WO2006101120A1 - Exposure apparatus, exposure method and method for manufacturing device - Google Patents

Exposure apparatus, exposure method and method for manufacturing device Download PDF

Info

Publication number
WO2006101120A1
WO2006101120A1 PCT/JP2006/305695 JP2006305695W WO2006101120A1 WO 2006101120 A1 WO2006101120 A1 WO 2006101120A1 JP 2006305695 W JP2006305695 W JP 2006305695W WO 2006101120 A1 WO2006101120 A1 WO 2006101120A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
temperature
liquid
exposure apparatus
gas
Prior art date
Application number
PCT/JP2006/305695
Other languages
French (fr)
Japanese (ja)
Inventor
Tohru Kiuchi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2007509296A priority Critical patent/JP5040646B2/en
Publication of WO2006101120A1 publication Critical patent/WO2006101120A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply

Definitions

  • Exposure apparatus Exposure apparatus, exposure method, and device manufacturing method
  • the present invention relates to an exposure apparatus and exposure method for exposing a substrate through a liquid, and a device manufacturing method.
  • the pattern formed on the mask is projected and exposed onto a photosensitive substrate.
  • An exposure apparatus is used.
  • This exposure apparatus has a mask stage that can move while holding a mask, and a substrate stage that can move while holding a substrate.
  • the mask pattern and the substrate stage are moved sequentially, and the pattern of the mask is projected optically. Projection exposure is performed on the substrate through the system.
  • miniaturization of patterns formed on a substrate is required in order to increase the density of devices. In order to meet this demand, it is desired to further increase the resolution of the exposure apparatus.
  • the optical path space of the exposure light between the projection optical system and the substrate is filled with liquid as disclosed in Patent Document 1 below, and the projection optical system and An immersion exposure apparatus has been devised that exposes a substrate through a liquid.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-289126
  • a gas seal is formed between a sealing member and a substrate by injecting a gas from a gas inlet in order to contain the liquid filled in the optical path space.
  • the liquid is vaporized by the gas ejected from the gas inlet, and the temperature of the substrate is changed (decreased) by the heat of vaporization generated by the vaporization of the liquid.
  • the substrate is thermally deformed, for example, when a pattern is transferred on the substrate.
  • the overlay accuracy exposure accuracy
  • the present invention has been made in view of such circumstances, and prevents leakage of the liquid filled in the optical path space of the exposure light between the optical member and the substrate, and also prevents the temperature change of the substrate. It is an object of the present invention to provide an exposure apparatus that can accurately expose a substrate and a device manufacturing method using the exposure apparatus.
  • the present invention employs the following configurations corresponding to the respective drawings shown in the embodiments.
  • the reference numerals in parentheses attached to each element are merely examples of the element and do not limit each element.
  • the substrate (P) is irradiated with exposure light (EL) through the liquid (LQ) to expose the substrate (P), and then the substrate is exposed.
  • a gas seal mechanism (3) that seals the liquid (LQ) that generates an air flow on (P) and fills the optical path space (K1) of the exposure light (EL), and a gas seal mechanism (3)
  • An exposure apparatus (EX) is provided that includes a compensation mechanism (5) that compensates for temperature changes of the substrate (P) caused by the airflow.
  • liquid leakage can be prevented by the gas seal mechanism, and the temperature change of the substrate caused by the airflow generated by the gas seal mechanism can be prevented by the compensation mechanism. Can be suppressed.
  • the exposure apparatus that exposes the substrate (P) by irradiating the substrate (P) with the exposure light (EL) through the liquid (LQ)
  • the exposure light (EL ) Optical path space (K1) with a liquid immersion mechanism (1), and a compensation mechanism (5) that compensates for temperature changes of the substrate (P) due to vaporization of the liquid (LQ).
  • An exposure apparatus (EX) is provided.
  • the temperature change of the substrate due to the vaporization of the liquid can be suppressed by the compensation mechanism.
  • a device manufacturing method using the exposure apparatus (EX) of the first or second aspect there is provided a device manufacturing method using the exposure apparatus (EX) of the first or second aspect.
  • a device can be manufactured using an exposure apparatus that can suppress a temperature change of the substrate.
  • the exposure method includes exposing the substrate (P) by irradiating the substrate (P) with exposure light (EL) through the liquid (LQ), and exposing the substrate (P).
  • Light (EL) optical path space (K1) is liquid (
  • An exposure method is provided that compensates for temperature changes in the substrate (P) due to vaporization of the liquid (LQ).
  • the temperature change of the substrate due to the vaporization of the liquid can be suppressed.
  • a device manufacturing method using the exposure method of the above aspect there is provided a device manufacturing method using the exposure method of the above aspect.
  • a device can be manufactured by using an exposure method that can suppress a temperature change of a substrate.
  • FIG. 1 is a schematic block diagram that shows an exposure apparatus according to a first embodiment.
  • FIG. 2 is a side sectional view of the vicinity of a seal member.
  • FIG. 3 A view of the sealing member as viewed from below.
  • FIG. 4 is a configuration diagram for explaining a liquid immersion mechanism, a gas seal mechanism, and a compensation mechanism.
  • FIG. 5 is an enlarged cross-sectional view of a main part of an exposure apparatus according to a second embodiment.
  • FIG. 6 is an enlarged cross-sectional view of a main part of an exposure apparatus according to a third embodiment.
  • FIG. 7 is an enlarged cross-sectional view of a main part of an exposure apparatus according to a fourth embodiment.
  • FIG. 8 is a diagram for explaining the relative positional relationship between the projection optical system and the substrate when the substrate is exposed.
  • FIG. 9 is a diagram for explaining a temperature sensor provided on a dummy substrate.
  • FIG. 10 is a flowchart showing an example of a microdevice manufacturing process.
  • FIG. 1 is a schematic block diagram that shows an embodiment of the exposure apparatus EX.
  • an exposure apparatus EX has a mask stage MST that can move while holding a mask M and a substrate holder PH that holds a substrate P, and a substrate stage that can move the substrate holder PH that holds the substrate P.
  • PST illumination optical system IL that illuminates mask M held by mask stage MST with exposure light EL
  • projection optical system PL that projects a pattern image of mask M illuminated with exposure light EL onto substrate P
  • a control device CONT that controls the overall operation of the exposure apparatus EX.
  • the exposure apparatus EX of the present embodiment is an immersion exposure apparatus to which an immersion method is applied in order to improve the resolution by substantially shortening the exposure wavelength and substantially increase the depth of focus. Then, the substrate P is exposed by irradiating the substrate P with the exposure light EL in a state where the optical path space K1 of the exposure light EL on the image plane side of the projection optical system PL is filled with the liquid LQ. Specifically, the exposure apparatus EX is held by the final optical element LSI closest to the image plane of the projection optical system PL and the substrate holder PH among the plurality of optical elements constituting the projection optical system PL.
  • the exposure apparatus EX of the present embodiment has a liquid LQ liquid LQ that is larger than the projection area AR and smaller than the substrate P on a part of the substrate P including the projection area AR of the projection optical system PL.
  • Immersion area A local immersion method that forms LR locally can be used.
  • the exposure apparatus EX fills the optical path space K1 of the exposure light EL between the projection optical system PL and the substrate P with the liquid LQ at least while the pattern image of the mask M is transferred onto the substrate P.
  • the liquid LQ immersion area LR is locally formed.
  • the exposure apparatus EX includes an immersion mechanism 1 for filling the optical path space K1 of the exposure light EL with the liquid LQ, and a liquid LQ filled with the optical path space K1 of the exposure light EL.
  • a gas sealing mechanism 3 for generating an air flow on the substrate P for sealing, and a compensation mechanism 5 for compensating for a temperature change of the substrate P caused by the air flow generated by the gas sealing mechanism 3 are provided. Yes.
  • the gas seal mechanism 3 includes a seal member 70 provided in the vicinity of the image plane side of the projection optical system PL.
  • the seal member 70 is located above the substrate P (substrate holder PH), and at least of the plurality of optical elements constituting the projection optical system PL, the closest optical element LS 1 closest to the image plane of the projection optical system PL, and It is provided in a ring around the optical path space K1!
  • exposure apparatus EX a scanning exposure apparatus (so-called scanning stepper) that exposes a pattern formed on mask M onto substrate P while synchronously moving mask M and substrate P in the scanning direction.
  • scanning direction the synchronous movement direction (scanning direction) of the mask M and the substrate P in the horizontal plane
  • the direction orthogonal to the X axis direction is the Y axis direction (non-scanning).
  • Direction the direction perpendicular to the X-axis and Y-axis directions and coincident with the optical axis
  • AX of the projection optical system PL is defined as the Z-axis direction.
  • the rotation (tilt) directions around the X, Y, and Z axes are defined as 0 X, ⁇ Y, and ⁇ Z directions, respectively.
  • the “substrate” is a processing substrate on which various processing processes including exposure processing are performed, and a film such as a photosensitive material (resist) or a protective film is applied on a base material such as a semiconductor wafer. including.
  • the “mask” includes a reticle on which a device pattern, a test pattern, and an alignment pattern to be projected on a substrate are reduced.
  • the illumination optical system IL includes an exposure light source, an optical integrator that uniformizes the illuminance of the light beam emitted from the exposure light source on the mask M, a condenser lens that collects the exposure light EL from the optical integrator, and a relay lens. System, and a field stop for setting an illumination area on the mask M by exposure light EL.
  • the predetermined illumination area on the mask M is illuminated with the exposure light EL having a uniform illuminance distribution by the illumination optical system IL.
  • EL Light source such as bright line (g-line, h-line, i-line) and KrF excimer laser light (wavelength 248nm) and other ultraviolet light (DUV light)
  • Vacuum ultraviolet light (VUV light) such as ArF excimer laser light (wavelength 193 nm) and F laser light (wavelength 157 nm)
  • Etc. are used.
  • ArF excimer laser light is used.
  • Pure water is used as the liquid LQ. Pure water is not only ArF excimer laser light, but also far ultraviolet light (DUV light) such as emission lines (g-line, h-line, i-line) emitted from mercury lamp force and KrF excimer laser light (wavelength 248nm). Can also be transmitted.
  • DUV light far ultraviolet light
  • Mask stage MST is movable while holding mask M.
  • the mask stage MST holds the mask M by vacuum suction (or electrostatic suction).
  • the mask stage MST is in a plane perpendicular to the optical axis AX of the projection optical system PL with the mask M held by the drive of the mask stage drive device MST D including the linear motor controlled by the control device CONT.
  • a movable mirror 91 is provided on the mask stage MST.
  • a laser interferometer 92 is provided at a position facing the movable mirror 91! The position of the mask M on the mask stage MST in the two-dimensional direction and the rotation angle in the ⁇ Z direction (including rotation angles in the ⁇ X and ⁇ Y directions in some cases) are measured in real time by the laser interferometer 92.
  • the measurement result of the laser interferometer 92 is output to the control device CONT. Based on the measurement result of the laser interferometer 92, the control device CONT drives the mask stage driving device MSTD to control the position of the mask M held on the mask stage MST.
  • the laser interferometer 92 may be provided to face the movable mirror 91.
  • the movable mirror 91 may include not only a plane mirror but also a corner cube (retro reflector). Instead of fixing the movable mirror 91, for example, the end surface (side surface) of the mask stage MST is mirror-finished. A reflective surface may be used. Further, the mask stage MST may be configured to be capable of coarse and fine movement disclosed in, for example, Japanese Patent Laid-Open No. 8-130179 (corresponding US Pat. No. 6,721,034).
  • the projection optical system PL projects and exposes the pattern of the mask M onto the substrate P at a predetermined projection magnification 13 and is composed of a plurality of optical elements, which hold the lens barrel PI C.
  • the projection optical system PL is a reduction system having a projection magnification j8 of, for example, 1 Z4, 1/5, or 1Z8, and forms a reduced image of the mask pattern in the projection area AR conjugate with the illumination area described above.
  • the projection optical system PL may be any one of a reduction system, a unity magnification system, and an enlargement system.
  • Projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, or a reflective refractive system that includes a reflective optical element and a refractive optical element.
  • the final optical element LSI closest to the image plane of the projection optical system PL is exposed from the lens barrel PK.
  • the substrate stage PST has a substrate holder PH that holds the substrate P.
  • the substrate holder PH that holds the substrate P is moved on the base member BP on the image plane side of the projection optical system PL. Is possible.
  • the substrate holder PH holds the substrate P by, for example, vacuum suction.
  • a recess 95 is provided on the substrate stage PST, and a substrate holder PH for holding the substrate P is disposed in the recess 95.
  • the upper surface 96 of the substrate stage PST other than the recess 95 is a flat surface that is substantially the same height (level) as the surface of the substrate P held by the substrate holder PH. Note that only a part of the upper surface 96 of the substrate stage PST, for example, a predetermined region surrounding the substrate P, may have the same height as the surface of the substrate P.
  • the optical path space K1 on the image plane side of the projection optical system PL can be continuously filled with the liquid LQ (that is, the immersion area LR can be satisfactorily maintained), the surface of the substrate P held by the substrate holder PH There may be a step between the board stage PST and the upper surface 96 of the PST.
  • the substrate stage PST can be moved two-dimensionally in the XY plane on the base member BP by the drive of the substrate stage drive device PSTD including a linear motor controlled by the control device CONT and minute in the ⁇ Z direction. It can be rotated. Further, the substrate stage PST can move in the Z-axis direction, ⁇ X direction, and ⁇ Y direction. Therefore, the surface of the substrate P on the substrate stage PST can move in directions of six degrees of freedom in the X axis, Y axis, Z axis, 0 X, 0 Y, and 0 Z directions.
  • a movable mirror 93 is provided on the side surface of the substrate stage PST.
  • a laser interferometer 94 is provided at a position facing the moving mirror 93.
  • the position and rotation angle of the substrate P on the substrate stage PST in the two-dimensional direction are measured in real time by the laser interferometer 94.
  • the exposure apparatus EX includes an oblique incidence type focus / leveling detection system (not shown) that detects surface position information of the surface of the substrate P supported by the substrate stage PST.
  • the focus leveling detection system detects surface position information (position information in the Z-axis direction and inclination information in the ⁇ X and ⁇ Y directions) of the surface of the substrate P.
  • the focus / leveling detection system may employ a system using a capacitive sensor.
  • the measurement result of the laser interferometer 94 is output to the control device CONT.
  • the detection result of the focus leveling detection system is also output to the control device CONT.
  • the control device CONT drives the substrate stage drive device PSTD based on the detection result of the focus / leveling detection system, and controls the focus position (Z position) and tilt angle ( ⁇ X, ⁇ ) of the substrate P. Throw the surface of substrate P
  • the position of the substrate P is controlled in the X-axis direction, the Y-axis direction, and the ⁇ Z direction based on the measurement result of the laser interferometer 94 along with the image plane of the shadow optical system PL.
  • the laser interferometer 94 for example, an optical system
  • the position of the substrate stage PST (substrate P) in the Z-axis direction It is also possible to measure rotation angles in the ⁇ X and ⁇ Y directions.
  • Details of the exposure apparatus equipped with a laser interferometer capable of measuring the position of the substrate stage PST in the Z-axis direction are disclosed in, for example, JP 2001-51057 7 (corresponding to International Publication No. 1999Z28790 pamphlet).
  • the force force repelling detection system detects the tilt information (rotation angle) of the substrate P in the ⁇ X and ⁇ Y directions by measuring the position information of the substrate P in the Z-axis direction at each of the measurement points.
  • the plurality of measurement points may be set in the immersion area LR (or the projection area AR), or all of the measurement points may be set outside the immersion area LR. Also good.
  • the laser interferometer 94 can measure the position information of the substrate P in the Z-axis, ⁇ X, and ⁇ Y directions
  • the position information in the Z-axis direction can be measured during the exposure operation of the substrate P.
  • the position of the substrate P in the Z axis, ⁇ X and ⁇ Y directions is controlled using the measurement results of the laser interferometer 94.
  • FIG. 2 is a sectional side view of the vicinity of the seal member 70
  • FIG. 3 is a view of the seal member 70 as viewed from below
  • FIG. 4 is for explaining the liquid immersion mechanism 1, the gas seal mechanism 3, and the compensation mechanism 5.
  • the liquid immersion mechanism 1 fills the optical path space K1 of the exposure light EL with the liquid LQ, and is provided so as to face the substrate P arranged immediately below the projection optical system PL. It has a supply port 12 to be supplied, and a recovery port 22 that is provided outside the supply port 12 with respect to the optical path space K1 so as to face the substrate P and collects the liquid LQ.
  • Each of the supply port 12 and the recovery port 22 is provided on the lower surface 70A of the seal member 70 facing the substrate P held by the substrate holder PH. Seal member 70 is located above substrate P (substrate holder PH).
  • At least one optical element arranged on the image plane side (here, the final optical element LSI closest to the image plane of the projection optical system PL), and It is provided in an annular shape so as to surround the optical path space K1.
  • the liquid immersion mechanism 1 includes a liquid supply device 10 that supplies the liquid LQ to the supply port 12 via an internal flow path (supply flow path) 14 formed inside the supply pipe 13 and the seal member 70.
  • the liquid LQ on the image plane side of the projection optical system PL is connected to the recovery port 22 via an internal flow path (recovery flow path) (not shown) formed in the seal member 70 and the recovery pipe 23, and the recovery port 22
  • the liquid supply apparatus 10 includes a tank that stores the liquid LQ, a pressurizing pump, a filter unit that removes foreign substances in the liquid LQ, and the like.
