WO2006117984A1 - Nitride phosphor and light-emitting device using same - Google Patents

Nitride phosphor and light-emitting device using same Download PDF

Info

Publication number
WO2006117984A1
WO2006117984A1 PCT/JP2006/307672 JP2006307672W WO2006117984A1 WO 2006117984 A1 WO2006117984 A1 WO 2006117984A1 JP 2006307672 W JP2006307672 W JP 2006307672W WO 2006117984 A1 WO2006117984 A1 WO 2006117984A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
nitride
nitride phosphor
light emitting
Prior art date
Application number
PCT/JP2006/307672
Other languages
French (fr)
Japanese (ja)
Inventor
Shoji Hosokawa
Takayuki Shinohara
Masatoshi Kameshima
Yoshinori Murazaki
Suguru Takashima
Hiroto Tamaki
Original Assignee
Nichia Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005130565A external-priority patent/JP5066786B2/en
Priority claimed from JP2005130566A external-priority patent/JP4892861B2/en
Application filed by Nichia Corporation filed Critical Nichia Corporation
Publication of WO2006117984A1 publication Critical patent/WO2006117984A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention relates to a nitride phosphor used for lighting such as a light emitting diode and a fluorescent lamp, a display, a backlight for liquid crystal, and the like, and in particular, a nitride that emits red light when excited by blue light from near ultraviolet light. It relates to a phosphor.
  • Light emitting diodes are small in size, have high power efficiency, and emit bright colors. In addition, the light emitting diode does not have to worry about running out of a bulb because it is not a light bulb that heats the filament to emit light. In addition, the response speed is extremely fast and it is strong against vibration and repeated on / off lighting. Because of such excellent characteristics, light emitting diodes are used as various light sources.
  • a light emitting diode emits light in a specific wavelength region. Therefore, a light source has been developed in which a part of the emitted light is wavelength-converted by a phosphor and light that has been wavelength-converted by the phosphor and light from a light-emitting diode are mixed and emitted.
  • This light source can be made various emission colors different from the light emitting diode by selecting the emission color of the phosphor.
  • light sources that emit white light are used in a wide range of fields such as general illumination, displays, and backlights for liquid crystals. For this reason, there is a demand for a phosphor that can be used in a white light emitting device, particularly in combination with a light emitting diode.
  • the white light source composed of light emitting diodes is white due to the light emission of the blue light emitting diode and the phosphor, based on the principle of light color mixing.
  • This white light source excites the phosphor with blue light emitted from the light emitting element of the light emitting diode.
  • the phosphor absorbs blue light of the light emitting element and emits yellow fluorescence.
  • the yellow light of the phosphor and the blue light of the light-emitting element have a complementary color relationship, and the human eye sees the mixed light as white. Based on this principle, a white light source of a light emitting diode combining a blue light emitting element and a phosphor is manufactured.
  • Patent Document 1 Pamphlet of International Publication No. 01Z40403
  • Y O S: Eu oxysulfide phosphors have a sufficient red light emission spectrum.
  • the above-described light emitting device that emits white light is difficult to obtain light on the long wavelength side in the visible light region, and thus has become a slightly pale white light emitting device that lacks a red component.
  • warm red light emitting devices with a slightly reddish color are required for store display lighting and medical site lighting.
  • light emitting elements generally have a longer life than human light bulbs and are therefore easier on the eyes of humans. Therefore, there is a strong demand for white light emitting devices that are close to the light bulb color.
  • the light emission characteristics of the light emitting device deteriorate.
  • the color that the human eye perceives has a wavelength of 380 ⁇ ! ⁇
  • a brightness sensation is generated in the electromagnetic wave of 780nm region.
  • One of the indicators for this is the visibility characteristic.
  • the visibility characteristics are mountain-shaped, with a peak at 550 ⁇ m. 580 ⁇ which is the wavelength range of the red component!
  • the red component wavelength region feels darker. Therefore, in order to feel the same level of brightness as the green and blue regions, the red region requires high-density electromagnetic waves.
  • a first object of the present invention is to provide a nitride phosphor that further improves the luminance of a nitride phosphor that is excited by blue light from near ultraviolet light and emits red light, and a light emitting device using the same. is there.
  • the afterglow characteristics of the phosphor are determined by the basic composition of the phosphor generally used.
  • preferable afterglow characteristics are desired depending on the application in which the phosphor is used. For example, in applications such as general lighting LEDs and displays, phosphors with a short afterglow time are desired. Ma ⁇ .
  • a printing information selection phosphor for detecting printed matter such as stamps can be used for specific printing parts to identify specific printing parts by detecting high persistence in a very short time after 10 ms. The position of the stamp is identified and postmarked, and the stamp type and authenticity are determined. For this reason, these phosphors are also required to have high luminance and short afterglow.
  • a long afterglow phosphor having a relatively long afterglow time is also used.
  • Fritzka is most noticeable in green with high visibility, so use a mixed phosphor of long afterglow and short afterglow phosphors for green light emitting elements, and use short afterglow phosphors for red and blue light emitting elements. It is also made. However, it was easy to adjust the afterglow time of a phosphor having a certain basic yarn composition.
  • conventional phosphors having long afterglow often store energy by radiation excitation such as ⁇ -rays, X-rays, and ultraviolet rays, and emit light for a long time after the excitation is stopped.
  • radiation excitation such as ⁇ -rays, X-rays, and ultraviolet rays
  • visible light there are few phosphors excited by visible light, and in particular, phosphors excited by blue light and emitting red light in this way. There was no phosphor that could adjust the brightness.
  • phosphors that can adjust the afterglow time are also required for illumination phosphors combined with LEDs.
  • a second object of the present invention is to provide a nitride phosphor capable of selecting the afterglow characteristics of a phosphor excited by visible light according to the application, and a light emitting device using the nitride phosphor.
  • one nitride phosphor according to the present invention is a nitride phosphor activated by europium, and is represented by the following general formula: w, x, y, z is within the following range, and further contains any one of Y, Ga, and In or one of Ge and Zr.
  • another nitride phosphor according to the present invention is a nitride phosphor activated by europium, and is represented by the following general formula, and w, x, y, and z are in the following ranges.
  • at least one selected from the group forces of La, Ce, Pr, Gd, Tb, Dy, Ho, Er, and Lu, or any one of Sc, Y, Ga, and In, or Ge, Zr One of these strengths is contained.
  • M is at least one selected from the group consisting of Mg, Ca, Sr and Ba,
  • nitride phosphor is a nitride phosphor activated by europium, represented by the following general formula, wherein w, x, y, z are in the following ranges, Furthermore, any one of Y, Ga, and In, or one of the tetravalent elements Ge and Zr, is contained.
  • M is at least one selected from the group consisting of Mg, Ca, Sr and Ba,
  • another nitride phosphor according to the present invention is a nitride phosphor activated by europium, which is represented by the following general formula, and w, x, y, z are in the following ranges, Furthermore, at least one selected from the group consisting of La, Ce, Pr, Gd, Tb, Dy, Ho, Er, and Lu, or any one of Sc, Y, Ga, and In, or the tetravalent element Ge, Zr One kind of power is contained.
  • M is at least one selected from the group consisting of Mg, Ca, Sr and Ba,
  • the nitride phosphor absorbs near ultraviolet or blue light and emits light having a longer wavelength than the light (for example, yellow-red light or red light).
  • Yellow-red light is 584 ⁇ ! ⁇ 610nm
  • red light has a wavelength range of 610 ⁇ m ⁇ 780nm.
  • the spectrum of the phosphor is broad, the boundary between yellow-red and red is not always clear.
  • the nitride phosphor is a nitride phosphor activated with europium, which is represented by the following general formula, and further adjusts afterglow, yttrium, trivalent element and tetravalent for adjusting afterglow. Contains at least one element selected. [0020] M Al Si N: Eu
  • M is at least one selected from the group consisting of Mg, Ca, Sr and Ba
  • the afterglow characteristics of the phosphor excited by visible light can be adjusted.
  • the trivalent element may be Ga, In !, or one of them, and the tetravalent element may be at least one selected from the group of Ge, Zr, and Hf.
  • the rare earth element is added, a long afterglow can be obtained compared to the case.
  • the nitride phosphor according to the present invention is a nitride phosphor activated with europium.
  • M is at least one selected from the group consisting of Mg, Ca, Sr and Ba
  • the afterglow characteristics of the phosphor excited by visible light can be adjusted.
  • the tetravalent element can be either Ge or Zr. As a result, when the rare earth element is added, the afterglow can be shortened compared to the case.
  • the trivalent element may be Ga, In !, or one of them, and the tetravalent element may be Hf.
  • the rare earth element can be added to provide a long afterglow compared to the case.
  • the nitride phosphor is composed of Fe, Ni, Cr, Ti, Nb, Yb, and Sm. , Not more than 0.01 or not in molar ratio to molar concentration 1 of M. Some of these elements have an effect such as a short afterglow, but if they are contained in an amount of more than 0.01, the emission luminance is greatly reduced.
  • the nitride phosphor may contain O in the composition.
  • the light-emitting device absorbs at least a part of the first emission spectrum by using an excitation light source having a first emission vector that emits near-ultraviolet or blue light, and a second emission spectrum.
  • the nitride phosphor of the present invention and the light-emitting device using the same can shift the peak wavelength to a long wavelength by containing A1, so that even if the activation amount of europium, which is an expensive rare earth element, is reduced, it can be further increased. Can emit deep red light. In general, the emission characteristics tend to decrease when the red component is increased, but the addition of certain rare earth elements, trivalent elements, and tetravalent elements to the nitride phosphor suppresses the decrease in emission luminance. And high brightness can be maintained.
  • the afterglow characteristic of the phosphor excited by visible light can be adjusted by selecting an additive element, and the nitride phosphor can be used depending on the application. Further, a nitride phosphor having an afterglow time and a light emitting device using the same can be obtained.
  • each element constituting the present invention may be configured such that a plurality of elements are configured by the same member and the plurality of elements are shared by one member, and conversely the function of one member is a plurality of functions. This is achieved by sharing the materials.
  • the light-emitting device in FIG. 1 includes a light-emitting element having a first emission spectrum, a phosphor that absorbs at least part of the first emission spectrum, converts the wavelength, and emits light of the second emission spectrum.
  • the light emitting device 1 in FIG. 1 includes a lead frame conductively connected by a semiconductor layer 2 stacked on an upper part of a sapphire substrate 1 and a conductive wire 14 extending from positive and negative electrodes 3 formed on the semiconductor layer 2. 13, the phosphor 11 and the coating member 12 provided in the cup of the lead frame 13a so as to cover the outer periphery of the light emitting element 10 composed of the sapphire substrate 1 and the semiconductor layer 2, and the phosphor 11 and the lead frame 13 And a mold member 15 covering the outer peripheral surface of the mold member 15.
  • a semiconductor layer 2 is formed on the sapphire substrate 1, and positive and negative electrodes 3 are formed on the same plane side of the semiconductor layer 2.
  • the semiconductor layer 2 is provided with a light emitting layer (not shown), and the peak wavelength output from this light emitting layer has a light emission spectrum in the vicinity of 500 nm or less in the blue region of the ultraviolet power.
  • the light-emitting element 10 is set on a die bonder, face-up to a lead frame 13a provided with a cup, and die-bonded (adhered).
  • face-up refers to mounting the light-emitting element so that the semiconductor layer side is disposed on the viewer side and the emitted light is extracted from the semiconductor layer side.
  • face-down mounting there is a face-down mounting in which the substrate side of the light emitting element is arranged on the viewer side and the emitted light is taken out from the substrate side, and flip chip mounting is also possible.
  • the lead frame 13 is transferred to a wire bonder, the negative electrode 3 of the light emitting element is wire-bonded to the lead frame 13a provided with the cup with a gold wire, and the positive electrode 3 is wire-bonded to the other lead frame 13b.
  • the force that uses two wires to obtain electrical connection with the positive and negative electrodes is not limited to this configuration.
  • only one wire is bonded to make electrical contact with one electrode.
  • the other electrical contact can be obtained at the contact surface between the light emitting element and the substrate.
  • the phosphor 11 and the coating member 12 are injected into the cup of the lead frame 13 using a dispenser of the molding apparatus.
  • the phosphor 11 and the coating member 12 are uniformly mixed in advance at a desired ratio.
  • the lead frame 13 is immersed in a mold mold in which the mold member 15 has been injected in advance, and then the mold is removed to cure the grease, and a bullet-shaped mold as shown in FIG.
  • Light-emitting device 1 the phosphor is a YAG phosphor and a nitride phosphor. The phosphor absorbs part of the light in the near ultraviolet to blue region emitted from the light emitting element and emits light in the yellow to red region.
  • a light emitting device that emits a warm white light by mixing the blue light emitted from the light emitting element 10 and the yellow light to red light of the phosphor I will provide a.
  • the light-emitting device can be a light-emitting device that emits light of a light bulb color so as to comply with the JIS standard.
  • the light bulb color is a white range according to the JIS standard (JIS Z8110), centering on a point of 2700-2800K on the locus of black body radiation, and having a yellow to red color. ! /, The color! Specifically, it has a luminescent color in the (light) yellow-red, (orange) pink, pink, (light) pink, and (yellowish) white areas in the chromaticity locus.
  • the light emitting device 1 in FIG. 2 forms a surface mount type light emitting device.
  • an ultraviolet light-excited nitride semiconductor light-emitting element can be used.
  • the light-emitting element 101 can also be a blue-light-excited nitride semiconductor light-emitting element.
  • the light-emitting element 101 excited by ultraviolet light will be described as an example.
  • the LED chip that is the light emitting element 101 uses a nitride semiconductor light emitting element having an InGaN semiconductor having a peak wavelength of about 370 nm as a light emitting layer.
  • the n-type GaN layer, the n-type AlGaN layer that is a nitride semiconductor, and the InGaN layer that constitutes the light-emitting layer are formed as a single quantum well structure.
  • the light-emitting layer has a structure in which an AlGaN layer as a p-type cladding layer doped with Mg and a GaN layer as a p-type contact layer doped with Mg are stacked in sequence.
  • the p-type semiconductor is annealed at 400 ° C or higher after the film formation.
  • Etching exposes the surface of each pn contact layer on the same side of the nitride semiconductor on the sapphire substrate.
  • An n-electrode is formed in a strip shape on the exposed n-type contact layer, and a light-transmitting P-electrode made of a metal thin film is formed on almost the entire surface of the p-type contact layer that remains without being excised.
  • a pedestal electrode is formed on the optical p-electrode in parallel with the n-electrode by sputtering.
  • a Kovar package 105 that has a recess in the central portion and a base portion in which Kovar lead electrodes 102 are inserted and fixed in an airtight manner on both sides of the recess is used.
  • NiZAg layers are provided on the surfaces of the package 105 and the lead electrode 102.
  • an LED chip which is the above-described light emitting element is die-bonded with an Ag—Sn alloy.
  • all the components of the light-emitting device can be made of an inorganic material, and even if the light emitted from the light-emitting element 101 is in the ultraviolet region or the short wavelength region of visible light, the reliability is dramatically improved. A light emitting device with high brightness can be obtained.
  • the respective electrodes of the light-emitting element 101 that are die-bonded and the respective lead electrodes 102 that are also exposed to the package bottom surface force are electrically connected by Ag wires 104.
  • sealing is performed with a Kovar lid 106 having a glass window 107 at the center, and seam welding is performed.
  • phosphor 108 is contained in a slurry having a force of 90% by weight of trocellulose and 10% by weight of ⁇ -alumina, and is applied to the rear surface of the transparent window part 107 of the lid 106.
  • the color conversion member is constructed by heating and curing at 220 ° C for 30 minutes.
  • the light emitting device formed in this manner emits light
  • a light emitting diode capable of emitting white light with high luminance can be obtained.
  • One phosphor according to the present embodiment is activated by Eu, and is a nitride phosphor containing Group II elements M, Si, A1, and N, and absorbs ultraviolet light or blue light. Lights from yellow red to red.
  • This nitride phosphor has the general formula M Al Si N: Eu,
  • M is at least one selected from the group consisting of Mg, Ca, Sr and Ba.
  • the nitride phosphor can be represented by the general formula M Al Si BN: Eu and w X yz ((2/3) w + x + (4/3) y + z) to which boron B is added.
  • the molar concentration z is set to 0.5 or less as described above, preferably 0.3 or less, and further set to more than 0.0005. More preferably, the molar concentration of boron is set to 0.001 or more and 0.2 or less.
  • these nitride phosphors further include at least one selected from the group force of La, Ce, Pr, Gd, Tb, Dy, Ho, Er, and Lu, or any force of Sc, Y, Ga, and In. Contains 1 type, or 1 type of Ge or Zr. By containing these, it is possible to output luminance, quantum efficiency or peak intensity equal to or higher than those of Gd, Nd, and Tm.
  • the nitride phosphor according to the embodiment of the present invention is manufactured by mixing various phosphor raw materials in a wet type and a dry type.
  • Raw materials such as CaN, SiN, A1N, BN, and HBO as phosphor materials
  • Boron, boride, boron nitride, boron oxide, borate and the like can be used as the boron raw material of the phosphor. Specifically, boron, B, BN, H BO added to the phosphor material
  • Ca in the phosphor composition is preferably used alone. However, a part of Ca can be substituted with Sr, Mg, Ba, Sr and Ba, etc. By substituting part of Ca with Sr, the emission wavelength peak of the nitride phosphor can be adjusted.
  • Si is also preferably used alone, but a part of it can be substituted with C of Group IV element.
  • the nitride phosphor is inexpensive and has good crystallinity.
  • the nitride phosphor is further at least one selected from the group consisting of La, Ce, Pr, Gd, Tb, Dy, Ho, Er, and Lu, or any one of Sc, Y, Ga, and In Or any one of Ge and Zr.
  • some of the activator Eu may be replaced by La, Ce, Pr, Gd, Tb, Dy, Ho, Er, Lu, etc.
  • Sc, Y, Ge, and Zr may be substituted for some of Al and Si. These elements increase the particle size, adjust the color tone, increase the emission peak intensity, It has an effect such as.
  • Eu as an activator is preferably used alone. As described above, a part of Eu can be replaced as described above.
  • Nitto-pium has mainly divalent and trivalent energy levels.
  • the nitride phosphor according to the embodiment of the present invention uses Eu 2+ as an activator for the base Ca.
  • Eu 2+ is commercially available as a trivalent Eu O yarn after being acidified. In the case of commercially available Eu O,
  • the nitride phosphor further includes a group I element including Cu, Ag, and Au forces, a group II element including Al, Ga, and In forces, and a group IV including Ti, Zr, Hf, Sn, and Pb. It can also contain at least one element selected from Group V element consisting of element, P, Sb, Bi, and Group VI element force consisting of S. Luminous efficiency can be adjusted by adding these elements.
  • the element added to the above-described nitride phosphor is usually a force that can be generated by an oxide or an oxyhydroxide, but is not limited to this metal, nitride, imide, amide, Alternatively, other inorganic salts may be used. Alternatively, it may be contained in other raw materials in advance.
  • the composition of the nitride phosphor contains oxygen. It is conceivable that oxygen is introduced from various oxides as raw materials or oxygen is mixed during firing. This oxygen is thought to promote the effects of Eu diffusion, grain growth, and crystallinity improvement. In other words, the same effect can be obtained even if one compound used as a raw material is replaced with metal, nitride, or oxide, but the effect when using an oxide is rather large. .
  • Another phosphor is activated by Eu, and is a nitride phosphor containing a group II element M, Si, A1, and N, and absorbs ultraviolet light or blue light and emits red light.
  • This nitride phosphor has a general formula of M Al Si N: Eu, and a rare earth element as an additive element
  • the nitride phosphor may also contain at least one selected from the group consisting of rare earth elements Ce, Pr, Nd, Sm, Tb, Dy, Tm, and Yb. This makes it possible to have a short afterglow compared to V, which does not contain rare earth elements.
  • this nitride phosphor is at least one selected from the group of rare earth elements La, Gd, Ho, Er, Lu, one of trivalent elements Sc and Y, one of tetravalent elements, and tetravalent element Ge Or at least one selected from the group consisting of Zr and Hf.
  • the nitride phosphor may be represented by the general formula M Al Si B N added with boron B: Eu and w X yz ((2/3) w + x + (4/3) y + z).
  • the molar concentration z is set to 0.5 or less as described above, preferably 0.3 or less, and further set to more than 0.0005. More preferably, the molar concentration of boron is set to 0.001 or more and 0.2 or less.
  • This nitride phosphor is composed of rare earth elements Ce, Pr, Nd, Sm, Gd, Tb, Dy, Tm, and Yb. It can also contain seeds. As a result, the afterglow can be reduced compared with the case where rare earth elements are added.
  • this nitride phosphor is at least one selected from the group of rare earth elements Sc, Y, La, Ho, Er, Lu, trivalent element Ga, In any one type, tetravalent
  • the element Hf can also be contained. As a result, a long afterglow can be achieved compared with the case where rare earth elements are added.
  • the nitride phosphor according to the embodiment of the present invention is manufactured by mixing various phosphor raw materials in a wet type and a dry type.
  • Raw materials such as CaN, SiN, A1N, BN, and HBO as phosphor materials
  • Boron, boride, boron nitride, boron oxide, borate and the like can be used as the boron raw material of the phosphor. Specifically, boron, B, BN, H BO added to the phosphor material
  • Ca in the phosphor composition is preferably used alone. However, a part of Ca can be substituted with Sr, Mg, Ba, Sr and Ba, etc. By substituting part of Ca with Sr, the emission wavelength peak of the nitride phosphor can be adjusted.
  • Si is also preferably used alone, but a part thereof can be substituted with C of the group IV element.
  • the nitride phosphor is inexpensive and has good crystallinity.
  • Rare earth elements Ce, Pr, Nd, Sm, Tb, Dy, Tm, Yb, La, Gd, Ho, Er, Lu, trivalent element Sc, Y, tetravalent element Ge, Zr, Hf Contains at least one species. Although it is not certain, it is considered that some activators act by co-activating by replacing rare earth elements with a part of Eu. In addition, although it is not certain, some trivalent and tetravalent elements may be substituted for some of A1 and Si. These elements have actions such as increasing the particle size, adjusting the color tone, and increasing the emission peak intensity. The afterglow time can also be controlled by the element to be added.
  • the activator Eu is preferably used alone. It is also conceivable that a part of Eu is substituted as described above. When using a mixture that requires Eu, the mixing ratio can be changed as desired.
  • Europium mainly has bivalent and trivalent energy levels, but the nitride phosphor according to the embodiment of the present invention uses Eu 2+ as an activator for the base Ca.
  • Eu 2+ is commercially available in the form of trivalent Eu O as soon as it is oxidized.
  • Eu 2+ is commercially available in the form of trivalent Eu O as soon as it is oxidized.
  • Nitride phosphors are also Group I elements that have Cu, Ag, and Au forces, and Group I elements that also have Al, Ga, and In forces. Includes Group II elements, Group IV elements composed of Ti, Zr, Hf, Sn, and Pb, Group V elements composed of P, Sb, and Bi, and Group VI element forces composed of S. You can also. Luminous efficiency can be adjusted by adding these elements.
  • the element added to the above-described nitride phosphor is usually a force that can be generated by an oxide or an oxyhydroxide, but is not limited to this metal, nitride, imide, amide, Alternatively, other inorganic salts may be used. Alternatively, it may be contained in other raw materials in advance.
  • Oxygen is contained in the composition of the nitride phosphor. It is conceivable that oxygen is introduced from various oxides as raw materials or oxygen is mixed during firing. This oxygen is thought to promote the effects of Eu diffusion, grain growth, and crystallinity improvement. In other words, the same effect can be obtained even if one compound used as a raw material is replaced with metal, nitride, or oxide, but the effect when using an oxide is rather large. .
  • a nitride phosphor activated by europium represented by the following general formula, wherein w, x, y, z are in the following ranges, and La, Ce, Pr, Gd, Tb, Dy, It contains at least one selected from the group of Ho, Er, and Lu, or one of Sc, Y, Ga, and In, or one of Ge and Zr.
  • M is at least one selected from the group consisting of Mg, Ca, Sr and Ba,
  • M is at least one selected from the group consisting of Mg, Ca, Sr and Ba,
  • the color tone can be slightly changed.
  • a phosphor containing at least one element selected from rare earth elements, trivalent elements, and tetravalent elements Ca Al Si BN: Made of Eu
  • a manufacturing method is demonstrated, it is not limited to this manufacturing method.
  • a nitride phosphor CaAlSiN: Eu containing at least one element selected from rare earth elements, trivalent elements, and tetravalent element forces can be produced in substantially the same manner.
  • the raw material Ca is pulverized (Pl).
  • the raw material Ca is preferably a simple substance, but a compound such as an imido compound or an amide compound can also be used. Further, the raw material Ca may contain Li, Na, K, soot, Al and the like.
  • the raw material is preferably purified. Thereby, since a purification process is not required, the manufacturing process of the phosphor can be simplified, and an inexpensive nitride phosphor can be provided.
  • the raw material Ca is pulverized in a glove box in an argon atmosphere.
  • the average particle size should be in the range of about 0 .: L m or more and 15 m or less in terms of reactivity with other raw materials, particle size control during and after firing, etc. Although it is preferable, it is not limited to this range.
  • the purity of Ca is preferably 2N or higher, but is not limited thereto.
  • Ca can be nitrided in a nitrogen atmosphere at 600 ° C. to 900 ° C. for about 5 hours to obtain a Ca nitride.
  • the Ca nitride is preferably of high purity.
  • the Ca nitride is pulverized (P3). Ca nitride in an argon atmosphere, or
  • the raw material Si is pulverized (P4).
  • the raw material Si is preferably a simple substance, but a nitride compound, an imido compound, an amido compound, or the like can also be used.
  • Si silicon
  • the purity of the raw material Si is preferably 3N or higher
  • Si is pulverized in a glove box in an argon atmosphere or a nitrogen atmosphere, as is the case with Ca.
  • the average particle size of the Si compound is preferably in the range of about 0.1 ⁇ m to 15 ⁇ m from the viewpoints of reactivity with other raw materials, particle size control during and after firing, and the like.
  • the silicon Si is also nitrided in a nitrogen atmosphere at 800 ° C to 1200 ° C for about 5 hours to obtain a nitrided silicon.
  • the silicon nitride used in the present invention preferably has a high purity.
  • Si nitride is pulverized (P6).
  • A1N is synthesized by the direct nitridation method of A1 or the like. However, you can use A1N powder that is already on the market.
  • BN is synthesized by direct nitridation of B or the like. However, you can use BN powder that is already on the market.
  • an additive element compound at least one selected from the group consisting of La, Ce, Pr, Gd, Tb, Dy, Ho, Er, and Lu, or any of Sc, Y, Ga, and In One oxide or one of Ge or Zr is synthesized.
  • commercially available oxide or nitride powders can also be used.
  • the rare earth element is at least one selected from the group of Ce, Pr, Nd, Sm, Gd, Tb, Dy, Tm, and Yb
  • the tetravalent element is Ge
  • oxide or nitride of Zr is commercially available oxide or nitride powders.
  • the rare earth element is at least one selected from the group of Sc, Y, La, Ho, Er, and Lu
  • the trivalent element is any one of Ga and In.
  • Tetravalent elements synthesize oxides or nitrides of Hf. However, commercially available oxide or nitride powders can also be used.
  • the average particle size after crushing is preferably about 0.1 ⁇ m force and 15 ⁇ m.
  • Ca nitride, A1 nitride, Si nitride, B nitride, additive element compound, Eu compound Eu O can also be mixed in a dry manner.
  • nitride phosphors of Examples 1 to 77 are obtained by changing the blending ratio of each raw material.
  • a tubular furnace, a small furnace, a high-frequency furnace, a metal furnace, or the like can be used.
  • the firing temperature is preferably a force capable of firing in the range of 1200 ° C to 2000 ° C and a firing temperature of 1400 ° C to 1800 ° C.
  • a one-step firing in which the temperature is gradually raised and the firing is performed at 1200 ° C to 1500 ° C for several hours, but the first-step firing is performed at 800 ° C to 1000 ° C and gradually.
  • a two-stage firing multi-stage firing
  • the second stage firing is carried out at 1200 ° C to 1500 ° C by heating to 200 ° C.
  • the reducing atmosphere is an atmosphere containing at least one of nitrogen, hydrogen, argon, carbon dioxide, carbon monoxide, and ammonia.
  • firing can be performed in a reducing atmosphere other than these.
  • the nitride phosphor according to the embodiment of the present invention is used by being mixed with other phosphors to make the light emission of the blue light emitting element a white light source with high color rendering properties.
  • the phosphor mixed with the nitride phosphor according to the embodiment of the present invention includes a phosphor emitting blue light, a phosphor emitting green light, and a phosphor emitting yellow light.
  • phosphors that emit blue light there are various types of phosphors that emit blue light, phosphors that emit green light, and phosphors that emit yellow light.
  • Phosphor, at least cerium activated yttrium 'gadolinium' aluminum oxide phosphor, and at least cerium activated yttrium 'gallium' aluminum It is preferable that at least one of the phosphoric acid phosphors. Thereby, a light emitting device having a desired emission color can be realized.
  • the phosphor according to the present invention and the yttrium-aluminum oxide phosphor or the like activated with cerium are used, light can be extracted efficiently.
  • Ln MO R (Ln is a small amount selected from Y, Gd, Lu, La)
  • M includes at least one of Al and Ga.
  • R is a lanthanide type. ;), (Y Gd) (Al Ga) O: Rz (R is Ce ⁇ Tb, Pr ⁇ Sm, Eu ⁇ Dy, l-x x 3 1-y y 5 12
  • At least one selected from Ho. 0 ⁇ z ⁇ 0.5. ) Can be used.
  • the phosphor is 270 ⁇ from the near ultraviolet to the short wavelength side of visible light! It is excited by light in the wavelength range of ⁇ 500nm and has a peak wavelength at 500nm ⁇ 600nm.
  • the phosphor having the third emission spectrum is not limited to the above phosphor, and various phosphors can be used.
  • the desired chromaticity can be adjusted.
  • the yttrium-aluminum oxide phosphor or the like activated with cerium absorbs part of the blue light emitted by the light emitting element 10 and emits light in the yellow region.
  • the blue light emitted by the light emitting element 10 and the yellow light of the yttrium / aluminum oxide phosphor emit light in white by mixing colors. Therefore, the phosphor 11 obtained by mixing the yttrium / aluminum oxide phosphor and the nitride phosphor together with the translucent coating member is combined with the blue light emitted by the light emitting element 10.
  • a warm white light emitting device can be provided.
  • a white light-emitting device with excellent color rendering can be provided.
  • the phosphor used in combination with the nitride phosphor according to the embodiment of the present invention is not limited to the yttrium aluminum oxide phosphor etc., and has the same purpose as the phosphor.
  • Phosphors having at least one second emission spectrum from the blue region having green to the green region, yellow region, and red region can also be used in combination with the nitride phosphor.
  • a light emitting device that emits white light based on the principle of color mixing of light can be provided.
  • Phosphors used in combination with nitride phosphors are green light emitting phosphors SrAlO: Eu, YSiO: Ce, Tb, MgAlO: Ce, Tb, SrAlO: EuM (Mg
  • a desired emission spectrum can be obtained by doping S 2: Eu or the like.
  • the light emitting phosphors such as green, blue, and red are not limited to the above phosphors, and various phosphors can be used.
  • Excitation light sources include semiconductor light emitting devices, laser diodes, ultraviolet radiation generated in the positive column of arc discharge, and ultraviolet radiation generated in the positive column of glow discharge.
  • semiconductor light-emitting elements and laser diodes that emit light in the near ultraviolet region
  • semiconductor light-emitting elements and laser diodes that emit blue light semiconductor light-emitting elements and laser diodes that emit blue-green light are preferred.
  • Light in the short wavelength region from near ultraviolet to visible light refers to the wavelength region from 270 nm to around 500 nm.
  • the light-emitting element is preferably a semiconductor light-emitting element having a light-emitting layer capable of emitting an emission wavelength capable of efficiently exciting the phosphor.
  • materials for such semiconductor light emitting devices include various semiconductors such as BN, SiC, ZnSe, GaN, InGaN, InAlGaN, AlGaN, BAlGaN, and BlnAlGaN.
  • these elements can contain Si, Zn, etc. as impurity elements to be the emission center.
  • nitride semiconductors for example, nitride semiconductors containing A1 and Ga, nitrides containing In and Ga, etc.
  • materials for light emitting layers capable of efficiently emitting short wavelengths of visible light from the ultraviolet region that can excite phosphors efficiently In Al Ga N as a semiconductor
  • a homostructure having a MIS junction, a PIN junction, a pn junction, or the like, a heterostructure, or a double heterostructure can be preferably cited.
  • Various emission wavelengths can be selected depending on the material of the semiconductor layer and the mixed crystal ratio.
  • the output can be further improved by adopting a single quantum well structure or a multiple quantum well structure in which the semiconductor active layer is formed in a thin film in which a quantum effect is generated.
  • a nitride semiconductor When a nitride semiconductor is used, sapphire, spinel, SiC, Si, A material such as ZnO, GaAs, or GaN is preferably used. In order to form a nitride semiconductor having good crystallinity with high productivity, it is preferable to use a sapphire substrate. Nitride semiconductors can be formed on this sapphire substrate using HVPE or MOCVD. A GaN, A1N, GaAIN or other non-single crystal nofer layer is formed on a sapphire substrate and a nitride semiconductor having a pn junction is formed thereon.
  • SiO stripes are formed on the notch layer approximately perpendicularly to the orientation flat surface of the sapphire substrate.
  • GaN is grown on the stripe using EHV (Epitaxial Lateral Grows GaN) by HVPE method.
  • the first contact layer formed of n-type gallium nitride, the first cladding layer formed of n-type aluminum nitride 'gallium, the indium nitride' aluminum 'well layer of gallium and the aluminum nitride by MOCVD 'A multi-quantum well structure active layer with multiple gallium barrier layers, a second cladding layer made of p-type aluminum nitride and gallium, and a second contact layer made of p-type gallium nitride.
  • the configuration such as the double hetero configuration.
  • the active layer is formed into a ridge stripe shape, sandwiched between guide layers, and provided with a cavity end face to obtain a semiconductor laser device usable in the present invention.
  • a nitride semiconductor exhibits n-type conductivity without being doped with impurities.
  • a desired n-type nitride semiconductor such as improving luminous efficiency, it is preferable to appropriately introduce Si, Ge, Se, Te, C, etc. as an n-type dopant.
  • p-type nitride semiconductor it is preferable to dope p-type dopants such as Zn, Mg, Be, Ca, Sr, and Ba.
  • nitride semiconductors are not easily converted to p-type by simply doping with p-type dopants, it is preferable to reduce the resistance by heating in a furnace or plasma irradiation after introduction of p-type dopants. If a sapphire substrate is not used, the contact layer is exposed by etching from the p-type side to the surface of the first contact layer. After forming the electrodes on each contact layer, a light emitting element having a nitride semiconductor power can be formed by cutting the semiconductor wafer into chips.
  • the light emitting device In order to form the light emitting device with high mass productivity, it is preferable to form the light emitting device using a translucent sealing member.
  • a translucent sealing member In particular, since the phosphor 11 is mixed and sealed, I prefer fat.
  • the light emitting element has an emission spectrum in the ultraviolet region, and the main emission wavelength is from 360 nm to 420 nm, or from 450 nm to 470 nm. The following can also be used.
  • the sheet resistance of the n-type contact layer formed at an impurity concentration of 10 17 to 10 2 cm 3 and the sheet resistance of the light-transmitting p-electrode satisfy Rp ⁇ Rn. It is preferable that the relationship is adjusted.
  • the n-type contact layer has a film thickness of 3 to: LO / zm, preferably 4 to 6 ⁇ m.
  • the sheet resistance is estimated to be 10 to 15 ⁇ .
  • Rp is preferably formed in a thin film so as to have a sheet resistance value equal to or higher than the sheet resistance value.
  • the translucent p-electrode may be formed of a thin film having a thickness of 150 m or less.
  • ITO other than metal and ⁇ can be used for the p electrode.
  • an electrode having a plurality of light extraction openings such as a mesh electrode can also be used.
  • the translucent rho electrode is formed of a multilayer film or alloy composed of one kind selected from the group of gold and platinum group elements and at least one other element, it is contained. Therefore, stability and reproducibility are improved by adjusting the sheet resistance of the translucent rho electrode depending on the content of the gold or platinum group element. Since gold or a metal element has a high absorption coefficient in the wavelength region of the semiconductor light emitting device used in the present invention, the smaller the amount of gold or platinum group element contained in the translucent ⁇ electrode, the better the transparency. In the conventional semiconductor light emitting device, the force of the sheet resistance is Rp ⁇ Rn. In the present invention, Rp ⁇ Rn. Therefore, the translucent p-electrode is formed in a thin film as compared with the conventional one. However, thinning can be easily achieved by reducing the content of gold or platinum group elements.
  • the semiconductor light emitting device used in the present invention has a relationship between the sheet resistance RnQ Z port of the n-type contact layer, the sheet resistance Rp QZ port of the translucent p electrode, and the force Rp ⁇ Rn.
  • RnQ Z port of the n-type contact layer the sheet resistance Rp QZ port of the translucent p electrode
  • Rp ⁇ Rn the force required to measure Rn after forming it as a semiconductor light emitting device. It is practically impossible to know the relationship between Rp and Rn. From the state of the light intensity distribution during light emission, what kind of Rp and Rn You can know if they are in a relationship.
  • the translucent p-electrode and the n-type contact layer have a relationship of Rp ⁇ Rn
  • a P-side pedestal electrode having an extended conduction portion is provided on the translucent p-electrode
