinc are liquids at room temperature.
  • the buffer layer is a pre-heating step before step Roh Ffa layer forming step, 10- 3 Torr or in a vacuum at a temperature range of 100 to 200 ° C, preferably, 120 to 160 ° Heated to C, and immediately after reaching that temperature, it was transported to the buffer layer film forming process maintained in the temperature range of 120 to 160 ° C.
  • jetyl zinc and pure water were used as film forming raw materials As a ZnO film with a DEZ / HO molar ratio of 0.5 to 0.9 and containing a small amount of zinc hydroxide in the range of 2 to 50 nm A thin film is formed.
  • any one of a group III element of the periodic table for example, boron, aluminum, indium, gallium, or a combination thereof is used.
  • dopants any one of a group III element of the periodic table, for example, boron, aluminum, indium, gallium, or a combination thereof is used.
  • the dopant used to adjust the resistivity is a gas or a volatile (or high vapor pressure) liquid produced as a hydrogenated or organometallic compound, each of which is an inert gas such as helium or argon. It is diluted and mixed with a carrier gas accompanied by manufacturing raw materials and supplied to the window layer forming process (inside the MOCVD film forming apparatus).
  • the window layer is a pre-heating step before steps window layer formation step, 10 3 up Torr in vacuum, the temperature range of 140 to 250 ° C the substrate, preferably, 160 to 190 ° Heated to C, and immediately after reaching that temperature, it was transported to a window layer film forming process maintained in a temperature range of 160 to 190 ° C.
  • window layer film forming process jetyl zinc and pure water were used as film forming raw materials.
  • the sheet resistance is 10 ⁇ or less and the transmittance is 85
  • a low-resistance ZnO-based transparent conductive film having a thickness of at least% and a thickness in the range of 0.5 to 2.5 m, preferably in the range of 1 to 1.5 m is formed.
  • each film forming method is as follows.
  • MOCVD method After pattern 2 is formed, high resistance buffer layer is formed by MOCVD method Solution growth method 1: Pattern 2 is formed after high resistance buffer layer is formed by solution growth method Solution growth method 2: Solution growth is performed after pattern 2 is formed High resistance buffer layer is formed by the method [0031]
  • Table 1 shows a CIS thin film solar cell using a high-resistance buffer layer ID formed by the MOCVD method of the present invention and a CIS using a high-resistance buffer layer ID formed by a conventional solution growth method.
  • FIG. 6 is a comparison diagram of output characteristics with a thin-film solar cell. When a film is formed by the MOCVD method of the present invention, output characteristics equivalent to those obtained by a conventional solution growth method can be obtained.
  • the window layer was formed by MOCVD under the same conditions.
  • the film formation method by the MOCVD method of the present invention can obtain output characteristics (conversion efficiency, open-circuit voltage, short-circuit current density, fill factor) equivalent to those of the conventional film formation method by the solution growth method, and high performance.
  • Resistive buffer layer 1D and window layer (transparent conductive film) 1E are continuously formed by the MOCVD method, which simplifies the manufacturing method and costs for raw materials used to form a high-resistance buffer layer by the conventional solution growth method In addition, since the waste disposal cost can be reduced, the manufacturing cost can be greatly reduced.
  • Fig. 3 shows the relationship between IIZVI group ratio and fill factor [FF] during the formation of a high-resistance buffer layer of a CIS-based thin-film solar cell using the high-resistance buffer layer 1D formed by the MOCVD method of the present invention
  • the substrate temperature is 160 ° C and the film thickness is 5 nm.
  • the fill factor [FF] needs to be 0.6 to 0.7, and therefore IIZVI during the formation of the high resistance buffer layer 1D.
  • the group ratio eg, DEZ / HO molar ratio
  • the film was formed by the MOCVD method under the same conditions.
  • the element [FF] is required to be 0.6 to 0.7. Therefore, the substrate temperature when the high-resistance buffer layer 1D is formed is 100 ° C to 250 ° C, preferably 150 ° C. The range of C to 220 ° C proved to be optimal. In all cases, the window layer was formed by the MOCVD method under the same conditions.
  • the film thickness [nm] of the high-resistance buffer layer 1D is optimally in the range of 2 nm to 50 nm.
  • the window layer has the same conditions in all cases.
  • a film was formed by MOCVD.
  • FIG. 6 shows the relationship between the film thickness and the conversion efficiency when the high-resistance buffer layer 1D is formed using the high-resistance buffer layer 1D formed by the MOCVD method of the present invention (substrate temperature 190 ° C).
  • the film thickness [nm] of the high-resistance buffer layer 1D is optimally in the range of 2 nm to 50 nm. In all cases, the window layer was formed by MOC VD under the same conditions.
  • the metal back electrode layer It is necessary to provide a pattern formation step after film formation, after light absorption layer film formation, after high resistance buffer layer film formation, or after window layer (transparent conductive film) film formation.
  • the high resistance buffer layer / window layer (transparent conductive film) continuous film forming apparatus 2 is a solar cell semi-finished product substrate (hereinafter referred to as a substrate) in which a metal back electrode layer 1B and a light absorption layer 1C are formed in this order on a glass substrate 1A.
  • a substrate a solar cell semi-finished product substrate
  • This is a device that continuously forms a high-resistance buffer layer and window layer (transparent conductive film) by the MOCVD method, as shown in Fig. 2.
  • a preheating chamber 4 for preheating the solar cell semi-finished substrate 4 for preheating the solar cell semi-finished substrate 4, a high resistance buffer layer deposition chamber 5 for forming a high resistance buffer layer on the preheated solar cell semi-finished substrate 5, and the high resistance buffer Vacuum drying chamber / preheating chamber 6 for drying and pre-heating the solar cell semi-finished substrate with the layer formed thereon, window layer forming a window layer on the dried and pre-heated semi-finished solar cell substrate Film chamber 7, solar cell semi-finished product in which the buffer layer and window layer are formed Consisting substrate was taken out portion 9 for taking out a solar cell sub-product cooling chamber 8 and the buffer layer and the window layer is a film for cooling the plate.
  • a solar cell semi-finished product substrate A (hereinafter referred to as substrate A) in which a metal back electrode layer 1B and a light absorption layer 1C were formed in this order on a glass substrate 1A was mounted on a hot plate HP.
  • substrate A a solar cell semi-finished product substrate A
  • the substrate A is carried into the preheating chamber 4 and preheated to a certain temperature by the heater H.
  • the substrate A is a high resistance buffer layer. It is carried into the film forming chamber 5 and a high resistance buffer layer 1D is formed by MOCVD.
  • the substrate A is carried into a vacuum drying chamber / preheating chamber 6 where vacuum drying and preheating are performed.
  • the substrate A is carried into the window layer film forming chamber 7, and a window layer (transparent conductive film) 1E is formed to a predetermined film thickness by MOCVD.
  • the substrate A is carried into the cooling chamber 8 and cooled.
  • the substrate A is carried into the substrate take-out part 9, taken out from the hot plate HP, and on the glass substrate 1A, the metal back electrode layer 1B, the light absorption layer 1C, the high-resistance buffer layer 1D, and the window layer.
  • Transparent conductive film A CIS-based thin film solar cell formed in the order of 1E is formed.
  • the high-resistance buffer layer 1D is formed in the preheating chamber 4 in front of the buffer layer deposition chamber 5 by a vacuum pump P with a mechanical booster in a vacuum of 10 to 3 Torr. It is heated to a temperature range of 0 ° C, preferably 120 to 160 ° C, and immediately after reaching that temperature, it is transferred to the buffer layer deposition chamber 5 maintained in the temperature range of 120 to 160 ° C, where Then, using a small amount of zinc hydroxide of DEZZH 0 molar ratio 0.5 to 0.9, using jetyl zinc and pure water as film forming raw materials
  • a ZnO thin film containing 2 to 50 nm in thickness is formed.
  • deposition of the window layer 1E is a vacuum drying chamber and the preheating chamber 6 of the front chamber of the window layer formation chamber 7, the vacuum pump P with mechanical two local booster, a vacuum of up to 10- 3 Torr
  • the substrate is heated to a temperature range of 140 to 250 ° C, preferably 160 to 190 ° C, and immediately after the temperature is reached, the temperature is maintained in the temperature range of 160 to 190 ° C.
  • diborane gas diluted with an inert gas to a concentration of 1 to 5 Vol% is supplied into the raw material piping using the zinc zinc and pure water as the film-forming raw materials.
  • the sheet resistance is 10 ⁇ / mouth or less, the transmittance is 85% or more, and the film thickness is in the range of 0.5 to 2.5 m, preferably 1 to 1.5 m.
  • a ZnO-based transparent conductive film in the range is formed.
  • Window layer (transparent conductive film) 1E is a semiconductor thin film having n-type conductivity, wide forbidden band width, low resistance, and 0.5 to 3 m thickness of zinc oxide.
  • FIG. 1 is a schematic configuration diagram of a high resistance buffer layer'window layer (transparent conductive film) continuous film forming method of the present invention. is there.
  • ⁇ 2 It is a schematic configuration diagram of a high resistance buffer layer'window layer (transparent conductive film) continuous film forming apparatus of the present invention.
  • FIG. 3 Relationship between IIZVI group ratio and fill factor [FF] during CIS thin film solar cell high resistance buffer layer deposition using high resistance buffer layer 1D deposited by MOCVD method of the present invention (substrate temperature)
  • FIG. 3 is a view showing a temperature of 160 ° C. and a film thickness of 5 nm.
  • FIG. 5 CIS-based thin film using high resistance buffer layer 1D formed by MOCVD method of the present invention.
  • Film thickness and fill factor [FF] high substrate temperature 160 ° C, when high resistance buffer layer of solar cell is formed
  • II / VI group ratio for example, DEZ / HO molar ratio
  • a Solar cell semi-finished product (multi-layer additional substrate)