  • the operation of the liquid supply device 10 is controlled by the control device C ONT. It should be noted that the tank, pressure pump, filter nut, etc. of the liquid supply device 10 need not all be equipped with the exposure apparatus EX, but may be replaced with facilities at the factory where the exposure apparatus EX is installed. !
  • the liquid recovery apparatus 20 includes, for example, a vacuum system (suction apparatus) such as a vacuum pump, a gas-liquid separator that separates the recovered liquid LQ and gas, and a tank that stores the recovered liquid LQ. Yes.
  • the operation of the liquid recovery device 20 is controlled by the control device CONT.
  • the vacuum system, gas-liquid separator, tank, etc. of the liquid collection device 20 need not all be equipped with the exposure device EX, but may be replaced with facilities at the factory where the exposure device EX is installed. .
  • a recess 15 is provided on each of one side (+ X side) and the other side (-X side) in the scanning direction with respect to the optical path space K1.
  • the recess 15 is provided so as to extend in the Y-axis direction in plan view.
  • the supply port 12 has a substantially circular shape in a plan view, and a plurality (three) of the supply ports 12 are arranged in the Y-axis direction inside the respective recesses 15 on the + X side and the X side of the lower surface 70A of the seal member 70. Is provided. Accordingly, the supply port 12 is provided on each of the one side (+ X side) and the other side (one X side) in the running direction with respect to the optical path space K1 on the lower surface 70A of the seal member 70. It is.
  • the recovery port 22 of the present embodiment is provided in an annular shape so as to surround the optical path space K1 and the supply port 12 on the lower surface 70A of the seal member 70.
  • the recovery port 22 has a porous member (for example, A ceramic porous body or the like or a mesh member (for example, a titanium plate mesh) is provided.
  • the control device CONT drives each of the liquid supply device 10 and the liquid recovery device 20 of the liquid immersion mechanism 1.
  • Control device The liquid LQ delivered from the liquid supply device 10 under the control of the CONT flows through the supply pipe 13 and then through the supply flow path 14 of the seal member 70 from the supply port 12 to the projection optical system PL. Supplied to the image side.
  • the liquid recovery device 20 is driven under the control device CONT, the liquid LQ on the image plane side of the projection optical system PL flows into the recovery flow path of the seal member 70 via the recovery port 22 and is recovered. After flowing through the pipe 23, it is recovered by the liquid recovery device 20.
  • the supply port 12 is disposed inside the recess 15 provided on the lower surface 70A of the seal member 70, and the liquid LQ supplied from each of the plurality of supply ports 12 is After the energy (pressure, flow velocity) is dispersed in the recess 15, it flows into the optical path space K1 between the projection optical system PL and the substrate P.
  • Lower surface of seal member 70 7 Liquid LQ energy in OA may be higher near the supply port 12 than other positions, so if the recess 15 is not provided, the energy (pressure) of the liquid LQ that flows into the optical path space K1 , The flow velocity) may be non-uniform.
  • a predetermined gap G1 is provided between the side surface of the final optical element LSI of the projection optical system PL and the inner side surface 70T of the seal member 70, Part of the liquid LQ filled in the optical path space K1 enters the gap G1. Further, a part of the inner edge portion of the seal member 70 is disposed between the final optical element LSI of the projection optical system PL and the substrate P, and a part of the inner side surface 70T of the seal member 70 is a final optical element. It faces the lower surface of the LSI. As shown in FIG. 3, the projection area AR of the projection optical system PL is set in a slit shape (rectangular shape) with the Y-axis direction as the longitudinal direction.
  • the supply port 12 is provided on the lower surface 70A of the seal member 70.
  • the supply port 12 is provided on the inner side surface 70T of the seal member 70 so as to face below the final optical element LSI. Try to supply liquid LQ by force.
  • the gas seal mechanism 3 generates an air flow on the substrate P to seal the liquid LQ filled in the optical path space K1 of the exposure light EL, and is disposed immediately below the projection optical system PL.
  • An injection port 32 that is provided to face the substrate P and injects a gas toward the substrate P to generate an air flow, and is located inside the injection port 32 with respect to the optical path space K1 and faces the substrate P.
  • a suction port 42 for sucking gas.
  • Each of the ejection port 32 and the suction port 42 is provided on the lower surface 70A of the seal member 70 facing the substrate P held by the substrate holder PH.
  • the gas seal mechanism 3 includes a gas supply device 30 that supplies gas to the injection port 32 via an internal flow path (supply flow path) 34 formed inside the supply pipe 33 and the seal member 70, and a seal Is connected to the suction port 42 via an internal flow path (suction flow path) 44 and a suction pipe 43 formed inside the seal member 70, and the gas between the seal member 70 and the substrate P passes through the suction port 42.
  • a gas arch I device 40 for suction includes a gas arch I device 40 for suction.
  • the gas supply device 30 includes a filter unit including a chemical filter, a particle removal filter, and the like, and can supply clean gas through the filter unit.
  • the gas supply device 30 supplies substantially the same gas as the gas inside the chamber in which the exposure apparatus EX is accommodated.
  • the gas supply device 30 supplies air (dry air).
  • the gas supplied from the gas supply device 30 may be nitrogen gas (dry nitrogen) or the like.
  • the operation of the gas supply device 30 is controlled by the control device CONT.
  • the gas suction device 40 is provided with a vacuum system (suction device) such as a vacuum pump, for example.
  • a vacuum system suction device
  • suction device such as a vacuum pump
  • the operation of the gas arch I device 40 is controlled by the control device CONT.
  • the lower surface 70A of the seal member 70 is provided outside the recovery port 22 with respect to the optical path space K1 so as to surround the optical path space Kl, the supply port 12, and the recovery port 22.
  • An annular first groove 45 is provided on the lower surface 70 of the seal member 70.
  • an annular second groove 35 is provided outside the first groove 45 with respect to the optical path space K1 so as to surround the first groove 45.
  • a plurality of suction ports 42 are provided at predetermined intervals inside the first groove 45.
  • a plurality of injection ports 32 are provided at predetermined intervals inside the second groove portion 35.
  • a plurality of suction ports 42 are provided outside the recovery port 22 so as to surround the optical path space K1, and the ejection ports 32 are disposed outside the suction port 42.
  • a plurality are provided so as to surround Kl.
  • Each of the injection port 32 and the suction port 42 of the present embodiment has a substantially circular shape in plan view.
  • the control device CONT drives each of the gas supply device 30 and the gas suction device 40 of the gas seal mechanism 3.
  • the gas delivered from the gas supply device 30 under the control of the control device CONT flows through the supply pipe 33, and then is injected from the injection port 32 toward the substrate P through the supply flow path 34 of the seal member 70. Is done.
  • the control device CONT can inject a gas from the injection port 32 at a predetermined flow rate by supplying a predetermined amount of gas per unit time from the gas supply device 30 to the injection port 32.
  • the gas suction device 40 when the gas suction device 40 is driven under the control device CONT, the gas between the lower surface 70A of the seal member 70 and the surface of the substrate P passes through the suction port 42 and the suction flow path 44 of the seal member 70. Then, after flowing through the suction pipe 43, the gas is sucked into the gas suction device 40.
  • the suction port 42 is provided on the inner side of the ejection port 32 with respect to the optical path space K1, and the substrate P is formed by the cooperative action of the gas ejection operation of the ejection port 32 and the gas suction operation of the suction port 42.
  • a jet air force is also generated in the optical path space K1.
  • the gas seal mechanism 3 can enclose the liquid LQ inside the suction port 42 by generating an airflow directed from the injection port 32 to the optical path space K1, and the projection optical system PL and the substrate P can be sealed. During this period, it is possible to prevent leakage of the liquid LQ filled in the optical path space K1 of the exposure light EL and enlargement of the immersion area LR.
  • the gas seal mechanism 3 floats and supports the seal member 70 on the substrate P by the gas injected onto the substrate P from the injection port 32. That is, the gas seal mechanism 3 forms a gas bearing between the substrate P and the seal member 70 by the gas injected from the injection port 32 toward the substrate P. Thereby, as shown in FIG. 2, a predetermined gap G2 is formed between the surface of the substrate P and the lower surface 70A of the seal member 70.
  • the compensation mechanism 5 compensates for the temperature change of the substrate P caused by the airflow generated by the gas seal mechanism 3.
  • a part of the liquid LQ (liquid LQ filled in the optical path space K1) on the substrate P can be vaporized by the air flow generated by the gas jetted from the injection port 32 of the gas seal mechanism 3 toward the substrate P.
  • the local region of the substrate P changes in temperature (decreases) due to the heat of vaporization caused by the vaporization of part of the liquid LQ due to the air flow. there is a possibility.
  • the compensation mechanism 5 compensates for a local temperature drop of the substrate P due to heat of vaporization that occurs when a part of the liquid LQ is vaporized by the generated airflow.
  • the compensation mechanism 5 compensates for the temperature drop of the substrate P so that the temperature of the liquid LQ supplied from the supply port 12 to the optical path space K1 is substantially equal to the temperature of the substrate P.
  • the compensation mechanism 5 includes a gas temperature adjusting device 50 that is provided in the middle of the supply pipe 33 and adjusts the temperature of the gas supplied from the gas supply device 30 to the injection port 32.
  • the compensation mechanism 5 includes a liquid temperature adjusting device 51 that is provided in the middle of the supply pipe 13 and adjusts the temperature of the liquid LQ supplied from the liquid supply device 10 to the supply port 12.
  • the compensation mechanism 5 uses the gas temperature control device 50 to compensate the temperature change of the substrate P due to the heat of vaporization, and the temperature of the gas injected from the injection port 32 is changed to the liquid supplied from the supply port 12. Make it higher than the LQ temperature.
  • Each of the gas temperature control device 50 and the liquid temperature control device 51 is controlled by the control device CONT.
  • the control device CONT uses the liquid temperature control device 51 to make the temperature of the liquid LQ supplied to the optical path space K1 from the supply port 12 substantially equal to the temperature of the substrate P held by the substrate holder PH. Adjust the temperature of the liquid LQ.
  • the control device CONT uses the liquid temperature control device 51 to make the temperature of the liquid LQ supplied from the supply port 12 to the optical path space K1 substantially equal to the temperature inside the chamber in which the exposure device EX is accommodated. Adjust the temperature of the liquid LQ.
  • the control device CONT uses the gas temperature control device 50 to set the temperature of the gas injected from the injection port 32 to be higher than the temperature of the liquid LQ filled in the optical path space K 1 (that is, the temperature of the substrate P). To do.
  • the temperature change of the substrate P caused by the air flow generated by the gas seal mechanism 3, specifically, a part of the liquid LQ It is possible to compensate for the local temperature drop of the substrate P due to the heat of vaporization caused by vaporization.
  • the portion of the seal member 70 that can contact the liquid LQ, the portion of the seal member 70 that faces the substrate P, and the projection optical system PL of the seal member 70 are opposed to each other.
  • the part is provided with a heat insulating structure 71.
  • the heat insulating structure 71 of the present embodiment is configured by a heat insulating material that forms the lower surface 70A and the inner side surface 70T of the seal member 70.
  • the control device CONT uses the liquid immersion mechanism 1 to supply a predetermined amount of the liquid LQ to the optical path space K1 and collect a predetermined amount of the liquid LQ on the substrate P, thereby projecting optics.
  • the optical path space K1 between the system PL and the substrate P held by the substrate holder PH is filled with the liquid LQ, and the liquid LQ immersion region LR is locally formed on the substrate P.
  • the controller CONT moves the projection optical system PL and the substrate P relative to each other while the optical path space K1 is filled with the liquid LQ, and transfers the pattern image of the mask M to the projection optical system PL and the liquid LQ in the optical path space K1. Projection exposure is performed on the substrate P.
  • the control device CONT uses the gas seal mechanism 3 to inject a gas having a predetermined flow velocity from the injection port 32. Then, a gas is sucked from the suction port 42, and a directional air current is generated in the optical path space K1. As a result, the liquid LQ can be contained inside the suction port 42, so that the substrate P is placed against the projection optical system PL. Even when exposure is performed while moving, the leakage of the liquid LQ can be suppressed, and the liquid immersion area LR can be prevented from becoming too large.
  • the gas supply amount per unit time supplied from the gas supply device 30 to the injection port 32 may be constant or may vary. Good. Since the gas injected toward the substrate P is temperature-adjusted by the gas temperature control device 50 of the compensation mechanism 5, a part of the liquid LQ is vaporized by the air flow generated by the gas seal mechanism 3. The local temperature drop of the substrate P due to the generated heat of vaporization is compensated.
  • the seal member 70 is levitated and supported on the substrate P by the gas ejected from the ejection port 32 to the substrate P, for example, the seal member 70 is placed on the image plane of the projection optical system PL during the scanning exposure of the substrate P. In order to align the surface of the substrate P with respect to the substrate P, even when the substrate P is inclined, the seal member 70 is also inclined in accordance with the inclination of the substrate P while maintaining the predetermined gap G2.
  • the control device CONT controls each of the gas temperature adjusting device 50 and the liquid temperature adjusting device 51, and the temperature of the gas injected from the injection port 32 is supplied from the supply port 12.
  • the temperature of the liquid LQ is higher than the temperature of the liquid LQ, but the liquid temperature adjustment device 51 is not provided in the compensation mechanism 5 and is injected from the injection port 32 based on the temperature of the liquid LQ supplied from the liquid supply device 10.
  • the temperature of the gas may be adjusted. For example, by providing a temperature sensor capable of detecting the temperature of the liquid LQ supplied from the supply port 12 or the temperature of the liquid LQ filled in the optical path space K1, the control device CONT is based on the detection result of the temperature sensor. Adjust the temperature of the gas injected from the injection port 32 using the gas temperature control device 50 so that the temperature of the gas injected from the injection port 32 becomes higher than the temperature of the liquid LQ. Togashi.
  • the control device CONT uses the liquid temperature control device 51 to provide The power substrate holder that adjusts the temperature of the liquid LQ so that the temperature of the liquid LQ supplied from the feed port 12 to the optical path space Kl is approximately equal to the temperature of the substrate P held by the substrate holder PH.
  • a temperature control device capable of adjusting the temperature of the substrate P is provided in the PH, and the temperature of the substrate P is adjusted by using the temperature control device so that the temperature of the liquid LQ and the temperature of the substrate P are substantially equal. May be.
  • the temperature of the liquid LQ and the substrate P are set so that the temperature of the liquid LQ and the temperature of the substrate P are substantially equal. Let's adjust each with the temperature.
  • the substrate P is a force applied in-line from the coater 'developers'.
  • the temperature adjustment plate (cool plate, etc.)
  • the temperature of the entire substrate P is changed to the substrate holder. It is set to be the same as the PH temperature.
  • a standby place (such as an unloading port) where the substrate P is adjusted to an appropriate temperature on the coater / developer side may be provided.
  • the compensation mechanism 5 includes a blowout port 36 for blowing out gas to the outside of the injection port 32 with respect to the optical path space K1.
  • a blowout port 36 for blowing out gas to the outside of the injection port 32 with respect to the optical path space K1.
  • the lower surface 70A of the seal member 70 is provided with a supply port 12 for supplying the liquid LQ and a recovery port 22 for recovering the liquid LQ, as in the above-described embodiment.
  • the supply port 12 is connected to the liquid supply apparatus 10 via the supply flow path and the supply pipe 13 as in the above-described embodiment, and the recovery port 22 is connected to the recovery flow path and the recovery flow. It is connected to the liquid recovery device 20 via the pipe 23.
  • a suction port 42 for sucking gas is provided outside the recovery port 22 with respect to the optical path space K1, and outside the suction port 42 with respect to the optical path space K1.
  • an injection port 32 for injecting gas is provided on the side.
  • the suction port 42 is connected to the gas arch
  • the gas temperature adjusting device 50 provided in the middle of the supply pipe 33 includes the temperature of the gas injected from the injection port 32 and the temperature of the liquid LQ filled in the optical path space K1 (substrate). The temperature of the gas is adjusted so that the temperature of P is substantially equal.
  • a blowout port 36 for blowing out gas is provided outside the injection port 32 with respect to the optical path space K1.
  • a second suction port 46 for sucking gas is provided outside the blow-out port 36 with respect to the optical path space K1.
  • a plurality of outlets 36 are arranged in an annular groove provided so as to surround the optical path space K1 on the lower surface 70A of the seal member 70, and the second suction port 46 is also formed on the lower surface 70A of the seal member 70.
  • a plurality of the grooves are arranged in an annular groove provided so as to surround the optical path space K1.
  • the second suction port 46 is connected to the second gas suction device 49 via a second suction channel 47 and a second suction pipe 48 formed inside the seal member 70.
  • the B outlet 36 is connected to the second gas supply device 39 via a second supply channel 37 and a second supply pipe 38 formed inside the seal member 70.
  • a second gas temperature adjusting device 52 for adjusting the temperature of the gas sent from the second gas supply device 39 and blown out from the outlet 36 is provided.
  • the second gas temperature control device 52 adjusts the temperature of the gas blown from the blowing port 36 to the temperature of the liquid LQ in order to compensate for the temperature change of the substrate P caused by the air flow generated by the gas seal mechanism 3. Higher than.
  • the temperature change of the substrate P caused by the air flow generated by the gas seal mechanism 3 specifically, a part of the liquid LQ It is possible to compensate for the local temperature drop of the substrate P due to the heat of vaporization caused by the vaporization of.
  • the air outlet 36, the second gas temperature control device 52, the second gas supply device 39, the second suction port 46, and the second gas suction device 49 are generated by the gas seal mechanism 3. It constitutes at least a part of the compensation mechanism 5 that compensates for the temperature change of the substrate P caused by the air flow. That is, in this embodiment, at least a part of the compensation mechanism 5 is provided separately from the gas seal mechanism 3.