  • further external quantum can be provided.
  • the extended conductive portion that is not limited in the shape and direction of the extended conductive portion is on the satellite, it is preferable because the area for blocking light is reduced, but a mesh shape may be used. Further, the shape may be a curved line shape, a lattice shape, a branch shape, or a saddle shape in addition to the straight line shape.
  • the line width and length of the extended conductive part should be designed so that the light shielding effect does not exceed the light emission enhancing effect.
  • a blue-light-excited light-emitting element different from the above-described ultraviolet-light-excited light-emitting element can also be used.
  • the blue light-excited light emitting element 10 is preferably a metal nitride compound light emitting element.
  • the light-emitting element 10 includes, for example, an n-type GaN layer in which Si is undoped, an n-type contact layer having an n-type GaN force doped with Si, an and GaN layer, and a multiple quantum layer on a sapphire substrate 1 via a GaN buffer layer.
  • Light emitting layer with well structure GaN barrier layer, quantum well structure of ZlnGaN well layer
  • p-type GaN layer made of p-type GaN doped with Mg
  • p-type GaN layer doped with Mg p-type GaN layer doped with Mg
  • the electrodes are formed as follows.
  • a light emitting element 10 different from this configuration can also be used.
  • the p-form electrode is formed on almost the entire surface of the p-type contact layer, and the p-pad electrode 3 is formed on a part of the p-form electrode.
  • the n-electrode is formed in the exposed portion by removing the undoped GaN layer from the p-type contact layer by etching to expose a part of the n-type contact layer.
  • the present invention is not limited to this.
  • a single quantum well structure using InGaN may be used.
  • GaN doped with n-type and p-type impurities such as Si and Zn may be used.
  • the light-emitting layer of the light-emitting element 10 has a 420 nm force by changing the In content.
  • the main emission peak can be changed in the range of 90 nm.
  • the emission wavelength is not limited to the above range, and those having an emission wavelength of 360 nm to 550 nm can be used.
  • the coating member 12 (light transmissive material) is provided in the cup of the lead frame 13.
  • the phosphor 11 that converts the light emission of the light emitting element 10 is used in combination.
  • Specific materials for the coating member 12 include transparent resins, silica sol, glass, inorganic noinders, etc., which have excellent temperature characteristics and weather resistance, such as epoxy resin, urea resin, and silicone resin.
  • a diffusing agent, barium titanate, titanium oxide, aluminum oxide, or the like may be contained.
  • you may contain a light stabilizer and a coloring agent.
  • the lead frame 13 includes a mount lead 13a and an inner lead 13b.
  • the mount lead 13a is for arranging the light emitting element 10.
  • the upper part of the mount lead 13a has a cup shape.
  • the light emitting element 10 is die-bonded in the cup, and the outer peripheral surface of the light emitting element 10 is covered with the phosphor 11 and the coating member 12 inside the cup.
  • a plurality of light emitting elements 10 can be arranged in the cup, and the mount lead 13a can be used as a common electrode of the light emitting element 10. In this case, sufficient electrical conductivity and connectivity with the conductive wire 14 are required.
  • the die bonding (adhesion) between the light emitting element 10 and the cup of the mount lead 13a can be performed by a thermosetting resin or the like.
  • thermosetting resins examples include epoxy resins, acrylic resins, and imide resins.
  • Ag paste, carbon paste, metal bumps, or the like can be used for die-bonding and electrical connection with the mount lead 13a using the face-down light emitting element 10 or the like.
  • An inorganic binder can also be used.
  • the inner lead 13b is intended to be electrically connected to the conductive wire 14 extending from the electrode 3 of the light emitting element 10 disposed on the mount lead 13a.
  • the inner lead 13b is preferably arranged at a position away from the mount lead 13a in order to avoid a short circuit due to electrical contact with the mount lead 13a.
  • the conductive wires be arranged so as not to contact each other.
  • the inner lead 13b can be made of iron, copper, iron-containing copper, gold, platinum, silver, or the like, which is preferably the same material as the mount lead 13a.
  • the conductive wire 14 is for electrically connecting the electrode 3 of the light emitting element 10 and the lead frame 13.
  • the conductive wire 14 preferably has good ohmic properties, mechanical connectivity, electrical conductivity, and thermal conductivity with the electrode 3.
  • Specific materials for the conductive wire 14 include gold, Metals such as copper, platinum, and aluminum, and alloys thereof are preferable.
  • the mold member 15 is provided to protect the light emitting element 10, the phosphor 11, the coating member 12, the lead frame 13, the conductive wire 14, and the like from external force. In addition to the purpose of protection from the outside, the mold member 15 also has the purposes of widening the viewing angle, relaxing the directivity from the light emitting element 10, and converging and diffusing the emitted light. In order to achieve these objects, the mold member can have a desired shape. Further, the mold member 15 may have a structure in which a plurality of layers are laminated in addition to the convex lens shape and the concave lens shape.
  • the mold member 15 As a specific material of the mold member 15, a material excellent in translucency, weather resistance, and temperature characteristics such as epoxy resin, urea resin, silicone resin, silica sol, and glass can be used.
  • the mold member 15 may contain a diffusing agent, a colorant, an ultraviolet absorber, and a phosphor.
  • the diffusing agent barium titanate, titanium oxide, aluminum oxide or the like is preferable. In order to reduce the resilience of the material with the coating member 12 and to take into account the refractive index, it is preferable to use the same material.
  • the particle diameter in the examples is a value measured by an air permeation method called F.S.S.S.No. (Fisher Sub Sieve Sizer's No-).
  • the nitride phosphors of Examples 1 to 10 were manufactured by the above-described method, and the characteristics of the nitride phosphors according to the respective examples were measured. The results are shown in Table 1.
  • the nitride phosphors of Comparative Examples 1 to 3 were also manufactured by the same method as described above, and the characteristics of the nitride phosphors according to each Comparative Example were measured.
  • the brightness, quantum efficiency and peak intensity of the Gd-containing nitride phosphor of Comparative Example 1 are used as the reference (100%).
  • FIG. 5 shows the excitation spectra of the nitride phosphors of Example 1 and Comparative Example 1
  • FIG. 6 shows the reflection spectra of the nitride phosphors of Example 1 and Comparative Example 1, respectively.
  • an SEM photograph of the nitride phosphor of Example 1 was taken.
  • Figure 7 shows.
  • Fig. 7 (a) shows the image taken at 1000x
  • Fig. 7 (b) shows the image taken at 5000x.
  • the nitride phosphors of Examples 1 to 10 are represented by Ca Eu AlSiN.
  • Ca, A1 and Si are represented by Ca Eu AlSiN.
  • the Eu concentration is 0.01.
  • Eu concentration is the molar ratio to the molar concentration of Ca.
  • the additive element concentration is 0.01.
  • the additive element concentration is a molar ratio with respect to the molar concentration of Ca.
  • the above phosphors are manufactured as follows. First, the raw material Ca is ground to 1 to 15 m and nitrided in a nitrogen atmosphere. Thereafter, the Ca nitride is pulverized to 0.1 ⁇ to 10 / ⁇ m. Weigh 20g of raw material Ca and perform nitriding. Similarly, the raw material Si is pulverized to 1 to 15 m and nitrided in a nitrogen atmosphere. After that, the Si nitride is ground to 0. m. Weigh 20g of raw material Si and perform nitriding. Next, the compound A1N of A1, Eu compound EuO is pulverized to 0.1 m to 10 ⁇ m. Ca nitride, A1 nitride, Si nitride
  • Example 1 Eu acid mixture is mixed in a nitrogen atmosphere.
  • raw materials calcium nitride Ca N, aluminum nitride A1N, silicon nitride Si N, Eu oxide Pio Eu,
  • N (Molecular weight 140. 31 Eu O is weighed and mixed. The above compounds are mixed and calcined. I got it. Firing conditions are as follows: In an ammonia atmosphere, the above compound is put into a crucible, gradually heated from room temperature, fired at about 1600 ° C for about 5 hours, and slowly cooled to room temperature.
  • nitride phosphors of Examples 1 to 10 have slightly different color tones depending on the additive elements.
  • the average particle diameter of each phosphor is 5. O ⁇ m-lO.O / zm. Further, the phosphors in the examples contain oxygen.
  • Comparative Examples 1 to 3 were prepared using substantially the same manufacturing method except that Example 1 was different from LO and the additive element. The same applies to the concentration of addition. Comparative Example 1 uses Gd as the additive element. Comparative Example 2 uses Nd as the additive element, and Comparative Example 3 uses Tm as the additive element. These showed low emission and emission luminance. In Examples 1 to 77, values are shown based on Comparative Example 1.
  • a rare earth element Lu which shows an increase in quantum efficiency is selected, and a nitride phosphor in which the composition ratio of Ca, Al, and Si is adjusted is the same as in the above-described embodiment. It was produced as ⁇ 25.
  • Table 2 shows the results of measuring the characteristics of the nitride phosphor according to each example. 8 is a graph showing the emission spectrum of the phosphor of Example 11 of the present invention, FIG. 9 is a graph showing the excitation spectrum of the phosphor of Example 11 of the present invention, and FIG. 10 is an example of the present invention. 11 is a graph showing the reflection spectrum of 11 phosphors.
  • Example 11 25 The nitride phosphor of Example 11 25 is represented by CaAlSiN: Eu.
  • Example 11 25 is represented by CaAlSiN: Eu.
  • the Eu concentration is a molar ratio with respect to 1 mol of the phosphor.
  • the average particle diameter of the nitride phosphor of Example 17 3 1 is 5. O ⁇ m ⁇ lO. ⁇ m. From these results, the quantum efficiency and the peak intensity with almost no decrease in luminance even when the molar concentration of Ca A 1 Si is increased or decreased are generally high.
  • Example 26 37 a nitride phosphor in which Y having a high peak intensity was selected and the composition ratio of Ca 2 Al and Si was adjusted was produced as Example 26 37 in the same manner as in the above Example.
  • Table 3 shows the measurement results of the characteristics of the nitride phosphor according to each example.
  • a graph of the emission spectrum of the phosphor of Example 26 of the present invention is shown by a wavy line in FIG.
  • the wavy line in FIG. 9 is a graph showing the excitation spectrum of the phosphor of Example 26 of the present invention
  • the wavy line in FIG. 10 is a graph showing the reflection spectrum of the phosphor of Example 26 of the present invention.
  • Example 26 0.9875 1 1 0.01 Y 0.0025 0.653 0.339 132.6 181.8 652 185.9
  • Example 27 0.985 1 1 0.01 Y 0.005 0.657 0.335 126.3 184.7 655 189.1
  • Example 28 0.98 1 1 0.01 Y 0.01 0.652 0.341 1 16.4 1 71.4 651 175.5
  • Example 29 0.97 1 1 0.01 Y 0.02 0.656 0.337 102.9 163.3 653 166.6
  • Example 30 0.96 1 1 0.01 Y 0.03 0.657 0.337 94.8 152.8 655 155.2
  • Example 31 0.95 1 1 0.01 Y 0.04 0.657 0.336 84.0 138.9 655 140.3
  • Example 32 0.99 0.9975 1 0.01 Y 0.0025 0.656 0.336 129.9 1 77.6 652 180.9
  • Example 33 0.99 0.995 1 0.01 Y 0.005 0.660 0.332 1 14.6 165.8 653 168.9
  • Example 34 0.
  • nitride phosphor in which Sc is selected as the rare earth element and the composition ratio of Si is fixed and the composition ratio of Ca and A1 is adjusted is obtained in the same manner as in the above embodiment. It was made as.
  • Table 4 shows the results of measuring the characteristics of the nitride phosphor according to each example.
  • Example 43 46 was produced.
  • Table 5 shows the measurement results of the characteristics of the nitride phosphor according to each example.
  • FIG. 11 is a graph showing the emission spectrum of the phosphor of Example 44 of the present invention
  • FIG. 13 is a graph showing the reflection spectrum of the phosphor of Example 44 of the present invention
  • FIG. 13 is a graph showing the reflection spectrum of the phosphor of Example 44 of the present invention.
  • Table 6 shows the measurement results of the characteristics of the nitride phosphor according to each example.
  • a graph showing the emission spectrum of the phosphor of Example 48 of the present invention is shown by a wavy line in FIG.
  • the wavy line in FIG. 12 is a graph showing the excitation spectrum of the phosphor of Example 48 of the present invention
  • the wavy line in FIG. 13 is a graph showing the reflection spectrum of the phosphor of Example 48 of the present invention.
  • nitride phosphor in which Ge or Zr is added as a tetravalent element, the composition ratio of Ca and Al is fixed to 0.999: 1, and the composition ratio of Si is adjusted is described above. It produced as Examples 51-58 by the method similar to an Example.
  • Table 7 shows the measurement results of the characteristics of the nitride phosphor according to each example.
  • 14 is a graph showing the emission spectra of the phosphors of Examples 51 and 55 of the present invention
  • FIG. 15 is a graph showing the excitation spectrum of the phosphors of Examples 51 and 55 of the present invention
  • FIG. It is a graph which shows the reflection spectrum of the fluorescent substance of Example 51, 55 of this invention. In these graphs, the solid line shows Example 51, and the wavy line shows Example 55.
  • the resultant force also showed a low peak intensity when the Hf concentration was 0.01.
  • the nitride phosphor of the general formula M Al Si N: Eu is described w x y ((2/3) w + x + (4/3) y)
  • Examples 59 to 70 were prepared and examined for changes in characteristics when boron was further added to the phosphor.
  • Table 8 shows the measurement results of the characteristics of the nitride phosphors according to these examples.
  • rare earth elements are added as elemental calories, and the concentration is 0.01 as the molar ratio to the molar concentration of Ca.
  • the concentration is set to 0.0025.
  • the Eu concentration is 0.01. Eu concentration is the molar ratio to the molar concentration of Ca.
  • the nitride phosphors doped with boron in Examples 59 to 70 showed higher values than Comparative Example 1 in any of luminance, quantum efficiency, and peak intensity.
  • Y in Examples 59 and 60 and Lu in Examples 69 and 70 have particularly high peak intensities.
  • Examples 71 to 77 in which tetravalent elements were added in place of rare earth elements to nitride phosphors containing B were prepared, and the characteristics were measured. Table 9 shows the results. As shown in this table, Examples 71 to 73 include Ge as a tetravalent element, and Examples 74 to 77 include Zr. In each example, the composition ratio of Ca and A1 is both 0.99, that is, 1: 1. The Eu concentration is 0.01 as a molar ratio to the Ca molar concentration. Furthermore, the molar concentration of B is 0.01.
  • the resultant force also showed a low peak intensity when the Hf concentration was 0.01.
  • the nitride phosphors of Examples 1 to 77 show a color tone different from that of the nitride phosphor of Comparative Example 1. Accordingly, a light emitting device adjusted to a desired color tone can be obtained by adding an element such as rare earth.
  • the nitride phosphor according to Examples 78 to 173 will be described.
  • afterglow is irradiated with 253.7 nm of light for a certain period of time at room temperature, and then the excitation light source lamp is turned off.
  • the standard for time is defined as 0 when the excitation light source lamp is turned off. If the luminance during excitation light source irradiation is 100%, measure the time (msec) required for the luminance to decay to 1/10 or 1/100. Afterglow characteristics are determined based on the result of this measurement.
  • FIG. 19 shows the excitation spectra of the nitride phosphors of Comparative Example 9 and Example 78
  • FIG. 20 shows the reflection spectra of the nitride phosphors of Comparative Example 9 and Example 78, respectively.
  • FIG. 21 shows an SEM photograph of the nitride phosphor of Example 78.
  • Fig. 21 (a) shows the image taken at 1000x
  • Fig. 21 (b) shows the image taken at 5000x.
  • Comparative Example 9 is substantially the same as Examples 78 to 92 except that it contains a predetermined element.
  • Example 9 0.99 1 1 0.01 None None 0.649 0.344 100 100 650 100 35 460
  • Example 78 0.98 1 1 0.01 Y 0.01 0.652 0.341 83.4 97.0 651 97.3 40 4360
  • Example 79 0.98 1 1 0.01 Sc 0.01 0.639 0.354 77.7 67.1 647 65.5 35 835
  • Example 80 0.98 1 1 0.01 La 0.01 0.643 0.349 80.7 76.9 649 75.8 35 530
  • Example 81 0.98 1 1 0.01 Ce 0.01 0.644 0.348 84.5 83.1 649 81.6 35
  • Example 82 0.98 1 1 0.01 Pr 0.01 0.648 0.345 63.5 62.5 649 62.5 35 60
  • Example 83 0.98 1 1 0.01 Nd 0.01 0.647 0.345 39.1 37.1 651 36.7
  • Example 84 0.98 1 1 0.01 Sm 0.01 0.636 0.354 18.9 15.3 642 14.9 30 50
  • Example 85 0.98 1 1 0.01 Gd
  • the nitride phosphor of Comparative Example 9 is represented by Ca Eu AlSiN. Ca, Al and Si are 0.99
  • Example 78 92 Rare earth elements were added as element additions, and Ca, A1 and Si were set to 0.98: 1: 1.
  • the Eu concentration is 0.01 and the rare earth element concentration is 0.01.
  • the concentration is 0.01 as the molar ratio to the molar concentration of Ca.
  • the phosphor described above is manufactured as follows. First, the raw material Ca is ground to 1 ⁇ m and 15 ⁇ m and nitrided in a nitrogen atmosphere. Thereafter, the Ca nitride is pulverized to 0.1 ⁇ 10 / ⁇ m. Weigh 20g of raw material Ca and perform nitriding. Similarly, the raw material Si is pulverized to 1 m 15 m and nitrided in a nitrogen atmosphere. After that, the Si nitride is ground to 0. m. Weigh 20g of raw material Si and perform nitriding. Next, the compound A1N Eu of compound A1 EuO is pulverized to 0.1 m 10 ⁇ m. Ca nitride, A1 nitride, Si nitride
  • Eu oxides are mixed in a nitrogen atmosphere.
  • the raw materials were calcium nitride Ca N, aluminum nitride A1N, silicon nitride Si N, and Eu oxide Pio O
  • the firing conditions are as follows. The above compound is put into a crucible in an ammonia atmosphere, and gradually from room temperature. The temperature is raised gradually, firing is performed at about 1600 ° C for about 5 hours, and then slowly cooled to room temperature.
  • Y in Example 78, Sc in Example 79, La in Example 80, Gd in Example 85, and Lu in Example 92 have long afterglow and high luminance.
  • a nitride phosphor having a predetermined afterglow according to the application can be provided.
  • nitride phosphors of Examples 78 to 92 have slightly different color tones depending on the additive elements.
  • the average particle size of each phosphor is 5. O ⁇ m-10.O / zm. Further, the phosphors in the examples contain oxygen.
  • Lu is selected as a rare earth element, which shows an increase in luminance and quantum efficiency, and a nitride phosphor in which the composition ratio of Ca, Al, and Si is adjusted is performed in the same manner as in the above-described example.
  • Example 9 Prepared as 3-107.
  • Table 11 shows the measurement results of the characteristics of the nitride phosphor according to each example.
  • FIG. 22 is a graph showing the emission spectrum of the phosphor of Example 93 of the present invention
  • FIG. 23 is a graph showing the excitation spectrum of the phosphor of Example 93 of the present invention
  • FIG. 42 is a graph showing the reflection spectrum of the phosphor of Example 93.
  • the horizontal bars indicate that they are measured.
  • nitride phosphors of Examples 93 to 107 are represented by CaAlSiN: Eu.
  • the Eu concentration is a molar ratio relative to 1 mol of the phosphor.
  • the light emission luminance and energy efficiency of the phosphors of Examples 93 to 107 are also expressed as relative values with Comparative Example 9 as 100%.
  • the average particle diameters of the nitride phosphors of Examples 93 to 107 are 5. ⁇ m to 10. O / z m. From the results in Table 11, even if the molar concentration of Ca, Al, and Si is increased or decreased, it shows long afterglow, high brightness, and high quantum efficiency and peak intensity. The peak wavelength also became longer. This reveals that Lu is a suitable additive element in order to obtain a long-afterglow and high-brightness nitride phosphor.
  • a nitride phosphor in which Y showing long afterglow and high luminance was selected as the rare earth element, and the composition ratio of Ca, Al, and Si was adjusted was used in the same manner as in the above examples. 108 to 119 were prepared.
  • Table 12 shows the measurement results of the characteristics of the nitride phosphor according to each example. Further, the graph of the emission spectrum of the phosphor of Example 108 of the present invention is shown by the wavy line in FIG. Similarly, the wavy line in FIG. 23 is a graph showing the excitation spectrum of the phosphor of Example 108 of the present invention, and the wavy line in FIG. 24 is a graph showing the reflection spectrum of the phosphor of Example 108 of the present invention.
  • the light emission luminance and quantum efficiency of the nitride phosphors of Examples 108 to 119 are expressed as relative values with Comparative Example 9 as 100%.
  • nitride phosphor in which Sc is selected as the rare earth element, and the composition ratio of Ca and A1 is adjusted by fixing the composition ratio of Si is obtained in the same manner as in the above-described embodiment.
  • Table 13 shows the measurement results of the characteristics of the nitride phosphor according to each example. The light emission luminance and quantum efficiency of the nitride phosphors of Examples 120 to 124 are set to 100% in Comparative Example 9, and are expressed as relative values based on this.
  • a nitride phosphor in which Ga is added as a trivalent element and the composition ratio of Ca and the composition ratio of Ca and A1 are adjusted in the same manner is adjusted in the same manner as in the above example.
  • Table 14 shows the measurement results of the characteristics of the nitride phosphor according to each example.
  • FIG. 25 is a graph showing the emission spectrum of the phosphor of Example 126 of the present invention
  • FIG. 26 is a graph showing the excitation spectrum of the phosphor of Example 126 of the present invention
  • FIG. 14 is a graph showing the reflection spectrum of the phosphor of Example 126.
  • the light emission luminance and quantum efficiency of the nitride phosphors of Examples 125 to 128 are expressed as relative values with Comparative Example 9 as 100%.
  • the emission spectrum of the phosphor of Example 130 of the present invention is shown by the wavy line in the graph of FIG.
  • the wavy line in FIG. 26 is a graph showing the excitation spectrum of the phosphor of Example 130 of the present invention
  • the wavy line in FIG. 27 is a graph showing the reflection spectrum of the phosphor of Example 130 of the present invention.
  • the light emission luminance and quantum efficiency of the nitride phosphors of Examples 129 to 132 are expressed as relative values with Comparative Example 9 as 100%.
  • Example 133 136 a nitride phosphor in which Ge is added as a tetravalent element, the composition ratio of Ca and A1 is fixed at 0.99: 1, and the composition ratio of Si is adjusted, is compared with the above examples. It produced as Example 133 136 by the same method.
  • Table 16 shows the measurement results of the characteristics of the nitride phosphor according to each example.
  • FIG. 28 is a graph showing the emission spectrum of the phosphor of Example 133 of the present invention
  • FIG. 29 is a graph showing the excitation spectrum of the phosphor of Example 133 of the present invention
  • FIG. 30 is an example of the present invention. It is a graph which shows the reflection spectrum of 133 fluorescent substance.
  • the light emission luminance and quantum efficiency of the nitride phosphor of Example 133 136 are expressed as relative values with Comparative Example 9 as 100%.
  • Example 137 140 A nitride phosphor fixed at 99: 1 and adjusting the composition ratio of Si was produced as Example 137 140 by the same method as in the above example.
  • Table 17 shows the measurement results of the characteristics of the nitride phosphor according to each example.
  • a graph showing the emission spectrum of the phosphor of Example 137 of the present invention is shown by the wavy line in FIG.
  • the wavy line in FIG. 29 is a graph showing the excitation spectrum of the phosphor of Example 137 of the present invention
  • the wavy line in FIG. 30 is a graph showing the reflection spectrum of the phosphor of Example 137 of the present invention.
  • Example 137 Luminous luminance of 140 nitride phosphors The quantum efficiency is expressed as a relative value with reference to Comparative Example 9 as 100%.
  • Example 141 144 A nitride phosphor in which Hf was added as a tetravalent element, and the composition ratio of Ca and A1 was fixed at 0.99: 1 and the composition ratio of Si was adjusted, was compared with the above examples. It produced as Example 141 144 by the same method. Table 18 shows the measurement results of the characteristics of the nitride phosphor according to each example. The light emission luminance and quantum efficiency of the nitride phosphor of Example 141 144 are expressed as relative values with reference to Comparative Example 9 as 100%.
  • Example 78 144 the nitride phosphor w X y ((2/3) w + x + (4/3) y) of the general formula M AI Si N: Eu
  • Examples 145 to 161 a rare earth element was added to the nitride phosphor.
  • the light emission luminance and quantum efficiency of the nitride phosphors of Examples 145 to 173 are expressed as relative values with Comparative Example 9 as 100%.
  • Comparative Example 10 0.01% of boron B was added to Comparative Example 9.
  • the composition ratio of Ca, Al, and Si in these phosphors was set to 0.999: 1: 1.
  • rare earth elements were added as element additions, and the concentrations were 0.01 as the molar ratio of Ca to the molar concentration.
  • Ca, A1, and Si are set to 0.98: 1: 1.
  • the Eu concentration is 0.01.
  • Eu concentration is the molar ratio to the molar concentration of Ca
  • Example 162 173 in which a tetravalent element was added in place of a rare earth element to a nitride phosphor containing B was prepared, and the characteristics were measured.
  • Example 162 165 includes Ge as a tetravalent element
  • Example 166 169 adds Zr
  • Example 17 0 173 adds Hf.
  • the composition ratios of Ca and A1 are both 0.99, that is, 1: 1.
  • the Eu concentration is 0.0 1 in terms of molar ratio to the Ca molar concentration.
  • the molar concentration of B is 0.01.
  • FIG. 31 shows a graph showing the change in peak intensity in the case where boron is added to the above results.
  • Comparative Example 9 is taken as 100%.
  • the peak intensity in Comparative Example 10 is increased by adding boron to Comparative Example 9 compared to the reference example !, but the nitride phosphor has rare earth elements and trivalent elements.
  • the peak intensity also changes depending on the added element.
  • the peak intensity is increased by La Pr Nd Gd Dy Ho Er Lu Sc Zr and the like.
  • the graph of Fig. 32 shows how the afterglow of 1Z100 changes with and without the addition of boron.
  • Example 78 which is a reference, a long afterglow due to the addition of boron, a rare earth element, a trivalent element, and a tetravalent element are added to the nitride phosphor.
  • the afterglow characteristics change depending on the added element.
  • Gd of Example 85 when Gd of Example 85 is used V, long afterglow is obtained, and when Gd of Example 153 is used V, short afterglow is obtained. Even when the same Gd is added, afterglow characteristics are caused by the difference in composition. A difference occurs.
  • Example 135 examples include Ge in Example 135 and Example 145.
  • the afterglow is relatively short, but when La in Example 148 is used, the afterglow is significantly long. Even when the same La is added, the afterglow is caused by the difference in composition. Differences in characteristics occur. From this, it was confirmed that the addition of boron is effective in adjusting the afterglow of the phosphor.
  • the nitride phosphors of Examples 78 to 173 exhibit a color tone different from that of the nitride phosphor of Comparative Example 9.
  • a light emitting device adjusted to a desired color tone and afterglow characteristics can be obtained by adding an element such as rare earth.
  • FIG. 33 shows emission spectra of the phosphor of the example of the present invention and the YAG phosphor. Further, FIG. 34 shows an emission spectrum of a white light source using the phosphor of the example of the present invention.
  • an n-type and p-type GaN semiconductor layer 2 is formed on a sapphire substrate 1
  • an electrode 3 is provided on the n-type and p-type semiconductor layer 2
  • an electrode 3 Is electrically connected to the lead frame 13 by a conductive wire 14.
  • the upper part of the light emitting element 10 is covered with the phosphor 11 and the coating member 12, and the outer periphery of the lead frame 13, the phosphor 11, the coating member 12 and the like is covered with the mold member 15.
  • the semiconductor layer 2 is stacked on the sapphire substrate 1 in the order of n + GaN: Si ⁇ n—AlGaN: Si ⁇ n_GaN, GalnN QWs ⁇ p "GaN: Mg ⁇ p" AlGaN: Mg, p_GaN: Mg.
  • a part of the n + GaN: Si layer is etched to form an n-type electrode.
  • a p-type electrode is formed on the p_GaN: Mg layer.
  • the lead frame 13 uses iron-containing copper.
  • a cup for mounting the light emitting element 10 is provided on the upper portion of the mount lead 13a, and the light emitting element 10 is die-bonded to the bottom surface of the substantially central portion of the cup.
  • the phosphor 11 is mixed with the phosphor of the example and the YAG phosphor.
  • Coating member 12 includes epoxy resin and diffusing agent In addition, a mixture of barium titanate, titanium oxide and phosphor 11 in a predetermined ratio is used.
  • the mold member 15 uses epoxy resin.
  • This bullet-type light emitting device 1 is a cylindrical shape in which the upper part of the mold member 15 having a radius of 2 mm to 4 mm and a height of about 7 mm to 10 mm is a hemisphere.
  • blue light-emitting element 10 having a first emission spectrum having an emission peak at approximately 450 nm emits light, and this first emission spectrum is converted to phosphor 11 covering semiconductor layer 2.
  • the nitride phosphor in the light absorbs and performs color tone conversion, and emits light in a second emission spectrum different from the first emission spectrum.
  • the YAG phosphor contained in the phosphor 11 absorbs the first emission spectrum and is excited by this to emit light in the third emission spectrum.
  • the first, second, and third emission spectra are mixed with each other to emit white light.
  • the phosphor 11 of the light-emitting device 1 includes a phosphor according to an embodiment of the present invention, a coating member 12, and a YAG-based phosphor that is a yttrium-gadolinium'aluminum oxide phosphor activated with cerium. Is used.
  • the solid line in FIG. 33 shows the emission spectrum of the phosphor according to the example of the present invention, and the chain line in the figure shows the emission spectrum of the YAG phosphor.
  • the phosphor of the embodiment of the present invention is used in combination with a YAG-based phosphor whose emission spectrum of the red component is strong, and realizes a white light source that does not lack the red region, that is, has excellent color rendering properties. it can.
  • Table 21 shows the light emission characteristics of the white light emitting device 1 for reference.
  • the emission spectrum is shown in Fig. 34.
  • the phosphor used in the light-emitting device 1 is represented by Ca Eu AlSiN which does not contain an additive element as compared with the nitride phosphor containing the rare earth element according to the present invention.
  • nitride phosphor is used, it is sufficiently possible to use the nitride phosphor according to the present invention in place of the phosphor described above.
  • the white light emitting device 1 uses a light emitting element having an emission peak at 450 nm, and uses a YAG phosphor and a nitride phosphor.
  • YAG phosphors are (Y, Gd) AI O: Ce is used.
  • the nitride phosphor is CaAlSiB N of Example 1: 0.01.
  • the phosphor of the present invention can also be used in the light-emitting device 2 shown in FIG.
  • This figure shows a surface-mount type light-emitting device.
  • the light emitting element 101 used in the light emitting device 2 uses a blue light excited light emitting element, but 380 ⁇ !
  • a light emitting element excited by ultraviolet light with a wavelength of up to 400 nm can also be used, and the light emitting element 101 is not limited to this.
  • the light-emitting element 101 having an InGaN-based semiconductor layer with a 460 nm peak wavelength in the blue region is used as the light-emitting layer.
  • the light-emitting element 101 includes a p-type semiconductor layer and an n-type semiconductor layer (not shown).
  • the p-type semiconductor layer and the n-type semiconductor layer have conductive wires 104 connected to the lead electrode 102. Is formed.
  • An insulating sealing material 103 is formed so as to cover the outer periphery of the lead electrode 102 to prevent a short circuit.
  • a translucent window 107 extending from a lid 106 at the top of the knocker 105 is provided above the light emitting element 101.
  • a uniform mixture of the phosphor 108 and the coating member 109 according to the present invention is applied to the entire inner surface of the translucent window 107.
  • the phosphor of Example 1 is used.
  • the package 105 is a square having a side with a corner of 8 mm to 12 mm.
  • the blue light emitted from the light emitting element 101 is irradiated on the phosphor 108 according to the embodiment of the present invention by indirect light reflected by the reflecting plate and light directly emitted from the light emitting element 101.
  • the phosphor emits yellow light and red light when excited by blue light emission. Both the yellow light and red light of the phosphor and the blue light of the light emitting element are emitted to the outside and become a light source of white light emission by mixing yellow light, red light and blue light.
  • FIG. 35 is a diagram showing a cap-type light-emitting device 3 manufactured using the phosphor according to the example of the present invention.
  • the light emitting device 3 is configured by covering the surface of the mold member 15 of the light emitting device 1 with a cap 16 made of a light transmissive resin in which a phosphor (not shown) is dispersed. Cap 16 uniformly distributes the phosphor in the light-transmitting resin.
  • the light transmissive resin containing the phosphor is molded into a shape that fits into the shape of the mold member 15 of the light emitting device 1.
  • a manufacturing method is also possible in which a light-transmitting resin containing a phosphor is placed in a predetermined mold and then the light-emitting device 1 is pushed into the mold and molded.
  • the resin include transparent resin, silica sol, glass, inorganic binder, etc. with excellent temperature characteristics and weather resistance, such as epoxy resin, urea resin, and silicone resin. It is.
  • thermosetting resin such as melamine resin and phenol resin can be used.
  • thermoplastic resins such as polyethylene, polypropylene, polychlorinated butyl and polystyrene, thermoplastic rubbers such as styrene butadiene block copolymer and segmented polyurethane can also be used.
  • a diffusing agent, barium titanate, titanium oxide, aluminum oxide, etc. may be contained. Further, a light stabilizer or a colorant may be contained.
  • the phosphor mixed in the cap 16 and the phosphor 11 mixed in the cup of the mount lead 13a are the phosphor used in the embodiment of the present invention, or the phosphor of the embodiment and the YAG-based fluorescence. Use the body mixed. Also, the phosphor of the embodiment of the present invention is mixed with the cap, the YAG phosphor is mixed with the cup, or the YAG phosphor is mixed with the cap, and the embodiment of the present invention is intensively added. These phosphors can also be mixed.
  • the phosphor of the embodiment of the present invention and the YAG phosphor are mixed in the cap, and the phosphor is not mixed in the cup, or the phosphor is not mixed in the cap, and the present invention is added to the cup.
  • These phosphors can be mixed with YAG phosphors.
  • the light emitting device configured as described above excites the phosphor of the cup or cap 16 with a part of the light emitted from the light emitting element 10, and emits red light. It also excites YAG phosphors to emit light. Furthermore, a part of the blue light of the light emitting element is emitted outside without being absorbed by the phosphor.
  • the red light of the phosphor of the embodiment radiated to the outside, the light emission of the YAG phosphor, and the blue light of the light emitting element are mixed to form white light.
  • the nitride phosphor of the present invention and a light-emitting device using the same can be used together with a blue light-emitting element and another phosphor to provide a white light source with high color rendering properties.
  • FIG. 1 is a cross-sectional view of a white light source using a phosphor according to an embodiment of the present invention.
  • FIG. 2 is a plan view and a cross-sectional view of a white light source having another structure using the phosphor according to the embodiment of the present invention.
  • FIG. 3 is a block diagram showing a method for producing the phosphor of the present invention.
  • FIG. 4 is a graph showing emission spectra of phosphors according to Example 1 and Comparative Example 1 of the present invention.
  • FIG. 5 is a graph showing excitation spectra of phosphors according to Example 1 and Comparative Example 1 of the present invention.
  • FIG. 6 is a graph showing reflection spectra of phosphors according to Example 1 and Comparative Example 1 of the present invention.
  • FIG. 7 is an electron micrograph of the phosphor according to Example 1 of the present invention.
  • FIG. 8 is a graph showing emission spectra of the phosphors according to Example 11 and Example 26 of the present invention.
  • FIG. 9 is a graph showing excitation spectra of phosphors according to Example 11 and Example 26 of the present invention.
  • FIG. 10 is a graph showing reflection spectra of phosphors according to Example 11 and Example 26 of the present invention.
  • FIG. 11 is a graph showing emission spectra of the phosphors according to Example 44 and Example 48 of the present invention.
  • FIG. 12 is a graph showing excitation spectra of phosphors according to Example 44 and Example 48 of the present invention.
  • FIG. 13 is a graph showing the reflection spectra of the phosphors according to Example 44 and Example 48 of the present invention.
  • FIG. 14 is a graph showing emission spectra of phosphors according to Example 51 and Example 55 of the present invention. It is fu.
  • FIG. 15 is a graph showing excitation spectra of phosphors according to Example 51 and Example 55 of the present invention.
  • FIG. 16 is a graph showing reflection spectra of phosphors according to Example 51 and Example 55 of the present invention.
  • FIG. 17 is a graph showing changes in peak intensity.
  • FIG. 18 is a graph showing emission spectra of the phosphors according to Example 78 and Comparative Example 9 of the present invention.
  • FIG. 19 is a graph showing excitation spectra of phosphors according to Example 78 and Comparative Example 9 of the present invention.
  • FIG. 20 is a graph showing reflection spectra of phosphors according to Example 78 and Comparative Example 9 of the present invention.
  • FIG. 22 is a graph showing emission spectra of the phosphors according to Example 93 and Example 108 of the present invention.
  • FIG. 23 is a graph showing excitation spectra of the phosphors according to Example 93 and Example 108 of the present invention.
  • FIG. 24 is a graph showing reflection spectra of phosphors according to Example 93 and Example 108 of the present invention.
  • FIG. 25 is a graph showing an emission spectrum of the phosphor according to Example 126 and Example 130 of the present invention.
  • FIG. 26 is a graph showing excitation spectra of phosphors according to Example 126 and Example 130 of the present invention.
  • FIG. 27 is a graph showing reflection spectra of phosphors according to Example 126 and Example 130 of the present invention.
  • FIG. 28 is a graph showing emission spectra of the phosphors according to Example 133 and Example 137 of the present invention.
  • FIG. 29 is a graph showing excitation spectra of phosphors according to Example 133 and Example 137 of the present invention. It is rough.
  • FIG. 30 is a graph showing reflection spectra of phosphors according to Example 133 and Example 137 of the present invention.
  • FIG. 31 is a graph showing changes in peak intensity with and without boron added.
  • FIG. 32 is a graph showing changes in 1Z100 afterglow with and without boron.
  • FIG. 33 is a diagram showing an emission spectrum of the phosphor according to Example 1 of the present invention and a YAG phosphor.
  • FIG. 34 is a diagram showing an emission spectrum of white light-emitting device 1.
  • FIG. 35 is a cross-sectional view of another white light source using the phosphor according to the example of the present invention. Explanation of symbols

Abstract

Disclosed are a red phosphor having excellent emission characteristics, and a light-emitting device using such a red phosphor. Specifically disclosed is a europium-activated nitride phosphor which absorbs near ultraviolet to blue light and emits red light. This nitride phosphor is represented by the general formula below with w, x, y and z being within the ranges shown below, and it further contains at least one of rare earth elements, tetravalent elements and trivalent elements as an additive element. MwAlxSiyN((2/3)w + x + (4/3)y):Eu2+ (In the formula, M represents at least one element selected from Mg, Ca, Sr and Ba; and 0.04 ≤ w ≤ 9, x = 1, 0.056 ≤ y ≤ 18.) Since the peak wavelength can be shifted to a longer wavelength, this nitride phosphor is able to emit deeper red light even when the activation amount of europium, which is an expensive rare earth element, is reduced.

