WO2006120264A2 - Electrohydrodynamic device and method for the production of nanoemulsions and nanoemulsions thus produced - Google Patents

Electrohydrodynamic device and method for the production of nanoemulsions and nanoemulsions thus produced Download PDF

Info

Publication number
WO2006120264A2
WO2006120264A2 PCT/ES2006/000220 ES2006000220W WO2006120264A2 WO 2006120264 A2 WO2006120264 A2 WO 2006120264A2 ES 2006000220 W ES2006000220 W ES 2006000220W WO 2006120264 A2 WO2006120264 A2 WO 2006120264A2
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
jet
dielectric
micro
drops
Prior art date
Application number
PCT/ES2006/000220
Other languages
Spanish (es)
French (fr)
Other versions
WO2006120264A3 (en
Inventor
Antonio Barrero Ripoll
Álvaro GÓMEZ MARÍN
Ignacio GARCÍA LOSCERTALES
Manuel MÁRQUEZ
Original Assignee
Universidad De Sevilla
Universidad De Málaga
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Sevilla, Universidad De Málaga filed Critical Universidad De Sevilla
Publication of WO2006120264A2 publication Critical patent/WO2006120264A2/en
Publication of WO2006120264A3 publication Critical patent/WO2006120264A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/411Emulsifying using electrical or magnetic fields, heat or vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • B01F33/3011Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions using a sheathing stream of a fluid surrounding a central stream of a different fluid, e.g. for reducing the cross-section of the central stream or to produce droplets from the central stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/3031Micromixers using electro-hydrodynamic [EHD] or electro-kinetic [EKI] phenomena to mix or move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/16Arrangements for supplying liquids or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/06Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane

Definitions

  • the present invention describes a method for generating, via electrohydrodynamics, double emulsions, with droplet sizes in the micro or submicron regime, of the water-oil-water (w / o / w) and oil-water-oil (o / w / o), and simple oil-water emulsions (o / w).
  • the procedure consists in the formation, in a bath of a dielectric liquid [liquid (1)], of a composite electrified jet, of diameter in the micrometer or submicrometer range, formed by a liquid (2) and a liquid (3) that flows through the interior of the liquid jet (2), either in the form of drops or in the form of another internal jet.
  • the liquid (2) is hydrophilic (conductive) and its nature is, therefore, different from that of the bath liquid (1), which is hydrophobic (dielectric liquid).
  • the liquid (3) can be hydrophobic, or even hydrophilic in nature, although in the latter case the miscibility between the liquids (2) and (3) must be very low.
  • the two liquids are injected through two capillary needles (or feeding tips) located concentrically, or one inside the other.
  • a conical electrified meniscus (Taylor cone) is formed from whose vertex a stationary jet flows through the electric field action .
  • the cone-jet structure remains stationary ( Figure 1), see for example Barrero et al. (2004).
  • the hydrophobic liquid (3 ) small amounts of an appropriate surfactant are added, the interfacial tension between the liquids (2) and (3) decreases markedly and the viscous forces that the liquid (2) exerts on the liquid meniscus (3) break the conical tip of the inner meniscus to give rise to a second jet of liquid (3) flowing surrounded by the jet of liquid (2), see the photograph of Figure 3 and Figure 4a.
  • the coaxial jet thus formed is unstable and breaks into the dielectric bath (hydrophobic liquid) resulting in a hydrosol of compound drops in which the hydrophilic liquid (2) encapsulates one or more drops of the hydrophobic liquid (3).
  • the intermittent rupture of the tip of the hydrophobic meniscus (3) produces a train of small drops, instead of a jet, which are dragged by the liquid jet (2), see Figure 4b.
  • the rupture of the jet results in liquid capsules (2) that enclose one or more drops of liquid (3) (multi-nuclear capsules).
  • the liquid (3) is ejected in the form of drops (see Figure 4c) if the injected flow rate is below a threshold value (dripping), while for values greater than this it flows in the form of a jet of diameter substantially equal to that of the capillary (jetting), which finally breaks into drops that are dragged by the liquid jet (2), see figure 4d.
  • the breakage of the liquid jet (2) results in multi-nuclear capsules.
  • the described procedure leads to a double emulsion of the type o / w / o in which drops of a hydrophilic liquid (2) containing inside a hydrophobic (3) are dispersed in a bath of another liquid also hydrophobic (1) which can be the same or different liquid as the encapsulation (3).
  • the compound drops, with a hydrophobic liquid (3) enclosed by the hydrophilic (2), resulting from the rupture of the jet are characterized by being uniform in size (small Standard deviation) and the range of their average diameter, which is of the order of jet diameter, is in a range that, depending on the properties of the liquids (mainly of the electrical conductivity of the hydrophilic liquid), ranges from a few tens of nanometers, for the most conductive liquids, to a hundred microns for the least conductive.
  • a hydrophilic liquid bath [liquid (4)] is used as reference electrode on which the dielectric liquid (1) rests, due to its lower density. Due to the charge of its drops, the hydrosol of compound drops is forced by the electric field to move towards the hydrophilic liquid bath (4). Once the drops penetrate the bath, the outer liquid (2) dissolves in the liquid bath (4), resulting in an emulsion of micro or nanometric sized drops of hydrophobic liquid (3) dispersed within the liquid (4).
  • the electric field is applied by establishing a potential difference between the needle if it is metallic (or feed tip) and a reference electrode connected to ground or to a reference potential.
  • the reference electrode can have different geometric configurations, plate, ring, etc.
  • the reference electrode may not be solid; for example, another conductive liquid (4), different or not from the liquid (2), which is immiscible or poorly miscible with the dielectric and is in contact with it through an interface can also be used.
  • the device and the method, objects of the present invention can be applied to obtaining nanoemulsions and encapsulation processes with applications in fields such as Materials Science (nanoemulsions of liquid crystals and other complex fluids), Food Technology and Pharmaceutical Technology (emulsions and encapsulations), etc., where the generation and controlled handling of jets and drops of micro or nanometric sizes is an essential part of the process.
  • this invention utilizes electrohydrodynamic forces (EHD).
  • EHD electrohydrodynamic forces
  • the phenomenon of dispersing a liquid in air by electrohydrodynamic forces has been known since ancient times.
  • electrospray the properties of the resulting aerosol (drops with diameters in the nanometric range and average diameter of the very uniform charged drops) known as electrospray.
  • a meniscus is formed in a very approximately conical manner from whose apex a flow of liquid in the form of a micro or nano-cube is emitted stationary.
  • FIG. 1 Photograph of a simple glycerin electrospray anchored in a metal needle. In this case, no liquid is injected through the inner needle that is observed in the photograph. Note the very long jet of glycerin that is emitted from the apex of the electrified conical meniscus.
  • FIG. 1 Photograph of a glycerin electrospray containing a silicone oil meniscus inside. Note the deformation of the meniscus of silicone oil, which takes the form of a conical tip, produced by the movement of the glycerin.
  • Figure 3 Photograph of an electrified composite jet in which the glycerin flowing outside contains another jet of petroleum jelly with a certain concentration of surfactant (Span 80).
  • Figure 4. Scheme of the device used for the production of electrified composite jets, (a) The cusp of the inner meniscus emits a stationary jet of liquid (3) flowing through the interior of the electrified jet of liquid (2). (b) The cusp of the inner meniscus emits a train of liquid drops (3) that they flow inside the electrified liquid jet (2). (c) When the inner capillary has a diameter substantially smaller than the outer capillary and the flow injected through it is less than a certain threshold value, the liquid (3) is injected in the form of drops (dripping) that flow through the inside the electrified liquid jet (2).
  • the novelty of the present invention lies in the formation of a hydrosol of highly compound, charged monodispersed droplets, within a dielectric liquid [liquid (1)] from the breakage of an electrified jet in which a conductive liquid ( hydrophilic) that flows from the outside completely surrounds another dielectric (hydrophobic) that flows from the inside;
  • a conductive liquid hydrophilic
  • hydrophobic dielectric
  • the drops formed by the rupture of the jet have a structure in which the liquid (2) encapsulates the liquid (3).
  • the liquids are injected through two needles (or feeding tips) arranged concentrically and immersed inside the liquid bath.
  • the conductive liquid (2) is injected through the annular space between the two needles or tips so that when an electric field is applied a conical meniscus is formed electrified from whose vertex a stream of diameter flows in the micro / nanometric range.
  • the characteristic conical shape of the conductive meniscus is due to a balance between the interfacial tension forces and the electrical forces acting on the surface of the conductive meniscus.
  • the movement of the liquid (2) is caused by the electric tangential stress acting on the surface of the meniscus, driving the liquid (2) towards the tip of the Taylor cone. In the way known in the literature as cone-jet mode, the mechanical balance described above is no longer satisfied, so that the surface of the meniscus changes from conical to cylindrical (cone-jet).
  • the injection of the liquid (3) into the meniscus of liquid (2) results in a drop train (dripping), figure 4c, or in a jet (jetting ) that breaks into drops, figure 4d. Both modes give rise to drops of diameter similar to that of the capillary.