  • the liquid LQ is prevented from leaking by the gas injected from the injection port 32 of the gas seal mechanism 3 and the seal member 70 is supported to float on the substrate P. ing.
  • the temperature change of the substrate P is compensated by the gas blown out from the blowout port 36 of the compensation mechanism 5 provided outside the injection port 32 with respect to the optical path space K1.
  • the gas seal mechanism 3 can seal the liquid LQ and can inject gas from the injection port 32 at an optimum flow rate for floatingly supporting the seal member 70 on the substrate P.
  • the compensation mechanism 5 can blow gas onto the substrate P at an optimum temperature and flow rate for compensating for the temperature change of the substrate P caused by the air flow generated by the gas seal mechanism 3.
  • the compensation mechanism 5 does not need to contribute the gas blown out from the blowout port 36 to the floating support of the seal member 70 on the substrate P. Therefore, the optimum temperature and flow rate for compensating for the temperature change of the substrate P The gas can be blown out from the air outlet 36.
  • a gas having a temperature higher than the temperature of the liquid LQ and the temperature of the substrate P flows through each of the second supply channel 37 and the second suction channel 47 of the seal member 70. Therefore, a heat insulating material 71 is provided so as to surround the second supply channel 37 and the second suction channel 47. As a result, temperature changes (temperature rise) of the substrate P and the liquid LQ can be suppressed.
  • the temperature of the substrate P can be adjusted by the gas blown out from the blowout port 36 whose temperature has been adjusted by the second gas temperature adjusting device 52, so that the jetting from the jetting port 32 is possible. It is also possible to omit the gas temperature adjusting device 50 for adjusting the temperature of the gas to be performed.
  • the compensation mechanism 5 of the present embodiment includes a radiating unit 53 that compensates for the temperature change of the substrate P caused by the air flow generated by the gas seal mechanism 3 by radiating heat toward the substrate P. Yes.
  • a plurality of the radiating portions 53 are provided on a part of the lower surface 70A of the seal member 70 facing the substrate P.
  • the radiating portion 53 is provided outside the ejection port 32 of the gas seal mechanism 3 with respect to the optical path space K1 on the lower surface 70A of the seal member 70.
  • the radiating unit 53 is constituted by, for example, a far infrared ceramic heater.
  • the heat radiated from the radiating unit 53 and the gas temperature-adjusted by the gas temperature control device 50 and injected from the injection port 32 are used in combination.
  • the temperature change of the substrate P caused by the air flow generated by the sealing mechanism 3 may be compensated, or the temperature change of the substrate P may be compensated only by the heat radiated from the radiating unit 53.
  • the temperature change of the substrate P may be compensated by using both the gas blown from the blow-out port 36 and the heat radiated from the radiating unit 53 as described in the second embodiment.
  • the force that the radiating portion 53 is configured by a far infrared ceramic heater is not limited to this, for example, other thermoelectric elements such as a Peltier element, there is! /, A light irradiation device such as infrared light, etc. Make up with.
  • the compensation mechanism 5 of this embodiment includes a holder temperature adjusting device 54 that is provided in a substrate holder PH that holds the substrate P and adjusts the temperature of the substrate P.
  • the holder temperature controller 54 is a radiating part that radiates heat.
  • the arbitrary region on the substrate P can be made higher than the temperature of the liquid LQ.
  • the radiating section 54 constituting the holder temperature control device is constituted by, for example, a far-infrared ceramic heater or the like as in the third embodiment.
  • the substrate holder PH is provided on the base material 99 of the substrate holder PH, and a plurality of pin-like members 97 that support the back surface of the substrate P, and a peripheral wall portion provided so as to surround the pin-like member 97 (Rim portion) 98 is provided, and the substrate P is adsorbed and held by applying a negative pressure to the space surrounded by the back surface of the substrate P, the base material 99, and the peripheral wall portion 98. That is, the substrate holder PH of this embodiment has a so-called pin chuck mechanism.
  • the radiation portion 54 is provided at a position facing the back surface of the substrate P in the substrate holder PH. Specifically, a plurality of radiating portions 54 are embedded in the base material 99 of the substrate holder PH.
  • the radiating unit 54 radiates heat toward the back surface of the substrate P to compensate for the temperature change of the substrate P caused by the air flow generated by the gas seal mechanism 3.
  • the substrate P can be warmed by the heat radiated from the radiating portion 54, and thus the substrate P caused by the air flow generated by the gas seal mechanism 3 is used. Temperature change (temperature decrease) can be suppressed.
  • the substrate holder PH supports the back surface of the substrate P by the pin-shaped member 97, and the contact area between the substrate P and the substrate holder PH (pin-shaped member 97) is small. Even if the temperature of the holder PH itself is increased, it is difficult to warm the substrate P. Therefore, by providing the radiation portion 54 at a position facing the back surface of the substrate P and radiating heat toward the back surface of the substrate P, the temperature of the substrate P can be adjusted smoothly.
  • a radiating portion 54 may be embedded in the vicinity of the upper surface 96 of the substrate stage PST.
  • a predetermined process such as exposure of a shot area near the outer edge of the substrate P
  • it is generated by the gas seal mechanism 3.
  • the temperature change of the substrate stage PST caused by the generated air current can be compensated, and the predetermined processing can be performed smoothly.
  • the relative position of each radiation portion 54 provided in the substrate holder PH and the liquid immersion region LR varies. That is, the exposure apparatus EX of the present embodiment relatively moves the substrate holder PH (substrate stage PST) holding the substrate P with respect to the optical path space K1. Since it is configured to irradiate the substrate P with the exposure light EL while moving, the liquid LQ filled in the optical path space K1, that is, the plurality of radiations embedded in the immersion region LR and the substrate stage PST (substrate holder PH) The relative position with each of the parts 54 varies.
  • FIG. 8 is a diagram schematically showing the positional relationship between the projection optical system PL and the liquid immersion region LR and the substrate P when exposure is performed while relatively moving the projection optical system PL and the substrate P. .
  • a plurality of shot areas S1 to S21 where the pattern of the mask M is exposed are set in a matrix.
  • the control device CONT moves each of the shot areas S1 to S21 while relatively moving the optical axis AX (projection area AR) of the projection optical system PL and the substrate P. Are sequentially exposed.
  • control device CONT moves the substrate P (substrate holder PH) relative to the projection optical system PL in the X-axis direction during scanning exposure of each shot area, and in the Y-axis direction during stepping between shot areas, or The substrate P is exposed while moving in both the X-axis and Y-axis directions.
  • the immersion region LR is larger than the projection region AR. Therefore, for example, when the exposure light EL is irradiated to the first shot region S1, the liquid LQ in the immersion region LR is not exposed to the second, sixth, and second substrates on the substrate P. 7. Touch the 8th shot area S2, S6, S7, S8, etc. Then, the second, sixth, seventh, eighth shot regions S2, S6, S7, S8, etc. on the substrate P may change in temperature (temperature decrease) due to the heat of vaporization of the liquid LQ. When the temperature of the second, sixth, seventh, eighth shot regions S2, S6, S7, S8, etc. before exposure is lowered, the second, sixth, seventh, eighth shot regions S2, S6, Pattern overlay accuracy when exposing S7, S8, etc. may deteriorate.
  • the substrate holder PH is provided with a plurality of radiation units (temperature control units) 54 corresponding to a plurality of shot regions set on the substrate P, and the control device CONT moves the substrate P in a moving state ( Position, moving speed, moving direction, moving trajectory, etc.) and the local area on the substrate P (area that is unexposed and in contact with the liquid LQ) with respect to the optical path space K1 corresponding to the moving state
  • a moving state Position, moving speed, moving direction, moving trajectory, etc.
  • the local area on the substrate P area that is unexposed and in contact with the liquid LQ
  • each of the plurality of radiating portions 54 is controlled. That is, when the first shot region S1 is subjected to immersion exposure, the control device CONT radiates heat from the radiation part 54 provided corresponding to the first shot region S1 toward the back surface of the substrate P.
  • the immersion area LR liquid Heat is applied from each of the radiating portions 54 corresponding to each of the second, sixth, seventh, and eighth shot regions S2, S6, S7, and S8 to which the body LQ comes into contact toward the back surface of the substrate P. Radiate. In this way, even if the liquid LQ comes into contact with the second, sixth, seventh, and eighth shot areas S2, S6, S7, and S8 that have not been exposed on the substrate P, the second and second The substrate P can be exposed in a state in which the temperature drop due to the heat of vaporization of the liquid LQ in the sixth, seventh, and eighth shot regions S2, S6, S7, and S8 is suppressed.
  • the relationship between the movement state of the substrate P and the position of the local region on the substrate P with respect to the optical path space K1 corresponding to the movement state is determined in advance by an exposure sequence or the like, and is connected to the control device CONT.
  • the stored storage device MRY can be stored in advance.
  • the control device CONT corresponds to each of the shot areas S1 to S21 based on the stored information stored in the storage device MRY and the output of the laser interferometer 94 that monitors the position information of the substrate stage PST.
  • Each of the plurality of radiating portions 54 provided can be controlled.
  • the plurality of radiating portions 54 are provided corresponding to each of the shot areas S1 to S21, but are not necessarily provided corresponding to the shot areas S1 to S21.
  • the radiating portion 54 may be provided in accordance with any divided area.
  • a gas seal is formed by using in combination the heat radiated from the radiating unit 54 and the gas injected from the injection port 32 whose temperature is adjusted by the gas temperature adjusting device 50.
  • the temperature change of the substrate P caused by the air flow generated by the mechanism 3 may be compensated, or the temperature change of the substrate P may be compensated only by the heat radiated from the radiating unit 54.
  • the gas blown out from the outlet 36 as described in the second embodiment or the heat radiated from the radiating portion 53 provided in the seal member 70 as described in the third embodiment is used in combination.
  • the temperature change of the substrate P may be compensated.
  • the position and number of the radiating portions 54 to be heated, the timing and time of heating, and the like are controlled in consideration of the time delay until the heat is transferred to the substrate P.
  • a forward method may be used.
  • the radiating portion 54 is connected to the far infrared ceramic heater.
  • another thermoelectric element such as a Peltier element, or a device for ejecting a temperature-controlled gas may be used.
  • the force that the substrate holder PH is formed integrally with a part of the substrate stage PST that is, the base material 99 is a part of the substrate stage PST).
  • the PST may be configured separately.
  • test exposure is performed on a dummy substrate DP provided with a temperature sensor 80 as shown in FIG. 9, and the temperature at that time is set as a temperature sensor. Measured by the sensor 80, and based on the measurement result of the temperature sensor 80, when actually exposing the substrate P, the temperature of the gas ejected from the ejection port 32, the temperature of the gas blown from the ejection port 36, and the radiation part The amount of heat radiated from 53 and 54 can be optimized.
  • the dummy substrate DP has substantially the same size and shape as the device manufacturing substrate P, and the substrate holder PH can hold the dummy substrate DP.
  • a plurality of temperature sensors 80 are provided on the surface of the dummy substrate DP.
  • the temperature sensor 80 has a plurality of sensor elements 81 provided on the surface of the dummy substrate DP.
  • the sensor element 81 is composed of, for example, a thermocouple.
  • the measurement part (probe) of the sensor element 81 of the temperature sensor 80 is exposed on the surface of the dummy substrate DP.
  • a storage element 85 for storing the temperature measurement signal of the temperature sensor 80 is provided on the dummy substrate DP.
  • the storage element 85 and the sensor element 81 are connected via a signal transmission line (cable) 83.
  • the temperature measurement signal of the sensor element 81 is connected to the signal transmission line (cable) 83. Is sent to the storage element 85.
  • the control device CONT can extract (read out) the temperature measurement result stored in the storage element 85.
  • a semiconductor wafer may be prepared as the dummy substrate DP, and a sensor element may be directly formed thereon using a forming technique such as MEMS.
  • a sensor amplifier, a communication circuit, etc. are formed on the wafer. Can be included.
  • the dummy substrate DP in FIG. 9 is held by the substrate holder PH, and a gas flow is generated on the dummy substrate DP by the gas seal mechanism 3 while the liquid LQ is filled between the dummy substrate DP and the projection optical system PL.
  • the control device CONT is operated by the gas seal mechanism 3. Therefore, the temperature change of the dummy substrate DP caused by the generated airflow can be obtained.
  • the control device CONT for example, gas injected from the injection port 32 so that the temperature of the liquid LQ and the temperature of the dummy substrate DP are substantially equal. Is adjusted using the gas temperature control device 50, and the adjustment amount (correction amount) at that time is stored. Then, the controller CONT adjusts the temperature of the gas injected from the injection port 32 using the gas temperature adjustment device 50 based on the stored adjustment amount when exposing the substrate P.
  • the substrate P can be exposed while compensating for the temperature change of the substrate P caused by the air flow generated by the gas seal mechanism 3.
  • the control device CONT uses the temperature of the gas blown out from the outlet 36 so that the temperature of the liquid LQ and the temperature of the dummy substrate DP are approximately equal. Is adjusted using the second gas temperature control device 52, and the adjustment amount at that time is stored.When the substrate P is exposed, the temperature of the gas blown from the outlet 36 is adjusted based on the stored adjustment amount. By adjusting using the second gas temperature adjusting device 52, the substrate P can be exposed while compensating for the temperature change of the substrate P caused by the air flow generated by the gas seal mechanism 3.
  • control device CONT can optimize the amount of heat radiated from the radiating unit 53 so that the temperature of the liquid LQ and the temperature of the substrate P are substantially equal based on the measurement result of the temperature sensor 80. it can.
  • the adjustment amount (correction amount) in the compensation mechanism 5 may be stored in association with the shot area on the substrate P, or may be stored in association with the XY position of the substrate P. .
  • the control device CONT can be mounted on the substrate holder PH based on the measurement result of the temperature sensor 80.
  • Each of the plurality of radiating portions 54 embedded can be optimally controlled according to the movement state of the substrate P.
  • the seal member 70 is levitated and supported on the substrate P by the gas ejected from the ejection port 32, but the gas seal mechanism 3 is filled in the optical path space K1.
  • a gas bearing mechanism may be provided separately from the gas seal mechanism 3, or the seal member 70 may be supported so as to be movable by a predetermined support mechanism.
  • the support member that supports the projection optical system PL and the seal member 70 may be connected by a predetermined support mechanism.
  • the gas seal mechanism 3 is at least However, it is preferable that the seal member 70 be configured to be easily replaceable or detachable, for example, a configuration that can be divided into plural blocks. Furthermore, it is preferable that the pipes connected to the seal member 70 are easy to attach and detach.
  • the force for holding the liquid LQ by the gas seal mechanism 3 may not necessarily use the gas seal.
  • the distance between the final optical element LSI (or the lower surface 70A of the seal member 70) of the projection optical system PL and the substrate P is set to about 1 to 3 mm, and capillary action is caused.
  • the liquid LQ may be supplied and collected while holding the liquid LQ.
  • a force for providing the heat insulating material 71 on the seal member 70 is provided instead of providing the heat insulating material, or in combination with the heat insulating material, for example, a mechanism for adjusting the temperature of the seal member 70 is provided. It may be provided.
  • a mechanism for adjusting the temperature of the seal member 70 is provided. It may be provided.
  • the above-described heat insulating material etc. may not be provided. Good.
  • the temperature change of the substrate P due to the heat of vaporization caused by the vaporization of part of the liquid LQ caused by the airflow generated by the gas seal mechanism 3 is compensated. Force Even if the gas seal mechanism 3 is not ejected, a part of the liquid LQ can be vaporized, so the gas seal mechanism 3 is not ejected or the gas seal mechanism 3 is not provided. Compensation mechanism 5 may compensate for substrate temperature changes due to heat of vaporization.
  • the temperature of the liquid LQ filled in the optical path space K1 and the temperature of the substrate P are approximately equal.
  • the local temperature of the substrate P due to the heat of vaporization described above is used.
  • the temperature of the liquid LQ and the temperature of the substrate P may be different if the change (that is, the exposure accuracy fluctuation) is within a predetermined tolerance.
  • pure water is used as the liquid LQ.
  • Pure water has the advantage that it can be easily obtained in large quantities at semiconductor manufacturing factories and the like, and has no adverse effects on the photoresist on the substrate P, optical elements (lenses), and the like.
  • pure water does not have an adverse effect on the environment, and the content of impurities is extremely low. It is also expected to clean the surface of the optical element provided on the tip of the academic system PL. If the purity of the pure water supplied from the factory is low, the exposure apparatus may have an ultrapure water production device.
  • the refractive index n of pure water (water) for exposure light EL having a wavelength of about 193 nm is said to be approximately 1. 44, and ArF excimer laser light (wavelength 193 nm) is used as the light source of exposure light EL.
  • ArF excimer laser light wavelength 193 nm
  • the wavelength is shortened to about 134 nm to obtain a high resolution.
  • the projection optical system PL can be used if it is sufficient to ensure the same depth of focus as in the air.
  • the numerical aperture can be increased further, and the resolution is improved in this respect as well.
  • the final optical element LSI is attached to the tip of the projection optical system PL, and adjustment of optical characteristics of the projection optical system PL, such as aberration (spherical aberration, coma, etc.), is performed by this lens. It can be performed.
  • the optical element attached to the tip of the projection optical system PL may be an optical plate used for adjusting the optical characteristics of the projection optical system PL. Or it may be a plane parallel plate (such as a cover plate) that can transmit the exposure light EL.
  • the force that fills the optical path space on the image plane side of the optical element at the tip of the projection optical system with a liquid is disclosed in International Publication No. 2004Z019128 pamphlet V. This is achieved by adopting a projection optical system that fills the optical path space on the mask side of this optical element with a liquid.