Description

窒化物蛍光体及びそれを用いた発光装置  Nitride phosphor and light emitting device using the same
技術分野  Technical field
[0001] 本発明は、発光ダイオード、蛍光ランプ等の照明、ディスプレイ、液晶用バックライト 等に使用される窒化物蛍光体に関し、特に近紫外光から青色光で励起されて赤色 に発光する窒化物蛍光体に関する。  TECHNICAL FIELD [0001] The present invention relates to a nitride phosphor used for lighting such as a light emitting diode and a fluorescent lamp, a display, a backlight for liquid crystal, and the like, and in particular, a nitride that emits red light when excited by blue light from near ultraviolet light. It relates to a phosphor.
背景技術  Background art
[0002] 発光ダイオードは、小型で電力効率が良く鮮ゃ力な色を発光する。また、発光ダイ オードは電球のようにフィラメントを加熱して発光させるものでな 、ので、球切れなど の心配がない。さらに応答速度が極めて速ぐまた、振動やオン'オフ点灯の繰り返し に強いという特徴を有する。このような優れた特性を有するため、発光ダイオードは、 各種の光源として利用されている。  [0002] Light emitting diodes are small in size, have high power efficiency, and emit bright colors. In addition, the light emitting diode does not have to worry about running out of a bulb because it is not a light bulb that heats the filament to emit light. In addition, the response speed is extremely fast and it is strong against vibration and repeated on / off lighting. Because of such excellent characteristics, light emitting diodes are used as various light sources.
[0003] 発光ダイオードは特定の波長領域に発光する。したがって、発光の一部を蛍光体 により波長変換し、蛍光体で波長変換された光と、発光ダイオードの光とを混合して 放出する光源が開発されている。この光源は、蛍光体の発光色を選択して、発光ダイ オードと異なる種々の発光色にできる。特に、白色系に発光する光源は、一般照明、 ディスプレイ、液晶用バックライト等、幅広い分野で使用される。このことから、特に発 光ダイオードと組み合わせて、白色系の発光装置に使用できる蛍光体が求められて いる。発光ダイオードからなる白色光源は、光の混色の原理によって、青色発光ダイ オードの発光と蛍光体との混色で白色としている。この白色光源は、発光ダイオード の発光素子から放出された青色光で蛍光体を励起する。蛍光体は、発光素子の青 色光を吸収して、黄色の蛍光を発する。蛍光体の黄色光と、発光素子の青色光は補 色の関係にあり、これが混色された光を人間の目は白色として見る。この原理で、青 色発光素子と蛍光体とを組み合わせた発光ダイオードの白色光源が製造されている [0003] A light emitting diode emits light in a specific wavelength region. Therefore, a light source has been developed in which a part of the emitted light is wavelength-converted by a phosphor and light that has been wavelength-converted by the phosphor and light from a light-emitting diode are mixed and emitted. This light source can be made various emission colors different from the light emitting diode by selecting the emission color of the phosphor. In particular, light sources that emit white light are used in a wide range of fields such as general illumination, displays, and backlights for liquid crystals. For this reason, there is a demand for a phosphor that can be used in a white light emitting device, particularly in combination with a light emitting diode. The white light source composed of light emitting diodes is white due to the light emission of the blue light emitting diode and the phosphor, based on the principle of light color mixing. This white light source excites the phosphor with blue light emitted from the light emitting element of the light emitting diode. The phosphor absorbs blue light of the light emitting element and emits yellow fluorescence. The yellow light of the phosphor and the blue light of the light-emitting element have a complementary color relationship, and the human eye sees the mixed light as white. Based on this principle, a white light source of a light emitting diode combining a blue light emitting element and a phosphor is manufactured.
[0004] このような用途に使用される蛍光体として、 Y O S :Euからなる酸硫ィ匕物蛍光体が [0004] As phosphors used in such applications, oxysulfur phosphors composed of Y O S: Eu are available.
2 2  twenty two
ある。また、 Ca Si N: Euからなる窒化物蛍光体が開発されている(特許文献 1参照) 特許文献 1:国際公開第 01Z40403号パンフレット is there. In addition, a nitride phosphor made of Ca Si N: Eu has been developed (see Patent Document 1). Patent Document 1: Pamphlet of International Publication No. 01Z40403
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかしながら、 Y O S : Euの酸硫化物蛍光体は、赤色光の発光スペクトルが充分で However, Y O S: Eu oxysulfide phosphors have a sufficient red light emission spectrum.
2 2  twenty two
ないという問題があった。特に上記の白色に発光する発光装置は、可視光領域の長 波長側の発光が得られ難いため、赤み成分が不足したやや青白い白色の発光装置 となっていた。特に、店頭のディスプレイ用の照明や、医療現場用の照明などおいて は、やや赤みを帯びた暖色系の白色の発光装置が求められている。また、発光素子 は電球と比べて、一般に寿命が長ぐ人の目に優しいため、電球色に近い白色の発 光装置が強く求められている。  There was no problem. In particular, the above-described light emitting device that emits white light is difficult to obtain light on the long wavelength side in the visible light region, and thus has become a slightly pale white light emitting device that lacks a red component. In particular, warm red light emitting devices with a slightly reddish color are required for store display lighting and medical site lighting. In addition, light emitting elements generally have a longer life than human light bulbs and are therefore easier on the eyes of humans. Therefore, there is a strong demand for white light emitting devices that are close to the light bulb color.
[0006] 通常、赤みが増すと、発光装置の発光特性が低下する。人間の目が感じる色みは 、波長が 380ηπ!〜 780nm領域の電磁波に明るさの感覚を生じる。これを表す指標 の一つとしては、視感度特性が挙げられる。視感度特性は山型になっており、 550η mがピークになっている。赤み成分の波長域である 580ηπ!〜 680nm付近と、 550η m付近に同じ電磁波が入射してきた場合、赤み成分の波長域の方が暗く感じる。そ のため、緑色、青色領域と同じ程度の明るさを感じるためには、赤色領域は、高密度 の電磁波の入射が必要となる。  [0006] Normally, when redness increases, the light emission characteristics of the light emitting device deteriorate. The color that the human eye perceives has a wavelength of 380ηπ! ~ A brightness sensation is generated in the electromagnetic wave of 780nm region. One of the indicators for this is the visibility characteristic. The visibility characteristics are mountain-shaped, with a peak at 550ηm. 580ηπ which is the wavelength range of the red component! When the same electromagnetic wave is incident at around 680nm and around 550ηm, the red component wavelength region feels darker. Therefore, in order to feel the same level of brightness as the green and blue regions, the red region requires high-density electromagnetic waves.
[0007] 蛍光体の発光色の波長を長くしてより深い赤色に発光させるには、ユーロピウムの 賦活量を多くする必要がある。しかしながら、発光輝度が低下し、さらに材料コストが 高くなるという欠点があった。特に近年は照明用途での LEDを用いた照明装置の置 き換えが期待されており、一層の高輝度化及び低価格ィ匕が求められている。  [0007] In order to make the emission color wavelength of the phosphor longer to emit deeper red light, it is necessary to increase the activation amount of europium. However, there are drawbacks in that the luminance is reduced and the material cost is increased. In particular, in recent years, replacement of lighting devices using LEDs for lighting applications is expected, and higher brightness and lower cost are required.
[0008] 本発明はこのような観点からなされたものである。本発明の第一の目的は、近紫外 光から青色光で励起されて赤色に発光する窒化物蛍光体の輝度を更に向上させた 窒化物蛍光体及びそれを用いた発光装置を提供することにある。  [0008] The present invention has been made from such a viewpoint. A first object of the present invention is to provide a nitride phosphor that further improves the luminance of a nitride phosphor that is excited by blue light from near ultraviolet light and emits red light, and a light emitting device using the same. is there.
[0009] 一方で、蛍光体の残光特性は、一般に使用される蛍光体の基本組成によって決ま る。一方、蛍光体が使用される用途に応じた好ましい残光特性が望まれる。例えば一 般の照明用 LEDやディスプレイ等の用途においては、残光時間の短い蛍光体が望 ま ヽ。一例を挙げると緑色画像用投写形陰極線管やプラズマディスプレイパネルで は、残光により表示される画像が不明瞭となって視認性が低下するため、高輝度化 および短残光化が要求される。また切手などの印刷物を検知するための印刷情報選 別用蛍光体では、特定の印刷部分に用いて 10ms後の極めて短時間での高い残光 性を検出することにより、特定印刷部分を識別して切手の位置を特定し消印を行った り、切手の種別判定、真贋判定等を行っている。このため、これらの蛍光体において も同様に高輝度および短残光が求められる。 On the other hand, the afterglow characteristics of the phosphor are determined by the basic composition of the phosphor generally used. On the other hand, preferable afterglow characteristics are desired depending on the application in which the phosphor is used. For example, in applications such as general lighting LEDs and displays, phosphors with a short afterglow time are desired. Ma ヽ. For example, in a projection cathode ray tube or plasma display panel for green images, the image displayed by the afterglow becomes unclear and the visibility is lowered, so that high brightness and short afterglow are required. . In addition, a printing information selection phosphor for detecting printed matter such as stamps can be used for specific printing parts to identify specific printing parts by detecting high persistence in a very short time after 10 ms. The position of the stamp is identified and postmarked, and the stamp type and authenticity are determined. For this reason, these phosphors are also required to have high luminance and short afterglow.
[0010] 一方、ディスプレイや蛍光ランプのフリツ力を減少させる等の目的では、残光時間が 比較的長い長残光性の蛍光体も用いられる。フリツカは視感度の高い緑色で最も目 立っため、緑色発光素子には長残光と短残光の蛍光体の混合蛍光体を使用し、赤 色 ·青色発光素子は短残光蛍光体を使用したものも作られている。し力しながら、一 定の基本糸且成を有する蛍光体の残光時間を調整することは容易でな力つた。 On the other hand, for the purpose of reducing the flickering force of a display or a fluorescent lamp, a long afterglow phosphor having a relatively long afterglow time is also used. Fritzka is most noticeable in green with high visibility, so use a mixed phosphor of long afterglow and short afterglow phosphors for green light emitting elements, and use short afterglow phosphors for red and blue light emitting elements. It is also made. However, it was easy to adjust the afterglow time of a phosphor having a certain basic yarn composition.
[0011] また長残光を有する従来の蛍光体では、 γ線、 X線、紫外線等の放射線励起により エネルギーを蓄え、励起を止めた後に長時間発光するタイプが多い。近年は可視光 励起の蛍光体が求められているが、可視光で励起される蛍光体は殆ど無ぐ特に青 色光で励起されて赤色光に発光する蛍光体においては、このように残光時間を調整 できる蛍光体は皆無であった。また、 LEDと組み合わせた照明用の蛍光体において も、残光時間の調整が可能な蛍光体が求められている。  [0011] In addition, conventional phosphors having long afterglow often store energy by radiation excitation such as γ-rays, X-rays, and ultraviolet rays, and emit light for a long time after the excitation is stopped. In recent years, there has been a demand for phosphors excited by visible light. However, there are few phosphors excited by visible light, and in particular, phosphors excited by blue light and emitting red light in this way. There was no phosphor that could adjust the brightness. In addition, phosphors that can adjust the afterglow time are also required for illumination phosphors combined with LEDs.
[0012] 本発明は、さらにこのような要求に対応するためになされたものである。本発明の第 二の目的は、可視光で励起される蛍光体の残光特性を、用途に応じて選択可能とし た窒化物蛍光体及びそれを用いた発光装置を提供することにある。  The present invention has been made to further meet such a demand. A second object of the present invention is to provide a nitride phosphor capable of selecting the afterglow characteristics of a phosphor excited by visible light according to the application, and a light emitting device using the nitride phosphor.
課題を解決するための手段  Means for solving the problem
[0013] 上記課題を解決するために、本発明に係る一の窒化物蛍光体は、ユーロピウムで 賦活される窒化物蛍光体であって、以下の一般式で示され、 w、 x、 y、 zを以下の範 囲とし、さらに Y、 Ga、 Inのいずれ力 1種、または Ge、 Zrのいずれ力 1種、を含有する [0013] In order to solve the above problems, one nitride phosphor according to the present invention is a nitride phosphor activated by europium, and is represented by the following general formula: w, x, y, z is within the following range, and further contains any one of Y, Ga, and In or one of Ge and Zr.
[0014] M Al Si N : Eu [0014] M Al Si N: Eu
w X y ((2/3)w+x+(4/3)y) w X y ((2/3) w + x + (4/3) y)
Mは Mg、 Ca、 Sr、 Baの群から選ばれる少なくとも 1種 0. 04≤w≤9, x= l、 0. 056≤y≤18 M is at least one selected from the group consisting of Mg, Ca, Sr and Ba 0. 04≤w≤9, x = l, 0. 056≤y≤18
[0015] また、本発明に係る他の窒化物蛍光体は、ユーロピウムで賦活される窒化物蛍光 体であって、以下の一般式で示され、 w、 x、 y、 zを以下の範囲とし、さらに La、 Ce、 P r、 Gd、 Tb、 Dy、 Ho, Er、 Luの群力ら選ば、れる少なくとも 1種、または Sc、 Y、 Ga、 I nのいずれ力 1種、または Ge、 Zrのいずれ力 1種、が含有されている。 [0015] Further, another nitride phosphor according to the present invention is a nitride phosphor activated by europium, and is represented by the following general formula, and w, x, y, and z are in the following ranges. In addition, at least one selected from the group forces of La, Ce, Pr, Gd, Tb, Dy, Ho, Er, and Lu, or any one of Sc, Y, Ga, and In, or Ge, Zr One of these strengths is contained.
M Al Si N : Eu  M Al Si N: Eu
w X y ((2/3)w+x+(4/3)y) w X y ((2/3) w + x + (4/3) y)
Mは Mg、 Ca、 Sr、 Baの群から選ばれる少なくとも 1種、  M is at least one selected from the group consisting of Mg, Ca, Sr and Ba,
0. 04≤w≤9, x= l、 0. 056≤y< l力つ l <y≤18  0. 04≤w≤9, x = l, 0. 056≤y <l Powerful l <y≤18
[0016] また本発明に係る他の窒化物蛍光体は、ユーロピウムで賦活される窒化物蛍光体 であって、以下の一般式で示され、 w、 x、 y、 zを以下の範囲とし、さらに Y、 Ga、 Inの いずれ力 1種、または 4価の元素 Ge、 Zrのいずれ力 1種、が含有されている。 [0016] Further, another nitride phosphor according to the present invention is a nitride phosphor activated by europium, represented by the following general formula, wherein w, x, y, z are in the following ranges, Furthermore, any one of Y, Ga, and In, or one of the tetravalent elements Ge and Zr, is contained.
M Al Si B N : Eu  M Al Si B N: Eu
w X y z ((2/3)w+x+(4/3)y+z) w X yz ((2/3) w + x + (4/3) y + z)
Mは Mg、 Ca、 Sr、 Baの群から選ばれる少なくとも 1種、  M is at least one selected from the group consisting of Mg, Ca, Sr and Ba,
0. 04≤w≤9, x= l、 0. 056≤y≤18, 0. 001≤z≤0. 5  0. 04≤w≤9, x = l, 0. 056≤y≤18, 0. 001≤z≤0. 5
[0017] また本発明に係る他の窒化物蛍光体は、ユーロピウムで賦活される窒化物蛍光体 であって、以下の一般式で示され、 w、 x、 y、 zを以下の範囲とし、さらに La、 Ce、 Pr、 Gd、 Tb、 Dy、 Ho、 Er、 Luの群から選ばれる少なくとも 1種、または Sc、 Y、 Ga、 Inの いずれ力 1種、または 4価の元素 Ge、 Zrのいずれ力 1種、が含有されている。 [0017] Further, another nitride phosphor according to the present invention is a nitride phosphor activated by europium, which is represented by the following general formula, and w, x, y, z are in the following ranges, Furthermore, at least one selected from the group consisting of La, Ce, Pr, Gd, Tb, Dy, Ho, Er, and Lu, or any one of Sc, Y, Ga, and In, or the tetravalent element Ge, Zr One kind of power is contained.
M Al Si B N : Eu  M Al Si B N: Eu
w X y z ((2/3)w+x+(4/3)y+z) w X yz ((2/3) w + x + (4/3) y + z)
Mは Mg、 Ca、 Sr、 Baの群から選ばれる少なくとも 1種、  M is at least one selected from the group consisting of Mg, Ca, Sr and Ba,
0. 04≤w≤9, x= l、 0. 056≤y< l力つ l <y≤18、 0. 001≤z≤0. 5  0. 04≤w≤9, x = l, 0. 056≤y <l Powerful l <y≤18, 0. 001≤z≤0.5
[0018] 窒化物蛍光体は、近紫外線乃至青色光を吸収して、その光よりも長波長の光 (例え ば黄赤色光や赤色光)を放出する。黄赤色光は 584ηπ!〜 610nm、赤色光は 610η m〜780nmに波長範囲を持つ。ただし、蛍光体のスペクトルはブロードなため、黄赤 色と赤色との境界は必ずしも明確ではない。 [0018] The nitride phosphor absorbs near ultraviolet or blue light and emits light having a longer wavelength than the light (for example, yellow-red light or red light). Yellow-red light is 584ηπ! ~ 610nm, red light has a wavelength range of 610ηm ~ 780nm. However, since the spectrum of the phosphor is broad, the boundary between yellow-red and red is not always clear.
[0019] さらにまた、窒化物蛍光体は、ユーロピウムで賦活された窒化物蛍光体であって、 以下の一般式で示され、残光を調整するためにさらにイットリウム、 3価の元素及び 4 価の元素力 選ばれる少なくとも 1種の元素が含有されて 、る。 [0020] M Al Si N : Eu Furthermore, the nitride phosphor is a nitride phosphor activated with europium, which is represented by the following general formula, and further adjusts afterglow, yttrium, trivalent element and tetravalent for adjusting afterglow. Contains at least one element selected. [0020] M Al Si N: Eu
w x y ((2/3)w+x+(4/3)y) wxy ((2/3) w + x + (4/3) y)
Mは Mg、 Ca、 Sr、 Baの群から選ばれる少なくとも 1種  M is at least one selected from the group consisting of Mg, Ca, Sr and Ba
0. 04≤w≤9, x= l、 0. 056≤y≤18  0. 04≤w≤9, x = l, 0. 056≤y≤18
[0021] このように希土類元素、 3価の元素、 4価の元素力 選ばれる添加元素を含有する ことで、可視光で励起される蛍光体の残光特性を調整することができる。 [0021] By containing the rare earth element, the trivalent element, and the additive element selected from the tetravalent element force in this way, the afterglow characteristics of the phosphor excited by visible light can be adjusted.
[0022] 3価の元素は Ga、 Inの!、ずれか 1種、前記 4価の元素は Ge、 Zr、 Hfの群から選ば れる少なくとも 1種とすることもできる。これにより前記希土類元素を添加して 、な 、場 合に比べて長残光にすることができる。 [0022] The trivalent element may be Ga, In !, or one of them, and the tetravalent element may be at least one selected from the group of Ge, Zr, and Hf. Thus, after the rare earth element is added, a long afterglow can be obtained compared to the case.
[0023] 本発明に係る窒化物蛍光体は、ユーロピウムで賦活された窒化物蛍光体であって[0023] The nitride phosphor according to the present invention is a nitride phosphor activated with europium.
、以下の一般式で示され、 w、 x、 y、 zを以下の範囲とし、残光を調整するためにさら にイットリウム、 3価の元素及び 4価の元素力 選ばれる少なくとも 1種の元素が含有さ れている。 And at least one element selected from yttrium, trivalent element, and tetravalent elemental power to adjust afterglow, with w, x, y, z in the following ranges: Is contained.
[0024] M Al Si B N : Eu  [0024] M Al Si B N: Eu
w X y z ((2/3)w+x+(4/3)y+z) w X yz ((2/3) w + x + (4/3) y + z)
Mは Mg、 Ca、 Sr、 Baの群から選ばれる少なくとも 1種  M is at least one selected from the group consisting of Mg, Ca, Sr and Ba
0. 04≤w≤9, x= l、 0. 056≤y≤18, 0. 001≤z≤0. 5  0. 04≤w≤9, x = l, 0. 056≤y≤18, 0. 001≤z≤0. 5
[0025] このように希土類元素、 3価の元素、 4価の元素力 選ばれる添加元素を含有する ことで、可視光で励起される蛍光体の残光特性を調整することができる。 [0025] By containing the rare earth element, the trivalent element, and the additive element selected from the tetravalent element force as described above, the afterglow characteristics of the phosphor excited by visible light can be adjusted.
[0026] 4価の元素は Ge、 Zrのいずれ力 1種とすることもできる。これにより前記希土類元素 を添加して ヽな 、場合に比べて短残光にすることができる。 [0026] The tetravalent element can be either Ge or Zr. As a result, when the rare earth element is added, the afterglow can be shortened compared to the case.
[0027] 3価の元素は Ga、 Inの!、ずれか 1種、前記 4価の元素は Hfとすることもできる。これ により前記希土類元素を添加して 、な 、場合に比べて長残光にすることができる [0028] 前記窒化物蛍光体は、 Fe、 Ni、 Cr、 Ti、 Nb、 Yb、 Smの元素は、 Mのモル濃度 1 に対してモル比で 0. 01以下若しくは含まれていない。これらの元素は短残光にする などの効果を有するものもあるが、 0. 01より多く含有されると発光輝度の大幅な低下 を生じるためである。 [0027] The trivalent element may be Ga, In !, or one of them, and the tetravalent element may be Hf. Thus, the rare earth element can be added to provide a long afterglow compared to the case. [0028] The nitride phosphor is composed of Fe, Ni, Cr, Ti, Nb, Yb, and Sm. , Not more than 0.01 or not in molar ratio to molar concentration 1 of M. Some of these elements have an effect such as a short afterglow, but if they are contained in an amount of more than 0.01, the emission luminance is greatly reduced.
[0029] 前記窒化物蛍光体は、組成中に Oを含有するものであってもよい。 [0029] The nitride phosphor may contain O in the composition.
[0030] さらにまた本発明に係る発光装置は、近紫外線乃至青色光を発する第 1の発光ス ベクトルを有する励起光源と、第 1の発光スペクトルの少なくとも一部を吸収して、第 2 の発光スペクトルを発光する 1種または 2種以上の蛍光体とを有する発光装置であつ て、上記の窒化物蛍光体を有する。 [0030] Furthermore, the light-emitting device according to the present invention absorbs at least a part of the first emission spectrum by using an excitation light source having a first emission vector that emits near-ultraviolet or blue light, and a second emission spectrum. A light-emitting device having one or two or more phosphors that emit the above emission spectrum, and having the nitride phosphor described above.
発明の効果  The invention's effect
[0031] 本発明の窒化物蛍光体及びそれを用いた発光装置は、含有する A1によってピーク 波長を長波長にシフトできるので、高価な希土類元素であるユーロピウムの賦活量を 少なくしても、より深い赤色に発光できる。さらに、一般に赤色の成分を増やすと発光 特性が低下する傾向にあるが、窒化物蛍光体に所定の希土類元素や 3価の元素、 4 価の元素を添加することで、発光輝度の低下を抑制し、高い輝度を維持できる。  [0031] The nitride phosphor of the present invention and the light-emitting device using the same can shift the peak wavelength to a long wavelength by containing A1, so that even if the activation amount of europium, which is an expensive rare earth element, is reduced, it can be further increased. Can emit deep red light. In general, the emission characteristics tend to decrease when the red component is increased, but the addition of certain rare earth elements, trivalent elements, and tetravalent elements to the nitride phosphor suppresses the decrease in emission luminance. And high brightness can be maintained.
[0032] また、本発明の窒化物蛍光体及びそれを用いた発光装置によれば、添加元素を選 択することで可視光で励起される蛍光体の残光特性を調整でき、用途に応じた残光 時間を備える窒化物蛍光体及びそれを用いた発光装置とできる。  [0032] Further, according to the nitride phosphor of the present invention and the light emitting device using the same, the afterglow characteristic of the phosphor excited by visible light can be adjusted by selecting an additive element, and the nitride phosphor can be used depending on the application. Further, a nitride phosphor having an afterglow time and a light emitting device using the same can be obtained.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0033] 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施 の形態は、本発明の技術思想を具体ィ匕するための窒化物蛍光体及びそれを用いた 発光装置を例示するものであって、本発明は窒化物蛍光体及びそれを用いた発光 装置を以下のものに特定しない。また、本明細書は特許請求の範囲に示される部材 を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載され ている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がな い限りは、本発明の範囲をそれのみに限定する趣旨ではなぐ単なる説明例にすぎ ない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇 張していることがある。さらに以下の説明において、同一の名称、符号については同 一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構 成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼 用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現するこ とちでさる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a nitride phosphor and a light emitting device using the nitride phosphor for realizing the technical idea of the present invention, and the present invention relates to the nitride phosphor and the same. The light emitting device using is not specified as follows. Further, the present specification by no means specifies the member shown in the claims as the member of the embodiment. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are merely descriptions that are not intended to limit the scope of the present invention unless otherwise specified. It is just an example. Note that the size and positional relationship of the members shown in each drawing may be exaggerated for clarity of explanation. Further, in the following description, the same name and reference sign indicate the same or the same members, and detailed description will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are configured by the same member and the plurality of elements are shared by one member, and conversely the function of one member is a plurality of functions. This is achieved by sharing the materials.
[0034] 図 1及び図 2は、本発明の蛍光体を使用する発光装置を示す。図 1の発光装置は、 第 1の発光スペクトルを有する発光素子と、第 1の発光スペクトルの少なくとも一部を 吸収して、波長変換して、第 2の発光スペクトルの光に発光する蛍光体とを有する。 (発光装置 1) 1 and 2 show a light emitting device using the phosphor of the present invention. The light-emitting device in FIG. 1 includes a light-emitting element having a first emission spectrum, a phosphor that absorbs at least part of the first emission spectrum, converts the wavelength, and emits light of the second emission spectrum. Have (Light Emitting Device 1)
[0035] 図 1の発光装置 1は、サファイア基板 1の上部に積層された半導体層 2と、半導体層 2に形成された正負の電極 3から延びる導電性ワイヤ 14で導電接続されたリードフレ ーム 13と、サファイア基板 1と半導体層 2とから構成される発光素子 10の外周を覆う ようにリードフレーム 13aのカップ内に設けられた蛍光体 11とコーティング部材 12と、 蛍光体 11及びリードフレーム 13の外周面を覆うモールド部材 15と、から構成されて いる。  The light emitting device 1 in FIG. 1 includes a lead frame conductively connected by a semiconductor layer 2 stacked on an upper part of a sapphire substrate 1 and a conductive wire 14 extending from positive and negative electrodes 3 formed on the semiconductor layer 2. 13, the phosphor 11 and the coating member 12 provided in the cup of the lead frame 13a so as to cover the outer periphery of the light emitting element 10 composed of the sapphire substrate 1 and the semiconductor layer 2, and the phosphor 11 and the lead frame 13 And a mold member 15 covering the outer peripheral surface of the mold member 15.
[0036] サファイア基板 1上に半導体層 2が形成され、半導体層 2の同一平面側に正負の電 極 3が形成されている。半導体層 2には、発光層(図示しない)が設けられており、こ の発光層から出力されるピーク波長は、紫外力も青色領域の 500nm以下近傍の発 光スペクトルを有する。  A semiconductor layer 2 is formed on the sapphire substrate 1, and positive and negative electrodes 3 are formed on the same plane side of the semiconductor layer 2. The semiconductor layer 2 is provided with a light emitting layer (not shown), and the peak wavelength output from this light emitting layer has a light emission spectrum in the vicinity of 500 nm or less in the blue region of the ultraviolet power.
[0037] この発光素子 10をダイボンダにセットし、カップが設けられたリードフレーム 13aに フェイスアップしてダイボンド (接着)する。なおフェイスアップとは、半導体層側を視 認側に配置し、発光された光を半導体層側から取り出すように発光素子を実装する ことを指す。この方式に限られず、発光素子の基板側を視認側に配置し、発光された 光を基板側から取り出すように実装するフェイスダウンある!ヽはフリップチップ実装も 可能である。ダイボンド後、リードフレーム 13をワイヤボンダに移送し、発光素子の負 電極 3をカップの設けられたリードフレーム 13aに金線でワイヤボンドし、正電極 3をも う一方のリードフレーム 13bにワイヤボンドする。なお、図 1の例では 2本のワイヤを使 用して正極、負極との電気接続を得ている力 この構成に限られず、例えばワイヤを 一本のみボンディングして一方の電極の電気接触を得、発光素子と基板との接触面 で他方の電気接触を得ることもできる。  [0037] The light-emitting element 10 is set on a die bonder, face-up to a lead frame 13a provided with a cup, and die-bonded (adhered). Note that “face-up” refers to mounting the light-emitting element so that the semiconductor layer side is disposed on the viewer side and the emitted light is extracted from the semiconductor layer side. Without being limited to this method, there is a face-down mounting in which the substrate side of the light emitting element is arranged on the viewer side and the emitted light is taken out from the substrate side, and flip chip mounting is also possible. After die bonding, the lead frame 13 is transferred to a wire bonder, the negative electrode 3 of the light emitting element is wire-bonded to the lead frame 13a provided with the cup with a gold wire, and the positive electrode 3 is wire-bonded to the other lead frame 13b. . In the example of FIG. 1, the force that uses two wires to obtain electrical connection with the positive and negative electrodes is not limited to this configuration. For example, only one wire is bonded to make electrical contact with one electrode. In other words, the other electrical contact can be obtained at the contact surface between the light emitting element and the substrate.
[0038] 次に、モールド装置に移送し、モールド装置のディスペンサーでリードフレーム 13 のカップ内に蛍光体 11及びコーティング部材 12を注入する。蛍光体 11とコーティン グ部材 12とは、予め所望の割合に均一に混合しておく。  Next, the phosphor 11 and the coating member 12 are injected into the cup of the lead frame 13 using a dispenser of the molding apparatus. The phosphor 11 and the coating member 12 are uniformly mixed in advance at a desired ratio.
[0039] 蛍光体 11注入後、予めモールド部材 15が注入されたモールド型枠の中にリードフ レーム 13を浸漬した後、型枠をはずして榭脂を硬化させ、図 1に示すような砲弾型の 発光装置 1とする。 [0040] 例えば、蛍光体は YAG系蛍光体と窒化物蛍光体である。蛍光体は、発光素子から 発光された近紫外から青色領域の光の一部を吸収して黄から赤色領域の光を発光 する。この蛍光体 11を上記の構成を有する発光装置に使用して、発光素子 10により 発光された青色光と、蛍光体の黄色光乃至赤色光とが混色により暖色系の白色に発 光する発光装置を提供する。発光装置は、 JIS規格に沿うように、電球色に発光する 発光装置とすることができる。 [0039] After the phosphor 11 is injected, the lead frame 13 is immersed in a mold mold in which the mold member 15 has been injected in advance, and then the mold is removed to cure the grease, and a bullet-shaped mold as shown in FIG. Light-emitting device 1 [0040] For example, the phosphor is a YAG phosphor and a nitride phosphor. The phosphor absorbs part of the light in the near ultraviolet to blue region emitted from the light emitting element and emits light in the yellow to red region. Using this phosphor 11 in a light emitting device having the above-described configuration, a light emitting device that emits a warm white light by mixing the blue light emitted from the light emitting element 10 and the yellow light to red light of the phosphor I will provide a. The light-emitting device can be a light-emitting device that emits light of a light bulb color so as to comply with the JIS standard.
[0041] 電球色とは、 JIS規格 (JIS Z8110)による白色系で黒体輻射の軌跡上の 2700〜2 800Kの点を中心とする範囲であって、黄色から赤色の色味を有して!/、る色味を!、う 。具体的には、色度座量における、(うすい)黄赤、(オレンジ)ピンク、ピンク、(うすい )ピンク、(黄みの)白の領域に発光色を有するものをいう。  [0041] The light bulb color is a white range according to the JIS standard (JIS Z8110), centering on a point of 2700-2800K on the locus of black body radiation, and having a yellow to red color. ! /, The color! Specifically, it has a luminescent color in the (light) yellow-red, (orange) pink, pink, (light) pink, and (yellowish) white areas in the chromaticity locus.
(発光装置 2)  (Light Emitting Device 2)
[0042] 図 2の発光装置 1は、表面実装型の発光装置を形成する。発光素子 101は、紫外 光励起の窒化物半導体発光素子を用いることができる。また、発光素子 101は、青 色光励起の窒化物半導体発光素子も用いることもできる。ここでは、紫外光励起の発 光素子 101を例にとって、説明する。発光素子 101である LEDチップは、発光層とし てピーク波長が約 370nmの InGaN半導体を有する窒化物半導体発光素子を用い る。より具体的な LEDの素子構造としてサファイア基板上に、アンドープの窒化物半 導体である n型 GaN層、 Siドープの n型電極が形成され n型コンタクト層となる GaN層 、アンドープの窒化物半導体である n型 GaN層、窒化物半導体である n型 AlGaN層 、次に発光層を構成する InGaN層の単一量子井戸構造としてある。発光層上には Mgがドープされた p型クラッド層として AlGaN層、 Mgがドープされた p型コンタクト層 である GaN層を順次積層させた構成としてある(なお、サファイア基板上には低温で GaN層を形成させバッファ層とさせてある。また、 p型半導体は、成膜後 400°C以上 でァニールさせてある。)。エッチングによりサファイア基板上の窒化物半導体に同一 面側で、 pn各コンタクト層表面を露出させる。露出された n型コンタクト層の上に n電 極を帯状に形成し、切除されずに残った p型コンタクト層のほぼ全面に、金属薄膜か ら成る透光性 P電極が形成され、さらに透光性 p電極の上には n電極と平行に台座電 極がスパッタリング法を用いて形成されて 、る。 [0043] 次に、中央部に凹部有し且つ凹部の両側にコバール製のリード電極 102が気密絶 縁的に挿入固定されたベース部と力もなるコバール製パッケージ 105を用いる。パッ ケージ 105及びリード電極 102の表面には NiZAg層が設けられている。パッケージ 105の凹部内に、 Ag— Sn合金にて上述の発光素子である LEDチップをダイボンド する。このように構成することにより、発光装置の構成部材を全て無機物とすることが でき、発光素子 101から放出される発光が紫外領域或いは可視光の短波長領域で あつたとしても飛躍的に信頼性の高い発光装置が得られる。 The light emitting device 1 in FIG. 2 forms a surface mount type light emitting device. As the light-emitting element 101, an ultraviolet light-excited nitride semiconductor light-emitting element can be used. The light-emitting element 101 can also be a blue-light-excited nitride semiconductor light-emitting element. Here, the light-emitting element 101 excited by ultraviolet light will be described as an example. The LED chip that is the light emitting element 101 uses a nitride semiconductor light emitting element having an InGaN semiconductor having a peak wavelength of about 370 nm as a light emitting layer. As a more specific LED device structure, an n-type GaN layer that is an undoped nitride semiconductor on a sapphire substrate, a GaN layer that forms an n-type contact layer when an Si-doped n-type electrode is formed, an undoped nitride semiconductor The n-type GaN layer, the n-type AlGaN layer that is a nitride semiconductor, and the InGaN layer that constitutes the light-emitting layer are formed as a single quantum well structure. The light-emitting layer has a structure in which an AlGaN layer as a p-type cladding layer doped with Mg and a GaN layer as a p-type contact layer doped with Mg are stacked in sequence. (The p-type semiconductor is annealed at 400 ° C or higher after the film formation.) Etching exposes the surface of each pn contact layer on the same side of the nitride semiconductor on the sapphire substrate. An n-electrode is formed in a strip shape on the exposed n-type contact layer, and a light-transmitting P-electrode made of a metal thin film is formed on almost the entire surface of the p-type contact layer that remains without being excised. A pedestal electrode is formed on the optical p-electrode in parallel with the n-electrode by sputtering. Next, a Kovar package 105 that has a recess in the central portion and a base portion in which Kovar lead electrodes 102 are inserted and fixed in an airtight manner on both sides of the recess is used. NiZAg layers are provided on the surfaces of the package 105 and the lead electrode 102. In the recess of the package 105, an LED chip which is the above-described light emitting element is die-bonded with an Ag—Sn alloy. With this configuration, all the components of the light-emitting device can be made of an inorganic material, and even if the light emitted from the light-emitting element 101 is in the ultraviolet region or the short wavelength region of visible light, the reliability is dramatically improved. A light emitting device with high brightness can be obtained.
[0044] 次に、ダイボンドされた発光素子 101の各電極と、パッケージ凹部底面力も露出さ れた各リード電極 102とをそれぞれ Agワイヤ 104にて電気的導通を取る。パッケージ の凹部内の水分を十分に排除した後、中央部にガラス窓部 107を有するコバール製 リツド 106にて封止しシーム溶接を行う。ガラス窓部には、あら力じめ-トロセルロース 90wt%と γ—アルミナ 10wt%力もなるスラリーに対して蛍光体 108を含有させ、リツ ド 106の透光性窓部 107の背面に塗布し、 220°Cにて 30分間加熱硬化させることに より色変換部材を構成してある。こうして形成された発光装置を発光させると白色が 高輝度に発光可能な発光ダイオードとすることができる。これによつて色度調整が極 めて簡単で量産性、信頼性に優れた発光装置とすることできる。以下、本発明の各 構成について詳述する。  Next, the respective electrodes of the light-emitting element 101 that are die-bonded and the respective lead electrodes 102 that are also exposed to the package bottom surface force are electrically connected by Ag wires 104. After sufficiently removing moisture in the recesses of the package, sealing is performed with a Kovar lid 106 having a glass window 107 at the center, and seam welding is performed. In the glass window part, phosphor 108 is contained in a slurry having a force of 90% by weight of trocellulose and 10% by weight of γ-alumina, and is applied to the rear surface of the transparent window part 107 of the lid 106. The color conversion member is constructed by heating and curing at 220 ° C for 30 minutes. When the light emitting device formed in this manner emits light, a light emitting diode capable of emitting white light with high luminance can be obtained. As a result, it is possible to obtain a light emitting device with extremely simple chromaticity adjustment and excellent mass productivity and reliability. Hereinafter, each configuration of the present invention will be described in detail.