Abstract

 MOCVD法により高抵抗バッファ層及び窓層(透明導電膜)を連続して製膜して、従来の溶液成長法による製膜方法と同等の出力特性を得ると共に、製膜方法及び装置を簡素化し、原材料費及び廃棄物処理費を削減して、製造コストを大幅に削減する。  ガラス基板1A上に金属裏面電極層1B、光吸収層1Cの順に製膜した太陽電池半製品基板の光吸収層1C上に、高抵抗バッファ層1D、窓層1Eの順序でMOCVD法により連続的に積層構造で製膜するので、製膜方法及び装置が簡素化され、原材料費及び廃棄物処理費を削減することができる。

Description

明 細 書
CIS系薄膜太陽電池の高抵抗バッファ層 ·窓層 (透明導電膜)連続製膜 方法及びその連続製膜方法を実施するための連続製膜装置
技術分野
[0001] 本発明は、 CIS系薄膜太陽電池の高抵抗バッファ層及び窓層(透明導電膜)を M OCVD法により連続的に製膜する連続製膜方法及びその連続製膜方法を実施する ための連続製膜装置に関する。
背景技術
[0002] CIS系薄膜太陽電池は広範囲に実用化可能であるとみなされ、多くの刊行物の中 でも、特許文献 1には、 CuInSe薄膜からなる光吸収層上に高抵抗バッファ層として
2
、硫ィ匕カドミウム (CdS)層を成長させることが高い変換効率の薄膜太陽電池を得るた めに必要であることが開示され、同特許文献 1に記載された溶液力 化学的に CdS 薄膜を製膜する溶液成長法は、 CuInSe薄膜光吸収層を溶液中へ浸漬すること〖こ
2
より、ヘテロ接合界面の形成と共に、薄膜光吸収層表面のエッチング又は選択的な クリーニング効果等により、 CuInSe薄膜光吸収層と高品質なヘテロ接合を形成し、
2
且つシャント抵抗を高める効果を有するとみなしている。高抵抗バッファ層として、硫 化カドミウム (CdS)層を成長させる場合は、毒性の高 、Cdを含む廃液を最小にする 努力が実行されている力 固体の CdSとアルカリ性廃液が大量に生成されるため、廃 棄物処理コストが太陽電池製造コスト低減の阻害要因であった。
[0003] また、特許文献 2には、 p形光吸収層上に溶液力も化学的に成長した酸素、ィォゥ 及び水酸基を含んだ亜鉛混晶化合物、即ち、 Zn (0, S, OH)xを高抵抗バッファ層 として使用することで、 CdS層をバッファ層とした場合と同等の高い変換効率の薄膜 太陽電池を得ることが出来る製造方法が開示されている。前記特許文献 2は、高い 変換効率の薄膜太陽電池の製造方法にぉ 、て必須と理解されて 、る CdSバッファ 層を排除するために有効な製造方法を開示しているが、この場合も固体の ZnOZZ nSの混合物とアルカリ性廃液が大量に生成し、廃棄物処理コストが太陽電池製造コ スト低減の阻害要因であった。 [0004] 特許文献 1 :米国特許第 4611091号明細書(クラス 136Z260、 1986年 9月 9日発 行)
特許文献 2:特許第 3249342号公報 (特開平 8 - 330614号公報)
発明の開示
発明が解決しょうとする課題
[0005] 本発明は前記問題点を解消するためのもので、本発明の目的は、 MOCVD法によ る製膜方法により、従来の溶液成長法による製膜方法と同等の出力特性 (変換効率 、開放電圧、短絡電流密度、曲線因子)を得ると共に、製造方法の簡素化、原材料 費及び廃棄物処理費を削減して、製造コストを大幅に削減することである。 課題を解決するための手段
[0006] (1)本発明は、ガラス基板、金属裏面電極層、 p形の導電性を有し CIS系(CuInSe 系)カルコパイライト多元化合物半導体薄膜からなる光吸収層、透明で高抵抗の亜
2
鉛混晶化合物半導体薄膜からなるバッファ層、 n形の導電性を有し透明で低抵抗の 酸ィ匕亜鉛 (ZnO)系透明導電膜からなる窓層の順に積層されたサブストレート構造の pnヘテロ接合デバイスである CIS系薄膜太陽電池の製造方法にぉ 、て、前記ガラス 基板上に金属裏面電極層、光吸収層の順に製膜した太陽電池半製品基板の光吸 収層上に、前記バッファ層、前記窓層の順序で連続的に積層構造で製膜する CIS系 薄膜太陽電池の高抵抗バッファ層 ·窓層 (透明導電膜)連続製膜方法である。
[0007] (2)本発明は、前記バッファ層及び前記窓層を、有機金属化学的気相成長 (MOC VD)法により、複数の予備加熱工程と製膜工程がインライン式に接続した構造の M OCVD製膜装置内で連続的に製膜する前記(1)に記載の CIS系薄膜太陽電池の 高抵抗バッファ層 ·窓層 (透明導電膜)連続製膜方法である。
[0008] (3)本発明は、前記バッファ層及び前記窓層を夫々、同一の MOCVD製膜装置内 で隣接、且つ独立したバッファ層製膜工程と窓層製膜工程で連続的に製膜する前 記( 1)に記載の CIS系薄膜太陽電池の高抵抗バッファ層 ·窓層 (透明導電膜)連続 製膜方法である。
[0009] (4)本発明は、前記バッファ層及び前記窓層の製膜工程が、亜鉛の有機金属化合 物と純水を製膜原料とし、これらをバブラ一等に充填し、ヘリウム、アルゴン等の不活 性ガスをバブラ一内に通すキャリアガスとして使用し、 MOCVD法により製膜する前 記 (2)又は(3)に記載の CIS系薄膜太陽電池の高抵抗バッファ層 ·窓層 (透明導電 膜)連続製膜方法である。
[0010] (5)本発明は、前記窓層の製膜工程が、亜鉛の有機金属化合物と純水 (H O)を
2 製膜原料とし、これらをバブラ一等に充填し、ヘリウム、アルゴン等の不活性ガスをバ ブラー内に通すキャリアガスとして使用し、抵抗率を調整するために、周期律表の III 族元素、例えば、ボロン、アルミニウム、インジウム、ガリウムの何れか 1つ又はこれら の組合せ、をドーパントとして使用する MOCVD法により製膜する前記(2)又は(3) に記載の CIS系薄膜太陽電池の高抵抗バッファ層 ·窓層 (透明導電膜)連続製膜方 法である。
[0011] (6)本発明は、前記亜鉛の有機金属化合物が、ジメチル亜鉛、ジェチル亜鉛であり 、望ましくは、ジェチル亜鉛 (DEZ)であり、これをバブラ一内に充填し、ヘリウム、ァ ルゴン等の不活性ガスをそこで泡立てて、同伴させて、前記窓層の製膜工程におけ る MOCVD製膜装置内へ供給する前記 (4)又は(5)に記載の CIS系薄膜太陽電池 の高抵抗バッファ層 ·窓層 (透明導電膜)連続製膜方法である。
[0012] (7)本発明は、前記抵抗率を調整するために使用する前記(5)に記載のドーパント 力 水素化又は有機金属化合物として製造された気体又は揮発性 (又は蒸気圧の 高い)液体であり、その各々をヘリウム、アルゴン等の不活性ガスで希釈し、製造原料 を同伴するキャリアガスと混合させて、前記窓層の製膜工程における MOCVD製膜 装置内へ供給する CIS系薄膜太陽電池の高抵抗バッファ層'窓層 (透明導電膜)連 続製膜方法である。
[0013] (8)本発明は、前記バッファ層が、バッファ層製膜工程の前工程の予備加熱工程 で、 10— 3Torrまでの真空中で、 100〜200°Cの温度範囲、望ましくは、 120〜160°C に加熱し、その温度に到達後直ちに、 120〜160°Cの温度範囲に保持されたバッフ ァ層製膜工程に搬送し、バッファ層製膜工程で、ジェチル亜鉛と純水を製膜原料とし て、 0. 5〜0. 7DEZ/H Oモル比の微量な水酸化亜鉛を含んだ膜厚 2
2 〜50nmの 範囲の ZnO薄膜を製膜する前記(1)乃至 (4)の何れか 1つに記載の CIS系薄膜太 陽電池の高抵抗バッファ層 ·窓層 (透明導電膜)連続製膜方法である。 [0014] (9)本発明は、前記窓層が、窓層製膜工程の前工程の予備加熱工程で、 lO or rまでの真空中で、基板を 140〜250°Cの温度範囲、望ましくは、 160〜190°Cに加 熱し、その温度に到達後直ちに、 160〜190°Cの温度範囲に保持された窓層製膜 工程に搬送し、窓層製膜工程で、ジェチル亜鉛と純水を製膜原料として、不活性ガ スで 1〜 5 Vol%の濃度に希釈されたジボランガスを原料配管内に供給し、ジボラン 力 のボロンをドーピングすることにより、シート抵抗が 10 ΩΖ口以下、透過率が 85 %以上、膜厚が 0. 5〜2. 5 mの範囲の、望ましくは、 1〜1. 5 mの範囲の低抵 抗の ZnO系透明導電膜を製膜する前記(1)乃至(5)の何れか 1つに記載の CIS系 薄膜太陽電池の高抵抗バッファ層 ·窓層 (透明導電膜)連続製膜方法である。
[0015] (10)本発明は、ガラス基板、金属裏面電極層、 p形の導電性を有し CIS系(CuInS e系)カルコパイライト多元化合物半導体薄膜からなる光吸収層、透明で高抵抗の
2
亜鉛混晶化合物半導体薄膜からなるバッファ層、 n形の導電性を有し透明で低抵抗 の酸ィ匕亜鉛 (ZnO)系透明導電膜からなる窓層の順に積層されたサブストレート構造 の pnヘテロ接合デバイスである CIS系薄膜太陽電池の高抵抗バッファ層 ·窓層(透 明導電膜)連続製膜装置であって、前記ガラス基板上に金属裏面電極層、光吸収層 の順に製膜した太陽電池半製品基板の光吸収層上に、前記バッファ層、前記窓層 の順序で MOCVD法により連続的に積層構造で製膜するもので、太陽電池半製品 基板を導入する基板導入部、前記太陽電池半製品基板を予備加熱する予備加熱室 、前記予備加熱された太陽電池半製品基板上に高抵抗バッファ層を製膜する高抵 抗バッファ層製膜室、前記高抵抗バッファ層が製膜された太陽電池半製品基板を乾 燥且つ予備加熱する真空乾燥室兼予備加熱室、前記乾燥且つ予備加熱された太 陽電池半製品基板上に窓層を製膜する窓層製膜室、前記バッファ層及び窓層が製 膜された太陽電池半製品基板を冷却する冷却室及び前記バッファ層及び窓層が製 膜された太陽電池半製品を取り出す基板取り出し部からなることを特徴とし、前記(1 )〜(3)に記載の連続製膜方法を実施するための CIS系薄膜太陽電池の高抵抗バッ ファ層 '窓層 (透明導電膜)連続製膜装置。