  • the electrified jet breaks downstream due to varicose instabilities associated with the surface tension resulting in a hydrosol, within the dielectric (1), of compound drops or composite particles, of very uniform size, in which the conductive liquid (2) encapsulates the dielectric liquid (3); emulsions of the oil-water-oil type (o / w / o) are thus obtained.
  • a hydrophilic liquid bath [liquid (4)] is used as reference electrode on which the dielectric liquid (1) rests, due to its lower density. Due to the charge of its drops, the hydrosol of compound drops is forced by the electric field to move towards the hydrophilic liquid bath (4). Once the drops penetrate the bath, the outer liquid (2) that forms the capsules dissolves in the liquid bath (4), releasing the liquid (3) and giving rise to an emulsion of micro or nanometric sized drops of hydrophobic liquid (3) dispersed within the liquid (4).
  • the electric field is applied by establishing a potential difference between the needle if it is metallic (or feed tip) and a reference electrode connected to ground or to a reference potential.
  • the reference electrode can have different geometric configurations, plate, ring, etc.
  • the reference electrode may not be solid; for example, another conductive liquid (4), different or not from the liquid (2), which is immiscible or poorly miscible with the dielectric and is in contact with it through an interface can also be used.
  • the size of the compound drops can be controlled by varying the electrical conductivity of the conductive liquid (2). The range of sizes that can be achieved varies from one hundred microns to tens of nanometers.
  • Another advantage of the invention derives from the fact that the rupture of the jet, micro / nanometric, produces drops, micro / nanometric and charged.
  • the load of all the drops is always of the same sign, which avoids, by coulombian repulsion, the coalescence thereof.
  • the local electric field acts on the net charge of each drop, helping very efficiently to extract the drops from the point where they occur, also avoiding their coalescence. Otherwise, the resistance offered by the receiving liquid to the displacement of micro / nanometric droplets would cause its accumulation at the point where they are formed, producing coalescence thereof, and losing not only the uniformity of the average droplet size, but also control over the size of the resulting drops.
  • Another important advantage of the present invention is that from the point of view of applications (nano-encapsulation for example) lies in the fact that the control of the dispersed phase (compound drops) necessary for post-processing is much more versatile and easy to implement (pH, temperature, ultrasound, etc.) if the continuous phase is liquid instead of gas.
  • the procedure and the device is common for both applications and passes through the generation in a dielectric bath [liquid (1)] of a jet of an electrified liquid through which another liquid co-flows, in the form of a jet or in drops form;
  • the outer liquid is hydrophilic in nature and has a good electrical conductor (liquid 2) and the one that flows through the interior (liquid 3) is hydrophobic.
  • the device consists of two feeding tips A and B, concentrically arranged, or one contained in the other, and located within a dielectric liquid (1), as shown in Figure 5.
  • a flow rate Q2 of a conductive liquid (2), or conductive liquid suspension is injected through the existing play between the tips.
  • the power tip B is connected to an electric potential V, through a source of electric potential HV, with respect to a reference electrode G.
  • the reference electrode G which can have varied geometric shapes (for example ring or conductive plate) is immersed in the liquid (1) and faces the supply tips A and B.
  • a flow of liquid ( 1) it is simultaneously extracted and injected from the bath, see figure 5. If the feeding tip B is not metallic the conductive liquid is connected to the potential V through A.
  • an electrified meniscus is formed C with a substantially conical shape from whose apex a stationary capillary jet J of liquid (2) is emitted.
  • a flow rate Q3 of a third liquid (3), immiscible or poorly miscible with the liquid (2) is injected at appropriate flows through the tip B, concentric with A.
  • a second meniscus M of liquid 3, anchored at the outlet of The tip B is formed inside the meniscus C.
  • the meniscus M develops a conical tip from which, depending on the interfacial tension of the liquids (2) and (3), a jet is emitted, or a train of drops , of liquid (3), flowing inside the liquid jet (2).
  • a jet J is thus formed composed of the liquids (2) and (3) that flow coaxially within the dielectric liquid 1.
  • the diameter of the composite jet is between 500 microns and 15 nanometers while the diameter of the inner jet (liquid 3), or drops, is between 200 microns and 0 nanometers. Due to capillary instabilities, the jet J breaks into a hydrosol of compound drops H so that the liquid (3) is encapsulated by the liquid (2).
  • the average size of the compound drops is substantially uniform and is in a range of values that varies between 500 microns and 15 nanometers.
  • the hydrosol is carried by the outgoing flow of liquid (1), see figure 5, and the emulsion is collected in an attached device.
  • the supply tips A and B of the device must have a diameter between 0.01 mm and 5 mm and 0.002 mm and 2 mm respectively.
  • the feed rate of liquid 2 (Q2) flowing through the clearance between feed tips A and B is between 10-15 m3 / s and 10-7 m3 / s.
  • the feed rate of the liquid (3) flowing through the feed tip B is between 10-15 m3 / s and 10-7 m3 / s.
  • the device object of the invention consists of: a) Two feeding tips A and B located concentrically, or one of them contained in the other; a flow rate Q3 of a liquid (3) is fed by the tip B while a flow rate Q2 of the liquid 2 is injected through the clearance between A and B; tips A or B are connected to an electric potential V, if any of them metallic. If the tips are not metallic, the electrical contact can be made directly to the conductive liquid (2).
  • a bath of a dielectric liquid (1) arranged so that the supply tips A and B are submerged in the liquid (1) and the potential V is a differential value with respect to an electrode G, also immersed in the liquid (1) and connected to a source of potential HV.
  • Liquids (1) and (2) are immiscible or poorly miscible.
  • an electrically capillary meniscus C is formed, in a substantially conical manner, from whose apex a stationary capillary jet J of liquid (2) is emitted, so that the liquid (1) completely surrounds the liquid (2).
  • a second meniscus M of liquid (3), anchored at the exit of the tip B, is formed inside the meniscus C.
  • the meniscus M develops a conical tip from which a stream of liquid (3) is emitted, or a train drops of the same liquid, which converge with the liquid (2) to form a jet composed of both liquids.
  • Said composite jet J has a diameter between 500 microns and 15 nanometers.
  • the diameter of the liquid jet (3), or its drops, is between 200 microns and 0 nanometers; This last situation corresponds to the case in which no liquid (3) is injected through the feeding tip B.
  • the object of the present invention is the hydrosol H formed spontaneously by the rupture of the stationary capillary jet J that is formed using the mentioned device and procedure.
  • the object of the present invention is also the process described for the generation of jets and hydrosols when, instead of a conductive solid, a conductive liquid (4) is used as the reference electrode G.
  • the liquids (1) and (4) must be immiscible and must form a separation interface with the heaviest liquid being below this interface.
  • Embodiment example 1 is a diagrammatic representation of Embodiment example 1.
  • the basic apparatus used in this example consists of: (a) A means for supplying a first liquid (2) consisting of a metal tube A of 0.8 mm outside diameter and 0.4 mm inside diameter;
  • the liquid (2) was glycerin.
  • a reference electrode G such as a metal plate or ring, located in front of the end of the tube A and also immersed in the liquid (1).
  • the end of A and the reference electrode G were a distance of 1 cm;
  • a high voltage source HV with one of the poles connected to tube A and the other connected to the reference electrode G that is in contact with the liquid (1).
  • the potential difference applied was in this case of 2 KV, as can be seen in Figure 5.
  • a lower one which corresponds to the minimum ejectable from a liquid tip and a higher one that is fixed by the maximum load density compatible with the existence of a stationary jet.
  • the rupture of the jet results in compound drops formed by a glycerin shell that encloses or encapsulates silicone oil.
  • the drops that have a very uniform average size are dispersed in a dielectric liquid (1) and give rise to a double emulsion (silicone oil-glycerin-hexane) of the oil-water oil type (o / w / o).
  • the purpose of the device is to disperse a hydrophobic liquid into a hydrophilic one, maximizing the contact surface between both liquids, thus creating an oil-in-water emulsion (o / w).
  • a device which is basically the same as in the example of embodiment 1, except that in this case the dielectric liquid of the bath (liquid (1)) rests on a layer of a fourth liquid, liquid (4), which is conductive (water for example) that is electrically grounded. There is thus a layer of hexane located on top of another layer of water as seen in Figure 6.
  • the basic device used in this example consists of:
  • the compound drops dispersed in a dielectric liquid (1) are electrically charged and fall into the water under the simultaneous action of gravity and the electric field. Once the compound drops reach the water, the glycerin cover It disappears because it is soluble in water and submicron drops of petroleum jelly are obtained forming a second HA hydrosol, see Figure 6a.
  • Another way of operating consists in appropriately reducing the separation distance between feed tips and the reference liquid electrode [liquid (4)] so as to avoid the breakage of the jet J (see figure 6b) so that the Ia is obtained directly emulsion of oil drops dispersed in water (emulsion o / w).

