WO2006104046A1 - Radiation dose measuring element and radiation dose measuring device using electric-insulating polymer material - Google Patents

Radiation dose measuring element and radiation dose measuring device using electric-insulating polymer material Download PDF

Info

Publication number
WO2006104046A1
WO2006104046A1 PCT/JP2006/305986 JP2006305986W WO2006104046A1 WO 2006104046 A1 WO2006104046 A1 WO 2006104046A1 JP 2006305986 W JP2006305986 W JP 2006305986W WO 2006104046 A1 WO2006104046 A1 WO 2006104046A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
dose
electrically insulating
insulating polymer
measuring element
Prior art date
Application number
PCT/JP2006/305986
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuo Shimozuma
Hiroyuki Date
Josuke Nakata
Hidemasa Tomozawa
Original Assignee
National University Corporation Hokkaido University
Kyosemi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Hokkaido University, Kyosemi Corporation filed Critical National University Corporation Hokkaido University
Priority to JP2007510455A priority Critical patent/JPWO2006104046A1/en
Publication of WO2006104046A1 publication Critical patent/WO2006104046A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters

Definitions

  • the present invention relates to a radiation dosimetry element and a radiation dosimetry device, and more particularly, to in vivo absorbed dose in radiation therapy, exposure dose due to irradiation of diagnostic X-rays, exposure in a radiation control area, and general environmental radiation.
  • the present invention relates to a radiation dosimetry element and a radiation dosimetry apparatus using an electrically insulating polymer material suitable for measuring exposure doses and the like.
  • Japanese Patent Laid-Open No. 9-167594 discloses a radiation detector using a proportional counter (Patent Document 1).
  • This radiation detector has a counter tube filled with gas, and a linear electrode is disposed in the center of the counter tube. Then, electrons and ion pairs ionized by the incident radiation are collected on a linear electrode to which a voltage is applied, and the energy and dose of the radiation are measured based on the norse output from the linear electrode.
  • a proportional counter tube is used as a biological tissue model, the measurement is performed by enclosing a biological tissue equivalent gas inside the counter tube.
  • Patent Document 2 proposes a radiation detection apparatus using an ionization chamber.
  • This radiation detector is provided with a central electrode in an ionization chamber filled with gas. The intensity of the radiation is measured based on the amount of ions ionized and produced in the gas by the radiation incident on the ionization chamber.
  • an ionization chamber as a living body model, insert a finger-type ionization chamber into an insertion hole that leads to a tank filled with water, and measure the radiation dose assuming that it is equivalent to a living tissue. ! / Speak.
  • the Radiation Detector described in US Pat. No. 6,278,117 is configured so that a metal electrode is wired on a “polymeric substrate” and covered with this metal electrode.
  • An “active polymeric layer” is formed (Patent Document 3). And thus, it is said that the radiation dose is measured based on the current change in the “active polymeric layer” when irradiated with radiation.
  • the radiation sensor described in JP-A-5-107360 is composed of "organic polymer substance containing halogen" and "polyarine” (Patent Document 4).
  • the dose is calculated using the fact that the electrical conductivity of this “polyaniline” depends on the dose of radiation.
  • the radiation detection element described in JP-A-2-143188 has a “composition” composed of a “conductive polymer compound” and a “radiation sensitive substance” on a pair of electrodes provided on an insulating substrate. It is configured by applying an object ”(Patent Document 5). Then, the amount of radiation is measured by utilizing the fact that the dopant generated when the radiation sensitive substance is irradiated with radiation is doped into the conductive polymer compound and its conductivity and resistance change. is doing.
  • the detection layer is composed of a polymer or rubber to which a “conductivity imparting agent” is added (Patent Document 6). Then, the amount of irradiation is detected by utilizing the fact that the resistance value decreases as the amount of radiation irradiation increases.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 9 167594
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-20249
  • Patent Document 3 US 6,278,117
  • Patent Document 4 JP-A-5-107360
  • Patent Document 5 JP-A-2-143188
  • Patent Document 6 Japanese Patent Laid-Open No. 62-299780
  • tissue-equivalent gas or water assuming a biological tissue model, but because the human body is essentially understood as a mixture of liquid and solid. There is a high possibility that an error from the radiation dose actually absorbed by the human body will occur.
  • the absorbed dose represents the amount of energy absorbed per unit mass of the substance. Therefore, the amount depends on the type of substance.
  • Patent Document 3 described above, after an electrode is printed on a “polymeric substrate” by photolithography, an “active polymeric layer” corresponding to the “polymer substrate” of the present application is formed thereon. (Active polymer layer) ". For this reason, as shown in FIG. 2, there is a problem that the manufacturing process is increased with a complicated structure and the cost is increased.
  • Patent Document 3 as shown in FIG. 2, the metal electrodes are complicatedly wired at extremely small intervals, so that the output current when not irradiated with radiation (hereinafter referred to as “dark current”). ) Will be larger.
  • the output current value when irradiated with radiation overlaps with the dark current or is lower than the dark current.
  • the resistance ratio (radiation OFFZ radiation ON) is 1.0 or less in the range where the applied voltage is 4V or more.
  • Patent Documents 4 to 6 are intended for conductive polymers, and do not consist solely of polymer materials. That is, Patent Document 4 synthesizes “polyarine” to “organic polymer substance containing halogen”, and Patent Document 5 discloses “composition” on a pair of electrodes provided on an insulating substrate. In Patent Document 6, a “conductivity imparting agent” is added to a polymer or rubber, both of which are directed to a conductive polymer.
  • the present invention has been made to solve such problems, and has an object to obtain at least one of the following operational effects.
  • it is possible to reduce the size, simplify, and reduce the cost by forming solid materials as various polymer materials such as tissue equivalent plastics that do not use gas as a measurement element. Therefore, the absorbed dose can be accurately measured in a state closer to a living tissue, for example, by being attached to a human body part or by forming an organ model by forming it into an organ shape.
  • the radiation dose can be measured in real time.
  • An object of the present invention is to provide a radiation dosimetry element and a radiation dosimetry device using an electrically insulating polymer material.
  • the present inventors have already formed a thin film layer made of a semiconductor or an insulator on the surface of a base member made of tissue-equivalent plastic, and paired with this thin film layer.
  • a dosimetry device equipped with these electrodes and are proposing that it can solve the conventional problems.
  • the inventors have further researched, and even if the element is composed only of an electrically insulating polymer material without forming the above-described semiconductor or insulator thin film layer, The linearity with the output current was obtained, and the operation as a radiation sensor was confirmed. According to this, it is remarkably excellent in formability and drastically reduces costs, and is highly practical.
  • polymer materials are close to low atomic number substances in living tissues, it is easy to estimate absorbed doses in living bodies. There is a merit fall.
  • the radiation dosimetry element using the electrically insulating polymer material according to the present invention is characterized by a substrate made of a polymer material having electrical insulation properties at room temperature, and the electrically insulating polymer. It has at least a pair of electrodes provided on the surface or inside of the substrate.
  • the electrically insulating polymer substrate has an output current value linearly unique with respect to the radiation dose by irradiation of radiation.
  • the mechanism of the present invention will be described.
  • the phenomenon in which the photovoltaic effect of an insulator or semiconductor irradiated with light when the insulator or semiconductor is irradiated with light is known as an internal photoelectric effect.
  • the inventors of the present application have conducted intensive research and found that even when an electrically insulating polymer material such as a biological tissue equivalent plastic is irradiated with radiation, the current of the polymer material irradiated with radiation is also reduced. It was found that the value changed sufficiently to be taken out as an external signal, and the force was also found to have a linear linearity due to the unique correspondence between changes in radiation intensity, radiation dose, and output current value. . This is a completely new finding.
  • the change in the current value causes the generation of dangling bonds due to the breakage of the polymer chain bonds by radiation near the inside or inside of the polymer, and carriers such as electrons are generated therefrom.
  • the external current can be obtained by drifting in the external electric field.
  • the current value changes due to the irradiation of radiation, it is confirmed that the current value also changes by irradiation of force ⁇ -rays (not electromagnetic waves), which is similar to the internal photoelectric effect from the viewpoint of the radiation phenomenon alone. Is considered to be different.
  • force ⁇ -rays not electromagnetic waves
  • the radiation in the present invention is ionizing radiation and targets ⁇ rays, j8 rays, ⁇ rays, and X rays.
  • the polymer material is set to an inter-electrode distance at which an electrical resistance value between the electrodes is about 10 ⁇ or more, more preferably 10 12 ⁇ or more.
  • an electrical resistance value between the electrodes is about 10 ⁇ or more, more preferably 10 12 ⁇ or more.
  • the radiation dose corresponds to the absorbed dose of the living tissue. According to this, the amount of absorbed radiation can be measured with a composition equivalent to or similar to that of a living body, and the amount of absorbed radiation to the human body can be further accurately measured.
  • the electrically insulating polymer substrate is made of a biological tissue equivalent plastic when being attached to the body surface or inserted into the body.
  • the electrically insulating polymer substrate when used for measuring the exposure dose of a patient at the time of imaging by radiation irradiation or radiation irradiation treatment, is used as the effective radiation to be irradiated. It is preferably composed of an electrically insulating polymer material having a permeability of about 90% or more in energy, and it is desirable to apply it to a patient in the form of a sheet, for example.
  • the electrically insulating polymer substrate when used in a window of a space that handles radiation, is constituted by an electrically insulating polymer material having transparency to visible light. Is preferred.
  • the radiation dosimetry apparatus is characterized by a radiation dosimetry element having at least a pair of electrodes on the surface or inside of an electrically insulating polymer substrate, and a radiation dosimetry element for the radiation.
  • a voltage applying means for applying a voltage between a pair of electrodes; a current detecting means for detecting a current flowing between the electrodes; a dose acquiring means for converting the detected inter-electrode current force dose; and a display means for displaying the dose
  • the radiation dose is measured by changing the output current value of the dosimetry element with linear uniqueness with respect to the radiation dose by irradiation with radiation.
  • the electrically insulating polymer substrate of the radiation dose measuring element receives radiation in a state where a voltage is applied to the pair of electrodes by the voltage applying means, the electrically insulating polymer Since carriers are generated on the surface of the substrate and / or in the vicinity of the surface and the generated carriers flow to the positive and negative electrodes, radiation can be detected by detecting the weak current caused by the carriers by the current detection means. Then, it is possible to detect the radiation dose by measuring the weak current by the current detecting means.
  • the dose measuring element is attached in the distal end of the catheter, and connected to a constant characteristic impedance line such as a microstrip line disposed in the tube of the catheter to connect the voltage applying means and the current detection. It may be configured to have a dose conversion means for converting the dose from the interelectrode current detected by this means, and a display means for displaying the dose.
  • an electronic circuit including the dose measuring element, a calculation processing unit having a dose conversion function with a built-in current amplifier, and a storage unit for storing measurement data in a button-shaped small housing.
  • a board, a small battery, an alarm device, and an external connector are built in, and the dose measuring element, the electronic circuit board and the small battery are connected via a pair of constant characteristic impedance lines.
  • an electronic circuit board including the dose measuring element, a calculation processing unit having a dose conversion function incorporating a current amplifier, and a storage unit for storing measurement data, and a small battery And an alarm device and an external connection connector, and the dose measuring element, the electronic circuit board and the small battery may be connected via a pair of constant characteristic impedance lines.
  • the radiation dose measuring element can be formed in any shape such as a curved surface or a spherical shape, it can be affixed to the human body or organ for radiation therapy to measure the absorbed dose in the body, or irradiation with diagnostic X-rays It is possible to measure the exposure dose.
  • the absorbed dose can be predicted using an organ model case by forming it in the shape of a human body part or organ, or it can be measured in real time while irradiating with radiation.
  • FIG. 1 is a schematic diagram showing a configuration of a radiation dose measuring apparatus 2 according to the present embodiment.
  • the radiation dose measuring device 2 of this embodiment includes a radiation dose measuring element 1 for detecting the radiation dose, and a device main body 3 for controlling the radiation dose measuring element 1 and calculating the radiation dose 3. And a display device 4 for displaying the measurement result of the radiation dose.
  • the dose indicates a dose corresponding to the absorbed dose of a substance such as a living tissue.
  • the radiation dose measuring element 1 will be described.
  • the inventors of the present application have found that an electric current flows by irradiating the surface of an electrically insulating polymer substrate composed of only an electrically insulating polymer material.
  • the output current value has a linear uniqueness with respect to the dose of irradiated radiation.
  • the current value generated in the electrically insulating polymer substrate or is detected by detecting a change in the voltage between the electrodes caused by the current. I came up with this invention that can measure the dose rate of the emitted radiation.
  • the radiation dose measuring element 1 of the present embodiment is composed of a tissue-equivalent plastic or a material having properties equivalent to this, and is a polymer having electrical insulation properties at room temperature.
  • the substrate 11 is composed of a pair of electrodes 12 and 12 provided on the surface of the electrically insulating polymer substrate 11.
  • the electrodes 12 and 12 need not be limited to a pair.
  • the electrodes 12 and 12 may be formed on the lower surface side to form two pairs of electrodes 12 and 12.
  • the electrically insulating polymer substrate 11 is for generating a carrier and causing a change in conductance on the surface, in the vicinity of the surface thereof, in the interior thereof, or both by irradiation, and for tissue equivalent plastics. It can be molded with various polymer materials including The electrically insulating polymer substrate 11 is electrically insulative when not exposed to radiation. On the other hand, a minute current flows when irradiated with radiation, and the current value has a linearity proportional to the radiation dose.
  • the electrical insulating polymer substrate 11 in the present embodiment is more preferable because the electrical resistance value between the pair of electrodes is about 101 (> ⁇ or more ) in order to detect a signal having a practical size due to radiation irradiation.
  • the distance between the electrodes is set to about 10 12 ⁇ or more, and the resistivity of the electrically insulating material is generally about 10 1 (> ⁇ cm or more).
  • the resistivity of the polymer material used for the substrate 11 is more preferably about 10 14 ⁇ cm or more, preferably about 10 12 Qcm or more, if signal detection by irradiation is possible.
  • volume resistivity at around room temperature is 10 16 ⁇ cm or more for polyethylene, polypropylene, polyimide, polycarbonate, etc., and 10 15 to 10 17 ⁇ for IOU IO Q CH ⁇ epoxy resin for phenol resin. cm, about 10 14 ⁇ cm for polyester resin.
  • the tissue equivalent plastic is an electrically insulating polymer material having a chemical formula (or mixing ratio) close to the composition of the elements (C, H, O, N, F, etc.) constituting the living tissue. It is (plastic) and has similar chemical composition, so it can be regarded as equivalent to living tissue when considering interaction with radiation.
  • the composition of the tissue-equivalent plastic is similar to the elemental composition of living soft tissue and muscle tissue, and a physical quantity representing the amount of energy imparted as stopping power is equivalent to radiation particles having high energy.
  • the tissue equivalent plastic include polycarbonate, acrylic resin, polyethylene, polyamide nylon, polyethylene terephthalate, water equivalent plastic, urethane resin, epoxy resin, polytetrafluoroethylene, and the like.
  • tissue equivalent plastics have properties as plastics, they can be formed into any shape and can easily cope with curved or complex shapes.
  • the pair of electrodes 12 and 12 are composed of a positive electrode and a negative electrode, and are provided on the surface of the electrically insulating polymer substrate 11 at a predetermined interval as shown in FIG. It has been.
  • Each of the electrodes 12 and 12 of this embodiment is formed as a metal thin film made of gold (Au) by using a thin film technique such as vacuum deposition.
  • the pair of electrodes 12 and 12 are connected to the apparatus main body 3 via a predetermined cable.
  • the arrangement of the electrodes 12 and 12 is not limited to the above configuration, but may be inserted into the electrically insulating polymer substrate 11 as described later.
  • the apparatus main body 3 will be described with reference to FIG.
  • the apparatus main body 3 of the present embodiment includes a voltage application circuit 31 that applies a bias voltage between the electrodes 12 and 12 of the radiation dose measuring element 1 and a current detector 32 that detects a weak current flowing between the electrodes 12 and 12. And an amplification circuit 33 that amplifies the weak current detected by the current detector 32, a display drive circuit 34 that displays the display device 4, and the current detector 32, the amplification circuit 33, and the display drive circuit 34. 35 and a microcomputer 36 connected via 35.
  • the voltage application circuit 31 is connected to the electrodes 12 and 12 of the radiation dose measuring element 1 by a predetermined cable. Further, it is connected to the microphone port computer 36 via the interface 35, and the applied noise voltage is adjusted.
  • the bias voltage applied between the electrodes 12 and 12 is appropriately determined according to the material of the electrically insulating polymer substrate 11 and the distance between the pair of electrodes 12 and 12, and in this embodiment, about 1 to: DC of LOOV The voltage is set.
  • the current detector 32 is connected to the positive electrode 12 of the radiation dose measuring element 1.
  • a solenoid coil (not shown) and a Hall element are included, and the Hall element detects a magnetic field line generated in the solenoid coil by a weak current from the positive electrode 12. Therefore, even a weak current is detected with high accuracy.
  • an inexpensive current operational amplifier may be used as the current detector 32.
  • the microcomputer 36 includes a ROM (Read Only Memory), a RAM (Random Access Memory), and a CPU (Central Processing Unit), and various control means including a dose conversion means. Function as.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • CPU Central Processing Unit
  • various control means including a dose conversion means Function as.
  • a dose measurement program for measuring the radiation dose, a display control program for displaying on the display device 4 and the like are input and stored in advance.
  • the dosimetry program incorporates a predetermined conversion formula or conversion table for calculating the dose of detected current value radiation.
  • the conversion formula or conversion table is obtained for each dosimetry element 1 having a different configuration or material, and is proportional to the intensity of radiation and the current value in the electrically insulating polymer substrate 11 irradiated with the radiation. Determined by a linear relationship.
  • the RAM stores the weak current value detected by the current detector 32 while being updated at a predetermined time interval (for example, 1 second).
  • the CPU is based on the dosimetry program stored in ROM and the latest stored in RAM.
  • Current value data is acquired, and the radiation dose is acquired by a predetermined conversion formula or conversion table.
  • the acquired value is displayed on the display device 4 via the display drive circuit 34.