[0016] (11)本発明は、前記(10)に記載の CIS系薄膜太陽電池の高抵抗バッファ層 ·窓 層 (透明導電膜)連続製膜装置であって、前記高抵抗バッファ層製膜室が、ジェチル 亜鉛と純水を製膜原料として、これらをバブラ一等に充填し、ヘリウム、アルゴン等の 不活性ガスをバブラ一内に通すキャリアガスとして使用し、加熱した太陽電池半製品 基板上に供給することで 0. 5〜0. 7DEZ/H Oモル比の微量な水酸化亜鉛を含ん
2
だ膜厚 2〜50nmの範囲の ZnO薄膜を、 MOCVD法により製膜することを特徴とし、 前記 (4)及び (8)に記載の連続製膜方法を実施するための CIS系薄膜太陽電池の 高抵抗バッファ層 ·窓層 (透明導電膜)連続製膜装置である。
[0017] (12)本発明は、前記(10)に記載の CIS系薄膜太陽電池の高抵抗バッファ層 ·窓 層 (透明導電膜)連続製膜装置であって、前記窓層製膜室が、亜鉛の有機金属化合 物と純水を製膜原料とし、これらをバブラ一等に充填し、ヘリウム、アルゴン等の不活 性ガスをバブラ一内に通すキャリアガスとして使用し、抵抗率を調整するために、周 期律表の III族元素、例えば、ボロン、アルミニウム、インジウム、ガリウムの何れか 1つ 又はこれらの組合せ、を前記(7)に記載の方法でドーパントとして使用し、 MOCVD 法により ZnO系透明導電膜を製膜することを特徴とし、前記 (5)に記載の連続製膜 方法を実施するための CIS系薄膜太陽電池の高抵抗バッファ層 ·窓層(透明導電膜 )連続製膜装置である。
発明の効果
[0018] 本発明の MOCVD法による製膜方法は、従来の溶液成長法による製膜方法と同 等の出力特性 (変換効率、開放電圧、短絡電流密度、曲線因子)を得ることができる と共に、高抵抗バッファ層 1Dと窓層(透明導電膜) 1Eを MOCVD法により連続して 製膜するため、製造方法の簡素化、原材料費及び廃棄物処理費を削減することがで きるので、製造コストを大幅に削減することができる。
発明を実施するための最良の形態
[0019] 以下、本発明の実施の形態について、図面に基づいて説明する。
本発明は、 CIS系薄膜太陽電池の高抵抗バッファ層 ·窓層 (透明導電膜)連続製膜 方法及びその連続製膜方法を実施するための連続製膜装置に関する。
前記 CIS系薄膜太陽電池は、 CIS系薄膜太陽電池は、図 7に示すように、ガラス基 板 1A (厚さ l〜3mm)、金属裏面電極層 1B (厚さ 1〜2 /ζ πιのモリブデン、チタン等 の金属)、 Ρ形 CIS系光吸収層 1C、高抵抗バッファ層 1D、 n形窓層 (透明導電膜) 1E の順に積層されたサブストレート構造の pnヘテロ接合デバイスである。前記光吸収層 は、 p形の導電性を有する Cu— III VI族カルコパイライト構造の厚さ 1〜3 mの
2
薄膜であり、例えば、 CuInSe 、Cu (InGa) Se 、 Cu (InGa) (SSe) 等の多元化合
2 2 2
物半導体薄膜である。
[0020] 前記 p形 CIS系光吸収層 1Cとしては、その他、セレンィ匕物系 CIS系光吸収層、硫 化物系 CIS系光吸収層及び硫黄 ·セレンィ匕物系 CIS系光吸収層があり、前記セレン 化物系 CIS系光吸収層は、 CuInSe 、Cu (InGa) Se又は CuGaSeからなり、前記
2 2 2
硫化物系 CIS系光吸収層は、 CuInS 、Cu(InGa) S 、 CuGaSからなり、前記硫黄
2 2 2
•セレン化物系 CIS系光吸収層は、 Culn (SSe) 、 Cu (InGa) (SSe) 、CuGa (SSe
2 2
) 、また表面層を有するものとしては、 Culn (SSe) を表面層として持つ CuInSe 、
2 2 2
Culn (SSe) を表面層として持つ Cu (InGa) Se 、 Culn (SSe) を表面層として持
2 2 2 つ Cu(InGa) (SSe) , Culn (SSe) を表面層として持つ CuGaSe 、 Cu(InGa) (S
2 2 2
Se) を表面層として持つ Cu (InGa) Se 、 Cu (InGa) (SSe) を表面層として持つ C
2 2 2
uGaSe 、 CuGa (SSe) を表面層として持つ Cu (InGa) Se又は CuGa (SSe) を表
2 2 2 2 面層として持つ CuGaSeがある。
2
[0021] 本発明の CIS系薄膜太陽電池の高抵抗バッファ層'窓層 (透明導電膜)連続製膜 方法を以下に説明する。
前記高抵抗バッファ層 ·窓層 (透明導電膜)連続製膜方法は、ガラス基板 1A上に 金属裏面電極層 1B、光吸収層 1Cの順に製膜された太陽電池半製品付加基板 A ( 以下、基板という。)上に MOCVD法により高抵抗バッファ層 1D及び窓層(透明導電 膜) 1Eを連続して製膜する方法である。高抵抗バッファ層 1Dは透明且つ高抵抗(10 4 Ω 'cm以上)で真性の酸ィ匕亜鉛薄膜であり、窓層(透明導電膜) 1Eは n形の導電性 を有する禁制帯幅が広ぐ透明且つ低抵抗で厚さ 0. 5〜2. 5 mの酸ィ匕亜鉛力 な る半導体薄膜である。
[0022] 従来の高抵抗バッファ層及び窓層(透明導電膜)の製膜方法としては、前記基板 A の光吸収層 1C上に、溶液力も化学的に成長させる溶液成長法により高抵抗バッファ 層 1Dを成長させ、その後、別の工程で、その上に窓層(透明導電膜) 1Eを成長させ る。 [0023] 本発明の MOCVD法による製膜方法は、図 1に示すように、ジェチル亜鉛と純水を 原料として、 MOCVD法により前記基板 Aの光吸収層 1C上に、前記高抵抗バッファ 層 1Dを成長させた後、その上に連続的に、同一の MOCVD法製膜装置内で同じ原 料を使用し、ジボラン力ものボロンをドーパントとして利用して低抵抗な窓層(透明導 電膜) 1Eを成長させる。
[0024] 本発明の CIS系薄膜太陽電池の高抵抗バッファ層'窓層 (透明導電膜)連続製膜 方法の詳細を以下に説明する。
図 1 (a)に示すように、前記ガラス基板 1A上に金属裏面電極層 1B、光吸収層 1C の順に製膜した太陽電池半製品基板 Aの光吸収層 1C上に、前記バッファ層 1D、前 記窓層 1Eの順序で連続的に積層構造で製膜する連続製膜方法である。
前記連続製膜方法は、前記バッファ層 1D及び前記窓層 1Eを有機金属化学的気 相成長 (MOCVD)法により、複数の予備加熱工程と製膜工程がインライン式に接続 した製造方法 (構造の MOCVD製膜装置内)で連続的に製膜する。
[0025] 更に、前記バッファ層 1D及び前記窓層 1Eを夫々、同一の MOCVD製膜装置内で 隣接、且つ独立したバッファ層製膜工程と窓層製膜工程で連続的に製膜する。
[0026] 前記バッファ層 1D及び前記窓層 1Eの製膜工程は、亜鉛の有機金属化合物と純 水を製膜原料とし、これらをバブラ一等に充填し、ヘリウム、アルゴン等の不活性ガス をバブラ一内に通すキャリアガスとして使用し、 MOCVD法により製膜する。前記亜 鉛の有機金属化合物は、ジメチル亜鉛、ジェチル亜鉛であり、望ましくは、ジェチル 亜鉛であり、これをバブラ一内に充填し、ヘリウム、アルゴン等の不活性ガスをそこで 泡立てて、同伴させて、前記バッファ層 1D及び前記窓層 1Eの製膜工程 (MOCVD 製膜装置内)へ供給する。なお、ジメチル亜鉛、ジェチル亜鉛は常温では液体であ る。
[0027] 前記バッファ層は、ノ ッファ層製膜工程の前工程の予備加熱工程で、 10— 3Torrま での真空中で、 100〜200°Cの温度範囲、望ましくは、 120〜160°Cに加熱し、その 温度に到達後直ちに、 120〜160°Cの温度範囲に保持されたバッファ層製膜工程 に搬送し、ノ ッファ層製膜工程で、ジェチル亜鉛と純水を製膜原料として、 DEZ/H Oモル比 0. 5〜0. 9の微量な水酸化亜鉛を含んだ膜厚 2〜50nmの範囲の ZnO 薄膜を製膜する。
[0028] 前記窓層 1Eの製膜工程は、更に、抵抗率を調整するために、周期律表の III族元 素、例えば、ボロン、アルミニウム、インジウム、ガリウムの何れ力 1つ又はこれらの組 合せ、をドーパントとして使用する。前記抵抗率を調整するために使用するドーパント は、水素化又は有機金属化合物として製造された気体又は揮発性 (又は蒸気圧の 高い)液体であり、その各々をヘリウム、アルゴン等の不活性ガスで希釈し、製造原料 を同伴するキャリアガスと混合させて、前記窓層の製膜工程 (MOCVD製膜装置内) へ供給する。
[0029] 前記窓層は、窓層製膜工程の前工程の予備加熱工程で、 10— 3Torrまでの真空中 で、基板を 140〜250°Cの温度範囲、望ましくは、 160〜190°Cに加熱し、その温度 に到達後直ちに、 160〜190°Cの温度範囲に保持された窓層製膜工程に搬送し、 窓層製膜工程で、ジェチル亜鉛と純水を製膜原料として、不活性ガスで:!〜5 Vol% の濃度に希釈されたジボランガスを原料配管内に供給し、ジボラン力ものボロンをド 一ビングすることにより、シート抵抗が 10 ΩΖ口以下、透過率が 85%以上、膜厚 0. 5〜2. 5 mの範囲の、望ましくは、 1〜1. 5 mの範囲の低抵抗な ZnO系透明導 電膜を製膜する。
[0030] [表 1]
Figure imgf000010_0001
上記表 1において、各製膜法は以下の通りである。