Abstract

The invention relates to an electrohydrodynamic method of generating double emulsions having a drop size in the micro or submicrometric range, of the water/oil/water (w/o/w) type, the oil/water/oil (o/w/o) type and oil/water (o/w)-type simple emulsions. The inventive method comprises the formation of an electrified compound jet in a bath of dielectric liquid [liquid(1)] having a diameter in the micrometric or submicrometric range, which is formed by a liquid (2) and a liquid (3) which flows inside the liquid jet (2) either in the form of drops or in the form of another inner jet. The inventive device and method can be used to obtain nanoemulsions and for encapsulation processes used in fields in which the generation and controlled manipulation of micro or nanometric drops and jets constitutes an essential part of the process.

Description

TÍTULOTITLE
DISPOSITIVO Y PROCEDIMIENTO PARA LA GENERACIÓN DE NANOEMULSIONES VÍA ELECTROHIDRODINÁMICADEVICE AND PROCEDURE FOR THE GENERATION OF NANOEMULSIONS VIA ELECTROHIDRODINÁMICA
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
El presente invento describe un procedimiento para generar, vía electrohidrodinámica, emulsiones dobles, con tamaños de gotas en el régimen micro o submicrométrico, de los tipos agua-aceite-agua (w/o/w) y aceite-agua-aceite (o/w/o), y emulsiones simples tipo aceite-agua (o/w). El procedimiento consiste en Ia formación, en un baño de un líquido dieléctrico [líquido (1)], de un chorro electrificado compuesto, de diámetro en el rango micrométrico o submicrométrico, formado por un líquido (2) y un líquido (3) que fluye por el interior del chorro de líquido (2), bien en forma de gotas o bien en forma de otro chorro interior. El líquido (2) es hidrófilo (conductor) y su naturaleza es, por tanto, distinta de Ia que posee el líquido del baño (1), que es hidrófobo (líquido dieléctrico). El líquido (3) puede ser de naturaleza hidrófoba, o incluso hidrófila, aunque en este último caso Ia miscibilidad entre los líquidos (2) y (3) debe ser muy baja. Los dos líquidos son inyectados a través de sendas agujas capilares (o puntas de alimentación) situadas concéntricamente, o una dentro de Ia otra. Cuando el líquido conductor (2) fluye a caudales apropiados y se Ie somete a un campo eléctrico, de valor apropiado, se forma un menisco electrificado de forma cónica (cono de Taylor) desde cuyo vértice fluye por Ia acción del campo eléctrico un chorro estacionario. Para valores apropiados del caudal inyectado a través de Ia aguja y del campo eléctrico se puede conseguir que Ia estructura cono-chorro permanezca estacionaria (figura 1 ), véase por ejemplo Barrero et al. (2004).The present invention describes a method for generating, via electrohydrodynamics, double emulsions, with droplet sizes in the micro or submicron regime, of the water-oil-water (w / o / w) and oil-water-oil (o / w / o), and simple oil-water emulsions (o / w). The procedure consists in the formation, in a bath of a dielectric liquid [liquid (1)], of a composite electrified jet, of diameter in the micrometer or submicrometer range, formed by a liquid (2) and a liquid (3) that flows through the interior of the liquid jet (2), either in the form of drops or in the form of another internal jet. The liquid (2) is hydrophilic (conductive) and its nature is, therefore, different from that of the bath liquid (1), which is hydrophobic (dielectric liquid). The liquid (3) can be hydrophobic, or even hydrophilic in nature, although in the latter case the miscibility between the liquids (2) and (3) must be very low. The two liquids are injected through two capillary needles (or feeding tips) located concentrically, or one inside the other. When the conductive liquid (2) flows at appropriate flow rates and is subjected to an electric field, of appropriate value, a conical electrified meniscus (Taylor cone) is formed from whose vertex a stationary jet flows through the electric field action . For appropriate values of the flow injected through the needle and the electric field, it can be achieved that the cone-jet structure remains stationary (Figure 1), see for example Barrero et al. (2004).
Este fenómeno se conoce en Ia literatura electrohidrodinámica como electrospray en modo cono-chorro estacionario. El diámetro del chorro, que depende de las propiedades del líquido (principalmente Ia conductividad eléctrica) y del caudal inyectado está comprendido entre unas decenas de nanómetros y el centenar de mieras. Si en estas condiciones se inyecta, por Ia aguja interior, un caudal estacionario del líquido hidrófobo (3) se forma otro menisco en el interior del menisco anterior (2), véase Ia fotografía de Ia figura 2. La disposición de las agujas es tal que el líquido dieléctrico (1 ) baña parcial o totalmente al menisco del líquido conductor (2). La deformación del menisco interior por Ia acción de las fuerzas viscosas del movimiento del líquido (2) que Io rodea da lugar a que éste adopte una forma cónica como Ia que se muestra en Ia fotografía de Ia figura 2. Si al líquido hidrófobo (3) se Ie añaden pequeñas cantidades de un tensioactivo apropiado, Ia tensión interfacial entre los líquidos (2) y (3) disminuye notablemente y las fuerzas viscosas que el líquido (2) ejerce sobre el menisco de líquido (3) rompen Ia punta cónica del menisco interior para dar lugar a un segundo chorro de líquido (3) que fluye rodeado por el chorro de líquido (2), véase Ia fotografía de Ia figura 3 y figura 4a. El chorro coaxial así formado es inestable y rompe en el seno del baño dieléctrico (líquido hidrófobo) dando lugar a un hidrosol de gotas compuestas en las que el líquido hidrófilo (2) encapsula una o más gotas del líquido hidrófobo (3). En ocasiones, Ia rotura intermitente de Ia punta del menisco hidrófobo (3) produce un tren de pequeñas gotas, en lugar de un chorro, las cuales son arrastradas por el chorro de líquido (2), véase figura 4b. En este caso, Ia rotura del chorro da lugar a cápsulas de líquido (2) que encierran una o más gotas de líquido (3) (cápsulas multi- nucleares). Cuando el capilar por el que se inyecta el líquido (3) tiene un diámetro interior considerablemente más pequeño que el del capilar usado para inyectar el líquido (2), el líquido (3) se eyecta en forma de gotas (véase figura 4c) si el caudal inyectado está por debajo de un valor umbral (dripping), mientras que para valores superiores a éste fluye en forma de chorro de diámetro sensiblemente igual al del capilar (jetting), que finalmente rompe en gotas que son arrastradas por el chorro de líquido (2), véase figura 4d. Como en el caso anterior, Ia rotura del chorro de líquido (2) da lugar a cápsulas multi-nucleares.This phenomenon is known in electrohydrodynamic literature as electrospray in stationary cone-jet mode. The diameter of the jet, which depends on the properties of the liquid (mainly the electrical conductivity) and the injected flow rate is between tens of nanometers and a hundred microns. If under these conditions, a stationary flow of the hydrophobic liquid (3) is injected through the inner needle, another meniscus is formed inside the anterior meniscus (2), see the photograph of figure 2. The arrangement of the needles is such that the dielectric liquid (1) partially or totally bathes the meniscus of the conductive liquid (2). The deformation of the inner meniscus by the action of the viscous forces of the movement of the liquid (2) that surrounds it results in the latter adopting a conical shape like the one shown in the photograph of Figure 2. If the hydrophobic liquid (3 ) small amounts of an appropriate surfactant are added, the interfacial tension between the liquids (2) and (3) decreases markedly and the viscous forces that the liquid (2) exerts on the liquid meniscus (3) break the conical tip of the inner meniscus to give rise to a second jet of liquid (3) flowing surrounded by the jet of liquid (2), see the photograph of Figure 3 and Figure 4a. The coaxial jet thus formed is unstable and breaks into the dielectric bath (hydrophobic liquid) resulting in a hydrosol of compound drops in which the hydrophilic liquid (2) encapsulates one or more drops of the hydrophobic liquid (3). Sometimes, the intermittent rupture of the tip of the hydrophobic meniscus (3) produces a train of small drops, instead of a jet, which are dragged by the liquid jet (2), see Figure 4b. In this case, the rupture of the jet results in liquid capsules (2) that enclose one or more drops of liquid (3) (multi-nuclear capsules). When the capillary through which the liquid is injected (3) has an internal diameter considerably smaller than that of the capillary used to inject the liquid (2), the liquid (3) is ejected in the form of drops (see Figure 4c) if the injected flow rate is below a threshold value (dripping), while for values greater than this it flows in the form of a jet of diameter substantially equal to that of the capillary (jetting), which finally breaks into drops that are dragged by the liquid jet (2), see figure 4d. As in the previous case, the breakage of the liquid jet (2) results in multi-nuclear capsules.
En todos los casos, el procedimiento descrito conduce a una emulsión doble del tipo o/w/o en las que gotas de un líquido hidrófilo (2) que contienen en su interior uno hidrófobo (3) se encuentran dispersas en un baño de otro líquido también hidrófobo (1 ) que puede ser el mismo líquido o diferente que el encapsulado (3). Las gotas compuestas, con un líquido hidrófobo (3) encerrado por el hidrófilo (2), resultantes de Ia rotura del chorro se caracterizan por ser uniformes en tamaño (pequeña desviación Standard) y el rango de su diámetro medio, que es del orden del diámetro del chorro, está en un rango que, dependiendo de las propiedades de los líquidos (principalmente de Ia conductividad eléctrica del líquido hidrófilo), va desde unas decenas de nanómetros, para los líquidos más conductores, hasta un centenar de mieras para los menos conductores.In all cases, the described procedure leads to a double emulsion of the type o / w / o in which drops of a hydrophilic liquid (2) containing inside a hydrophobic (3) are dispersed in a bath of another liquid also hydrophobic (1) which can be the same or different liquid as the encapsulation (3). The compound drops, with a hydrophobic liquid (3) enclosed by the hydrophilic (2), resulting from the rupture of the jet are characterized by being uniform in size (small Standard deviation) and the range of their average diameter, which is of the order of jet diameter, is in a range that, depending on the properties of the liquids (mainly of the electrical conductivity of the hydrophilic liquid), ranges from a few tens of nanometers, for the most conductive liquids, to a hundred microns for the least conductive.
Para Ia formación de emulsiones simples tipo aceite-agua (o/w), se utiliza como electrodo de referencia un baño de líquido hidrófilo [líquido (4)] sobre el que descansa, por su menor densidad, el líquido dieléctrico (1 ). Debido a Ia carga de sus gotas, el hidrosol de gotas compuestas es forzado por el campo eléctrico a moverse hacia el baño de líquido hidrófilo (4). Una vez que las gotas penetran en el baño, el líquido exterior (2) se disuelve en el baño de líquido (4), dando lugar a una emulsión de gotas de tamaño micro o nanométrico de líquido hidrófobo (3) dispersas en el seno del líquido (4). El campo eléctrico se aplica estableciendo una diferencia de potencial entre Ia aguja si ésta es metálica (o punta de alimentación) y un electrodo de referencia conectado a tierra o a un potencial de referencia. El electrodo de referencia puede poseer configuraciones geométricas diferentes, placa, anillo, etc. Además, el electrodo de referencia puede no ser sólido; por ejemplo, también puede usarse otro líquido conductor (4), diferente o no al líquido (2), que sea inmiscible o pobremente miscible con el dieléctrico y esté en contacto con él a través de una interfase. El dispositivo y el procedimiento, objetos de Ia presente invención, se pueden aplicar a Ia obtención de nanoemulsiones y procesos de encapsulado con aplicaciones en campos tales como Ciencia de Materiales (nanoemulsiones de cristales líquidos y otros fluidos complejos), Tecnología de Alimentos y Tecnología Farmacéutica (emulsiones y encapsulados), etc., donde Ia generación y manipulación controlada de chorros y gotas de tamaños micro o nanométrico sea una parte esencial del proceso.For the formation of simple oil-water emulsions (o / w), a hydrophilic liquid bath [liquid (4)] is used as reference electrode on which the dielectric liquid (1) rests, due to its lower density. Due to the charge of its drops, the hydrosol of compound drops is forced by the electric field to move towards the hydrophilic liquid bath (4). Once the drops penetrate the bath, the outer liquid (2) dissolves in the liquid bath (4), resulting in an emulsion of micro or nanometric sized drops of hydrophobic liquid (3) dispersed within the liquid (4). The electric field is applied by establishing a potential difference between the needle if it is metallic (or feed tip) and a reference electrode connected to ground or to a reference potential. The reference electrode can have different geometric configurations, plate, ring, etc. In addition, the reference electrode may not be solid; for example, another conductive liquid (4), different or not from the liquid (2), which is immiscible or poorly miscible with the dielectric and is in contact with it through an interface can also be used. The device and the method, objects of the present invention, can be applied to obtaining nanoemulsions and encapsulation processes with applications in fields such as Materials Science (nanoemulsions of liquid crystals and other complex fluids), Food Technology and Pharmaceutical Technology (emulsions and encapsulations), etc., where the generation and controlled handling of jets and drops of micro or nanometric sizes is an essential part of the process.