[0045] 以下、本発明に係る蛍光体と、この蛍光体を使用する発光装置について詳述する  [0045] Hereinafter, the phosphor according to the present invention and a light-emitting device using the phosphor will be described in detail.
(蛍光体) (Phosphor)
[0046] 本実施の形態に係る一の蛍光体は Euにより賦活され、第 II族元素 Mと、 Siと、 A1と 、 Nとを含む窒化物蛍光体で、紫外線乃至青色光を吸収して黄赤色から赤色の範囲 に発光する。この窒化物蛍光体は、一般式が M Al Si N : Euで示され、さ  [0046] One phosphor according to the present embodiment is activated by Eu, and is a nitride phosphor containing Group II elements M, Si, A1, and N, and absorbs ultraviolet light or blue light. Lights from yellow red to red. This nitride phosphor has the general formula M Al Si N: Eu,
w X y ((2/3)w+x+(4/3)y) w X y ((2/3) w + x + (4/3) y)
らに添加元素として希土類元素及び 4価の元素、 3価の元素カゝら選ばれる少なくとも 1種の元素を含む。 Mは Mg、 Ca、 Sr、 Baの群から選ばれる少なくとも 1種である。  In addition, it contains at least one element selected from rare earth elements, tetravalent elements, and trivalent elements as additive elements. M is at least one selected from the group consisting of Mg, Ca, Sr and Ba.
[0047] 上記一般式【こお ヽて、 w、 x、 yの範囲 ίま好ましく ίま 0. 04≤w≤9, x= l、 0. 056 ≤y≤18とする。また w、 x、 yの範囲は 0. 04≤w≤3、 x= l、 0. 143≤y≤8. 7とし てもよく、より好ましくは 0. 05≤w≤3、x= l、0. 167≤y≤8. 7としても良!/、。 [0048] また窒化物蛍光体は、ホウ素 Bを追加した一般式 M Al Si B N : Euと w X y z ((2/3)w+x+(4/3)y+z) することもできる。上記においても、 Mは Mg、 Ca、 Sr、 Baの群から選ばれる少なくと も 1種であり、 0. 04≤w≤9、 x= l、 0. 056≤y≤18, 0. 0005≤z≤0. 5である。ホ ゥ素を添加する場合、そのモル濃度 zは、上述の通り 0. 5以下とし、好ましくは 0. 3以 下、さらに 0. 0005よりも大きく設定される。さらに好ましくは、ホウ素のモル濃度は、 0 . 001以上であって、 0. 2以下に設定される。 [0047] In the above general formula, the range of w, x, y is preferably ί, preferably 0.04≤w≤9, x = l, 0.056 ≤y≤18. The range of w, x, y may be 0.04≤w≤3, x = l, 0.143≤y≤8.7, more preferably 0.05≤w≤3, x = l, 0. 167≤y≤8. In addition, the nitride phosphor can be represented by the general formula M Al Si BN: Eu and w X yz ((2/3) w + x + (4/3) y + z) to which boron B is added. In the above, M is at least one selected from the group of Mg, Ca, Sr, and Ba, and 0.0.04≤w≤9, x = l, 0.056≤y≤18, 0.0005≤ z≤0.5. When fluorine is added, the molar concentration z is set to 0.5 or less as described above, preferably 0.3 or less, and further set to more than 0.0005. More preferably, the molar concentration of boron is set to 0.001 or more and 0.2 or less.
[0049] またこれらの窒化物蛍光体は、さらに La、 Ce、 Pr、 Gd、 Tb、 Dy、 Ho、 Er、 Luの群 力 選ばれる少なくとも 1種、または Sc、 Y、 Ga、 Inのいずれ力 1種、または Ge、 Zrの いずれ力 1種、が含有されている。これらを含有することにより Gd、 Nd、 Tmよりも同 等以上の輝度、量子効率またはピーク強度を出力することができる。  [0049] In addition, these nitride phosphors further include at least one selected from the group force of La, Ce, Pr, Gd, Tb, Dy, Ho, Er, and Lu, or any force of Sc, Y, Ga, and In. Contains 1 type, or 1 type of Ge or Zr. By containing these, it is possible to output luminance, quantum efficiency or peak intensity equal to or higher than those of Gd, Nd, and Tm.
[0050] 本発明の実施の形態に係る窒化物蛍光体は、湿式、乾式で、各種蛍光体原料を 混合して製造される。蛍光体原料として、 Ca N、 Si N、 A1N、 BN、 H BOなどの原  [0050] The nitride phosphor according to the embodiment of the present invention is manufactured by mixing various phosphor raw materials in a wet type and a dry type. Raw materials such as CaN, SiN, A1N, BN, and HBO as phosphor materials
3 2 3 4 3 3 料組成が使用される。  3 2 3 4 3 3 Material composition is used.
[0051] 蛍光体のホウ素原料として、ボロン、ホウ化物、窒化ホウ素、酸化ホウ素、ホウ酸塩 等が使用できる。具体的には、蛍光体原料に添加するホウ素として、 B、 BN、 H BO  [0051] Boron, boride, boron nitride, boron oxide, borate and the like can be used as the boron raw material of the phosphor. Specifically, boron, B, BN, H BO added to the phosphor material
3 3 3 3
、 B O、 BCし SiB、 CaBなどが挙げられる。これらのホウ素化合物は、原料に所定, B 2 O, BC, SiB, CaB and the like. These boron compounds are used as raw materials.
2 3 3 6 6 2 3 3 6 6
量を秤量して、添加する。  Weigh the amount and add.
[0052] 蛍光体組成の Caは、好ましくは単独で使用する。ただ、 Caの一部を、 Sr、 Mg、 Ba 、 Srと Baなどで置換することもできる。 Caの一部を Srで置換して、窒化物蛍光体の 発光波長のピークを調整することができる。  [0052] Ca in the phosphor composition is preferably used alone. However, a part of Ca can be substituted with Sr, Mg, Ba, Sr and Ba, etc. By substituting part of Ca with Sr, the emission wavelength peak of the nitride phosphor can be adjusted.
[0053] Siも好ましくは単独で使用されるが、その一部を第 IV族元素の Cで置換することも できる。ただ、 Siのみを使用して、安価で結晶性の良好な窒化物蛍光体となる。  [0053] Si is also preferably used alone, but a part of it can be substituted with C of Group IV element. However, using only Si, the nitride phosphor is inexpensive and has good crystallinity.
[0054] 窒化物蛍光体は、さらに La、 Ce、 Pr、 Gd、 Tb、 Dy、 Ho、 Er、 Luの群から選ばれ る少なくとも 1種、または Sc、 Y、 Ga、 Inのいずれ力 1種、または Ge、 Zrのいずれか 1 種、を含有する。定かではないが、賦活剤 Euの一部を La、 Ce、 Pr、 Gd、 Tb、 Dy、 H o、 Er、 Luらが置換して共賦活して作用しているものもあると考えられる。また、定か ではないが、 Sc、 Y、 Ge、 Zrが Alや Siの一部を置換しているものもあると考えられる 。これらの元素は粒径を大きくしたり、色調を調整したり、発光ピーク強度を高めたり するなどの作用を有している。 [0054] The nitride phosphor is further at least one selected from the group consisting of La, Ce, Pr, Gd, Tb, Dy, Ho, Er, and Lu, or any one of Sc, Y, Ga, and In Or any one of Ge and Zr. Although it is not certain, some of the activator Eu may be replaced by La, Ce, Pr, Gd, Tb, Dy, Ho, Er, Lu, etc. In addition, although not certain, Sc, Y, Ge, and Zr may be substituted for some of Al and Si. These elements increase the particle size, adjust the color tone, increase the emission peak intensity, It has an effect such as.
[0055] 賦活剤の Euは、好ましくは単独で使用される力 上述のように Euの一部が置換さ れて ヽることち考免られる。 [0055] Eu as an activator is preferably used alone. As described above, a part of Eu can be replaced as described above.
Euを必須とする混合物を使用する場合、所望により配合比を変えることができる。ュ 一口ピウムは、主に 2価と 3価のエネルギー準位を持つ力 本発明の実施の形態に係 る窒化物蛍光体は、母体の Caに対して、 Eu2+を賦活剤として用いる。 Eu2+は、酸ィ匕さ れやすぐ 3価の Eu Oの糸且成で市販されている。しカゝし、市販の Eu Oでは、 Oの関 When using the mixture which makes Eu essential, a compounding ratio can be changed as desired. Nitto-pium has mainly divalent and trivalent energy levels. The nitride phosphor according to the embodiment of the present invention uses Eu 2+ as an activator for the base Ca. Eu 2+ is commercially available as a trivalent Eu O yarn after being acidified. In the case of commercially available Eu O,
2 3 2 3  2 3 2 3
与が大きぐ良好な蛍光体が得られにくい。そのため、 Eu O力も Oを、系外へ除去し  It is difficult to obtain a good phosphor with a large amount. Therefore, Eu O force can also remove O out of the system.
2 3  twenty three
たものを使用することが好ましい。たとえば、ユーロピウム単体、窒化ユーロピウムを 用いることが好ましい。  It is preferable to use the same. For example, it is preferable to use europium alone or europium nitride.
[0056] 窒化物蛍光体は、さらに、 Cu、 Ag、 Au力もなる第 I族元素、 Al、 Ga、 In力もなる第 I II族元素、 Ti、 Zr、 Hf、 Sn、 Pbからなる第 IV族元素、 P、 Sb、 Biからなる第 V族元素 、 Sからなる第 VI族元素力も選ばれる少なくとも 1種以上の元素を含むこともできる。こ れらの元素を添加することにより、発光効率の調整を行うことができる。  [0056] The nitride phosphor further includes a group I element including Cu, Ag, and Au forces, a group II element including Al, Ga, and In forces, and a group IV including Ti, Zr, Hf, Sn, and Pb. It can also contain at least one element selected from Group V element consisting of element, P, Sb, Bi, and Group VI element force consisting of S. Luminous efficiency can be adjusted by adding these elements.
[0057] 上述の窒化物蛍光体に、さらに加える元素は、通常、酸化物、若しくは酸化水酸化 物でカ卩えられる力 これに限定されるものではなぐメタル、窒化物、イミド、アミド、若 しくはその他の無機塩類でも良ぐまた、予め他の原料に含まれている状態でも良い  [0057] The element added to the above-described nitride phosphor is usually a force that can be generated by an oxide or an oxyhydroxide, but is not limited to this metal, nitride, imide, amide, Alternatively, other inorganic salts may be used. Alternatively, it may be contained in other raw materials in advance.
[0058] 窒化物蛍光体の組成中には、酸素が含有されている。酸素は、原料となる各種酸 化物から導入されるか、焼成中に酸素が混入してくることが考えられる。この酸素は、 Eu拡散、粒成長、結晶性向上の効果を促進すると考えられる。すなわち、原料に使 用される一の化合物をメタル、窒化物、酸ィ匕物と変えても同様の効果が得られるが、 むしろ酸ィ匕物を用いた場合の効果が大き 、場合もある。 [0058] The composition of the nitride phosphor contains oxygen. It is conceivable that oxygen is introduced from various oxides as raw materials or oxygen is mixed during firing. This oxygen is thought to promote the effects of Eu diffusion, grain growth, and crystallinity improvement. In other words, the same effect can be obtained even if one compound used as a raw material is replaced with metal, nitride, or oxide, but the effect when using an oxide is rather large. .
[0059] また、他の蛍光体は Euにより賦活され、第 II族元素 Mと、 Siと、 A1と、 Nとを含む窒 化物蛍光体で、紫外線乃至青色光を吸収して赤色に発光する。この窒化物蛍光体 は、一般式が M Al Si N : Euで示され、さらに添加元素として希土類元素  [0059] Another phosphor is activated by Eu, and is a nitride phosphor containing a group II element M, Si, A1, and N, and absorbs ultraviolet light or blue light and emits red light. . This nitride phosphor has a general formula of M Al Si N: Eu, and a rare earth element as an additive element
w X y ((2/3)w+x+(4/3)y)  w X y ((2/3) w + x + (4/3) y)
、 4価の元素、 3価の元素の少なくとも 1種の元素を含む。 Mは Mg、 Ca、 Sr、 Baの群 力 選ばれる少なくとも 1種である。 [0060] 上記一般式【こお ヽて、 w、 x、 yの範囲 ίま好ましく ίま 0. 04≤w≤9, x= l、 0. 056 ≤y≤18とする。また w、 x、 yの範囲は 0. 04≤w≤3、 x= l、 0. 143≤y≤8. 7とし てもよく、より好ましくは 0. 05≤w≤3、x= l、0. 167≤y≤8. 7としても良!/、。 , Containing at least one element of tetravalent elements and trivalent elements. M is at least one selected from the group forces of Mg, Ca, Sr, and Ba. [0060] In the above general formula, the range of w, x, y is preferably ί, preferably 0.04≤w≤9, x = l, 0.056 ≤y≤18. The range of w, x, y may be 0.04≤w≤3, x = l, 0.143≤y≤8.7, more preferably 0.05≤w≤3, x = l, 0. 167≤y≤8.
[0061] この窒化物蛍光体は、希土類元素 Ce、 Pr、 Nd、 Sm、 Tb、 Dy、 Tm、 Ybの群から 選ばれる少なくとも 1種を含有することもできる。これにより希土類元素を添加していな V、場合に比べて短残光にすることができる。  [0061] The nitride phosphor may also contain at least one selected from the group consisting of rare earth elements Ce, Pr, Nd, Sm, Tb, Dy, Tm, and Yb. This makes it possible to have a short afterglow compared to V, which does not contain rare earth elements.
[0062] 一方、この窒化物蛍光体は、希土類元素 La、 Gd、 Ho、 Er、 Luの群から選ばれる 少なくとも 1種、 3価の元素 Sc、 Yのいずれ力 1種、 4価の元素 Ge、 Zr、 Hfの群から選 ばれる少なくとも 1種とすることもできる。これにより希土類元素を添加して 、な 、場合 に比べて長残光にすることができる。  [0062] On the other hand, this nitride phosphor is at least one selected from the group of rare earth elements La, Gd, Ho, Er, Lu, one of trivalent elements Sc and Y, one of tetravalent elements, and tetravalent element Ge Or at least one selected from the group consisting of Zr and Hf. As a result, a long afterglow can be achieved compared with the case where rare earth elements are added.
[0063] ただし、 Ce等の短残光にできる元素と La等の長残光にできる元素とを含有すること により所定の残光に調整することもできる。  [0063] However, it can be adjusted to a predetermined afterglow by containing an element capable of having a short afterglow such as Ce and an element capable of having a long afterglow such as La.
[0064] また窒化物蛍光体は、ホウ素 Bを追加した一般式 M Al Si B N : Euと w X y z ((2/3)w+x+(4/3)y+z) することもできる。上記においても、 Mは Mg、 Ca、 Sr、 Baの群から選ばれる少なくと も 1種であり、 0. 04≤w≤9、 x= l、 0. 056≤y≤18, 0. 0005≤z≤0. 5である。ホ ゥ素を添加する場合、そのモル濃度 zは、上述の通り 0. 5以下とし、好ましくは 0. 3以 下、さらに 0. 0005よりも大きく設定される。さらに好ましくは、ホウ素のモル濃度は、 0 . 001以上であって、 0. 2以下に設定される。  [0064] Further, the nitride phosphor may be represented by the general formula M Al Si B N added with boron B: Eu and w X yz ((2/3) w + x + (4/3) y + z). In the above, M is at least one selected from the group of Mg, Ca, Sr, and Ba, and 0.0.04≤w≤9, x = l, 0.056≤y≤18, 0.0005≤ z≤0.5. When fluorine is added, the molar concentration z is set to 0.5 or less as described above, preferably 0.3 or less, and further set to more than 0.0005. More preferably, the molar concentration of boron is set to 0.001 or more and 0.2 or less.
[0065] この窒化物蛍光体は、希土類元素 Ce、 Pr、 Nd、 Sm、 Gd、 Tb、 Dy、 Tm、 Ybの群 力 選ばれる少なくとも 1種、 4価の元素は Ge、 Zrのいずれ力 1種を含有することもで きる。これにより希土類元素を添加して 、な 、場合に比べて短残光にすることができ る。 [0065] This nitride phosphor is composed of rare earth elements Ce, Pr, Nd, Sm, Gd, Tb, Dy, Tm, and Yb. It can also contain seeds. As a result, the afterglow can be reduced compared with the case where rare earth elements are added.
[0066] 一方、この窒化物蛍光体は、希土類元素 Sc、 Y、 La、 Ho、 Er、 Luの群から選ばれ る少なくとも 1種、 3価の元素 Ga、 Inのいずれ力 1種、 4価の元素 Hfを含有することも できる。これにより希土類元素を添加して 、な 、場合に比べて長残光にすることがで きる。  [0066] On the other hand, this nitride phosphor is at least one selected from the group of rare earth elements Sc, Y, La, Ho, Er, Lu, trivalent element Ga, In any one type, tetravalent The element Hf can also be contained. As a result, a long afterglow can be achieved compared with the case where rare earth elements are added.
[0067] ただし、 Ce等の短残光にできる元素と La等の長残光にできる元素とを含有すること により所定の残光に調整することもできる。 [0068] 本発明の実施の形態に係る窒化物蛍光体は、湿式、乾式で、各種蛍光体原料を 混合して製造される。蛍光体原料として、 Ca N、 Si N、 A1N、 BN、 H BOなどの原 [0067] However, it can be adjusted to a predetermined afterglow by containing an element capable of producing a short afterglow such as Ce and an element capable of producing a long afterglow such as La. [0068] The nitride phosphor according to the embodiment of the present invention is manufactured by mixing various phosphor raw materials in a wet type and a dry type. Raw materials such as CaN, SiN, A1N, BN, and HBO as phosphor materials
3 2 3 4 3 3 料組成が使用される。  3 2 3 4 3 3 Material composition is used.
[0069] 蛍光体のホウ素原料として、ボロン、ホウ化物、窒化ホウ素、酸化ホウ素、ホウ酸塩 等が使用できる。具体的には、蛍光体原料に添加するホウ素として、 B、 BN、 H BO  [0069] Boron, boride, boron nitride, boron oxide, borate and the like can be used as the boron raw material of the phosphor. Specifically, boron, B, BN, H BO added to the phosphor material
3 3 3 3
、 B O、 BCし SiB、 CaBなどが挙げられる。これらのホウ素化合物は、原料に所定, B 2 O, BC, SiB, CaB and the like. These boron compounds are used as raw materials.
2 3 3 6 6 2 3 3 6 6
量を秤量して、添加する。  Weigh the amount and add.
[0070] 蛍光体組成の Caは、好ましくは単独で使用する。ただ、 Caの一部を、 Sr、 Mg、 Ba 、 Srと Baなどで置換することもできる。 Caの一部を Srで置換して、窒化物蛍光体の 発光波長のピークを調整することができる。  [0070] Ca in the phosphor composition is preferably used alone. However, a part of Ca can be substituted with Sr, Mg, Ba, Sr and Ba, etc. By substituting part of Ca with Sr, the emission wavelength peak of the nitride phosphor can be adjusted.
[0071] Siも好ましくは単独で使用されるが、その一部を第 IV族元素の Cで置換することも できる。ただ、 Siのみを使用して、安価で結晶性の良好な窒化物蛍光体となる。  [0071] Si is also preferably used alone, but a part thereof can be substituted with C of the group IV element. However, using only Si, the nitride phosphor is inexpensive and has good crystallinity.
[0072] 希土類元素 Ce、 Pr、 Nd、 Sm、 Tb、 Dy、 Tm、 Yb、 La、 Gd、 Ho、 Er、 Lu、 3価の 元素 Sc、 Y、 4価の元素 Ge、 Zr、 Hf、の少なくとも 1種を含有する。定かではないが、 賦活剤 Euの一部を希土類元素が置換して共賦活して作用しているものもあると考え られる。また、定かではないが、 3価の元素、 4価の元素が A1や Siの一部を置換して いるものもあると考えられる。これらの元素は粒径を大きくしたり、色調を調整したり、 発光ピーク強度を高めたりするなどの作用を有している。また残光時間も添加する元 素により制御することもできる。  [0072] Rare earth elements Ce, Pr, Nd, Sm, Tb, Dy, Tm, Yb, La, Gd, Ho, Er, Lu, trivalent element Sc, Y, tetravalent element Ge, Zr, Hf Contains at least one species. Although it is not certain, it is considered that some activators act by co-activating by replacing rare earth elements with a part of Eu. In addition, although it is not certain, some trivalent and tetravalent elements may be substituted for some of A1 and Si. These elements have actions such as increasing the particle size, adjusting the color tone, and increasing the emission peak intensity. The afterglow time can also be controlled by the element to be added.
[0073] 賦活剤の Euは、好ましくは単独で使用される力 上述のように Euの一部が置換さ れていることも考えられる。 Euを必須とする混合物を使用する場合、所望により配合 比を変えることができる。ユーロピウムは、主に 2価と 3価のエネルギー準位を持つが 、本発明の実施の形態に係る窒化物蛍光体は、母体の Caに対して、 Eu2+を賦活剤と して用いる。 Eu2+は、酸化されやすぐ 3価の Eu Oの組成で市販されている。しかし [0073] The activator Eu is preferably used alone. It is also conceivable that a part of Eu is substituted as described above. When using a mixture that requires Eu, the mixing ratio can be changed as desired. Europium mainly has bivalent and trivalent energy levels, but the nitride phosphor according to the embodiment of the present invention uses Eu 2+ as an activator for the base Ca. Eu 2+ is commercially available in the form of trivalent Eu O as soon as it is oxidized. However
2 3  twenty three
、市販の Eu Oでは、 Oの関与が大きぐ良好な蛍光体が得られにくい。そのため、 E  In the case of commercially available Eu 2 O, it is difficult to obtain a good phosphor in which O is greatly involved. Therefore, E
2 3  twenty three
u O力ら Oを、系外へ除去したものを使用することが好ましい。たとえば、ユーロピウ It is preferable to use a material from which O is removed out of the system. For example, Europiu
2 3 twenty three
ム単体、窒化ユーロピウムを用いることが好ましい。  It is preferable to use a simple substance or europium nitride.
[0074] 窒化物蛍光体は、さらに、 Cu、 Ag、 Au力もなる第 I族元素、 Al、 Ga、 In力もなる第 I II族元素、 Ti、 Zr、 Hf、 Sn、 Pbからなる第 IV族元素、 P、 Sb、 Biからなる第 V族元素 、 Sからなる第 VI族元素力も選ばれる少なくとも 1種以上の元素を含むこともできる。こ れらの元素を添加することにより、発光効率の調整を行うことができる。 [0074] Nitride phosphors are also Group I elements that have Cu, Ag, and Au forces, and Group I elements that also have Al, Ga, and In forces. Includes Group II elements, Group IV elements composed of Ti, Zr, Hf, Sn, and Pb, Group V elements composed of P, Sb, and Bi, and Group VI element forces composed of S. You can also. Luminous efficiency can be adjusted by adding these elements.
[0075] 上述の窒化物蛍光体に、さらに加える元素は、通常、酸化物、若しくは酸化水酸化 物でカ卩えられる力 これに限定されるものではなぐメタル、窒化物、イミド、アミド、若 しくはその他の無機塩類でも良ぐまた、予め他の原料に含まれている状態でも良い [0075] The element added to the above-described nitride phosphor is usually a force that can be generated by an oxide or an oxyhydroxide, but is not limited to this metal, nitride, imide, amide, Alternatively, other inorganic salts may be used. Alternatively, it may be contained in other raw materials in advance.
[0076] 窒化物蛍光体の組成中には、酸素が含有されている。酸素は、原料となる各種酸 化物から導入されるか、焼成中に酸素が混入してくることが考えられる。この酸素は、 Eu拡散、粒成長、結晶性向上の効果を促進すると考えられる。すなわち、原料に使 用される一の化合物をメタル、窒化物、酸ィ匕物と変えても同様の効果が得られるが、 むしろ酸ィ匕物を用いた場合の効果が大き 、場合もある。 [0076] Oxygen is contained in the composition of the nitride phosphor. It is conceivable that oxygen is introduced from various oxides as raw materials or oxygen is mixed during firing. This oxygen is thought to promote the effects of Eu diffusion, grain growth, and crystallinity improvement. In other words, the same effect can be obtained even if one compound used as a raw material is replaced with metal, nitride, or oxide, but the effect when using an oxide is rather large. .
[0077] ユーロピウムで賦活される窒化物蛍光体であって、以下の一般式で示され、 w、 x、 y、 zを以下の範囲とし、さらに La、 Ce、 Pr、 Gd、 Tb、 Dy、 Ho、 Er、 Luの群から選ば れる少なくとも 1種、または Sc、 Y、 Ga、 Inのいずれ力 1種、または Ge、 Zrのいずれか 1種、が含有されている。  [0077] A nitride phosphor activated by europium, represented by the following general formula, wherein w, x, y, z are in the following ranges, and La, Ce, Pr, Gd, Tb, Dy, It contains at least one selected from the group of Ho, Er, and Lu, or one of Sc, Y, Ga, and In, or one of Ge and Zr.
[0078] M Al Si N : Eu  [0078] M Al Si N: Eu
w X y ((2/3)w+x+(4/3)y) w X y ((2/3) w + x + (4/3) y)
Mは Mg、 Ca、 Sr、 Baの群から選ばれる少なくとも 1種、  M is at least one selected from the group consisting of Mg, Ca, Sr and Ba,
0. 04≤w≤9, x= l、 0. 056≤y< l力つ l <y≤18  0. 04≤w≤9, x = l, 0. 056≤y <l Powerful l <y≤18
または、 M AI Si B N : Eu  Or M AI Si B N: Eu
w x y z ((2/3)«H-x+(4/3)y+z) wxyz ((2/3) «H- x + (4/3) y + z)
Mは Mg、 Ca、 Sr、 Baの群から選ばれる少なくとも 1種、  M is at least one selected from the group consisting of Mg, Ca, Sr and Ba,
0. 04≤w≤9, x= l、 0. 056≤y< l力つ l <y≤18、 0. 001≤z≤0. 5  0. 04≤w≤9, x = l, 0. 056≤y <l Powerful l <y≤18, 0. 001≤z≤0.5
[0079] Alと Siとの比を変えることにより、色調をわずかに変えることができる。 [0079] By changing the ratio of Al to Si, the color tone can be slightly changed.
(蛍光体の製造方法)  (Phosphor production method)
[0080] 次に、図 3を用いて、 La、 Ce、 Pr、 Gd、 Tb、 Dy、 Ho、 Er、 Luの群から選ばれる少 なくとも 1種、または Sc、 Y、 Ga、 Inのいずれ力 1種、または Ge、 Zrのいずれ力 1種、 を含有する蛍光体、あるいは希土類元素、 3価の元素、 4価の元素から選ばれる少な くとも 1種の元素を含有する窒化物蛍光体である Ca Al Si B N : Euの製  [0080] Next, referring to FIG. 3, at least one selected from the group consisting of La, Ce, Pr, Gd, Tb, Dy, Ho, Er, and Lu, or any of Sc, Y, Ga, and In A phosphor containing at least one element selected from rare earth elements, trivalent elements, and tetravalent elements Ca Al Si BN: Made of Eu
w X y z ((2/3)w+x+(4/3)y+z) 造方法を説明するが、本製造方法に限定されない。たとえば、希土類元素、 3価の元 素、 4価の元素力も選ばれる少なくとも 1種の元素を含有する窒化物蛍光体 Ca Al Si N : Euもほぼ同様に製造することができる。 w X yz ((2/3) w + x + (4/3) y + z) Although a manufacturing method is demonstrated, it is not limited to this manufacturing method. For example, a nitride phosphor CaAlSiN: Eu containing at least one element selected from rare earth elements, trivalent elements, and tetravalent element forces can be produced in substantially the same manner.
y ((2/3)w+x+(4/3)y)  y ((2/3) w + x + (4/3) y)
[0081] まず原料の Caを粉砕する(Pl)。原料の Caは、単体を使用することが好ましいが、 イミドィ匕合物、アミド化合物などの化合物を使用することもできる。また原料 Caは、 Li 、 Na、 K、 Β、 Alなどを含有するものでもよい。原料は、精製したものが好ましい。これ により、精製工程を必要としないため、蛍光体の製造工程を簡略化でき、安価な窒化 物蛍光体を提供することができるからである。原料の Caは、アルゴン雰囲気中、グロ ーブボックス内で粉砕を行う。 Caの粉砕の目安としては、平均粒径が約 0.: L m以 上 15 m以下の範囲であることが、他の原料との反応性、焼成時及び焼成後の粒 径制御などの観点力 好ましいが、この範囲に限定されない。 Caの純度は、 2N以上 であることが好ましいが、これに限定されない。  [0081] First, the raw material Ca is pulverized (Pl). The raw material Ca is preferably a simple substance, but a compound such as an imido compound or an amide compound can also be used. Further, the raw material Ca may contain Li, Na, K, soot, Al and the like. The raw material is preferably purified. Thereby, since a purification process is not required, the manufacturing process of the phosphor can be simplified, and an inexpensive nitride phosphor can be provided. The raw material Ca is pulverized in a glove box in an argon atmosphere. As a guideline for Ca grinding, the average particle size should be in the range of about 0 .: L m or more and 15 m or less in terms of reactivity with other raw materials, particle size control during and after firing, etc. Although it is preferable, it is not limited to this range. The purity of Ca is preferably 2N or higher, but is not limited thereto.
[0082] 次に原料の Caを、窒素雰囲気中で窒化する(P2)。この反応式を、化 1に示す。  Next, the raw material Ca is nitrided in a nitrogen atmosphere (P2). This reaction formula is shown in Chemical Formula 1.
[0083] [化 1]  [0083] [Chemical 1]
3Ca + N2→ CasNi 3Ca + N2 → CasNi
[0084] さらに Caを、窒素雰囲気中、 600°C〜900°C、約 5時間、窒化して、 Caの窒化物を 得ることができる。 Caの窒化物は、高純度のものが好ましい。  Further, Ca can be nitrided in a nitrogen atmosphere at 600 ° C. to 900 ° C. for about 5 hours to obtain a Ca nitride. The Ca nitride is preferably of high purity.
[0085] さらに Caの窒化物を粉砕する(P3)。 Caの窒化物を、アルゴン雰囲気中、若しくは[0085] Further, the Ca nitride is pulverized (P3). Ca nitride in an argon atmosphere, or
、窒素雰囲気中、グローブボックス内で粉砕を行う。 Crush in a glove box in a nitrogen atmosphere.
[0086] 一方、原料の Siを粉砕する(P4)。原料の Siは、単体を使用することが好ま 、が、 窒化物化合物、イミドィ匕合物、アミドィ匕合物などを使用することもできる。例えば、 Si On the other hand, the raw material Si is pulverized (P4). The raw material Si is preferably a simple substance, but a nitride compound, an imido compound, an amido compound, or the like can also be used. For example, Si
3 Three
N、 Si (NH ) 、 Mg Siなどである。原料の Siの純度は、 3N以上のものが好ましいがN, Si (NH), Mg Si, and the like. The purity of the raw material Si is preferably 3N or higher
4 2 2 2 4 2 2 2
、 Li、 Na、 K、 B、 Al、 Cuなどの異なる元素が含有されていてもよい。 Siも、原料の Ca と同様に、アルゴン雰囲気中、若しくは、窒素雰囲気中、グローブボックス内で粉砕を 行う。 Si化合物の平均粒径は、約 0. 1 μ m以上 15 μ m以下の範囲であることが他の 原料との反応性、焼成時及び焼成後の粒径制御などの観点から好ま 、。  Different elements such as Li, Na, K, B, Al, Cu may be contained. Si is pulverized in a glove box in an argon atmosphere or a nitrogen atmosphere, as is the case with Ca. The average particle size of the Si compound is preferably in the range of about 0.1 μm to 15 μm from the viewpoints of reactivity with other raw materials, particle size control during and after firing, and the like.
[0087] 原料の Siを、窒素雰囲気中で窒化する(P5)。この反応式を、化 2に示す。  [0087] The raw material Si is nitrided in a nitrogen atmosphere (P5). This reaction formula is shown in Chemical Formula 2.
[0088] [化 2] 3 Si + 2 N 2 → S" N 4 [0088] [Chemical 2] 3 Si + 2 N 2 → S "N 4
[0089] ケィ素 Siも、窒素雰囲気中、 800°C〜1200°C、約 5時間、窒化して、窒化ケィ素を 得る。本発明で使用する窒化ケィ素は、高純度のものが好ましい。 [0089] The silicon Si is also nitrided in a nitrogen atmosphere at 800 ° C to 1200 ° C for about 5 hours to obtain a nitrided silicon. The silicon nitride used in the present invention preferably has a high purity.
[0090] 同様に、 Siの窒化物を粉砕する(P6)。 Similarly, Si nitride is pulverized (P6).
[0091] A1の直接窒化法等で A1Nは合成する。ただし、すでに市販されている A1N粉を使 用することちでさる。  [0091] A1N is synthesized by the direct nitridation method of A1 or the like. However, you can use A1N powder that is already on the market.
[0092] Bの直接窒化法等で BNを合成する。ただ、すでに市販されて ヽる BN粉を使用す ることちでさる。  [0092] BN is synthesized by direct nitridation of B or the like. However, you can use BN powder that is already on the market.
[0093] また、添カ卩元素の化合物として、 La、 Ce、 Pr、 Gd、 Tb、 Dy、 Ho、 Er、 Luの群から 選ばれる少なくとも 1種、または Sc、 Y、 Ga、 Inのいずれ力 1種、または Ge、 Zrのいず れか 1種、の酸化物若しくは窒化物を合成する。ただし、既に市販されている酸化物 若しくは窒化物の粉末等も使用することができる。  [0093] Further, as an additive element compound, at least one selected from the group consisting of La, Ce, Pr, Gd, Tb, Dy, Ho, Er, and Lu, or any of Sc, Y, Ga, and In One oxide or one of Ge or Zr is synthesized. However, commercially available oxide or nitride powders can also be used.
[0094] また、添カ卩元素の化合物として、希土類元素は Ce、 Pr、 Nd、 Sm、 Gd、 Tb、 Dy、 T m、 Ybの群から選ばれる少なくとも 1種、 4価の元素は Ge、 Zrのいずれ力 1種、の酸 化物若しくは窒化物を合成する。ただし、既に市販されている酸ィ匕物若しくは窒化物 の粉末等も使用することができる。  [0094] Further, as the additive element compound, the rare earth element is at least one selected from the group of Ce, Pr, Nd, Sm, Gd, Tb, Dy, Tm, and Yb, and the tetravalent element is Ge, Synthesize one kind of oxide or nitride of Zr. However, commercially available oxide or nitride powders can also be used.
[0095] また、添カ卩元素の化合物として、希土類元素は Sc、 Y、 La、 Ho、 Er、 Luの群から 選ばれる少なくとも 1種、 3価の元素は Ga、 Inのいずれ力 1種、 4価の元素は Hf、の 酸化物若しくは窒化物を合成する。ただし、既に市販されている酸化物若しくは窒化 物の粉末等も使用することができる。  [0095] Further, as the additive element compound, the rare earth element is at least one selected from the group of Sc, Y, La, Ho, Er, and Lu, and the trivalent element is any one of Ga and In. Tetravalent elements synthesize oxides or nitrides of Hf. However, commercially available oxide or nitride powders can also be used.
[0096] 次に、 A1の窒化物 A1N、 Bの窒化物 BN、 Euの化合物 Eu Oを粉砕する (P7)。粉  Next, the A1 nitride A1N, the B nitride BN, and the Eu compound EuO are pulverized (P7). Flour
2 3  twenty three
砕後の平均粒径は、好ましくは約 0. 1 μ m力ら 15 μ mとする。  The average particle size after crushing is preferably about 0.1 μm force and 15 μm.
[0097] 上記粉砕を行った後、 Caの窒化物、 Siの窒化物、 A1の窒化物と、必要に応じて B の窒化物と、添加元素の化合物、 Euの酸化物を、表 1〜表 9に示す実施例 1〜77の 組成となるように計量して混合する(P8)。 [0097] After the above pulverization, Ca nitride, Si nitride, A1 nitride, and optionally B nitride, additive element compound, Eu oxide, Table 1 to Weigh and mix to achieve the compositions of Examples 1 to 77 shown in Table 9 (P8).
[0098] Caの窒化物、 A1の窒化物、 Siの窒化物、 Bの窒化物、添加元素の化合物、 Euの 化合物 Eu Oを、乾式で混合することもできる。 [0098] Ca nitride, A1 nitride, Si nitride, B nitride, additive element compound, Eu compound Eu O can also be mixed in a dry manner.
2 3  twenty three
[0099] Caの窒化物、 A1の窒化物、 Siの窒化物、 Bの窒化物と、添加元素の化合物、 Euの 酸ィ匕物をアンモニア雰囲気中で、焼成する(P9)。焼成により、 CaAlSiBN:Euで表 される蛍光体を得ることができる(P10)。この焼成による実施例 1の窒化物蛍光体の 反応式を、化 3に示す。ただし、添加元素は微量であるため明記しない。 [0099] Ca nitride, A1 nitride, Si nitride, B nitride and additive element compound, Eu The acid is fired in an ammonia atmosphere (P9). By firing, a phosphor represented by CaAlSiBN: Eu can be obtained (P10). The reaction formula of the nitride phosphor of Example 1 by this firing is shown in Chemical Formula 3. However, it is not specified because the amount of additive elements is very small.
[0100] [化 3] [0100] [Chemical 3]
(0.981 )CmNi + AIN + (111>)8 Ν + 0.0 IBN +  (0.981) CmNi + AIN + (111>) 8 Ν + 0.0 IBN +
(0.01 / 2)£¾ 2< 3 + (3.003 - (8.97 / 3)) 3 (0.01 / 2) £ ¾ 2 < 3 + (3.003-(8.97 / 3)) 3
— 6 ίϊ0.980 /ΐ.ΟΟθ5'/ : O.O lOl U — 6 ίϊ0.980 /ΐ.ΟΟθ5'/ : OO lOl U
[0101] 各原料の配合比率を変更して、実施例 1〜77の窒化物蛍光体とする。  [0101] The nitride phosphors of Examples 1 to 77 are obtained by changing the blending ratio of each raw material.
[0102] 焼成は、管状炉、小型炉、高周波炉、メタル炉などを使用することができる。焼成温 度は、 1200°Cから 2000°Cの範囲で焼成を行うことができる力 1400°Cから 1800°C の焼成温度が好ましい。焼成は、徐々に昇温を行い 1200°Cから 1500°Cで数時間 焼成を行う一段階焼成を使用することが好ましいが、 800°Cから 1000°Cで一段階目 の焼成を行い、徐々に加熱して 1200°Cから 1500°Cで二段階目の焼成を行う二段 階焼成 (多段階焼成)を使用することもできる。  [0102] For firing, a tubular furnace, a small furnace, a high-frequency furnace, a metal furnace, or the like can be used. The firing temperature is preferably a force capable of firing in the range of 1200 ° C to 2000 ° C and a firing temperature of 1400 ° C to 1800 ° C. For firing, it is preferable to use a one-step firing in which the temperature is gradually raised and the firing is performed at 1200 ° C to 1500 ° C for several hours, but the first-step firing is performed at 800 ° C to 1000 ° C and gradually. It is also possible to use a two-stage firing (multi-stage firing) in which the second stage firing is carried out at 1200 ° C to 1500 ° C by heating to 200 ° C.
[0103] また、還元雰囲気は、窒素、水素、アルゴン、二酸化炭素、一酸化炭素、アンモニ ァの少なくとも 1種以上を含む雰囲気とする。ただし、これら以外の還元雰囲気下でも 焼成を行うことができる。  [0103] The reducing atmosphere is an atmosphere containing at least one of nitrogen, hydrogen, argon, carbon dioxide, carbon monoxide, and ammonia. However, firing can be performed in a reducing atmosphere other than these.
[0104] 以上の製造方法を使用することにより、目的とする窒化物蛍光体を得ることが可能 である。  [0104] By using the manufacturing method described above, it is possible to obtain a target nitride phosphor.
(蛍光体)  (Phosphor)
[0105] 本発明の実施の形態に係る窒化物蛍光体は、他の蛍光体と一緒に混合して使用 されて、青色発光素子の発光を演色性の高い白色光源とする。本発明の実施の形 態に係る窒化物蛍光体に混合される蛍光体は、青色に発光する蛍光体、緑色に発 光する蛍光体、黄色に発光する蛍光体等である。  [0105] The nitride phosphor according to the embodiment of the present invention is used by being mixed with other phosphors to make the light emission of the blue light emitting element a white light source with high color rendering properties. The phosphor mixed with the nitride phosphor according to the embodiment of the present invention includes a phosphor emitting blue light, a phosphor emitting green light, and a phosphor emitting yellow light.
[0106] 青色に発光する蛍光体、緑色に発光する蛍光体、黄色に発光する蛍光体には、種 々の蛍光体があるが、特に、少なくともセリウムで賦活されたイットリウム'アルミニウム 酸ィ匕物蛍光体、少なくともセリウムで賦活されたイットリウム'ガドリニウム 'アルミニウム 酸化物蛍光体、及び少なくともセリウムで賦活されたイットリウム 'ガリウム 'アルミ-ゥ ム酸ィ匕物蛍光体の少なくともいずれか 1以上であることが好ましい。これにより、所望 の発光色を有する発光装置を実現できる。本発明に係る蛍光体と、セリウムで賦活さ れたイットリウム 'アルミニウム酸ィ匕物蛍光体等とを用いた場合、効率よく発光を取り出 すことができる。具体的には、 Ln M O : R(Lnは、 Y、 Gd、 Lu、 Laから選ばれる少 [0106] There are various types of phosphors that emit blue light, phosphors that emit green light, and phosphors that emit yellow light. Particularly, at least cerium-activated yttrium aluminum oxide. Phosphor, at least cerium activated yttrium 'gadolinium' aluminum oxide phosphor, and at least cerium activated yttrium 'gallium' aluminum It is preferable that at least one of the phosphoric acid phosphors. Thereby, a light emitting device having a desired emission color can be realized. When the phosphor according to the present invention and the yttrium-aluminum oxide phosphor or the like activated with cerium are used, light can be extracted efficiently. Specifically, Ln MO: R (Ln is a small amount selected from Y, Gd, Lu, La)
3 5 12  3 5 12
なくとも一以上である。 Mは、 Al、 Gaの少なくともいずれか一方を含む。 Rは、ランタノ イド系である。;)、(Y Gd ) (Al Ga ) O : Rz (Rは、 Ceゝ Tb、 Prゝ Sm、 Euゝ Dy、 l-x x 3 1-y y 5 12  At least one or more. M includes at least one of Al and Ga. R is a lanthanide type. ;), (Y Gd) (Al Ga) O: Rz (R is Ce ゝ Tb, Pr ゝ Sm, Eu ゝ Dy, l-x x 3 1-y y 5 12
Hoから選ばれる少なくとも一以上である。 0< z< 0. 5である。)を使用することができ る。蛍光体は、近紫外から可視光の短波長側、 270ηπ!〜 500nmの波長域の光によ り励起され、 500nm〜600nmにピーク波長を有する。但し、第 3の発光スペクトルを 有する蛍光体は、上記の蛍光体に限定されず、種々の蛍光体が使用できる。  At least one selected from Ho. 0 <z <0.5. ) Can be used. The phosphor is 270ηπ from the near ultraviolet to the short wavelength side of visible light! It is excited by light in the wavelength range of ~ 500nm and has a peak wavelength at 500nm ~ 600nm. However, the phosphor having the third emission spectrum is not limited to the above phosphor, and various phosphors can be used.