MOCVD法:パターン 2形成後に MOCVD法で高抵抗バッファ層を製膜 溶液成長法 1 :溶液成長法で高抵抗バッファ層を製膜後にパターン 2を形成 溶液成長法 2:パターン 2を形成後に溶液成長法で高抵抗バッファ層を製膜 [0031] 前記表 1は、本発明の MOCVD法により製膜した高抵抗バッファ層 IDを用いた CI S系薄膜太陽電池と従来の溶液成長法により製膜した高抵抗バッファ層 IDを用いた CIS系薄膜太陽電池との出力特性の比較図であり、本発明の MOCVD法により製 膜した場合は、従来の溶液成長法により製膜した場合と同等の出力特性を得ること ができる。なお、窓層は同一条件の MOCVD法により製膜した。その結果、本発明 の MOCVD法による製膜方法は、従来の溶液成長法による製膜方法と同等の出力 特性 (変換効率、開放電圧、短絡電流密度、曲線因子)を得ることができると共に、高 抵抗バッファ層 1Dと窓層(透明導電膜) 1Eを MOCVD法により連続して製膜するた め、製造方法が簡素化され、従来の溶液成長法による高抵抗バッファ層製膜に使用 する原材料費及び廃棄物処理費を削減することができるので、製造コストを大幅に削 減することができる。
[0032] 図 3は、本発明の MOCVD法により製膜した高抵抗バッファ層 1Dを用いた CIS系 薄膜太陽電池の高抵抗バッファ層製膜時の IIZVI族比と曲線因子〔FF〕の関係 (基 板温度 160°C、膜厚 5nm)を示す図であり、これから、曲線因子〔FF〕は 0. 6〜0. 7 が必要であり、そのため、高抵抗バッファ層 1Dの製膜時の IIZVI族比(例えば、 DEZ /H Oモル比)は、 0. 5〜0. 9の範囲が最適であることが判明した。なお、窓層は何
2
れの場合も同一条件の MOCVD法により製膜した。
[0033] 図 4は、本発明の MOCVD法により製膜した高抵抗バッファ層 1Dを用いた CIS系 薄膜太陽電池の高抵抗バッファ層製膜時の基板温度と曲線因子〔FF〕の関係 (膜厚 5nm、 IIZVI族比(例えば、 DEZ/H O比 =0. 6)を示す図であり、これから、曲線因
2
子〔FF〕は 0. 6〜0. 7が必要であり、そのため、高抵抗バッファ層 1Dの製膜時の基 板温度〔で〕は、 100°C〜250°C、望ましくは、 150°C〜220°Cの範囲が最適であるこ とが判明した。なお、窓層は何れの場合も同一条件の MOCVD法により製膜した。
[0034] 図 5は、本発明の MOCVD法により製膜した高抵抗バッファ層 1Dを用いた CIS系 薄膜太陽電池の高抵抗バッファ層製膜時の膜厚と曲線因子〔FF〕(基板温度 160°C 、 IIZVI族比(例えば、 DEZZH 0比 =0. 6)を示す図である。これ力 、曲線因子〔
2
FF〕0. 6〜0. 7を達成するためには、高抵抗バッファ層 1Dの膜厚〔nm〕は、 2nm〜 50nmの範囲が最適であることが判明した。なお、窓層は何れの場合も同一条件の MOCVD法により製膜した。
[0035] 図 6は、本発明の MOCVD法により製膜した高抵抗バッファ層 1Dを用いた CIS系 薄膜太陽電池の高抵抗バッファ層製膜時の膜厚と変換効率の関係 (基板温度 190 °C、 IIZVI族比(例えば、 DEZZH O比 =0. 6)を示す図であり、変換効率〔%〕は 1
2
1%以上が必要であり、これから、高抵抗バッファ層 1Dの膜厚〔nm〕は、 2nm〜50n mの範囲が最適であることが判明した。なお、窓層は何れの場合も同一条件の MOC VD法により製膜した。
[0036] なお、前記本発明の CIS系薄膜太陽電池の高抵抗バッファ層,窓層(透明導電膜) 連続製膜方法においては、集積型の CIS系薄膜太陽電池の場合、金属裏面電極層 製膜後、光吸収層製膜後、高抵抗バッファ層製膜後又は窓層 (透明導電膜)製膜後 に夫々パターン形成工程を設ける必要がある。
[0037] 本発明の CIS系薄膜太陽電池の高抵抗バッファ層'窓層 (透明導電膜)連続製膜 装置を以下に説明する。
前記高抵抗バッファ層 ·窓層 (透明導電膜)連続製膜装置 2は、ガラス基板 1A上に 金属裏面電極層 1B、光吸収層 1Cの順に製膜された太陽電池半製品基板 (以下、 基板という。)上に MOCVD法により高抵抗バッファ層及び窓層(透明導電膜)を連 続して製膜する装置であり、図 2に示すように、太陽電池半製品基板を導入する基板 導入部 3、前記太陽電池半製品基板を予備加熱する予備加熱室 4、前記予備加熱 された太陽電池半製品基板上に高抵抗バッファ層を製膜する高抵抗バッファ層製膜 室 5、前記高抵抗バッファ層が製膜された太陽電池半製品基板を乾燥且つ予備カロ 熱する真空乾燥室兼予備加熱室 6、前記乾燥且つ予備加熱された太陽電池半製品 基板上に窓層を製膜する窓層製膜室 7、前記バッファ層及び窓層が製膜された太陽 電池半製品基板を冷却する冷却室 8及び前記バッファ層及び窓層が製膜された太 陽電池半製品を取り出す基板取り出し部 9からなる。
[0038] 先ず、ガラス基板 1A上に金属裏面電極層 1B、光吸収層 1Cの順に製膜された太 陽電池半製品基板 A (以下、基板 Aという。)がホットプレート HP上に搭載された状態 で、基板導入部 3に導入される。次に、前記基板 Aは、予備加熱室 4に搬入され、ヒ 一ター Hにより一定温度迄予備加熱される。次に、前記基板 Aは、高抵抗バッファ層 製膜室 5に搬入され、 MOCVD法により高抵抗バッファ層 1Dを製膜する。次に、前 記基板 Aは、真空乾燥室兼予備加熱室 6に搬入され、真空乾燥及び予備加熱が行 われる。次に、前記基板 Aは、窓層製膜室 7に搬入され、 MOCVD法により所定の膜 厚迄窓層(透明導電膜) 1Eを製膜する。次に、前記基板 Aは、冷却室 8に搬入され、 冷却される。次に、前記基板 Aは、基板取り出し部 9に搬入され、ホットプレート HPか ら取り出され、ガラス基板 1 A上に金属裏面電極層 1B、光吸収層 1C、高抵抗バッフ ァ層 1D及び窓層 (透明導電膜) 1Eの順に製膜された CIS系薄膜太陽電池が形成さ れる。
[0039] 前記高抵抗バッファ層'窓層 (透明導電膜)連続製膜装置 2の各構成部の詳細につ いて、以下に説明する。
前記高抵抗バッファ層 1Dの製膜は、バッファ層製膜室 5の前室の予備加熱室 4で 、メカ-カルブースター付真空ポンプ Pにより、 10— 3Torrまでの真空中で、 100〜20 0°Cの温度範囲、望ましくは、 120〜160°Cに加熱し、その温度に到達後直ちに、 12 0〜160°Cの温度範囲に保持されたバッファ層製膜室 5に搬送し、ここで、ジェチル 亜鉛と純水を製膜原料として、 DEZZH 0モル比 0. 5〜0. 9の微量な水酸化亜鉛
2
を含んだ膜厚 2〜50nmの範囲の ZnO薄膜を製膜する。
[0040] 前記窓層 1Eの製膜は、窓層製膜室 7の前室の真空乾燥室兼予備加熱室 6で、メカ 二カルブースター付真空ポンプ Pにより、 10— 3Torrまでの真空中で、基板を 140〜2 50°Cの温度範囲、望ましくは、 160〜190°Cに加熱し、その温度に到達後直ちに、 1 60〜190°Cの温度範囲に保持された窓層製膜室 7に搬送し、窓層製膜室 7で、ジェ チル亜鉛と純水を製膜原料として、不活性ガスで l〜5Vol%の濃度に希釈されたジ ボランガスを原料配管内に供給し、ジボランからのボロンをドーピングすることにより、 シート抵抗が 10 Ω /口以下、透過率が 85%以上、膜厚が 0. 5〜2. 5 mの範囲の 、望ましくは、 1〜1. 5 mの範囲の ZnO系透明導電膜を製膜する。窓層 (透明導電 膜) 1Eは n形の導電性を有する禁制帯幅が広ぐ透明且つ低抵抗で厚さ 0. 5〜3 mの酸ィ匕亜鉛力もなる半導体薄膜である。
図面の簡単な説明
[0041] [図 1]本発明の高抵抗バッファ層'窓層 (透明導電膜)連続製膜方法の概略構成図で ある。
圆 2]本発明の高抵抗バッファ層'窓層 (透明導電膜)連続製膜装置の概略構成図で ある。
[図 3]本発明の MOCVD法により製膜した高抵抗バッファ層 1Dを用いた CIS系薄膜 太陽電池の高抵抗バッファ層製膜時の IIZVI族比と曲線因子〔FF〕の関係 (基板温 度 160°C、膜厚 5nm)を示す図である。
[図 4]本発明の MOCVD法により製膜した高抵抗バッファ層 1Dを用いた CIS系薄膜 太陽電池の高抵抗バッファ層製膜時の基板温度と曲線因子〔FF〕の関係 (膜厚 5nm 、 IIZVI族比(例えば、 DEZZH 0モル比) =0. 6)を示す図である。
2
[図 5]本発明の MOCVD法により製膜した高抵抗バッファ層 1Dを用いた CIS系薄膜 太陽電池の高抵抗バッファ層製膜時の膜厚と曲線因子〔FF〕(基板温度 160°C、 II/ VI族比(例えば、 DEZ/H Oモル比) =0. 6)を示す図である。
2
[図 6]本発明の MOCVD法により製膜した高抵抗バッファ層 1Dを用いた CIS系薄膜 太陽電池の高抵抗バッファ層製膜時の膜厚と変換効率の関係 (基板温度 160°C、 II ZVI族比(例えば、 DEZZH 0モル比) =0. 6)を示す図である。
2
圆 7]本発明の CIS系薄膜太陽電池の構成図である。
符号の説明
1 CIS系薄膜太陽電池
1A ガラス基板
1B 金属裏面電極層
1C 光吸収層
1D 高抵抗バッファ層
1E 窓層 (透明導電膜)
A 太陽電池半製品 (複層付加基板)
2 高抵抗バッファ層 ·窓層 (透明導電膜)連続製膜装置
3 基板導入部
4 予備加熱室
5 高抵抗バッファ層製膜室 6 真空乾燥室兼予備加熱室
7 窓層製膜室
8 冷却室
9 基板取り出し部
H ヒーター
HP ホットプレート
P 真空ポンプ
V バルブ