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
De entre los muchos procedimientos habitualmente usados para generar chorros líquidos estacionarios y aerosoles, esta invención utiliza fuerzas electrohidrodinámicas (EHD). El fenómeno de dispersar un líquido en aire mediante fuerzas electrohidrodinámicas es conocido desde antiguo. De entre los muchos modos que se conocen destaca por las propiedades del aerosol resultante (gotas con diámetros en el rango nanométrico y diámetro medio de las gotas cargadas muy uniforme) el conocido como electrospray. Como es sabido, bajo unas condiciones de operación apropiadas, anclado a una aguja (o punta de alimentación), metálica o no, se forma un menisco de forma muy aproximadamente cónica desde cuyo vértice se emite un caudal de líquido en forma de micro o nanochorro estacionario. La rotura de dicho chorro produce una nube de gotas cargadas denominada electrospray en modo cono-chorro estacionario que ha sido ampliamente estudiada (Cloupeau y Prunet-Foch, J. Electrostatics 22, 135-159, Fernández de Ia Mora y Loscertales, J. Fluid Mech. 260, 155-184, 1994; Gañán-Calvo et al. J. Aerosol Sci. 28, 249-275, 1997; Hartman et al. J. Aerosol ScL 30, 823-849, 1999). Recientemente, utilizando técnicas de electrospray se ha puesto a punto un procedimiento para producir chorros coaxiales electrificados de líquidos en los que su rotura da lugar a un aerosol de gotas compuestas con un líquido encerrando o encapsulando a otro, Loscertales et al. Science 295, 1695-1698, 2002, y PCT/ES02/00047. Cuando Ia solidificación de uno de los dos líquidos que forman el chorro coaxial ocurre antes de que éste rompa, el resultado consiste en micro o nanofibras coaxiales o en micro/nanotubos. (Loscertales et. al, J. Am. Chem. Soc. 126, 5376, 2004). Los resultados anteriores se refieren a Ia dispersión de un líquido en vacío o en atmósfera gaseosa pero no a situaciones en las que el proceso de dispersión tiene lugar en el seno de otros líquidos. En el caso líquido-líquido, el desarrollo de cúspides en Ia interfase de dos líquidos inmiscibles cuando se aplica un campo eléctrico suficientemente grande ha sido analizado por Oddershede y Nagel, Phys. Rev. Leu. 85, 1234-1237, 2000. En cualquier caso, en este trabajo ni se investigan ni se establecen, por tanto, las condiciones necesarias para formar un electrospray estacionario y estable, en el modo cono-chorro, de un líquido en el seno de otro. La electroatomización de un líquido en el seno de otro en el régimen denominado de goteo (microdripping) aplicando campos eléctricos pulsados ha sido también considerada por Tsouris, Neal, Shah, Spurrier y Lee, Chemical Eng. Comm. 160, 175-197, 1997; naturalmente, El uso de campos eléctricos no estacionarios es incompatible con el modo cono-chorro estacionario (electrospray. La atomización electrostática de fluidos dieléctricos (tales como aire o disolventes orgánicos) en el seno de fluidos relativamente conductores (por ejemplo agua) ha sido investigada también por Tsouris, Shin y Yiacoumi, Canadian J. Chem. Eng. 76, 589-599, 1998;Among the many procedures commonly used to generate stationary liquid jets and aerosols, this invention utilizes electrohydrodynamic forces (EHD). The phenomenon of dispersing a liquid in air by electrohydrodynamic forces has been known since ancient times. Among the many ways that are known, it stands out for the properties of the resulting aerosol (drops with diameters in the nanometric range and average diameter of the very uniform charged drops) known as electrospray. As is known, under appropriate operating conditions, anchored to a needle (or feeding tip), metallic or not, a meniscus is formed in a very approximately conical manner from whose apex a flow of liquid in the form of a micro or nano-cube is emitted stationary. The rupture of said jet produces a cloud of charged drops called electrospray in stationary cone-jet mode that has been widely studied (Cloupeau and Prunet-Foch, J. Electrostatics 22, 135-159, Fernández de Ia Mora and Loscertales, J. Fluid Mech. 260, 155-184, 1994; Gañán-Calvo et al. J. Aerosol Sci. 28, 249-275, 1997; Hartman et al. J. Aerosol ScL 30, 823-849, 1999). Recently, using electrospray techniques a procedure has been developed to produce electrified coaxial jets of liquids in which their breakage results in an aerosol of droplets composed of a liquid enclosing or encapsulating another, Loscertales et al. Science 295, 1695-1698, 2002, and PCT / ES02 / 00047. When the solidification of one of the two liquids that form the coaxial jet occurs before it breaks, the result consists of coaxial micro or nanofibers or micro / nanotubes. (Loscertales et. Al, J. Am. Chem. Soc. 126, 5376, 2004). The above results refer to the dispersion of a liquid in a vacuum or in a gaseous atmosphere but not in situations in which the dispersion process takes place within other liquids. In the liquid-liquid case, the development of cusps at the interface of two immiscible liquids when a sufficiently large electric field is applied has been analyzed by Oddershede and Nagel, Phys. Rev. Leu. 85, 1234-1237, 2000. In any case, this work neither investigates nor establishes, therefore, the conditions necessary to form a stationary and stable electrospray, in the cone-jet mode, of a liquid within other. The electroatomization of a liquid within another in the so-called drip (microdripping) regime applying pulsed electric fields has also been considered by Tsouris, Neal, Shah, Spurrier and Lee, Chemical Eng. Comm. 160, 175-197, 1997; Naturally, the use of non-stationary electric fields is incompatible with the stationary cone-jet mode (electrospray. Electrostatic atomization of dielectric fluids (such as air or organic solvents) within relatively conductive fluids (eg water) has been investigated also by Tsouris, Shin and Yiacoumi, Canadian J. Chem. Eng. 76, 589-599, 1998;
Sato, J. Colloid Interface ScL 756,504-507, 1993; ver también US Patent 5,762,775 y US Patent 4,508,265. Esta situación, en Ia que se producen fenómenos electrohidrodinámicos variados, es también incompatible con Ia formación de una estructura cono-chorro estable y estacionaria.Sato, J. Colloid Interface ScL 756,504-507, 1993; see also US Patent 5,762,775 and US Patent 4,508,265. This situation, in which various electrohydrodynamic phenomena occur, is also incompatible with the formation of a stable and stable cone-jet structure.
Finalmente, Ia dispersión de un líquido conductor en otro dieléctrico aplicando campos eléctricos alternos ha sido considerada en las patentes siguientes: US Patent 5,503,372, by W. G. Sisson,, MT. Harris, T.C. Scott y O.A. Basaran; US Patent 5,738,821 by W.G. Sisson, O.A. Basaran y MT. Harris; US Patent 5,759,228 by by W.G. Sisson,, MT. Harris, T.C. Scott y O.A. Basaran. Como se indicó anteriormente, Ia aplicación de un campo eléctrico alterno es naturalmente incompatible con Ia obtención de Ia estructura cono chorro, estable y estacionaria, que aquí se reivindica y que resulta en un hidrosol monodisperso de gotas cargadas. Más recientemente, Barrero et al. J. CoII. Interf. Sci. 272, 104-108, 2004 ha obtenido electrosprays estacionarios de un líquido conductor en el seno de un baño dieléctrico.Finally, the dispersion of a conductive liquid in another dielectric applying alternating electric fields has been considered in the following patents: US Patent 5,503,372, by W. G. Sisson ,, MT. Harris, T.C. Scott and O.A. They will base; US Patent 5,738,821 by W.G. Sisson, O.A. Basaran and MT. Harris; US Patent 5,759,228 by by W.G. Sisson ,, MT. Harris, T.C. Scott and O.A. They will base. As indicated above, the application of an alternating electric field is naturally incompatible with obtaining the stable, stable and stable cone structure, which is claimed herein and resulting in a monodispersed hydrosol of charged drops. More recently, Barrero et al. J. CoII. Interf. Sci. 272, 104-108, 2004 has obtained stationary electrosprays of a conductive liquid within a dielectric bath.
BREVE DESCRIPCIÓN DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES
Figura 1. Fotografía de un electrospray simple de glicerina anclado en una aguja metálica. En este caso no se inyecta líquido a través de Ia aguja interior que se observa en Ia fotografía. Obsérvese el largísimo chorro de glicerina que se emite desde el vértice del menisco cónico electrificado.Figure 1. Photograph of a simple glycerin electrospray anchored in a metal needle. In this case, no liquid is injected through the inner needle that is observed in the photograph. Note the very long jet of glycerin that is emitted from the apex of the electrified conical meniscus.
Figura 2. Fotografía de un electrospray de glicerina conteniendo en su interior un menisco de aceite de silicona. Obsérvese Ia deformación del menisco de aceite de silicona, que adopta Ia forma de una punta cónica, producida por el movimiento de Ia glicerina.Figure 2. Photograph of a glycerin electrospray containing a silicone oil meniscus inside. Note the deformation of the meniscus of silicone oil, which takes the form of a conical tip, produced by the movement of the glycerin.
Figura 3. Fotografía de un chorro compuesto electrificado en el que Ia glicerina que fluye por el exterior contiene a otro chorro de aceite de vaselina con cierta concentración de surfactante (Span 80). Figura 4. Esquema del dispositivo empleado para Ia producción de chorros compuestos electrificados, (a) La cúspide del menisco interior emite un chorro estacionario de líquido (3) que fluye por el interior del chorro electrificado de líquido (2). (b) La cúspide del menisco interior emite un tren de gotas de líquido (3) que fluyen por el interior del chorro electrificado de líquido (2). (c) Cuando el capilar interior tiene un diámetro sensiblemente menor que el capilar exterior y el caudal inyectado a través de él es menor que un cierto valor umbral, el líquido (3) se inyecta en forma de gotas (dripping) que fluyen por el interior del chorro electrificado de líquido (2). (d) Cuando el capilar interior tiene un diámetro sensiblemente menor que el capilar exterior y el caudal inyectado a través de él es mayor que un cierto valor umbral, el líquido (3) forma a Ia salida del capilar un chorro (Jetting) que rompe por inestabilidades capilares en gotas que fluyen por el interior del chorro electrificado de líquido (2). Figura 5. Esquema del dispositivo empleado para producir chorros líquidos coaxiales de tamaños micro y nanométrico, en el seno de otro líquido para Ia obtención de emulsiones dobles, con extracción del baño fluido y del hidrosol resultante. Figura 6. Esquema de las dos posibles configuraciones para Ia creación de emulsiones tipo aceite-en-agua (emulsiones tipo OAA/). (a) Formación de un hidrosol H y precipitación de las gotas cargadas en el electrodo líquido por fuerzas eléctricas y gravitatorias. (b) Chorro electrificado compuesto ímpactando directamente sobre el electrodo líquido de referencia. Figura 7. Corriente emitida a través del chorro como función del caudal de líquido conductor dispersado.Figure 3. Photograph of an electrified composite jet in which the glycerin flowing outside contains another jet of petroleum jelly with a certain concentration of surfactant (Span 80). Figure 4. Scheme of the device used for the production of electrified composite jets, (a) The cusp of the inner meniscus emits a stationary jet of liquid (3) flowing through the interior of the electrified jet of liquid (2). (b) The cusp of the inner meniscus emits a train of liquid drops (3) that they flow inside the electrified liquid jet (2). (c) When the inner capillary has a diameter substantially smaller than the outer capillary and the flow injected through it is less than a certain threshold value, the liquid (3) is injected in the form of drops (dripping) that flow through the inside the electrified liquid jet (2). (d) When the inner capillary has a diameter substantially smaller than the outer capillary and the flow injected through it is greater than a certain threshold value, the liquid (3) forms at the exit of the capillary a jet (Jetting) that breaks by capillary instabilities in drops that flow inside the electrified liquid jet (2). Figure 5. Scheme of the device used to produce coaxial liquid jets of micro and nanometric sizes, within another liquid for obtaining double emulsions, with extraction of the fluid bath and the resulting hydrosol. Figure 6. Scheme of the two possible configurations for the creation of oil-in-water type emulsions (OAA / type emulsions). (a) Formation of a hydrosol H and precipitation of the droplets charged on the liquid electrode by electrical and gravitational forces. (b) Electrified jet composed by directly impacting on the reference liquid electrode. Figure 7. Current emitted through the jet as a function of the dispersed conductive liquid flow.