  • the radiation dose measuring element 1 is set at a position where radiation is irradiated. At this time, since the radiation dose measuring element 1 can be thinly formed in an arbitrary shape, it can be attached along the surface shape of the irradiated object. In addition, for example, when a model of a predetermined part of the human body (such as an organ) is formed of tissue equivalent plastic, and electrodes 12 and 12 are formed on the surface of this model, the dose of radiation applied to that part is monitored. Configured as radiation dosimetry element 1
  • a predetermined bias voltage is applied to the pair of electrodes 12 and 12 by the voltage application circuit 31.
  • the current detector 32 constantly detects the weak current, and the detected current value is amplified by the amplifier circuit 33 and then input to the microcomputer 36 via the interface 35.
  • the microcomputer 36 stores the acquired latest current value while updating it in the RAM at predetermined time intervals. The stored current value is acquired sequentially by the CPU, and the increase or decrease is monitored.
  • the CPU detects a small current increase due to radiation irradiation, the current increase and the above-mentioned conversion formula ⁇ is based on the conversion table and the radiation incident on the electrically insulating polymer substrate 11 is detected. Calculate the dose.
  • the calculated radiation dose is displayed on the display device 4 in the form of numerical values and graphs.
  • Fig. 3 is a schematic diagram of the measurement circuit of radiation detector 1 (also a radiation dosimetry device) used in the experiment.
  • the radiation detection element 1 includes a substrate 11 made of various electrically insulating polymer materials, and a pair of linear electrodes 12, which are provided on the electrically insulating polymer substrate 11 so as to face each other at an interval. It consists of twelve.
  • the thickness of the electrically insulating polymer substrate 11 was 1 mm, and the vertical and horizontal lengths were each 10 mm.
  • the electrodes 12 and 12 are formed at the end of the substrate 11 and have a length of 10 mm, a width of 3 mm, a thickness of 200 to 300 nm, and an interelectrode distance of 6 mm.
  • Materials for the electrically insulating polymer substrate 11 include plastic water (registered trademark of CIRS, USA), polycarbonate, polyimide, polyetheretherketone (PEEK: registered trademark of Victrex, UK), Teflon (registered) Trademark) (DuPont, USA).
  • Plastic Water registered trademark
  • Plastic Water has a specific gravity of 1.039 (g / cm 3 ) and has a specific gravity very close to that of water, and its composition ratio is 0.599 for carbon C, 0.235 for oxygen O, Hydrogen H force SO. 078, Nectar N force SO. 018, Kanoreshikum Ca force 0. 068, Element C1 force 0.002.
  • Polyimide is a wholly aromatic polyimide, using TI-3000 (Toray), and its specific gravity is about 1.4 (g / cm 3 ).
  • Hydrogen H is 0.300
  • oxygen O is 0.125
  • nitrogen N is 0.05.
  • the specific gravity of polycarbonate is about 1.2 (g / cm 3 ).
  • the experimental power supply was a DC stabilized power supply with a built-in electometer with 0 ⁇ : L00V output, and the current output was measured with a galvanometer (electrometer) G.
  • Experimental Example 1 First, an experiment of irradiating X-rays was performed.
  • the X-ray irradiation device uses Stabilipan II (Siemens), and the irradiation conditions are tube voltage 100 kV and effective voltage 57 keV. , Tube current 20 mA, irradiation time 60 sec, irradiation distance 40-: L 10 cm. The applied voltage was set to 10V-constant.
  • FIG. 4 is a graph showing the relationship between the irradiation dose rate and the output current value when various types of electrically insulating polymer substrates 11 are irradiated with X-rays.
  • the horizontal axis of the graph shows the X-ray irradiation dose rate, and the vertical axis shows the output current value.
  • the current value generated in the substrate 11 made of various electrically insulating polymer materials is uniquely determined by showing linearity proportional to the X-ray irradiation dose rate.
  • polycarbonate showed the highest output current, and a current value of about 35 OpA was output at an X-ray irradiation dose rate of 35 X 10 _4 (C / kg / min). .
  • the average sensitivity which is the inclination based on the proportional characteristics of this polycarbonate, is about 90 [nA / (C / kg / min)].
  • PEEK registered trademark
  • plastic water registered trademark
  • polyimide have a smaller output current value than polycarbonate and Teflon (registered trademark), and show an output current value of about 150 pA. Therefore, it is a problem as a sensor.
  • each electrically insulating polymer material has a sufficient output even at a voltage of 10V, and an output current can be obtained even at IV. It can be utilized as a practically preferable. Since the irradiation dose and absorbed dose are almost proportional in the soft tissue of the living body, such as muscles and internal organs, the results in the above graph are similar to the relationship between the generated current value and the absorbed dose. It can be applied and can be said to have proportional linearity.
  • gamma ray irradiation apparatus is gamma ray source 60Co using Toshiba Cobalt 60 rotation therapy apparatus (manufactured by Toshiba), irradiation conditions, average ⁇ ray energy 1. 25 MeV, irradiation time 60 sec, irradiation distance 65 125 cm. The applied voltage is 10 V.
  • FIG. 5 shows the results of Experimental Example 2.
  • FIG. 5 is a graph showing the relationship between the irradiation dose rate and the output current value when ⁇ rays are irradiated to various electrically insulating polymer substrates 11.
  • Experimental example 1 As in the case of X-rays, it can be seen that the current values generated in the substrate 11 by various electrically insulating polymer materials are uniquely determined by showing a proportional relationship with the irradiation dose rate of ⁇ -rays.
  • the output current value of polycarbonate, Teflon (registered trademark) and PEEK (registered trademark) is about 9 X 10 " 4 (C / kg / min)
  • the current value is about 35pA to 40pA.
  • the current value of polyimide was about 8 pA and the plastic water (registered trademark) was about 14 pA for the same radiation dose rate, but 10 V for any electrically insulating polymer material. Since the current value that can be measured sufficiently by the applied voltage is output, each of them has practicality as a sensor.
  • the average sensitivity of the polycarbonate is about 30 [nA / (C / kg / min)].
  • FIG. 6 is a graph showing the results of Experimental Example 3.
  • the horizontal axis is the radiation dose rate
  • the vertical axis is the output current value. From this graph, it can be seen that the output current value has a proportional linearity to the radiation dose rate even in a vacuum atmosphere.
  • the output current value is about 20 X 10 " 4 (C / kg / min) X-ray irradiation dose rate (dose rate on the vacuum chamber surface), it is about 13 pA and the result in the atmosphere (about 230 pA) This is thought to be because the radiation dose reaching the dosimetry element 1 is attenuated by setting the radiation dosimetry element 1 in the vacuum chamber.
  • the electrically insulating polymer material uses polycarbonate and the X-ray irradiation time is 60 seconds. External application Voltage is constant at 10V, X-ray intensity is 8 X 10 " 4 (C / kg / min), 9 X 10" 4 (C / kg / min), ll X 10 _4 (C / kg / min), 13 X 10_ 4 (C / kg / min) and is sequentially changed, to measure the output voltage current values at that time.
  • FIG. 7 is a graph showing the results of Experimental Example 4.
  • the horizontal axis represents the X-ray irradiation time, and the vertical axis represents the output current value.
  • the output current value is about 115pA when the X-ray intensity is 8 X 10 _4 (C / kg / min), and about 130pA when 9 X IO— 4 (C / kg / min).
  • the radiation detection element 1 in which the electrodes 12 and 12 are arranged on the surface of the electrically insulating polymer substrate 11 is used.
  • FIG. 1 An experiment was conducted to determine whether the same effect can be obtained by using the radiation detection element 1 in which 12 and 12 are inserted into the electrically insulating polymer substrate 11.
  • Example 5 an experiment was conducted to confirm whether or not the force is such that a practical current is output even when the pair of electrodes 12 and 12 are inserted inside instead of the surface.
  • a pair of electrodes 12 and 12 were configured by inserting a needle electrode having a maximum diameter of 0.5 mm into a 10 mm ⁇ 10 mm ⁇ lmm size radiation detection element 1 and having a maximum diameter of 0.5 mm in the lmm thickness portion.
  • the distance between electrodes 12 and 12 is 6 mm.
  • An experiment was performed by applying a voltage of 1 to 100 V to the electrodes 12 and 12.
  • X-ray irradiation dose was constant 35 X 10_ 4 (C / kg / min).
  • FIG. 9 is a graph showing the results of Experimental Example 5.
  • the horizontal axis represents the interelectrode voltage
  • the vertical axis represents the output current value.
  • the response characteristics of the external output current with respect to X-ray ONZOFF were investigated for the radiation detection element 1 of the type in which the electrodes 12 and 12 were inserted.
  • the X-ray irradiation dose was set to a constant of 35 X 10 " 4 (C / kg / min), and X-rays were applied for 5 minutes at an applied voltage of 10V.
  • FIG. 10 is a graph showing the results of Experimental Example 6.
  • the horizontal axis represents the X-ray irradiation time, and the vertical axis represents the output current value.
  • the radiation detection element 1 generates a constant and stable output current with respect to the irradiation time. Therefore, a stable signal can be guaranteed even for long-term measurements.
  • spike-like signals are seen at 1 minute and 5 minutes. This is an electrical noise that generates X-ray generator power when X-ray irradiation is turned on and off.
  • the current value generated between the electrodes 12 and 12 is the radiation. It was found that there is a proportional relationship with the irradiation dose. Further, based on the results of the above experimental example, if the above-described phenomenon is mainly caused by the reaction of electrons (secondary charged particles) generated in the electrically insulating polymer substrate 11, it is configured from the electrically insulating polymer substrate 11. It is considered that the same results can be obtained even when the dose measuring element 1 is irradiated with j8 rays or ⁇ rays. The measured current value strongly depends on the material of the electrically insulating polymer substrate 11, and if a tissue equivalent plastic is used, a value equivalent to the radiation dose to the human tissue can be estimated.
  • a suitable thickness of the electrically insulating polymer substrate 11 used as the dose measuring element 1 was calculated using a general-purpose Monte Carlo simulation code EGS4.
  • 12 and 13 are graphs showing the results of Experimental Example 7.
  • the horizontal axis represents the irradiation depth for the tissue equivalent plastic used in the present embodiment, and the vertical axis represents the energy accumulation amount.
  • Fig. 12 shows the energy accumulation with respect to the irradiation depth under the condition of 1.25 MeV Co60 ( ⁇ -ray) irradiation
  • Fig. 13 shows the case of 200 keV photon irradiation corresponding to X-ray irradiation. Shows the amount of energy stored with respect to the irradiation depth.
  • Co60 which is a ⁇ -ray
  • Co60 which is a ⁇ -ray
  • the thickness is saturated at 3 to 4 mm. Therefore, when applied to the electrically insulating polymer substrate 11, it is preferable to configure the thickness to be equal to or greater than this saturation depth. Good.
  • FIG. 13 when 200KeV photons assuming X-rays are irradiated, saturation occurs at 0.1 mm or more, so it is preferable to configure a thickness larger than that! /.
  • the electrically insulating polymer substrate 11 having a thickness of 3 to 4 mm or more preferably measures the dose of X rays.
  • the electrically insulating polymer substrate 11 having a thickness of 0.1 mm or more is preferable.
  • an electrically insulating polymer substrate 11 having a thickness of lmm is used in the experiment.
  • the absorbed dose in the body is measured while performing radiation therapy, or there is a dose measuring element 1 attached to the tip of the catheter and inserted into the body, In vivo (in blood) absorbed dose during surgery can be measured, and it can be said that the applicability and feasibility are extremely high.
  • An organ model is made of tissue equivalent plastic, and it is possible to know beforehand by experiment how much radiation dose is absorbed in which part.
  • the radiation dose can be measured not only in one direction but also in multiple directions.
  • the effect is that measurement can be performed without direction dependency, such as radiation dose measurement not only on the front side but also on the back side.
  • the radiation dose can be measured by detecting a large signal current with a small dark current even in a wide voltage range including a low voltage of 10V or less.
  • the radiation dose measuring element 1 and the radiation dose measuring device 2 using the radiation measuring element 1 according to the present invention are not limited to the above-described embodiments, but can be changed as appropriate.
  • an alarm device may be provided for notifying that radiation of a predetermined value or more has been detected. According to this, even if excessive radiation is irradiated to the human body, since the alarm device issues an alarm, the irradiation can be stopped immediately.
  • the first embodiment is an example in which the dose measuring element 1 is configured in a sheet shape when used in X-ray imaging or CT scan imaging, and the patient's exposure dose by X-ray imaging is measured. It is.
  • the electrically insulating polymer substrate 11 is added in the form of a sheet with an electrically insulating polymer material having a transmittance of about 90% or more of the effective energy of radiation to be irradiated. It is preferable that the electrically insulating polymer substrate 11 has a thickness of about 100 m to 1 mm and has a flexibility that can be easily deformed with a size force S 10 cm ⁇ 10 cm or more. For example, by processing polyethylene into a sheet shape, embedding a pair of electrodes 12 and 12 at both ends, and connecting it to the device body 3 via coaxial cables 41 and 41, which are a pair of constant impedance wires The dosimetry apparatus 2 is configured.
  • the main unit 3 has a voltage application control function, a current detection / display function, a current-one-dose rate conversion function, a data storage function, and a recording function. Then, a predetermined voltage is applied between the electrodes 12 and 12 by the device body 3 to By monitoring the flow value and converting it to exposure dose, it is possible to manage the exposure dose of the whole body of patient p in real time. Also, place the electrically insulating polymer substrate 11 only on specific parts of the patient's genitals, etc., and manage the exposure dose for each organ.
  • the characteristics required for determining the material and size of the substrate 11 include, in addition to electrical insulation and flexibility, the image quality of the transmitted image. It is desirable to select a material and thickness that can ensure 90% or more transparency in the effective energy of the X-ray generator.
  • Sarako although not shown, is a clean bench used when handling high-level radioactive substances by hand by providing a function of transparency to visible light as a characteristic of the electrically insulating polymer substrate 11. It is also possible to monitor the exposure dose of workers in real time by applying it to windows such as glove boxes.
  • Example 2 of the present embodiment will be described.
  • the second embodiment is an example in which the dose measuring element 1 is attached to the distal end of the catheter so that it can be inserted into a blood vessel, and the dose of blood or the dose of a specific organ can be measured.
  • a cylindrical electrically insulating polymer substrate 11 is attached to the distal end of the catheter 50, a pair of electrodes 12 and 12 are embedded in the substrate 11, and the pair of electrodes 12 and 12 are attached.
  • the dosimetry apparatus 2 is configured with this.
  • the main body 3 has a voltage application control function, a current detection / display function, a current-one dose rate conversion function, and a data storage / recording function.
  • the catheter 50 to which such a function is added makes it possible to manage the radiation dose of each organ at the distal end of the catheter during an interventional radiology (IVR) procedure.
  • IVR interventional radiology
  • Example 3 Next, Example 3 of the present embodiment will be described.
  • the dose measuring element 1 is built in the button-shaped housing 60 so that it can be easily attached as a part of the clothes of the worker, so that the radiation handling worker can receive the dose in real time. This is an example that enables measurement.
  • the dose measuring apparatus 2 of Example 3 includes a pair of electrodes 12 and 12 embedded in a cylindrical tubular casing 60 having a diameter of about 20 mm and a thickness of about 10 mm.
  • a disk-shaped electrically insulating polymer substrate 11, an electronic circuit board 61, a small battery 62 composed of a button battery, a coin battery, etc., an alarm device 63, and an external connection connector 64 are incorporated.
  • the electronic circuit board 61 is provided with a CPU 65 having a dose conversion function with a built-in current amplifier 33, and a measurement data storage electronic circuit element 66 such as an EPROM.
  • the small battery 62 and the measurement data storage electronic circuit element 66 are connected via a microstrip line 52, 52 which is a pair of specific impedance lines.
  • the dose measurement device 3 is configured by connecting to the dose management device 67 installed outside via the external connection connector 64, and the integrated dose can be measured instantaneously at an arbitrary time. it can. Therefore, it is possible to manage individual exposure dose in the radiation control area.
  • the measurement data storage electronic circuit element 66 can be reset to the initial value by the exposure dose management device 67, so that one dose measurement element 1 can be used as many times as a personal dosimeter. can do.
  • the worker can be controlled.
  • a warning of exposure can be issued in real time.
  • the alarm device 63 a sound generating device such as a buzzer, a visible light generating device such as a semiconductor light emitting element, or a device using both of them can be considered.
  • the threshold value can be changed by the exposure dose management device 67.
  • the disk-shaped dose measuring element 1 of Example 3 is an example, and may be formed in a square cross section, a hexagonal cross section, or the like.
  • Example 4 of the present embodiment will be described.
  • the sole 70 of the shoe 70 This is an example in which the dose measuring element 1 is built in to measure the exposure dose of the shoe sole 71, and radiation damage can be prevented from spreading due to the radioactive material adhering to the shoe sole of the worker.
  • a flexible electrically insulating polymer substrate 11 having a pair of electrodes 12 and 12 embedded in a shoe sole 71 is embedded, and an electronic circuit board 61 is embedded in a heel portion of a shoe 70.
  • a dosimetry device is configured by incorporating a small battery 62 and an alarm device 63.
  • a CPU 65 having a dose conversion function with a built-in current amplifier 33 and a measurement data storage electronic circuit element 66 such as an EPROM are attached, and the electrically insulating polymer board 11, the CPU 65 and the small battery 62 are mounted.
  • a threshold value for exposure dose is set in the CPU 65, and the alarm device 63 is activated when the cumulative exposure dose exceeds the threshold value.
  • the alarm device 63 is preferably a sound generator such as a buzzer.
  • an external connection connector 64 may be provided in the dose measuring apparatus 2 so that measurement data can be exchanged with an external apparatus and a threshold value can be changed for generating an alarm.
  • the dose measuring element 1 and the dose measuring device 2 of the present embodiment are not limited to the above embodiments, and can be applied to various modes affected by radiation. Brief description of
  • FIG. 1 is a schematic diagram showing an embodiment of a radiation dose measuring apparatus according to the present invention.
  • FIG. 2 is a block diagram showing an apparatus main body of the present embodiment.
  • FIG. 3 is a schematic diagram of a radiation detection element in Experimental Example 1.
  • FIG.5 Shows the relationship between ⁇ -ray irradiation dose rate (horizontal axis) and output current value (vertical axis) in Experimental Example 2 It is a graph.
  • FIG. 6 is a graph showing the relationship between the X-ray irradiation dose rate (horizontal axis) and the output current value (vertical axis) on the vacuum chamber surface in a vacuum atmosphere in Experimental Example 3.
  • FIG. 8 is a schematic diagram showing an embodiment using a radiation detection element having another configuration.
  • FIG. 11 is a diagram showing variations in the shape of the radiation dose measuring element according to the present invention.
  • 12 A graph showing the relationship between Co60 irradiation depth (horizontal axis) and energy storage (vertical axis) in Experimental Example 7.
  • FIG. 14 is a schematic diagram showing Example 1 in which the dosimetry apparatus according to the present invention is applied in the form of a sheet.
  • FIG. 15 is a schematic diagram showing Example 2 in which the dosimetry apparatus according to the present invention is applied to a catheter.
  • FIG. 16 is a schematic view showing Example 3 in which the dose measuring apparatus according to the present invention is applied to a button-shaped housing.

Abstract

A radiation dose measuring element and a radiation dose measuring device that use an electric-insulating polymer material which is excellent in processability, measures the dose of a material kept very close to a body tissue, and can detect a large signal current over a wider voltage (for example, a small under-current at a low voltage of up to 10V). The measuring element comprises a substrate (11) made of a polymer material having an electric-insulating property at room temperature, and at least a pair of electrodes (12, 12) provided on the surface of or inside this electric-insulating polymer substrate (11), wherein, when radiation is applied to the substrate (11), an output current value linear and unique to the dose rate of the radiation is obtained.