Claims

請求の範囲
[1] ガラス基板、金属裏面電極層、 p形の導電性を有し CIS系(CuInSe系)カルコパイ
2
ライト多元化合物半導体薄膜からなる光吸収層、透明で高抵抗の亜鉛混晶化合物 半導体薄膜からなるバッファ層、 n形の導電性を有し透明で低抵抗の酸ィ匕亜鉛 (Zn O)系透明導電膜からなる窓層の順に積層されたサブストレート構造の pnヘテロ接合 デバイスである CIS系薄膜太陽電池の製造方法において、前記ガラス基板上に金属 裏面電極層、光吸収層の順に製膜した太陽電池半製品基板の光吸収層上に、前記 バッファ層、前記窓層の順序で連続的に積層構造で製膜することを特徴とする CIS 系薄膜太陽電池の高抵抗バッファ層 ·窓層 (透明導電膜)連続製膜方法。
[2] 前記バッファ層及び前記窓層を、有機金属化学的気相成長 (MOCVD)法により、 複数の予備加熱工程と製膜工程がインライン式に接続した構造の MOCVD製膜装 置内で連続的に製膜することを特徴とする前記請求項 1に記載の CIS系薄膜太陽電 池の高抵抗バッファ層 ·窓層 (透明導電膜)連続製膜方法。
[3] 前記バッファ層及び前記窓層を夫々、同一の MOCVD製膜装置内で隣接、且つ 独立したバッファ層製膜工程と窓層製膜工程で連続的に製膜することを特徴とする 前記請求項 1に記載の CIS系薄膜太陽電池の高抵抗バッファ層 ·窓層 (透明導電膜 )連続製膜方法。
[4] 前記バッファ層及び前記窓層の製膜工程は、亜鉛の有機金属化合物と純水を製 膜原料とし、これらをバブラ一等に充填し、ヘリウム、アルゴン等の不活性ガスをパブ ラー内に通すキャリアガスとして使用し、 MOCVD法により製膜することを特徴とする 前記請求項 2又は 3に記載の CIS系薄膜太陽電池の高抵抗バッファ層,窓層(透明 導電膜)連続製膜方法。
[5] 前記窓層の製膜工程は、亜鉛の有機金属化合物と純水 (H O)を製膜原料とし、こ
2
れらをバブラ一等に充填し、ヘリウム、アルゴン等の不活性ガスをバブラ一内に通す キャリアガスとして使用し、抵抗率を調整するために、周期律表の in族元素、例えば
、ボロン、アルミニウム、インジウム、ガリウムの何れ力 1つ又はこれらの組合せ、をドー パントとして使用する MOCVD法により製膜することを特徴とする前記請求項 2又は 3 に記載の CIS系薄膜太陽電池の高抵抗バッファ層 ·窓層 (透明導電膜)連続製膜方 法。
[6] 前記亜鉛の有機金属化合物は、ジメチル亜鉛、ジェチル亜鉛であり、望ましくは、 ジェチル亜鉛 (DEZ)であり、これをバブラ一内に充填し、ヘリウム、アルゴン等の不 活性ガスをそこで泡立てて、同伴させて、前記窓層の製膜工程における MOCVD製 膜装置内へ供給することを特徴とする前記請求項 4又は 5に記載の CIS系薄膜太陽 電池の高抵抗バッファ層 ·窓層 (透明導電膜)連続製膜方法。
[7] 前記抵抗率を調整するために使用する前記請求項 5に記載のドーパントは、水素 化又は有機金属化合物として製造された気体又は揮発性 (又は蒸気圧の高!ヽ)液体 であり、その各々をヘリウム、アルゴン等の不活性ガスで希釈し、製造原料を同伴す るキャリアガスと混合させて、前記窓層の製膜工程における MOCVD製膜装置内へ 供給することを特徴とする CIS系薄膜太陽電池の高抵抗バッファ層 ·窓層 (透明導電 膜)連続製膜方法。
[8] 前記バッファ層は、ノ ッファ層製膜工程の前工程の予備加熱工程で、 10 3 Torrま での真空中で、 100〜200°Cの温度範囲、望ましくは、 120〜160°Cに加熱し、その 温度に到達後直ちに、 120〜160°Cの温度範囲に保持されたバッファ層製膜工程 に搬送し、ノ ッファ層製膜工程で、ジェチル亜鉛と純水を製膜原料として、 0. 5〜0. 7DEZ/H Oモル比の微量な水酸化亜鉛を含んだ膜厚 2
2 〜50nmの範囲の ZnO薄 膜を製膜することを特徴とする前記請求項 1乃至 4の何れか 1つに記載の CIS系薄膜 太陽電池の高抵抗バッファ層 ·窓層 (透明導電膜)連続製膜方法。
[9] 前記窓層は、窓層製膜工程の前工程の予備加熱工程で、
10— 3Τοπ:までの真空中 で、基板を 140〜250°Cの温度範囲、望ましくは、 160〜190°Cに加熱し、その温度 に到達後直ちに、 160〜190°Cの温度範囲に保持された窓層製膜工程に搬送し、 窓層製膜工程で、ジェチル亜鉛と純水を製膜原料として、不活性ガスで:!〜5 Vol% の濃度に希釈されたジボランガスを原料配管内に供給し、ジボラン力ものボロンをド 一ビングすることにより、シート抵抗が 10 ΩΖ口以下、透過率が 85%以上、膜厚が 0 . 5〜2. の範囲の、望ましくは、 1〜1. 5 mの範囲の低抵抗の ZnO系透明導 電膜を製膜することを特徴とする前記請求項 1乃至 5の何れか 1つに記載の CIS系薄 膜太陽電池の高抵抗バッファ層 ·窓層 (透明導電膜)連続製膜方法。 [10] ガラス基板、金属裏面電極層、 p形の導電性を有し CIS系(CuInSe系)カルコパイ
2
ライト多元化合物半導体薄膜からなる光吸収層、透明で高抵抗の亜鉛混晶化合物 半導体薄膜からなるバッファ層、 n形の導電性を有し透明で低抵抗の酸ィ匕亜鉛 (Zn O)系透明導電膜からなる窓層の順に積層されたサブストレート構造の pnヘテロ接合 デバイスである CIS系薄膜太陽電池の高抵抗バッファ層 ·窓層(透明導電膜)連続製 膜装置であって、
前記ガラス基板上に金属裏面電極層、光吸収層の順に製膜した太陽電池半製品 基板の光吸収層上に、前記バッファ層、前記窓層の順序で MOCVD法により連続 的に積層構造で製膜するもので、太陽電池半製品基板を導入する基板導入部、前 記太陽電池半製品基板を予備加熱する予備加熱室、前記予備加熱された太陽電池 半製品基板上に高抵抗バッファ層を製膜する高抵抗バッファ層製膜室、前記高抵抗 ノ ッファ層が製膜された太陽電池半製品基板を乾燥且つ予備加熱する真空乾燥室 兼予備加熱室、前記乾燥且つ予備加熱された太陽電池半製品基板上に窓層を製 膜する窓層製膜室、前記バッファ層及び窓層が製膜された太陽電池半製品基板を 冷却する冷却室及び前記バッファ層及び窓層が製膜された太陽電池半製品を取り 出す基板取り出し部からなることを特徴とし、請求項 1〜3に記載の連続製膜方法を 実施するための CIS系薄膜太陽電池の高抵抗バッファ層 ·窓層(透明導電膜)連続 製膜装置。
[11] 請求項 10に記載の CIS系薄膜太陽電池の高抵抗バッファ層 ·窓層 (透明導電膜) 連続製膜装置であって、
前記高抵抗バッファ層製膜室は、ジェチル亜鉛と純水を製膜原料として、これらを バブラ一等に充填し、ヘリウム、アルゴン等の不活性ガスをバブラ一内に通すキヤリ ァガスとして使用し、加熱した太陽電池半製品基板上に供給することで 0. 5〜0. 7D EZ/H Oモル比の微量な水酸化亜鉛を含んだ膜厚 2〜50nmの範囲の ZnO薄膜
2
を、 MOCVD法により製膜することを特徴とし、請求項 4及び 8に記載の連続製膜方 法を実施するための CIS系薄膜太陽電池の高抵抗バッファ層 ·窓層(透明導電膜) 連続製膜装置。
[12] 請求項 10に記載の CIS系薄膜太陽電池の高抵抗バッファ層 ·窓層 (透明導電膜) 連続製膜装置であって、
前記窓層製膜室は、亜鉛の有機金属化合物と純水を製膜原料とし、これらをパブ ラー等に充填し、ヘリウム、アルゴン等の不活性ガスをバブラ一内に通すキャリアガス として使用し、抵抗率を調整するために、周期律表の III族元素、例えば、ボロン、ァ ルミ-ゥム、インジウム、ガリウムの何れか 1つ又はこれらの組合せ、を前記請求項 7記 載の方法でドーパントとして使用し、 MOCVD法により ZnO系透明導電膜を製膜す ることを特徴とし、請求項 5の連続製膜方法を実施するための CIS系薄膜太陽電池 の高抵抗バッファ層 ·窓層 (透明導電膜)連続製膜装置。
PCT/JP2006/310371 2005-05-27 2006-05-24 Cis系薄膜太陽電池の高抵抗バッファ層・窓層(透明導電膜)連続製膜方法及びその連続製膜方法を実施するための連続製膜装置 WO2006126598A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06746802.5A EP1898469A4 (en) 2005-05-27 2006-05-24 METHOD FOR CONTINUOUS STORAGE OF A BUFFER LAYER / WINDOW LAYER WITH A HIGH RESISTANCE (TRANSPARENT CONDUCTIVE FILM) OF A CIS-BASED THIN FILM SOLAR CELL AND DEVICES FOR REMOVING A CONTINUOUS FILM FOR CARRYING OUT THIS METHOD
US11/915,423 US8093096B2 (en) 2005-05-27 2006-05-24 Method of successive high-resistance buffer layer/window layer (transparent conductive film) formation for CIS based thin-film solar cell and apparatus for successive film formation for practicing the method of successive film formation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005155712A JP4841173B2 (ja) 2005-05-27 2005-05-27 Cis系薄膜太陽電池の高抵抗バッファ層・窓層連続製膜方法及び製膜装置
JP2005-155712 2005-05-27