EXPLICACIÓN DE LA INVENCIÓNEXPLANATION OF THE INVENTION
La novedad de Ia presente invención radica en Ia formación de un hidrosol de gotas compuestas cargadas, altamente monodisperso, en el seno de un líquido dieléctrico [líquido (1)] a partir de Ia rotura de un chorro electrificado en el que un líquido conductor (hidrófilo) que fluye por el exterior rodea completamente a otro dieléctrico (hidrófobo) que fluye por el interior; las gotas formadas por Ia rotura del chorro poseen una estructura en Ia que el líquido (2) encapsula al líquido (3). Los líquidos se inyectan a través de dos agujas (o puntas de alimentación) dispuestas concéntricamente e inmersas en el interior del baño líquido. El líquido conductor (2) se inyecta a través del espacio anular existente entre las dos agujas o puntas de modo que cuando se Ie aplica un campo eléctrico se forma un menisco cónico electrificado de cuyo vértice fluye un chorro de diámetro en el rango micro/nanométrico. La forma cónica característica del menisco conductor es debida a un balance entre las fuerzas de tensión interfacial y las fuerzas eléctricas que actúan sobre Ia superficie del menisco conductor. El movimiento del líquido (2) es causado por el esfuerzo tangencial eléctrico que actúa sobre Ia superficie del menisco, impulsando el líquido (2) hacia Ia punta del cono de Taylor. En el modo conocido en Ia literatura como modo cono-chorro, el equilibrio mecánico anteriormente descrito deja de satisfacerse, por Io que Ia superficie del menisco cambia de cónica a cilindrica (cono-chorro). En el interior de este menisco se forma otro, de naturaleza dieléctrica (líquido 3), anclado a Ia aguja interior, al inyectar lentamente el líquido (3) a través de ésta. Este menisco es deformado por Ia acción de las fuerzas viscosas de modo que sobre su superficie se forma un punto cúspide, desde el que se emite un chorro muy delgado de líquido (3) cuando las fuerzas viscosas vencen las de tensión interfacial, véase figura 4a. Se forma así una estructura de chorro compuesto en Ia que el líquido conductor (2), que fluye por el exterior del chorro, cubre completamente al líquido dieléctrico (3), que fluye por el interior. Cuando Ia tensión superficial entre ambos líquidos (2 y 3) no es suficientemente baja, es necesario añadir un surfactante para romper Ia superficie del menisco interior y conseguir que fluya el líquido (3) para formar Ia estructura del chorro coaxial. Naturalmente, para alcanzar un estado estacionario es necesario aportar ambos líquidos a caudales iguales a los eyectados.The novelty of the present invention lies in the formation of a hydrosol of highly compound, charged monodispersed droplets, within a dielectric liquid [liquid (1)] from the breakage of an electrified jet in which a conductive liquid ( hydrophilic) that flows from the outside completely surrounds another dielectric (hydrophobic) that flows from the inside; The drops formed by the rupture of the jet have a structure in which the liquid (2) encapsulates the liquid (3). The liquids are injected through two needles (or feeding tips) arranged concentrically and immersed inside the liquid bath. The conductive liquid (2) is injected through the annular space between the two needles or tips so that when an electric field is applied a conical meniscus is formed electrified from whose vertex a stream of diameter flows in the micro / nanometric range. The characteristic conical shape of the conductive meniscus is due to a balance between the interfacial tension forces and the electrical forces acting on the surface of the conductive meniscus. The movement of the liquid (2) is caused by the electric tangential stress acting on the surface of the meniscus, driving the liquid (2) towards the tip of the Taylor cone. In the way known in the literature as cone-jet mode, the mechanical balance described above is no longer satisfied, so that the surface of the meniscus changes from conical to cylindrical (cone-jet). Inside this meniscus another dielectric nature (liquid 3) is formed, anchored to the inner needle, by slowly injecting the liquid (3) through it. This meniscus is deformed by the action of the viscous forces so that a cusp point is formed on its surface, from which a very thin stream of liquid (3) is emitted when the viscous forces overcome those of interfacial tension, see figure 4a . A composite jet structure is thus formed in which the conductive liquid (2), which flows outside the jet, completely covers the dielectric liquid (3), which flows inside. When the surface tension between both liquids (2 and 3) is not low enough, it is necessary to add a surfactant to break the surface of the inner meniscus and get the liquid (3) to flow to form the coaxial jet structure. Naturally, to reach a steady state it is necessary to provide both liquids at flow rates equal to those ejected.
Cuando existe un balance entre fuerzas viscosas y de tensión interfacial, el menisco oscila intermitentemente entre una forma con vértice redondeado (sin emisión de masa) y otra con un punto cúspide del que se emiten gotas de tamaño micro o nanométrico, véase figura 4b.When there is a balance between viscous forces and interfacial tension, the meniscus oscillates intermittently between a rounded vertex shape (without mass emission) and another with a cusp point from which drops of micro or nanometric size are emitted, see Figure 4b.
Cuando el diámetro del capilar interior es muy reducido en comparación con el del exterior, Ia inyección del líquido (3) en el menisco de líquido (2) resulta en un tren de gotas (drípping), figura 4c, o en un chorro (jetting) que rompe en gotas, figura 4d. Ambos modos dan lugar a gotas de diámetro similar al del capilar. El chorro electrificado rompe aguas abajo por inestabilidades varicosas asociadas a Ia tensión superficial dando lugar a un hidrosol, en el seno del dieléctrico (1 ), de gotas compuestas o partículas compuestas, de tamaño muy uniforme, en las que el líquido conductor (2) encapsula al líquido dieléctrico (3); se obtienen de este modo emulsiones de tipo aceite-agua-aceite (o/w/o).When the diameter of the inner capillary is very small compared to that of the outside, the injection of the liquid (3) into the meniscus of liquid (2) results in a drop train (dripping), figure 4c, or in a jet (jetting ) that breaks into drops, figure 4d. Both modes give rise to drops of diameter similar to that of the capillary. The electrified jet breaks downstream due to varicose instabilities associated with the surface tension resulting in a hydrosol, within the dielectric (1), of compound drops or composite particles, of very uniform size, in which the conductive liquid (2) encapsulates the dielectric liquid (3); emulsions of the oil-water-oil type (o / w / o) are thus obtained.
Para Ia formación de emulsiones simples tipo aceite-agua (o/w), se utiliza como electrodo de referencia un baño de líquido hidrófilo [líquido (4)] sobre el que descansa, por su menor densidad, el líquido dieléctrico (1 ). Debido a Ia carga de sus gotas, el hidrosol de gotas compuestas es forzado por el campo eléctrico a moverse hacia el baño de líquido hidrófilo (4). Una vez que las gotas penetran en el baño, el líquido exterior (2) que forma las cápsulas se disuelve en el baño de líquido (4), liberando el líquido (3) y dando lugar a una emulsión de gotas de tamaño micro o nanométrico de líquido hidrófobo (3) dispersas en el seno del líquido (4).For the formation of simple oil-water emulsions (o / w), a hydrophilic liquid bath [liquid (4)] is used as reference electrode on which the dielectric liquid (1) rests, due to its lower density. Due to the charge of its drops, the hydrosol of compound drops is forced by the electric field to move towards the hydrophilic liquid bath (4). Once the drops penetrate the bath, the outer liquid (2) that forms the capsules dissolves in the liquid bath (4), releasing the liquid (3) and giving rise to an emulsion of micro or nanometric sized drops of hydrophobic liquid (3) dispersed within the liquid (4).
El campo eléctrico se aplica estableciendo una diferencia de potencial entre Ia aguja si ésta es metálica (o punta de alimentación) y un electrodo de referencia conectado a tierra o a un potencial de referencia. El electrodo de referencia puede poseer configuraciones geométricas diferentes, placa, anillo, etc. Además, el electrodo de referencia puede no ser sólido; por ejemplo, también puede usarse otro líquido conductor (4), diferente o no al líquido (2), que sea inmiscible o pobremente miscible con el dieléctrico y esté en contacto con él a través de una interfase. Entre las ventajas de esta invención destaca que el tamaño de las gotas compuestas puede controlarse variando Ia conductividad eléctrica del líquido conductor (2). El rango de tamaños que es posible conseguir varía desde el centenar de mieras hasta las decenas de nanómetros. Otra ventaja del invento emana del hecho de que Ia rotura del chorro, micro/nanométrico, produce gotas, micro/nanométricas y cargadas. La carga de todas las gotas es siempre de igual signo, Io que evita, por repulsión coulombiana, Ia coalescencia de las mismas. Además, el campo eléctrico local actúa sobre Ia carga neta de cada gota, ayudando de forma muy eficiente a extraer las gotas del punto donde se producen, evitando también su coalescencia. De otra forma, Ia resistencia que ofrece el líquido receptor al desplazamiento de gotas micro/nanométricas ocasionaría su acumulación en el punto donde se forman, produciéndose Ia coalescencia de las mismas, y perdiéndose no solo Ia uniformidad del tamaño medio de las gotas, sino también el control sobre el tamaño de las gotas resultantes. Otra ventaja importante de Ia presente invención es que desde el punto de vista de las aplicaciones (nano- encapsulación por ejemplo) radica en el hecho de que el control de Ia fase dispersa (gotas compuestas) necesario para su post-procesado es mucho más versátil y fácil de implementar (pH, temperatura, ultrasonidos, etc.) si Ia fase continua es líquida en lugar de gaseosa.The electric field is applied by establishing a potential difference between the needle if it is metallic (or feed tip) and a reference electrode connected to ground or to a reference potential. The reference electrode can have different geometric configurations, plate, ring, etc. In addition, the reference electrode may not be solid; for example, another conductive liquid (4), different or not from the liquid (2), which is immiscible or poorly miscible with the dielectric and is in contact with it through an interface can also be used. Among the advantages of this invention, it is worth highlighting that the size of the compound drops can be controlled by varying the electrical conductivity of the conductive liquid (2). The range of sizes that can be achieved varies from one hundred microns to tens of nanometers. Another advantage of the invention derives from the fact that the rupture of the jet, micro / nanometric, produces drops, micro / nanometric and charged. The load of all the drops is always of the same sign, which avoids, by coulombian repulsion, the coalescence thereof. In addition, the local electric field acts on the net charge of each drop, helping very efficiently to extract the drops from the point where they occur, also avoiding their coalescence. Otherwise, the resistance offered by the receiving liquid to the displacement of micro / nanometric droplets would cause its accumulation at the point where they are formed, producing coalescence thereof, and losing not only the uniformity of the average droplet size, but also control over the size of the resulting drops. Another important advantage of the present invention is that from the point of view of applications (nano-encapsulation for example) lies in the fact that the control of the dispersed phase (compound drops) necessary for post-processing is much more versatile and easy to implement (pH, temperature, ultrasound, etc.) if the continuous phase is liquid instead of gas.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓNDETAILED DESCRIPTION OF THE INVENTION