Description

明 細 書  Specification
電気絶縁性高分子材料を使った放射線の線量測定素子および放射線の 線量測定装置  Radiation dosimetry element and radiation dosimeter using electrical insulating polymer material
技術分野  Technical field
[0001] 本発明は、放射線の線量測定素子および放射線の線量測定装置に関し、特に、 放射線治療における生体内吸収線量や診断用 X線の照射による被曝線量、放射線 管理区域における被曝や一般環境放射線による被曝線量等を測定するのに好適な 電気絶縁性高分子材料を使った放射線の線量測定素子および放射線の線量測定 装置に関するものである。 背景技術  TECHNICAL FIELD [0001] The present invention relates to a radiation dosimetry element and a radiation dosimetry device, and more particularly, to in vivo absorbed dose in radiation therapy, exposure dose due to irradiation of diagnostic X-rays, exposure in a radiation control area, and general environmental radiation. The present invention relates to a radiation dosimetry element and a radiation dosimetry apparatus using an electrically insulating polymer material suitable for measuring exposure doses and the like. Background art
[0002] 従来より、放射線の吸収線量や照射線量、放射線強度等を測定する技術が提案さ れている。例えば、特開平 9— 167594号公報には、比例計数管を用いた放射線検 出器が記載されている (特許文献 1)。この放射線検出器は、ガスを封入した計数管 を有しており、この計数管内部の中心に線状電極を配設している。そして、入射した 放射線によって電離された電子とイオン対を電圧を印加した線状電極に集電し、この 線状電極から出力されるノルスに基づいて放射線のエネルギーや線量を測定して いる。そして、生体組織モデルとして比例計数管を使用する場合には、計数管内部 に生体組織等価ガスを封入して測定されるものである。  [0002] Conventionally, techniques for measuring the absorbed dose, irradiation dose, radiation intensity, and the like of radiation have been proposed. For example, Japanese Patent Laid-Open No. 9-167594 discloses a radiation detector using a proportional counter (Patent Document 1). This radiation detector has a counter tube filled with gas, and a linear electrode is disposed in the center of the counter tube. Then, electrons and ion pairs ionized by the incident radiation are collected on a linear electrode to which a voltage is applied, and the energy and dose of the radiation are measured based on the norse output from the linear electrode. When a proportional counter tube is used as a biological tissue model, the measurement is performed by enclosing a biological tissue equivalent gas inside the counter tube.
[0003] また、特開 2004— 20249号公報には、電離箱を用いた放射線検出装置が提案さ れている(特許文献 2)。この放射線検出装置は、ガスを封入した電離箱内に中心電 極を設けている。そして、電離箱内に入射した放射線によってガス中に電離生成され たイオンの分量に基づいて、その放射線の強度を測定している。生体モデルとして 電離箱を使用する場合には、水が満たされたタンク内に通じる挿入穴に指頭型の電 離箱を挿入し、生体組織と等価するものと想定して放射線量を測定して!/ヽる。  [0003] In addition, Japanese Patent Application Laid-Open No. 2004-20249 proposes a radiation detection apparatus using an ionization chamber (Patent Document 2). This radiation detector is provided with a central electrode in an ionization chamber filled with gas. The intensity of the radiation is measured based on the amount of ions ionized and produced in the gas by the radiation incident on the ionization chamber. When using an ionization chamber as a living body model, insert a finger-type ionization chamber into an insertion hole that leads to a tank filled with water, and measure the radiation dose assuming that it is equivalent to a living tissue. ! / Speak.
[0004] さらに、 US6, 278, 117号公報に記載の Radiation Detector (放射線検知器)は、「 polymeric substrate (高分子基板)」上に金属電極を配線し、この金属電極を被覆す るように「active polymeric layer (活性高分子層)」を形成している(特許文献 3)。そし て、放射線を照射した際の「active polymeric layer (活性高分子層)」における電流変 化に基づ 、て放射線量を測定するとされて 、る。 [0004] Furthermore, the Radiation Detector described in US Pat. No. 6,278,117 is configured so that a metal electrode is wired on a “polymeric substrate” and covered with this metal electrode. An “active polymeric layer” is formed (Patent Document 3). And Thus, it is said that the radiation dose is measured based on the current change in the “active polymeric layer” when irradiated with radiation.
[0005] また、特開平 5— 107360号に記載の放射線センサーは、「ハロゲンを含有する有 機高分子物質」と「ポリア-リン」とから構成されている(特許文献 4)。そして、この「ポ リア二リン」の電気伝導度が、放射線の照射線量に依存することを利用して照射線量 を求めている。 [0005] In addition, the radiation sensor described in JP-A-5-107360 is composed of "organic polymer substance containing halogen" and "polyarine" (Patent Document 4). The dose is calculated using the fact that the electrical conductivity of this “polyaniline” depends on the dose of radiation.
[0006] また、特開平 2— 143188号に記載の放射線検知素子は、絶縁基板上に設けられ た一対の電極上に、「導電性高分子化合物」と「放射線感応物質」とからなる「組成物 」を塗布して構成されている (特許文献 5)。そして、「放射線感応物質」に放射線を照 射した際に生成されるドーパントが、「導電性高分子化合物」にドーピングされて導電 率や抵抗値が変化することを利用して、放射線量を測定している。  [0006] In addition, the radiation detection element described in JP-A-2-143188 has a “composition” composed of a “conductive polymer compound” and a “radiation sensitive substance” on a pair of electrodes provided on an insulating substrate. It is configured by applying an object ”(Patent Document 5). Then, the amount of radiation is measured by utilizing the fact that the dopant generated when the radiation sensitive substance is irradiated with radiation is doped into the conductive polymer compound and its conductivity and resistance change. is doing.
[0007] さらに、特開昭 62— 299780号に記載の放射線検知素子は、「導電性付与剤」を 添加した高分子またはゴムにより検知層が構成されている (特許文献 6)。そして、放 射線照射量の増加に伴って、抵抗値が低下することを利用して照射量を検知してい る。  [0007] Further, in the radiation detection element described in JP-A-62-299780, the detection layer is composed of a polymer or rubber to which a “conductivity imparting agent” is added (Patent Document 6). Then, the amount of irradiation is detected by utilizing the fact that the resistance value decreases as the amount of radiation irradiation increases.
[0008] 特許文献 1 :特開平 9 167594号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 9 167594
特許文献 2:特開 2004— 20249号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-20249
特許文献 3 : US6, 278, 117号公報  Patent Document 3: US 6,278,117
特許文献 4:特開平 5— 107360号  Patent Document 4: JP-A-5-107360
特許文献 5 :特開平 2—143188号  Patent Document 5: JP-A-2-143188
特許文献 6:特開昭 62— 299780号  Patent Document 6: Japanese Patent Laid-Open No. 62-299780
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] しかしながら、上述した特許文献 1や特許文献 2に記載された発明を含め、従来の 放射線測定装置では、以下に示す問題が存在する。 However, the conventional radiation measuring apparatus including the inventions described in Patent Document 1 and Patent Document 2 described above has the following problems.
(1)組織吸収線量を測定しょうとする従来の装置では、生体組織モデルを想定して 組織等価ガスや水を使用しているが、本来、人体は液体と固体の混合体と把握され るから、実際に人体が吸収している放射線の線量との誤差が生じるおそれが高い。こ こで、吸収線量とは物質の単位質量あたりのエネルギー吸収量を表わす。従って、そ の量は物質の種類に依存する量である。 (1) Conventional devices that attempt to measure tissue absorbed dose use tissue-equivalent gas or water assuming a biological tissue model, but because the human body is essentially understood as a mixture of liquid and solid. There is a high possibility that an error from the radiation dose actually absorbed by the human body will occur. This Here, the absorbed dose represents the amount of energy absorbed per unit mass of the substance. Therefore, the amount depends on the type of substance.
(2)従来の比例計数管や電離箱では、形状の自由度がほとんどないため、人体部位 や臓器のごとき曲面形状や球面形状、複雑な形状に形成して測定することはできず 、現実の人体部位や臓器が受ける吸収線量との誤差が大きくなるおそれがある。 (2) Since conventional proportional counters and ionization chambers have almost no degree of freedom in shape, they cannot be formed into curved shapes such as human body parts or organs, spherical shapes, or complex shapes for measurement. There is a possibility that an error with the absorbed dose received by a human body part or organ increases.
(3)比例計数管の場合、測定対象となる生体組織に等価な体積分の組織等価ガス を封入するためには、計数管が相当に大きくならざるを得ず、装置全体が大型化して しまう。 (3) In the case of a proportional counter, in order to enclose a volume of tissue-equivalent gas equivalent to the biological tissue to be measured, the counter tube must be considerably large, and the entire apparatus becomes large. .
(4)電離箱の場合、放射線の線量を算出するに際し、使用するガスやビルドアップキ ヤップ等の壁材物質の物性を考慮したブラッグ'グレイの原理に基づいた変換式によ つて校正する必要があり、算出処理が複雑である。  (4) In the case of an ionization chamber, when calculating the radiation dose, it is necessary to calibrate using a conversion formula based on the Bragg's gray principle that takes into account the physical properties of the gas and build-up caps and other wall materials. And the calculation process is complicated.
(5)比例計数管や電離箱では、印加電圧が士(500V〜800V)と高ぐ特別な電源 が必要である。  (5) For proportional counters and ionization chambers, a special power supply is required, with the applied voltage being as high as 500V to 800V.
[0010] 一方、半導体素子を用いた放射線検出器も知られている力 高強度の放射線環境 下では半導体素子が電気的に壊れたり劣化してしまい、耐久性に欠けるという問題 があり、放射線の線量測定素子としては適さない。  [0010] On the other hand, radiation detectors using semiconductor elements are also known. Under high-intensity radiation environments, semiconductor elements are electrically broken or deteriorated, and there is a problem of lack of durability. Not suitable as a dosimetry device.
[0011] また、上述した特許文献 3では、「polymeric substrate (高分子基板)」上にフォトリソ グラフィによって電極をプリント配線した後、その上から本願の「高分子基板」に相当 する「active polymeric layer (活性高分子層)」を被覆している。このため、 FIG. 2に 示されるように複雑な構造で製造工程も多くなり、コストが嵩むという問題がある。  Further, in Patent Document 3 described above, after an electrode is printed on a “polymeric substrate” by photolithography, an “active polymeric layer” corresponding to the “polymer substrate” of the present application is formed thereon. (Active polymer layer) ". For this reason, as shown in FIG. 2, there is a problem that the manufacturing process is increased with a complicated structure and the cost is increased.
[0012] さらに、特許文献 3では、 FIG. 2に示されるように金属電極が極めて小さい間隔で 複雑に配線されるため、放射線を照射していないときの出力電流(以下、「暗流」とい う)が大きくなるものと考えられる。このため、 FIG. 4に示されるように、印加電圧が IV 以上の範囲では、放射線を照射したときの出力電流値が暗流と重なったり、暗流より も低くなつている。また、 FIG. 5に示されるように、印加電圧が 4V以上の範囲では、 抵抗比 (放射線 OFFZ放射線 ON)が 1. 0以下になっている。すなわち、印加電圧 力 S IV以上の範囲では、放射線を照射したときに増加する信号電流に比べて暗流が 大きいため、信号電流を判別できず、放射線検知器として使用することが困難である [0013] さらに、特許文献 4〜6に記載の放射線検知素子は、導電性高分子を対象とするも のであり、さらに高分子材料のみ力 構成されるものではない。つまり、特許文献 4は 「ハロゲンを含有する有機高分子物質」に「ポリア-リン」を合成しており、特許文献 5 は、絶縁基板上に設けられた一対の電極上に「組成物」を塗布しており、特許文献 6 は、高分子またはゴムに「導電性付与剤」を添加しており、いずれも導電性高分子を 対象としている。 Furthermore, in Patent Document 3, as shown in FIG. 2, the metal electrodes are complicatedly wired at extremely small intervals, so that the output current when not irradiated with radiation (hereinafter referred to as “dark current”). ) Will be larger. For this reason, as shown in FIG. 4, when the applied voltage is in the range of IV or higher, the output current value when irradiated with radiation overlaps with the dark current or is lower than the dark current. Also, as shown in FIG. 5, the resistance ratio (radiation OFFZ radiation ON) is 1.0 or less in the range where the applied voltage is 4V or more. That is, in the range of the applied voltage force S IV or more, the dark current is larger than the signal current that increases when radiation is applied, so the signal current cannot be determined and it is difficult to use as a radiation detector. [0013] Furthermore, the radiation detection elements described in Patent Documents 4 to 6 are intended for conductive polymers, and do not consist solely of polymer materials. That is, Patent Document 4 synthesizes “polyarine” to “organic polymer substance containing halogen”, and Patent Document 5 discloses “composition” on a pair of electrodes provided on an insulating substrate. In Patent Document 6, a “conductivity imparting agent” is added to a polymer or rubber, both of which are directed to a conductive polymer.
[0014] 本発明は、このような問題点を解決するためになされたものであって、少なくとも以 下の一つ以上の作用効果を得ることを目的としている。すなわち、放射線の測定素 子を気体ではなぐ組織等価プラスチックをはじめとする各種の高分子材料として固 体で構成することにより小型化、簡素化および低コストィ匕し、し力も任意の形状に成 形可能であるため人体部位に貼れたり、臓器形状に形成して臓器モデルを成形する などして、より生体組織に近い状態で吸収線量を精度よく測定することができる。さら にリアルタイムな放射線の線量の測定が可能である。また常温で電気絶縁性を有す る高分子材料を採用することにより広い電圧範囲 (例えば低電圧 10V以下でも可)に おいても、小さな暗流で大きな信号電流を検出し線量測定素子として使用することが できる電気絶縁性高分子材料を使った放射線の線量測定素子および放射線の線量 測定装置を提供することを目的として!ヽる。  [0014] The present invention has been made to solve such problems, and has an object to obtain at least one of the following operational effects. In other words, it is possible to reduce the size, simplify, and reduce the cost by forming solid materials as various polymer materials such as tissue equivalent plastics that do not use gas as a measurement element. Therefore, the absorbed dose can be accurately measured in a state closer to a living tissue, for example, by being attached to a human body part or by forming an organ model by forming it into an organ shape. In addition, the radiation dose can be measured in real time. In addition, by using a polymer material that is electrically insulating at room temperature, a large signal current can be detected in a small dark current and used as a dosimetry element even in a wide voltage range (eg, a low voltage of 10 V or less). An object of the present invention is to provide a radiation dosimetry element and a radiation dosimetry device using an electrically insulating polymer material.
課題を解決するための手段  Means for solving the problem
[0015] 本発明者らは、すでに特願 2004— 151087号において、組織等価プラスチックに より構成した基礎部材の表面に半導体あるいは絶縁体カゝらなる薄膜層を形成し、こ の薄膜層に一対の電極を設けた線量測定素子を発明し、従来の問題点を解消し得 るものであることを提案しているところである。そして、今回、発明者らはさらに研究を 進め、前述した半導体あるいは絶縁体の薄膜層を形成することなく電気絶縁性高分 子材料のみカゝら構成される素子であっても、放射線線量と出力電流との線形性が得 られ、放射線センサーとしての動作を確認することができた。これによれば、格段に成 形性に優れるとともに大幅なコスト抑制が可能となり、実用性が高い。また、高分子材 料は生体組織の低原子番号物質に近いことから生体の吸収線量の推定が容易であ るというメリツ卜ちある。 In the Japanese Patent Application No. 2004-151087, the present inventors have already formed a thin film layer made of a semiconductor or an insulator on the surface of a base member made of tissue-equivalent plastic, and paired with this thin film layer. We have invented a dosimetry device equipped with these electrodes and are proposing that it can solve the conventional problems. And this time, the inventors have further researched, and even if the element is composed only of an electrically insulating polymer material without forming the above-described semiconductor or insulator thin film layer, The linearity with the output current was obtained, and the operation as a radiation sensor was confirmed. According to this, it is remarkably excellent in formability and drastically reduces costs, and is highly practical. In addition, since polymer materials are close to low atomic number substances in living tissues, it is easy to estimate absorbed doses in living bodies. There is a merit fall.
[0016] そこで、本発明に係る電気絶縁性高分子材料を使った放射線の線量測定素子の 特徴は、常温で電気絶縁性を有する高分子材料により構成される基板と、この電気 絶縁性高分子基板の表面または内部に設けた少なくとも一対の電極とを有する点に ある。  [0016] Therefore, the radiation dosimetry element using the electrically insulating polymer material according to the present invention is characterized by a substrate made of a polymer material having electrical insulation properties at room temperature, and the electrically insulating polymer. It has at least a pair of electrodes provided on the surface or inside of the substrate.
[0017] また、本発明において、前記電気絶縁性高分子基板は、放射線の照射によって出 力電流値が放射線の線量に対して線形的な一意性を有しているものである。  [0017] Further, in the present invention, the electrically insulating polymer substrate has an output current value linearly unique with respect to the radiation dose by irradiation of radiation.
[0018] ここで、本発明のメカニズムについて説明する。絶縁体、半導体に光を照射したとき に、光が照射された絶縁体、半導体の光起電力効果が発生する現象は内部光電効 果として知られている。本件出願に係る発明者らが鋭意研究したところ、生体組織等 価プラスチックをはじめとする電気絶縁性高分子材料に放射線を照射することによつ ても、放射線が照射された高分子材料の電流値が外部信号として取り出すのに十分 な変化をすることがわかり、し力も放射線強度および放射線の線量と出力電流値の 変化が一意に対応して、直線的な線形性を有することがわ力つた。これは全く新しい 知見である。また、電流値の変化が、主として高分子の表面近傍や内部において放 射線による高分子鎖状結合手の切断により、ダングリングボンドの発生を引き起こし、 そこからの電子などキャリアが生成されて 、るものと考えられ、これが外部電界でドリ フトすることで外部電流が得られると考えられる。放射線の照射により電流値が変化 すると 、う現象のみから見ると内部光電効果と類似する力 β線 (電磁波ではな 、) の照射によっても電流値が変化することが確認されており、内部光電効果とは異なる ものであると考えられる。つまり、通常の高分子材料の場合、電荷を運ぶ粒子である 電子は、分子を構成する原子から動けない束縛状態にあり、 380ηπ!〜 780nmの可 視光領域ではその束縛を切る程のエネルギーを持たな 、ので電流が流れな 、。放 射線照射によって、放射線が照射された表面ある 、は表面近傍にキャリアが誘起さ れるものと考えられる。本発明における放射線は電離放射線であり、 γ線、 j8線、 α 線、 X線を対象とする。  [0018] Here, the mechanism of the present invention will be described. The phenomenon in which the photovoltaic effect of an insulator or semiconductor irradiated with light when the insulator or semiconductor is irradiated with light is known as an internal photoelectric effect. The inventors of the present application have conducted intensive research and found that even when an electrically insulating polymer material such as a biological tissue equivalent plastic is irradiated with radiation, the current of the polymer material irradiated with radiation is also reduced. It was found that the value changed sufficiently to be taken out as an external signal, and the force was also found to have a linear linearity due to the unique correspondence between changes in radiation intensity, radiation dose, and output current value. . This is a completely new finding. In addition, the change in the current value causes the generation of dangling bonds due to the breakage of the polymer chain bonds by radiation near the inside or inside of the polymer, and carriers such as electrons are generated therefrom. It is considered that the external current can be obtained by drifting in the external electric field. When the current value changes due to the irradiation of radiation, it is confirmed that the current value also changes by irradiation of force β-rays (not electromagnetic waves), which is similar to the internal photoelectric effect from the viewpoint of the radiation phenomenon alone. Is considered to be different. In other words, in the case of ordinary polymer materials, the electrons that carry the charge are in a bound state that cannot move from the atoms that make up the molecule, 380ηπ! In the visible light region of ~ 780nm, it does not have enough energy to break its binding, so no current flows. It is considered that carriers are induced in the vicinity of the surface irradiated with radiation or near the surface. The radiation in the present invention is ionizing radiation and targets γ rays, j8 rays, α rays, and X rays.