Publications (1)

Publication Number Publication Date
WO2006126598A1 true WO2006126598A1 (ja) 2006-11-30

Family

ID=37452022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310371 WO2006126598A1 (ja) 2005-05-27 2006-05-24 Cis系薄膜太陽電池の高抵抗バッファ層・窓層(透明導電膜)連続製膜方法及びその連続製膜方法を実施するための連続製膜装置

Country Status (6)

Country Link
US (1) US8093096B2 (ja)
EP (1) EP1898469A4 (ja)
JP (1) JP4841173B2 (ja)
KR (1) KR101274660B1 (ja)
CN (1) CN100546051C (ja)
WO (1) WO2006126598A1 (ja)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120307A1 (ja) * 2007-03-28 2008-10-09 Showa Shell Sekiyu K.K. Cis系薄膜太陽電池サブモジュールの製造システム
JP2009170928A (ja) * 2009-02-20 2009-07-30 Showa Shell Sekiyu Kk Cis系太陽電池の製造方法
US20100267190A1 (en) * 2007-11-30 2010-10-21 Hideki Hakuma Laminated structure for cis based solar cell, and integrated structure and manufacturing method for cis based thin-film solar cell
KR101039993B1 (ko) 2009-06-19 2011-06-09 엘지이노텍 주식회사 태양전지 및 이의 제조방법
JP2011524468A (ja) * 2008-06-16 2011-09-01 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ プラズマを用いる形式の化学反応によって、基板上に層を析出する方法および装置
US8067263B2 (en) 2008-09-30 2011-11-29 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8168463B2 (en) 2008-10-17 2012-05-01 Stion Corporation Zinc oxide film method and structure for CIGS cell
US8193028B2 (en) 2008-10-06 2012-06-05 Stion Corporation Sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8198122B2 (en) 2008-09-29 2012-06-12 Stion Corporation Bulk chloride species treatment of thin film photovoltaic cell and manufacturing method
US8236597B1 (en) 2008-09-29 2012-08-07 Stion Corporation Bulk metal species treatment of thin film photovoltaic cell and manufacturing method
US8258000B2 (en) 2008-09-29 2012-09-04 Stion Corporation Bulk sodium species treatment of thin film photovoltaic cell and manufacturing method
US8263494B2 (en) 2010-01-25 2012-09-11 Stion Corporation Method for improved patterning accuracy for thin film photovoltaic panels
US8287942B1 (en) 2007-09-28 2012-10-16 Stion Corporation Method for manufacture of semiconductor bearing thin film material
US8314326B2 (en) 2006-05-15 2012-11-20 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
US8344243B2 (en) * 2008-11-20 2013-01-01 Stion Corporation Method and structure for thin film photovoltaic cell using similar material junction
US8377736B2 (en) 2008-10-02 2013-02-19 Stion Corporation System and method for transferring substrates in large scale processing of CIGS and/or CIS devices
US8383450B2 (en) 2008-09-30 2013-02-26 Stion Corporation Large scale chemical bath system and method for cadmium sulfide processing of thin film photovoltaic materials
US8394662B1 (en) 2008-09-29 2013-03-12 Stion Corporation Chloride species surface treatment of thin film photovoltaic cell and manufacturing method
US8398772B1 (en) 2009-08-18 2013-03-19 Stion Corporation Method and structure for processing thin film PV cells with improved temperature uniformity
US8425739B1 (en) 2008-09-30 2013-04-23 Stion Corporation In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials
US8436445B2 (en) 2011-08-15 2013-05-07 Stion Corporation Method of manufacture of sodium doped CIGS/CIGSS absorber layers for high efficiency photovoltaic devices
US8435826B1 (en) 2008-10-06 2013-05-07 Stion Corporation Bulk sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8435822B2 (en) 2008-09-30 2013-05-07 Stion Corporation Patterning electrode materials free from berm structures for thin film photovoltaic cells
US8461061B2 (en) 2010-07-23 2013-06-11 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment
US8476104B1 (en) 2008-09-29 2013-07-02 Stion Corporation Sodium species surface treatment of thin film photovoltaic cell and manufacturing method
US8501507B2 (en) 2007-11-14 2013-08-06 Stion Corporation Method for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
US8501521B1 (en) 2008-09-29 2013-08-06 Stion Corporation Copper species surface treatment of thin film photovoltaic cell and manufacturing method
US8507786B1 (en) 2009-06-27 2013-08-13 Stion Corporation Manufacturing method for patterning CIGS/CIS solar cells
US8617917B2 (en) 2008-06-25 2013-12-31 Stion Corporation Consumable adhesive layer for thin film photovoltaic material
US8628997B2 (en) 2010-10-01 2014-01-14 Stion Corporation Method and device for cadmium-free solar cells
US8673675B2 (en) 2008-09-30 2014-03-18 Stion Corporation Humidity control and method for thin film photovoltaic materials
US8691618B2 (en) 2008-09-29 2014-04-08 Stion Corporation Metal species surface treatment of thin film photovoltaic cell and manufacturing method
US8728200B1 (en) 2011-01-14 2014-05-20 Stion Corporation Method and system for recycling processing gas for selenization of thin film photovoltaic materials
US8741689B2 (en) 2008-10-01 2014-06-03 Stion Corporation Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials
US8759671B2 (en) 2007-09-28 2014-06-24 Stion Corporation Thin film metal oxide bearing semiconductor material for single junction solar cell devices
US8809096B1 (en) 2009-10-22 2014-08-19 Stion Corporation Bell jar extraction tool method and apparatus for thin film photovoltaic materials
US8859880B2 (en) 2010-01-22 2014-10-14 Stion Corporation Method and structure for tiling industrial thin-film solar devices
US8871305B2 (en) 2007-06-29 2014-10-28 Stion Corporation Methods for infusing one or more materials into nano-voids of nanoporous or nanostructured materials
US8941132B2 (en) 2008-09-10 2015-01-27 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
US9087943B2 (en) 2008-06-25 2015-07-21 Stion Corporation High efficiency photovoltaic cell and manufacturing method free of metal disulfide barrier material
US9096930B2 (en) 2010-03-29 2015-08-04 Stion Corporation Apparatus for manufacturing thin film photovoltaic devices