La presente sección tiene por objeto Ia descripción del dispositivo y del procedimiento para generar nanoemulsiones vía electrohidrodinámica. En particular se desarrollarán aquí dos aplicaciones enfocadas a 1 ) Ia generación de nanoemulsiones dobles del tipo (o/w/o) en las que cápsulas compuestas de un líquido hidrófilo conteniendo en su interior otro hidrófobo están dispersas en una fase continua de un tercer líquido (también hidrófobo); este tercer líquido puede ser diferente o ser el mismo que el encapsulado y 2) a Ia dispersión en el seno de un líquido hidrófilo de gotas nanométricas de un líquido hidrófobo, insoluble con el anterior; el interés de esta aplicación estriba en que hay un buen número de sustancias de alto valor terapéutico que son insolubles en agua y cuando se administran a pacientes, los niveles de disolución en sangre que se consiguen son extraordinariamente bajos a no ser que esta sustancia se disperse en tamaños pequeñísimos en el seno de un líquido acuoso con el objetivo de aumentar Ia superficie entre ambos líquidos y facilitar Ia dilución de uno en el seno del otro. El caso de Ia formación de emulsiones monodispersas de cristal líquido es otra de las posibles aplicaciones de interés.The purpose of this section is to describe the device and the procedure for generating nanoemulsions via electrohydrodynamics. In particular, there will be developed here two applications focused on 1) the generation of double nanoemulsions of the type (o / w / o) in which capsules composed of a hydrophilic liquid containing another hydrophobe inside are dispersed in a continuous phase of a third liquid (also hydrophobic); this third liquid may be different or be the same as the encapsulation and 2) to the dispersion within a hydrophilic liquid of nanometric drops of a hydrophobic liquid, insoluble with the previous one; The interest of this application is that there is a good number of substances of high therapeutic value that are insoluble in water and when administered to patients, the levels of blood dissolution that are achieved are extraordinarily low unless this substance is dispersed in very small sizes in an aqueous liquid with the aim of increasing the surface between both liquids and facilitating the dilution of one in the other. The case of the formation of monodispersed emulsions of liquid crystal is another of the possible applications of interest.
El procedimiento y el dispositivo es común para ambas aplicaciones y pasa por Ia generación en el seno de un baño dieléctrico [líquido (1 )] de un chorro de un líquido electrificado por cuyo interior co-fluye otro líquido, en forma de chorro o en forma de gotas; el líquido exterior es de naturaleza hidrófila y buen conductor eléctrico (líquido 2) y el que fluye por el interior (líquido 3) es hidrófobo.The procedure and the device is common for both applications and passes through the generation in a dielectric bath [liquid (1)] of a jet of an electrified liquid through which another liquid co-flows, in the form of a jet or in drops form; the outer liquid is hydrophilic in nature and has a good electrical conductor (liquid 2) and the one that flows through the interior (liquid 3) is hydrophobic.
El dispositivo consta de dos puntas de alimentación A y B, dispuestas concéntricamente, o una contenida en Ia otra, y situadas en el seno de un líquido dieléctrico (1 ), como se muestra en Ia figura 5. Un caudal Q2 de un líquido conductor (2), o suspensión líquida conductora, se inyecta a través del juego existente entre las puntas. La punta de alimentación B está conectada a un potencial eléctrico V, a través de una fuente de potencial eléctrico HV, respecto a un electrodo de referencia G. El electrodo de referencia G, que puede tener formas geométricas variadas (por ejemplo anillo o placa conductora) se encuentra inmerso en el líquido (1) y enfrentado a las puntas de alimentación A y B. Un caudal de líquido (1) es simultáneamente extraído e inyectado del baño, véase figura 5. Si Ia punta de alimentación B no fuese metálica el líquido conductor se conecta al potencial V a través de A. A Ia salida de Ia punta de alimentación A se forma un menisco electrificado C con una forma sensiblemente cónica desde cuyo vértice se emite un chorro capilar estacionario J de líquido (2). Un caudal Q3 de un tercer líquido (3), inmiscible o pobremente miscible con el líquido (2) es inyectado a caudales apropiados a través de Ia punta B, concéntrica con A. Un segundo menisco M de líquido 3, anclado a Ia salida de Ia punta B, se forma en el interior del menisco C. El menisco M desarrolla una punta cónica desde Ia que, dependiendo de Ia tensión interfacial de los líquidos (2) y (3), se emite un chorro, o un tren de gotas, de líquido (3), que fluyen en el interior del chorro de líquido (2). Se forma así un chorro J compuesto por los líquidos (2) y (3) que fluyen coaxialmente en el seno del líquido dieléctrico 1. El diámetro del chorro compuesto está comprendido entre 500 mieras y 15 nanómetros mientras que el diámetro del chorro interior (líquido 3), o de las gotas, está comprendido entre 200 mieras y 0 nanómetros. Debido a inestabilidades capilares, el chorro J rompe en un hidrosol de gotas compuestas H de forma que el líquido (3) es encapsulado por el líquido (2). El tamaño medio de las gotas compuestas es sensiblemente uniforme y está comprendido en un rango de valores que varía entre 500 mieras y 15 nanómetros. El hidrosol es arrastrado por el flujo saliente de líquido (1 ), véase figura 5, y Ia emulsión es colectada en un dispositivo anejo. Las puntas de alimentación A y B del dispositivo han de tener un diámetro comprendido entre 0,01 mm y 5mm y 0.002mm y 2mm respectivamente. El caudal de alimentación del líquido 2 (Q2) que fluye por el juego existente entre las puntas de alimentación A y B está comprendido entre 10-15 m3/s y 10-7 m3/s. El caudal de alimentación del líquido (3) que fluye a través de Ia punta de alimentación B está comprendido entre 10-15 m3/s y 10-7 m3/s. Cuando Ia distancia entre Ia punta de alimentación A y el electrodo de referencia G está comprendida entre 0,01 mm y 50 cm, el potencial eléctrico aplicado ha de estar comprendido entre 10V y 300KV. Así, el dispositivo objeto de Ia invención consta de: a) Dos puntas de alimentación A y B situadas concéntricamente, o una de ellas contenida en Ia otra; por Ia punta B se alimenta un caudal Q3 de un líquido (3) mientras que por el juego entre A y B se inyecta un caudal Q2 del líquido 2; las puntas A o B se conectan a un potencial eléctrico V, si es alguna de ellas metálica. Si las puntas no son metálicas, el contacto eléctrico se puede hacer directamente al líquido conductor (2). b) Un baño de un líquido dieléctrico (1) dispuesto de forma que las puntas de alimentación A y B están sumergidas en el líquido (1) y el potencial V es un valor diferencial respecto a un electrodo G, inmerso, también, en el líquido (1) y conectado a una fuente de potencial HV. Los líquidos (1) y (2) son inmiscibles o pobremente miscibles. A Ia salida de Ia punta de alimentación A se forma un menisco capilar electrificado C, de forma sensiblemente cónica, desde cuyo vértice se emite un chorro capilar estacionario J de líquido (2), de forma que el líquido (1 ) rodea completamente al líquido (2). Un segundo menisco M de líquido (3), anclado a Ia salida de Ia punta B, se forma en el interior del menisco C. El menisco M desarrolla una punta cónica desde Ia que se emite un chorro de líquido (3), o un tren de gotas del mismo líquido, que confluyen con el líquido (2) para formar un chorro compuesto de ambos líquidos. Dicho chorro compuesto J tiene un diámetro comprendido entre 500 mieras y 15 nanómetros. El diámetro del chorro de líquido (3), o de sus gotas, está comprendido entre 200 mieras y 0 nanómetros; esta última situación corresponde al caso en que no se inyecte líquido (3) a través de Ia punta de alimentación B.The device consists of two feeding tips A and B, concentrically arranged, or one contained in the other, and located within a dielectric liquid (1), as shown in Figure 5. A flow rate Q2 of a conductive liquid (2), or conductive liquid suspension, is injected through the existing play between the tips. The power tip B is connected to an electric potential V, through a source of electric potential HV, with respect to a reference electrode G. The reference electrode G, which can have varied geometric shapes (for example ring or conductive plate) is immersed in the liquid (1) and faces the supply tips A and B. A flow of liquid ( 1) it is simultaneously extracted and injected from the bath, see figure 5. If the feeding tip B is not metallic the conductive liquid is connected to the potential V through A. At the outlet of the feeding tip A an electrified meniscus is formed C with a substantially conical shape from whose apex a stationary capillary jet J of liquid (2) is emitted. A flow rate Q3 of a third liquid (3), immiscible or poorly miscible with the liquid (2) is injected at appropriate flows through the tip B, concentric with A. A second meniscus M of liquid 3, anchored at the outlet of The tip B is formed inside the meniscus C. The meniscus M develops a conical tip from which, depending on the interfacial tension of the liquids (2) and (3), a jet is emitted, or a train of drops , of liquid (3), flowing inside the liquid jet (2). A jet J is thus formed composed of the liquids (2) and (3) that flow coaxially within the dielectric liquid 1. The diameter of the composite jet is between 500 microns and 15 nanometers while the diameter of the inner jet (liquid 3), or drops, is between 200 microns and 0 nanometers. Due to capillary instabilities, the jet J breaks into a hydrosol of compound drops H so that the liquid (3) is encapsulated by the liquid (2). The average size of the compound drops is substantially uniform and is in a range of values that varies between 500 microns and 15 nanometers. The hydrosol is carried by the outgoing flow of liquid (1), see figure 5, and the emulsion is collected in an attached device. The supply tips A and B of the device must have a diameter between 0.01 mm and 5 mm and 0.002 mm and 2 mm respectively. The feed rate of liquid 2 (Q2) flowing through the clearance between feed tips A and B is between 10-15 m3 / s and 10-7 m3 / s. The feed rate of the liquid (3) flowing through the feed tip B is between 10-15 m3 / s and 10-7 m3 / s. When the distance between the supply tip A and the reference electrode G is between 0.01 mm and 50 cm, the applied electrical potential must be between 10V and 300KV. Thus, the device object of the invention consists of: a) Two feeding tips A and B located concentrically, or one of them contained in the other; a flow rate Q3 of a liquid (3) is fed by the tip B while a flow rate Q2 of the liquid 2 is injected through the clearance between A and B; tips A or B are connected to an electric potential V, if any of them metallic. If the tips are not metallic, the electrical contact can be made directly to the conductive liquid (2). b) A bath of a dielectric liquid (1) arranged so that the supply tips A and B are submerged in the liquid (1) and the potential V is a differential value with respect to an electrode G, also immersed in the liquid (1) and connected to a source of potential HV. Liquids (1) and (2) are immiscible or poorly miscible. At the outlet of the feeding tip A an electrically capillary meniscus C is formed, in a substantially conical manner, from whose apex a stationary capillary jet J of liquid (2) is emitted, so that the liquid (1) completely surrounds the liquid (2). A second meniscus M of liquid (3), anchored at the exit of the tip B, is formed inside the meniscus C. The meniscus M develops a conical tip from which a stream of liquid (3) is emitted, or a train drops of the same liquid, which converge with the liquid (2) to form a jet composed of both liquids. Said composite jet J has a diameter between 500 microns and 15 nanometers. The diameter of the liquid jet (3), or its drops, is between 200 microns and 0 nanometers; This last situation corresponds to the case in which no liquid (3) is injected through the feeding tip B.