  • the force nozzle in which the nozzle member that supplies and recovers the liquid LQ in the liquid immersion mechanism 1 and the seal member 70 of the gas seal mechanism 3 are the same member.
  • the member and the seal member may be different members.
  • the structure of the liquid immersion mechanism 1 (particularly the nozzle member) is not limited to the above-described structure.
  • European Patent Publication No. 1420298, International Publication No. 2004Z055803, International Publication No. 2004/057590, International Publication Those described in Japanese Patent No. 2005Z029559 can also be used.
  • the liquid LQ is water (pure water), but it is a liquid other than water.
  • the light source of the exposure light EL is an F laser
  • the F laser light passes through water.
  • Fluorine-based fluids such as tellurium (PFPE) and fluorine-based oils may be used.
  • the portion that comes into contact with the liquid LQ is subjected to a lyophilic treatment by forming a thin film with a substance having a small molecular structure and containing fluorine, for example.
  • liquid LQ is stable against the projection optical system PL that is transparent to the exposure light EL and has a refractive index as high as possible, and to the photoresist applied to the surface of the substrate P.
  • cedar oil can also be used.
  • liquid LQ having a refractive index of about 1.6 to 1.8 may be used.
  • at least the final optical element LSI may be formed of a material having a higher refractive index than quartz and fluorite (for example, 1.6 or more).
  • Various liquids such as a supercritical fluid can be used as the liquid LQ.
  • the positional information of the mask stage MST and the substrate stage PST is measured using the interferometer system (92, 94).
  • the present invention is not limited to this, and is provided in the stage, for example.
  • An encoder system that detects the scale (diffraction grating) can be used.
  • it is preferable that a hybrid system including both the interferometer system and the encoder system is used, and the measurement result of the encoder system is calibrated using the measurement result of the interferometer system.
  • the position control of the stage may be performed by switching between the interferometer system and the encoder system or using both.
  • the substrate P in each of the above embodiments is used not only for semiconductor wafers for manufacturing semiconductor devices, but also for glass substrates for display devices, ceramic wafers for thin film magnetic heads, or exposure apparatuses.
  • Mask or reticle master synthetic quartz, silicon wafer, etc. are applied.
  • the exposure apparatus EX in addition to a step-and-scan type scanning exposure apparatus (scanning stepper) that performs mask exposure by scanning the mask M and the substrate P synchronously, the mask M and the substrate P are used.
  • a step-and-repeat projection exposure system (STEP) that exposes the pattern of the mask M in a state where M and the substrate P are stationary and moves the substrate P in steps. B).
  • a reduced image of the first pattern is projected with the first pattern and the substrate P substantially stationary, for example, a refractive optical system that does not include a reflective element at a 1Z8 reduction magnification. It can also be applied to an exposure apparatus that uses a projection optical system) to perform batch exposure on the substrate P. In this case, after that, with the second pattern and the substrate P almost stationary, a reduced image of the second pattern is collectively exposed on the substrate P by partially overlapping the first pattern using the projection optical system. It can also be applied to a stitch type batch exposure apparatus. In addition, the stitch type exposure apparatus can also be applied to a step 'and' stitch type exposure apparatus in which at least two patterns are partially overlapped and transferred on the substrate P, and the substrate P is sequentially moved.
  • the present invention relates to JP-A-10-163099, JP-A-10-214783 (corresponding US Pat. No. 6,590,634), JP 2000-505958 (corresponding US Pat. (No. 5, 969, 441) or US Pat. No. 6,208, 407, etc., and can be applied to a twin stage type exposure apparatus having a plurality of substrate stages.
  • a twin stage type exposure apparatus having a plurality of substrate stages.
  • JP-A-11 135400 JP-A-2000-164504 (corresponding US Pat. No. 6,897,963), etc.
  • a substrate stage for holding the substrate and a reference mark The present invention can also be applied to an exposure apparatus provided with a reference member on which is formed, and a measurement stage on which Z or various photoelectric sensors are mounted.
  • the disclosure of US publications and disclosures of U.S. patents with the above-described measurement stage are incorporated as part of this description.
  • the type of exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on a substrate P.
  • An exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, an imaging device It can be widely applied to exposure devices for manufacturing devices (CCD), micromachines, MEMS, DNA chips, reticles or masks.
  • CCD compact disc read-only memory
  • MEMS micromachines
  • DNA chips DNA chips
  • reticles or masks reticles or masks.
  • a beam drawing apparatus for making a stamper master (so-called mold) for manufacturing a disk medium such as a CD or DVD
  • a beam spot irradiation objective lens and a drawing master In the case where the liquid is filled, the present invention can be similarly applied.
  • a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern 'dimming pattern) is formed on a light-transmitting substrate.
  • a predetermined light-shielding pattern or phase pattern 'dimming pattern
  • an electronic mask (variable molding mask) that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed.
  • a DMD Digital Micro-mirror Device
  • spatial light modulator spatial light modulator
  • an exposure apparatus (lithography system) that exposes a line 'and' space pattern on the substrate P by forming interference fringes on the substrate P. ) Can also be applied to the present invention.
  • JP-T-2004-519850 corresponding US Pat. No. 6,611,316
  • two mask patterns are synthesized on a substrate via a projection optical system
  • the present invention can also be applied to an exposure apparatus that double exposes one shot area on a substrate almost simultaneously by one scan exposure.
  • the exposure apparatus EX of the present embodiment has various mechanical subsystems including the constituent elements recited in the claims of the present application with predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling to keep. In order to ensure these various accuracies, before and after the assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, various electrical systems Is adjusted to achieve electrical accuracy.
  • the assembly process from various subsystems to the exposure system includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus.
  • the exposure equipment is manufactured at a temperature and It is desirable to perform in a clean room where the degree of leanness is controlled.
  • a microdevice such as a semiconductor device includes a step 201 for performing a function / performance design of the microdevice, a step 202 for manufacturing a mask (reticle) based on this design step, Step 203 for manufacturing a substrate as a base material, Step 204 including processing for exposing the mask pattern onto the substrate by the exposure apparatus EX of the above-described embodiment, Device assembly step (including dicing process, bonding process, and packaging process) It is manufactured through 205, inspection step 206 and the like.
  • the present invention when the substrate is exposed based on the immersion method, it is possible to accurately expose the substrate while suppressing the temperature change of the substrate. Therefore, the present invention provides an exposure apparatus for manufacturing a wide range of products such as semiconductor elements, liquid crystal display elements or displays, thin film magnetic heads, CCDs, micromachines, MEMS, DNA chips, and reticles (masks). Extremely useful.

Abstract

Disclosed is an exposure apparatus comprising a gas sealing mechanism (3) for generating an air flow on a substrate (P) and sealing a liquid (LQ) filling the light path of exposure light, and a compensation mechanism (5) for compensating a temperature change in the substrate (P) which is caused by the air flow generated by the gas sealing mechanism (3).

Description

明 細 書  Specification
露光装置及び露光方法、並びにデバイス製造方法  Exposure apparatus, exposure method, and device manufacturing method
技術分野  Technical field
[0001] 本発明は、液体を介して基板を露光する露光装置及び露光方法、並びにデバイス 製造方法に関するものである。  The present invention relates to an exposure apparatus and exposure method for exposing a substrate through a liquid, and a device manufacturing method.
本願 ίま、 2005年 3月 23日〖こ出願された特願 2005— 083756号【こ基づさ優先権 を主張し、その内容をここに援用する。  No. 2005-083756 filed on Mar. 23, 2005, claiming priority based on this application, the contents of which are incorporated herein by reference.
背景技術  Background art
[0002] 半導体デバイスや液晶表示デバイス等のマイクロデバイス (電子デバイスなど)の製 造工程の一つであるフォトリソグラフイエ程では、マスク上に形成されたパターンを感 光性の基板上に投影露光する露光装置が用いられる。この露光装置は、マスクを保 持して移動可能なマスクステージと、基板を保持して移動可能な基板ステージとを有 し、マスクステージ及び基板ステージを逐次移動しながらマスクのパターンを投影光 学系を介して基板に投影露光するものである。マイクロデバイスの製造においては、 デバイスの高密度化のために、基板上に形成されるパターンの微細化が要求されて いる。この要求に応えるために露光装置の更なる高解像度化が望まれている。その 高解像度化を実現するための手段の一つとして、下記特許文献 1に開示されている ような、投影光学系と基板との間の露光光の光路空間を液体で満たし、投影光学系 と液体とを介して基板を露光する液浸露光装置が案出されている。  In the photolithographic process, which is one of the manufacturing processes of microdevices (electronic devices, etc.) such as semiconductor devices and liquid crystal display devices, the pattern formed on the mask is projected and exposed onto a photosensitive substrate. An exposure apparatus is used. This exposure apparatus has a mask stage that can move while holding a mask, and a substrate stage that can move while holding a substrate. The mask pattern and the substrate stage are moved sequentially, and the pattern of the mask is projected optically. Projection exposure is performed on the substrate through the system. In the manufacture of microdevices, miniaturization of patterns formed on a substrate is required in order to increase the density of devices. In order to meet this demand, it is desired to further increase the resolution of the exposure apparatus. As one of means for realizing the high resolution, the optical path space of the exposure light between the projection optical system and the substrate is filled with liquid as disclosed in Patent Document 1 below, and the projection optical system and An immersion exposure apparatus has been devised that exposes a substrate through a liquid.
特許文献 1:特開 2004— 289126号公報  Patent Document 1: Japanese Patent Laid-Open No. 2004-289126
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 液浸露光装置にお!、て、光路空間に満たされた液体を封じ込めるために、ガス導 入口よりガスを噴射することによってシール部材と基板との間にガスシールを形成す る場合、ガス導入口より噴射されたガスによって液体が気化し、その液体が気化する ことで生じる気化熱によって基板の温度が変化 (低下)する可能性がある。基板の温 度が変化すると、基板が熱変形し、例えば基板上にパターンを転写するときのパター ンの重ね合わせ精度 (露光精度)が劣化する可能性がある。 [0003] In an immersion exposure apparatus, a gas seal is formed between a sealing member and a substrate by injecting a gas from a gas inlet in order to contain the liquid filled in the optical path space. There is a possibility that the liquid is vaporized by the gas ejected from the gas inlet, and the temperature of the substrate is changed (decreased) by the heat of vaporization generated by the vaporization of the liquid. When the temperature of the substrate changes, the substrate is thermally deformed, for example, when a pattern is transferred on the substrate. The overlay accuracy (exposure accuracy) may be degraded.
[0004] 本発明はこのような事情に鑑みてなされたものであって、光学部材と基板との間の 露光光の光路空間に満たされた液体の漏出を防止するとともに、基板の温度変化を 抑制して基板を精度良く露光できる露光装置、及びその露光装置を使ったデバイス 製造方法を提供することを目的とする。  [0004] The present invention has been made in view of such circumstances, and prevents leakage of the liquid filled in the optical path space of the exposure light between the optical member and the substrate, and also prevents the temperature change of the substrate. It is an object of the present invention to provide an exposure apparatus that can accurately expose a substrate and a device manufacturing method using the exposure apparatus.
課題を解決するための手段  Means for solving the problem
[0005] 上記の課題を解決するため、本発明は実施の形態に示す各図に対応付けした以 下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例示に 過ぎず、各要素を限定するものではない。  [0005] In order to solve the above-described problems, the present invention employs the following configurations corresponding to the respective drawings shown in the embodiments. However, the reference numerals in parentheses attached to each element are merely examples of the element and do not limit each element.
[0006] 本発明の第 1の態様に従えば、液体 (LQ)を介して基板 (P)に露光光 (EL)を照射 して基板 (P)を露光する露光装置にぉ 、て、基板 (P)上に気流を生成しかつ露光光 (EL)の光路空間 (K1)に満たされた液体 (LQ)をシールするガスシール機構 (3)と、 ガスシール機構 (3)により生成された気流に起因する基板 (P)の温度変化を補償す る補償機構 (5)とを備えた露光装置 (EX)が提供される。  [0006] According to the first aspect of the present invention, the substrate (P) is irradiated with exposure light (EL) through the liquid (LQ) to expose the substrate (P), and then the substrate is exposed. A gas seal mechanism (3) that seals the liquid (LQ) that generates an air flow on (P) and fills the optical path space (K1) of the exposure light (EL), and a gas seal mechanism (3) An exposure apparatus (EX) is provided that includes a compensation mechanism (5) that compensates for temperature changes of the substrate (P) caused by the airflow.
[0007] 本発明の第 1の態様によれば、ガスシール機構によって、液体の漏出を防止するこ とができ、補償機構によって、ガスシール機構により生成された気流に起因する基板 の温度変化を抑制することができる。  [0007] According to the first aspect of the present invention, liquid leakage can be prevented by the gas seal mechanism, and the temperature change of the substrate caused by the airflow generated by the gas seal mechanism can be prevented by the compensation mechanism. Can be suppressed.
[0008] 本発明の第 2の態様に従えば、液体 (LQ)を介して基板 (P)に露光光 (EL)を照射 して基板 (P)を露光する露光装置において、露光光 (EL)の光路空間 (K1)に液体( LQ)を供給する液浸機構(1)と、液体 (LQ)の気化に起因する基板 (P)の温度変化 を補償する補償機構 (5)とを備えた露光装置 (EX)が提供される。本発明の第 2の態 様によれば、補償機構によって、液体の気化に起因する基板の温度変化を抑制する ことができる。  According to the second aspect of the present invention, in the exposure apparatus that exposes the substrate (P) by irradiating the substrate (P) with the exposure light (EL) through the liquid (LQ), the exposure light (EL ) Optical path space (K1) with a liquid immersion mechanism (1), and a compensation mechanism (5) that compensates for temperature changes of the substrate (P) due to vaporization of the liquid (LQ). An exposure apparatus (EX) is provided. According to the second aspect of the present invention, the temperature change of the substrate due to the vaporization of the liquid can be suppressed by the compensation mechanism.
[0009] 本発明の第 3の態様に従えば、上記第 1又は第 2の態様の露光装置 (EX)を用いる デバイス製造方法が提供される。本発明の第 3の態様によれば、基板の温度変化を 抑制できる露光装置を使ってデバイスを製造することができる。  [0009] According to the third aspect of the present invention, there is provided a device manufacturing method using the exposure apparatus (EX) of the first or second aspect. According to the third aspect of the present invention, a device can be manufactured using an exposure apparatus that can suppress a temperature change of the substrate.
[0010] 本発明の第 4の態様に従えば、液体 (LQ)を介して基板 (P)に露光光 (EL)を照射 して基板 (P)を露光する露光方法にぉ 、て、露光光 (EL)の光路空間 (K1)を液体( LQ)で満たし、液体 (LQ)の気化に起因する基板 (P)の温度変化を補償する露光方 法が提供される。本発明の第 4の態様によれば、液体の気化に起因する基板の温度 変化を抑制することができる。 [0010] According to the fourth aspect of the present invention, the exposure method includes exposing the substrate (P) by irradiating the substrate (P) with exposure light (EL) through the liquid (LQ), and exposing the substrate (P). Light (EL) optical path space (K1) is liquid ( An exposure method is provided that compensates for temperature changes in the substrate (P) due to vaporization of the liquid (LQ). According to the fourth aspect of the present invention, the temperature change of the substrate due to the vaporization of the liquid can be suppressed.
[0011] 本発明の第 5の態様に従えば、上記態様の露光方法を用いるデバイス製造方法が 提供される。本発明の第 5の態様によれば、基板の温度変化を抑制できる露光方法 を用いてデバイスを製造することができる。 [0011] According to a fifth aspect of the present invention, there is provided a device manufacturing method using the exposure method of the above aspect. According to the fifth aspect of the present invention, a device can be manufactured by using an exposure method that can suppress a temperature change of a substrate.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]第 1実施形態に係る露光装置を示す概略構成図である。 FIG. 1 is a schematic block diagram that shows an exposure apparatus according to a first embodiment.
[図 2]シール部材近傍の側断面図である。  FIG. 2 is a side sectional view of the vicinity of a seal member.
[図 3]シール部材を下方力 見た図である。  [Fig. 3] A view of the sealing member as viewed from below.
[図 4]液浸機構、ガスシール機構、及び補償機構を説明するための構成図である。  FIG. 4 is a configuration diagram for explaining a liquid immersion mechanism, a gas seal mechanism, and a compensation mechanism.
[図 5]第 2実施形態に係る露光装置の要部を拡大した断面図である。  FIG. 5 is an enlarged cross-sectional view of a main part of an exposure apparatus according to a second embodiment.
[図 6]第 3実施形態に係る露光装置の要部を拡大した断面図である。  FIG. 6 is an enlarged cross-sectional view of a main part of an exposure apparatus according to a third embodiment.
[図 7]第 4実施形態に係る露光装置の要部を拡大した断面図である。  FIG. 7 is an enlarged cross-sectional view of a main part of an exposure apparatus according to a fourth embodiment.
[図 8]基板を露光するときの投影光学系と基板との相対的な位置関係を説明するた めの図である。  FIG. 8 is a diagram for explaining the relative positional relationship between the projection optical system and the substrate when the substrate is exposed.
[図 9]ダミー基板に設けられた温度センサを説明するための図である。  FIG. 9 is a diagram for explaining a temperature sensor provided on a dummy substrate.
[図 10]マイクロデバイスの製造工程の一例を示すフローチャート図である。  FIG. 10 is a flowchart showing an example of a microdevice manufacturing process.