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4734224B2 (ja) * 2006-12-18 2011-07-27 本田技研工業株式会社 バッファ層膜厚測定方法
JP2008282944A (ja) * 2007-05-10 2008-11-20 Showa Shell Sekiyu Kk 太陽電池モジュール及び製造方法
JP4181204B1 (ja) * 2007-05-11 2008-11-12 昭和シェル石油株式会社 太陽電池モジュール
US20080300918A1 (en) * 2007-05-29 2008-12-04 Commercenet Consortium, Inc. System and method for facilitating hospital scheduling and support
US7914762B2 (en) * 2007-09-28 2011-03-29 Korea Research Institute Of Chemical Technology Preparation method of chalcopyrite-type compounds with microwave irradiation
JPWO2009110092A1 (ja) 2008-03-07 2011-07-14 昭和シェル石油株式会社 Cis系太陽電池の積層構造、及び集積構造
DE112008003755T5 (de) 2008-03-07 2011-02-24 Showa Shell Sekiyu K.K. Integrierte Struktur einer Solarzelle auf CIS-Grundlage
JP4904311B2 (ja) * 2008-04-28 2012-03-28 株式会社カネカ 薄膜光電変換装置用透明導電膜付き基板の製造方法
US8642138B2 (en) 2008-06-11 2014-02-04 Stion Corporation Processing method for cleaning sulfur entities of contact regions
JP5465860B2 (ja) * 2008-10-20 2014-04-09 出光興産株式会社 光起電力素子、および、その製造方法
JP5530618B2 (ja) * 2008-10-20 2014-06-25 出光興産株式会社 光起電力素子、および、その製造方法
KR20110091683A (ko) * 2008-10-20 2011-08-12 이데미쓰 고산 가부시키가이샤 광기전력 소자 및 그 제조 방법
JP5594949B2 (ja) * 2008-10-20 2014-09-24 出光興産株式会社 光起電力素子、および、その製造方法
JP5465859B2 (ja) * 2008-10-20 2014-04-09 出光興産株式会社 光起電力素子、および、その製造方法
KR101032890B1 (ko) 2009-02-04 2011-05-06 한국에너지기술연구원 Cis계 박막 태양전지용 버퍼층 제조방법
KR101014039B1 (ko) * 2009-03-31 2011-02-10 엘지이노텍 주식회사 태양전지 및 이의 제조방법
KR101055103B1 (ko) * 2009-04-01 2011-08-08 엘지이노텍 주식회사 태양전지 및 이의 제조방법
KR101055135B1 (ko) * 2009-04-01 2011-08-08 엘지이노텍 주식회사 태양전지
JP5355221B2 (ja) * 2009-05-25 2013-11-27 スタンレー電気株式会社 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法
JP5638772B2 (ja) * 2009-05-25 2014-12-10 スタンレー電気株式会社 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法
DE102009026300A1 (de) * 2009-07-31 2011-02-10 Solibro Gmbh Herstellungsverfahren und Herstellungsvorrichtung zur Herstellung von Dünnfilmsolarzellen
CN101989635B (zh) * 2009-08-07 2011-12-14 北儒精密股份有限公司 太阳能电池的电极制造设备
US8906732B2 (en) * 2010-10-01 2014-12-09 Stion Corporation Method and device for cadmium-free solar cells
US20120028395A1 (en) * 2010-12-23 2012-02-02 Primestar Solar, Inc. Vapor deposition process for continuous deposition and treatment of a thin film layer on a substrate
TW201232792A (en) * 2010-12-29 2012-08-01 Auria Solar Co Ltd Thin film solar cell and fabricating method thereof
US8998606B2 (en) 2011-01-14 2015-04-07 Stion Corporation Apparatus and method utilizing forced convection for uniform thermal treatment of thin film devices
KR101219835B1 (ko) * 2011-01-25 2013-01-21 엘지이노텍 주식회사 태양전지 및 이의 제조방법
CN102168256B (zh) * 2011-03-21 2013-07-31 南开大学 利用MOCVD梯度掺杂技术生长ZnO:B薄膜及应用
KR101210171B1 (ko) * 2011-04-26 2012-12-07 중앙대학교 산학협력단 태양전지 및 이의 제조방법
KR101273174B1 (ko) * 2011-06-01 2013-06-17 엘지이노텍 주식회사 태양전지 및 이의 제조방법
CN102337516A (zh) * 2011-09-29 2012-02-01 中国建材国际工程集团有限公司 一种无镉的铜铟镓硒薄膜太阳能电池缓冲层的沉积方法
CN102544138A (zh) * 2012-02-08 2012-07-04 南开大学 一种设置AlN薄膜层的铜铟镓硒薄膜太阳电池
JP6083785B2 (ja) 2012-08-24 2017-02-22 日東電工株式会社 化合物太陽電池およびその製造方法
JP5420775B2 (ja) * 2013-01-18 2014-02-19 昭和シェル石油株式会社 Cis系太陽電池の製造方法
US10672925B2 (en) * 2013-06-14 2020-06-02 Taiwan Semiconductor Manufacturing Co., Ltd. Thin film solar cell and method of forming same
CN103367479A (zh) * 2013-07-03 2013-10-23 惠州市易晖太阳能科技有限公司 一种柔性太阳能电池绒面导电衬底及其制备方法
US20150007890A1 (en) * 2013-07-08 2015-01-08 Tsmc Solar Ltd. Photovoltaic device comprising heat resistant buffer layer, and method of making the same
CN103320774B (zh) * 2013-07-15 2015-09-02 北京四方继保自动化股份有限公司 一种化学水浴沉积硫化镉薄膜的方法及装置
US9093599B2 (en) 2013-07-26 2015-07-28 First Solar, Inc. Vapor deposition apparatus for continuous deposition of multiple thin film layers on a substrate
US9240501B2 (en) * 2014-02-12 2016-01-19 Solar Frontier K.K. Compound-based thin film solar cell
US20150280050A1 (en) * 2014-03-27 2015-10-01 Tsmc Solar Ltd. Method of making photovoltaic device through tailored heat treatment
US20150280051A1 (en) * 2014-04-01 2015-10-01 Tsmc Solar Ltd. Diffuser head apparatus and method of gas distribution
DE112014006695T5 (de) 2014-05-22 2017-02-16 Toshiba Mitsubishi-Electric Industrial Systems Corporation Pufferschichtfilm-Bildungsverfahren und Pufferschicht
US9520530B2 (en) * 2014-10-03 2016-12-13 Taiwan Semiconductor Manufacturing Co., Ltd. Solar cell having doped buffer layer and method of fabricating the solar cell
CN105047750A (zh) * 2014-10-10 2015-11-11 广东汉能薄膜太阳能有限公司 一种提高薄膜太阳能电池转换效率的方法
KR101714750B1 (ko) * 2015-11-03 2017-03-10 재단법인대구경북과학기술원 금속 산화물 막의 모폴로지 제어방법
CN105914262A (zh) * 2016-06-03 2016-08-31 中国科学院上海微系统与信息技术研究所 一种薄膜太阳能电池缓冲层后处理工艺
TWI617047B (zh) * 2017-06-30 2018-03-01 膠囊化基板、製造方法及具該基板的高能隙元件
KR102555986B1 (ko) * 2018-10-29 2023-07-14 삼성디스플레이 주식회사 윈도우 기판 및 이를 포함하는 플렉서블 표시 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61279181A (ja) * 1985-06-04 1986-12-09 シーメンス ソーラー インダストリーズ,エル.ピー. 薄膜光起電力デバイス
JPH01298164A (ja) * 1988-05-25 1989-12-01 Canon Inc 機能性堆積膜の形成方法
JPH08213328A (ja) * 1995-02-01 1996-08-20 Furukawa Electric Co Ltd:The 有機金属気相成長装置、それを用いた有機金属気相成長方法
JPH11177112A (ja) * 1997-12-09 1999-07-02 Ricoh Co Ltd 光起電力装置及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4611091A (en) 1984-12-06 1986-09-09 Atlantic Richfield Company CuInSe2 thin film solar cell with thin CdS and transparent window layer
US4638111A (en) * 1985-06-04 1987-01-20 Atlantic Richfield Company Thin film solar cell module
US5141564A (en) * 1988-05-03 1992-08-25 The Boeing Company Mixed ternary heterojunction solar cell
JP3249342B2 (ja) 1995-05-29 2002-01-21 昭和シェル石油株式会社 ヘテロ接合薄膜太陽電池及びその製造方法
JP3527815B2 (ja) * 1996-11-08 2004-05-17 昭和シェル石油株式会社 薄膜太陽電池の透明導電膜の製造方法
JP2000261015A (ja) * 1999-03-10 2000-09-22 Toppan Printing Co Ltd 太陽電池成膜装置
SE0301350D0 (sv) * 2003-05-08 2003-05-08 Forskarpatent I Uppsala Ab A thin-film solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61279181A (ja) * 1985-06-04 1986-12-09 シーメンス ソーラー インダストリーズ,エル.ピー. 薄膜光起電力デバイス
JPH01298164A (ja) * 1988-05-25 1989-12-01 Canon Inc 機能性堆積膜の形成方法
JPH08213328A (ja) * 1995-02-01 1996-08-20 Furukawa Electric Co Ltd:The 有機金属気相成長装置、それを用いた有機金属気相成長方法
JPH11177112A (ja) * 1997-12-09 1999-07-02 Ricoh Co Ltd 光起電力装置及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1898469A4 *