[0019] また、本発明にお ヽて、前記高分子材料は、電極間の電気抵抗値が約 10 Ω以 上、より好ましくは 1012 Ω以上となる電極間距離に設定されていることが好ましぐ人 体への被曝線量を測定対象とする際には生体組織等価プラスチックを採用すること が望ましい。この場合、放射線の線量は生体組織の吸収線量に対応している。これ によれば、生体と同等若しくは類似の組成によって放射線の吸収量を測定することが でき、より一層人体に対する放射線吸収量等を精度よく測定することが可能となる。 [0019] Further, in the present invention, the polymer material is set to an inter-electrode distance at which an electrical resistance value between the electrodes is about 10 Ω or more, more preferably 10 12 Ω or more. Person who likes When measuring the exposure dose to the body, it is desirable to use biological tissue equivalent plastic. In this case, the radiation dose corresponds to the absorbed dose of the living tissue. According to this, the amount of absorbed radiation can be measured with a composition equivalent to or similar to that of a living body, and the amount of absorbed radiation to the human body can be further accurately measured.
[0020] さらに、本発明において、前記電気絶縁性高分子基板は、身体表面に貼付あるい は体内に挿入される場合、生体組織等価プラスチックから構成されていることが好ま しい。  [0020] Furthermore, in the present invention, it is preferable that the electrically insulating polymer substrate is made of a biological tissue equivalent plastic when being attached to the body surface or inserted into the body.
[0021] また、本発明において、放射線照射による画像撮影や放射線照射治療等の際にお ける患者の被曝線量の測定に使用する場合、前記電気絶縁性高分子基板を、当該 照射する放射線の実効エネルギーにおいて約 90%以上の透過性を有する電気絶 縁性高分子材料によって構成され、例えばシーツ状などにカ卩ェして患者にかけるこ とが望ましい。  [0021] In addition, in the present invention, when used for measuring the exposure dose of a patient at the time of imaging by radiation irradiation or radiation irradiation treatment, the electrically insulating polymer substrate is used as the effective radiation to be irradiated. It is preferably composed of an electrically insulating polymer material having a permeability of about 90% or more in energy, and it is desirable to apply it to a patient in the form of a sheet, for example.
[0022] また、本発明において、放射線を扱う空間の窓などに使用する場合、前記電気絶 縁性高分子基板を、可視光に対する透明度を有する電気絶縁性高分子材料によつ て構成することが好ましい。  [0022] Further, in the present invention, when used in a window of a space that handles radiation, the electrically insulating polymer substrate is constituted by an electrically insulating polymer material having transparency to visible light. Is preferred.
[0023] また、本発明に係る放射線の線量測定装置の特徴は、電気絶縁性高分子基板の 表面または内部に少なくとも一対の電極を有する放射線の線量測定素子と、この放 射線の線量測定素子の一対の電極間に電圧を印加する電圧印加手段と、前記電極 間を流れる電流を検出する電流検出手段と、検出された電極間電流力 線量を換算 する線量取得手段と、線量を表示する表示手段とを有し、放射線の照射によって前 記線量測定素子の出力電流値が放射線の線量に対して線形的な一意性をもって変 化することを用いて放射線の線量を測定する点にある。  [0023] Further, the radiation dosimetry apparatus according to the present invention is characterized by a radiation dosimetry element having at least a pair of electrodes on the surface or inside of an electrically insulating polymer substrate, and a radiation dosimetry element for the radiation. A voltage applying means for applying a voltage between a pair of electrodes; a current detecting means for detecting a current flowing between the electrodes; a dose acquiring means for converting the detected inter-electrode current force dose; and a display means for displaying the dose The radiation dose is measured by changing the output current value of the dosimetry element with linear uniqueness with respect to the radiation dose by irradiation with radiation.
[0024] このような構成によれば、電圧印加手段により一対の電極に電圧を印加した状態で 、放射線の線量測定素子の電気絶縁性高分子基板が放射線を受けると、その電気 絶縁性高分子基板の表面およびまたは表面近傍にお!、てキャリアが生成され、発生 したキャリアが正負電極へ流れるため、そのキャリアによる微弱電流を電流検出手段 により検出することにより、放射線を検出することができる。そして、電流検出手段によ り前記微弱電流を測定することで、放射線の線量も検出することが可能となる。 [0025] そして、本発明において、カテーテルの先端内に前記線量測定素子を取り付けると ともに、カテーテルのチューブ内に配置したマイクロストリップライン等の一定な特性 インピーダンス線に接続して電圧印加手段および電流検出手段に接続し、これによ り検出された電極間電流カゝら線量を換算する線量換算手段と、線量を表示する表示 手段とを有する構成としてもょ ヽ。 [0024] According to such a configuration, when the electrically insulating polymer substrate of the radiation dose measuring element receives radiation in a state where a voltage is applied to the pair of electrodes by the voltage applying means, the electrically insulating polymer Since carriers are generated on the surface of the substrate and / or in the vicinity of the surface and the generated carriers flow to the positive and negative electrodes, radiation can be detected by detecting the weak current caused by the carriers by the current detection means. Then, it is possible to detect the radiation dose by measuring the weak current by the current detecting means. In the present invention, the dose measuring element is attached in the distal end of the catheter, and connected to a constant characteristic impedance line such as a microstrip line disposed in the tube of the catheter to connect the voltage applying means and the current detection. It may be configured to have a dose conversion means for converting the dose from the interelectrode current detected by this means, and a display means for displaying the dose.
[0026] さらには、本発明において、ボタン状の小型筐体内に、前記線量測定素子と、電流 増幅器を内蔵した線量換算機能を有する演算処理部および計測データ蓄積する記 憶部を備えた電子回路基板と、小型電池と、警報装置と、外部接続コネクタとを内蔵 し、前記線量測定素子と前記電子回路基板および小型電池とを一対の一定な特性 インピーダンス線を介して接続して構成されるようにしてもょ 、。  [0026] Further, in the present invention, an electronic circuit including the dose measuring element, a calculation processing unit having a dose conversion function with a built-in current amplifier, and a storage unit for storing measurement data in a button-shaped small housing. A board, a small battery, an alarm device, and an external connector are built in, and the dose measuring element, the electronic circuit board and the small battery are connected via a pair of constant characteristic impedance lines. Anyway.
[0027] さらにまた、靴の底部内に、前記線量測定素子と、電流増幅器を内蔵した線量換 算機能を有する演算処理部および計測データ蓄積する記憶部を備えた電子回路基 板と、小型電池と、警報装置と、外部接続コネクタとを内蔵し、前記線量測定素子と 前記電子回路基板および小型電池とを一対の一定な特性インピーダンス線を介して 接続して構成されるようにしてもょ 、。  [0027] Furthermore, in the bottom of the shoe, an electronic circuit board including the dose measuring element, a calculation processing unit having a dose conversion function incorporating a current amplifier, and a storage unit for storing measurement data, and a small battery And an alarm device and an external connection connector, and the dose measuring element, the electronic circuit board and the small battery may be connected via a pair of constant characteristic impedance lines. .
発明の効果  The invention's effect
[0028] 本発明によれば、 [0028] According to the present invention,
1)放射線の線量測定素子を曲面や球状等の任意の形状に形成できるため、放射 線治療にお 、て人体や臓器に貼付して生体内吸収線量を測定したり、診断用 X線の 照射による被曝線量を測定することができる。この場合、人体部位や臓器の形状に 形成することにより臓器モデルケースを使って吸収線量を予測したり、放射線を照射 しながらリアルタイムに実測することも可能である。  1) Since the radiation dose measuring element can be formed in any shape such as a curved surface or a spherical shape, it can be affixed to the human body or organ for radiation therapy to measure the absorbed dose in the body, or irradiation with diagnostic X-rays It is possible to measure the exposure dose. In this case, the absorbed dose can be predicted using an organ model case by forming it in the shape of a human body part or organ, or it can be measured in real time while irradiating with radiation.
2)放射線管理区域や一般環境における放射線量を人体を模擬する組織モデルに て測定することも可能である。  2) It is also possible to measure the radiation dose in the radiation control area and the general environment with a tissue model that simulates the human body.
3)従来に比べて装置全体を小型化、簡素化および低コストィ匕することができる。 3) Compared with the prior art, the entire apparatus can be reduced in size, simplified and reduced in cost.
4)高強度の放射線環境下でも動作安定性、信頼性、耐久性に優れた測定ができ る。 4) Measurements with excellent operational stability, reliability, and durability are possible even in high-intensity radiation environments.
5)広 ヽ電圧範囲 (低電圧 10V以下でも可)にお ヽても小さな暗流で大きな信号電 流を検出し放射線の線量を測定することができる等の効果を奏する。 5) Even in a wide voltage range (low voltage of 10V or less is acceptable) It is possible to detect the flow and measure the radiation dose.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、本発明に係る電気絶縁性高分子材料を使った放射線の線量測定素子 1お よびこれを用いた放射線の線量測定装置 2の実施形態につ 、て図面を用いて説明 する。  Hereinafter, embodiments of a radiation dose measuring element 1 using an electrically insulating polymer material according to the present invention and a radiation dose measuring apparatus 2 using the same will be described with reference to the drawings.
[0030] 図 1は、本実施形態の放射線の線量測定装置 2の構成を示す模式図である。本実 施形態の放射線の線量測定装置 2は、放射線の線量を検出するための放射線の線 量測定素子 1と、この放射線の線量測定素子 1を制御し放射線の線量を算出する装 置本体 3と、放射線線量の測定結果を表示する表示装置 4とから構成されている。な お、本実施形態において線量とは、生体組織をはじめとする物質の吸収線量に対応 した線量を示す。  FIG. 1 is a schematic diagram showing a configuration of a radiation dose measuring apparatus 2 according to the present embodiment. The radiation dose measuring device 2 of this embodiment includes a radiation dose measuring element 1 for detecting the radiation dose, and a device main body 3 for controlling the radiation dose measuring element 1 and calculating the radiation dose 3. And a display device 4 for displaying the measurement result of the radiation dose. In this embodiment, the dose indicates a dose corresponding to the absorbed dose of a substance such as a living tissue.
[0031] まず、放射線の線量測定素子 1について説明する。本出願に係る発明者らは、前 述した課題に対して鋭意研究した結果、電気絶縁性高分子材料のみから構成される 電気絶縁性高分子基板の表面に放射線を照射することにより電流が流れ、しかもそ の出力電流値が照射された放射線の線量に対して線形な一意性を有して 、ることを 見い出した。このような電流値と放射線線量との線形性関係を利用することによって 前記電気絶縁性高分子基板に発生する電流値、ある 、はその電流によって起こる電 極間電圧の変化を検出することにより照射された放射線の線量率を測定できる本発 明に想到した。  First, the radiation dose measuring element 1 will be described. As a result of earnest research on the above-described problems, the inventors of the present application have found that an electric current flows by irradiating the surface of an electrically insulating polymer substrate composed of only an electrically insulating polymer material. In addition, it was found that the output current value has a linear uniqueness with respect to the dose of irradiated radiation. By using such a linear relationship between the current value and the radiation dose, the current value generated in the electrically insulating polymer substrate, or is detected by detecting a change in the voltage between the electrodes caused by the current. I came up with this invention that can measure the dose rate of the emitted radiation.
[0032] 図 1に示すように、本実施形態の放射線の線量測定素子 1は、組織等価プラスチッ クあるいはこれと同等の性質を有する材料により構成され、常温で電気絶縁性を有す る高分子基板 11と、この電気絶縁性高分子基板 11の表面に設けた一対の電極 12, 12とから構成されている。この電極 12, 12は一対に限定する必要はなぐたとえば下 面側にも形成して二対の電極 12, 12として構成してもよ 、。  As shown in FIG. 1, the radiation dose measuring element 1 of the present embodiment is composed of a tissue-equivalent plastic or a material having properties equivalent to this, and is a polymer having electrical insulation properties at room temperature. The substrate 11 is composed of a pair of electrodes 12 and 12 provided on the surface of the electrically insulating polymer substrate 11. The electrodes 12 and 12 need not be limited to a pair. For example, the electrodes 12 and 12 may be formed on the lower surface side to form two pairs of electrodes 12 and 12.
[0033] 電気絶縁性高分子基板 11は、放射線照射によって表面や表面近傍または内部、 あるいはそれら両方にぉ 、てキャリアを生成してコンダクタンスに変化を生じさせるた めのものであり、組織等価プラスチックをはじめ各種の高分子材料によって成形可能 である。前記電気絶縁性高分子基板 11は、放射線非照射時には電気的な絶縁性に 優れる一方、放射線を照射した際に微小電流が流れ、その電流値が放射線の線量 に対して比例的な線形性を有して 、る。 [0033] The electrically insulating polymer substrate 11 is for generating a carrier and causing a change in conductance on the surface, in the vicinity of the surface thereof, in the interior thereof, or both by irradiation, and for tissue equivalent plastics. It can be molded with various polymer materials including The electrically insulating polymer substrate 11 is electrically insulative when not exposed to radiation. On the other hand, a minute current flows when irradiated with radiation, and the current value has a linearity proportional to the radiation dose.
[0034] 本実施形態における電気絶縁性高分子基板 11は、放射線照射による実用的大き さの信号を検出するために、一対の電極間の電気抵抗値が約 101(> Ω以上、より好ま しくは約 1012 Ω以上の電極間距離に設定されている。また、電気絶縁性物質の抵抗 率は一般的には約 101(> Ω cm以上のものを示すが、電気絶縁性高分子基板 11に使 用される高分子材料の抵抗率としては、放射線照射による信号検出が可能であれば よぐ約 1012 Q cm以上が好ましぐ約 1014 Ω cm以上であればより好ましい。例えば、 室温程度における体積抵抗率で、ポリエチレン、ポリプロピレン、ポリイミド、およびポ リカーボネート等は 1016 Ω cm以上であり、フエノール榭脂では IOU IO Q CH^ェ ポキシ榭脂では 1015〜1017 Ω cm、ポリエステル榭脂では約 1014 Ω cmである。 [0034] The electrical insulating polymer substrate 11 in the present embodiment is more preferable because the electrical resistance value between the pair of electrodes is about 101 (> Ω or more ) in order to detect a signal having a practical size due to radiation irradiation. The distance between the electrodes is set to about 10 12 Ω or more, and the resistivity of the electrically insulating material is generally about 10 1 (> Ω cm or more). The resistivity of the polymer material used for the substrate 11 is more preferably about 10 14 Ωcm or more, preferably about 10 12 Qcm or more, if signal detection by irradiation is possible. For example, volume resistivity at around room temperature is 10 16 Ωcm or more for polyethylene, polypropylene, polyimide, polycarbonate, etc., and 10 15 to 10 17 Ω for IOU IO Q CH ^ epoxy resin for phenol resin. cm, about 10 14 Ωcm for polyester resin.
[0035] ここで、組織等価プラスチックとは、生体組織を構成する元素(C, H, O, N, F等) の組成に近!ヽ化学式 (または混合比)を有する電気絶縁性高分子材料 (プラスチック )のことであり、化学組成が類似しているため、放射線との相互作用を考える上では 生体組織と等価とみなせるものである。前記組織等価プラスチックの組成は、生体軟 組織や筋肉組織の元素組成に類似しており、高エネルギーを有する放射線粒子に 対しては、阻止能というエネルギー付与量を表す物理量が等価な値を示す。組織等 価プラスチックの例としては、ポリカーボネート、アクリル榭脂、ポリエチレン、ポリアミド ナイロン、ポリエチレンテレフタレート、水等価プラスチック、ウレタン榭脂、エポキシ榭 脂、ポリテトラフルォロエチレン等が挙げられる。また、組織等価プラスチックは、ブラ スチックとしての性質を備えているため、任意の形状に形成することが可能であり、曲 面形状や複雑な形状にも容易に対応できる。  [0035] Here, the tissue equivalent plastic is an electrically insulating polymer material having a chemical formula (or mixing ratio) close to the composition of the elements (C, H, O, N, F, etc.) constituting the living tissue. It is (plastic) and has similar chemical composition, so it can be regarded as equivalent to living tissue when considering interaction with radiation. The composition of the tissue-equivalent plastic is similar to the elemental composition of living soft tissue and muscle tissue, and a physical quantity representing the amount of energy imparted as stopping power is equivalent to radiation particles having high energy. Examples of the tissue equivalent plastic include polycarbonate, acrylic resin, polyethylene, polyamide nylon, polyethylene terephthalate, water equivalent plastic, urethane resin, epoxy resin, polytetrafluoroethylene, and the like. In addition, since tissue equivalent plastics have properties as plastics, they can be formed into any shape and can easily cope with curved or complex shapes.
[0036] つぎに、一対の電極 12, 12は、正電極と負電極とから構成されており、図 1に示す ように、所定の間隔を隔てて電気絶縁性高分子基板 11の表面に設けられている。本 実施形態の各電極 12, 12は、真空蒸着法等の薄膜技術を使って金 (Au)からなる 金属薄膜として形成している。前記一対の電極 12, 12は、所定のケーブルを介して 装置本体 3に接続される。なお、電極 12, 12の配置は上記構成に限られるものでは なぐ後述するように電気絶縁性高分子基板 11の内部に挿入するようにしてもょ ヽ。 [0037] つぎに、装置本体 3について図 2を用いて説明する。本実施形態の装置本体 3は、 放射線の線量測定素子 1の電極 12, 12間にバイアス電圧を印加する電圧印加回路 31と、前記電極 12, 12間を流れる微弱電流を検出する電流検出器 32と、この電流 検出器 32で検出した微弱電流を増幅する増幅回路 33と、表示装置 4を表示させる 表示駆動回路 34と、これら電流検出器 32、増幅回路 33および表示駆動回路 34とィ ンターフェース 35を介して接続されるマイクロコンピュータ 36とを有している。 Next, the pair of electrodes 12 and 12 are composed of a positive electrode and a negative electrode, and are provided on the surface of the electrically insulating polymer substrate 11 at a predetermined interval as shown in FIG. It has been. Each of the electrodes 12 and 12 of this embodiment is formed as a metal thin film made of gold (Au) by using a thin film technique such as vacuum deposition. The pair of electrodes 12 and 12 are connected to the apparatus main body 3 via a predetermined cable. The arrangement of the electrodes 12 and 12 is not limited to the above configuration, but may be inserted into the electrically insulating polymer substrate 11 as described later. Next, the apparatus main body 3 will be described with reference to FIG. The apparatus main body 3 of the present embodiment includes a voltage application circuit 31 that applies a bias voltage between the electrodes 12 and 12 of the radiation dose measuring element 1 and a current detector 32 that detects a weak current flowing between the electrodes 12 and 12. And an amplification circuit 33 that amplifies the weak current detected by the current detector 32, a display drive circuit 34 that displays the display device 4, and the current detector 32, the amplification circuit 33, and the display drive circuit 34. 35 and a microcomputer 36 connected via 35.