符号の説明  Explanation of symbols
[0013] 1…液浸機構、 3…ガスシール機構、 5…補償機構、 12· ··供給口、 22· ··回収口、 32 …噴射口、 36· ··吹き出し口、 50· ··気体温調装置 (第 1温調装置)、 52…第 2気体温 調装置 (第 2温調装置)、 51· ··液体温調装置 (第 3温調装置)、 53· ··放射部、 54…放 射部 (第 4温度調整装置)、 70· ··シール部材、 71…断熱材 (断熱構造)、 CONT— 制御装置、 EL…露光光、 EX…露光装置、 K1…光路空間、 LQ…液体、 MRY…記 憶装置、 P…基板、 PH…基板ホルダ (保持部材)、 PL…投影光学系  [0013] 1 ... Immersion mechanism, 3 ... Gas seal mechanism, 5 ... Compensation mechanism, 12 ... Supply port, 22 ... Recovery port, 32 ... Jet, 36 ... Blowout port, 50 ... Gas temperature controller (first temperature controller), 52 ... Second gas temperature controller (second temperature controller), 51 ... Liquid temperature controller (third temperature controller), 53 ... Radiator 54 ... Radiation part (4th temperature control device), 70 ... Sealing member, 71 ... Heat insulation material (heat insulation structure), CONT- control device, EL ... Exposure light, EX ... Exposure device, K1 ... Optical path space, LQ ... Liquid, MRY ... Memory device, P ... Substrate, PH ... Substrate holder (holding member), PL ... Projection optical system
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれ に限定されない。 [0015] <第 1実施形態 > [0014] Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. [0015] <First embodiment>
本実施形態に係る露光装置について図 1を参照しながら説明する。図 1は露光装 置 EXの一実施形態を示す概略構成図である。図 1において、露光装置 EXは、マス ク Mを保持して移動可能なマスクステージ MSTと、基板 Pを保持する基板ホルダ PH を有し、基板 Pを保持した基板ホルダ PHを移動可能な基板ステージ PSTと、マスク ステージ MSTに保持されているマスク Mを露光光 ELで照明する照明光学系 ILと、 露光光 ELで照明されたマスク Mのパターン像を基板 P上に投影する投影光学系 PL と、露光装置 EX全体の動作を統括制御する制御装置 CONTとを備えて 、る。  An exposure apparatus according to this embodiment will be described with reference to FIG. FIG. 1 is a schematic block diagram that shows an embodiment of the exposure apparatus EX. In FIG. 1, an exposure apparatus EX has a mask stage MST that can move while holding a mask M and a substrate holder PH that holds a substrate P, and a substrate stage that can move the substrate holder PH that holds the substrate P. PST, illumination optical system IL that illuminates mask M held by mask stage MST with exposure light EL, and projection optical system PL that projects a pattern image of mask M illuminated with exposure light EL onto substrate P And a control device CONT that controls the overall operation of the exposure apparatus EX.
[0016] 本実施形態の露光装置 EXは、露光波長を実質的に短くして解像度を向上するとと もに焦点深度を実質的に広くするために液浸法を適用した液浸露光装置であって、 投影光学系 PLの像面側における露光光 ELの光路空間 K1を液体 LQで満たした状 態で基板 Pに露光光 ELを照射して、基板 Pを露光する。具体的には、露光装置 EX は、投影光学系 PLを構成する複数の光学素子のうち、投影光学系 PLの像面に最も 近い最終光学素子 LSIと、基板ホルダ PHに保持され、投影光学系 PLの像面側に 配置された基板 Pとの間の露光光 ELの光路空間 K1を液体 LQで満たし、投影光学 系 PL、及び投影光学系 PLと基板 Pとの間の液体 LQを介してマスク Mを通過した露 光光 ELを基板 Pに照射することによってマスク Mのパターンを基板 Pに投影露光する  The exposure apparatus EX of the present embodiment is an immersion exposure apparatus to which an immersion method is applied in order to improve the resolution by substantially shortening the exposure wavelength and substantially increase the depth of focus. Then, the substrate P is exposed by irradiating the substrate P with the exposure light EL in a state where the optical path space K1 of the exposure light EL on the image plane side of the projection optical system PL is filled with the liquid LQ. Specifically, the exposure apparatus EX is held by the final optical element LSI closest to the image plane of the projection optical system PL and the substrate holder PH among the plurality of optical elements constituting the projection optical system PL. Fill the optical path space K1 of the exposure light EL with the substrate P placed on the image plane side of the PL with the liquid LQ, via the projection optical system PL, and the liquid LQ between the projection optical system PL and the substrate P The pattern of mask M is projected and exposed to substrate P by irradiating substrate P with exposure light EL that has passed through mask M.
[0017] また本実施形態の露光装置 EXは、液体 LQにより投影光学系 PLの投影領域 AR を含む基板 P上の一部に、投影領域 ARよりも大きく且つ基板 Pよりも小さい液体 LQ の液浸領域 LRを局所的に形成する局所液浸方式を採用して ヽる。露光装置 EXは 、少なくともマスク Mのパターン像を基板 P上に転写している間、投影光学系 PLと基 板 Pとの間の露光光 ELの光路空間 K1を液体 LQで満たし、基板 P上に液体 LQの液 浸領域 LRを局所的に形成する。 In addition, the exposure apparatus EX of the present embodiment has a liquid LQ liquid LQ that is larger than the projection area AR and smaller than the substrate P on a part of the substrate P including the projection area AR of the projection optical system PL. Immersion area A local immersion method that forms LR locally can be used. The exposure apparatus EX fills the optical path space K1 of the exposure light EL between the projection optical system PL and the substrate P with the liquid LQ at least while the pattern image of the mask M is transferred onto the substrate P. In addition, the liquid LQ immersion area LR is locally formed.
[0018] 後に詳述するように、露光装置 EXは、露光光 ELの光路空間 K1を液体 LQで満た すための液浸機構 1と、露光光 ELの光路空間 K1に満たされた液体 LQをシールす るために基板 P上に気流を生成するガスシール機構 3と、ガスシール機構 3により生 成された気流に起因する基板 Pの温度変化を補償するための補償機構 5とを備えて いる。ガスシール機構 3は、投影光学系 PLの像面側近傍に設けられたシール部材 7 0を備えている。シール部材 70は、基板 P (基板ホルダ PH)の上方において、少なく とも投影光学系 PLを構成する複数の光学素子のうち、投影光学系 PLの像面に最も 近 ヽ最終光学素子 LS 1、及び光路空間 K1を囲むように環状に設けられて!/ヽる。 [0018] As described in detail later, the exposure apparatus EX includes an immersion mechanism 1 for filling the optical path space K1 of the exposure light EL with the liquid LQ, and a liquid LQ filled with the optical path space K1 of the exposure light EL. A gas sealing mechanism 3 for generating an air flow on the substrate P for sealing, and a compensation mechanism 5 for compensating for a temperature change of the substrate P caused by the air flow generated by the gas sealing mechanism 3 are provided. Yes. The gas seal mechanism 3 includes a seal member 70 provided in the vicinity of the image plane side of the projection optical system PL. The seal member 70 is located above the substrate P (substrate holder PH), and at least of the plurality of optical elements constituting the projection optical system PL, the closest optical element LS 1 closest to the image plane of the projection optical system PL, and It is provided in a ring around the optical path space K1!
[0019] 本実施形態では、露光装置 EXとしてマスク Mと基板 Pとを走査方向に同期移動し つつマスク Mに形成されたパターンを基板 Pに露光する走査型露光装置 (所謂スキ ヤニングステツパ)を使用する場合を例にして説明する。以下の説明において、水平 面内においてマスク Mと基板 Pとの同期移動方向(走査方向)を X軸方向、水平面内 にお!/ヽて X軸方向と直交する方向を Y軸方向(非走査方向)、 X軸及び Y軸方向に垂 直で投影光学系 PLの光軸 AXと一致する方向を Z軸方向とする。また、 X軸、 Y軸、 及び Z軸まわりの回転 (傾斜)方向をそれぞれ、 0 X、 Θ Y,及び Θ Z方向とする。なお 、ここでいう「基板」は、露光処理を含む各種プロセス処理を施される処理基板であつ て、半導体ウェハ等の基材上に感光材 (レジスト)、保護膜などの膜を塗布したものを 含む。「マスク」は基板上に縮小投影されるデバイスパターンやテストパターン、ァライ メントパターンを形成されたレチクルを含む。 In the present embodiment, as exposure apparatus EX, a scanning exposure apparatus (so-called scanning stepper) that exposes a pattern formed on mask M onto substrate P while synchronously moving mask M and substrate P in the scanning direction. The case of using is described as an example. In the following explanation, the synchronous movement direction (scanning direction) of the mask M and the substrate P in the horizontal plane is the X axis direction, and in the horizontal plane, the direction orthogonal to the X axis direction is the Y axis direction (non-scanning). Direction), the direction perpendicular to the X-axis and Y-axis directions and coincident with the optical axis AX of the projection optical system PL is defined as the Z-axis direction. The rotation (tilt) directions around the X, Y, and Z axes are defined as 0 X, Θ Y, and Θ Z directions, respectively. Here, the “substrate” is a processing substrate on which various processing processes including exposure processing are performed, and a film such as a photosensitive material (resist) or a protective film is applied on a base material such as a semiconductor wafer. including. The “mask” includes a reticle on which a device pattern, a test pattern, and an alignment pattern to be projected on a substrate are reduced.
[0020] 照明光学系 ILは、露光用光源、露光用光源から射出された光束の照度をマスク M 上で均一化するオプティカルインテグレータ、オプティカルインテグレータからの露光 光 ELを集光するコンデンサレンズ、リレーレンズ系、及び露光光 ELによるマスク M上 の照明領域を設定する視野絞り等を有している。マスク M上の所定の照明領域は照 明光学系 ILにより均一な照度分布の露光光 ELで照明される。照明光学系 IL力 射 出される露光光 ELとしては、例えば水銀ランプ力も射出される輝線 (g線、 h線、 i線) 及び KrFエキシマレーザ光(波長 248nm)等の遠紫外光(DUV光)、 ArFエキシマ レーザ光 (波長 193nm)及び Fレーザ光 (波長 157nm)等の真空紫外光 (VUV光) [0020] The illumination optical system IL includes an exposure light source, an optical integrator that uniformizes the illuminance of the light beam emitted from the exposure light source on the mask M, a condenser lens that collects the exposure light EL from the optical integrator, and a relay lens. System, and a field stop for setting an illumination area on the mask M by exposure light EL. The predetermined illumination area on the mask M is illuminated with the exposure light EL having a uniform illuminance distribution by the illumination optical system IL. Illumination optics IL force Exposure light emitted as EL Light source such as bright line (g-line, h-line, i-line) and KrF excimer laser light (wavelength 248nm) and other ultraviolet light (DUV light) , Vacuum ultraviolet light (VUV light) such as ArF excimer laser light (wavelength 193 nm) and F laser light (wavelength 157 nm)
2  2
などが用いられる。本実施形態においては ArFエキシマレーザ光が用いられる。  Etc. are used. In this embodiment, ArF excimer laser light is used.
[0021] 本実施形態においては、液体 LQとして純水が用いられている。純水は、 ArFェキ シマレーザ光のみならず、例えば、水銀ランプ力 射出される輝線 (g線、 h線、 i線) 及び KrFエキシマレーザ光 (波長 248nm)等の遠紫外光 (DUV光)も透過可能であ る。 [0022] マスクステージ MSTは、マスク Mを保持して移動可能である。マスクステージ MST は、マスク Mを真空吸着 (又は静電吸着)により保持する。マスクステージ MSTは、制 御装置 CONTにより制御されるリニアモータ等を含むマスクステージ駆動装置 MST Dの駆動により、マスク Mを保持した状態で、投影光学系 PLの光軸 AXに垂直な平 面内、すなわち XY平面内で 2次元移動可能及び θ Z方向に微少回転可能である。 マスクステージ MST上には移動鏡 91が設けられている。また、移動鏡 91に対向す る位置にはレーザ干渉計 92が設けられて!/、る。マスクステージ MST上のマスク Mの 2次元方向の位置、及び θ Z方向の回転角(場合によっては Θ X、 θ Y方向の回転角 も含む)はレーザ干渉計 92によりリアルタイムで計測される。レーザ干渉計 92の計測 結果は制御装置 CONTに出力される。制御装置 CONTは、レーザ干渉計 92の計 測結果に基づ 、てマスクステージ駆動装置 MSTDを駆動し、マスクステージ MSTに 保持されているマスク Mの位置制御を行う。なお、レーザ干渉計 92はその一部(例え ば、光学系)のみ、移動鏡 91に対向して設けるようにしてもよい。また、移動鏡 91は 平面鏡のみでなくコーナーキューブ(レトロリフレクタ)を含むものとしてもよ 、し、移動 鏡 91を固設する代わりに、例えばマスクステージ MSTの端面 (側面)を鏡面加工し て形成される反射面を用いてもよい。さらにマスクステージ MSTは、例えば特開平 8 — 130179号公報 (対応する米国特許第 6, 721, 034号)に開示される粗微動可能 な構成としてもよい。 In the present embodiment, pure water is used as the liquid LQ. Pure water is not only ArF excimer laser light, but also far ultraviolet light (DUV light) such as emission lines (g-line, h-line, i-line) emitted from mercury lamp force and KrF excimer laser light (wavelength 248nm). Can also be transmitted. [0022] Mask stage MST is movable while holding mask M. The mask stage MST holds the mask M by vacuum suction (or electrostatic suction). The mask stage MST is in a plane perpendicular to the optical axis AX of the projection optical system PL with the mask M held by the drive of the mask stage drive device MST D including the linear motor controlled by the control device CONT. That is, it can move two-dimensionally in the XY plane and can rotate slightly in the θZ direction. A movable mirror 91 is provided on the mask stage MST. In addition, a laser interferometer 92 is provided at a position facing the movable mirror 91! The position of the mask M on the mask stage MST in the two-dimensional direction and the rotation angle in the θZ direction (including rotation angles in the ΘX and θY directions in some cases) are measured in real time by the laser interferometer 92. The measurement result of the laser interferometer 92 is output to the control device CONT. Based on the measurement result of the laser interferometer 92, the control device CONT drives the mask stage driving device MSTD to control the position of the mask M held on the mask stage MST. Note that only a part of the laser interferometer 92 (for example, an optical system) may be provided to face the movable mirror 91. The movable mirror 91 may include not only a plane mirror but also a corner cube (retro reflector). Instead of fixing the movable mirror 91, for example, the end surface (side surface) of the mask stage MST is mirror-finished. A reflective surface may be used. Further, the mask stage MST may be configured to be capable of coarse and fine movement disclosed in, for example, Japanese Patent Laid-Open No. 8-130179 (corresponding US Pat. No. 6,721,034).
[0023] 投影光学系 PLは、マスク Mのパターンを所定の投影倍率 13で基板 Pに投影露光 するものであって、複数の光学素子で構成されており、それら光学素子は鏡筒 PI C 保持されている。本実施形態において、投影光学系 PLは、投影倍率 j8が例えば 1 Z4、 1/5,あるいは 1Z8の縮小系であり、前述の照明領域と共役な投影領域 AR にマスクパターンの縮小像を形成する。なお、投影光学系 PLは縮小系、等倍系及び 拡大系のいずれでもよい。また、投影光学系 PLは、反射光学素子を含まない屈折系 、屈折光学素子を含まない反射系、反射光学素子と屈折光学素子とを含む反射屈 折系のいずれであってもよい。また、本実施形態においては、投影光学系 PLを構成 する複数の光学素子のうち、投影光学系 PLの像面に最も近い最終光学素子 LSIは 、鏡筒 PKより露出している。 [0024] 基板ステージ PSTは、基板 Pを保持する基板ホルダ PHを有しており、基板 Pを保 持する基板ホルダ PHを投影光学系 PLの像面側にお 、てベース部材 BP上で移動 可能である。基板ホルダ PHは、例えば真空吸着等により基板 Pを保持する。基板ス テージ PST上には凹部 95が設けられており、基板 Pを保持するための基板ホルダ P Hは凹部 95に配置されている。そして、基板ステージ PSTのうち凹部 95以外の上面 96は、基板ホルダ PHに保持された基板 Pの表面とほぼ同じ高さ(面一)になるような 平坦面となっている。なお、基板ステージ PSTの上面 96の一部、例えば基板 Pを囲 む所定領域のみ、基板 Pの表面とほぼ同じ高さとしてもよい。また、投影光学系 PLの 像面側の光路空間 K1を液体 LQで満たし続けることができる(即ち、液浸領域 LRを 良好に保持できる)ならば、基板ホルダ PHに保持された基板 Pの表面と基板ステー ジ PSTの上面 96との間に段差があっても構わない。 [0023] The projection optical system PL projects and exposes the pattern of the mask M onto the substrate P at a predetermined projection magnification 13 and is composed of a plurality of optical elements, which hold the lens barrel PI C. Has been. In the present embodiment, the projection optical system PL is a reduction system having a projection magnification j8 of, for example, 1 Z4, 1/5, or 1Z8, and forms a reduced image of the mask pattern in the projection area AR conjugate with the illumination area described above. . The projection optical system PL may be any one of a reduction system, a unity magnification system, and an enlargement system. Projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, or a reflective refractive system that includes a reflective optical element and a refractive optical element. In the present embodiment, among the plurality of optical elements constituting the projection optical system PL, the final optical element LSI closest to the image plane of the projection optical system PL is exposed from the lens barrel PK. [0024] The substrate stage PST has a substrate holder PH that holds the substrate P. The substrate holder PH that holds the substrate P is moved on the base member BP on the image plane side of the projection optical system PL. Is possible. The substrate holder PH holds the substrate P by, for example, vacuum suction. A recess 95 is provided on the substrate stage PST, and a substrate holder PH for holding the substrate P is disposed in the recess 95. Then, the upper surface 96 of the substrate stage PST other than the recess 95 is a flat surface that is substantially the same height (level) as the surface of the substrate P held by the substrate holder PH. Note that only a part of the upper surface 96 of the substrate stage PST, for example, a predetermined region surrounding the substrate P, may have the same height as the surface of the substrate P. Further, if the optical path space K1 on the image plane side of the projection optical system PL can be continuously filled with the liquid LQ (that is, the immersion area LR can be satisfactorily maintained), the surface of the substrate P held by the substrate holder PH There may be a step between the board stage PST and the upper surface 96 of the PST.