Es objetivo de Ia presente invención el hidrosol H formado espontáneamente por Ia rotura del chorro capilar estacionario J que se forma utilizando el dispositivo y procedimiento mencionados.The object of the present invention is the hydrosol H formed spontaneously by the rupture of the stationary capillary jet J that is formed using the mentioned device and procedure.
Es también objeto de Ia presente invención el procedimiento descrito para Ia generación de chorros e hidrosoles cuando, en lugar de un sólido conductor, se utiliza un líquido conductor (4) como electrodo de referencia G. Los líquidos (1 ) y (4) deben ser inmiscibles y deben formar una interfase de separación estando el líquido más pesado por debajo de esta interfase. MODO DE REALIZACIÓN DE LA INVENCIÓNThe object of the present invention is also the process described for the generation of jets and hydrosols when, instead of a conductive solid, a conductive liquid (4) is used as the reference electrode G. The liquids (1) and (4) must be immiscible and must form a separation interface with the heaviest liquid being below this interface. EMBODIMENT OF THE INVENTION
Ejemplo de realización 1.Embodiment example 1.
El aparato básico utilizado en este ejemplo consiste en: (a) Un medio para suministrar un primer líquido (2) consistente en un tubo metálico A de 0.8 mm de diámetro exterior y 0.4 mm de diámetro interior; en este ejemplo, el líquido (2) era glicerina.The basic apparatus used in this example consists of: (a) A means for supplying a first liquid (2) consisting of a metal tube A of 0.8 mm outside diameter and 0.4 mm inside diameter; In this example, the liquid (2) was glycerin.
(b) Otro medio similar para suministrar un líquido dieléctrico (3) consistente en un capilar de vidrio B de diámetro externo de 0.36 mm e interno de 0.15 mm; en este caso el líquido (3) era aceite de vaselina con cierta concentración de surfactante oleosoluble.(b) Another similar means for supplying a dielectric liquid (3) consisting of a glass capillary B with an external diameter of 0.36 mm and an internal diameter of 0.15 mm; in this case the liquid (3) was petroleum jelly with a certain concentration of oil-soluble surfactant.
(c) Un recipiente RE para contener el líquido dieléctrico del baño [líquido (1)], inmiscible con el líquido (2), y de muy baja conductividad eléctrica; en este caso se ha usado hexano. Los extremos de los tubos B y A por los que fluyen respectivamente los líquidos (3) y (2) están inmersos en el líquido (1);(c) A RE container to contain the dielectric liquid of the bath [liquid (1)], immiscible with the liquid (2), and of very low electrical conductivity; in this case hexane has been used. The ends of the tubes B and A through which the liquids (3) and (2) flow respectively are immersed in the liquid (1);
(d) Un electrodo de referencia G, como por ejemplo una placa o anillo metálico, situado enfrente del extremo del tubo A e inmerso también en el líquido (1). El extremo de A y el electrodo de referencia G distaban una distancia de 1 cm;(d) A reference electrode G, such as a metal plate or ring, located in front of the end of the tube A and also immersed in the liquid (1). The end of A and the reference electrode G were a distance of 1 cm;
(e) Una fuente de alto voltaje HV, con uno de los polos conectado al tubo A y el otro conectado al electrodo de referencia G que está en contacto con el líquido (1 ). La diferencia de potencial aplicada fue en este caso de 2 KV, como se puede ver en Ia figura 5.(e) A high voltage source HV, with one of the poles connected to tube A and the other connected to the reference electrode G that is in contact with the liquid (1). The potential difference applied was in this case of 2 KV, as can be seen in Figure 5.
A modo ilustrativo en Ia tabla I se dan valores experimentales de Ia intensidad de corriente transportada por el chorro compuesto formado por un chorro compuesto de líquido (3) que fluye por el interior de otro chorro de un líquido conductor (2) que Io rodea completamente y fluye coaxialmente con el líquido (1 ). Estos datos se recogen en Ia curva de Ia figura 7 donde se representa en el eje de ordenadas Ia corriente emitida y Ia raíz cuadrada del caudal en el eje de abcisas. Los datos experimentales así representados siguen muy aproximadamente Ia ley experimental l¡«Q1/2, que es común a todos los electrospray en el modo cono-chorro estacionario. Al igual que en electrosprays en atmósfera gaseosa o vacío, nuestros experimentos en atmósferas líquidas dieléctricas indican que Ia obtención del modo cono-chorro estacionario requiere operar con caudales comprendidos entre dos valores. Uno inferior, que corresponde al mínimo eyectable desde una punta líquida y otro superior que viene fijado por Ia máxima densidad de carga compatible con Ia existencia de un chorro estacionario. La rotura del chorro da lugar a gotas compuestas formadas por una cubierta de glicerina que encierra o encapsula al aceite de silicona. Las gotas que poseen un tamaño medio muy uniforme están dispersas en un líquido dieléctrico (1) y dan lugar a una emulsión doble (aceite de silicona-glicerina-hexano) del tipo aceite-agua aceite (o/w/o).By way of illustration in Table I, experimental values of the intensity of current carried by the composite jet formed by a jet composed of liquid (3) flowing inside another jet of a conductive liquid (2) that surrounds it completely are given. and flows coaxially with the liquid (1). These data are collected in the curve of Figure 7 where the emitted current and the square root of the flow in the axis of abscissa are represented on the ordinate axis. The experimental data thus represented follow very closely the experimental law "Q1 / 2, which is common to all electrospray in the stationary cone-jet mode. As in electrosprays in a gaseous or empty atmosphere, our experiments in dielectric liquid atmospheres indicate that obtaining the stationary cone-jet mode requires operating with flows between two values. A lower one, which corresponds to the minimum ejectable from a liquid tip and a higher one that is fixed by the maximum load density compatible with the existence of a stationary jet. The rupture of the jet results in compound drops formed by a glycerin shell that encloses or encapsulates silicone oil. The drops that have a very uniform average size are dispersed in a dielectric liquid (1) and give rise to a double emulsion (silicone oil-glycerin-hexane) of the oil-water oil type (o / w / o).
Figure imgf000015_0001
Ejemplo de realización 2.
Figure imgf000015_0001
Embodiment example 2.
En este caso el dispositivo tiene por objeto dispersar un líquido hidrófobo en uno hidrófilo maximizando Ia superficie de contacto entre ambos líquidos, creando así una emulsión tipo aceite en agua (o/w). Para ello, se utiliza un dispositivo que es básicamente el mismo que en el ejemplo de realización 1 , sólo que en este caso el líquido dieléctrico del baño (líquido (1)) descansa sobre una capa de un cuarto líquido, líquido (4), que es conductor (agua por ejemplo) que se conecta eléctricamente a tierra. Se tiene así una capa de hexano situada encima de otra capa de agua como se observa en Ia Figura 6.In this case the purpose of the device is to disperse a hydrophobic liquid into a hydrophilic one, maximizing the contact surface between both liquids, thus creating an oil-in-water emulsion (o / w). For this, a device is used which is basically the same as in the example of embodiment 1, except that in this case the dielectric liquid of the bath (liquid (1)) rests on a layer of a fourth liquid, liquid (4), which is conductive (water for example) that is electrically grounded. There is thus a layer of hexane located on top of another layer of water as seen in Figure 6.
El dispositivo básico utilizado en este ejemplo consiste en:The basic device used in this example consists of:
(a) Un medio para suministrar un primer líquido (2) consistente en un tubo metálico A de 0.8 mm de diámetro exterior y 0.4 mm de diámetro interior; en este ejemplo, el líquido (2) era glicerina; (b) Otro medio similar para suministrar un líquido dieléctrico (3) consistente en un capilar de vidrio B de 0.36 mm de diámetro externo y 0.15 mm de diámetro interno; en este caso el líquido (3) era aceite de vaselina con cierta concentración de surfactante oleosoluble;(a) A means for supplying a first liquid (2) consisting of a metal tube A of 0.8 mm outside diameter and 0.4 mm inside diameter; in this example, the liquid (2) was glycerin; (b) Another similar means for supplying a dielectric liquid (3) consisting of a glass capillary B of 0.36 mm external diameter and 0.15 mm internal diameter; in this case the liquid (3) was petroleum jelly with a certain concentration of oil-soluble surfactant;
(c) Un recipiente RE1 que contiene un volumen de un líquido conductor, líquido (4) (agua en este ejemplo), sobre el que descansa el líquido dieléctrico del baño (líquido(c) A container RE1 containing a volume of a conductive liquid, liquid (4) (water in this example), on which the dielectric liquid of the bath rests (liquid
(1 )); en este caso se ha usado hexano. Los extremos de los tubos B y A por los que fluyen respectivamente los líquidos (3) y (2) están inmersos en el líquido (1);(one )); in this case hexane has been used. The ends of the tubes B and A through which the liquids (3) and (2) flow respectively are immersed in the liquid (1);
(d) El extremo del tubo A está inmerso en el líquido (1 ) y situado enfrente del líquido (4) y a una distancia de 1 cm; (e) Una fuente de alto voltaje HV, con uno de los polos conectado al tubo A y el otro conectado al líquido (4) que está en contacto con el líquido (1). La diferencia de potencial aplicada fue en este caso de 2 KV.(d) The end of the tube A is immersed in the liquid (1) and located in front of the liquid (4) and at a distance of 1 cm; (e) A high voltage source HV, with one of the poles connected to tube A and the other connected to the liquid (4) that is in contact with the liquid (1). The potential difference applied was in this case of 2 KV.
La rotura del chorro (aceite de vaselina por el interior y glicerina por el exterior) eyectado desde los meniscos da lugar a gotas compuestas formadas por una cubierta de glicerina que encierra o encapsula al aceite de vaselina. Las gotas compuestas dispersas en un líquido dieléctrico (1 ) están cargadas eléctricamente y caen hacia el agua bajo Ia acción simultánea de Ia gravedad y del campo eléctrico. Una vez que las gotas compuestas alcanzan el agua, Ia cubierta de glicerina desaparece por ser soluble en agua y se obtienen gotas submicrométricas de aceite de vaselina formando un segundo hidrosol HA, véase figura 6a. Otro modo de operar consiste en reducir apropiadamente Ia distancia de separación entre puntas de alimentación y el electrodo líquido de referencia [líquido (4)] de forma que se evite Ia rotura del chorro J (véase figura 6b) de modo que se obtenga directamente Ia emulsión de gotas de aceite dispersas en agua (emulsión o/w). The rupture of the jet (petroleum jelly on the inside and glycerin on the outside) ejected from the menisci leads to compound drops formed by a cover of glycerin that encloses or encapsulates the petroleum jelly. The compound drops dispersed in a dielectric liquid (1) are electrically charged and fall into the water under the simultaneous action of gravity and the electric field. Once the compound drops reach the water, the glycerin cover It disappears because it is soluble in water and submicron drops of petroleum jelly are obtained forming a second HA hydrosol, see Figure 6a. Another way of operating consists in appropriately reducing the separation distance between feed tips and the reference liquid electrode [liquid (4)] so as to avoid the breakage of the jet J (see figure 6b) so that the Ia is obtained directly emulsion of oil drops dispersed in water (emulsion o / w).