[0038] 電圧印加回路 31は、図 2に示すように、所定のケーブルにより放射線の線量測定 素子 1の各電極 12, 12に接続されている。また、インターフェース 35を介してマイク 口コンピュータ 36と接続され、印加するノ ィァス電圧が調整されている。電極 12, 12 間に印加するバイアス電圧は、電気絶縁性高分子基板 11の材質や一対の電極 12, 12間の距離に応じて適宜決定され、本実施形態では、約 1〜: LOOVの直流電圧に設 定されている。  As shown in FIG. 2, the voltage application circuit 31 is connected to the electrodes 12 and 12 of the radiation dose measuring element 1 by a predetermined cable. Further, it is connected to the microphone port computer 36 via the interface 35, and the applied noise voltage is adjusted. The bias voltage applied between the electrodes 12 and 12 is appropriately determined according to the material of the electrically insulating polymer substrate 11 and the distance between the pair of electrodes 12 and 12, and in this embodiment, about 1 to: DC of LOOV The voltage is set.
[0039] 電流検出器 32は、図 2に示すように、放射線の線量測定素子 1の正電極 12に接続 されている。本実施形態では、図示しないソレノイドコイルとホール素子とから構成さ れており、正電極 12からの微弱電流によりソレノイドコイルに発生した磁力線をホー ル素子が検出している。したがって、微弱な電流であっても高精度に検出する。なお 、電流検出器 32としては、安価な電流オペアンプを使用してもよい。  As shown in FIG. 2, the current detector 32 is connected to the positive electrode 12 of the radiation dose measuring element 1. In this embodiment, a solenoid coil (not shown) and a Hall element are included, and the Hall element detects a magnetic field line generated in the solenoid coil by a weak current from the positive electrode 12. Therefore, even a weak current is detected with high accuracy. Note that an inexpensive current operational amplifier may be used as the current detector 32.
[0040] マイクロコンピュータ 36は、図示しな!ヽ ROM (Read Only Memory)と RAM (Rando m Access Memory)と CPU (Central Processing Unit)とを有しており、線量換算手段 をはじめ各種の制御手段として機能する。 ROMには、放射線の線量を測定するため の線量測定プログラムや、表示装置 4に表示を行うための表示制御プログラム等が予 め入力格納されている。線量測定プログラムには、検出した電流値力 放射線の線 量を算出するための所定の換算式あるいは換算表が組み込まれている。前記換算 式あるいは換算表は、構成や材質の異なる線量測定素子 1ごとに求められるもので あり、放射線の強度とその放射線が照射された電気絶縁性高分子基板 11における 電流値との比例的な線形関係により定められる。 RAMには、電流検出器 32が検出 した微弱電流値が所定の時間間隔 (例えば 1秒)で更新されつつ格納される。 CPU は、 ROMに格納された線量測定プログラムに基づいて、 RAMに格納された最新の 電流値データを取得し、所定の換算式や換算表により放射線の線量を取得する。こ の取得した値は、表示駆動回路 34を介して表示装置 4に表示される。 [0040] The microcomputer 36 includes a ROM (Read Only Memory), a RAM (Random Access Memory), and a CPU (Central Processing Unit), and various control means including a dose conversion means. Function as. In the ROM, a dose measurement program for measuring the radiation dose, a display control program for displaying on the display device 4 and the like are input and stored in advance. The dosimetry program incorporates a predetermined conversion formula or conversion table for calculating the dose of detected current value radiation. The conversion formula or conversion table is obtained for each dosimetry element 1 having a different configuration or material, and is proportional to the intensity of radiation and the current value in the electrically insulating polymer substrate 11 irradiated with the radiation. Determined by a linear relationship. The RAM stores the weak current value detected by the current detector 32 while being updated at a predetermined time interval (for example, 1 second). The CPU is based on the dosimetry program stored in ROM and the latest stored in RAM. Current value data is acquired, and the radiation dose is acquired by a predetermined conversion formula or conversion table. The acquired value is displayed on the display device 4 via the display drive circuit 34.
[0041] つぎに、本実施形態の電気絶縁性高分子材料を使った放射線の線量測定素子 1 およびこれを用いた放射線の線量測定装置 2による作用を説明する。  Next, the operation of the radiation dose measuring element 1 using the electrically insulating polymer material of the present embodiment and the radiation dose measuring apparatus 2 using the same will be described.
[0042] まず、放射線の線量測定素子 1を放射線が照射される位置にセットする。このとき、 放射線の線量測定素子 1は任意の形状に薄く形成することができるため、被照射体 の表面形状に沿って張り付けることも可能である。また、例えば、人体の所定の部位( 臓器など)の模型を組織等価プラスチックにより形成し、この模型の表面に電極 12、 12を形成すると、その部位に照射される放射線の線量をモニタするための放射線の 線量測定素子 1として構成される。  First, the radiation dose measuring element 1 is set at a position where radiation is irradiated. At this time, since the radiation dose measuring element 1 can be thinly formed in an arbitrary shape, it can be attached along the surface shape of the irradiated object. In addition, for example, when a model of a predetermined part of the human body (such as an organ) is formed of tissue equivalent plastic, and electrodes 12 and 12 are formed on the surface of this model, the dose of radiation applied to that part is monitored. Configured as radiation dosimetry element 1
[0043] 放射線の線量測定素子 1を所定位置にセットした後、電圧印加回路 31により所定 のバイアス電圧を一対の電極 12, 12に印加する。これにより、電気絶縁性高分子基 板 11を通じて正電極力 負電極へほぼ一定の微弱電流が流れる。電流検出器 32は 、常時その微弱電流を検出するとともに、検出された電流値は増幅回路 33で増幅さ れた後、インターフェース 35を介してマイクロコンピュータ 36に入力される。マイクロコ ンピュータ 36は、取得した最新の電流値を所定の時間間隔で RAMに更新しつつ格 納する。格納された電流値は CPUにより逐次取得され、その増減が監視される。  After the radiation dose measuring element 1 is set at a predetermined position, a predetermined bias voltage is applied to the pair of electrodes 12 and 12 by the voltage application circuit 31. As a result, an almost constant weak current flows through the electrically insulating polymer substrate 11 to the positive electrode force and the negative electrode. The current detector 32 constantly detects the weak current, and the detected current value is amplified by the amplifier circuit 33 and then input to the microcomputer 36 via the interface 35. The microcomputer 36 stores the acquired latest current value while updating it in the RAM at predetermined time intervals. The stored current value is acquired sequentially by the CPU, and the increase or decrease is monitored.
[0044] 以上のように、放射線の線量測定素子 1にバイアス電圧が印加された状態で電気 絶縁性高分子基板 11の表面に放射線が照射されると、電気絶縁性高分子基板 11 の表面近傍にキャリアが発生する。これにより、発生したキャリアは、ノィァス電圧によ り電極 12, 12へ流されるため、電極 12, 12へ流れる電流が僅かに増加する。 CPU は、放射線照射による微小な電流増加を検出したとき、その電流増加と上述した所 定の換算式ある ヽは換算表に基づ ヽて、電気絶縁性高分子基板 11に入射した放射 線の線量を算出する。算出された放射線の線量は、表示装置 4に数値とグラフの形 で表示される。  As described above, when radiation is applied to the surface of the electrically insulating polymer substrate 11 with a bias voltage applied to the radiation dose measuring element 1, the vicinity of the surface of the electrically insulating polymer substrate 11 is irradiated. A career occurs. As a result, the generated carriers are caused to flow to the electrodes 12 and 12 by the noise voltage, so that the current flowing to the electrodes 12 and 12 slightly increases. When the CPU detects a small current increase due to radiation irradiation, the current increase and the above-mentioned conversion formula ヽ is based on the conversion table and the radiation incident on the electrically insulating polymer substrate 11 is detected. Calculate the dose. The calculated radiation dose is displayed on the display device 4 in the form of numerical values and graphs.
[0045] つぎに、本実施形態の放射線の線量測定素子 1に係る実験例を説明する。本特許 出願に係る発明者らは、線量測定素子 1に電気絶縁性高分子基板 11を適用するに 先立ち、絶縁性の基板としてアルミナ (Al O )や組織等価プラスチックを使用し、こ れらの基板上に酸化チタン薄膜層、アルミナ薄膜層、酸ィ匕ジルコニウム薄膜層を形 成して放射線を照射する基礎実験を行い、その放射線量に対して出力電流が線形 的な一意性を有するとの結果を得て、特願 2004— 151087号にて開示しているとこ ろであるが、本件ではさらなる実験により、前記酸ィ匕金属薄膜を形成する必要がなく 、電気絶縁性高分子材料のみによる基板 11を使用することによって放射線量に対し て出力電流が線形的な一意性を有するとの実験結果を得た。以下、各実験例につ いて説明する。 [0045] Next, an experimental example according to the radiation dose measuring element 1 of the present embodiment will be described. The inventors of the present patent application use alumina (Al 2 O 3) or tissue-equivalent plastic as the insulating substrate before applying the electrically insulating polymer substrate 11 to the dosimetry element 1. A basic experiment was conducted in which a titanium oxide thin film layer, an alumina thin film layer, and an oxide-zirconium thin film layer were formed on these substrates and irradiated with radiation. As a result, it is disclosed in Japanese Patent Application No. 2004-151087. However, in this case, it was not necessary to form the metal oxide thin film by further experiments, and the electrically insulating polymer was not formed. An experimental result was obtained that the output current had a linear uniqueness with respect to the radiation dose by using the substrate 11 made of only the material. Hereinafter, each experimental example will be described.
[0046] 『実験例 1』  [0046] "Experiment 1"
本発明に係る実験例について説明する。図 3は実験に用いた放射線検出素子 1 ( 放射線の線量測定素子でもある)の測定回路の模式図である。放射線検出素子 1は 、各種の電気絶縁性高分子材料から構成される基板 11と、この電気絶縁性高分子 基板 11の上に間隔を隔てて対向状に設けた一対の直線状の電極 12, 12とから構 成される。電気絶縁性高分子基板 11の膜厚は lmm、縦および横の長さはそれぞれ 10mmとした。電極 12, 12は基板 11の端部に形成されており、縦 10mm、横 3mm、 厚さ 200〜300nmであり、電極間距離は 6mmである。  An experimental example according to the present invention will be described. Fig. 3 is a schematic diagram of the measurement circuit of radiation detector 1 (also a radiation dosimetry device) used in the experiment. The radiation detection element 1 includes a substrate 11 made of various electrically insulating polymer materials, and a pair of linear electrodes 12, which are provided on the electrically insulating polymer substrate 11 so as to face each other at an interval. It consists of twelve. The thickness of the electrically insulating polymer substrate 11 was 1 mm, and the vertical and horizontal lengths were each 10 mm. The electrodes 12 and 12 are formed at the end of the substrate 11 and have a length of 10 mm, a width of 3 mm, a thickness of 200 to 300 nm, and an interelectrode distance of 6 mm.
[0047] 電気絶縁性高分子基板 11の材料としては、プラスチックウォーター(米国 CIRS社 の登録商標)、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン (PEEK:英 国ビクトレックス社の登録商標)、テフロン (登録商標)(米国デュポン社)をそれぞれ 使用した。プラスチックウォーター(登録商標)は比重が 1. 039 (g/cm3)であって水 に極めて近い比重を備えており、その組成比率は炭素 Cが 0. 599,酸素 Oが 0. 23 5、水素 H力 SO. 078,蜜素 N力 SO. 018,カノレシクム Ca力 0. 068, 素 C1力 0. 002 である。また、ポリイミドは全芳香族ポリイミドであって TI— 3000 (東レ製)を使用し、 その比重は約 1. 4 (g/cm3)であり、その糸且成比率は炭素 Cが 0. 525,水素 Hが 0. 300,酸素 Oが 0. 125、窒素 Nが 0. 05である。また、ポリカーボネートの比重は約 1 . 2 (g/cm3)である。一方、実験用電源は 0〜: L00V出力のエレクト口メータ内蔵の 直流安定化電源を使用し、検流計 (エレクト口メータ) Gで電流の出力を測定した。 [0047] Materials for the electrically insulating polymer substrate 11 include plastic water (registered trademark of CIRS, USA), polycarbonate, polyimide, polyetheretherketone (PEEK: registered trademark of Victrex, UK), Teflon (registered) Trademark) (DuPont, USA). Plastic Water (registered trademark) has a specific gravity of 1.039 (g / cm 3 ) and has a specific gravity very close to that of water, and its composition ratio is 0.599 for carbon C, 0.235 for oxygen O, Hydrogen H force SO. 078, Nectar N force SO. 018, Kanoreshikum Ca force 0. 068, Element C1 force 0.002. Polyimide is a wholly aromatic polyimide, using TI-3000 (Toray), and its specific gravity is about 1.4 (g / cm 3 ). , Hydrogen H is 0.300, oxygen O is 0.125, and nitrogen N is 0.05. The specific gravity of polycarbonate is about 1.2 (g / cm 3 ). On the other hand, the experimental power supply was a DC stabilized power supply with a built-in electometer with 0 ~: L00V output, and the current output was measured with a galvanometer (electrometer) G.
[0048] また、本実験例 1では、まず X線を照射する実験を行った。 X線の照射装置はスタビ リパン II (シーメンス社製)を使用し、照射条件は、管電圧 100kV、実効電圧 57keV 、管電流 20mA、照射時間 60sec、照射距離 40〜: L 10cmとした。なお、印可電圧は 10V—定にして行った。 [0048] In Experimental Example 1, first, an experiment of irradiating X-rays was performed. The X-ray irradiation device uses Stabilipan II (Siemens), and the irradiation conditions are tube voltage 100 kV and effective voltage 57 keV. , Tube current 20 mA, irradiation time 60 sec, irradiation distance 40-: L 10 cm. The applied voltage was set to 10V-constant.
[0049] 図 4は、各種の電気絶縁性高分子基板 11に対して X線を照射した際の照射線量率 と出力電流値との関係を示すグラフである。グラフの横軸には X線照射線量率、縦軸 には出力電流値を示す。このグラフから明らかなように、各種の電気絶縁性高分子材 料で作製した基板 11に生じる電流値は X線の照射線量率に対して比例的な線形性 を示して一意的に定まる。今回の実験に供した高分子の中ではポリカーボネートが 最高出力電流を示しており、 35 X 10_4 (C/kg/min)の X線照射線量率のときに約 35 OpAの電流値を出力した。このポリカーボネートの比例特性に基づきその傾きである 平均感度を求めると、約 90[nA/(C/kg/min)]である。一方、 PEEK (登録商標)、ブラ スチックウォーター(登録商標)およびポリイミドはポリカーボネートおよびテフロン (登 録商標)に比べて出力電流値が小さく約 150pAの出力電流値を示しているが、直線 的な線形性を有して 、るためセンサーとしては問題な 、。特に各電気絶縁性高分子 材料では、わずカゝ 10V電圧でも充分な出力が得られており、また IVであっても出力 電流が得られることが確認されており、低電圧印加状態でもセンサーとして利用でき ることは実用上好適である。なお、照射線量と吸収線量とは、生体の軟部組織、例え ば筋肉や内臓等ではほぼ比例することから、上記グラフの結果は、発生する電流値 と吸収線量との関係に対しても同様に適用し得るものであり、比例的な線形性を有す るといえる。 FIG. 4 is a graph showing the relationship between the irradiation dose rate and the output current value when various types of electrically insulating polymer substrates 11 are irradiated with X-rays. The horizontal axis of the graph shows the X-ray irradiation dose rate, and the vertical axis shows the output current value. As is apparent from this graph, the current value generated in the substrate 11 made of various electrically insulating polymer materials is uniquely determined by showing linearity proportional to the X-ray irradiation dose rate. Among the polymers used in this experiment, polycarbonate showed the highest output current, and a current value of about 35 OpA was output at an X-ray irradiation dose rate of 35 X 10 _4 (C / kg / min). . The average sensitivity, which is the inclination based on the proportional characteristics of this polycarbonate, is about 90 [nA / (C / kg / min)]. On the other hand, PEEK (registered trademark), plastic water (registered trademark) and polyimide have a smaller output current value than polycarbonate and Teflon (registered trademark), and show an output current value of about 150 pA. Therefore, it is a problem as a sensor. In particular, it has been confirmed that each electrically insulating polymer material has a sufficient output even at a voltage of 10V, and an output current can be obtained even at IV. It can be utilized as a practically preferable. Since the irradiation dose and absorbed dose are almost proportional in the soft tissue of the living body, such as muscles and internal organs, the results in the above graph are similar to the relationship between the generated current value and the absorbed dose. It can be applied and can be said to have proportional linearity.
[0050] 『実験例 2』  [0050] "Experiment 2"
つぎに、実験例 2として、放射線のうち γ線を照射した際の照射線量率に対する出 力電流値の特性を調べた。放射線線量測定素子 1の寸法および電気絶縁性高分子 材料の種類は実験例 1と同様である。また、 γ線の照射装置は東芝コバルト 60回転 治療装置 (東芝製)を使用した 60Coの γ線源であり、照射条件は、 Ύ線エネルギー を平均 1. 25MeV、照射時間 60sec、照射距離 65〜 125cmとした。印加電圧は 10 Vである。 Next, as Experimental Example 2, the characteristics of the output current value with respect to the irradiation dose rate when γ-rays of radiation were irradiated were examined. The dimensions of radiation dosimeter 1 and the type of electrically insulating polymer material are the same as in Experimental Example 1. Further, gamma ray irradiation apparatus is gamma ray source 60Co using Toshiba Cobalt 60 rotation therapy apparatus (manufactured by Toshiba), irradiation conditions, average Ύ ray energy 1. 25 MeV, irradiation time 60 sec, irradiation distance 65 125 cm. The applied voltage is 10 V.
[0051] 図 5に実験例 2の結果を示す。図 5は各種の電気絶縁性高分子基板 11に対して γ 線を照射した際の照射線量率と出力電流値との関係を示すグラフである。実験例 1 の X線の場合と同様、各種の電気絶縁性高分子材料による基板 11に発生する電流 値は γ線の照射線量率に対して比例的な関係を示して一意的に定まることがわかる 。また、ポリカーボネート、テフロン (登録商標)および PEEK (登録商標)の出力電流 値が約 9 X 10"4 (C/kg/min)の X線照射線量率のときに約 35pA〜40pAの電流値 を出力したのに対し、ポリイミドは同照射線量率に対して約 8pA、プラスチックウォー ター(登録商標)は約 14pAの電流値であった。ただし、いずれの電気絶縁性高分子 材料であっても 10V程度の印加電圧によって充分に測定可能な電流値を出力して いることから、いずれもセンサーとしての実用性を備えている。なお、前記ポリカーボ ネートの平均感度は約 30 [nA/(C/kg/min)]であった。 FIG. 5 shows the results of Experimental Example 2. FIG. 5 is a graph showing the relationship between the irradiation dose rate and the output current value when γ rays are irradiated to various electrically insulating polymer substrates 11. Experimental example 1 As in the case of X-rays, it can be seen that the current values generated in the substrate 11 by various electrically insulating polymer materials are uniquely determined by showing a proportional relationship with the irradiation dose rate of γ-rays. In addition, when the output current value of polycarbonate, Teflon (registered trademark) and PEEK (registered trademark) is about 9 X 10 " 4 (C / kg / min), the current value is about 35pA to 40pA. In contrast, the current value of polyimide was about 8 pA and the plastic water (registered trademark) was about 14 pA for the same radiation dose rate, but 10 V for any electrically insulating polymer material. Since the current value that can be measured sufficiently by the applied voltage is output, each of them has practicality as a sensor.The average sensitivity of the polycarbonate is about 30 [nA / (C / kg / min)].