[0107] イットリウム'アルミニウム酸ィ匕物蛍光体等を含有することにより、所望の色度に調節 することができる。セリウムで賦活されたイットリウム'アルミニウム酸ィ匕物蛍光体等は、 発光素子 10により発光された青色光の一部を吸収して黄色領域の光を発光する。こ こで、発光素子 10により発光された青色光と、イットリウム ·アルミニウム酸ィ匕物蛍光体 の黄色光とが混色により白色に発光する。従って、このイットリウム ·アルミニウム酸ィ匕 物蛍光体と窒化物蛍光体とを透光性を有するコーティング部材と一緒に混合した蛍 光体 11と、発光素子 10により発光された青色光とを組み合わせることにより暖色系の 白色の発光装置を提供することができる。また演色性の優れた白色の発光装置を提 供することができる。 [0107] By containing an yttrium aluminum oxide phosphor or the like, the desired chromaticity can be adjusted. The yttrium-aluminum oxide phosphor or the like activated with cerium absorbs part of the blue light emitted by the light emitting element 10 and emits light in the yellow region. Here, the blue light emitted by the light emitting element 10 and the yellow light of the yttrium / aluminum oxide phosphor emit light in white by mixing colors. Therefore, the phosphor 11 obtained by mixing the yttrium / aluminum oxide phosphor and the nitride phosphor together with the translucent coating member is combined with the blue light emitted by the light emitting element 10. Thus, a warm white light emitting device can be provided. In addition, a white light-emitting device with excellent color rendering can be provided.
[0108] また、本発明の実施の形態に係る窒化物蛍光体と組み合わせて用いられる蛍光体 は、イットリウム'アルミニウム酸ィ匕物蛍光体等に限定されるものではなぐ蛍光体と同 様の目的を有する青色領域から、緑色領域、黄色領域、赤色領域までに第 2の発光 スペクトルを少なくとも一以上有する蛍光体も、窒化物蛍光体と組み合わせて使用す ることができる。これにより、光の混色の原理による白色に発光する発光装置を提供 することができる。窒化物蛍光体と組み合わせて用いられる蛍光体は、緑色系発光 蛍光体 SrAl O :Eu、 Y SiO: Ce, Tb、 MgAl O : Ce, Tb、 Sr Al O : Euゝ(Mg  [0108] Further, the phosphor used in combination with the nitride phosphor according to the embodiment of the present invention is not limited to the yttrium aluminum oxide phosphor etc., and has the same purpose as the phosphor. Phosphors having at least one second emission spectrum from the blue region having green to the green region, yellow region, and red region can also be used in combination with the nitride phosphor. As a result, a light emitting device that emits white light based on the principle of color mixing of light can be provided. Phosphors used in combination with nitride phosphors are green light emitting phosphors SrAlO: Eu, YSiO: Ce, Tb, MgAlO: Ce, Tb, SrAlO: EuM (Mg
2 4 2 5 11 19 4 14 25 2 4 2 5 11 19 4 14 25
、 Ca、 Sr、 Baのうち少なくとも一以上) Ga S: Eu、青色系発光蛍光体 Sr (PO ) C1: At least one of Ca, Sr, Ba) Ga S: Eu, blue light emitting phosphor Sr (PO) C1:
2 4 5 4 3 2 4 5 4 3
Euゝ (SrCaBa) (PO ) Cl:Eu、 (BaCa) (PO ) Cl:Eu、(Mgゝ Caゝ Srゝ Baのうち 少なくとも一以上) B O Cl:Eu, Mn、(Mg、 Ca、 Sr、 Baのうち少なくとも一以上) (P Eu ゝ (SrCaBa) (PO) Cl: Eu, (BaCa) (PO) Cl: Eu, (Mg ゝ Ca ゝ Sr ゝ Ba BO Cl: Eu, Mn, (at least one of Mg, Ca, Sr, Ba) (P
2 5 9 5 2 5 9 5
O ) CI: Eu, Mn、赤色系発光蛍光体 Y O S: Eu、: La O S: Eu、 Y O: Eu、 Gd OO) CI: Eu, Mn, red light emitting phosphor YOS: Eu ,: LaOS: Eu, YO: Eu, GdO
4 3 2 2 2 2 2 3 2 24 3 2 2 2 2 2 3 2 2
S :Euなどをドープすることにより、所望の発光スペクトルを得ることができる。但し、緑 色、青色、赤色等の発光蛍光体は、上記の蛍光体に限定されず、種々の蛍光体を 使用することができる。 A desired emission spectrum can be obtained by doping S 2: Eu or the like. However, the light emitting phosphors such as green, blue, and red are not limited to the above phosphors, and various phosphors can be used.
(励起光源)  (Excitation light source)
[0109] 励起光源は、半導体発光素子、レーザーダイオード、アーク放電の陽光柱におい て発生する紫外放射、グロ一放電の陽光柱において発生する紫外放射などがある。 特に、近紫外領域の光を放射する半導体発光素子及びレーザーダイオード、青色に 発光する半導体発光素子及びレーザーダイオード、青緑色に発光する半導体発光 素子及びレーザーダイオードが好ま U、。  Excitation light sources include semiconductor light emitting devices, laser diodes, ultraviolet radiation generated in the positive column of arc discharge, and ultraviolet radiation generated in the positive column of glow discharge. In particular, semiconductor light-emitting elements and laser diodes that emit light in the near ultraviolet region, semiconductor light-emitting elements and laser diodes that emit blue light, and semiconductor light-emitting elements and laser diodes that emit blue-green light are preferred.
[0110] 近紫外から可視光の短波長領域の光は、 270nmから 500nm付近までの波長領 域をいう。  [0110] Light in the short wavelength region from near ultraviolet to visible light refers to the wavelength region from 270 nm to around 500 nm.
(発光素子)  (Light emitting element)
[0111] 発光素子は、蛍光体を効率よく励起可能な発光波長を発光できる発光層を有する 半導体発光素子が好ましい。このような半導体発光素子の材料として、 BN、 SiC、 Z nSeや GaN、 InGaN、 InAlGaN, AlGaN、 BAlGaN、 BlnAlGaNなど種々の半導 体を挙げることができる。同様に、これらの元素に不純物元素として Siや Znなどを含 有させ発光中心とすることもできる。蛍光体を効率良く励起できる紫外領域から可視 光の短波長を効率よく発光可能な発光層の材料として特に、窒化物半導体 (例えば 、 A1や Gaを含む窒化物半導体、 Inや Gaを含む窒化物半導体として In Al Ga N  [0111] The light-emitting element is preferably a semiconductor light-emitting element having a light-emitting layer capable of emitting an emission wavelength capable of efficiently exciting the phosphor. Examples of materials for such semiconductor light emitting devices include various semiconductors such as BN, SiC, ZnSe, GaN, InGaN, InAlGaN, AlGaN, BAlGaN, and BlnAlGaN. Similarly, these elements can contain Si, Zn, etc. as impurity elements to be the emission center. In particular, nitride semiconductors (for example, nitride semiconductors containing A1 and Ga, nitrides containing In and Ga, etc.) as materials for light emitting layers capable of efficiently emitting short wavelengths of visible light from the ultraviolet region that can excite phosphors efficiently In Al Ga N as a semiconductor
X Υ 1-Χ-Υ X Υ 1-Χ-Υ
(0<Χ< 1、 0< Υ< 1、 Χ+Υ≤ 1)がより好適に挙げられる。 (0 <Χ <1, 0 <Υ <1, Χ + Υ≤1) is more preferable.
[0112] また、半導体の構造としては、 MIS接合、 PIN接合や pn接合などを有するホモ構 造、ヘテロ構造あるいはダブルへテロ構成のものが好適に挙げられる。半導体層の 材料やその混晶比によって発光波長を種々選択することができる。また、半導体活 性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構 造とすることでより出力を向上させることもできる。 [0112] As the semiconductor structure, a homostructure having a MIS junction, a PIN junction, a pn junction, or the like, a heterostructure, or a double heterostructure can be preferably cited. Various emission wavelengths can be selected depending on the material of the semiconductor layer and the mixed crystal ratio. Further, the output can be further improved by adopting a single quantum well structure or a multiple quantum well structure in which the semiconductor active layer is formed in a thin film in which a quantum effect is generated.
[0113] 窒化物半導体を使用した場合、半導体用基板にはサファイア、スピネル、 SiC、 Si、 ZnO、 GaAs、 GaN等の材料が好適に用いられる。結晶性の良い窒化物半導体を量 産性よく形成させるためにはサファイア基板を利用することが好ましい。このサフアイ ァ基板上に HVPE法や MOCVD法などを用いて窒化物半導体を形成させることが できる。サファイア基板上に GaN、 A1N、 GaAIN等の低温で成長させ非単結晶とな るノ ッファ層を形成しその上に pn接合を有する窒化物半導体を形成させる。 [0113] When a nitride semiconductor is used, sapphire, spinel, SiC, Si, A material such as ZnO, GaAs, or GaN is preferably used. In order to form a nitride semiconductor having good crystallinity with high productivity, it is preferable to use a sapphire substrate. Nitride semiconductors can be formed on this sapphire substrate using HVPE or MOCVD. A GaN, A1N, GaAIN or other non-single crystal nofer layer is formed on a sapphire substrate and a nitride semiconductor having a pn junction is formed thereon.
[0114] 窒化物半導体を使用した pn接合を有する紫外領域を効率よく発光可能な発光素 子例として、ノ ッファ層上に、サファイア基板のオリフラ面と略垂直に SiOをストライプ [0114] As an example of a light-emitting device that can efficiently emit light in the ultraviolet region with a pn junction using a nitride semiconductor, SiO stripes are formed on the notch layer approximately perpendicularly to the orientation flat surface of the sapphire substrate.
2 状に开成する。ストライプ上に HVPE法を用いて GaNを ELOG (Epitaxial Lateral Ov er Grows GaN)成長させる。続いて、 MOCVD法により、 n型窒化ガリウムで形成した 第 1のコンタクト層、 n型窒化アルミニウム 'ガリウムで形成させた第 1のクラッド層、窒 ィ匕インジウム 'アルミニウム 'ガリウムの井戸層と窒化アルミニウム 'ガリウムの障壁層を 複数積層させた多重量子井戸構造とされる活性層、 p型窒化アルミニウム ·ガリゥムで 形成した第 2のクラッド層、 p型窒化ガリウムで形成した第 2のコンタクト層を順に積層 させたダブルへテロ構成などの構成が挙げられる。活性層をリッジストライプ形状とし ガイド層で挟むと共に共振器端面を設け本発明に利用可能な半導体レーザー素子 とすることちでさる。  It is developed in two forms. GaN is grown on the stripe using EHV (Epitaxial Lateral Grows GaN) by HVPE method. Subsequently, the first contact layer formed of n-type gallium nitride, the first cladding layer formed of n-type aluminum nitride 'gallium, the indium nitride' aluminum 'well layer of gallium and the aluminum nitride by MOCVD 'A multi-quantum well structure active layer with multiple gallium barrier layers, a second cladding layer made of p-type aluminum nitride and gallium, and a second contact layer made of p-type gallium nitride. The configuration such as the double hetero configuration. The active layer is formed into a ridge stripe shape, sandwiched between guide layers, and provided with a cavity end face to obtain a semiconductor laser device usable in the present invention.
[0115] 窒化物半導体は、不純物をドープしない状態で n型導電性を示す。発光効率を向 上させるなど所望の n型窒化物半導体を形成させる場合は、 n型ドーパントとして Si、 Ge、 Se、 Te、 C等を適宜導入することが好ましい。一方、 p型窒化物半導体を形成さ せる場合は、 p型ドーパントである Zn、 Mg、 Be、 Ca、 Sr、 Ba等をドープさせることが 好ましい。窒化物半導体は、 p型ドーパントをドープしただけでは p型化しにくいため p 型ドーパント導入後に、炉による加熱やプラズマ照射等により低抵抗ィ匕させることが 好ましい。サファイア基板をとらない場合は、第 1のコンタクト層の表面まで p型側から ェンチングさせ各コンタクト層を露出させる。各コンタクト層上にそれぞれ電極形成後 、半導体ウェハー力 チップ状にカットさせることで窒化物半導体力 なる発光素子 を形成させることができる。  [0115] A nitride semiconductor exhibits n-type conductivity without being doped with impurities. When forming a desired n-type nitride semiconductor such as improving luminous efficiency, it is preferable to appropriately introduce Si, Ge, Se, Te, C, etc. as an n-type dopant. On the other hand, when forming a p-type nitride semiconductor, it is preferable to dope p-type dopants such as Zn, Mg, Be, Ca, Sr, and Ba. Since nitride semiconductors are not easily converted to p-type by simply doping with p-type dopants, it is preferable to reduce the resistance by heating in a furnace or plasma irradiation after introduction of p-type dopants. If a sapphire substrate is not used, the contact layer is exposed by etching from the p-type side to the surface of the first contact layer. After forming the electrodes on each contact layer, a light emitting element having a nitride semiconductor power can be formed by cutting the semiconductor wafer into chips.
[0116] 発光装置において、量産性よく形成させるためには透光性封止部材を利用して形 成させることが好ましい。特に、蛍光体 11を混合して封止することため、透光性の榭 脂が好ま ヽ。この場合蛍光体からの発光波長と透光性榭脂の劣化等を考慮して、 発光素子は紫外域に発光スペクトルを有し、その主発光波長は 360nm以上 420nm 以下のものや、 450nm以上 470nm以下のものも使用することができる。 [0116] In order to form the light emitting device with high mass productivity, it is preferable to form the light emitting device using a translucent sealing member. In particular, since the phosphor 11 is mixed and sealed, I prefer fat. In this case, considering the emission wavelength from the phosphor and the deterioration of the translucent resin, the light emitting element has an emission spectrum in the ultraviolet region, and the main emission wavelength is from 360 nm to 420 nm, or from 450 nm to 470 nm. The following can also be used.
[0117] ここで、半導体発光素子は、不純物濃度 1017〜102ソ cm3で形成される n型コンタ タト層のシート抵抗と、透光性 p電極のシート抵抗とが、 Rp≥Rnの関係となるように調 節されていることが好ましい。 n型コンタクト層は、例えば膜厚 3〜: LO /z m より好まし くは 4〜6 μ mに形成されると好ましぐそのシート抵抗は 10〜15 Ω Z口と見積もられ ることから、このときの Rpはシート抵抗値以上のシート抵抗値を有するように薄膜に形 成するとよい。また、透光性 p電極は、膜厚が 150 m以下の薄膜で形成されていて もよい。また、 p電極は金属以外の ITO、 ΖηΟも使用することができる。ここで透光性 ρ 電極の代わりに、メッシュ状電極などの複数の光取り出しよ用開口部を備えた電極も 使用することができる。 [0117] Here, in the semiconductor light emitting device, the sheet resistance of the n-type contact layer formed at an impurity concentration of 10 17 to 10 2 cm 3 and the sheet resistance of the light-transmitting p-electrode satisfy Rp≥Rn. It is preferable that the relationship is adjusted. For example, the n-type contact layer has a film thickness of 3 to: LO / zm, preferably 4 to 6 μm. The sheet resistance is estimated to be 10 to 15 Ω. At this time, Rp is preferably formed in a thin film so as to have a sheet resistance value equal to or higher than the sheet resistance value. The translucent p-electrode may be formed of a thin film having a thickness of 150 m or less. Moreover, ITO other than metal and ΖηΟ can be used for the p electrode. Here, instead of the translucent rho electrode, an electrode having a plurality of light extraction openings such as a mesh electrode can also be used.
[0118] また、透光性 ρ電極が、金および白金族元素の群から選択された 1種と、少なくとも 1 種の他の元素とから成る多層膜または合金で形成される場合には、含有されて 、る 金または白金族元素の含有量により透光性 ρ電極のシート抵抗の調整をすると安定 性および再現性が向上される。金または金属元素は、本発明に使用する半導体発 光素子の波長領域における吸収係数が高いので、透光性 ρ電極に含まれる金又は 白金族元素の量は少ないほど透過性がよくなる。従来の半導体発光素子はシート抵 抗の関係が Rp≤Rnであった力 本発明では Rp≥Rnであるので、透光性 p電極は 従来のものと比較して薄膜に形成されることとなるが、このとき金または白金族元素の 含有量を減らすことで薄膜化が容易に行える。  [0118] Further, when the translucent rho electrode is formed of a multilayer film or alloy composed of one kind selected from the group of gold and platinum group elements and at least one other element, it is contained. Therefore, stability and reproducibility are improved by adjusting the sheet resistance of the translucent rho electrode depending on the content of the gold or platinum group element. Since gold or a metal element has a high absorption coefficient in the wavelength region of the semiconductor light emitting device used in the present invention, the smaller the amount of gold or platinum group element contained in the translucent ρ electrode, the better the transparency. In the conventional semiconductor light emitting device, the force of the sheet resistance is Rp≤Rn. In the present invention, Rp≥Rn. Therefore, the translucent p-electrode is formed in a thin film as compared with the conventional one. However, thinning can be easily achieved by reducing the content of gold or platinum group elements.
[0119] 上述のように、本発明で用いられる半導体発光素子は、 n型コンタクト層のシート抵 抗 RnQ Z口と、透光性 p電極のシート抵抗 Rp Q Z口と力 Rp≥Rnの関係を成して いることが好ましい。半導体発光素子として形成した後に Rnを測定するのは難しぐ Rpと Rnとの関係を知るのは実質上不可能である力 発光時の光強度分布の状態か らどのような Rpと Rnとの関係になっているのかを知ることができる。  [0119] As described above, the semiconductor light emitting device used in the present invention has a relationship between the sheet resistance RnQ Z port of the n-type contact layer, the sheet resistance Rp QZ port of the translucent p electrode, and the force Rp≥Rn. Preferably. It is difficult to measure Rn after forming it as a semiconductor light emitting device. It is practically impossible to know the relationship between Rp and Rn. From the state of the light intensity distribution during light emission, what kind of Rp and Rn You can know if they are in a relationship.
[0120] 透光性 p電極と n型コンタクト層とが Rp≥Rnの関係であるとき、透光性 p電極上に接 して延長伝導部を有する P側台座電極を設けると、さらなる外部量子効率の向上を図 ることができる。延長伝導部の形状及び方向に制限はなぐ延長伝導部が衛線上で ある場合、光を遮る面積が減るので好ましいが、メッシュ状でもよい。また形状は、直 線状以外に、曲線状、格子状、枝状、鉤状でもよい。このとき P側台座電極の総面積 に比例して遮光効果が増大するため、遮光効果が発光増強効果を上回らないように 延長導電部の線幅及び長さを設計するのがよ 、。 [0120] When the translucent p-electrode and the n-type contact layer have a relationship of Rp≥Rn, if a P-side pedestal electrode having an extended conduction portion is provided on the translucent p-electrode, further external quantum can be provided. Increase efficiency Can. When the extended conductive portion that is not limited in the shape and direction of the extended conductive portion is on the satellite, it is preferable because the area for blocking light is reduced, but a mesh shape may be used. Further, the shape may be a curved line shape, a lattice shape, a branch shape, or a saddle shape in addition to the straight line shape. At this time, since the light shielding effect increases in proportion to the total area of the P-side pedestal electrode, the line width and length of the extended conductive part should be designed so that the light shielding effect does not exceed the light emission enhancing effect.
(発光素子)  (Light emitting element)
[0121] 上述の紫外光励起の発光素子と異なる青色光励起の発光素子を使用することもで きる。青色光励起の発光素子 10は、 ΠΙ属窒化物系化合物発光素子であることが好 ましい。発光素子 10は、例えばサファイア基板 1上に GaNバッファ層を介して、 Siが アンドープの n型 GaN層、 Siがドープされた n型 GaN力もなる n型コンタクト層、アンド ープ GaN層、多重量子井戸構造の発光層(GaN障壁層 ZlnGaN井戸層の量子井 戸構造)、 Mgがドープされた p型 GaNからなる p型 GaNからなる pクラッド層、 Mgがド ープされた p型 GaNカゝらなる p型コンタクト層が順次積層された積層構造を有し、以 下のように電極が形成されている。但し、この構成と異なる発光素子 10も使用できる  [0121] A blue-light-excited light-emitting element different from the above-described ultraviolet-light-excited light-emitting element can also be used. The blue light-excited light emitting element 10 is preferably a metal nitride compound light emitting element. The light-emitting element 10 includes, for example, an n-type GaN layer in which Si is undoped, an n-type contact layer having an n-type GaN force doped with Si, an and GaN layer, and a multiple quantum layer on a sapphire substrate 1 via a GaN buffer layer. Light emitting layer with well structure (GaN barrier layer, quantum well structure of ZlnGaN well layer), p-type GaN layer made of p-type GaN doped with Mg, p-type GaN layer doped with Mg Each of the p-type contact layers is sequentially stacked, and the electrodes are formed as follows. However, a light emitting element 10 different from this configuration can also be used.
[0122] pォーミック電極は、 p型コンタクト層上のほぼ全面に形成され、その pォーミック電極 上の一部に pパッド電極 3が形成される。 [0122] The p-form electrode is formed on almost the entire surface of the p-type contact layer, and the p-pad electrode 3 is formed on a part of the p-form electrode.
[0123] また、 n電極は、エッチングにより p型コンタクト層からアンドープ GaN層を除去して n 型コンタクト層の一部を露出させ、その露出された部分に形成される。  [0123] The n-electrode is formed in the exposed portion by removing the undoped GaN layer from the p-type contact layer by etching to expose a part of the n-type contact layer.
[0124] なお、本実施の形態では、多重量子井戸構造の発光層を用いたが、本発明は、こ れに限定されるものではなぐ例えば、 InGaNを利用した単一量子井戸構造としても 良いし、 Si、 Zn等の n型、 p型不純物がドープされた GaNを利用しても良い。  [0124] Although the light emitting layer having a multiple quantum well structure is used in the present embodiment, the present invention is not limited to this. For example, a single quantum well structure using InGaN may be used. Alternatively, GaN doped with n-type and p-type impurities such as Si and Zn may be used.
[0125] また、発光素子 10の発光層は、 Inの含有量を変化させることにより、 420nm力も 4 [0125] The light-emitting layer of the light-emitting element 10 has a 420 nm force by changing the In content.
90nmの範囲において主発光ピークを変更することができる。また、発光波長は、上 記範囲に限定されるものではなぐ 360nm〜550nmに発光波長を有しているものを 使用することができる。 The main emission peak can be changed in the range of 90 nm. In addition, the emission wavelength is not limited to the above range, and those having an emission wavelength of 360 nm to 550 nm can be used.
(コーティング部材)  (Coating material)
[0126] コーティング部材 12 (光透光性材料)は、リードフレーム 13のカップ内に設けられる ものであり発光素子 10の発光を変換する蛍光体 11と混合して用いられる。コーティ ング部材 12の具体的材料としては、エポキシ榭脂、ユリア榭脂、シリコーン榭脂など の温度特性、耐候性に優れた透明榭脂、シリカゾル、ガラス、無機ノインダーなどが 用いられる。また、蛍光体 11と共に拡散剤、チタン酸バリウム、酸化チタン、酸化アル ミニゥムなどを含有させても良い。また、光安定化剤や着色剤を含有させても良い。 (リードフレーム) The coating member 12 (light transmissive material) is provided in the cup of the lead frame 13. The phosphor 11 that converts the light emission of the light emitting element 10 is used in combination. Specific materials for the coating member 12 include transparent resins, silica sol, glass, inorganic noinders, etc., which have excellent temperature characteristics and weather resistance, such as epoxy resin, urea resin, and silicone resin. In addition to the phosphor 11, a diffusing agent, barium titanate, titanium oxide, aluminum oxide, or the like may be contained. Moreover, you may contain a light stabilizer and a coloring agent. (Lead frame)
[0127] リードフレーム 13は、マウントリード 13aとインナーリード 13bとから構成される。マウ ントリード 13aは、発光素子 10を配置させるものである。マウントリード 13aの上部は、 カップ形状になっており、カップ内に発光素子 10をダイボンドし、発光素子 10の外周 面を、カップ内を蛍光体 11とコーティング部材 12とで覆っている。カップ内に発光素 子 10を複数配置しマウントリード 13aを発光素子 10の共通電極として利用することも できる。この場合、十分な電気伝導性と導電性ワイヤ 14との接続性が求められる。発 光素子 10とマウントリード 13aのカップとのダイボンド (接着)は、熱硬化性榭脂などに よって行うことができる。熱硬化性榭脂としては、エポキシ榭脂、アクリル榭脂、イミド 榭脂などが挙げられる。また、フェースダウン発光素子 10などによりマウントリード 13a とダイボンドすると共に電気的接続を行うには、 Agペースト、カーボンペースト、金属 バンプなどを用いることができる。また、無機バインダーを用いることもできる。  [0127] The lead frame 13 includes a mount lead 13a and an inner lead 13b. The mount lead 13a is for arranging the light emitting element 10. The upper part of the mount lead 13a has a cup shape. The light emitting element 10 is die-bonded in the cup, and the outer peripheral surface of the light emitting element 10 is covered with the phosphor 11 and the coating member 12 inside the cup. A plurality of light emitting elements 10 can be arranged in the cup, and the mount lead 13a can be used as a common electrode of the light emitting element 10. In this case, sufficient electrical conductivity and connectivity with the conductive wire 14 are required. The die bonding (adhesion) between the light emitting element 10 and the cup of the mount lead 13a can be performed by a thermosetting resin or the like. Examples of thermosetting resins include epoxy resins, acrylic resins, and imide resins. Also, Ag paste, carbon paste, metal bumps, or the like can be used for die-bonding and electrical connection with the mount lead 13a using the face-down light emitting element 10 or the like. An inorganic binder can also be used.
[0128] インナーリード 13bは、マウントリード 13a上に配置された発光素子 10の電極 3から 延びる導電性ワイヤ 14との電気的接続を図るものである。インナーリード 13bは、マウ ントリード 13aとの電気的接触によるショートを避けるため、マウントリード 13aから離れ た位置に配置することが好ましい。マウントリード 13a上に複数の発光素子 10を設け た場合は、各導電性ワイヤ同士が接触しないように配置できる構成にする必要がある 。インナーリード 13bは、マウントリード 13aと同様の材質を用いることが好ましぐ鉄、 銅、鉄入り銅、金、白金、銀などを用いることができる。  [0128] The inner lead 13b is intended to be electrically connected to the conductive wire 14 extending from the electrode 3 of the light emitting element 10 disposed on the mount lead 13a. The inner lead 13b is preferably arranged at a position away from the mount lead 13a in order to avoid a short circuit due to electrical contact with the mount lead 13a. In the case where a plurality of light emitting elements 10 are provided on the mount lead 13a, it is necessary that the conductive wires be arranged so as not to contact each other. The inner lead 13b can be made of iron, copper, iron-containing copper, gold, platinum, silver, or the like, which is preferably the same material as the mount lead 13a.
(導電性ワイヤ)  (Conductive wire)
[0129] 導電性ワイヤ 14は、発光素子 10の電極 3とリードフレーム 13とを電気的に接続する ものである。導電性ワイヤ 14は、電極 3とォーミック性、機械的接続性、電気導電性 及び熱伝導性が良いものが好ましい。導電性ワイヤ 14の具体的材料としては、金、 銅、白金、アルミニウムなどの金属及びそれらの合金などが好ましい。 [0129] The conductive wire 14 is for electrically connecting the electrode 3 of the light emitting element 10 and the lead frame 13. The conductive wire 14 preferably has good ohmic properties, mechanical connectivity, electrical conductivity, and thermal conductivity with the electrode 3. Specific materials for the conductive wire 14 include gold, Metals such as copper, platinum, and aluminum, and alloys thereof are preferable.
(モールド部材)  (Mold member)
[0130] モールド部材 15は、発光素子 10、蛍光体 11、コーティング部材 12、リードフレーム 13及び導電性ワイヤ 14などを外部力も保護するために設けられている。モールド部 材 15は、外部からの保護目的の他に、視野角を広げたり、発光素子 10からの指向 性を緩和したり、発光を収束、拡散させたりする目的も併せ持つている。これらの目的 を達成するためモールド部材は、所望の形状にすることができる。また、モールド部 材 15は、凸レンズ形状、凹レンズ形状の他、複数積層する構造であっても良い。モ 一ルド部材 15の具体的材料としては、エポキシ榭脂、ユリア榭脂、シリコーン榭脂、 シリカゾル、ガラスなどの透光性、耐候性、温度特性に優れた材料を使用することが できる。モールド部材 15には、拡散剤、着色剤、紫外線吸収剤や蛍光体を含有させ ることもできる。拡散剤としては、チタン酸バリウム、酸化チタン、酸ィ匕アルミニウム等 が好ましい。コーティング部材 12との材質の反発性を少なくするため、屈折率を考慮 するため、同材質を用いることが好ましい。  [0130] The mold member 15 is provided to protect the light emitting element 10, the phosphor 11, the coating member 12, the lead frame 13, the conductive wire 14, and the like from external force. In addition to the purpose of protection from the outside, the mold member 15 also has the purposes of widening the viewing angle, relaxing the directivity from the light emitting element 10, and converging and diffusing the emitted light. In order to achieve these objects, the mold member can have a desired shape. Further, the mold member 15 may have a structure in which a plurality of layers are laminated in addition to the convex lens shape and the concave lens shape. As a specific material of the mold member 15, a material excellent in translucency, weather resistance, and temperature characteristics such as epoxy resin, urea resin, silicone resin, silica sol, and glass can be used. The mold member 15 may contain a diffusing agent, a colorant, an ultraviolet absorber, and a phosphor. As the diffusing agent, barium titanate, titanium oxide, aluminum oxide or the like is preferable. In order to reduce the resilience of the material with the coating member 12 and to take into account the refractive index, it is preferable to use the same material.
実施例  Example
[0131] 以下、本発明の実施例の窒化物蛍光体と、これを使用する発光装置について説明 する。なお、実施例における粒径は、 F. S. S. S. No. (Fisher Sub Sieve Sizer's No -)と呼ばれる空気透過法により測定した値である。  [0131] Hereinafter, the nitride phosphor of the example of the present invention and a light emitting device using the same will be described. The particle diameter in the examples is a value measured by an air permeation method called F.S.S.S.No. (Fisher Sub Sieve Sizer's No-).
(実施例 1〜10、比較例 1〜3)  (Examples 1 to 10, Comparative Examples 1 to 3)
(希土類元素)  (Rare earth elements)
[0132] まず実施例 1〜10の窒化物蛍光体を前述の方法で製造し、各実施例に係る窒化 物蛍光体の特性を測定した。その結果を表 1に示す。また比較例 1〜3の窒化物蛍 光体も前述と同様の方法で製造し、各比較例に係る窒化物蛍光体の特性を測定し た。比較例 1の Gdを含有する窒化物蛍光体の輝度、量子効率、ピーク強度を基準( 100%)にする。また図 4に、実施例 1と比較例 1の窒化物蛍光体を Ex=460nmで 励起したときの発光スペクトルを示す。さらに図 5に、実施例 1と比較例 1の窒化物蛍 光体の励起スペクトルを、図 6に、実施例 1と比較例 1の窒化物蛍光体の反射スぺタト ルを、それぞれ示す。さらにまた、実施例 1の窒化物蛍光体を撮影した SEM写真を 図 7に示す。図 7 (a)は、 1000倍、図 7 (b)は、 5000倍で撮影した状態をそれぞれ示 している。 First, the nitride phosphors of Examples 1 to 10 were manufactured by the above-described method, and the characteristics of the nitride phosphors according to the respective examples were measured. The results are shown in Table 1. In addition, the nitride phosphors of Comparative Examples 1 to 3 were also manufactured by the same method as described above, and the characteristics of the nitride phosphors according to each Comparative Example were measured. The brightness, quantum efficiency and peak intensity of the Gd-containing nitride phosphor of Comparative Example 1 are used as the reference (100%). FIG. 4 shows emission spectra when the nitride phosphors of Example 1 and Comparative Example 1 are excited at Ex = 460 nm. FIG. 5 shows the excitation spectra of the nitride phosphors of Example 1 and Comparative Example 1, and FIG. 6 shows the reflection spectra of the nitride phosphors of Example 1 and Comparative Example 1, respectively. Furthermore, an SEM photograph of the nitride phosphor of Example 1 was taken. Figure 7 shows. Fig. 7 (a) shows the image taken at 1000x and Fig. 7 (b) shows the image taken at 5000x.
[表 1]  [table 1]
[0134] 実施例 1〜10の窒化物蛍光体は、 Ca Eu AlSiNで表される。 Caと A1と Siは、  [0134] The nitride phosphors of Examples 1 to 10 are represented by Ca Eu AlSiN. Ca, A1 and Si are
0.98 0.01 3  0.98 0.01 3
0. 98 : 1 : 1としている。また Eu濃度は 0. 01である。 Eu濃度は、 Caのモル濃度に対 してのモル比である。添加元素濃度は 0. 01である。添加元素濃度は、 Caのモル濃 度に対してのモル比である。  0. 98: 1: 1 The Eu concentration is 0.01. Eu concentration is the molar ratio to the molar concentration of Ca. The additive element concentration is 0.01. The additive element concentration is a molar ratio with respect to the molar concentration of Ca.
[0135] 以上の蛍光体は以下のようにして製造される。まず、原料の Caを 1 m〜15 mに 粉砕し、窒素雰囲気中で窒化する。その後、 Caの窒化物を 0. 1 μ πι〜10 /ζ mに粉 砕する。原料の Caを 20g秤量し、窒化を行う。同様にして、原料の Siを 1 m〜15 mに粉砕し、窒素雰囲気中で窒化する。その後、 Siの窒化物を 0. mに 粉砕する。原料の Siを 20g秤量し、窒化を行う。次に、 A1の化合物 A1N、 Euの化合 物 Eu Oを 0. 1 m〜10 μ mに粉砕する。 Caの窒化物、 A1の窒化物、 Siの窒化物[0135] The above phosphors are manufactured as follows. First, the raw material Ca is ground to 1 to 15 m and nitrided in a nitrogen atmosphere. Thereafter, the Ca nitride is pulverized to 0.1 μπι to 10 / ζ m. Weigh 20g of raw material Ca and perform nitriding. Similarly, the raw material Si is pulverized to 1 to 15 m and nitrided in a nitrogen atmosphere. After that, the Si nitride is ground to 0. m. Weigh 20g of raw material Si and perform nitriding. Next, the compound A1N of A1, Eu compound EuO is pulverized to 0.1 m to 10 μm. Ca nitride, A1 nitride, Si nitride
2 3 twenty three
、 Euの酸ィ匕物を、窒素雰囲気中で混合する。実施例 1において、原料である窒化カ ルシゥム Ca N、窒化アルミニウム A1N、窒化ケィ素 Si N、酸化ユウ口ピウム Eu O 、  , Eu acid mixture is mixed in a nitrogen atmosphere. In Example 1, raw materials calcium nitride Ca N, aluminum nitride A1N, silicon nitride Si N, Eu oxide Pio Eu,
3 2 3 4 2 3 添加元素の化合物の各元素の混合比率(モル比)は、 Ca A1 Si Eu:添加元素 = 0 . 98 : 1. 00 : 1. 00 : 0. 01 : 0. 01となるように調整する。  3 2 3 4 2 3 The mixing ratio (molar ratio) of each element of the compound of the additive element is as follows: Ca A1 Si Eu: additive element = 0.98: 1. 00: 1. 00: 0. 01: 0.01 Adjust so that
[0136] この混合比率になるように、 Ca N (分子量 148. 26)、 A1N (分子量 40. 99 Si [0136] To achieve this mixing ratio, Ca N (molecular weight 148. 26), A1N (molecular weight 40. 99 Si
3 2 3 3 2 3
N (分子量 140. 31 Eu Oを秤量し、混合を行う。上記化合物を混合し、焼成を行 つた。焼成条件は、アンモニア雰囲気中、上記化合物をルツボに投入し、室温から徐 々に昇温して、約 1600°Cで約 5時間、焼成を行い、ゆっくりと室温まで冷却する。 N (Molecular weight 140. 31 Eu O is weighed and mixed. The above compounds are mixed and calcined. I got it. Firing conditions are as follows: In an ammonia atmosphere, the above compound is put into a crucible, gradually heated from room temperature, fired at about 1600 ° C for about 5 hours, and slowly cooled to room temperature.
[0137] この結果から、実施例 1〜10のいずれも輝度、量子効率、ピーク強度について同 等以上の特性を示した。特に実施例 1の Y、実施例 10の Luを添加したとき極めて高 いピーク強度を示した。 [0137] From these results, all of Examples 1 to 10 showed the same or higher characteristics in terms of luminance, quantum efficiency, and peak intensity. In particular, when Y in Example 1 and Lu in Example 10 were added, extremely high peak intensity was exhibited.
[0138] なお実施例 1〜10の窒化物蛍光体は、添加元素により色調も若干異なっている。 [0138] The nitride phosphors of Examples 1 to 10 have slightly different color tones depending on the additive elements.
各蛍光体の平均粒径は、 5. O ^ m-lO. O /z mである。また、実施例中の蛍光体に は酸素が含有される。  The average particle diameter of each phosphor is 5. O ^ m-lO.O / zm. Further, the phosphors in the examples contain oxygen.
(比較例 1〜3)  (Comparative Examples 1 to 3)
[0139] 比較例 1〜3は、実施例 1〜: LOと添加元素が異なる以外は、ほぼ同様の製造方法 を用いて作製した。また添加濃度等も同様である。比較例 1は添加元素に Gdを用い ている。比較例 2は添加元素に Nd、比較例 3は添加元素に Tmを用いている。これら は 、ずれも低 、発光輝度を示した。実施例 1〜 77につ 、ては比較例 1を基準に値を 示している。  [0139] Comparative Examples 1 to 3 were prepared using substantially the same manufacturing method except that Example 1 was different from LO and the additive element. The same applies to the concentration of addition. Comparative Example 1 uses Gd as the additive element. Comparative Example 2 uses Nd as the additive element, and Comparative Example 3 uses Tm as the additive element. These showed low emission and emission luminance. In Examples 1 to 77, values are shown based on Comparative Example 1.
(実施例 11〜25)  (Examples 11 to 25)
(Lu系)  (Lu series)
[0140] 次に、希土類元素として量子効率の上昇を示した Luを選択し、さらに Ca、 Al, Siの 組成比を調整した窒化物蛍光体を、上記実施例と同様の方法で実施例 11〜25とし て作製した。各実施例に係る窒化物蛍光体の特性を測定した結果を、表 2に示す。 また図 8は、本発明の実施例 11の蛍光体の発光スペクトルを示すグラフ、図 9は、本 発明の実施例 11の蛍光体の励起スペクトルを示すグラフ、図 10は、本発明の実施 例 11の蛍光体の反射スペクトルを示すグラフである。  [0140] Next, as a rare earth element, Lu which shows an increase in quantum efficiency is selected, and a nitride phosphor in which the composition ratio of Ca, Al, and Si is adjusted is the same as in the above-described embodiment. It was produced as ~ 25. Table 2 shows the results of measuring the characteristics of the nitride phosphor according to each example. 8 is a graph showing the emission spectrum of the phosphor of Example 11 of the present invention, FIG. 9 is a graph showing the excitation spectrum of the phosphor of Example 11 of the present invention, and FIG. 10 is an example of the present invention. 11 is a graph showing the reflection spectrum of 11 phosphors.
[0141] [表 2] [0141] [Table 2]
[0142] 実施例 11 25の窒化物蛍光体は Ca Al Si N : Euで表される。実施例  [0142] The nitride phosphor of Example 11 25 is represented by CaAlSiN: Eu. Example
w X y ((2/3)w+x+(4/3)y)  w X y ((2/3) w + x + (4/3) y)
11 25において、 Eu濃度は蛍光体 1モルに対してのモル比である。実施例 17 3 1の窒化物蛍光体の平均粒径は 5. O ^ m^ lO. Ο μ mである。この結果から、 Ca A 1 Siのモル濃度を増減させても輝度の低下も少なぐ量子効率、ピーク強度も概ね 高い値を示す。  In 11 25, the Eu concentration is a molar ratio with respect to 1 mol of the phosphor. The average particle diameter of the nitride phosphor of Example 17 3 1 is 5. O ^ m ^ lO.Ομm. From these results, the quantum efficiency and the peak intensity with almost no decrease in luminance even when the molar concentration of Ca A 1 Si is increased or decreased are generally high.
(実施例 26 37)  (Example 26 37)
(Y系)  (Y series)
[0143] さらに、ピーク強度の高い Yを選択し、さらに Ca Al, Siの組成比を調整した窒化 物蛍光体を、上記実施例と同様の方法で実施例 26 37として作製した。各実施例 に係る窒化物蛍光体の特性を測定した結果を、表 3に示す。また本発明の実施例 26 の蛍光体の発光スペクトルのグラフを図 8に波線で示す。同様に、図 9の波線は、本 発明の実施例 26の蛍光体の励起スペクトルを示すグラフ、図 10の波線は、本発明 の実施例 26の蛍光体の反射スペクトルを示すグラフである。  Further, a nitride phosphor in which Y having a high peak intensity was selected and the composition ratio of Ca 2 Al and Si was adjusted was produced as Example 26 37 in the same manner as in the above Example. Table 3 shows the measurement results of the characteristics of the nitride phosphor according to each example. A graph of the emission spectrum of the phosphor of Example 26 of the present invention is shown by a wavy line in FIG. Similarly, the wavy line in FIG. 9 is a graph showing the excitation spectrum of the phosphor of Example 26 of the present invention, and the wavy line in FIG. 10 is a graph showing the reflection spectrum of the phosphor of Example 26 of the present invention.