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8314326B2 (en) 2006-05-15 2012-11-20 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
WO2008120307A1 (ja) * 2007-03-28 2008-10-09 Showa Shell Sekiyu K.K. Cis系薄膜太陽電池サブモジュールの製造システム
US8871305B2 (en) 2007-06-29 2014-10-28 Stion Corporation Methods for infusing one or more materials into nano-voids of nanoporous or nanostructured materials
US8287942B1 (en) 2007-09-28 2012-10-16 Stion Corporation Method for manufacture of semiconductor bearing thin film material
US8759671B2 (en) 2007-09-28 2014-06-24 Stion Corporation Thin film metal oxide bearing semiconductor material for single junction solar cell devices
US8642361B2 (en) 2007-11-14 2014-02-04 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
US8512528B2 (en) 2007-11-14 2013-08-20 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using single-chamber configuration
US8501507B2 (en) 2007-11-14 2013-08-06 Stion Corporation Method for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
US8623677B2 (en) 2007-11-14 2014-01-07 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
US8691619B2 (en) 2007-11-30 2014-04-08 Showa Shell Sekiyu, K.K. Laminated structure for CIS based solar cell, and integrated structure and manufacturing method for CIS based thin-film solar cell
US20100267190A1 (en) * 2007-11-30 2010-10-21 Hideki Hakuma Laminated structure for cis based solar cell, and integrated structure and manufacturing method for cis based thin-film solar cell
JP2011524468A (ja) * 2008-06-16 2011-09-01 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ プラズマを用いる形式の化学反応によって、基板上に層を析出する方法および装置
US8617917B2 (en) 2008-06-25 2013-12-31 Stion Corporation Consumable adhesive layer for thin film photovoltaic material
US9087943B2 (en) 2008-06-25 2015-07-21 Stion Corporation High efficiency photovoltaic cell and manufacturing method free of metal disulfide barrier material
US8941132B2 (en) 2008-09-10 2015-01-27 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
US8394662B1 (en) 2008-09-29 2013-03-12 Stion Corporation Chloride species surface treatment of thin film photovoltaic cell and manufacturing method
US8258000B2 (en) 2008-09-29 2012-09-04 Stion Corporation Bulk sodium species treatment of thin film photovoltaic cell and manufacturing method
US8236597B1 (en) 2008-09-29 2012-08-07 Stion Corporation Bulk metal species treatment of thin film photovoltaic cell and manufacturing method
US8198122B2 (en) 2008-09-29 2012-06-12 Stion Corporation Bulk chloride species treatment of thin film photovoltaic cell and manufacturing method
US8501521B1 (en) 2008-09-29 2013-08-06 Stion Corporation Copper species surface treatment of thin film photovoltaic cell and manufacturing method
US8691618B2 (en) 2008-09-29 2014-04-08 Stion Corporation Metal species surface treatment of thin film photovoltaic cell and manufacturing method
US8476104B1 (en) 2008-09-29 2013-07-02 Stion Corporation Sodium species surface treatment of thin film photovoltaic cell and manufacturing method
US8673675B2 (en) 2008-09-30 2014-03-18 Stion Corporation Humidity control and method for thin film photovoltaic materials
US8088640B2 (en) 2008-09-30 2012-01-03 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8067263B2 (en) 2008-09-30 2011-11-29 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8425739B1 (en) 2008-09-30 2013-04-23 Stion Corporation In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials
US8071421B2 (en) 2008-09-30 2011-12-06 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8435822B2 (en) 2008-09-30 2013-05-07 Stion Corporation Patterning electrode materials free from berm structures for thin film photovoltaic cells
US8076176B2 (en) 2008-09-30 2011-12-13 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8383450B2 (en) 2008-09-30 2013-02-26 Stion Corporation Large scale chemical bath system and method for cadmium sulfide processing of thin film photovoltaic materials
US8084292B2 (en) 2008-09-30 2011-12-27 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8318531B2 (en) 2008-09-30 2012-11-27 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8084291B2 (en) 2008-09-30 2011-12-27 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8741689B2 (en) 2008-10-01 2014-06-03 Stion Corporation Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials
US8377736B2 (en) 2008-10-02 2013-02-19 Stion Corporation System and method for transferring substrates in large scale processing of CIGS and/or CIS devices
US8193028B2 (en) 2008-10-06 2012-06-05 Stion Corporation Sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8435826B1 (en) 2008-10-06 2013-05-07 Stion Corporation Bulk sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8168463B2 (en) 2008-10-17 2012-05-01 Stion Corporation Zinc oxide film method and structure for CIGS cell
US8557625B1 (en) 2008-10-17 2013-10-15 Stion Corporation Zinc oxide film method and structure for cigs cell
US8344243B2 (en) * 2008-11-20 2013-01-01 Stion Corporation Method and structure for thin film photovoltaic cell using similar material junction
JP2009170928A (ja) * 2009-02-20 2009-07-30 Showa Shell Sekiyu Kk Cis系太陽電池の製造方法
KR101039993B1 (ko) 2009-06-19 2011-06-09 엘지이노텍 주식회사 태양전지 및 이의 제조방법
US8507786B1 (en) 2009-06-27 2013-08-13 Stion Corporation Manufacturing method for patterning CIGS/CIS solar cells
US8398772B1 (en) 2009-08-18 2013-03-19 Stion Corporation Method and structure for processing thin film PV cells with improved temperature uniformity
US8809096B1 (en) 2009-10-22 2014-08-19 Stion Corporation Bell jar extraction tool method and apparatus for thin film photovoltaic materials
US8859880B2 (en) 2010-01-22 2014-10-14 Stion Corporation Method and structure for tiling industrial thin-film solar devices
US8263494B2 (en) 2010-01-25 2012-09-11 Stion Corporation Method for improved patterning accuracy for thin film photovoltaic panels
US9096930B2 (en) 2010-03-29 2015-08-04 Stion Corporation Apparatus for manufacturing thin film photovoltaic devices
US8461061B2 (en) 2010-07-23 2013-06-11 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment
US8628997B2 (en) 2010-10-01 2014-01-14 Stion Corporation Method and device for cadmium-free solar cells
US8728200B1 (en) 2011-01-14 2014-05-20 Stion Corporation Method and system for recycling processing gas for selenization of thin film photovoltaic materials
US8436445B2 (en) 2011-08-15 2013-05-07 Stion Corporation Method of manufacture of sodium doped CIGS/CIGSS absorber layers for high efficiency photovoltaic devices

Also Published As

Publication number Publication date
EP1898469A1 (en) 2008-03-12
CN101213674A (zh) 2008-07-02
KR101274660B1 (ko) 2013-06-14
KR20080033157A (ko) 2008-04-16
CN100546051C (zh) 2009-09-30
JP2006332440A (ja) 2006-12-07
EP1898469A4 (en) 2016-12-28
JP4841173B2 (ja) 2011-12-21
US20090087940A1 (en) 2009-04-02
US8093096B2 (en) 2012-01-10

Similar Documents

Publication Publication Date Title
WO2006126598A1 (ja) Cis系薄膜太陽電池の高抵抗バッファ層・窓層(透明導電膜)連続製膜方法及びその連続製膜方法を実施するための連続製膜装置
US8691619B2 (en) Laminated structure for CIS based solar cell, and integrated structure and manufacturing method for CIS based thin-film solar cell
US8691618B2 (en) Metal species surface treatment of thin film photovoltaic cell and manufacturing method
US8431430B2 (en) Method for forming a compound semi-conductor thin-film
US20150075620A1 (en) Copper indium gallium selenide (cigs) thin films with composition controlled by co-sputtering
CN101094726A (zh) 用于以cigs建立原位结层的热方法
US8110428B2 (en) Thin-film photovoltaic devices
KR101152202B1 (ko) Cigs 태양광 흡수층 제조방법
Chu et al. Semi-transparent thin film solar cells by a solution process
US8187904B2 (en) Methods of forming thin layers of photovoltaic absorbers
JP4055064B2 (ja) 薄膜太陽電池の製造方法
Kang et al. In situ growth of CuSbS2 thin films by reactive co-sputtering for solar cells
JP2009170928A (ja) Cis系太陽電池の製造方法
JP5245034B2 (ja) Cis系太陽電池の製造方法
WO2011123117A1 (en) Photovoltaic cells with improved electrical contact
JPH0555615A (ja) 薄膜太陽電池の製造方法
CN103348488B (zh) 具有金属硫氧化物窗口层的光伏装置
JP5420775B2 (ja) Cis系太陽電池の製造方法
US20140261651A1 (en) PV Device with Graded Grain Size and S:Se Ratio
KR101924538B1 (ko) 투명 전도성 산화물 후면전극을 가지는 칼코게나이드계 태양전지 및 그 제조방법
KR102057234B1 (ko) Cigs 박막 태양전지의 제조방법 및 이의 방법으로 제조된 cigs 박막 태양전지
CN116454148A (zh) 一种高镓组分cigs柔性薄膜太阳能电池及其制备方法
WO2015046876A2 (ko) 3차원 p-n접합구조 태양전지 및 이의 제조방법
KR20150135692A (ko) 원자층 증착법으로 형성된 버퍼층을 포함하는 태양전지 및 이의 제조방법
EP2808901A1 (en) Solar cell and method of manufacturing same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680018685.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006746802

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 9057/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020077027588

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 11915423

Country of ref document: US