[0052] 『実験例 3』 [0052] Experimental Example 3
つぎに、電気絶縁性高分子基板 11が真空雰囲気中にお 、ても放射線の照射量に 対して出力電流値が比例的な線形性を有するか否かにっ 、て実験を行った。これは 、上記実験例 1および実験例 2における照射線量と電流値の比例的特性が、周辺雰 囲気による影響、例えば、電気絶縁性高分子基板 11の近傍に存在する気体の電離 による影響を受けて 、な 、かを確認するための実験である。電気絶縁性高分子基板 11の材料としては最高電流出力を示したポリカーボネートを使用し、真空雰囲気の 条件以外は実験例 1と同様な条件下で X線を照射した。真空度は 10_3TOTrオーダ —とした 0 Next, an experiment was conducted to determine whether the output current value has a linearity proportional to the radiation dose even when the electrically insulating polymer substrate 11 is in a vacuum atmosphere. This is because the proportional characteristics of the irradiation dose and the current value in Experimental Example 1 and Experimental Example 2 are affected by the ambient atmosphere, for example, the ionization of the gas existing in the vicinity of the electrically insulating polymer substrate 11. This is an experiment to confirm this. As the material for the electrically insulating polymer substrate 11, polycarbonate showing the highest current output was used, and X-rays were irradiated under the same conditions as in Experimental Example 1 except under vacuum conditions. The degree of vacuum was 10 _3 T OTr order 0
[0053] 図 6は実験例 3の結果を示すグラフである。横軸を放射線の照射線量率とし、縦軸 を出力電流値としている。このグラフから真空雰囲気中であっても放射線線量率に対 して出力電流値は比例的線形性を有することが認められる。なお、出力電流値が約 20 X 10"4 (C/kg/min)の X線照射線量率 (真空チャンバ表面での線量率)のときに 約 13pAであって大気中の結果 (約 230pA)より減少している。これは、真空チャンバ 内に放射線線量測定素子 1をセットすることで線量測定素子 1に到達する放射線量 が減衰してしまうためと考えられる。 FIG. 6 is a graph showing the results of Experimental Example 3. The horizontal axis is the radiation dose rate, and the vertical axis is the output current value. From this graph, it can be seen that the output current value has a proportional linearity to the radiation dose rate even in a vacuum atmosphere. When the output current value is about 20 X 10 " 4 (C / kg / min) X-ray irradiation dose rate (dose rate on the vacuum chamber surface), it is about 13 pA and the result in the atmosphere (about 230 pA) This is thought to be because the radiation dose reaching the dosimetry element 1 is attenuated by setting the radiation dosimetry element 1 in the vacuum chamber.
[0054] 『実験例 4』  [0054] Experimental Example 4
つぎに、 X線の ONZOFFに対する外部出力電流の応答特性を調べた。電気絶縁 性高分子材料はポリカーボネートを使用し、 X線照射時間は 60秒である。外部印加 電圧を 10Vで一定とし、 X線の強度を 8 X 10"4 (C/kg/min)、 9 X 10"4 (C/kg/min)、 l l X 10_4 (C/kg/min)、 13 X 10_4 (C/kg/min)と順次変化させ、そのときの出力電 流値を測定した。 Next, the response characteristics of the external output current to X-ray ONZOFF were investigated. The electrically insulating polymer material uses polycarbonate and the X-ray irradiation time is 60 seconds. External application Voltage is constant at 10V, X-ray intensity is 8 X 10 " 4 (C / kg / min), 9 X 10" 4 (C / kg / min), ll X 10 _4 (C / kg / min), 13 X 10_ 4 (C / kg / min) and is sequentially changed, to measure the output voltage current values at that time.
[0055] 図 7は実験例 4の結果を示すグラフであり、横軸は X線照射時間、縦軸は出力電流 値である。図 7によれば、 X線強度が 8 X 10_4 (C/kg/min)のとき約 115pAの出力電 流値を示し、 9 X IO—4 (C/kg/min)のとき約 130pA、 11 X 10_4 (C/kg/min)のとき約 155pA、 13 X 10_4 (C/kg/min)のとき約 185pAの電流値を示していることがわかる 。このように X線強度を増加すると、電気絶縁性高分子基板 11内に発生する電荷キ ャリア量が増加すると考えられ、出力電流が増加することがわかる。また、 X線源の O NZOFFに対する応答速度は 1秒以内であることがわかる。 FIG. 7 is a graph showing the results of Experimental Example 4. The horizontal axis represents the X-ray irradiation time, and the vertical axis represents the output current value. According to Fig. 7, the output current value is about 115pA when the X-ray intensity is 8 X 10 _4 (C / kg / min), and about 130pA when 9 X IO— 4 (C / kg / min). it can be seen that shows the 11 X 10 _4 current value of about 185pA when (C / kg / min) when about 155pA, 13 X 10_ 4 (C / kg / min). It can be seen that when the X-ray intensity is increased in this way, the amount of charge carriers generated in the electrically insulating polymer substrate 11 increases, and the output current increases. It can also be seen that the response speed of the X-ray source to O NZOFF is within 1 second.
[0056] つぎに、他の構成力もなる放射線検出素子 1を使った実施例について説明する。  Next, an embodiment using the radiation detection element 1 having other constituent forces will be described.
前述の各実施例では、電気的絶縁性高分子基板 11の表面に電極 12, 12を配した 放射線検出素子 1を使用しているが、以下の実験例では、図 8に示すように、電極 12 , 12を電気的絶縁性高分子基板 11の内部に挿入した放射線検出素子 1を使用し、 同様な効果が得られるかにつ 、て実験した。  In each of the above-described embodiments, the radiation detection element 1 in which the electrodes 12 and 12 are arranged on the surface of the electrically insulating polymer substrate 11 is used. However, in the following experimental example, as shown in FIG. An experiment was conducted to determine whether the same effect can be obtained by using the radiation detection element 1 in which 12 and 12 are inserted into the electrically insulating polymer substrate 11.
[0057] 『実験例 5』  [0057] "Experiment 5"
本実験例 5では、一対の電極 12, 12を表面ではなく内部に挿入した場合であって も同様に実用性のある電流が出力される力否かについて確認する実験を行った。図 8に示すように、 10mm X 10mm X lmmサイズの放射線検出素子 1に最大径 0. 5m mの針電極を lmmの厚み部分に 2mm程度挿入して一対の電極 12, 12を構成した 。電極 12, 12間距離は 6mmである。この電極 12, 12に 1〜100Vの電圧を印加し て実験を行った。 X線照射線量は 35 X 10_4 (C/kg/min)の一定にした。 In this Experimental Example 5, an experiment was conducted to confirm whether or not the force is such that a practical current is output even when the pair of electrodes 12 and 12 are inserted inside instead of the surface. As shown in FIG. 8, a pair of electrodes 12 and 12 were configured by inserting a needle electrode having a maximum diameter of 0.5 mm into a 10 mm × 10 mm × lmm size radiation detection element 1 and having a maximum diameter of 0.5 mm in the lmm thickness portion. The distance between electrodes 12 and 12 is 6 mm. An experiment was performed by applying a voltage of 1 to 100 V to the electrodes 12 and 12. X-ray irradiation dose was constant 35 X 10_ 4 (C / kg / min).
[0058] 図 9は実験例 5の結果を示すグラフであり、横軸は電極間電圧、縦軸は出力電流値 である。図 9によれば、一定放射線線量において放射線検出素子 1内で発生する荷 電粒子数が一定と考えられる状態で、印加電圧を IV〜: LOOVへと上昇することにより 荷電粒子の速度 Vが上昇し、電流密度 i=nev(AZm2)の関係式に従って電流が増 加していくことがわかる。ここで nは荷電粒子の密度、 eは荷電粒子の電荷量、 Vは荷 電粒子の速度で ν= μ (VZd)である。但し、 μは荷電粒子の移動度である。したが つて、電極 12, 12を電気絶縁性高分子基板 11の内部に挿入しても表面に構成した のと同様に線量測定素子 1としての機能が得られることがわかる。 FIG. 9 is a graph showing the results of Experimental Example 5. The horizontal axis represents the interelectrode voltage, and the vertical axis represents the output current value. According to Fig. 9, when the number of charged particles generated in the radiation detection element 1 at a fixed radiation dose is considered to be constant, the charged particle velocity V increases by increasing the applied voltage to IV ~: LOOV. It can be seen that the current increases according to the relational expression of current density i = nev (AZm 2 ). Where n is the density of charged particles, e is the charge amount of charged particles, V is the velocity of charged particles, and ν = μ (VZd). Where μ is the mobility of charged particles. But Thus, it can be seen that even when the electrodes 12 and 12 are inserted into the electrically insulating polymer substrate 11, the function as the dosimetry element 1 can be obtained in the same manner as that formed on the surface.
[0059] 『実験例 6』  [0059] Experimental Example 6
つぎに、電極 12, 12を内部に挿入したタイプの放射線検出素子 1について、 X線 の ONZOFFに対する外部出力電流の応答特性を調べた。 X線照射線量は 35 X 1 0"4 (C/kg/min)の一定に設定し、印加電圧 10Vで 5分間 X線を照射した。 Next, the response characteristics of the external output current with respect to X-ray ONZOFF were investigated for the radiation detection element 1 of the type in which the electrodes 12 and 12 were inserted. The X-ray irradiation dose was set to a constant of 35 X 10 " 4 (C / kg / min), and X-rays were applied for 5 minutes at an applied voltage of 10V.
[0060] 図 10は実験例 6の結果を示すグラフであり、横軸は X線照射時間、縦軸は出力電 流値である。図 10によれば、放射線検出素子 1が照射時間に対して一定の安定した 出力電流を発生することがわかる。したがって、長時間の測定に対しても安定な信号 が保証されると考えられる。なお、図 10中、 1分と 5分においてスパイク状の信号が見 られるが、これは X線照射のオン'オフ時に X線発生装置力も発生する電気的なノィ ズである。  FIG. 10 is a graph showing the results of Experimental Example 6. The horizontal axis represents the X-ray irradiation time, and the vertical axis represents the output current value. As can be seen from FIG. 10, the radiation detection element 1 generates a constant and stable output current with respect to the irradiation time. Therefore, a stable signal can be guaranteed even for long-term measurements. In Fig. 10, spike-like signals are seen at 1 minute and 5 minutes. This is an electrical noise that generates X-ray generator power when X-ray irradiation is turned on and off.
[0061] 以上のような各実験例によれば、各種の電気絶縁性高分子基板 11に X線や γ線 等の放射線を照射した場合、前記電極 12, 12間に発生する電流値は放射線の照射 線量に対して比例的関係を有していることが認められた。さらに上記実験例の結果を 踏まえ、上述した現象が、主として電気絶縁性高分子基板 11で発生する電子(二次 荷電粒子)の反応によるものとすれば、電気絶縁性高分子基板 11から構成される線 量測定素子 1に j8線や α線を照射した場合でも、同様の結果が得られると考えられ る。測定電流値は電気絶縁性高分子基板 11の材質に強く依存するものであり、組織 等価プラスチックを用いれば人体組織への放射線の線量と等価な値の推定が可能と なる。  [0061] According to each experimental example as described above, when various types of electrically insulating polymer substrates 11 are irradiated with radiation such as X-rays or γ-rays, the current value generated between the electrodes 12 and 12 is the radiation. It was found that there is a proportional relationship with the irradiation dose. Further, based on the results of the above experimental example, if the above-described phenomenon is mainly caused by the reaction of electrons (secondary charged particles) generated in the electrically insulating polymer substrate 11, it is configured from the electrically insulating polymer substrate 11. It is considered that the same results can be obtained even when the dose measuring element 1 is irradiated with j8 rays or α rays. The measured current value strongly depends on the material of the electrically insulating polymer substrate 11, and if a tissue equivalent plastic is used, a value equivalent to the radiation dose to the human tissue can be estimated.
[0062] 『実験例 7』  [0062] Experimental Example 7
つぎに、線量測定素子 1として使用される電気絶縁性高分子基板 11の好適な厚み について汎用モンテカルロシミュレーションコード EGS4により算出した。図 12および 図 13は実験例 7の結果を示すグラフであり、横軸は本実施形態で使用された組織等 価プラスチックに対する照射深さ、縦軸はエネルギー蓄積量を示す。図 12は 1. 25 MeVの Co60 ( γ線)の照射を条件とする場合の照射深度に対するエネルギー蓄積 量を示しており、図 13は X線照射に対応する 200keV光子の照射を条件とする場合 の照射深度に対するエネルギー蓄積量を示して 、る。 Next, a suitable thickness of the electrically insulating polymer substrate 11 used as the dose measuring element 1 was calculated using a general-purpose Monte Carlo simulation code EGS4. 12 and 13 are graphs showing the results of Experimental Example 7. The horizontal axis represents the irradiation depth for the tissue equivalent plastic used in the present embodiment, and the vertical axis represents the energy accumulation amount. Fig. 12 shows the energy accumulation with respect to the irradiation depth under the condition of 1.25 MeV Co60 (γ-ray) irradiation, and Fig. 13 shows the case of 200 keV photon irradiation corresponding to X-ray irradiation. Shows the amount of energy stored with respect to the irradiation depth.
[0063] 図 12を参酌すると、 γ線である Co60では 3〜4mmで飽和しているので電気絶縁 性高分子基板 11に適用する場合には、この飽和深度以上の厚みに構成するのが好 ましい。一方、図 13に示すように、 X線を想定した 200KeV光子を照射した場合、 0. lmm以上で飽和して 、るので、それ以上の厚みに構成することが好まし!/、。  [0063] Referring to FIG. 12, Co60, which is a γ-ray, is saturated at 3 to 4 mm. Therefore, when applied to the electrically insulating polymer substrate 11, it is preferable to configure the thickness to be equal to or greater than this saturation depth. Good. On the other hand, as shown in FIG. 13, when 200KeV photons assuming X-rays are irradiated, saturation occurs at 0.1 mm or more, so it is preferable to configure a thickness larger than that! /.
[0064] 以上の結果を考慮すれば、 γ線の線量を測定する場合には、 3〜4mm以上の厚 みをもった電気絶縁性高分子基板 11が好ましぐ X線の線量を測定する場合には、 0. 1mm以上の厚みをもった電気絶縁性高分子基板 11が好ましい。そして、高分子 材料の加工性のよさを活かすには薄い方が好ましぐ本実施形態では、電気絶縁性 高分子基板 11の厚さが lmmのものを実験に使用している。  [0064] Considering the above results, when measuring the dose of γ rays, the electrically insulating polymer substrate 11 having a thickness of 3 to 4 mm or more preferably measures the dose of X rays. In this case, the electrically insulating polymer substrate 11 having a thickness of 0.1 mm or more is preferable. In the present embodiment, in which the thinner one is preferable for taking advantage of the good workability of the polymer material, an electrically insulating polymer substrate 11 having a thickness of lmm is used in the experiment.
[0065] なお、本実験例で使用した電気絶縁性高分子基板 11につ ヽて、電極間の電気抵 抗を測定したところ、すべて 5 X 1012 Ω以上であった。 [0065] When the electrical resistance between the electrodes of the electrically insulating polymer substrate 11 used in this experimental example was measured, all were 5 x 10 12 Ω or more.
[0066] 以上のような本実施形態によれば、以下に示すような効果を得ることができる。  [0066] According to the present embodiment as described above, the following effects can be obtained.
(1)組織等価プラスチックをはじめとする電気絶縁性高分子材料を人体や臓器等の 任意の形状に形成できるため、従来の組織等価ガスを使った比例計数管や水中で の電離箱による測定に比べて格段に測定精度と利便性が向上すると考えられる。特 に、線量測定素子 1の本体を電気絶縁性高分子材料のみで形成できるので、製造し やすくコストが抑制できる。例えば、薄い曲面状に形成して人体等に直接貼り付け、 放射線治療を行 、ながら生体内吸収線量を測定したり、ある 、は線量測定素子 1を カテーテルの先端に取り付けて体内に挿入し、手術中の生体内(血液内)吸収線量 を測定することができ、極めて応用性、実現性が高いといえる。  (1) Since electrically insulating polymer materials such as tissue equivalent plastics can be formed into any shape such as the human body or organ, measurement can be performed using conventional proportional counters using tissue equivalent gas or ionization chambers in water. Compared to this, the measurement accuracy and convenience are expected to improve significantly. In particular, since the main body of the dose measuring element 1 can be formed of only an electrically insulating polymer material, it is easy to manufacture and the cost can be reduced. For example, it is formed into a thin curved surface and attached directly to the human body, etc., and the absorbed dose in the body is measured while performing radiation therapy, or there is a dose measuring element 1 attached to the tip of the catheter and inserted into the body, In vivo (in blood) absorbed dose during surgery can be measured, and it can be said that the applicability and feasibility are extremely high.
(2)臓器モデルを組織等価プラスチックで製作し、どの部位にどの程度の放射線の 線量が吸収されるかを実験により予め知ることも可能となる。この場合、図 11に示す ような球形の放射線の線量測定素子 1によれば、一方向のみならず、多方向からの 照射に対して放射線の線量を測定することができ、照射方向に対して表側だけでな く裏側部位における放射線の線量測定など、方向依存性なく測定できるという効果を 奏する。  (2) An organ model is made of tissue equivalent plastic, and it is possible to know beforehand by experiment how much radiation dose is absorbed in which part. In this case, according to the spherical radiation dose measuring element 1 as shown in FIG. 11, the radiation dose can be measured not only in one direction but also in multiple directions. The effect is that measurement can be performed without direction dependency, such as radiation dose measurement not only on the front side but also on the back side.
(3)組織等価プラスチックをはじめとする電気絶縁性高分子材料は固体であるため、 組織等価ガスのように大きな装置にならな!/、し、低電圧でも電流値を検知して放射線 の線量を測定できるため小型化が図れる。さらに、高強度の放射線環境下でも動作 安定性、信頼性、耐久性に優れた測定ができる等の効果を奏する。 (3) Since electrically insulating polymer materials such as tissue equivalent plastics are solid, Become a big device like tissue equivalent gas! /, And can be downsized because it can detect the current value and measure the radiation dose even at low voltage. Furthermore, it has the effect of being able to perform measurements with excellent operational stability, reliability, and durability even under high-intensity radiation environments.
(4) 10V以下の低電圧を含めて広い電圧範囲においても小さな暗流で大きな信号 電流を検出し放射線の線量を測定することができる。  (4) The radiation dose can be measured by detecting a large signal current with a small dark current even in a wide voltage range including a low voltage of 10V or less.
(5)放射線管理区域や一般環境における放射線量を人体を模擬する組織モデルに て測定することも可能である。  (5) It is also possible to measure the radiation dose in the radiation control area and the general environment with a tissue model that simulates the human body.
[0067] なお、本発明に係る放射線の線量測定素子 1およびこれを用いた放射線の線量測 定装置 2は、前述した実施形態に限定されるものではなぐ適宜変更することができ る。  It should be noted that the radiation dose measuring element 1 and the radiation dose measuring device 2 using the radiation measuring element 1 according to the present invention are not limited to the above-described embodiments, but can be changed as appropriate.