[0025] 基板ステージ PSTは、制御装置 CONTにより制御されるリニアモータ等を含む基 板ステージ駆動装置 PSTDの駆動により、ベース部材 BP上で XY平面内で 2次元移 動可能及び Θ Z方向に微小回転可能である。更に基板ステージ PSTは、 Z軸方向、 Θ X方向、及び Θ Y方向にも移動可能である。したがって、基板ステージ PST上の基 板 Pの表面は、 X軸、 Y軸、 Z軸、 0 X、 0 Y、及び 0 Z方向の 6自由度の方向に移動 可能である。基板ステージ PSTの側面には移動鏡 93が設けられている。また、移動 鏡 93に対向する位置にはレーザ干渉計 94が設けられている。基板ステージ PST上 の基板 Pの 2次元方向の位置、及び回転角はレーザ干渉計 94によりリアルタイムで 計測される。また、露光装置 EXは、基板ステージ PSTに支持されている基板 Pの表 面の面位置情報を検出する斜入射方式のフォーカス'レべリング検出系(不図示)を 備えている。フォーカス'レべリング検出系は、基板 Pの表面の面位置情報 (Z軸方向 の位置情報、及び Θ X及び Θ Y方向の傾斜情報)を検出する。なお、フォーカス'レ ベリング検出系は、静電容量型センサを使った方式のものを採用してもよい。レーザ 干渉計 94の計測結果は制御装置 CONTに出力される。フォーカス'レベリング検出 系の検出結果も制御装置 CONTに出力される。制御装置 CONTは、フォーカス'レ ベリング検出系の検出結果に基づいて、基板ステージ駆動装置 PSTDを駆動し、基 板 Pのフォーカス位置 (Z位置)及び傾斜角( Θ X、 Θ Υ)を制御して基板 Pの表面を投 影光学系 PLの像面に合わせ込むとともに、レーザ干渉計 94の計測結果に基づいて 、基板 Pの X軸方向、 Y軸方向、及び Θ Z方向における位置制御を行う。 [0025] The substrate stage PST can be moved two-dimensionally in the XY plane on the base member BP by the drive of the substrate stage drive device PSTD including a linear motor controlled by the control device CONT and minute in the ΘZ direction. It can be rotated. Further, the substrate stage PST can move in the Z-axis direction, ΘX direction, and ΘY direction. Therefore, the surface of the substrate P on the substrate stage PST can move in directions of six degrees of freedom in the X axis, Y axis, Z axis, 0 X, 0 Y, and 0 Z directions. A movable mirror 93 is provided on the side surface of the substrate stage PST. Further, a laser interferometer 94 is provided at a position facing the moving mirror 93. The position and rotation angle of the substrate P on the substrate stage PST in the two-dimensional direction are measured in real time by the laser interferometer 94. In addition, the exposure apparatus EX includes an oblique incidence type focus / leveling detection system (not shown) that detects surface position information of the surface of the substrate P supported by the substrate stage PST. The focus leveling detection system detects surface position information (position information in the Z-axis direction and inclination information in the Θ X and Θ Y directions) of the surface of the substrate P. The focus / leveling detection system may employ a system using a capacitive sensor. The measurement result of the laser interferometer 94 is output to the control device CONT. The detection result of the focus leveling detection system is also output to the control device CONT. The control device CONT drives the substrate stage drive device PSTD based on the detection result of the focus / leveling detection system, and controls the focus position (Z position) and tilt angle (ΘX, ΘΥ) of the substrate P. Throw the surface of substrate P The position of the substrate P is controlled in the X-axis direction, the Y-axis direction, and the ΘZ direction based on the measurement result of the laser interferometer 94 along with the image plane of the shadow optical system PL.
[0026] なお、レーザ干渉計 94はその一部(例えば、光学系)のみを移動鏡 93に対向して 設けるようにしてもよいし、基板ステージ PST (基板 P)の Z軸方向の位置、及び Θ X、 Θ Y方向の回転角をも計測可能としてよい。基板ステージ PSTの Z軸方向の位置を 計測可能なレーザ干渉計を備えた露光装置の詳細は、例えば特表 2001— 51057 7号公報 (対応する国際公開第 1999Z28790号パンフレット)に開示されている。さ らに、移動鏡 93を基板ステージ PSTに固設する代わりに、例えば基板ステージ PST の一部 (側面など)を鏡面加工して形成される反射面を用いてもよい。また、フォー力 ス 'レペリング検出系はその複数の計測点でそれぞれ基板 Pの Z軸方向の位置情報 を計測することで、基板 Pの Θ X及び Θ Y方向の傾斜情報(回転角)を検出するもの であるが、この複数の計測点はその少なくとも一部が液浸領域 LR (又は投影領域 A R)内に設定されてもよいし、あるいはその全てが液浸領域 LRの外側に設定されても よい。さらに、例えばレーザ干渉計 94が基板 Pの Z軸、 θ X及び θ Y方向の位置情報 を計測可能であるときは、基板 Pの露光動作中にその Z軸方向の位置情報が計測可 能となるようにフォーカス'レペリング検出系を設けなくてもよぐ少なくとも露光動作中 はレーザ干渉計 94の計測結果を用いて Z軸、 θ X及び θ Y方向に関する基板 Pの位 置制御を行うようにしてもょ 、。  Note that only a part of the laser interferometer 94 (for example, an optical system) may be provided to face the movable mirror 93, or the position of the substrate stage PST (substrate P) in the Z-axis direction, It is also possible to measure rotation angles in the Θ X and Θ Y directions. Details of the exposure apparatus equipped with a laser interferometer capable of measuring the position of the substrate stage PST in the Z-axis direction are disclosed in, for example, JP 2001-51057 7 (corresponding to International Publication No. 1999Z28790 pamphlet). Furthermore, instead of fixing the movable mirror 93 to the substrate stage PST, for example, a reflecting surface formed by mirror-finishing a part (side surface, etc.) of the substrate stage PST may be used. In addition, the force force repelling detection system detects the tilt information (rotation angle) of the substrate P in the Θ X and Θ Y directions by measuring the position information of the substrate P in the Z-axis direction at each of the measurement points. However, at least a part of the plurality of measurement points may be set in the immersion area LR (or the projection area AR), or all of the measurement points may be set outside the immersion area LR. Also good. Furthermore, for example, when the laser interferometer 94 can measure the position information of the substrate P in the Z-axis, θ X, and θ Y directions, the position information in the Z-axis direction can be measured during the exposure operation of the substrate P. Thus, it is not necessary to provide a focus / repelling detection system. At least during the exposure operation, the position of the substrate P in the Z axis, θ X and θ Y directions is controlled using the measurement results of the laser interferometer 94. Well, ...
[0027] 次に、液浸機構 1、ガスシール機構 3、及び補償機構 5について図 2、図 3、及び図 4を参照しながら説明する。図 2はシール部材 70近傍の側断面図、図 3はシール部 材 70を下方カゝら見た図、図 4は液浸機構 1、ガスシール機構 3、及び補償機構 5を説 明するための構成図である。  Next, the liquid immersion mechanism 1, the gas seal mechanism 3, and the compensation mechanism 5 will be described with reference to FIG. 2, FIG. 3, and FIG. 2 is a sectional side view of the vicinity of the seal member 70, FIG. 3 is a view of the seal member 70 as viewed from below, and FIG. 4 is for explaining the liquid immersion mechanism 1, the gas seal mechanism 3, and the compensation mechanism 5. FIG.
[0028] 液浸機構 1は、露光光 ELの光路空間 K1を液体 LQで満たすものであって、投影光 学系 PLの直下に配置される基板 Pと対向するように設けられ、液体 LQを供給する供 給口 12と、光路空間 K1に対して供給口 12より外側であって、基板 Pと対向するよう に設けられ、液体 LQを回収する回収口 22とを有して 、る。供給口 12及び回収口 22 のそれぞれは、シール部材 70のうち基板ホルダ PHに保持された基板 Pと対向する 下面 70Aに設けられている。シール部材 70は、基板 P (基板ホルダ PH)の上方にお いて、投影光学系 PLを構成する複数の光学素子のうち、像面側に配置される少なく とも 1つの光学素子 (ここでは、投影光学系 PLの像面に最も近い最終光学素子 LSI )、及び光路空間 K1を囲むように環状に設けられて 、る。 [0028] The liquid immersion mechanism 1 fills the optical path space K1 of the exposure light EL with the liquid LQ, and is provided so as to face the substrate P arranged immediately below the projection optical system PL. It has a supply port 12 to be supplied, and a recovery port 22 that is provided outside the supply port 12 with respect to the optical path space K1 so as to face the substrate P and collects the liquid LQ. Each of the supply port 12 and the recovery port 22 is provided on the lower surface 70A of the seal member 70 facing the substrate P held by the substrate holder PH. Seal member 70 is located above substrate P (substrate holder PH). Among the plurality of optical elements constituting the projection optical system PL, at least one optical element arranged on the image plane side (here, the final optical element LSI closest to the image plane of the projection optical system PL), and It is provided in an annular shape so as to surround the optical path space K1.
[0029] また、液浸機構 1は、供給管 13及びシール部材 70の内部に形成された内部流路( 供給流路) 14を介して供給口 12に液体 LQを供給する液体供給装置 10と、シール 部材 70の内部に形成された不図示の内部流路(回収流路)及び回収管 23を介して 回収口 22と接続され、投影光学系 PLの像面側の液体 LQを回収口 22を介して回収 する液体回収装置 20とを備えて 、る。  In addition, the liquid immersion mechanism 1 includes a liquid supply device 10 that supplies the liquid LQ to the supply port 12 via an internal flow path (supply flow path) 14 formed inside the supply pipe 13 and the seal member 70. The liquid LQ on the image plane side of the projection optical system PL is connected to the recovery port 22 via an internal flow path (recovery flow path) (not shown) formed in the seal member 70 and the recovery pipe 23, and the recovery port 22 And a liquid recovery device 20 for recovery via the
[0030] 液体供給装置 10は、液体 LQを収容するタンク、加圧ポンプ、及び液体 LQ中の異 物を取り除くフィルタユニット等を備えている。液体供給装置 10の動作は制御装置 C ONTにより制御される。なお、液体供給装置 10のタンク、加圧ポンプ、フィルタュ- ット等は、その全てを露光装置 EXが備えている必要はなぐ露光装置 EXが設置され る工場等の設備を代用してもよ!、。  [0030] The liquid supply apparatus 10 includes a tank that stores the liquid LQ, a pressurizing pump, a filter unit that removes foreign substances in the liquid LQ, and the like. The operation of the liquid supply device 10 is controlled by the control device C ONT. It should be noted that the tank, pressure pump, filter nut, etc. of the liquid supply device 10 need not all be equipped with the exposure apparatus EX, but may be replaced with facilities at the factory where the exposure apparatus EX is installed. !
[0031] 液体回収装置 20は、例えば真空ポンプ等の真空系(吸引装置)、回収された液体 LQと気体とを分離する気液分離器、及び回収した液体 LQを収容するタンク等を備 えている。液体回収装置 20の動作は制御装置 CONTに制御される。なお、液体回 収装置 20の真空系、気液分離器、タンク等は、その全てを露光装置 EXが備えてい る必要はなぐ露光装置 EXが設置される工場等の設備を代用してもよい。  [0031] The liquid recovery apparatus 20 includes, for example, a vacuum system (suction apparatus) such as a vacuum pump, a gas-liquid separator that separates the recovered liquid LQ and gas, and a tank that stores the recovered liquid LQ. Yes. The operation of the liquid recovery device 20 is controlled by the control device CONT. Note that the vacuum system, gas-liquid separator, tank, etc. of the liquid collection device 20 need not all be equipped with the exposure device EX, but may be replaced with facilities at the factory where the exposure device EX is installed. .
[0032] シール部材 70の下面 70Aのうち、光路空間 K1に対して走査方向一方側(+X側) と他方側(-X側)とのそれぞれには、凹部 15が設けられている。図 3に示すように、 凹部 15は平面視において Y軸方向に延びるように設けられている。供給口 12は、平 面視において略円形状であり、シール部材 70の下面 70Aのうち、 +X側と X側と のそれぞれの凹部 15の内側に、 Y軸方向に複数(3つ)並んで設けられている。した がって、供給口 12は、シール部材 70の下面 70Aにおいて、光路空間 K1に対して走 查方向一方側(+X側)と他方側(一 X側)とのそれぞれに設けられた構成となってい る。  [0032] Of the lower surface 70A of the seal member 70, a recess 15 is provided on each of one side (+ X side) and the other side (-X side) in the scanning direction with respect to the optical path space K1. As shown in FIG. 3, the recess 15 is provided so as to extend in the Y-axis direction in plan view. The supply port 12 has a substantially circular shape in a plan view, and a plurality (three) of the supply ports 12 are arranged in the Y-axis direction inside the respective recesses 15 on the + X side and the X side of the lower surface 70A of the seal member 70. Is provided. Accordingly, the supply port 12 is provided on each of the one side (+ X side) and the other side (one X side) in the running direction with respect to the optical path space K1 on the lower surface 70A of the seal member 70. It is.
[0033] 本実施形態の回収口 22は、シール部材 70の下面 70Aにおいて、光路空間 K1及 び供給口 12を囲むように環状に設けられている。回収口 22には多孔部材 (例えば、 セラミック製の多孔体など)あるいはメッシュ部材 (例えば、チタン製の板状メッシュな ど)が設けられている。 [0033] The recovery port 22 of the present embodiment is provided in an annular shape so as to surround the optical path space K1 and the supply port 12 on the lower surface 70A of the seal member 70. The recovery port 22 has a porous member (for example, A ceramic porous body or the like or a mesh member (for example, a titanium plate mesh) is provided.
[0034] 露光光 ELの光路空間 K1を液体 LQで満たすために、制御装置 CONTは、液浸機 構 1の液体供給装置 10及び液体回収装置 20のそれぞれを駆動する。制御装置 CO NTの制御のもとで液体供給装置 10から送出された液体 LQは、供給管 13を流れた 後、シール部材 70の供給流路 14を介して、供給口 12より投影光学系 PLの像面側 に供給される。また、制御装置 CONTのもとで液体回収装置 20が駆動されると、投 影光学系 PLの像面側の液体 LQは回収口 22を介してシール部材 70の回収流路に 流入し、回収管 23を流れた後、液体回収装置 20に回収される。  In order to fill the optical path space K1 of the exposure light EL with the liquid LQ, the control device CONT drives each of the liquid supply device 10 and the liquid recovery device 20 of the liquid immersion mechanism 1. Control device The liquid LQ delivered from the liquid supply device 10 under the control of the CONT flows through the supply pipe 13 and then through the supply flow path 14 of the seal member 70 from the supply port 12 to the projection optical system PL. Supplied to the image side. When the liquid recovery device 20 is driven under the control device CONT, the liquid LQ on the image plane side of the projection optical system PL flows into the recovery flow path of the seal member 70 via the recovery port 22 and is recovered. After flowing through the pipe 23, it is recovered by the liquid recovery device 20.
[0035] 本実施形態においては、供給口 12は、シール部材 70の下面 70Aに設けられた凹 部 15の内側に配置されており、複数の供給口 12のそれぞれから供給された液体 LQ は、凹部 15においてそのエネルギー (圧力、流速)が分散された後、投影光学系 PL と基板 Pとの間の光路空間 K1に流れ込むようになって 、る。シール部材 70の下面 7 OAにおける液体 LQのエネルギーは供給口 12近傍のほうがその他の位置より高い 可能性があるため、凹部 15が設けられていない場合、光路空間 K1に流れ込む液体 LQのエネルギー (圧力、流速)が不均一となる場合がある力 ノ ッファ空間として機 能する凹部 15を設けたことにより、供給口 12から供給された液体 LQのエネルギーを 分散して均一化することができる。  In the present embodiment, the supply port 12 is disposed inside the recess 15 provided on the lower surface 70A of the seal member 70, and the liquid LQ supplied from each of the plurality of supply ports 12 is After the energy (pressure, flow velocity) is dispersed in the recess 15, it flows into the optical path space K1 between the projection optical system PL and the substrate P. Lower surface of seal member 70 7 Liquid LQ energy in OA may be higher near the supply port 12 than other positions, so if the recess 15 is not provided, the energy (pressure) of the liquid LQ that flows into the optical path space K1 , The flow velocity) may be non-uniform. By providing the recess 15 that functions as a force-noffer space, the energy of the liquid LQ supplied from the supply port 12 can be dispersed and uniformized.