[0144] [表 3] 組成比 添カロ内容 発光 f寺性 [0144] [Table 3] Composition ratio Caro contents Emitted f Temple
量子 ピ―ク ピ―ク Quantum Peak Peak
Ca AI Si Eu 色調 Ca AI Si Eu color
at 輝度  at brightness
効率 波長 強度 Efficiency Wavelength Intensity
( ) (¾) (nm) (%) 実施例 26 0.9875 1 1 0.01 Y 0.0025 0.653 0.339 132.6 181.8 652 185.9 実施例 27 0.985 1 1 0.01 Y 0.005 0.657 0.335 126.3 184.7 655 189.1 実施例 28 0.98 1 1 0.01 Y 0.01 0.652 0.341 1 16.4 1 71.4 651 175.5 実施例 29 0.97 1 1 0.01 Y 0.02 0.656 0.337 102.9 163.3 653 166.6 実施例 30 0.96 1 1 0.01 Y 0.03 0.657 0.337 94.8 152.8 655 155.2 実施例 31 0.95 1 1 0.01 Y 0.04 0.657 0.336 84.0 138.9 655 140.3 実施例 32 0.99 0.9975 1 0.01 Y 0.0025 0.656 0.336 129.9 1 77.6 652 180.9 実施例 33 0.99 0.995 1 0.01 Y 0.005 0.660 0.332 1 14.6 165.8 653 168.9 実施例 34 0.99 0.99 1 0.01 Y 0.01 0.660 0.332 1 10.0 162.5 655 164.0 実施例 35 0.99 0.98 1 0.01 Y 0.02 0.662 0.330 99.8 151.9 655 151.7 実施例 36 0.99 1 0.9975 0.01 Y 0.0025 0.660 0.333 126.3 190.5 656 196.9 実施例 37 0.99 1 0.995 0.01 Y 0.005 0.660 0.332 1 19.3 181.2 653 186.2() (¾) (nm) (%) Example 26 0.9875 1 1 0.01 Y 0.0025 0.653 0.339 132.6 181.8 652 185.9 Example 27 0.985 1 1 0.01 Y 0.005 0.657 0.335 126.3 184.7 655 189.1 Example 28 0.98 1 1 0.01 Y 0.01 0.652 0.341 1 16.4 1 71.4 651 175.5 Example 29 0.97 1 1 0.01 Y 0.02 0.656 0.337 102.9 163.3 653 166.6 Example 30 0.96 1 1 0.01 Y 0.03 0.657 0.337 94.8 152.8 655 155.2 Example 31 0.95 1 1 0.01 Y 0.04 0.657 0.336 84.0 138.9 655 140.3 Example 32 0.99 0.9975 1 0.01 Y 0.0025 0.656 0.336 129.9 1 77.6 652 180.9 Example 33 0.99 0.995 1 0.01 Y 0.005 0.660 0.332 1 14.6 165.8 653 168.9 Example 34 0.99 0.99 1 0.01 Y 0.01 0.660 0.332 1 10.0 162.5 655 164.0 Example 35 0.99 0.98 1 0.01 Y 0.02 0.662 0.330 99.8 151.9 655 151.7 Example 36 0.99 1 0.9975 0.01 Y 0.0025 0.660 0.333 126.3 190.5 656 196.9 Example 37 0.99 1 0.995 0.01 Y 0.005 0.660 0.332 1 19.3 181.2 653 186.2
[0145] この結果から、 Ca Al Si Yのモル濃度を増減させても輝度の低下も少なぐ量子 効率、ピーク強度も概ね高い値を示す。またピーク波長も長くなつたものもある。 (実施例 38 42) [0145] From these results, the quantum efficiency and the peak intensity with little decrease in luminance even when the molar concentration of Ca Al Si Y is increased or decreased are generally high. Some have longer peak wavelengths. (Example 38 42)
(Sc系)  (Sc)
[0146] さらにまた、希土類元素として Scを選択し、さらに Siの組成比を固定して Caと A1の 組成比を調整した窒化物蛍光体を、上記実施例と同様の方法で実施例 38 42とし て作製した。各実施例に係る窒化物蛍光体の特性を測定した結果を、表 4に示す。  Furthermore, a nitride phosphor in which Sc is selected as the rare earth element and the composition ratio of Si is fixed and the composition ratio of Ca and A1 is adjusted is obtained in the same manner as in the above embodiment. It was made as. Table 4 shows the results of measuring the characteristics of the nitride phosphor according to each example.
[0147] [表 4]  [0147] [Table 4]
[0148] この結果から、 Scを添加した場合は輝度、量子効率、ピーク強度とも高 、値を示す  [0148] From this result, when Sc is added, luminance, quantum efficiency, and peak intensity are both high and show values.
(実施例 43 46) (Example 43 46)
(Ga系)  (Ga series)
[0149] 次に、 3価の元素として Gaを添カ卩し、同様に Siの組成比を固定して Caと A1の組成 比を調整した窒化物蛍光体を、上記実施例と同様の方法で実施例 43 46として作 製した。各実施例に係る窒化物蛍光体の特性を測定した結果を、表 5に示す。また 図 11は、本発明の実施例 44の蛍光体の発光スペクトルを示すグラフ、図 12は、本 発明の実施例 44の蛍光体の励起スペクトルを示すグラフ、図 13は、本発明の実施 例 44の蛍光体の反射スペクトルを示すグラフである。 Next, a nitride phosphor in which Ga is added as a trivalent element and the composition ratio of Ca and the composition ratio of Ca and A1 are adjusted in the same manner is adjusted in the same manner as in the above example. Example 43 46 was produced. Table 5 shows the measurement results of the characteristics of the nitride phosphor according to each example. FIG. 11 is a graph showing the emission spectrum of the phosphor of Example 44 of the present invention, and FIG. FIG. 13 is a graph showing the reflection spectrum of the phosphor of Example 44 of the present invention, and FIG. 13 is a graph showing the reflection spectrum of the phosphor of Example 44 of the present invention.
[表 5]  [Table 5]
[0151] この結果から、 Gaを添加した場合は発光輝度、量子効率及びピーク強度のいずれ も高い値を示した。  [0151] From these results, when Ga was added, all of the emission luminance, quantum efficiency, and peak intensity showed high values.
(実施例 47〜50)  (Examples 47 to 50)
(In系)  (In series)
[0152] また 3価の元素として Gaに代わって Inを添カ卩し、同様に Siの組成比を固定して Ca と Alの組成比を調整した窒化物蛍光体を、上記実施例と同様の方法で実施例 47〜 50として作製した。各実施例に係る窒化物蛍光体の特性を測定した結果を、表 6に 示す。また本発明の実施例 48の蛍光体の発光スペクトルを示すグラフを図 11に波 線で示す。同様に、図 12の波線は、本発明の実施例 48の蛍光体の励起スペクトル を示すグラフ、図 13の波線は、本発明の実施例 48の蛍光体の反射スペクトルを示す グラフである。  [0152] A nitride phosphor in which In is substituted for Ga as a trivalent element and the composition ratio of Ca and Al is adjusted by fixing the composition ratio of Si in the same manner as in the above example. It produced as Examples 47-50 by the method of. Table 6 shows the measurement results of the characteristics of the nitride phosphor according to each example. In addition, a graph showing the emission spectrum of the phosphor of Example 48 of the present invention is shown by a wavy line in FIG. Similarly, the wavy line in FIG. 12 is a graph showing the excitation spectrum of the phosphor of Example 48 of the present invention, and the wavy line in FIG. 13 is a graph showing the reflection spectrum of the phosphor of Example 48 of the present invention.
[0153] [表 6]  [0153] [Table 6]
[0154] この結果から、 Inを添加した場合も発光輝度、量子効率及びピーク強度の!/ヽずれも 高い値を示した。  [0154] From these results, even when In was added, the emission brightness, quantum efficiency, and peak intensity were also high!
(実施例 51〜58)  (Examples 51-58)
(Geゝ Zr系) [0155] 次に 4価の元素として Geまたは Zrを添カ卩し、 Caおよび Alの組成比を 0. 99 : 1に固 定して Siの組成比を調整した窒化物蛍光体を、上記実施例と同様の方法で実施例 5 1〜58として作製した。各実施例に係る窒化物蛍光体の特性を測定した結果を、表 7 に示す。また図 14は、本発明の実施例 51、 55の蛍光体の発光スペクトルを示すダラ フ、図 15は、本発明の実施例 51、 55の蛍光体の励起スペクトルを示すグラフ、図 16 は、本発明の実施例 51、 55の蛍光体の反射スペクトルを示すグラフである。これらの グラフにおいて、実線は実施例 51、波線は実施例 55をそれぞれ示している。 (Ge ゝ Zr series) [0155] Next, a nitride phosphor in which Ge or Zr is added as a tetravalent element, the composition ratio of Ca and Al is fixed to 0.999: 1, and the composition ratio of Si is adjusted is described above. It produced as Examples 51-58 by the method similar to an Example. Table 7 shows the measurement results of the characteristics of the nitride phosphor according to each example. 14 is a graph showing the emission spectra of the phosphors of Examples 51 and 55 of the present invention, FIG. 15 is a graph showing the excitation spectrum of the phosphors of Examples 51 and 55 of the present invention, and FIG. It is a graph which shows the reflection spectrum of the fluorescent substance of Example 51, 55 of this invention. In these graphs, the solid line shows Example 51, and the wavy line shows Example 55.
[0156] [表 7]  [0156] [Table 7]
[0157] この結果から、 Geまたは Zrを添加した場合添加濃度によりピーク強度等が大きく変 わる。特に Geの濃度が 0. 02未満である場合は高いピーク強度を示した。また、 Zrの 濃度が 0. 02以下である場合は高 、ピーク強度を示した。  [0157] From this result, when Ge or Zr is added, the peak intensity and the like greatly vary depending on the addition concentration. In particular, when the Ge concentration was less than 0.02, high peak intensity was exhibited. Further, when the Zr concentration was 0.02 or less, the peak intensity was high.
(比較例 4)  (Comparative Example 4)
[0158] 実施例 51〜58において使用した 4価の元素 Ge、 Zrの代わりに Hfを用いた。製造 方法、添加量等は実施例 53、 57と同様である。  [0158] Instead of the tetravalent elements Ge and Zr used in Examples 51 to 58, Hf was used. The production method, addition amount, etc. are the same as in Examples 53 and 57.
[0159] 上記の結果力も Hfの濃度が 0. 01である場合は低いピーク強度を示した。 [0159] The resultant force also showed a low peak intensity when the Hf concentration was 0.01.
(実施例 59〜70)  (Examples 59-70)
(ホウ素及び希土類元素)  (Boron and rare earth elements)
[0160] 以上の実施例では、一般式 M Al Si N : Euの窒化物蛍光体について説 w X y ((2/3)w+x+(4/3)y) [0160] In the above embodiment, the nitride phosphor of the general formula M Al Si N: Eu is described w x y ((2/3) w + x + (4/3) y)
明した。この蛍光体にさらに、ホウ素を添加した場合の特性の変化について、以下の 実施例 59〜70を作製して検討した。これら実施例に係る窒化物蛍光体の特性を測 定した結果を表 8に示す。これらの蛍光体は、一般式 M Al Si B N : Eu w X y z ((2/3)w+x+(4/3)y+z) として表され、 Mは Mg、 Ca、 Sr、 Baの群から選ばれる少なくとも一であり、 0. 04≤w ≤9、 x= l、 0. 056≤y≤18, 0. 001≤z≤0. 5である。 I am clear. The following Examples 59 to 70 were prepared and examined for changes in characteristics when boron was further added to the phosphor. Table 8 shows the measurement results of the characteristics of the nitride phosphors according to these examples. These phosphors have the general formula M Al Si BN: Eu w X yz ((2/3) w + x + (4/3) y + z) M is at least one selected from the group of Mg, Ca, Sr, Ba, 0.0.04≤w ≤9, x = l, 0.056≤y≤18, 0.001≤z≤0 .5.
[0161] まず実施例 59〜70として、上記窒化物蛍光体に希土類元素を添加した。比較例 1 を基準としている。この比較例 1は Gdを添カ卩している力 ホウ素は添カ卩していない。ま た比較例 5〜7は Gd、 Nd、 Tmを添カ卩して、さらにホウ素 Bを 0. 01添カ卩した。実施例 60〜68、 70、 it較 f列 5〜7の 光体における Ca, Al, Siゝ B、 Euの糸且成 itは、 0. 9 8 : 1 : 1 : 0. 01 : 0. 01とした。また実施 ί列 59、 69の 光体にお!/、ては 0. 9875 : 1 : 1 : 0. 01 : 0. 0025とした。一方実施 f列 60〜68、 70は元素添カロとして希土類元素を各 々添加しており、その濃度は Caのモル濃度に対するモル比として各々 0. 01としてい る。また実施例 59、 69の蛍光体においては 0. 0025としている。またすベての実施 例において、 Eu濃度は 0. 01である。 Eu濃度は、 Caのモル濃度に対してのモル比 である。  [0161] First, as Examples 59 to 70, a rare earth element was added to the nitride phosphor. Based on Comparative Example 1. In Comparative Example 1, the force of adding Gd does not add boron. In Comparative Examples 5 to 7, Gd, Nd, and Tm were added, and boron B was added to 0.01. Examples 60 to 68, 70, comparison of it It is possible to form a thread of Ca, Al, Si EuB, Eu in the light body of f row 5 to 7, 0.98: 1: 1: 0.01: 0. 01. Also, it was set to 0.99875: 1: 1: 1: 0. 01: 0. 0025 for the light bodies in the implementation columns 59 and 69. On the other hand, in the f columns 60 to 68 and 70, rare earth elements are added as elemental calories, and the concentration is 0.01 as the molar ratio to the molar concentration of Ca. In the phosphors of Examples 59 and 69, the value is set to 0.0025. In all examples, the Eu concentration is 0.01. Eu concentration is the molar ratio to the molar concentration of Ca.
[0162] [表 8]  [0162] [Table 8]
[0163] この結果から、実施例 59〜70のホウ素を添カ卩した窒化物蛍光体においては、輝度 、量子効率、ピーク強度のいずれかで比較例 1よりも高い値を示した。特に実施例 59 、 60の Yや、実施例 69、 70の Luは、特に高いピーク強度を有する。  [0163] From these results, the nitride phosphors doped with boron in Examples 59 to 70 showed higher values than Comparative Example 1 in any of luminance, quantum efficiency, and peak intensity. In particular, Y in Examples 59 and 60 and Lu in Examples 69 and 70 have particularly high peak intensities.
(比較例 5〜7)  (Comparative Examples 5-7)
[0164] 比較例 5〜7は、実施例 59〜70において使用した添加元素の代わりに Gd、 Nd、 T mを用いた。製造方法、添加量等は実施例 60等と同様である。 [0164] In Comparative Examples 5 to 7, Gd, Nd, T were used instead of the additive elements used in Examples 59 to 70. m was used. The production method, addition amount, and the like are the same as in Example 60 and the like.
[0165] 上記の結果から Gd、 Nd、 Tmの濃度が 0. 01である場合は低 、ピーク強度を示し た。 [0165] From the above results, when the concentrations of Gd, Nd, and Tm were 0.01, the peak intensity was low.
(実施例 71〜77)  (Examples 71-77)
[0166] 次に、 Bを含む窒化物蛍光体に、希土類元素に代わって 4価の元素を添加した実 施例 71〜77を作製し、その特性を測定した結果を表 9に示す。この表に示すように、 実施例 71〜73は 4価の元素として Ge、実施例 74〜77は Zrを添カ卩している。各実施 例において、 Caと A1は組成比を共に 0. 99、すなわち 1: 1としている。また Euの濃度 は、 Caのモル濃度に対してのモル比で 0. 01である。さらに Bのモル濃度は 0. 01で ある。  [0166] Next, Examples 71 to 77 in which tetravalent elements were added in place of rare earth elements to nitride phosphors containing B were prepared, and the characteristics were measured. Table 9 shows the results. As shown in this table, Examples 71 to 73 include Ge as a tetravalent element, and Examples 74 to 77 include Zr. In each example, the composition ratio of Ca and A1 is both 0.99, that is, 1: 1. The Eu concentration is 0.01 as a molar ratio to the Ca molar concentration. Furthermore, the molar concentration of B is 0.01.
[0167] [表 9]  [0167] [Table 9]
[0168] この結果から、 Ge、 Zrを用いた場合も輝度、量子効率、ピーク強度の 、ずれかに おいて高い値を示した。  [0168] From these results, even when Ge and Zr were used, the brightness, quantum efficiency, and peak intensity were high in deviation.
(比較例 8)  (Comparative Example 8)
[0169] 比較例 8は、実施例 71〜77において使用した Ge、 Zrの代わりに Hfを用いた。製 造方法、添加量等は実施例 72、 75と同様である。  [0169] In Comparative Example 8, Hf was used instead of Ge and Zr used in Examples 71 to 77. The production method, addition amount, etc. are the same as in Examples 72 and 75.
[0170] 上記の結果力も Hfの濃度が 0. 01である場合は低いピーク強度を示した。 [0170] The resultant force also showed a low peak intensity when the Hf concentration was 0.01.
[0171] 以上の結果を、ピーク強度の変化を示すグラフとして図 17に示す。この図に示すよ うに、基準となる比較例 1ではホウ素の添カ卩によってピーク強度は増加しているが(比 較例 5)、窒化物蛍光体に希土類元素や 3価元素や 4価元素を添加した例では、添 加した元素に応じてピーク強度も変化する。 Y、 Sc、 La、 Ce、 Pr、 Tb、 Dy、 Ho、 Er、 Lu、 Ga、 In、 Ge、 Zr等についてはピーク強度が増加している。特に Y、 Lu、 Ga、 In では高 1、ピーク強度を示した。 [0171] The above results are shown in Fig. 17 as a graph showing changes in peak intensity. As shown in this figure, in Comparative Example 1, which is the reference, the peak intensity is increased by boron addition (Comparative Example 5), but the rare earth element, trivalent element, and tetravalent element are added to the nitride phosphor. In the example in which is added, the peak intensity also changes depending on the added element. For Y, Sc, La, Ce, Pr, Tb, Dy, Ho, Er, Lu, Ga, In, Ge, Zr, etc., the peak intensity is increased. Especially Y, Lu, Ga, In Shows a high peak intensity.
[0172] さらにまた、上記実施例 1〜77の窒化物蛍光体は、比較例 1の窒化物蛍光体と異 なる色調を示す。これにより希土類などの元素を添加することで所望の色調に調整し た発光装置を得ることができる。  [0172] Furthermore, the nitride phosphors of Examples 1 to 77 show a color tone different from that of the nitride phosphor of Comparative Example 1. Accordingly, a light emitting device adjusted to a desired color tone can be obtained by adding an element such as rare earth.
[0173] 次に、実施例 78〜173に係る窒化物蛍光体について説明する。ここで、残光は室 温で 253. 7nmの光を一定時間照射した後、励起光源ランプを非点灯とする。時間 の基準はこの励起光源ランプを非点灯とした瞬間を 0と定める。励起光源照射中の 輝度を 100%とした場合、輝度が 1/10、 1/100までに減衰するまでに要する時間 (msec)を測定する。この測定の結果を基準に残光特性を決定する。  [0173] Next, the nitride phosphor according to Examples 78 to 173 will be described. Here, afterglow is irradiated with 253.7 nm of light for a certain period of time at room temperature, and then the excitation light source lamp is turned off. The standard for time is defined as 0 when the excitation light source lamp is turned off. If the luminance during excitation light source irradiation is 100%, measure the time (msec) required for the luminance to decay to 1/10 or 1/100. Afterglow characteristics are determined based on the result of this measurement.
(実施例 78〜92、比較例 9)  (Examples 78 to 92, Comparative Example 9)
(希土類元素)  (Rare earth elements)
[0174] まず実施例 78〜92の窒化物蛍光体を前述の方法で製造し、各実施例に係る窒化 物蛍光体の特性を測定した。その結果を表 10に示す。また図 18に、比較例 9と実施 例 78の窒化物蛍光体を Ex=460nmで励起したときの発光スペクトルを示す。さらに 図 19に、比較例 9と実施例 78の窒化物蛍光体の励起スペクトルを、図 20に、比較例 9と実施例 78の窒化物蛍光体の反射スペクトルを、それぞれ示す。さらにまた、実施 例 78の窒化物蛍光体を撮影した SEM写真を図 21に示す。図 21 (a)は、 1000倍、 図 21 (b)は、 5000倍で撮影した状態をそれぞれ示している。比較例 9は所定の元素 を含有して 、な 、以外は実施例 78〜92とほぼ同様である。  First, the nitride phosphors of Examples 78 to 92 were manufactured by the above-described method, and the characteristics of the nitride phosphors according to each Example were measured. The results are shown in Table 10. FIG. 18 shows emission spectra when the nitride phosphors of Comparative Example 9 and Example 78 are excited at Ex = 460 nm. Further, FIG. 19 shows the excitation spectra of the nitride phosphors of Comparative Example 9 and Example 78, and FIG. 20 shows the reflection spectra of the nitride phosphors of Comparative Example 9 and Example 78, respectively. Furthermore, FIG. 21 shows an SEM photograph of the nitride phosphor of Example 78. Fig. 21 (a) shows the image taken at 1000x and Fig. 21 (b) shows the image taken at 5000x. Comparative Example 9 is substantially the same as Examples 78 to 92 except that it contains a predetermined element.
[0175] [表 10] [0175] [Table 10]
比 添加内容 発光特性 残光 (ms) 量子 ピ―ク ピ―ク Ratio Content of addition Luminous properties Afterglow (ms) Quantum peak Peak
Ca Al Si Eu 色調  Ca Al Si Eu color
元素 効率 波 強度 1 /10 1 /100  Element efficiency Wave intensity 1/10 1/100
X y (%) (%〕 nm) (  X y (%) (%) nm) (
比較例 9 0.99 1 1 0.01 なし なし 0.649 0.344 100 100 650 100 35 460 実施例 78 0.98 1 1 0.01 Y 0.01 0.652 0.341 83.4 97.0 651 97.3 40 4360 実施例 79 0.98 1 1 0.01 Sc 0.01 0.639 0.354 77.7 67.1 647 65.5 35 835 実施例 80 0.98 1 1 0.01 La 0.01 0.643 0.349 80.7 76.9 649 75.8 35 530 実施例 81 0.98 1 1 0.01 Ce 0.01 0.644 0.348 84.5 83.1 649 81.6 35 90 実施例 82 0.98 1 1 0.01 Pr 0.01 0.648 0.345 63.5 62.5 649 62.5 35 60 実施例 83 0.98 1 1 0.01 Nd 0.01 0.647 0.345 39.1 37.1 651 36.7 40 90 実施例 84 0.98 1 1 0.01 Sm 0.01 0.636 0.354 18.9 15.3 642 14.9 30 50 実施例 85 0.98 1 1 0.01 Gd 0.01 0.631 0.361 71.7 56.6 642 55.4 35 1300 実施例 86 0.98 1 1 0.01 Tb 0.01 0.650 0.342 71.7 71.9 647 71.2 30 55 実施例 87 0.98 1 1 0.01 Dy 0.01 0.649 0.344 69.1 67.2 649 66.7 30 55 実施例 88 0.98 1 1 0.01 Ho 0.01 0.648 0.344 55.8 55.1 647 52.7 35 2670 実施例 89 0.98 1 1 0.01 Er 0.01 0.644 0.348 64.4 60.4 647 59.7 40 1 790 実施例 90 0.98 1 1 0.01 Tm 0.01 0.645 0.347 40.3 37.0 647 37.0 30 50 実施例 91 0.98 1 1 0.01 Yb 0.01 0.636 0.353 1 6.7 13.5 645 12.6 30 55 実施例 92 0.98 1 1 0.01 し u 0.01 0.649 0.344 87.9 100.8 655 99.5 40 2360 Comparative Example 9 0.99 1 1 0.01 None None 0.649 0.344 100 100 650 100 35 460 Example 78 0.98 1 1 0.01 Y 0.01 0.652 0.341 83.4 97.0 651 97.3 40 4360 Example 79 0.98 1 1 0.01 Sc 0.01 0.639 0.354 77.7 67.1 647 65.5 35 835 Example 80 0.98 1 1 0.01 La 0.01 0.643 0.349 80.7 76.9 649 75.8 35 530 Example 81 0.98 1 1 0.01 Ce 0.01 0.644 0.348 84.5 83.1 649 81.6 35 90 Example 82 0.98 1 1 0.01 Pr 0.01 0.648 0.345 63.5 62.5 649 62.5 35 60 Example 83 0.98 1 1 0.01 Nd 0.01 0.647 0.345 39.1 37.1 651 36.7 40 90 Example 84 0.98 1 1 0.01 Sm 0.01 0.636 0.354 18.9 15.3 642 14.9 30 50 Example 85 0.98 1 1 0.01 Gd 0.01 0.631 0.361 71.7 56.6 642 55.4 35 1300 Example 86 0.98 1 1 0.01 Tb 0.01 0.650 0.342 71.7 71.9 647 71.2 30 55 Example 87 0.98 1 1 0.01 Dy 0.01 0.649 0.344 69.1 67.2 649 66.7 30 55 Example 88 0.98 1 1 0.01 Ho 0.01 0.648 0.344 55.8 55.1 647 52.7 35 2670 Example 89 0.98 1 1 0.01 Er 0.01 0.644 0.348 64.4 60.4 647 59.7 40 1 790 Example 90 0.98 1 1 0.01 Tm 0.01 0.645 0.347 40.3 37.0 647 37.0 30 50 Example 91 0.98 1 1 0.01 Yb 0.01 0.636 0.353 1 6.7 13.5 645 12.6 30 55 Example 92 0.98 1 1 0.01 and u 0.01 0.649 0.344 87.9 100.8 655 99.5 40 2360
[0176] 比較例 9の窒化物蛍光体は、 Ca Eu AlSiNで表される。 Caと Alと Siは、 0. 99 [0176] The nitride phosphor of Comparative Example 9 is represented by Ca Eu AlSiN. Ca, Al and Si are 0.99
0.99 0.01 3  0.99 0.01 3
: 1 : 1としている。また Eu濃度は 0. 01である。 Eu濃度は、 Caのモル濃度に対しての モル比である。なお比較例 9は基準として元素添加なしとした。一方、実施例 78 92 は元素添加として希土類元素を各々添カ卩しており、 Caと A1と Siは、 0. 98 : 1 : 1として いる。 Eu濃度は 0. 01、希土類元素濃度は 0. 01である。その濃度は Caのモル濃度 に対するモル比として各々 0. 01としている。  : 1: 1 The Eu concentration is 0.01. Eu concentration is the molar ratio to the molar concentration of Ca. In Comparative Example 9, no element was added as a reference. On the other hand, in Example 78 92, rare earth elements were added as element additions, and Ca, A1 and Si were set to 0.98: 1: 1. The Eu concentration is 0.01 and the rare earth element concentration is 0.01. The concentration is 0.01 as the molar ratio to the molar concentration of Ca.
[0177] 以上の蛍光体は以下のようにして製造される。まず、原料の Caを 1 μ m 15 μ mに 粉砕し、窒素雰囲気中で窒化する。その後、 Caの窒化物を 0. 1 μ πι 10 /ζ mに粉 砕する。原料の Caを 20g秤量し、窒化を行う。同様にして、原料の Siを 1 m 15 mに粉砕し、窒素雰囲気中で窒化する。その後、 Siの窒化物を 0. mに 粉砕する。原料の Siを 20g秤量し、窒化を行う。次に、 A1の化合物 A1N Euの化合 物 Eu Oを 0. 1 m 10 μ mに粉砕する。 Caの窒化物、 A1の窒化物、 Siの窒化物[0177] The phosphor described above is manufactured as follows. First, the raw material Ca is ground to 1 μm and 15 μm and nitrided in a nitrogen atmosphere. Thereafter, the Ca nitride is pulverized to 0.1 μπι 10 / ζ m. Weigh 20g of raw material Ca and perform nitriding. Similarly, the raw material Si is pulverized to 1 m 15 m and nitrided in a nitrogen atmosphere. After that, the Si nitride is ground to 0. m. Weigh 20g of raw material Si and perform nitriding. Next, the compound A1N Eu of compound A1 EuO is pulverized to 0.1 m 10 μm. Ca nitride, A1 nitride, Si nitride
2 3 twenty three
Euの酸ィ匕物を、窒素雰囲気中で混合する。実施例 78において、原料である窒化 カルシウム Ca N、窒化アルミニウム A1N、窒化ケィ素 Si N、酸化ユウ口ピウム Eu O  Eu oxides are mixed in a nitrogen atmosphere. In Example 78, the raw materials were calcium nitride Ca N, aluminum nitride A1N, silicon nitride Si N, and Eu oxide Pio O
3 2 3 4 2 3 3 2 3 4 2 3
、添加元素の各元素の混合比率(モル比)は、じ& :八1: 31 11 :添加元素=0. 98 : 1 . 00 : 1. 00 : 0. 01 : 0. 01となるように調整する。 The mixing ratio (molar ratio) of each element of the additive element is as follows: 8:31 11: additive element = 0.98: 1.00: 1.00: 1.01: 0.01 adjust.
[0178] この混合比率になるように、 Ca N (分子量 148. 26) A1N (分子量 40. 99)、 Si [0178] To achieve this mixing ratio, Ca N (molecular weight 148. 26) A1N (molecular weight 40. 99), Si
3 2 3 3 2 3
N (分子量 140. 31)、 Eu Oを秤量し、混合を行う。上記化合物を混合し、焼成を行Weigh N (molecular weight 140. 31) and Eu 2 O and mix. Mix the above compounds and fire
4 2 3 4 2 3
つた。焼成条件は、アンモニア雰囲気中、上記化合物をルツボに投入し、室温から徐 々に昇温して、約 1600°Cで約 5時間、焼成を行い、ゆっくりと室温まで冷却する。 I got it. The firing conditions are as follows. The above compound is put into a crucible in an ammonia atmosphere, and gradually from room temperature. The temperature is raised gradually, firing is performed at about 1600 ° C for about 5 hours, and then slowly cooled to room temperature.
[0179] 実施例 78〜92の窒化物蛍光体の発光輝度及び量子効率は、比較例 9を 100%と し、これを基準に相対値で表す。 1Z100残光について実施例 81の Ce、実施例 82 の Pr、実施例 83の Nd、実施例 84の Sm、実施例 86の Tb、実施例 87の Dy、実施例 90の Tm、実施例 91の Ybが比較例 9よりも短残光であった。このうち実施例 81の Ce 、実施例 86の Tbが短残光でかつ輝度も高い。これに対し、実施例 78の Y、実施例 7 9の Sc、実施例 80の La、実施例 85の Gd、実施例 88の Ho、実施例 89の Er、実施 例 92の Luが比較例 9よりも長残光であった。このうち実施例 78の Y、実施例 79の Sc 、実施例 80の La、実施例 85の Gd、実施例 92の Luは長残光でかつ輝度も高い。こ れにより用途に応じた所定の残光を有する窒化物蛍光体を提供することができる。 [0179] The light emission luminance and the quantum efficiency of the nitride phosphors of Examples 78 to 92 are represented by relative values with Comparative Example 9 as 100%. 1Z100 Afterglow Ce of Example 81, Pr of Example 82, Nd of Example 83, Sm of Example 84, Tb of Example 86, Dy of Example 87, Tm of Example 90, Example 91 Yb was shorter afterglow than Comparative Example 9. Of these, Ce in Example 81 and Tb in Example 86 have short afterglow and high brightness. In contrast, Y in Example 78, Sc in Example 79, La in Example 80, Gd in Example 85, Ho in Example 88, Er in Example 89, and Lu in Example 92 are comparative examples 9 It was longer afterglow. Among them, Y in Example 78, Sc in Example 79, La in Example 80, Gd in Example 85, and Lu in Example 92 have long afterglow and high luminance. Thereby, a nitride phosphor having a predetermined afterglow according to the application can be provided.
[0180] なお実施例 78〜92の窒化物蛍光体は、添加元素により色調も若干異なっている。 [0180] The nitride phosphors of Examples 78 to 92 have slightly different color tones depending on the additive elements.
各蛍光体の平均粒径は、 5. O ^ m-10. O /z mである。また、実施例中の蛍光体に は酸素が含有される。  The average particle size of each phosphor is 5. O ^ m-10.O / zm. Further, the phosphors in the examples contain oxygen.
(実施例 93〜107)  (Examples 93 to 107)
(Lu系)  (Lu series)
[0181] 次に、希土類元素として輝度及び量子効率の上昇を示した Luを選択し、さらに Ca 、 Al、 Siの組成比を調整した窒化物蛍光体を、上記実施例と同様の方法で実施例 9 3〜107として作製した。各実施例に係る窒化物蛍光体の特性を測定した結果を、表 11に示す。また図 22は、本発明の実施例 93の蛍光体の発光スペクトルを示すダラ フ、図 23は、本発明の実施例 93の蛍光体の励起スペクトルを示すグラフ、図 24は、 本発明の実施例 93の蛍光体の反射スペクトルを示すグラフである。なお、表 11〜表 20にお 、て横棒は測定して ヽな 、ことを示す。  [0181] Next, Lu is selected as a rare earth element, which shows an increase in luminance and quantum efficiency, and a nitride phosphor in which the composition ratio of Ca, Al, and Si is adjusted is performed in the same manner as in the above-described example. Example 9 Prepared as 3-107. Table 11 shows the measurement results of the characteristics of the nitride phosphor according to each example. FIG. 22 is a graph showing the emission spectrum of the phosphor of Example 93 of the present invention, FIG. 23 is a graph showing the excitation spectrum of the phosphor of Example 93 of the present invention, and FIG. 42 is a graph showing the reflection spectrum of the phosphor of Example 93. In Tables 11 to 20, the horizontal bars indicate that they are measured.
[0182] [表 11] [0182] [Table 11]
[0183] 実施例 93〜107の窒化物蛍光体は Ca Al Si N : Euで表される。実施  [0183] The nitride phosphors of Examples 93 to 107 are represented by CaAlSiN: Eu. Implementation
w X y ((2/3)w+x+(4/3)y)  w X y ((2/3) w + x + (4/3) y)
例 93〜107において、 Eu濃度は蛍光体 1モルに対してのモル比である。なお実施 例 93〜107の蛍光体の発光輝度及びエネルギー効率も、比較例 9を 100%とし、こ れを基準に相対値で表す。実施例 93〜107の窒化物蛍光体の平均粒径は 5. Ο μ m〜10. O /z mである。表 11の結果から、 Ca、 Al、 Siのモル濃度を増減させても長残 光であり、高輝度であり、量子効率、ピーク強度も概ね高い値を示す。またピーク波 長も長くなつた。このことから、長残光で高輝度の窒化物蛍光体を得るために Luは好 適な添加元素であることが明らかとなる。  In Examples 93 to 107, the Eu concentration is a molar ratio relative to 1 mol of the phosphor. The light emission luminance and energy efficiency of the phosphors of Examples 93 to 107 are also expressed as relative values with Comparative Example 9 as 100%. The average particle diameters of the nitride phosphors of Examples 93 to 107 are 5. μm to 10. O / z m. From the results in Table 11, even if the molar concentration of Ca, Al, and Si is increased or decreased, it shows long afterglow, high brightness, and high quantum efficiency and peak intensity. The peak wavelength also became longer. This reveals that Lu is a suitable additive element in order to obtain a long-afterglow and high-brightness nitride phosphor.
(実施例 108〜119)  (Examples 108 to 119)
(Y系)  (Y series)
[0184] さらに、希土類元素として長残光かつ高輝度を示した Yを選択し、さらに Ca、 Al、 Si の組成比を調整した窒化物蛍光体を、上記実施例と同様の方法で実施例 108〜11 9として作製した。各実施例に係る窒化物蛍光体の特性を測定した結果を、表 12に 示す。また本発明の実施例 108の蛍光体の発光スペクトルのグラフを図 22に波線で 示す。同様に図 23の波線は、本発明の実施例 108の蛍光体の励起スペクトルを示 すグラフ、図 24の波線は、本発明の実施例 108の蛍光体の反射スペクトルを示すグ ラフである。実施例 108〜 119の窒化物蛍光体の発光輝度及び量子効率は、比較 例 9を 100%とし、これを基準に相対値で表す。  [0184] Further, a nitride phosphor in which Y showing long afterglow and high luminance was selected as the rare earth element, and the composition ratio of Ca, Al, and Si was adjusted was used in the same manner as in the above examples. 108 to 119 were prepared. Table 12 shows the measurement results of the characteristics of the nitride phosphor according to each example. Further, the graph of the emission spectrum of the phosphor of Example 108 of the present invention is shown by the wavy line in FIG. Similarly, the wavy line in FIG. 23 is a graph showing the excitation spectrum of the phosphor of Example 108 of the present invention, and the wavy line in FIG. 24 is a graph showing the reflection spectrum of the phosphor of Example 108 of the present invention. The light emission luminance and quantum efficiency of the nitride phosphors of Examples 108 to 119 are expressed as relative values with Comparative Example 9 as 100%.
[0185] [表 12] [0185] [Table 12]
[0186] 表 12の結果から、 Ca、 Al、 Siのモル濃度を増減させても長残光かつ高輝度であり 、量子効率、ピーク強度も概ね高い値を示す。またピーク波長も長くなつた。このこと から、長残光で高輝度の窒化物蛍光体を得るために Yはさらに好適な添加元素であ ることが明らカゝとなる。  [0186] From the results in Table 12, even if the molar concentration of Ca, Al, and Si is increased or decreased, long persistence and high brightness are obtained, and the quantum efficiency and peak intensity are generally high. The peak wavelength also became longer. This clearly indicates that Y is a more suitable additive element in order to obtain a long-afterglow and high-luminance nitride phosphor.
(実施例 120〜124)  (Examples 120-124)
(Sc系)  (Sc)
[0187] さらにまた、希土類元素として Scを選択し、さらに Siの組成比を固定して Caと A1の 組成比を調整した窒化物蛍光体を、上記実施例と同様の方法で実施例 120〜 124 として作製した。各実施例に係る窒化物蛍光体の特性を測定した結果を、表 13に示 す。実施例 120〜 124の窒化物蛍光体の発光輝度及び量子効率は、比較例 9を 10 0%とし、これを基準に相対値で表す。  Furthermore, a nitride phosphor in which Sc is selected as the rare earth element, and the composition ratio of Ca and A1 is adjusted by fixing the composition ratio of Si, is obtained in the same manner as in the above-described embodiment. 124. Table 13 shows the measurement results of the characteristics of the nitride phosphor according to each example. The light emission luminance and quantum efficiency of the nitride phosphors of Examples 120 to 124 are set to 100% in Comparative Example 9, and are expressed as relative values based on this.
[0188] [表 13]  [0188] [Table 13]
[0189] 表 13の結果から、 Scの添力卩量を変えた場合も長残光であった。  [0189] From the results in Table 13, long afterglow was observed even when the amount of Sc applied was changed.
(実施例 125〜128)  (Examples 125 to 128)
(Ga系)  (Ga series)
[0190] 次に、 3価の元素として Gaを添カ卩し、同様に Siの組成比を固定して Caと A1の組成 比を調整した窒化物蛍光体を、上記実施例と同様の方法で実施例 125〜128として 作製した。各実施例に係る窒化物蛍光体の特性を測定した結果を、表 14に示す。ま た図 25は、本発明の実施例 126の蛍光体の発光スペクトルを示すグラフ、図 26は、 本発明の実施例 126の蛍光体の励起スペクトルを示すグラフ、図 27は、本発明の実 施例 126の蛍光体の反射スペクトルを示すグラフである。実施例 125〜 128の窒化 物蛍光体の発光輝度及び量子効率は、比較例 9を 100%とし、これを基準に相対値 で表す。 [0190] Next, a nitride phosphor in which Ga is added as a trivalent element and the composition ratio of Ca and the composition ratio of Ca and A1 are adjusted in the same manner is adjusted in the same manner as in the above example. In Examples 125-128 Produced. Table 14 shows the measurement results of the characteristics of the nitride phosphor according to each example. FIG. 25 is a graph showing the emission spectrum of the phosphor of Example 126 of the present invention, FIG. 26 is a graph showing the excitation spectrum of the phosphor of Example 126 of the present invention, and FIG. 14 is a graph showing the reflection spectrum of the phosphor of Example 126. The light emission luminance and quantum efficiency of the nitride phosphors of Examples 125 to 128 are expressed as relative values with Comparative Example 9 as 100%.
[0191] [表 14] [0191] [Table 14]
[0192] 表 14の結果から、 Gaを添加した場合は輝度、量子効率及びピーク強度が概ね上 昇した。また長残光である。  [0192] From the results in Table 14, when Ga was added, the luminance, quantum efficiency, and peak intensity increased substantially. It is also long afterglow.
(実施例 129〜132)  (Examples 129 to 132)
(In系)  (In series)
[0193] また 3価の元素として Gaに代わって Inを添カ卩し、同様に Siの組成比を固定して Ca と A1の組成比を調整した窒化物蛍光体を、上記実施例と同様の方法で実施例 129 〜132として作製した。各実施例に係る窒化物蛍光体の特性を測定した結果を、表 1 5に示す。また本発明の実施例 130の蛍光体の発光スペクトルを図 25のグラフに波 線で示す。同様に図 26の波線は、本発明の実施例 130の蛍光体の励起スペクトル を示すグラフ、図 27の波線は、本発明の実施例 130の蛍光体の反射スペクトルを示 すグラフである。実施例 129〜 132の窒化物蛍光体の発光輝度及び量子効率は、 比較例 9を 100%とし、これを基準に相対値で表す。  In addition, a nitride phosphor in which In is substituted for Ga as a trivalent element and the composition ratio of Ca and A1 is adjusted by fixing the composition ratio of Si in the same manner as in the above example. It produced as Examples 129-132 by the method of. Table 15 shows the measurement results of the characteristics of the nitride phosphor according to each example. In addition, the emission spectrum of the phosphor of Example 130 of the present invention is shown by the wavy line in the graph of FIG. Similarly, the wavy line in FIG. 26 is a graph showing the excitation spectrum of the phosphor of Example 130 of the present invention, and the wavy line in FIG. 27 is a graph showing the reflection spectrum of the phosphor of Example 130 of the present invention. The light emission luminance and quantum efficiency of the nitride phosphors of Examples 129 to 132 are expressed as relative values with Comparative Example 9 as 100%.
[0194] [表 15]  [0194] [Table 15]
[0195] 表 15の結果から、 Inを添加した場合も長残光かつ高輝度、量子効率及びピーク強 度が概ね上昇した。 [0195] From the results shown in Table 15, long afterglow, high brightness, quantum efficiency, and peak intensity were generally increased even when In was added.
(実施例 133 136)  (Example 133 136)
(Ge系)  (Ge series)