[0068] 例えば、所定値以上の放射線を検出したことを報知する警報器を設けてもよい。こ れによれば、万一、人体に過度の放射線が照射された場合でも、警報器が警報を発 するため、即座にその照射を停止することができる。  [0068] For example, an alarm device may be provided for notifying that radiation of a predetermined value or more has been detected. According to this, even if excessive radiation is irradiated to the human body, since the alarm device issues an alarm, the irradiation can be stopped immediately.
[0069] つぎに、本発明に係る放射線の線量測定素子 1および線量測定装置 2のより具体 的な実施例について説明する。  [0069] Next, more specific examples of the radiation dose measuring element 1 and the dose measuring apparatus 2 according to the present invention will be described.
[0070] 『実施例 1』  [0070] "Example 1"
実施例 1は、図 14に示すように、レントゲン撮影や CTスキャン撮影などにおいて使 用される際に、線量測定素子 1をシーツ状に構成し、レントゲン撮影などによる患者 の被曝線量を測定する例である。  As shown in FIG. 14, the first embodiment is an example in which the dose measuring element 1 is configured in a sheet shape when used in X-ray imaging or CT scan imaging, and the patient's exposure dose by X-ray imaging is measured. It is.
[0071] 本実施例 1では、電気絶縁性高分子基板 11として、照射する放射線の実効エネル ギ一の約 90%以上の透過性を有する電気絶縁性高分子材料によってシーツ状に加 ェする。電気絶縁性高分子基板 11の厚さは 100 m〜lmm程度であって、大きさ 力 S lOcm X 10cm以上の容易に変形が可能な柔軟性を有するものが好ましい。例え ばポリエチレンをシーツ状に加工し、その両端に一対の電極 12, 12を埋め込み、一 対の一定な特性インピ -ダンス線である同軸ケーブル 41, 41を介して装置本体 3に 接続することにより線量測定装置 2を構成する。装置本体 3は、電圧印加制御機能、 電流検出,表示機能、電流一被曝線量率換算機能、データ蓄積,記録機能の各機 能を備えている。そして、装置本体 3により所定の電圧を電極 12, 12間に印加して電 流値をモニタし、被曝線量に換算することで患者 pの全身の被曝線量をリアルタイム に管理することが可能である。また、電気的絶縁高分子基板 11を患者の生殖器など の特定部分のみに置 、て、臓器ごとに被曝線量を管理するようにしてもょ 、。 In Example 1, the electrically insulating polymer substrate 11 is added in the form of a sheet with an electrically insulating polymer material having a transmittance of about 90% or more of the effective energy of radiation to be irradiated. It is preferable that the electrically insulating polymer substrate 11 has a thickness of about 100 m to 1 mm and has a flexibility that can be easily deformed with a size force S 10 cm × 10 cm or more. For example, by processing polyethylene into a sheet shape, embedding a pair of electrodes 12 and 12 at both ends, and connecting it to the device body 3 via coaxial cables 41 and 41, which are a pair of constant impedance wires The dosimetry apparatus 2 is configured. The main unit 3 has a voltage application control function, a current detection / display function, a current-one-dose rate conversion function, a data storage function, and a recording function. Then, a predetermined voltage is applied between the electrodes 12 and 12 by the device body 3 to By monitoring the flow value and converting it to exposure dose, it is possible to manage the exposure dose of the whole body of patient p in real time. Also, place the electrically insulating polymer substrate 11 only on specific parts of the patient's genitals, etc., and manage the exposure dose for each organ.
[0072] なお、実施例 1の態様で使用される場合、その基板 11の材料と大きさを決定するに あたり要求される特性としては、電気絶縁性、柔軟性のほかに、透過像の画質を維持 することであり、 X線発生装置の実効エネルギーにおいて 90%以上の透過性を確保 しうる材料と厚さを選択することが望ま U、。  [0072] When used in the embodiment 1, the characteristics required for determining the material and size of the substrate 11 include, in addition to electrical insulation and flexibility, the image quality of the transmitted image. It is desirable to select a material and thickness that can ensure 90% or more transparency in the effective energy of the X-ray generator.
[0073] さら〖こ、図示しないが、電気絶縁性高分子基板 11の特性として可視光に対する透 明度の機能を具備させることにより、高レベルの放射性物質を手で取り扱う場合に使 用するクリーンベンチやグローブボックスなどの窓面に適用し、作業者の被曝線量を リアルタイムにモニタすることも可能である。  [0073] Sarako, although not shown, is a clean bench used when handling high-level radioactive substances by hand by providing a function of transparency to visible light as a characteristic of the electrically insulating polymer substrate 11. It is also possible to monitor the exposure dose of workers in real time by applying it to windows such as glove boxes.
[0074] 『実施例 2』  [0074] "Example 2"
つぎに、本実施形態の実施例 2について説明する。本実施例 2は、カテーテルの先 端に線量測定素子 1を取り付けて血管内に挿入できるようにし、血液の被曝線量や 特定の臓器の被曝線量を測定しうる例である。  Next, Example 2 of the present embodiment will be described. The second embodiment is an example in which the dose measuring element 1 is attached to the distal end of the catheter so that it can be inserted into a blood vessel, and the dose of blood or the dose of a specific organ can be measured.
[0075] 図 15に示すように、カテーテル 50の先端に円筒状の電気絶縁性高分子基板 11を 取り付け、その基板 11内に一対の電極 12, 12を埋め込み、この一対の電極 12, 12 をカテーテル 50のチューブ 51内に配置した一対のマイクロストリップライン 52, 52と 接続し、さらにこの一対のマイクロストリップライン 52, 52を一対の同軸ケーブル 41, 41と接続し、装置本体 3に接続することで線量測定装置 2を構成する。装置本体 3は 実施例 1と同様、電圧印加制御機能、電流検出,表示機能、電流一被曝線量率換算 機能、データ蓄積'記録機能の各機能を備えている。  As shown in FIG. 15, a cylindrical electrically insulating polymer substrate 11 is attached to the distal end of the catheter 50, a pair of electrodes 12 and 12 are embedded in the substrate 11, and the pair of electrodes 12 and 12 are attached. Connect to a pair of microstrip lines 52 and 52 arranged in the tube 51 of the catheter 50, and connect the pair of microstrip lines 52 and 52 to a pair of coaxial cables 41 and 41 to connect to the main body 3 of the apparatus. The dosimetry apparatus 2 is configured with this. As in Example 1, the main body 3 has a voltage application control function, a current detection / display function, a current-one dose rate conversion function, and a data storage / recording function.
[0076] 装置本体 3により所定の電圧を印加し電流値をモニタして被曝線量に換算すること で、人体内の種々の臓器や組織の吸収線量を計測することが可能となる。このような 機能が付加されたカテーテル 50によりインターベンショナルラジオロジー(IVR:Inte rventional Radiology)の手技中におけるカテーテル先端部での各臓器の被曝線 量を管理することが可能となる。  [0076] By applying a predetermined voltage and monitoring the current value by the apparatus main body 3 and converting it to an exposure dose, it becomes possible to measure absorbed doses of various organs and tissues in the human body. The catheter 50 to which such a function is added makes it possible to manage the radiation dose of each organ at the distal end of the catheter during an interventional radiology (IVR) procedure.
[0077] 『実施例 3』 つぎに、本実施形態の実施例 3について説明する。本実施例 3は、ボタン状の筐体 60内に線量測定素子 1を内蔵させて、作業者の衣服の一部として手軽に取り付けら れるようにし、放射線を扱う作業者に対してリアルタイムな線量測定を可能とする例で ある。 [0077] "Example 3" Next, Example 3 of the present embodiment will be described. In this third embodiment, the dose measuring element 1 is built in the button-shaped housing 60 so that it can be easily attached as a part of the clothes of the worker, so that the radiation handling worker can receive the dose in real time. This is an example that enables measurement.
[0078] 図 16に示すように、実施例 3の線量測定装置 2は、直径 20mm、厚さ 10mm程度 の大きさを持つ円筒管状の筐体 60内に、一対の電極 12, 12が埋め込まれた円盤状 の電気絶縁性高分子基板 11と、電子回路基板 61と、ボタン電池やコイン電池等から 構成される小型電池 62と、警報装置 63と、外部接続コネクタ 64とを内蔵させている。 電子回路基板 61には、電流増幅器 33を内蔵した線量換算機能を有する CPU65と 、 EPROMなどの計測データ蓄積電子回路素子 66とが設けられており、円盤状の電 気絶縁性高分子基板 11と、小型電池 62および計測データ蓄積電子回路素子 66と は一対の一定な特定インピーダンス線であるマイクロストリップライン 52, 52を介して 接続されている。  As shown in FIG. 16, the dose measuring apparatus 2 of Example 3 includes a pair of electrodes 12 and 12 embedded in a cylindrical tubular casing 60 having a diameter of about 20 mm and a thickness of about 10 mm. A disk-shaped electrically insulating polymer substrate 11, an electronic circuit board 61, a small battery 62 composed of a button battery, a coin battery, etc., an alarm device 63, and an external connection connector 64 are incorporated. The electronic circuit board 61 is provided with a CPU 65 having a dose conversion function with a built-in current amplifier 33, and a measurement data storage electronic circuit element 66 such as an EPROM. The small battery 62 and the measurement data storage electronic circuit element 66 are connected via a microstrip line 52, 52 which is a pair of specific impedance lines.
[0079] そして、前記外部接続コネクタ 64を介して外部に設置した被曝線量管理装置 67と 接続することで線量測定装置 3を構成し、任意の時刻に瞬時にして積算被曝線量を 計測することができる。このため、放射線管理区域における個人被曝線量管理が可 能である。また、被曝線量管理装置 67により計測データ蓄積電子回路素子 66をリセ ットして初期値に戻すことも可能にしておくことで、 1個の線量測定素子 1で何度でも 個人線量計として使用することができる。  [0079] Then, the dose measurement device 3 is configured by connecting to the dose management device 67 installed outside via the external connection connector 64, and the integrated dose can be measured instantaneously at an arbitrary time. it can. Therefore, it is possible to manage individual exposure dose in the radiation control area. In addition, the measurement data storage electronic circuit element 66 can be reset to the initial value by the exposure dose management device 67, so that one dose measurement element 1 can be used as many times as a personal dosimeter. can do.
[0080] さらに、電流増幅器 33を内蔵した線量換算機能を持つ CPU65に被曝線量の閾値 を設定して積算被曝線量がその閾値を超えたら警報装置 63を作動させるように制御 することにより、作業者へリアルタイムに被曝の警告を発することができる。警報装置 6 3としては、ブザーなどの音声発生装置や半導体発光素子等の可視光発生装置、あ るいはこれらを併用する装置が考えられる。前記閾値は被曝線量管理装置 67により 設定変更にすることも可能である。なお、実施例 3の円盤形状の線量測定素子 1は一 例であって、断面四角形状や断面六角形状等に形成してよい。  [0080] Further, by setting a dose threshold for the CPU 65 having a dose conversion function with a built-in current amplifier 33 and controlling the alarm device 63 to be activated when the accumulated dose exceeds the threshold, the worker can be controlled. A warning of exposure can be issued in real time. As the alarm device 63, a sound generating device such as a buzzer, a visible light generating device such as a semiconductor light emitting element, or a device using both of them can be considered. The threshold value can be changed by the exposure dose management device 67. Note that the disk-shaped dose measuring element 1 of Example 3 is an example, and may be formed in a square cross section, a hexagonal cross section, or the like.
[0081] 『実施例 4』  [0081] "Example 4"
つぎに、本実施形態の実施例 4について説明する。本実施例 4は、靴 70の靴底 71 内に線量測定素子 1を内蔵させて靴底 71の被曝線量を測定するようにし、作業者の 靴底面に付着した放射線物質により放射線被害が拡散するのを防止しうる例である Next, Example 4 of the present embodiment will be described. In this example 4, the sole 70 of the shoe 70 This is an example in which the dose measuring element 1 is built in to measure the exposure dose of the shoe sole 71, and radiation damage can be prevented from spreading due to the radioactive material adhering to the shoe sole of the worker.
[0082] 図 17に示すように、靴底 71に一対の電極 12, 12が埋め込まれた柔軟性を有する 電気絶縁性高分子基板 11を埋め込み、靴 70の踵部分に電子回路基板 61と、小型 電池 62と、警報装置 63とを内蔵させて線量測定装置を構成する。電子回路基板 61 には、電流増幅器 33を内蔵した線量換算機能を持つ CPU65と EPROMなどの計 測データ蓄積電子回路素子 66とを取り付け、電気絶縁性高分子基板 11と前記 CP U65および小型電池 62とを一対の同軸ケーブル 41, 41を介して接続する。 As shown in FIG. 17, a flexible electrically insulating polymer substrate 11 having a pair of electrodes 12 and 12 embedded in a shoe sole 71 is embedded, and an electronic circuit board 61 is embedded in a heel portion of a shoe 70. A dosimetry device is configured by incorporating a small battery 62 and an alarm device 63. On the electronic circuit board 61, a CPU 65 having a dose conversion function with a built-in current amplifier 33 and a measurement data storage electronic circuit element 66 such as an EPROM are attached, and the electrically insulating polymer board 11, the CPU 65 and the small battery 62 are mounted. Are connected via a pair of coaxial cables 41, 41.
[0083] CPU65には被曝線量の閾値を設定しておき、積算被曝線量がその閾値を超えた ら警報装置 63を作動させるようにしておく。本線量測定装置 3により、放射線管理区 域における床の放射線汚染をリアルタイムにモニタすることが可能である。このような 靴 70を用いることで、作業者に危険を瞬時に通達することが可能である上に、汚染 の拡大を予防することも可能となる。当該実施例 4の場合、警報装置 63はブザーな どの音声発生装置が望ましい。また、床以外からの放射線を遮蔽するために靴底 71 以外の部分は鉛の薄膜などを埋め込んでおくことが望ましい。さらに、実施例 3と同 様に、外部装置と計測データのやり取りや警報発生のための閾値変更ができるように 当該線量測定装置 2に外部接続コネクタ 64を設けてもよい。  [0083] A threshold value for exposure dose is set in the CPU 65, and the alarm device 63 is activated when the cumulative exposure dose exceeds the threshold value. With this dosimetry device 3, it is possible to monitor radiation contamination of the floor in the radiation control area in real time. By using such shoes 70, it is possible to immediately notify the danger to the worker and to prevent the spread of contamination. In the case of Example 4, the alarm device 63 is preferably a sound generator such as a buzzer. In addition, it is desirable to embed a lead thin film in the parts other than the sole 71 in order to shield radiation from other than the floor. Further, similarly to the third embodiment, an external connection connector 64 may be provided in the dose measuring apparatus 2 so that measurement data can be exchanged with an external apparatus and a threshold value can be changed for generating an alarm.
[0084] 以上のように、本実施形態の線量測定素子 1および線量測定装置 2は、上記各実 施例に限定されず、放射線の影響を受ける様々な態様に適用することが可能である 図面の簡単な説明  [0084] As described above, the dose measuring element 1 and the dose measuring device 2 of the present embodiment are not limited to the above embodiments, and can be applied to various modes affected by radiation. Brief description of
[0085] [図 1]本発明に係る放射線の線量測定装置の一実施形態を示す模式図である。  FIG. 1 is a schematic diagram showing an embodiment of a radiation dose measuring apparatus according to the present invention.
[図 2]本実施形態の装置本体を示すブロック図である。  FIG. 2 is a block diagram showing an apparatus main body of the present embodiment.
[図 3]実験例 1における放射線検出素子の模式図である。  FIG. 3 is a schematic diagram of a radiation detection element in Experimental Example 1.
圆 4]実験例 1における X線照射線量率 (横軸)と出力電流値 (縦軸)との関係を示す グラフでる。  4) A graph showing the relationship between the X-ray irradiation dose rate (horizontal axis) and the output current value (vertical axis) in Experimental Example 1.
[図 5]実験例 2における γ線照射線量率 (横軸)と出力電流値 (縦軸)との関係を示す グラフである。 [Fig.5] Shows the relationship between γ-ray irradiation dose rate (horizontal axis) and output current value (vertical axis) in Experimental Example 2 It is a graph.
[図 6]実験例 3における真空雰囲気中での真空チャンバ表面での X線照射線量率( 横軸)と出力電流値 (縦軸)との関係を示すグラフである。  FIG. 6 is a graph showing the relationship between the X-ray irradiation dose rate (horizontal axis) and the output current value (vertical axis) on the vacuum chamber surface in a vacuum atmosphere in Experimental Example 3.
圆 7]実験例 4における X線照射時間 (横軸)と出力電流値 (縦軸)との関係を示す応 答特'性のグラフである。 7) A graph of response characteristics showing the relationship between the X-ray irradiation time (horizontal axis) and the output current value (vertical axis) in Experimental Example 4.
圆 8]他の構成カゝらなる放射線検出素子を使った実施例を示す模式図である。 [8] FIG. 8 is a schematic diagram showing an embodiment using a radiation detection element having another configuration.
圆 9]実験例 5における電極間電圧 (横軸)と出力電流値 (縦軸)との関係を示すダラ フである。 [9] A graph showing the relationship between the interelectrode voltage (horizontal axis) and the output current value (vertical axis) in Experimental Example 5.
圆 10]実験例 6における X線照射時間 (横軸)と出力電流値 (縦軸)との関係を示すグ ラフである。 [10] This is a graph showing the relationship between the X-ray irradiation time (horizontal axis) and the output current value (vertical axis) in Experimental Example 6.
圆 11]本発明に係る放射線の線量測定素子の形状バリエーションを示す図である。 圆 12]実験例 7における Co60の照射深度 (横軸)とエネルギ蓄積 (縦軸)との関係を 示すグラフである。 [11] FIG. 11 is a diagram showing variations in the shape of the radiation dose measuring element according to the present invention. 12] A graph showing the relationship between Co60 irradiation depth (horizontal axis) and energy storage (vertical axis) in Experimental Example 7.
圆 13]実験例 7における 200KeV光子の照射深度 (横軸)とエネルギ蓄積 (縦軸)と の関係を示すグラフである。 13] A graph showing the relationship between the irradiation depth (horizontal axis) of 200KeV photons and energy storage (vertical axis) in Experimental Example 7.
圆 14]本発明に係る線量測定装置をシーツ状に応用した実施例 1を示す模式図であ る。 [14] FIG. 14 is a schematic diagram showing Example 1 in which the dosimetry apparatus according to the present invention is applied in the form of a sheet.
圆 15]本発明に係る線量測定装置をカテーテルに応用した実施例 2を示す模式図 である。 [15] FIG. 15 is a schematic diagram showing Example 2 in which the dosimetry apparatus according to the present invention is applied to a catheter.
圆 16]本発明に係る線量測定装置をボタン状の筐体内に応用した実施例 3を示す模 式図である。 FIG. 16 is a schematic view showing Example 3 in which the dose measuring apparatus according to the present invention is applied to a button-shaped housing.
圆 17]本発明に係る線量測定装置を靴に応用した実施例 4を示す模式図である。 符号の説明 圆 17] It is a schematic diagram showing Example 4 in which the dose measuring apparatus according to the present invention is applied to shoes. Explanation of symbols
1 放射線の線量測定素子  1 Radiation dosimetry device
2 放射線の線量測定装置  2 Radiation dosimetry equipment
3 装置本体  3 Main unit
4 表示装置  4 Display device
11 電気絶縁性高分子基板 電極 11 Electrically insulating polymer substrate electrode
電圧印加回路 Voltage application circuit
電流検出器 Current detector
増幅回路 Amplifier circuit
表示駆動回路 Display drive circuit
インターフェース interface
マイクロコンピュータ 同軸ケーブル Microcomputer Coaxial cable
力テーテノレ Force Tetenore
力テーテノレのチューブ マイクロストリップライン ボタン状筐体 Tube of force tensioner Microstrip line Button-shaped housing
電子回路基板 Electronic circuit board
小型電池 Small battery
警報装置 Alarm device
外部接続コネクタ External connector
CPU  CPU
計測データ蓄積電子回路素子 被曝線量管理装置 靴 Measurement data storage electronics circuit dose management equipment shoes
靴底 Shoe sole