[0036] 図 2に示すように、本実施形態においては、投影光学系 PLの最終光学素子 LSIの 側面とシール部材 70の内側面 70Tとの間には所定のギャップ G1が設けられており、 光路空間 K1に満たされた液体 LQの一部はギャップ G1に入り込むようになって 、る 。また、シール部材 70の内縁部の一部は、投影光学系 PLの最終光学素子 LSIと基 板 Pとの間に配置されており、シール部材 70の内側面 70Tの一部は、最終光学素子 LSIの下面と対向している。また、図 3に示すように、投影光学系 PLの投影領域 AR は、 Y軸方向を長手方向とするスリット状 (矩形状)に設定されている。  As shown in FIG. 2, in the present embodiment, a predetermined gap G1 is provided between the side surface of the final optical element LSI of the projection optical system PL and the inner side surface 70T of the seal member 70, Part of the liquid LQ filled in the optical path space K1 enters the gap G1. Further, a part of the inner edge portion of the seal member 70 is disposed between the final optical element LSI of the projection optical system PL and the substrate P, and a part of the inner side surface 70T of the seal member 70 is a final optical element. It faces the lower surface of the LSI. As shown in FIG. 3, the projection area AR of the projection optical system PL is set in a slit shape (rectangular shape) with the Y-axis direction as the longitudinal direction.
[0037] なお、本実施形態においては、供給口 12はシール部材 70の下面 70Aに設けられ ているが、シール部材 70の内側面 70Tに供給口を設けて、最終光学素子 LSIの下 に向力つて液体 LQを供給するようにしてもょ 、。 [0038] ガスシール機構 3は、露光光 ELの光路空間 K1に満たされた液体 LQをシールする ために基板 P上に気流を生成するものであって、投影光学系 PLの直下に配置される 基板 Pと対向するように設けられ、気流を生成するために基板 Pに向けて気体を噴射 する噴射口 32と、光路空間 K1に対して噴射口 32より内側であって、基板 Pと対向す るように設けられ、気体を吸引する吸引口 42とを有している。噴射口 32及び吸引口 4 2のそれぞれは、シール部材 70のうち基板ホルダ PHに保持された基板 Pと対向する 下面 70Aに設けられて!/、る。 [0037] In this embodiment, the supply port 12 is provided on the lower surface 70A of the seal member 70. However, the supply port 12 is provided on the inner side surface 70T of the seal member 70 so as to face below the final optical element LSI. Try to supply liquid LQ by force. [0038] The gas seal mechanism 3 generates an air flow on the substrate P to seal the liquid LQ filled in the optical path space K1 of the exposure light EL, and is disposed immediately below the projection optical system PL. An injection port 32 that is provided to face the substrate P and injects a gas toward the substrate P to generate an air flow, and is located inside the injection port 32 with respect to the optical path space K1 and faces the substrate P. And a suction port 42 for sucking gas. Each of the ejection port 32 and the suction port 42 is provided on the lower surface 70A of the seal member 70 facing the substrate P held by the substrate holder PH.
[0039] またガスシール機構 3は、供給管 33及びシール部材 70の内部に形成された内部 流路 (供給流路) 34を介して噴射口 32に気体を供給する気体供給装置 30と、シー ル部材 70の内部に形成された内部流路(吸引流路) 44及び吸引管 43を介して吸引 口 42と接続され、シール部材 70と基板 Pとの間の気体を吸引口 42を介して吸引する 気体吸弓 I装置 40とを備えて 、る。  The gas seal mechanism 3 includes a gas supply device 30 that supplies gas to the injection port 32 via an internal flow path (supply flow path) 34 formed inside the supply pipe 33 and the seal member 70, and a seal Is connected to the suction port 42 via an internal flow path (suction flow path) 44 and a suction pipe 43 formed inside the seal member 70, and the gas between the seal member 70 and the substrate P passes through the suction port 42. It includes a gas arch I device 40 for suction.
[0040] 気体供給装置 30は、ケミカルフィルタやパーティクル除去フィルタ等を含むフィルタ ユニットを備えており、フィルタユニットを介したクリーンな気体を供給可能である。気 体供給装置 30は、露光装置 EXが収容されたチャンバ内部の気体とほぼ同じ気体を 供給する。本実施形態においては、気体供給装置 30は、空気 (ドライエア)を供給す る。なお、気体供給装置 30から供給される気体としては、窒素ガス (ドライ窒素)等で あってもよい。気体供給装置 30の動作は制御装置 CONTにより制御される。  [0040] The gas supply device 30 includes a filter unit including a chemical filter, a particle removal filter, and the like, and can supply clean gas through the filter unit. The gas supply device 30 supplies substantially the same gas as the gas inside the chamber in which the exposure apparatus EX is accommodated. In the present embodiment, the gas supply device 30 supplies air (dry air). Note that the gas supplied from the gas supply device 30 may be nitrogen gas (dry nitrogen) or the like. The operation of the gas supply device 30 is controlled by the control device CONT.
[0041] 気体吸引装置 40は、例えば真空ポンプ等の真空系(吸引装置)等を備えている。  [0041] The gas suction device 40 is provided with a vacuum system (suction device) such as a vacuum pump, for example.
気体吸弓 I装置 40の動作は制御装置 CONTに制御される。  The operation of the gas arch I device 40 is controlled by the control device CONT.
[0042] 図 3に示すように、シール部材 70の下面 70Aにおいて、光路空間 K1に対して回収 口 22よりも外側には、光路空間 Kl、供給口 12、及び回収口 22を囲むように設けら れた環状の第 1溝部 45が設けられている。また、シール部材 70の下面 70Αにおいて 、光路空間 K1に対して第 1溝部 45よりも外側には、第 1溝部 45を囲むように設けら れた環状の第 2溝部 35が設けられている。吸引口 42は、第 1溝部 45の内側に複数 所定間隔で設けられている。噴射口 32は、第 2溝部 35の内側に複数所定間隔で設 けられている。すなわち、吸引口 42は、回収口 22の外側において、光路空間 K1を 囲むように複数設けられており、噴射口 32は、吸引口 42の外側において、光路空間 Klを囲むように複数設けられている。本実施形態の噴射口 32及び吸引口 42のそれ ぞれは平面視において略円形状である。 As shown in FIG. 3, the lower surface 70A of the seal member 70 is provided outside the recovery port 22 with respect to the optical path space K1 so as to surround the optical path space Kl, the supply port 12, and the recovery port 22. An annular first groove 45 is provided. In addition, on the lower surface 70 of the seal member 70, an annular second groove 35 is provided outside the first groove 45 with respect to the optical path space K1 so as to surround the first groove 45. A plurality of suction ports 42 are provided at predetermined intervals inside the first groove 45. A plurality of injection ports 32 are provided at predetermined intervals inside the second groove portion 35. That is, a plurality of suction ports 42 are provided outside the recovery port 22 so as to surround the optical path space K1, and the ejection ports 32 are disposed outside the suction port 42. A plurality are provided so as to surround Kl. Each of the injection port 32 and the suction port 42 of the present embodiment has a substantially circular shape in plan view.
[0043] 露光光 ELの光路空間 K1に満たされた液体 LQをシールするために、制御装置 C ONTは、ガスシール機構 3の気体供給装置 30及び気体吸引装置 40のそれぞれを 駆動する。制御装置 CONTの制御のもとで気体供給装置 30から送出された気体は 、供給管 33を流れた後、シール部材 70の供給流路 34を介して、噴射口 32より基板 Pに向けて噴射される。制御装置 CONTは、気体供給装置 30より噴射口 32に対して 単位時間当たり所定量の気体を供給することにより、噴射口 32から所定の流速で気 体を噴射することができる。また、制御装置 CONTのもとで気体吸引装置 40が駆動 されると、シール部材 70の下面 70Aと基板 Pの表面との間の気体は吸引口 42を介し てシール部材 70の吸引流路 44に流入し、吸引管 43を流れた後、気体吸引装置 40 に吸引される。ここで、吸引口 42は、光路空間 K1に対して噴射口 32の内側に設け られており、噴射口 32の気体噴射動作と吸引口 42の気体吸引動作との協働作用に よって、基板 P上 (基板 Pの表面とシール部材 70の下面 70Aとの間)には、噴射口 32 力も光路空間 K1に向力 気流が生成される。ガスシール機構 3は、噴射口 32から光 路空間 K1に向力う気流を生成することにより、液体 LQを吸引口 42よりも内側に封じ 込めることができ、投影光学系 PLと基板 Pとの間の露光光 ELの光路空間 K1に満た された液体 LQの漏出や、液浸領域 LRの巨大化を防止することができる。  [0043] In order to seal the liquid LQ filled in the optical path space K1 of the exposure light EL, the control device CONT drives each of the gas supply device 30 and the gas suction device 40 of the gas seal mechanism 3. The gas delivered from the gas supply device 30 under the control of the control device CONT flows through the supply pipe 33, and then is injected from the injection port 32 toward the substrate P through the supply flow path 34 of the seal member 70. Is done. The control device CONT can inject a gas from the injection port 32 at a predetermined flow rate by supplying a predetermined amount of gas per unit time from the gas supply device 30 to the injection port 32. In addition, when the gas suction device 40 is driven under the control device CONT, the gas between the lower surface 70A of the seal member 70 and the surface of the substrate P passes through the suction port 42 and the suction flow path 44 of the seal member 70. Then, after flowing through the suction pipe 43, the gas is sucked into the gas suction device 40. Here, the suction port 42 is provided on the inner side of the ejection port 32 with respect to the optical path space K1, and the substrate P is formed by the cooperative action of the gas ejection operation of the ejection port 32 and the gas suction operation of the suction port 42. On the upper side (between the surface of the substrate P and the lower surface 70A of the seal member 70), a jet air force is also generated in the optical path space K1. The gas seal mechanism 3 can enclose the liquid LQ inside the suction port 42 by generating an airflow directed from the injection port 32 to the optical path space K1, and the projection optical system PL and the substrate P can be sealed. During this period, it is possible to prevent leakage of the liquid LQ filled in the optical path space K1 of the exposure light EL and enlargement of the immersion area LR.
[0044] また、ガスシール機構 3は、噴射口 32から基板 Pに噴射した気体により、基板 P上で シール部材 70を浮上支持する。すなわちガスシール機構 3は、噴射口 32から基板 P に向けて噴射した気体により、基板 Pとシール部材 70との間に気体軸受を形成する。 これにより、図 2に示すように、基板 Pの表面とシール部材 70の下面 70Aとの間には 所定のギャップ G2が形成される。  [0044] Further, the gas seal mechanism 3 floats and supports the seal member 70 on the substrate P by the gas injected onto the substrate P from the injection port 32. That is, the gas seal mechanism 3 forms a gas bearing between the substrate P and the seal member 70 by the gas injected from the injection port 32 toward the substrate P. Thereby, as shown in FIG. 2, a predetermined gap G2 is formed between the surface of the substrate P and the lower surface 70A of the seal member 70.
[0045] 補償機構 5は、ガスシール機構 3により生成された気流に起因する基板 Pの温度変 化を補償するものである。ガスシール機構 3の噴射口 32から基板 Pに向けて噴射さ れた気体により生成された気流により、基板 P上の液体 LQ (光路空間 K1に満たされ た液体 LQ)の一部が気化する可能性がある。そして、気流により液体 LQの一部が気 化することで生じる気化熱によって、基板 Pの局所的な領域が温度変化 (低下)する 可能性がある。補償機構 5は、生成された気流により液体 LQの一部が気化すること で生じる気化熱による基板 Pの局所的な温度低下を補償する。補償機構 5は、供給 口 12より光路空間 K1に供給される液体 LQの温度と、基板 Pの温度とがほぼ等しくな るように、基板 Pの温度低下を補償する。 The compensation mechanism 5 compensates for the temperature change of the substrate P caused by the airflow generated by the gas seal mechanism 3. A part of the liquid LQ (liquid LQ filled in the optical path space K1) on the substrate P can be vaporized by the air flow generated by the gas jetted from the injection port 32 of the gas seal mechanism 3 toward the substrate P. There is sex. The local region of the substrate P changes in temperature (decreases) due to the heat of vaporization caused by the vaporization of part of the liquid LQ due to the air flow. there is a possibility. The compensation mechanism 5 compensates for a local temperature drop of the substrate P due to heat of vaporization that occurs when a part of the liquid LQ is vaporized by the generated airflow. The compensation mechanism 5 compensates for the temperature drop of the substrate P so that the temperature of the liquid LQ supplied from the supply port 12 to the optical path space K1 is substantially equal to the temperature of the substrate P.
[0046] 図 4において、補償機構 5は、供給管 33の途中に設けられ、気体供給装置 30から 噴射口 32に供給される気体の温度を調整する気体温調装置 50を備えている。また 、補償機構 5は、供給管 13の途中に設けられ、液体供給装置 10から供給口 12に供 給される液体 LQの温度を調整する液体温調装置 51を備えている。補償機構 5は、 気化熱に起因する基板 Pの温度変化を補償するために、気体温調装置 50を使って 、噴射口 32から噴射される気体の温度を、供給口 12から供給される液体 LQの温度 よりち高くする。 In FIG. 4, the compensation mechanism 5 includes a gas temperature adjusting device 50 that is provided in the middle of the supply pipe 33 and adjusts the temperature of the gas supplied from the gas supply device 30 to the injection port 32. The compensation mechanism 5 includes a liquid temperature adjusting device 51 that is provided in the middle of the supply pipe 13 and adjusts the temperature of the liquid LQ supplied from the liquid supply device 10 to the supply port 12. The compensation mechanism 5 uses the gas temperature control device 50 to compensate the temperature change of the substrate P due to the heat of vaporization, and the temperature of the gas injected from the injection port 32 is changed to the liquid supplied from the supply port 12. Make it higher than the LQ temperature.
[0047] 気体温調装置 50及び液体温調装置 51のそれぞれは制御装置 CONTに制御され る。制御装置 CONTは、液体温調装置 51を使って、供給口 12より光路空間 K1に供 給される液体 LQの温度と、基板ホルダ PHに保持されて ヽる基板 Pの温度とがほぼ 等しくなるように、液体 LQの温度を調整する。また、制御装置 CONTは、液体温調 装置 51を使って、供給口 12より光路空間 K1に供給される液体 LQの温度と、露光装 置 EXが収容されたチャンバ内部の温度とがほぼ等しくなるように、液体 LQの温度を 調整する。したがって、本実施形態においては、供給口 12より光路空間 K1に供給さ れる液体 LQの温度と、光路空間 K1に満たされた液体 LQの温度と、基板ホルダ PH に保持されている基板 Pの温度とはほぼ等しくなつている。そして、制御装置 CONT は、気体温調装置 50を使って、噴射口 32から噴射される気体の温度を、光路空間 K 1に満たされた液体 LQの温度 (すなわち基板 Pの温度)よりも高くする。噴射口 32か ら噴射される気体の温度を液体 LQの温度よりも高くすることにより、ガスシール機構 3 により生成された気流に起因する基板 Pの温度変化、具体的には液体 LQの一部が 気化することで生じる気化熱による基板 Pの局所的な温度低下を補償することができ る。  [0047] Each of the gas temperature control device 50 and the liquid temperature control device 51 is controlled by the control device CONT. The control device CONT uses the liquid temperature control device 51 to make the temperature of the liquid LQ supplied to the optical path space K1 from the supply port 12 substantially equal to the temperature of the substrate P held by the substrate holder PH. Adjust the temperature of the liquid LQ. In addition, the control device CONT uses the liquid temperature control device 51 to make the temperature of the liquid LQ supplied from the supply port 12 to the optical path space K1 substantially equal to the temperature inside the chamber in which the exposure device EX is accommodated. Adjust the temperature of the liquid LQ. Therefore, in the present embodiment, the temperature of the liquid LQ supplied to the optical path space K1 from the supply port 12, the temperature of the liquid LQ filled in the optical path space K1, and the temperature of the substrate P held by the substrate holder PH. Is almost equal. The control device CONT uses the gas temperature control device 50 to set the temperature of the gas injected from the injection port 32 to be higher than the temperature of the liquid LQ filled in the optical path space K 1 (that is, the temperature of the substrate P). To do. By making the temperature of the gas injected from the injection port 32 higher than the temperature of the liquid LQ, the temperature change of the substrate P caused by the air flow generated by the gas seal mechanism 3, specifically, a part of the liquid LQ It is possible to compensate for the local temperature drop of the substrate P due to the heat of vaporization caused by vaporization.
[0048] ところで、シール部材 70の内部には液体 LQの温度や基板 Pの温度よりも高い温度 の気体が流れるため、シール部材 70自体の温度が上昇する可能性がある。すると、 シール部材 70に接触する液体 LQの温度変化 (温度上昇)を引き起こしたり、ある!/ヽ はシール部材 70と対向する基板 Pや投影光学系 PL (最終光学素子 LSI)の温度変 化 (温度上昇)を引き起こす可能性がある。液体 LQや投影光学系 PLの温度が変化 すると、投影光学系 PL及び液体 LQを介した結像特性が変動 (劣化)する等の不都 合が生じる。また、基板 Pの温度が変動すると、上述のようにパターンの重ね合わせ 精度が劣化する等の不都合が生じる。 [0048] By the way, since a gas having a temperature higher than the temperature of the liquid LQ or the temperature of the substrate P flows inside the seal member 70, the temperature of the seal member 70 itself may rise. Then The temperature change (temperature rise) of the liquid LQ that contacts the seal member 70 is caused, or there is! / ヽ is the temperature change (temperature rise) of the substrate P or projection optical system PL (final optical element LSI) facing the seal member 70 ) May occur. If the temperature of the liquid LQ or the projection optical system PL changes, there will be inconveniences such as fluctuation (degradation) of imaging characteristics via the projection optical system PL and the liquid LQ. Further, when the temperature of the substrate P fluctuates, inconveniences such as deterioration of the pattern overlay accuracy occur as described above.