[0196] 次に 4価の元素として Geを添カ卩し、 Caおよび A1の組成比を 0. 99 : 1に固定して Si の組成比を調整した窒化物蛍光体を、上記実施例と同様の方法で実施例 133 13 6として作製した。各実施例に係る窒化物蛍光体の特性を測定した結果を、表 16に 示す。また図 28は、本発明の実施例 133の蛍光体の発光スペクトルを示すグラフ、 図 29は、本発明の実施例 133の蛍光体の励起スペクトルを示すグラフ、図 30は、本 発明の実施例 133の蛍光体の反射スペクトルを示すグラフである。実施例 133 13 6の窒化物蛍光体の発光輝度及び量子効率は、比較例 9を 100%とし、これを基準 に相対値で表す。  Next, a nitride phosphor in which Ge is added as a tetravalent element, the composition ratio of Ca and A1 is fixed at 0.99: 1, and the composition ratio of Si is adjusted, is compared with the above examples. It produced as Example 133 136 by the same method. Table 16 shows the measurement results of the characteristics of the nitride phosphor according to each example. FIG. 28 is a graph showing the emission spectrum of the phosphor of Example 133 of the present invention, FIG. 29 is a graph showing the excitation spectrum of the phosphor of Example 133 of the present invention, and FIG. 30 is an example of the present invention. It is a graph which shows the reflection spectrum of 133 fluorescent substance. The light emission luminance and quantum efficiency of the nitride phosphor of Example 133 136 are expressed as relative values with Comparative Example 9 as 100%.
[0197] [表 16]  [0197] [Table 16]
[0198] 表 16の結果から、 Geを添カ卩した場合は Ca Al Siが 0. 99 : 1 : 0. 9975の場合の みピーク強度の上昇を示した。また長残光である。  [0198] From the results of Table 16, when Ge was added, the peak intensity increased only when Ca Al Si was 0.99: 1: 0.9975. It is also long afterglow.
(実施例 137 140)  (Example 137 140)
(Zr系)  (Zr series)
[0199] また 4価の元素として Geに代わって Zrを添カ卩し、同じく Caおよび A1の組成比を 0.  [0199] As a tetravalent element, Zr was added instead of Ge, and the composition ratio of Ca and A1 was set to 0.
99 : 1に固定して Siの組成比を調整した窒化物蛍光体を、上記実施例と同様の方法 で実施例 137 140として作製した。各実施例に係る窒化物蛍光体の特性を測定し た結果を、表 17に示す。また本発明の実施例 137の蛍光体の発光スペクトルを示す グラフを、図 28に波線で示す。同様に図 29の波線は、本発明の実施例 137の蛍光 体の励起スペクトルを示すグラフ、図 30の波線は、本発明の実施例 137の蛍光体の 反射スペクトルを示すグラフである。実施例 137 140の窒化物蛍光体の発光輝度 及び量子効率は、比較例 9を 100%とし、これを基準に相対値で表す。 A nitride phosphor fixed at 99: 1 and adjusting the composition ratio of Si was produced as Example 137 140 by the same method as in the above example. Table 17 shows the measurement results of the characteristics of the nitride phosphor according to each example. A graph showing the emission spectrum of the phosphor of Example 137 of the present invention is shown by the wavy line in FIG. Similarly, the wavy line in FIG. 29 is a graph showing the excitation spectrum of the phosphor of Example 137 of the present invention, and the wavy line in FIG. 30 is a graph showing the reflection spectrum of the phosphor of Example 137 of the present invention. Example 137 Luminous luminance of 140 nitride phosphors The quantum efficiency is expressed as a relative value with reference to Comparative Example 9 as 100%.
[0200] [表 17] [0200] [Table 17]
[0201] 表 17の結果から、 Zrを添加した場合は長残光かつ高輝度である。  [0201] From the results in Table 17, when Zr is added, long afterglow and high brightness are obtained.
(実施例 141 144)  (Example 141 144)
(Hf系)  (Hf series)
[0202] また 4価の元素として Hfを添カ卩し、同じく Caおよび A1の組成比を 0. 99: 1に固定し て Siの組成比を調整した窒化物蛍光体を、上記実施例と同様の方法で実施例 141 144として作製した。各実施例に係る窒化物蛍光体の特性を測定した結果を、表 1 8に示す。実施例 141 144の窒化物蛍光体の発光輝度及び量子効率は、比較例 9を 100%とし、これを基準に相対値で表す。  [0202] A nitride phosphor in which Hf was added as a tetravalent element, and the composition ratio of Ca and A1 was fixed at 0.99: 1 and the composition ratio of Si was adjusted, was compared with the above examples. It produced as Example 141 144 by the same method. Table 18 shows the measurement results of the characteristics of the nitride phosphor according to each example. The light emission luminance and quantum efficiency of the nitride phosphor of Example 141 144 are expressed as relative values with reference to Comparative Example 9 as 100%.
[0203] [表 18]  [0203] [Table 18]
[0204] 表 18の結果から、 Hfを添加した場合はピーク波長が短波長にシフトした。また、長 残光を示した。  [0204] From the results in Table 18, the peak wavelength shifted to a short wavelength when Hf was added. It also showed long afterglow.
(実施例 145 161、比較例 10)  (Example 145 161, Comparative Example 10)
(ホウ素)  (Boron)
[0205] 以上の実施例 78 144では、一般式 M AI Si N : Euの窒化物蛍光体 w X y ((2/3)w+x+(4/3)y)  In Example 78 144 above, the nitride phosphor w X y ((2/3) w + x + (4/3) y) of the general formula M AI Si N: Eu
について説明した。この蛍光体にさらに、ホウ素を添加した場合の特性の変化につい て、以下の実施例 145 173を作製して検討した。これら実施例に係る窒化物蛍光 体の特性を測定した結果を表 19に示す。これらの蛍光体は、一般式 M AI Si B N w κ y z ((2 Explained. Changes in characteristics when boron was further added to this phosphor were examined by producing Examples 145 and 173 below. Table 19 shows the measurement results of the characteristics of the nitride phosphors according to these examples. These phosphors have the general formula M AI Si B N w κ yz ((2
: Euとして表され、 Mは Mg Ca Sr Baの群から選ばれる少なくとも一種 であり、 0. 04≤w≤9、 x= l、 0. 056≤y≤18, 0. 001≤z≤0. 5である : Represented as Eu, M is at least one selected from the group of Mg Ca Sr Ba 0. 04≤w≤9, x = l, 0. 056≤y≤18, 0. 001≤z≤0.5
[0206] [表 19] [0206] [Table 19]
[0207] まず実施例 145〜161として、上記窒化物蛍光体に希土類元素を添加した。実施 例 145〜173の窒化物蛍光体の発光輝度及び量子効率は、比較例 9を 100%とし、 これを基準に相対値で表す。比較例 10として比較例 9にホウ素 Bを 0. 01添加した。 これらの蛍光体における Ca、 Al、 Siの組成比は、 0. 99 : 1: 1とした。一方実施例 14 5〜161は元素添加として希土類元素を各々添カ卩しており、その濃度は Caのモル濃 度に対するモル比として各々 0. 01としている。実施例 145〜161では実施例 145と 実施例 160を除いて Caと A1と Siは、 0. 98 : 1 : 1としている。またすベての実施例に おいて、 Eu濃度は 0. 01である。 Eu濃度は、 Caのモル濃度に対してのモル比である  First, as Examples 145 to 161, a rare earth element was added to the nitride phosphor. The light emission luminance and quantum efficiency of the nitride phosphors of Examples 145 to 173 are expressed as relative values with Comparative Example 9 as 100%. As Comparative Example 10, 0.01% of boron B was added to Comparative Example 9. The composition ratio of Ca, Al, and Si in these phosphors was set to 0.999: 1: 1. On the other hand, in Examples 14 5 to 161, rare earth elements were added as element additions, and the concentrations were 0.01 as the molar ratio of Ca to the molar concentration. In Examples 145 to 161, except for Example 145 and Example 160, Ca, A1, and Si are set to 0.98: 1: 1. In all the examples, the Eu concentration is 0.01. Eu concentration is the molar ratio to the molar concentration of Ca
[0208] 実施例 149の Ce、実施例 150の Pr、実施例 151の Nd、実施例 152の Sm、実施例 153の Gd、実施例 154の Tb、実施例 155の Dy、実施例 158の Tm、実施例 159の Ybのいずれも 1Z100残光において比較例 10よりも短残光であった。一方、実施例 145及び 146の Y、実施例 147の Sc、実施例 148の La、実施例 156の Ho、実施例 157の Er、実施例 160及び 161の Luの!、ずれも 1 / 100残光にお!/、て比較例 10よ りも長残光であった。これにより残光を調整した窒化物蛍光体を提供することができる 。これにより残光を調整した窒化物蛍光体を提供することができる。なお、短残光に する元素と長残光にする元素とを組み合わせることにより所望の残光特性を有する 窒化物蛍光体を提供することができる。 [0208] Ce of Example 149, Pr of Example 150, Nd of Example 151, Sm of Example 152, Gd of Example 153, Tb of Example 154, Dy of Example 155, Tm of Example 158 All of Yb in Example 159 had shorter afterglow in 1Z100 afterglow than Comparative Example 10. On the other hand, Y of Examples 145 and 146, Sc of Example 147, La of Example 148, Ho of Example 156, Er of Example 157, Lu of Examples 160 and 161! The afterglow was longer than that of Comparative Example 10. Thereby, a nitride phosphor having adjusted afterglow can be provided. Thereby, a nitride phosphor with adjusted afterglow can be provided. For short afterglow A nitride phosphor having desired afterglow characteristics can be provided by combining an element to be used and an element to have long afterglow.
(実施例 162 173)  (Example 162 173)
[0209] 次に、 Bを含む窒化物蛍光体に、希土類元素に代わって 4価の元素を添加した実 施例 162 173を作製し、その特性を測定した結果を表 20に示す。この表に示すよ うに、実施例 162 165は 4価の元素として Ge、実施例 166 169は Zr、実施例 17 0 173は Hfを添カ卩している。各実施例において、 Caと A1は組成比を共に 0. 99 すなわち 1 : 1としている。また Euの濃度は、 Caのモル濃度に対してのモル比で 0. 0 1である。さらに Bのモル濃度は 0. 01である。  [0209] Next, Example 162 173 in which a tetravalent element was added in place of a rare earth element to a nitride phosphor containing B was prepared, and the characteristics were measured. As shown in this table, Example 162 165 includes Ge as a tetravalent element, Example 166 169 adds Zr, and Example 17 0 173 adds Hf. In each example, the composition ratios of Ca and A1 are both 0.99, that is, 1: 1. The Eu concentration is 0.0 1 in terms of molar ratio to the Ca molar concentration. Furthermore, the molar concentration of B is 0.01.
[0210] 表 20の結果から、実施例 162 165の Geを添カ卩した場合は短残光になる。また、 実施例 166 169の Zrを添カ卩した場合も短残光になる。実施例 170 173の Hfを 添加した場合は長残光になる。  [0210] From the results shown in Table 20, when the Ge of Example 162 165 is added, short afterglow occurs. In addition, when Zr of Example 166 169 is added, short afterglow occurs. Example 170 When 173 Hf is added, long afterglow occurs.
[0211] [表 20]  [0211] [Table 20]
[0212] 以上の結果を、ホウ素を添加する場合としな 、場合にぉ 、てピーク強度の変化を 示すグラフを図 31に示す。比較例 9を 100%として基準とする。この図に示すように、 基準となる比較例 9に対して比較例 10ではホウ素の添カ卩によってピーク強度は増加 して!/、るが、窒化物蛍光体に希土類元素や 3価元素や 4価元素を添加した例では、 添カ卩した元素に応じてピーク強度も変化する。 La Pr Nd Gd Dy Ho Er Lu Sc Zr等にっ 、てはピーク強度が増加して 、る。  [0212] FIG. 31 shows a graph showing the change in peak intensity in the case where boron is added to the above results. Comparative Example 9 is taken as 100%. As shown in this figure, the peak intensity in Comparative Example 10 is increased by adding boron to Comparative Example 9 compared to the reference example !, but the nitride phosphor has rare earth elements and trivalent elements. In the case of adding a tetravalent element, the peak intensity also changes depending on the added element. The peak intensity is increased by La Pr Nd Gd Dy Ho Er Lu Sc Zr and the like.
[0213] さらに、ホウ素を添加する場合としない場合において 1Z100残光が変化する様子 を図 32のグラフに示す。この図に示すように、基準となる実施例 78ではホウ素の添 加によって長残光となっている力 窒化物蛍光体に希土類元素や 3価元素や 4価元 素を添加した例では、添加した元素に応じて残光特性も変化する。特に、実施例 85 の Gdを用 V、た場合は長残光となり、実施例 153の Gdを用 V、た場合は短残光となり、 同じ Gdを添加した場合でも組成の違いにより残光特性に違 、が生じて 、る。その他 にも実施例 135と実施例 145の Geなどである。また、実施例 80の Laを用いた場合は 比較的短残光であるが、実施例 148の Laを用いた場合は著しい長残光となり、同じ Laを添加した場合でも組成の違いにより残光特性に違 、が生じて 、る。このことから 、ホウ素の添加は蛍光体の残光の調整に有効であることが確認された。 [0213] Furthermore, the graph of Fig. 32 shows how the afterglow of 1Z100 changes with and without the addition of boron. As shown in this figure, in Example 78, which is a reference, a long afterglow due to the addition of boron, a rare earth element, a trivalent element, and a tetravalent element are added to the nitride phosphor. In the example in which element is added, the afterglow characteristics change depending on the added element. In particular, when Gd of Example 85 is used V, long afterglow is obtained, and when Gd of Example 153 is used V, short afterglow is obtained. Even when the same Gd is added, afterglow characteristics are caused by the difference in composition. A difference occurs. Other examples include Ge in Example 135 and Example 145. In addition, when La in Example 80 is used, the afterglow is relatively short, but when La in Example 148 is used, the afterglow is significantly long. Even when the same La is added, the afterglow is caused by the difference in composition. Differences in characteristics occur. From this, it was confirmed that the addition of boron is effective in adjusting the afterglow of the phosphor.
[0214] さらにまた、上記実施例 78〜173の窒化物蛍光体は、比較例 9の窒化物蛍光体と 異なる色調を示す。これにより希土類などの元素を添加することで所望の色調、残光 特性に調整した発光装置を得ることができる。 [0214] Furthermore, the nitride phosphors of Examples 78 to 173 exhibit a color tone different from that of the nitride phosphor of Comparative Example 9. Thus, a light emitting device adjusted to a desired color tone and afterglow characteristics can be obtained by adding an element such as rare earth.
<発光装置 1 >  <Light emitting device 1>
[0215] 次に、本発明に係る蛍光体を使用した発光装置として、赤味成分を付加した白色 発光装置を図 1に基づいて説明する。また図 33に、本発明の実施例の蛍光体と YA G系蛍光体との発光スペクトルを示す。さらに図 34に、本発明の実施例の蛍光体を 使用する白色光源の発光スペクトルを示す。  [0215] Next, as a light-emitting device using the phosphor according to the present invention, a white light-emitting device to which a reddish component is added will be described with reference to FIG. FIG. 33 shows emission spectra of the phosphor of the example of the present invention and the YAG phosphor. Further, FIG. 34 shows an emission spectrum of a white light source using the phosphor of the example of the present invention.
[0216] 発光装置の発光素子 1は、サファイア基板 1上に n型及び p型の GaN層の半導体層 2が形成され、 n型及び p型の半導体層 2に電極 3が設けられ、電極 3は、導電性ワイ ャ 14によりリードフレーム 13と導電接続されている。発光素子 10の上部は、蛍光体 1 1及びコーティング部材 12で覆われ、リードフレーム 13、蛍光体 11及びコーティング 部材 12等の外周をモールド部材 15で覆っている。半導体層 2は、サファイア基板 1 上に n+GaN: Siゝ n—AlGaN: Siゝ n_GaN、 GalnN QWsゝ p"GaN: Mgゝ p"AlGa N : Mg、 p_GaN : Mgの順に積層されている。 n+GaN : Si層の一部はエッチングされ て n型電極が形成されている。 p_GaN: Mg層上には、 p型電極が形成されている。リ ードフレーム 13は、鉄入り銅を用いる。マウントリード 13aの上部には、発光素子 10を 積載するためのカップが設けられており、カップのほぼ中央部の底面に発光素子 10 がダイボンドされている。導電性ワイヤ 14には、金を用い、電極 3と導電性ワイヤ 14を 導電接続するためのバンプ 4には、 Niメツキを施す。蛍光体 11には、実施例の蛍光 体と YAG系蛍光体とを混合する。コーティング部材 12には、エポキシ榭脂と拡散剤 、チタン酸バリウム、酸ィ匕チタン及び蛍光体 11を所定の割合で混合したものを用いる 。モールド部材 15は、エポキシ榭脂を用いる。この砲弾型の発光装置 1は、モールド 部材 15の半径 2mm〜4mm、高さ約 7mm〜 10mmの上部が半球の円筒型である。 [0216] In the light-emitting element 1 of the light-emitting device, an n-type and p-type GaN semiconductor layer 2 is formed on a sapphire substrate 1, an electrode 3 is provided on the n-type and p-type semiconductor layer 2, and an electrode 3 Is electrically connected to the lead frame 13 by a conductive wire 14. The upper part of the light emitting element 10 is covered with the phosphor 11 and the coating member 12, and the outer periphery of the lead frame 13, the phosphor 11, the coating member 12 and the like is covered with the mold member 15. The semiconductor layer 2 is stacked on the sapphire substrate 1 in the order of n + GaN: Si ゝ n—AlGaN: Si ゝ n_GaN, GalnN QWs ゝ p "GaN: Mg ゝ p" AlGaN: Mg, p_GaN: Mg. A part of the n + GaN: Si layer is etched to form an n-type electrode. A p-type electrode is formed on the p_GaN: Mg layer. The lead frame 13 uses iron-containing copper. A cup for mounting the light emitting element 10 is provided on the upper portion of the mount lead 13a, and the light emitting element 10 is die-bonded to the bottom surface of the substantially central portion of the cup. Gold is used for the conductive wire 14, and Ni plating is applied to the bump 4 for conductively connecting the electrode 3 and the conductive wire 14. The phosphor 11 is mixed with the phosphor of the example and the YAG phosphor. Coating member 12 includes epoxy resin and diffusing agent In addition, a mixture of barium titanate, titanium oxide and phosphor 11 in a predetermined ratio is used. The mold member 15 uses epoxy resin. This bullet-type light emitting device 1 is a cylindrical shape in which the upper part of the mold member 15 having a radius of 2 mm to 4 mm and a height of about 7 mm to 10 mm is a hemisphere.
[0217] 発光装置 1に電流を流すと、ほぼ 450nmに発光ピークを持つ第 1の発光スペクトル を有する青色発光素子 10が発光し、この第 1の発光スペクトルを、半導体層 2を覆う 蛍光体 11の中の窒化物蛍光体が吸収して色調変換を行 、、第 1の発光スペクトルと 異なる第 2の発光スペクトルに発光する。また、蛍光体 11中に含有されている YAG 系蛍光体は、第 1の発光スペクトルを吸収し、これに励起されて第 3の発光スペクトル に発光する。この第 1、第 2及び第 3の発光スペクトルが互いに混色されて白色に発 光する。 [0217] When a current is passed through light-emitting device 1, blue light-emitting element 10 having a first emission spectrum having an emission peak at approximately 450 nm emits light, and this first emission spectrum is converted to phosphor 11 covering semiconductor layer 2. The nitride phosphor in the light absorbs and performs color tone conversion, and emits light in a second emission spectrum different from the first emission spectrum. Further, the YAG phosphor contained in the phosphor 11 absorbs the first emission spectrum and is excited by this to emit light in the third emission spectrum. The first, second, and third emission spectra are mixed with each other to emit white light.
[0218] 発光装置 1の蛍光体 11は、本発明の実施例の蛍光体と、コーティング部材 12と、 セリウムで賦活されたイットリウム ·ガドリニウム'アルミニウム酸ィ匕物蛍光体である YA G系蛍光体とを混合した蛍光体を用いる。図 33の実線は、本発明の実施例にかかる 蛍光体の発光スペクトルを示し、図の鎖線は、 YAG系蛍光体の発光スペクトルを示 す。この図から本発明の実施例の蛍光体は、赤色成分の発光スペクトルが強ぐ YA G系蛍光体と組み合わせて使用されて、赤領域の不足しない、すなわち演色性の優 れた白色光源を実現できる。  [0218] The phosphor 11 of the light-emitting device 1 includes a phosphor according to an embodiment of the present invention, a coating member 12, and a YAG-based phosphor that is a yttrium-gadolinium'aluminum oxide phosphor activated with cerium. Is used. The solid line in FIG. 33 shows the emission spectrum of the phosphor according to the example of the present invention, and the chain line in the figure shows the emission spectrum of the YAG phosphor. From this figure, the phosphor of the embodiment of the present invention is used in combination with a YAG-based phosphor whose emission spectrum of the red component is strong, and realizes a white light source that does not lack the red region, that is, has excellent color rendering properties. it can.
[0219] 参考として白色の発光装置 1の発光特性を表 21に示す。また発光スペクトルを図 3 4に示す。なお、この発光装置 1に用いる蛍光体は、本発明に係る希土類元素等を 含有する窒化物蛍光体ではなぐ添加元素を含まない Ca Eu AlSiNで表される  [0219] Table 21 shows the light emission characteristics of the white light emitting device 1 for reference. The emission spectrum is shown in Fig. 34. The phosphor used in the light-emitting device 1 is represented by Ca Eu AlSiN which does not contain an additive element as compared with the nitride phosphor containing the rare earth element according to the present invention.
0.99 0.01 3  0.99 0.01 3
窒化物蛍光体を用いているが、上記の蛍光体に代えて本発明に係る窒化物蛍光体 を用いることは十分可能である。  Although the nitride phosphor is used, it is sufficiently possible to use the nitride phosphor according to the present invention in place of the phosphor described above.
[0220] [表 21] [0220] [Table 21]
上述のように、実施例に係る白色の発光装置 1は、 450nmに発光ピークを有する 発光素子を用い、 YAG系蛍光体と窒化物蛍光体とを用いる。 YAG系蛍光体は (Y, Gd) AI O : Ceを用いる。窒化物蛍光体は実施例 1の Ca AlSiB N : 0. 01As described above, the white light emitting device 1 according to the example uses a light emitting element having an emission peak at 450 nm, and uses a YAG phosphor and a nitride phosphor. YAG phosphors are (Y, Gd) AI O: Ce is used. The nitride phosphor is CaAlSiB N of Example 1: 0.01.
3 5 12 0.980 0.010 3.0033 5 12 0.980 0.010 3.003
Euを用いる。この白色の発光装置 1は定格 150mAの電流を投入すると色調 x=0. 460、色調 y=0. 415、色温度 2735Kの白色領域で発光する。このとき平均演色評 価数 Raは 91. 9と極めて良好である。よって、演色性に優れ、発光輝度の高い発光 装置を提供することができる。また、寿命の長い発光装置を提供することができる。 <発光装置 2> Eu is used. The white light emitting device 1 emits light in a white region having a color tone x = 0.460, a color tone y = 0.415, and a color temperature 2735K when a current of 150 mA is applied. At this time, the average color rendering index Ra is 91.9, which is very good. Therefore, a light-emitting device having excellent color rendering properties and high emission luminance can be provided. In addition, a light-emitting device with a long lifetime can be provided. <Light emitting device 2>
[0222] 本発明の蛍光体は、図 2に示す発光装置 2にも使用できる。この図は表面実装タイ プの発光装置を示す。この発光装置 2に使用される発光素子 101は、青色光励起の 発光素子を使用するが、 380ηπ!〜 400nmの紫外光励起の発光素子も使用すること ができ、発光素子 101は、これに限定されない。  [0222] The phosphor of the present invention can also be used in the light-emitting device 2 shown in FIG. This figure shows a surface-mount type light-emitting device. The light emitting element 101 used in the light emitting device 2 uses a blue light excited light emitting element, but 380ηπ! A light emitting element excited by ultraviolet light with a wavelength of up to 400 nm can also be used, and the light emitting element 101 is not limited to this.
[0223] 発光層としてピーク波長が青色領域にある 460nmの InGaN系半導体層を有する 発光素子 101を用いる。発光素子 101には、 p型半導体層と n型半導体層とが形成さ れており(図示しない)、 p型半導体層と n型半導体層には、リード電極 102へ連結さ れる導電性ワイヤ 104が形成されている。リード電極 102の外周を覆うように絶縁封 止材 103が形成され、短絡を防止している。発光素子 101の上方には、ノ ッケージ 1 05の上部にあるリツド 106から延びる透光性の窓部 107が設けられている。透光性の 窓部 107の内面には、本発明に係る蛍光体 108及びコーティング部材 109の均一混 合物がほぼ全面に塗布されている。発光装置 1では、実施例 1の蛍光体を使用する。 パッケージ 105は、角部がとれた一辺が 8mm〜12mmの正方形である。  [0223] The light-emitting element 101 having an InGaN-based semiconductor layer with a 460 nm peak wavelength in the blue region is used as the light-emitting layer. The light-emitting element 101 includes a p-type semiconductor layer and an n-type semiconductor layer (not shown). The p-type semiconductor layer and the n-type semiconductor layer have conductive wires 104 connected to the lead electrode 102. Is formed. An insulating sealing material 103 is formed so as to cover the outer periphery of the lead electrode 102 to prevent a short circuit. Above the light emitting element 101, a translucent window 107 extending from a lid 106 at the top of the knocker 105 is provided. A uniform mixture of the phosphor 108 and the coating member 109 according to the present invention is applied to the entire inner surface of the translucent window 107. In the light emitting device 1, the phosphor of Example 1 is used. The package 105 is a square having a side with a corner of 8 mm to 12 mm.
[0224] 発光素子 101の青色の発光は、反射板で反射した間接的な光と、発光素子 101か ら直接射出された光とが、本発明の実施例の蛍光体 108に照射される。蛍光体は、 青色発光に励起されて黄色光と赤色光を発光する。蛍光体の黄色光と赤色光と、発 光素子の青色光の両方が外部に放出され、黄色光と赤色光と青色光の混色で白色 発光の光源となる。  [0224] The blue light emitted from the light emitting element 101 is irradiated on the phosphor 108 according to the embodiment of the present invention by indirect light reflected by the reflecting plate and light directly emitted from the light emitting element 101. The phosphor emits yellow light and red light when excited by blue light emission. Both the yellow light and red light of the phosphor and the blue light of the light emitting element are emitted to the outside and become a light source of white light emission by mixing yellow light, red light and blue light.
<発光装置 3 >  <Light emitting device 3>
[0225] 図 35は、本発明の実施例の蛍光体を使用して製作されるキャップタイプの発光装 置 3を示す図である。  FIG. 35 is a diagram showing a cap-type light-emitting device 3 manufactured using the phosphor according to the example of the present invention.
[0226] 発光装置 1における部材と同一の部材には同一の符号を付して、その説明を省略 する。 [0226] The same members as those in the light-emitting device 1 are denoted by the same reference numerals, and description thereof is omitted. To do.
[0227] この発光装置 3は、発光装置 1のモールド部材 15の表面に、蛍光体(図示しない) を分散させた光透過性榭脂からなるキャップ 16を被せることにより構成される。キヤッ プ 16は、蛍光体を光透過性榭脂に均一に分散させている。この蛍光体を含有する 光透過性榭脂を、発光装置 1のモールド部材 15の形状に嵌合する形状に成形して いる。または、所定の型枠内に蛍光体を含有する光透過性榭脂を入れた後、発光装 置 1を型枠内に押し込み、成型する製造方法も可能である。キャップ 16の光透過性 榭脂の具体的材料としては、エポキシ榭脂、ユリア榭脂、シリコーン榭脂などの温度 特性、耐候性に優れた透明榭脂、シリカゾル、ガラス、無機バインダーなどが用いら れる。上記の他、メラミン榭脂、フエノール榭脂等の熱硬化性榭脂を使用することがで きる。また、ポリエチレン、ポリプロピレン、ポリ塩化ビュル、ポリスチレン等の熱可塑性 榭脂、スチレン ブタジエンブロック共重合体、セグメント化ポリウレタン等の熱可塑 性ゴム等も使用することができる。また、蛍光体と共に拡散剤、チタン酸バリウム、酸 化チタン、酸ィ匕アルミニウムなどを含有させても良い。また、光安定化剤や着色剤を 含有させても良い。  [0227] The light emitting device 3 is configured by covering the surface of the mold member 15 of the light emitting device 1 with a cap 16 made of a light transmissive resin in which a phosphor (not shown) is dispersed. Cap 16 uniformly distributes the phosphor in the light-transmitting resin. The light transmissive resin containing the phosphor is molded into a shape that fits into the shape of the mold member 15 of the light emitting device 1. Alternatively, a manufacturing method is also possible in which a light-transmitting resin containing a phosphor is placed in a predetermined mold and then the light-emitting device 1 is pushed into the mold and molded. Light transmittance of cap 16 Specific materials for the resin include transparent resin, silica sol, glass, inorganic binder, etc. with excellent temperature characteristics and weather resistance, such as epoxy resin, urea resin, and silicone resin. It is. In addition to the above, thermosetting resin such as melamine resin and phenol resin can be used. In addition, thermoplastic resins such as polyethylene, polypropylene, polychlorinated butyl and polystyrene, thermoplastic rubbers such as styrene butadiene block copolymer and segmented polyurethane can also be used. In addition to the phosphor, a diffusing agent, barium titanate, titanium oxide, aluminum oxide, etc. may be contained. Further, a light stabilizer or a colorant may be contained.
[0228] キャップ 16に混合される蛍光体と、マウントリード 13aのカップ内に混合される蛍光 体 11は、本発明の実施例にカゝかる蛍光体、あるいは実施例の蛍光体と YAG系蛍光 体を混合して用いる。また、キャップに本発明の実施例の蛍光体を混合して、カップ に YAG系蛍光体を混合し、あるいはまた、キャップに YAG系蛍光体を混合して、力 ップに本発明の実施例の蛍光体を混合することもできる。さらに、キャップに本発明の 実施例の蛍光体と YAG系蛍光体を混合して、カップには蛍光体を混合しな ヽ構造と し、あるいはキャップに蛍光体を混合しないで、カップに本発明の蛍光体と YAG系 蛍光体を混合することもできる。  [0228] The phosphor mixed in the cap 16 and the phosphor 11 mixed in the cup of the mount lead 13a are the phosphor used in the embodiment of the present invention, or the phosphor of the embodiment and the YAG-based fluorescence. Use the body mixed. Also, the phosphor of the embodiment of the present invention is mixed with the cap, the YAG phosphor is mixed with the cup, or the YAG phosphor is mixed with the cap, and the embodiment of the present invention is intensively added. These phosphors can also be mixed. Further, the phosphor of the embodiment of the present invention and the YAG phosphor are mixed in the cap, and the phosphor is not mixed in the cup, or the phosphor is not mixed in the cap, and the present invention is added to the cup. These phosphors can be mixed with YAG phosphors.
[0229] このように構成された発光装置は、発光素子 10から放出された光の一部でカップ やキャップ 16の蛍光体を励起して赤色光に発光させる。また、 YAG系蛍光体を励起 して発光させる。さらに、発光素子の青色光の一部は蛍光体に吸収されることなく外 部に放射される。外部に放射される実施例の蛍光体の赤色光と、 YAG系蛍光体の 発光と、発光素子の青色光とは混色されて白色光となる。 産業上の利用可能性 [0229] The light emitting device configured as described above excites the phosphor of the cup or cap 16 with a part of the light emitted from the light emitting element 10, and emits red light. It also excites YAG phosphors to emit light. Furthermore, a part of the blue light of the light emitting element is emitted outside without being absorbed by the phosphor. The red light of the phosphor of the embodiment radiated to the outside, the light emission of the YAG phosphor, and the blue light of the light emitting element are mixed to form white light. Industrial applicability
[0230] 本発明の窒化物蛍光体及びそれを用いた発光装置は、青色発光素子と他の蛍光 体と一緒に使用されて、高演色性の白色光源とすることができる。  [0230] The nitride phosphor of the present invention and a light-emitting device using the same can be used together with a blue light-emitting element and another phosphor to provide a white light source with high color rendering properties.
図面の簡単な説明  Brief Description of Drawings
[0231] [図 1]本発明の実施の形態に係る蛍光体を使用する白色光源の断面図である。  FIG. 1 is a cross-sectional view of a white light source using a phosphor according to an embodiment of the present invention.
[図 2]本発明の実施の形態に係る蛍光体を使用する他の構造の白色光源の平面図 と断面図である。  FIG. 2 is a plan view and a cross-sectional view of a white light source having another structure using the phosphor according to the embodiment of the present invention.
[図 3]本発明の蛍光体の製造方法を示すブロック図である。  FIG. 3 is a block diagram showing a method for producing the phosphor of the present invention.
[図 4]本発明の実施例 1及び比較例 1に係る蛍光体の発光スペクトルを示すグラフで ある。  FIG. 4 is a graph showing emission spectra of phosphors according to Example 1 and Comparative Example 1 of the present invention.
[図 5]本発明の実施例 1及び比較例 1に係る蛍光体の励起スペクトルを示すグラフで ある。  FIG. 5 is a graph showing excitation spectra of phosphors according to Example 1 and Comparative Example 1 of the present invention.
[図 6]本発明の実施例 1及び比較例 1に係る蛍光体の反射スペクトルを示すグラフで ある。  FIG. 6 is a graph showing reflection spectra of phosphors according to Example 1 and Comparative Example 1 of the present invention.
[図 7]本発明の実施例 1に係る蛍光体の電子顕微鏡写真である。  FIG. 7 is an electron micrograph of the phosphor according to Example 1 of the present invention.
[図 8]本発明の実施例 11及び実施例 26に係る蛍光体の発光スペクトルを示すグラフ である。  FIG. 8 is a graph showing emission spectra of the phosphors according to Example 11 and Example 26 of the present invention.
[図 9]本発明の実施例 11及び実施例 26に係る蛍光体の励起スペクトルを示すグラフ である。  FIG. 9 is a graph showing excitation spectra of phosphors according to Example 11 and Example 26 of the present invention.
[図 10]本発明の実施例 11及び実施例 26に係る蛍光体の反射スペクトルを示すダラ フである。  FIG. 10 is a graph showing reflection spectra of phosphors according to Example 11 and Example 26 of the present invention.
[図 11]本発明の実施例 44及び実施例 48に係る蛍光体の発光スペクトルを示すダラ フである。  FIG. 11 is a graph showing emission spectra of the phosphors according to Example 44 and Example 48 of the present invention.
[図 12]本発明の実施例 44及び実施例 48に係る蛍光体の励起スペクトルを示すダラ フである。  FIG. 12 is a graph showing excitation spectra of phosphors according to Example 44 and Example 48 of the present invention.
[図 13]本発明の実施例 44及び実施例 48に係る蛍光体の反射スペクトルを示すダラ フである。  FIG. 13 is a graph showing the reflection spectra of the phosphors according to Example 44 and Example 48 of the present invention.
[図 14]本発明の実施例 51及び実施例 55に係る蛍光体の発光スペクトルを示すダラ フである。 FIG. 14 is a graph showing emission spectra of phosphors according to Example 51 and Example 55 of the present invention. It is fu.
[図 15]本発明の実施例 51及び実施例 55に係る蛍光体の励起スペクトルを示すダラ フである。  FIG. 15 is a graph showing excitation spectra of phosphors according to Example 51 and Example 55 of the present invention.
[図 16]本発明の実施例 51及び実施例 55に係る蛍光体の反射スペクトルを示すダラ フである。  FIG. 16 is a graph showing reflection spectra of phosphors according to Example 51 and Example 55 of the present invention.
[図 17]ピーク強度の変化を示すグラフである。  FIG. 17 is a graph showing changes in peak intensity.
[図 18]本発明の実施例 78及び比較例 9に係る蛍光体の発光スペクトルを示すグラフ である。  FIG. 18 is a graph showing emission spectra of the phosphors according to Example 78 and Comparative Example 9 of the present invention.
[図 19]本発明の実施例 78及び比較例 9に係る蛍光体の励起スペクトルを示すグラフ である。  FIG. 19 is a graph showing excitation spectra of phosphors according to Example 78 and Comparative Example 9 of the present invention.
[図 20]本発明の実施例 78及び比較例 9に係る蛍光体の反射スペクトルを示すグラフ である。  FIG. 20 is a graph showing reflection spectra of phosphors according to Example 78 and Comparative Example 9 of the present invention.
圆 21]本発明の実施例 78に係る蛍光体の電子顕微鏡写真である。 21] An electron micrograph of the phosphor according to Example 78 of the present invention.
[図 22]本発明の実施例 93及び実施例 108に係る蛍光体の発光スペクトルを示すグ ラフである。  FIG. 22 is a graph showing emission spectra of the phosphors according to Example 93 and Example 108 of the present invention.
[図 23]本発明の実施例 93及び実施例 108に係る蛍光体の励起スペクトルを示すグ ラフである。  FIG. 23 is a graph showing excitation spectra of the phosphors according to Example 93 and Example 108 of the present invention.
[図 24]本発明の実施例 93及び実施例 108に係る蛍光体の反射スペクトルを示すグ ラフである。  FIG. 24 is a graph showing reflection spectra of phosphors according to Example 93 and Example 108 of the present invention.
[図 25]本発明の実施例 126及び実施例 130に係る蛍光体の発光スペクトルを示すグ ラフである。  FIG. 25 is a graph showing an emission spectrum of the phosphor according to Example 126 and Example 130 of the present invention.
[図 26]本発明の実施例 126及び実施例 130に係る蛍光体の励起スペクトルを示すグ ラフである。  FIG. 26 is a graph showing excitation spectra of phosphors according to Example 126 and Example 130 of the present invention.
[図 27]本発明の実施例 126及び実施例 130に係る蛍光体の反射スペクトルを示すグ ラフである。  FIG. 27 is a graph showing reflection spectra of phosphors according to Example 126 and Example 130 of the present invention.
[図 28]本発明の実施例 133及び実施例 137に係る蛍光体の発光スペクトルを示すグ ラフである。  FIG. 28 is a graph showing emission spectra of the phosphors according to Example 133 and Example 137 of the present invention.
[図 29]本発明の実施例 133及び実施例 137に係る蛍光体の励起スペクトルを示すグ ラフである。 FIG. 29 is a graph showing excitation spectra of phosphors according to Example 133 and Example 137 of the present invention. It is rough.
[図 30]本発明の実施例 133及び実施例 137に係る蛍光体の反射スペクトルを示すグ ラフである。  FIG. 30 is a graph showing reflection spectra of phosphors according to Example 133 and Example 137 of the present invention.
[図 31]ホウ素を添加する場合としない場合においてピーク強度の変化を示すグラフで ある。  FIG. 31 is a graph showing changes in peak intensity with and without boron added.
[図 32]ホウ素を添加する場合としない場合において 1Z100残光の変化を示すグラフ である。  FIG. 32 is a graph showing changes in 1Z100 afterglow with and without boron.
[図 33]本発明の実施例 1に係る蛍光体と YAG系蛍光体との発光スペクトルを示す図 である。  FIG. 33 is a diagram showing an emission spectrum of the phosphor according to Example 1 of the present invention and a YAG phosphor.
[図 34]白色の発光装置 1の発光スペクトルを示す図である。  FIG. 34 is a diagram showing an emission spectrum of white light-emitting device 1.
[図 35]本発明の実施例に係る蛍光体を使用する他の白色光源の断面図である。 符号の説明  FIG. 35 is a cross-sectional view of another white light source using the phosphor according to the example of the present invention. Explanation of symbols
1…サファイア基板 1 ... Sapphire substrate
2…半導体層 2 ... Semiconductor layer
3· ··電極 3 ... Electrode
4· "バンプ 4 · "Bump
10· ··発光素子 10 ... Light emitting element
11…蛍光体 11 ... phosphor
12· ··コーティング部材 12 ... Coating material
13· ··リードフレーム 13 ... Lead frame
13a…マウントリード 13a… Mount lead
13b…インナーリード 13b… Inner lead
14…導電性ワイヤ 14 ... Conductive wire
15· ··モーノレド咅附 15 ··· Monored
16…キャップ 16… Cap
101…発光素子 101 ... Light emitting element
102· ··リード電極 102 ... Lead electrode
103· ··絶縁封止材 104···導電性ワイヤ103 ··· Insulating encapsulant 104 ... Conductive wire
105· "パッケージ105 · "Package
106···リツド、 106 ...
107···窓部  107 ··· Window
108…蛍光体  108 ... phosphor
109···コーティング部材  109 ··· Coating material