Claims

REIVINDICACIONES
1.- Procedimiento y dispositivo para producir chorros compuestos electrificados de diámetro micro y submicrométrico en el seno de líquidos dieléctricos y Ia emulsión doble resultante de Ia rotura varicosa del micro/nano chorro caracterizado porque el dispositivo consiste en N=2 puntas de alimentación de 2 líquidos (L1 y L2), dispuestas de forma que una engloba a Ia otra, tales que por cada punta de alimentación fluye un caudal Qi, siendo i un valor comprendido entre 1 y 2. Dichas puntas de alimentación están inmersas en un líquido dieléctrico X, y conectadas a un potencial eléctrico Vi respecto a un electrodo de referencia inmerso también en el líquido X. Para valores apropiados de Qi y Vi se forma, anclado en Ia punta exterior, un menisco capilar líquido con una forma sensiblemente cónica desde cuyo vértice se emite un chorro capilar estacionario del líquido (L2). Anclado en Ia punta interior se forma un menisco desde el que fluye, en forma de chorro o de gotas, un líquido (L1 ). Se obtiene así un chorro compuesto, capilar, estacionario, de forma que el líquido (L2) rodea o encapsula al líquido (L1) y tal que dicho chorro capilar tiene un diámetro comprendido entre 500 mieras y 15 nanómetros que es sensiblemente menor que Ia longitud característica del menisco líquido electrificado del cual emana. 1.- Procedure and device for producing electrified composite jets of micro and submicron diameter in dielectric liquids and the double emulsion resulting from the varicose rupture of the micro / nano jet characterized in that the device consists of N = 2 feeding tips of 2 liquids (L1 and L2), arranged so that one encompasses the other, such that a flow rate Qi flows through each feed tip, i being a value between 1 and 2. Said feed tips are immersed in a dielectric liquid X , and connected to an electric potential Vi with respect to a reference electrode also immersed in the liquid X. For appropriate values of Qi and Vi, a liquid capillary meniscus with a substantially conical shape from whose vertex is formed is anchored at the outer tip. emits a stationary capillary stream of liquid (L2). Anchored at the inner tip a meniscus is formed from which a liquid (L1) flows, in the form of a jet or drops. A composite, capillary, stationary jet is thus obtained, so that the liquid (L2) surrounds or encapsulates the liquid (L1) and such that said capillary jet has a diameter between 500 microns and 15 nanometers that is substantially shorter than the length characteristic of the electrified liquid meniscus from which it emanates.
2.- Dispositivos para producir chorros líquidos estacionarios y gotas compuestas de tamaño micro y nanométrico en el seno de un líquido dieléctrico según Ia reivindicación 1 , caracterizados por que las 2 puntas de alimentación tienen diámetros comprendidos entre 0,01 mm y 5 mm. 2. Devices for producing stationary liquid jets and compound droplets of micro and nanometric size within a dielectric liquid according to claim 1, characterized in that the 2 supply tips have diameters between 0.01 mm and 5 mm.
3,- Dispositivos para producir chorros líquidos estacionarios y gotas compuestas de tamaño micro y nanométrico en el seno de un líquido dieléctrico según las reivindicaciones 1 y 2, caracterizados porque los caudales que fluyen por Ia puntas de alimentación están comprendidos entre 10-15 m3/s y 10-7 m3/s. 3, - Devices for producing stationary liquid jets and compound droplets of micro and nanometric size within a dielectric liquid according to claims 1 and 2, characterized in that the flow rates flowing through the supply tips are between 10-15 m3 / s and 10-7 m3 / s.
4.- Dispositivos para producir chorros líquidos estacionarios y gotas compuestas de tamaño micro y nanométrico en el seno de un líquido dieléctrico según las reivindicaciones 1-3, caracterizados porque para una distancia entre cada punta de alimentación y el electrodo de referencia comprendida entre 0,01 mm y 50cm, el potencial eléctrico aplicado Vi está comprendido entre OV y 100KV. 4. Devices for producing stationary liquid jets and compound droplets of micro and nanometric size within a dielectric liquid according to claims 1-3, characterized in that for a distance between each supply tip and the reference electrode between 0, 01 mm and 50cm, the applied electric potential Vi is between OV and 100KV.
5.- Dispositivos para producir chorros líquidos estacionarios y gotas compuestas de tamaño micro y nanométrico en el seno de un líquido dieléctrico según las reivindicaciones 1-4, caracterizados porque el electrodo de referencia es un líquido conductor inmiscible con el líquido dieléctrico X. 5. Devices for producing stationary liquid jets and compound droplets of micro and nanometric size within a dielectric liquid according to claims 1-4, characterized in that the reference electrode is a conductive liquid immiscible with the dielectric liquid X.
6.- Dispositivo para producir chorros líquidos estacionarios y partículas de tamaño micro y nanométrico en el seno de un líquido dieléctrico según las reivindicaciones 1-5, siendo el número de puntas de alimentación N=1 y conteniendo el dispositivo: a) una punta de alimentación 1 por Ia cual fluye un caudal Q1 de un líquido (1 ) y conectada a un potencial eléctrico V1. b) un baño de un líquido dieléctrico (2) dispuesto de tal forma que Ia punta de alimentación 1 está rodeada por el líquido (2) y el potencial V1 es un valor diferencial respecto a un electrodo de referencia conectado a un potencial de referencia, inmerso también en el líquido 2. Los líquidos (1) y (2) son inmiscibles o pobremente miscibles, formándose en Ia salida de Ia punta de alimentación un menisco capilar líquido electrificado con una forma sensiblemente cónica y de cuyo vértice se emite un chorro capilar estacionario formado el líquido (1), tal que el líquido (2) rodea completamente al líquido (1 ) y tal que dicho chorro capilar tiene un diámetro comprendido entre 500 mieras y 15 nanómetros que es sensiblemente menor que el diámetro característico del menisco líquido electrificado del cual emana.6. Device for producing stationary liquid jets and particles of micro and nanometric size within a dielectric liquid according to claims 1-5, the number of feeding tips N = 1 and the device containing: a) a tip of supply 1 through which a flow Q1 of a liquid (1) flows and connected to an electric potential V1. b) a bath of a dielectric liquid (2) arranged in such a way that the supply tip 1 is surrounded by the liquid (2) and the potential V1 is a differential value with respect to a reference electrode connected to a reference potential, also immersed in the liquid 2. The liquids (1) and (2) are immiscible or poorly miscible, forming at the exit of the feeding tip an electrified liquid capillary meniscus with a substantially conical shape and from whose apex a capillary stream is emitted stationary formed the liquid (1), such that the liquid (2) completely surrounds the liquid (1) and such that said capillary stream has a diameter between 500 microns and 15 nanometers that is substantially smaller than the characteristic diameter of the electrified liquid meniscus from which emanates.
7.- Procedimiento para producir chorros líquidos estacionarios y partículas compuestas de tamaño micro y nanométrico en el seno de un líquido dieléctrico mediante un dispositivo según las reivindicaciones 1-5 consistente en hacer fluir caudales Qi de líquidos j-ésimos por cada una de las N puntas de alimentación, siendo i un valor entre 1 y N, y estando j comprendido entre 1 y M, siendo M ¡Ü N. Cada una de las puntas de alimentación está conectada a un potencial Vi respecto a un electrodo de referencia, caracterizado porque el líquido M-ésimo que circula por Ia punta de alimentación Nésima (Ia más exterior) es inmiscible o pobremente miscible con el líquido dieléctrico X, formándose en Ia salida de Ia punta de alimentación N-ésima un menisco capilar electrificado con una forma sensiblemente cónica y desde cuyo vértice se emite un chorro capilar estacionario formado por el líquido M-ésimo y tal que dicho chorro capilar tiene un diámetro comprendido entre 500 mieras y 15 nanómetros que es menor que el diámetro característico del menisco líquido electrificado del cual emana, produciéndose espontáneamente Ia ruptura del chorro y dando lugar a Ia formación de partículas, de tamaño comprendido entre 500 mieras y 15 nanómetros, en las que el líquido M-ésimo encapsula al resto de los otros líquidos. 7. Procedure for producing stationary liquid jets and composite particles of micro and nanometric size within a dielectric liquid by means of a device according to claims 1-5 consisting of flowing Qi flows of j-th liquids through each of the N supply points, i being a value between 1 and N, and j being between 1 and M, with M ¡Ü N. Each of the supply tips is connected to a potential Vi with respect to a reference electrode, characterized in that The M-th liquid that circulates through the Nth feed point (the outermost one) is immiscible or poorly miscible with the dielectric liquid X, an electrified capillary meniscus with a substantially conical shape being formed at the exit of the N-th power tip. and from whose vertex a stationary capillary stream formed by the M-th liquid is emitted and such that said capillary stream has a diameter between 500 microns and 15 nanometers which is smaller than the characteristic diameter of the electrified liquid meniscus from which it emanates, spontaneously producing the rupture of the jet and giving rise to the formation of particles, of size between 500 microns and 15 nanometers, in which the M-th liquid encapsulates the rest of the other liquids.
8.- Emulsiones multicomponente de tamaño micro o nanométrico formadas por gotas de un líquido M, resultantes de Ia rotura del chorro obtenido mediante los procedimientos según Ia reivindicación 7, que contienen en su interior gotas de un número M-1 de líquidos. El diámetro de las gotas multicomponente está comprendido entre 500 mieras y 15 nanómetros. 8. Multi-component emulsions of micro or nanometric size formed by drops of a liquid M, resulting from the rupture of the jet obtained by the methods according to claim 7, which contain drops of an M-1 number of liquids inside. The diameter of the multicomponent drops is between 500 microns and 15 nanometers.
PCT/ES2006/000220 2005-05-12 2006-05-08 Electrohydrodynamic device and method for the production of nanoemulsions and nanoemulsions thus produced WO2006120264A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200501192A ES2282009B1 (en) 2005-05-12 2005-05-12 DEVICE AND PROCEDURE FOR THE GENERATION OF NANOEMULSIONS AND SINGLE AND DOUBLE MICROEMULSIONS BY MEANS OF ELECTRIFIED COAXIAL JETS IN DIELECTRIC LIQUID MEDIA.
ESP200501192 2005-05-12

Publications (2)

Publication Number Publication Date
WO2006120264A2 true WO2006120264A2 (en) 2006-11-16
WO2006120264A3 WO2006120264A3 (en) 2006-12-21

Family

ID=37396922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000220 WO2006120264A2 (en) 2005-05-12 2006-05-08 Electrohydrodynamic device and method for the production of nanoemulsions and nanoemulsions thus produced

Country Status (2)

Country Link
ES (1) ES2282009B1 (en)
WO (1) WO2006120264A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011023405A1 (en) * 2009-08-28 2011-03-03 Georgia Tech Research Corporation Method and electro-fluidic device to produce emulsions and particle suspensions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104645842A (en) * 2015-03-12 2015-05-27 重庆工商大学 Technical scheme of lubricating oil -water mixed emulsion blending oil tank

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503372A (en) * 1989-11-27 1996-04-02 Martin Marietta Energy Systems, Inc. Nozzle for electric dispersion reactor
WO2002060591A1 (en) * 2001-01-31 2002-08-08 Universidad De Sevilla Device and method for producing stationary multi-component liquid capillary streams and micrometric and nanometric sized capsules
ES2239861A1 (en) * 2002-04-05 2005-10-01 Universidad De Sevilla Electro hydrodynamic disperser of conducting liquid in dielectric bath includes dielectric liquid and electrical charging of droplets formed by breaking of suspension

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503372A (en) * 1989-11-27 1996-04-02 Martin Marietta Energy Systems, Inc. Nozzle for electric dispersion reactor
WO2002060591A1 (en) * 2001-01-31 2002-08-08 Universidad De Sevilla Device and method for producing stationary multi-component liquid capillary streams and micrometric and nanometric sized capsules
ES2239861A1 (en) * 2002-04-05 2005-10-01 Universidad De Sevilla Electro hydrodynamic disperser of conducting liquid in dielectric bath includes dielectric liquid and electrical charging of droplets formed by breaking of suspension

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011023405A1 (en) * 2009-08-28 2011-03-03 Georgia Tech Research Corporation Method and electro-fluidic device to produce emulsions and particle suspensions
US9789451B2 (en) 2009-08-28 2017-10-17 Georgia Tech Research Corporation Method and electro-fluidic device to produce emulsions and particle suspensions

Also Published As

Publication number Publication date
ES2282009B1 (en) 2008-09-01
WO2006120264A3 (en) 2006-12-21
ES2282009A1 (en) 2007-10-01

Similar Documents

Publication Publication Date Title
ES2385803T3 (en) Electrostatic spray device and electrostatic spray procedure
ES2292731T3 (en) DEVICE AND PROCEDURE TO PRODUCE MULTI-COMPONENT STATIONARY LIQUID COMPOUND JETS AND MICRO AND NANOMETRIC SIZE CAPSULES.
ES2533498T3 (en) Method and electro-fluidic device to produce emulsions and suspension of particles
Zhang et al. One-step preparation of chitosan solid nanoparticles by electrospray deposition
Jayasinghe et al. Effect of viscosity on the size of relics produced by electrostatic atomization
Noymer et al. Stability and atomization characteristics of electrohydrodynamic jets in the cone-jet and multi-jet modes
Naderi et al. Investigation on the onset voltage and stability island of electrospray in the cone-jet mode using curved counter electrode
Wang et al. Fabrication of micro/nano-structures by electrohydrodynamic jet technique
ES2675120T3 (en) Treatment of high molecular weight biopolymers with supercritical fluids
WO2006120264A2 (en) Electrohydrodynamic device and method for the production of nanoemulsions and nanoemulsions thus produced
CN108543503B (en) Microcapsule generates device
Ting et al. Flow focusing and jet instability
Hwang et al. Motionless electrohydrodynamic (EHD) printing of biodegradable polymer micro patterns
Vu et al. Enhanced electrohydrodynamics for electrospinning a highly sensitive flexible fiber-based piezoelectric sensor
Hwang et al. Targeted electrohydrodynamic printing for micro-reservoir drug delivery systems
Elele et al. Detection of a dynamic cone-shaped meniscus on the surface of fluids in electric fields
ES2564893B2 (en) Procedure and device for generating simple and compound micrometric emulsions
ES2239861B1 (en) DEVICE AND PROCEDURE FOR PRODUCING ELECTROSPRAYS OF DRIVING LIQUIDS IN THE BREAST OF DIELECTRIC LIQUIDS AND MULTICOMPONENT EMULSIONS.
ES2308154T3 (en) POWDER GENERATOR AND METHOD TO PRODUCE POWDER.
Wang et al. Experimental investigation on electrostatic breakup characteristics of non-Newtonian zeolite molecular sieve suspension fluid
Loscertales et al. Production of complex nano-structures by electro-hydro-dynamics
US8267914B1 (en) Method and apparatus for AC electrospray
Tatarenko et al. Microcapsulation during pulsed expansion of TiO 2 suspension in polyethylene glycol solution in supercritical CO 2 into background gas
Shams et al. Effect of semicylindrical counter electrodes on the cone-jet mode of electrospray
JPWO2016170951A1 (en) Method and apparatus for generating microdroplets, method and apparatus for transporting microdroplets, and microdroplets

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06755326

Country of ref document: EP

Kind code of ref document: A2