Claims

請求の範囲 The scope of the claims
[1] 常温で電気絶縁性を有する高分子材料により構成される基板と、この電気絶縁性 高分子基板の表面または内部に設けた少なくとも一対の電極とを有することを特徴と する電気絶縁性高分子材料を使った放射線の線量測定素子。  [1] A highly insulating material characterized by comprising a substrate made of a polymer material having electrical insulation properties at room temperature and at least a pair of electrodes provided on or inside the electrically insulating polymer substrate. Radiation dosimetry element using molecular materials.
[2] 請求項 1において、前記電気絶縁性高分子基板は、放射線の照射によって出力電 流値が放射線の線量に対して線形的な一意性を有しているものであることを特徴と する放射線の線量測定素子。  [2] In Claim 1, the electrically insulating polymer substrate is characterized in that the output current value has linear uniqueness with respect to the radiation dose by irradiation of radiation. Radiation dosimetry element.
[3] 請求項 1または請求項 2にお 、て、前記電気絶縁性高分子基板は、前記電極間の 電気抵抗値が約 ΙΟ^ Ω以上となる電極間距離に構成されていることを特徴とする放 射線の線量測定素子。 [3] In claim 1 or 2, the electrically insulating polymer substrate is configured to have an inter-electrode distance such that an electrical resistance value between the electrodes is about ΙΟ ^ Ω or more. Radiation dose measuring element.
[4] 請求項 1または請求項 2にお 、て、前記電気絶縁性高分子基板は、前記電極間の 電気抵抗値が約 1012 Ω以上となる電極間距離に構成されていることを特徴とする放 射線の線量測定素子。 [4] In claim 1 or 2, the electrically insulating polymer substrate is configured to have an interelectrode distance in which an electrical resistance value between the electrodes is about 10 12 Ω or more. Radiation dose measuring element.
[5] 請求項 1または請求項 2にお ヽて、前記電気絶縁性高分子基板は、生体組織等価 プラスチック力 構成されており、身体表面に貼付あるいは体内に挿入されるもので あることを特徴とする放射線の線量測定素子。  [5] In claim 1 or claim 2, the electrically insulating polymer substrate is composed of a living tissue equivalent plastic force, and is applied to a body surface or inserted into the body. Radiation dose measuring element.
[6] 請求項 1または請求項 2において、放射線照射による透過画像撮影や放射線照射 治療等の際における被曝線量の測定に使用する場合、前記電気絶縁性高分子基板 を、当該照射する放射線の実効エネルギーにお 、て約 90%以上の透過性を有する 電気絶縁性高分子材料によって構成することを特徴とする放射線の線量測定素子。 [6] In claim 1 or claim 2, when used for measurement of exposure dose in transmission imaging or radiation treatment by radiation irradiation, the electrically insulating polymer substrate is used to measure the effective radiation. A radiation dosimetry element comprising an electrically insulating polymer material having a permeability of about 90% or more in terms of energy.
[7] 請求項 1または請求項 2において、放射線を扱う空間の窓などに使用する場合、前 記電気絶縁性高分子基板を、可視光に対する透明度を有する電気絶縁性高分子材 料によって構成することを特徴とする放射線の線量測定素子。 [7] In claim 1 or claim 2, when used for a window in a space for handling radiation, the electrically insulating polymer substrate is made of an electrically insulating polymer material having transparency to visible light. A radiation dose measuring element characterized by that.
[8] 請求項 1から請求項 7の 、ずれかに記載の放射線の線量測定素子と、 [8] The radiation dose measuring element according to any one of claims 1 to 7, and
前記放射線の線量測定素子の一対の電極間に電圧を印加する電圧印加手段と、 前記電極間を流れる電流を検出する電流検出手段と、  Voltage applying means for applying a voltage between a pair of electrodes of the radiation dose measuring element; current detecting means for detecting a current flowing between the electrodes;
検出された電極間電流から線量を換算する線量換算手段と、  A dose conversion means for converting a dose from the detected interelectrode current;
線量を表示する表示手段とを有していることを特徴とする放射線の線量測定装置。 A radiation dose measuring apparatus comprising: a display means for displaying a dose.
[9] カテーテルの先端内に請求項 1から請求項 4のいずれかに記載の線量測定素子を 取り付けるとともに、カテーテルのチューブ内に配置した一定の特性インピーダンス 線に接続して電圧印加手段および電流検出手段に接続し、これにより検出された電 極間電流から線量を換算する線量換算手段と、線量を表示する表示手段とを有して V、ることを特徴とする放射線の線量測定装置。 [9] The dose measuring element according to any one of claims 1 to 4 is attached to the distal end of the catheter, and the voltage applying means and the current detection are connected to a certain characteristic impedance line arranged in the catheter tube. A radiation dose measuring apparatus comprising: a dose conversion means for converting a dose from an inter-electrode current detected by the means, and a display means for displaying the dose.
[10] ボタン状の小型筐体内に、請求項 1から請求項 4のいずれかに記載の線量測定素 子と、電流増幅器を内蔵した線量換算機能を有する演算処理部および計測データ 蓄積する記憶部を備えた電子回路基板と、小型電池と、警報装置と、外部接続コネ クタとを内蔵し、前記線量測定素子と前記電子回路基板および小型電池とを一対の 一定な特性インピーダンス線を介して接続して構成されたことを特徴とする放射線の 線量測定装置。  [10] A dose measurement element according to any one of claims 1 to 4, a calculation processing unit having a dose conversion function with a built-in current amplifier, and a storage unit for storing measurement data in a button-shaped small housing An electronic circuit board with a small battery, an alarm device, and an external connection connector are built in, and the dose measuring element, the electronic circuit board and the small battery are connected via a pair of constant characteristic impedance lines. Radiation dose measurement device characterized by being configured as above.
[11] 靴の底部内に、請求項 1から請求項 4のいずれかに記載の線量測定素子と、電流 増幅器を内蔵した線量換算機能を有する演算処理部および計測データ蓄積する記 憶部を備えた電子回路基板と、小型電池と、警報装置と、外部接続コネクタとを内蔵 し、前記線量測定素子と前記電子回路基板および小型電池とを一対の一定な特性 インピーダンス線を介して接続して構成されたことを特徴とする放射線の線量測定装 置。  [11] The dose measuring element according to any one of claims 1 to 4, an arithmetic processing unit having a dose conversion function incorporating a current amplifier, and a storage unit for storing measurement data are provided in a shoe bottom. The electronic circuit board, the small battery, the alarm device, and the external connector are built in, and the dose measuring element, the electronic circuit board and the small battery are connected via a pair of constant characteristic impedance lines. A radiation dose measuring device characterized by
PCT/JP2006/305986 2005-03-25 2006-03-24 Radiation dose measuring element and radiation dose measuring device using electric-insulating polymer material WO2006104046A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007510455A JPWO2006104046A1 (en) 2005-03-25 2006-03-24 Radiation dosimetry element and radiation dosimetry device using electrically insulating polymer material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-089546 2005-03-25
JP2005089546 2005-03-25

Publications (1)

Publication Number Publication Date
WO2006104046A1 true WO2006104046A1 (en) 2006-10-05

Family

ID=37053304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305986 WO2006104046A1 (en) 2005-03-25 2006-03-24 Radiation dose measuring element and radiation dose measuring device using electric-insulating polymer material

Country Status (2)

Country Link
JP (1) JPWO2006104046A1 (en)
WO (1) WO2006104046A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172427A (en) * 2009-01-28 2010-08-12 Japan Health Science Foundation Method for simulation of activity distribution of positron emission nuclide in proton beam treatment
WO2011044221A3 (en) * 2009-10-06 2012-04-26 Massachusetts Institute Of Technology Method and apparatus for determining radiation
JP2013506850A (en) * 2009-10-01 2013-02-28 ローマ リンダ ユニヴァーシティ メディカル センター Ion-induced impact ionization detector and its use
US8456073B2 (en) 2009-05-29 2013-06-04 Massachusetts Institute Of Technology Field emission devices including nanotubes or other nanoscale articles
US8476510B2 (en) 2010-11-03 2013-07-02 Massachusetts Institute Of Technology Compositions comprising and methods for forming functionalized carbon-based nanostructures
US8735313B2 (en) 2008-12-12 2014-05-27 Massachusetts Institute Of Technology High charge density structures, including carbon-based nanostructures and applications thereof
US8951473B2 (en) 2008-03-04 2015-02-10 Massachusetts Institute Of Technology Devices and methods for determination of species including chemical warfare agents
JP2015516183A (en) * 2012-03-08 2015-06-11 ザ・ジョンズ・ホプキンス・ユニバーシティ Method and apparatus for measuring quality accuracy of machine and dosimetry in radiotherapy in real time
KR20200059008A (en) * 2018-11-20 2020-05-28 한국원자력연구원 Method for Measuring Absorbed Dose of Irradiated Object and Device for Measuring Absorbed Dose of Irradiated Object
WO2022233826A1 (en) 2021-05-06 2022-11-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device for measuring a received radiation dose through reflectometry or transferometry
US11505467B2 (en) 2017-11-06 2022-11-22 Massachusetts Institute Of Technology High functionalization density graphene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115876A (en) * 1980-11-19 1982-07-19 Optische Ind De Oude Delft Nv Method and detector for detecting ionized radiation
JPH0527042A (en) * 1991-07-24 1993-02-05 Toshiba Corp High speed neutron monitoring device
JPH10509509A (en) * 1994-08-02 1998-09-14 インペリアル カレッジ オブ サイエンス,テクノロジー アンド メディシン Ionizing radiation detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115876A (en) * 1980-11-19 1982-07-19 Optische Ind De Oude Delft Nv Method and detector for detecting ionized radiation
JPH0527042A (en) * 1991-07-24 1993-02-05 Toshiba Corp High speed neutron monitoring device
JPH10509509A (en) * 1994-08-02 1998-09-14 インペリアル カレッジ オブ サイエンス,テクノロジー アンド メディシン Ionizing radiation detector

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267908B2 (en) 2008-03-04 2016-02-23 Massachusetts Institute Of Technology Devices and methods for determination of species including chemical warfare agents
US8951473B2 (en) 2008-03-04 2015-02-10 Massachusetts Institute Of Technology Devices and methods for determination of species including chemical warfare agents
US9114377B2 (en) 2008-12-12 2015-08-25 Massachusetts Institute Of Technology High charge density structures, including carbon-based nanostructures and applications thereof
US8735313B2 (en) 2008-12-12 2014-05-27 Massachusetts Institute Of Technology High charge density structures, including carbon-based nanostructures and applications thereof
JP2010172427A (en) * 2009-01-28 2010-08-12 Japan Health Science Foundation Method for simulation of activity distribution of positron emission nuclide in proton beam treatment
US8456073B2 (en) 2009-05-29 2013-06-04 Massachusetts Institute Of Technology Field emission devices including nanotubes or other nanoscale articles
JP2013506850A (en) * 2009-10-01 2013-02-28 ローマ リンダ ユニヴァーシティ メディカル センター Ion-induced impact ionization detector and its use
US9213107B2 (en) 2009-10-01 2015-12-15 Loma Linda University Medical Center Ion induced impact ionization detector and uses thereof
US8426208B2 (en) 2009-10-06 2013-04-23 Massachusetts Institute Of Technology Method and apparatus for determining radiation
WO2011044221A3 (en) * 2009-10-06 2012-04-26 Massachusetts Institute Of Technology Method and apparatus for determining radiation
US8187887B2 (en) 2009-10-06 2012-05-29 Massachusetts Institute Of Technology Method and apparatus for determining radiation
US9770709B2 (en) 2010-11-03 2017-09-26 Massachusetts Institute Of Technology Compositions comprising functionalized carbon-based nanostructures and related methods
US8476510B2 (en) 2010-11-03 2013-07-02 Massachusetts Institute Of Technology Compositions comprising and methods for forming functionalized carbon-based nanostructures
JP2015516183A (en) * 2012-03-08 2015-06-11 ザ・ジョンズ・ホプキンス・ユニバーシティ Method and apparatus for measuring quality accuracy of machine and dosimetry in radiotherapy in real time
US11505467B2 (en) 2017-11-06 2022-11-22 Massachusetts Institute Of Technology High functionalization density graphene
KR20200059008A (en) * 2018-11-20 2020-05-28 한국원자력연구원 Method for Measuring Absorbed Dose of Irradiated Object and Device for Measuring Absorbed Dose of Irradiated Object
KR102172729B1 (en) * 2018-11-20 2020-11-02 한국원자력연구원 Method for Measuring Absorbed Dose of Irradiated Object and Device for Measuring Absorbed Dose of Irradiated Object
WO2022233826A1 (en) 2021-05-06 2022-11-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device for measuring a received radiation dose through reflectometry or transferometry
FR3122740A1 (en) 2021-05-06 2022-11-11 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device for measuring the dose of radiation received by reflectometry or transferometry

Also Published As

Publication number Publication date
JPWO2006104046A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
WO2006104046A1 (en) Radiation dose measuring element and radiation dose measuring device using electric-insulating polymer material
Ramaseshan et al. Performance characteristics of a microMOSFET as an in vivo dosimeter in radiation therapy
Kerns et al. Angular dependence of the nanoDot OSL dosimeter
US20100193695A1 (en) Carbon material dosimeter
Kwan et al. Skin dosimetry with new MOSFET detectors
Lehmann et al. Angular dependence of the response of the nanoDot OSLD system for measurements at depth in clinical megavoltage beams
US20060027756A1 (en) Dosimeter having an array of sensors for measuring ionizing radiation, and dosimetry system and method using such a dosimeter
US20140010352A1 (en) Upstream direct x-ray detection
JP2005512028A5 (en)
Lavallée et al. Energy and integrated dose dependence of MOSFET dosimeter sensitivity for irradiation energies between and
Sharma et al. In vivo measurements for high dose rate brachytherapy with optically stimulated luminescent dosimeters
US8742357B2 (en) Radiation sensor and dosimeter
Campajola et al. Absolute dose calibration of EBT3 Gafchromic films
Koivisto et al. Characterization of MOSFET dosimeter angular dependence in three rotational axes measured free-in-air and in soft-tissue equivalent material
DeWerd et al. Ionization chamber instrumentation
Kawaguchi et al. Energy dependence and angular dependence of an optically stimulated luminescence dosimeter in the mammography energy range
Xu et al. Real‐time tumor tracking using implanted positron emission markers: Concept and simulation study
Nath et al. Superheated drop detector for determination of neutron dose equivalent to patients undergoing high‐energy x‐ray and electron radiotherapy
Gorka et al. Design and characterization of a tissue-equivalent CVD-diamond detector for clinical dosimetry in high-energy photon beams
Gopiraj et al. Performance characteristics and commissioning of MOSFET as an in-vivo dosimeter for high energy photon external beam radiation therapy
Meyer et al. Feasibility of a semiconductor dosimeter to monitor skin dose in interventional radiology
Spurný et al. The contribution of secondary heavy particles to the absorbed dose from high-energy photon beams
Santos et al. A feasibility study of a phototransistor for the dosimetry of computerized tomography and stereotactic radiosurgery beams
Aghdam et al. Performance characteristics of a parallel plate dosimeter based on PVA/MWCNT-OH nanocomposite for photon beam radiation
Lansley et al. CVD diamond X-ray detectors for radiotherapy dosimetry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007510455

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729934

Country of ref document: EP

Kind code of ref document: A1