Claims

請求の範囲 The scope of the claims
[1] ユーロピウムで賦活される窒化物蛍光体であって、  [1] A nitride phosphor activated by europium,
以下の一般式で示され、 w、 x、 y、 zを以下の範囲とし、さらに Y、 Ga、 Inのいずれ 力 1種、または Ge、 Zrのいずれか 1種、が含有されていることを特徴とする窒化物蛍 光体。  It is represented by the following general formula, and w, x, y, z are in the following ranges, and one of Y, Ga, In, or one of Ge, Zr is contained. A characteristic nitride phosphor.
M Al Si N : Eu  M Al Si N: Eu
w X y ((2/3)w+x+(4/3)y) w X y ((2/3) w + x + (4/3) y)
Mは Mg、 Ca、 Sr、 Baの群から選ばれる少なくとも 1種、  M is at least one selected from the group consisting of Mg, Ca, Sr and Ba,
0. 04≤w≤9, x= l、 0. 056≤y≤18  0. 04≤w≤9, x = l, 0. 056≤y≤18
[2] ユーロピウムで賦活される窒化物蛍光体であって、 [2] A nitride phosphor activated by europium,
以下の一般式で示され、 w、 x、 y、 zを以下の範囲とし、さらに La、 Ce、 Pr、 Gd、 Tb 、 Dy、 Ho、 Er、 Luの群から選ばれる少なくとも 1種、または Sc、 Y、 Ga、 Inのいずれ 力 1種、または Ge、 Zrのいずれか 1種、が含有されていることを特徴とする窒化物蛍 光体。  It is represented by the following general formula, w, x, y, z are in the following ranges, and at least one selected from the group of La, Ce, Pr, Gd, Tb, Dy, Ho, Er, Lu, or Sc Nitride phosphor characterized by containing any one of Y, Ga, In, or Ge, Zr.
M Al Si N : Eu  M Al Si N: Eu
w X y ((2/3)w+x+(4/3)y) w X y ((2/3) w + x + (4/3) y)
Mは Mg、 Ca、 Sr、 Baの群から選ばれる少なくとも 1種、  M is at least one selected from the group consisting of Mg, Ca, Sr and Ba,
0. 04≤w≤9, x= l、 0. 056≤y< l力つ l <y≤18  0. 04≤w≤9, x = l, 0. 056≤y <l Powerful l <y≤18
[3] ユーロピウムで賦活される窒化物蛍光体であって、 [3] A nitride phosphor activated by europium,
以下の一般式で示され、 w、 x、 y、 zを以下の範囲とし、さらに Y、 Ga、 Inのいずれ 力 1種、または 4価の元素 Ge、 Zrのいずれ力 1種、が含有されていることを特徴とする 窒化物蛍光体。  It is represented by the following general formula, and w, x, y, and z are in the following ranges, and one of Y, Ga, and In, or one of tetravalent elements Ge and Zr, is included. A nitride phosphor characterized by comprising:
M Al Si B N : Eu  M Al Si B N: Eu
w X y z ((2/3)w+x+(4/3)y+z) w X yz ((2/3) w + x + (4/3) y + z)
Mは Mg、 Ca、 Sr、 Baの群から選ばれる少なくとも 1種、  M is at least one selected from the group consisting of Mg, Ca, Sr and Ba,
0. 04≤w≤9, x= l、 0. 056≤y≤18, 0. 001≤z≤0. 5  0. 04≤w≤9, x = l, 0. 056≤y≤18, 0. 001≤z≤0. 5
[4] ユーロピウムで賦活される窒化物蛍光体であって、 [4] A nitride phosphor activated by europium,
以下の一般式で示され、 w、 x、 y、 zを以下の範囲とし、さらに La、 Ce、 Pr、 Gd、 Tb 、 Dy、 Ho、 Er、 Luの群から選ばれる少なくとも 1種、または Sc、 Y、 Ga、 Inのいずれ 力 1種、または 4価の元素 Ge、 Zrのいずれ力 1種、が含有されていることを特徴とする 窒化物蛍光体。 M Al Si B N : Eu In the following general formula, w, x, y, z are in the following ranges, and at least one selected from the group of La, Ce, Pr, Gd, Tb, Dy, Ho, Er, Lu, or Sc Nitride phosphor characterized by containing any one of, Y, Ga, and In, or any one of tetravalent elements Ge and Zr. M Al Si BN: Eu
w x y z ((2/3)w+x+(4/3)y+z) wxyz ((2/3) w + x + (4/3) y + z)
Mは Mg、 Ca、 Sr、 Baの群から選ばれる少なくとも 1種、  M is at least one selected from the group consisting of Mg, Ca, Sr and Ba,
0. 04≤w≤9, x= l、 0. 056≤y< l力つ l <y≤18、 0. 001≤z≤0.  0. 04≤w≤9, x = l, 0. 056≤y <l Powerful l <y≤18, 0. 001≤z≤0.
5 [5] ユーロピウムで賦活された窒化物蛍光体であって、 5 [5] A nitride phosphor activated with europium,
以下の一般式で示され、 w、 x、 y、 zを以下の範囲とし、残光を調整するためにさら にイットリウム、 3価の元素及び 4価の元素力 選ばれる少なくとも 1種の元素が含有さ れて 、ることを特徴とする窒化物蛍光体。  In the following general formula, w, x, y, z are in the following ranges, and at least one element selected from yttrium, a trivalent element, and a tetravalent elemental force is used to adjust afterglow. A nitride phosphor containing the phosphor.
M Al Si N : Eu  M Al Si N: Eu
w X y ((2/3)w+x+(4/3)y) w X y ((2/3) w + x + (4/3) y)
Mは Mg、 Ca、 Sr、 Baの群から選ばれる少なくとも 1種、  M is at least one selected from the group consisting of Mg, Ca, Sr and Ba,
0. 04≤w≤9, x= l、 0. 056≤y≤18  0. 04≤w≤9, x = l, 0. 056≤y≤18
[6] 請求項 5に記載の窒化物蛍光体であって、 [6] The nitride phosphor according to claim 5,
前記 3価の元素は Ga、 Inのいずれか 1種、前記 4価の元素は Ge、 Zr、 Hfの群から 選ばれる少なくとも 1種であることを特徴とする窒化物蛍光体。  The nitride phosphor, wherein the trivalent element is one of Ga and In, and the tetravalent element is at least one selected from the group of Ge, Zr, and Hf.
[7] ユーロピウムで賦活された窒化物蛍光体であって、 [7] A nitride phosphor activated with europium,
以下の一般式で示され、 w、 x、 y、 zを以下の範囲とし、残光を調整するためにさら にイットリウム、 3価の元素及び 4価の元素力 選ばれる少なくとも 1種の元素が含有さ れて 、ることを特徴とする窒化物蛍光体。  In the following general formula, w, x, y, z are in the following ranges, and at least one element selected from yttrium, a trivalent element, and a tetravalent elemental force is used to adjust afterglow. A nitride phosphor containing the phosphor.
M Al Si B N : Eu  M Al Si B N: Eu
w X y z ((2/3)w+x+(4/3)y+z) w X yz ((2/3) w + x + (4/3) y + z)
Mは Mg、 Ca、 Sr、 Baの群から選ばれる少なくとも 1種  M is at least one selected from the group consisting of Mg, Ca, Sr and Ba
0. 04≤w≤9, x= l、 0. 056≤y≤18, 0. 001≤z≤0. 5  0. 04≤w≤9, x = l, 0. 056≤y≤18, 0. 001≤z≤0. 5
[8] 請求項 7に記載の窒化物蛍光体であって、 [8] The nitride phosphor according to claim 7,
前記 4価の元素は Ge、 Zrの 、ずれ力 1種であることを特徴とする窒化物蛍光体。  4. The nitride phosphor according to claim 1, wherein the tetravalent element is Ge or Zr and has one type of displacement.
[9] 請求項 7に記載の窒化物蛍光体であって、 [9] The nitride phosphor according to claim 7,
前記 3価の元素は Ga、 Inのいずれか 1種、前記 4価の元素は Hfであることを特徴と する窒化物蛍光体。  The nitride phosphor, wherein the trivalent element is one of Ga and In, and the tetravalent element is Hf.
[10] 請求項 1乃至 9のいずれかに記載の窒化物蛍光体であって、 [10] The nitride phosphor according to any one of claims 1 to 9,
Fe、 Ni、 Cr、 Ti、 Nb、 Yb、 Smの元素は、 Mのモル濃度 1に対してモル比で 0. 01 以下若しくは含まれて 、な 、ことを特徴とする窒化物蛍光体。 A nitride phosphor characterized in that the elements Fe, Ni, Cr, Ti, Nb, Yb, and Sm are included in a molar ratio of M of 1 or less or 0.01 or less.
[11] 請求項 1乃至 10のいずれかに記載の窒化物蛍光体であって、 [11] The nitride phosphor according to any one of claims 1 to 10,
組成中に oを含有することを特徴とする窒化物蛍光体。  A nitride phosphor comprising o in the composition.
[12] 近紫外線乃至青色光を発する第 1の発光スペクトルを有する励起光源と、 [12] an excitation light source having a first emission spectrum that emits near ultraviolet to blue light;
第 1の発光スペクトルの少なくとも一部を吸収して、第 2の発光スペクトルを発光する 1種または 2種以上の蛍光体と、  One or more phosphors that absorb at least a portion of the first emission spectrum and emit the second emission spectrum; and
を有する発光装置であって、  A light emitting device comprising:
前記蛍光体は、請求項 1から 11の少なくとも一項に記載の窒化物蛍光体を有する ことを特徴とする発光装置。  The light-emitting device, wherein the phosphor includes the nitride phosphor according to at least one of claims 1 to 11.
PCT/JP2006/307672 2005-04-27 2006-04-11 Nitride phosphor and light-emitting device using same WO2006117984A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005130565A JP5066786B2 (en) 2005-04-27 2005-04-27 Nitride phosphor and light emitting device using the same
JP2005-130566 2005-04-27
JP2005-130565 2005-04-27
JP2005130566A JP4892861B2 (en) 2005-04-27 2005-04-27 Nitride phosphor and light emitting device using the same

Publications (1)

Publication Number Publication Date
WO2006117984A1 true WO2006117984A1 (en) 2006-11-09

Family

ID=37307787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307672 WO2006117984A1 (en) 2005-04-27 2006-04-11 Nitride phosphor and light-emitting device using same

Country Status (1)

Country Link
WO (1) WO2006117984A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262439B2 (en) 2005-11-22 2007-08-28 Lumination Llc Charge compensated nitride phosphors for use in lighting applications
JP2010217310A (en) * 2009-03-13 2010-09-30 Sony Corp Image display device, image display observation system, and image display method
US7859182B2 (en) 2005-08-31 2010-12-28 Lumination Llc Warm white LED-based lamp incoporating divalent EU-activated silicate yellow emitting phosphor
US8441026B2 (en) 2007-12-19 2013-05-14 Koninklijke Philips Electronics N.V. Red emitting SiAlON-based material
CN106520120A (en) * 2016-11-08 2017-03-22 河北利福光电技术有限公司 LED nitride red fluorescent powder and preparation method thereof
JP2017149963A (en) * 2013-04-26 2017-08-31 日亜化学工業株式会社 Phosphor and light-emitting device using the same
EP2109652B1 (en) 2007-02-06 2017-10-04 Philips Intellectual Property & Standards GmbH Red emitting luminescent material
CN109054817A (en) * 2017-09-30 2018-12-21 有研稀土新材料股份有限公司 A kind of nitride fluorescent substances and the light emitting device containing the fluorescent material
WO2023123386A1 (en) * 2021-12-31 2023-07-06 苏州君诺新材科技有限公司 Nitride deep red light material, preparation method, and device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363554A (en) * 2001-06-07 2002-12-18 National Institute For Materials Science Acid nitride phosphor activated with rare earth element
JP2003336059A (en) * 2002-05-23 2003-11-28 National Institute For Materials Science Sialon phosphor
JP2004186278A (en) * 2002-11-29 2004-07-02 Toyoda Gosei Co Ltd Light emitting device and method therefor
JP2004238505A (en) * 2003-02-06 2004-08-26 Ube Ind Ltd Sialon-based oxynitride phosphor and its manufacturing method
JP2005048105A (en) * 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd Phosphor composition and light emitting equipment using the same
WO2005052087A1 (en) * 2003-11-26 2005-06-09 Independent Administrative Institution National Institute For Materials Science Phosphor and light emission appliance using phosphor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363554A (en) * 2001-06-07 2002-12-18 National Institute For Materials Science Acid nitride phosphor activated with rare earth element
JP2003336059A (en) * 2002-05-23 2003-11-28 National Institute For Materials Science Sialon phosphor
JP2004186278A (en) * 2002-11-29 2004-07-02 Toyoda Gosei Co Ltd Light emitting device and method therefor
JP2004238505A (en) * 2003-02-06 2004-08-26 Ube Ind Ltd Sialon-based oxynitride phosphor and its manufacturing method
JP2005048105A (en) * 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd Phosphor composition and light emitting equipment using the same
WO2005052087A1 (en) * 2003-11-26 2005-06-09 Independent Administrative Institution National Institute For Materials Science Phosphor and light emission appliance using phosphor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7859182B2 (en) 2005-08-31 2010-12-28 Lumination Llc Warm white LED-based lamp incoporating divalent EU-activated silicate yellow emitting phosphor
US7262439B2 (en) 2005-11-22 2007-08-28 Lumination Llc Charge compensated nitride phosphors for use in lighting applications
EP2109652B1 (en) 2007-02-06 2017-10-04 Philips Intellectual Property & Standards GmbH Red emitting luminescent material
US8441026B2 (en) 2007-12-19 2013-05-14 Koninklijke Philips Electronics N.V. Red emitting SiAlON-based material
JP2010217310A (en) * 2009-03-13 2010-09-30 Sony Corp Image display device, image display observation system, and image display method
JP2017149963A (en) * 2013-04-26 2017-08-31 日亜化学工業株式会社 Phosphor and light-emitting device using the same
CN106520120A (en) * 2016-11-08 2017-03-22 河北利福光电技术有限公司 LED nitride red fluorescent powder and preparation method thereof
CN109054817A (en) * 2017-09-30 2018-12-21 有研稀土新材料股份有限公司 A kind of nitride fluorescent substances and the light emitting device containing the fluorescent material
KR20190120819A (en) * 2017-09-30 2019-10-24 그리렘 어드밴스드 머티리얼스 캄파니 리미티드 Nitride fluorescent material and light emitting device containing the fluorescent material
JP2020517790A (en) * 2017-09-30 2020-06-18 有研稀土新材料股▲フン▼有限公司 Nitride fluorescent substance and light emitting device containing the fluorescent substance
JP6997799B2 (en) 2017-09-30 2022-01-18 有研稀土新材料股▲フン▼有限公司 Nitride fluorescent substance and a light emitting device containing the fluorescent substance
KR102391156B1 (en) 2017-09-30 2022-05-04 그리렘 어드밴스드 머티리얼스 캄파니 리미티드 A nitride fluorescent substance and a light emitting device containing the fluorescent substance
JP6997799B6 (en) 2017-09-30 2022-06-07 有研稀土新材料股▲フン▼有限公司 Nitride fluorescent substance and a light emitting device containing the fluorescent substance
WO2023123386A1 (en) * 2021-12-31 2023-07-06 苏州君诺新材科技有限公司 Nitride deep red light material, preparation method, and device

Similar Documents

Publication Publication Date Title
JP4244653B2 (en) Silicon nitride phosphor and light emitting device using the same
KR101065522B1 (en) Light-emitting device
JP5066786B2 (en) Nitride phosphor and light emitting device using the same
JP4892861B2 (en) Nitride phosphor and light emitting device using the same
JP4072632B2 (en) Light emitting device and light emitting method
JP4991026B2 (en) Light emitting device
EP1837386B1 (en) Nitride phosphor, method for producing same and light-emitting device using nitride phosphor
JP4415548B2 (en) Light emitting device using oxynitride phosphor
EP1571194B1 (en) Oxonitride phosphor and method for production thereof, and luminescent device using the oxonitride phosphor
JP4868685B2 (en) Phosphor
JP4760082B2 (en) Light emitting device, phosphor for light emitting element, and method for manufacturing the same
WO2006117984A1 (en) Nitride phosphor and light-emitting device using same
JP4214768B2 (en) Nitride phosphor and light emitting device using the same
JP2004210921A (en) Oxynitride fluorophor and method for producing the same and light-emitting device using the same
JP5412710B2 (en) Nitride-based phosphor or oxynitride-based phosphor
JP4442101B2 (en) Oxynitride phosphor and light emitting device using the same
JP4218328B2 (en) Nitride phosphor and light emitting device using the same
JP4931372B2 (en) Light emitting device
JP4221950B2 (en) Phosphor
JP4466446B2 (en) Light emitting device using oxynitride phosphor
JP4613546B2 (en) Light emitting device
JP4215046B2 (en) Nitride phosphor and light emitting device using the same
JP4991027B2 (en) Oxynitride phosphor and light emitting device using the same
JP4215045B2 (en) Nitride phosphor and light emitting device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06731619

Country of ref document: EP

Kind code of ref document: A1