[0049] そこで、本実施形態にぉ ヽては、シール部材 70の液体 LQと接触し得る部分、シー ル部材 70の基板 Pと対向する部分、及びシール部材 70の投影光学系 PLと対向する 部分に断熱構造 71が設けられている。本実施形態の断熱構造 71は、シール部材 7 0の下面 70A及び内側面 70Tを形成する断熱材によって構成されている。これにより 、シール部材 70の内部に高い温度の気体が流れても、シール部材 70の周囲に配置 される基板 P、投影光学系 PL、及び液体 LQ等の各物体に与える熱的影響を抑える ことができる。なお断熱構造としては、シール部材 70の周囲に配置される各物体に 与える熱的影響を抑えることができるのであれば、任意の構成を採用することができ る。 Therefore, in the present embodiment, the portion of the seal member 70 that can contact the liquid LQ, the portion of the seal member 70 that faces the substrate P, and the projection optical system PL of the seal member 70 are opposed to each other. The part is provided with a heat insulating structure 71. The heat insulating structure 71 of the present embodiment is configured by a heat insulating material that forms the lower surface 70A and the inner side surface 70T of the seal member 70. As a result, even when a high-temperature gas flows inside the seal member 70, the thermal effect on each object such as the substrate P, the projection optical system PL, and the liquid LQ disposed around the seal member 70 is suppressed. Can do. As the heat insulating structure, any configuration can be adopted as long as the thermal influence on each object arranged around the seal member 70 can be suppressed.
[0050] 次に、上述の構成を有する露光装置 EXを用いて基板 Pを露光する方法について 説明する。  Next, a method for exposing the substrate P using the exposure apparatus EX having the above-described configuration will be described.
[0051] 基板 Pの露光中、制御装置 CONTは、液浸機構 1を使って、光路空間 K1に液体 L Qを所定量供給するとともに基板 P上の液体 LQを所定量回収することで、投影光学 系 PLと基板ホルダ PHに保持されている基板 Pとの間の光路空間 K1を液体 LQで満 たし、基板 P上に液体 LQの液浸領域 LRを局所的に形成する。制御装置 CONTは、 光路空間 K1を液体 LQで満たした状態で、投影光学系 PLと基板 Pとを相対的に移 動しながらマスク Mのパターン像を投影光学系 PL及び光路空間 K1の液体 LQを介 して基板 P上に投影露光する。  [0051] During exposure of the substrate P, the control device CONT uses the liquid immersion mechanism 1 to supply a predetermined amount of the liquid LQ to the optical path space K1 and collect a predetermined amount of the liquid LQ on the substrate P, thereby projecting optics. The optical path space K1 between the system PL and the substrate P held by the substrate holder PH is filled with the liquid LQ, and the liquid LQ immersion region LR is locally formed on the substrate P. The controller CONT moves the projection optical system PL and the substrate P relative to each other while the optical path space K1 is filled with the liquid LQ, and transfers the pattern image of the mask M to the projection optical system PL and the liquid LQ in the optical path space K1. Projection exposure is performed on the substrate P.
[0052] 基板 P上に液浸領域 LRを形成して 、る状態にぉ 、ては、制御装置 CONTは、ガス シール機構 3を使って、噴射口 32から所定の流速の気体を噴射するとともに、吸引 口 42から気体を吸引し、光路空間 K1に向力 気流を生成する。これにより、吸引口 4 2の内側に液体 LQを封じ込めることができるので、投影光学系 PLに対して基板 Pを 移動しつつ露光する場合でも、液体 LQの漏出が抑えられ、液浸領域 LRの巨大化を 防止することができる。なお、制御装置 CONTは、噴射口 32から気体を噴射させると き、気体供給装置 30より噴射口 32に対して供給する単位時間当たりの気体供給量 を一定にしてもよいし、変動させてもよい。そして、基板 Pに向けて噴射される気体は 、補償機構 5の気体温調装置 50によって温度調整されているため、ガスシール機構 3により生成された気流により液体 LQの一部が気化することで生じる気化熱による基 板 Pの局所的な温度低下が補償される。 [0052] In the state where the liquid immersion region LR is formed on the substrate P, the control device CONT uses the gas seal mechanism 3 to inject a gas having a predetermined flow velocity from the injection port 32. Then, a gas is sucked from the suction port 42, and a directional air current is generated in the optical path space K1. As a result, the liquid LQ can be contained inside the suction port 42, so that the substrate P is placed against the projection optical system PL. Even when exposure is performed while moving, the leakage of the liquid LQ can be suppressed, and the liquid immersion area LR can be prevented from becoming too large. When the control device CONT injects the gas from the injection port 32, the gas supply amount per unit time supplied from the gas supply device 30 to the injection port 32 may be constant or may vary. Good. Since the gas injected toward the substrate P is temperature-adjusted by the gas temperature control device 50 of the compensation mechanism 5, a part of the liquid LQ is vaporized by the air flow generated by the gas seal mechanism 3. The local temperature drop of the substrate P due to the generated heat of vaporization is compensated.
[0053] また、シール部材 70は、噴射口 32から基板 Pに噴射された気体により基板 P上で 浮上支持されているため、例えば、基板 Pの走査露光中に投影光学系 PLの像面に 対して基板 Pの表面を位置合わせするために、基板 Pが傾斜される場合でも、所定の ギャップ G2を維持したまま、基板 Pの傾斜に合わせてシール部材 70も傾斜される。  [0053] Further, since the seal member 70 is levitated and supported on the substrate P by the gas ejected from the ejection port 32 to the substrate P, for example, the seal member 70 is placed on the image plane of the projection optical system PL during the scanning exposure of the substrate P. In order to align the surface of the substrate P with respect to the substrate P, even when the substrate P is inclined, the seal member 70 is also inclined in accordance with the inclination of the substrate P while maintaining the predetermined gap G2.
[0054] 以上説明したように、液体 LQの一部が気化することで生じる気化熱によって基板 P の局所的な領域の温度が低下しょうとしても、液体 LQよりも高い温度を有する気体を 吹き付けることで、基板 Pの温度変化 (温度低下)を補償することができる。したがって 、基板 Pの温度変化 (低下)に起因する基板 Pの熱変形を防止し、基板 Pにパターン 像を転写するときのパターン重ね合わせ精度 (露光精度)の劣化を防止することがで きる。  [0054] As described above, even if the temperature of the local region of the substrate P is to be lowered by the heat of vaporization caused by the vaporization of a part of the liquid LQ, a gas having a temperature higher than that of the liquid LQ is blown. Thus, the temperature change (temperature decrease) of the substrate P can be compensated. Therefore, it is possible to prevent thermal deformation of the substrate P due to temperature change (decrease) of the substrate P, and to prevent deterioration of pattern overlay accuracy (exposure accuracy) when a pattern image is transferred to the substrate P.
[0055] なお本実施形態においては、制御装置 CONTは、気体温調装置 50及び液体温 調装置 51のそれぞれを制御し、噴射口 32から噴射される気体の温度を供給口 12か ら供給される液体 LQの温度よりも高くしているが、補償機構 5に液体温調装置 51を 設けずに、液体供給装置 10から供給される液体 LQの温度に基づいて、噴射口 32 から噴射される気体の温度を調整するようにしてもよい。例えば供給口 12から供給さ れる液体 LQの温度、あるいは光路空間 K1に満たされた液体 LQの温度を検出可能 な温度センサを設けることにより、制御装置 CONTは、その温度センサの検出結果 に基づ!/、て、噴射口 32から噴射される気体の温度が液体 LQの温度よりも高くなるよ うに、気体温調装置 50を使って、噴射口 32から噴射される気体の温度を調整するこ とがでさる。  In this embodiment, the control device CONT controls each of the gas temperature adjusting device 50 and the liquid temperature adjusting device 51, and the temperature of the gas injected from the injection port 32 is supplied from the supply port 12. The temperature of the liquid LQ is higher than the temperature of the liquid LQ, but the liquid temperature adjustment device 51 is not provided in the compensation mechanism 5 and is injected from the injection port 32 based on the temperature of the liquid LQ supplied from the liquid supply device 10. The temperature of the gas may be adjusted. For example, by providing a temperature sensor capable of detecting the temperature of the liquid LQ supplied from the supply port 12 or the temperature of the liquid LQ filled in the optical path space K1, the control device CONT is based on the detection result of the temperature sensor. Adjust the temperature of the gas injected from the injection port 32 using the gas temperature control device 50 so that the temperature of the gas injected from the injection port 32 becomes higher than the temperature of the liquid LQ. Togashi.
[0056] なお本実施形態にお!ヽては、制御装置 CONTは、液体温調装置 51を使って、供 給口 12より光路空間 Klに供給される液体 LQの温度と、基板ホルダ PHに保持され ている基板 Pの温度とがほぼ等しくなるように、液体 LQの温度を調整している力 基 板ホルダ PHに基板 Pの温度を調整可能な温調装置を設け、その温調装置を用いて 、液体 LQの温度と基板 Pの温度とがほぼ等しくなるように、基板 Pの温度を調整する ようにしてもよい。あるいは、液体温調装置 51と基板ホルダ PHに設けられた温調装 置との両方を用いて、液体 LQの温度と基板 Pの温度とがほぼ等しくなるように、液体 LQの温度と基板 Pの温度とのそれぞれを調整するようにしてもょ 、。 Note that in this embodiment, the control device CONT uses the liquid temperature control device 51 to provide The power substrate holder that adjusts the temperature of the liquid LQ so that the temperature of the liquid LQ supplied from the feed port 12 to the optical path space Kl is approximately equal to the temperature of the substrate P held by the substrate holder PH. A temperature control device capable of adjusting the temperature of the substrate P is provided in the PH, and the temperature of the substrate P is adjusted by using the temperature control device so that the temperature of the liquid LQ and the temperature of the substrate P are substantially equal. May be. Alternatively, using both the liquid temperature control device 51 and the temperature control device provided in the substrate holder PH, the temperature of the liquid LQ and the substrate P are set so that the temperature of the liquid LQ and the temperature of the substrate P are substantially equal. Let's adjust each with the temperature.
[0057] 一般に、基板 Pはコータ 'デベロツバからインラインで投入される力 基板 Pはコータ [0057] Generally, the substrate P is a force applied in-line from the coater 'developers'.
.デベロッパ側の温度に設定され、露光装置 EXの基板ローダ(ウェハローダ)に入つ た後で、温度調整用プレート (クールプレート等)上に一時的に設置され、基板 P全体 の温度が基板ホルダ PHの温度と同じになるように設定される。このように、コータ 'デ ベロツバから基板 Pが送られてくる場合、露光装置 EX側で設定される基板ホルダ PH の温度、液浸用の液体温度、ガスシールの気体温度等の諸条件に応じて、コータ · デベロツバ側で基板 Pを適当な温度に調整しておくような待機場所 (搬出ポート部等) を設けておいてもよい。  After the temperature is set on the developer side and enters the substrate loader (wafer loader) of the exposure tool EX, it is temporarily placed on the temperature adjustment plate (cool plate, etc.), and the temperature of the entire substrate P is changed to the substrate holder. It is set to be the same as the PH temperature. In this way, when the substrate P is sent from the coater / developer, depending on various conditions such as the temperature of the substrate holder PH, the liquid temperature for immersion, and the gas temperature of the gas seal set on the exposure apparatus EX side. In addition, a standby place (such as an unloading port) where the substrate P is adjusted to an appropriate temperature on the coater / developer side may be provided.
[0058] <第 2実施形態 > <Second Embodiment>
次に、第 2実施形態について図 5を参照しながら説明する。本実施形態の特徴的な 部分は、補償機構 5が、光路空間 K1に対して噴射口 32の外側に、気体を吹き出す 吹き出し口 36を備えている点にある。以下の説明において、上述の実施形態と同一 又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略 する。  Next, a second embodiment will be described with reference to FIG. The characteristic part of this embodiment is that the compensation mechanism 5 includes a blowout port 36 for blowing out gas to the outside of the injection port 32 with respect to the optical path space K1. In the following description, components that are the same as or equivalent to those in the above-described embodiment are denoted by the same reference numerals, and description thereof is simplified or omitted.
[0059] 図 5において、シール部材 70の下面 70Aには、上述の実施形態同様、液体 LQを 供給する供給口 12、及び液体 LQを回収する回収口 22のそれぞれが設けられてい る。なお図 5では省略されているが、上述の実施形態同様、供給口 12は供給流路及 び供給管 13を介して液体供給装置 10と接続されており、回収口 22は回収流路及び 回収管 23を介して液体回収装置 20と接続されて 、る。  In FIG. 5, the lower surface 70A of the seal member 70 is provided with a supply port 12 for supplying the liquid LQ and a recovery port 22 for recovering the liquid LQ, as in the above-described embodiment. Although not shown in FIG. 5, the supply port 12 is connected to the liquid supply apparatus 10 via the supply flow path and the supply pipe 13 as in the above-described embodiment, and the recovery port 22 is connected to the recovery flow path and the recovery flow. It is connected to the liquid recovery device 20 via the pipe 23.
[0060] シール部材 70の下面 70Aにおいて、光路空間 K1に対して回収口 22の外側には 、気体を吸引する吸引口 42が設けられており、光路空間 K1に対して吸引口 42の外 側には、気体を噴射する噴射口 32が設けられている。上述の実施形態同様、吸引 口 42は吸引流路 44及び吸弓 |管 43を介して気体吸弓 |装置 40と接続されており、噴 射口 32は供給流路 34及び供給管 33を介して気体供給装置 30と接続されている。 ここで、本実施形態においては、供給管 33の途中に設けられた気体温調装置 50は 、噴射口 32から噴射される気体の温度と、光路空間 K1に満たされた液体 LQの温度 (基板 Pの温度)とがほぼ等しくなるように、気体の温度を調整する。 [0060] On the lower surface 70A of the seal member 70, a suction port 42 for sucking gas is provided outside the recovery port 22 with respect to the optical path space K1, and outside the suction port 42 with respect to the optical path space K1. On the side, an injection port 32 for injecting gas is provided. As in the above-described embodiment, the suction port 42 is connected to the gas arch | device 40 via the suction channel 44 and the suction tube | pipe 43, and the injection port 32 is connected to the supply channel 34 and the supply tube 33. Connected to the gas supply device 30. Here, in the present embodiment, the gas temperature adjusting device 50 provided in the middle of the supply pipe 33 includes the temperature of the gas injected from the injection port 32 and the temperature of the liquid LQ filled in the optical path space K1 (substrate). The temperature of the gas is adjusted so that the temperature of P is substantially equal.
[0061] シール部材 70の下面 70Aにおいて、光路空間 K1に対して噴射口 32の外側には 、気体を吹き出す吹き出し口 36が設けられている。また、光路空間 K1に対して吹き 出し口 36の外側には、気体を吸引する第 2吸引口 46が設けられている。吹き出し口 36は、シール部材 70の下面 70Aにおいて、光路空間 K1を囲むように設けられた環 状の溝部内に複数配置されており、第 2吸引口 46も、シール部材 70の下面 70Aに ぉ 、て、光路空間 K1を囲むように設けられた環状の溝部内に複数配置されて!、る。 そして、吹き出し口 36の気体吹き出し動作と第 2吸引口 46の気体吸引動作との協働 作用によって、吹き出し口 36と第 2吸引口 46との間における基板 P上 (基板 Pの表面 とシール部材 70の下面 70Aとの間)には、吹き出し口 36から光路空間 K1に対して 外側に向力う気流が生成される。  [0061] On the lower surface 70A of the seal member 70, a blowout port 36 for blowing out gas is provided outside the injection port 32 with respect to the optical path space K1. In addition, a second suction port 46 for sucking gas is provided outside the blow-out port 36 with respect to the optical path space K1. A plurality of outlets 36 are arranged in an annular groove provided so as to surround the optical path space K1 on the lower surface 70A of the seal member 70, and the second suction port 46 is also formed on the lower surface 70A of the seal member 70. A plurality of the grooves are arranged in an annular groove provided so as to surround the optical path space K1. Then, by the cooperative action of the gas blowing operation of the blowing port 36 and the gas sucking operation of the second suction port 46, the substrate P between the blowing port 36 and the second suction port 46 (the surface of the substrate P and the sealing member) An airflow that is directed outward from the air outlet 36 with respect to the optical path space K1 is generated between the lower surface 70A of 70).
[0062] 第 2吸引口 46は、シール部材 70の内部に形成された第 2吸引流路 47及び第 2吸 引管 48を介して第 2気体吸引装置 49と接続されている。 B き出し口 36は、シール部 材 70の内部に形成された第 2供給流路 37及び第 2供給管 38を介して第 2気体供給 装置 39と接続されている。そして、第 2供給管 38の途中には、第 2気体供給装置 39 より送出され、吹き出し口 36から吹き出される気体の温度を調整する第 2気体温調装 置 52が設けられている。  The second suction port 46 is connected to the second gas suction device 49 via a second suction channel 47 and a second suction pipe 48 formed inside the seal member 70. The B outlet 36 is connected to the second gas supply device 39 via a second supply channel 37 and a second supply pipe 38 formed inside the seal member 70. In the middle of the second supply pipe 38, a second gas temperature adjusting device 52 for adjusting the temperature of the gas sent from the second gas supply device 39 and blown out from the outlet 36 is provided.
[0063] 第 2気体温調装置 52は、ガスシール機構 3により生成された気流に起因する基板 P の温度変化を補償するために、吹き出し口 36から吹き出される気体の温度を液体 L Qの温度よりも高くする。吹き出し口 36から吹き出される気体の温度を液体 LQの温 度よりも高くすることにより、ガスシール機構 3により生成された気流に起因する基板 P の温度変化、具体的には液体 LQの一部が気化することで生じる気化熱による基板 P の局所的な温度低下を補償することができる。 [0064] 本実施形態においては、吹き出し口 36、第 2気体温調装置 52、第 2気体供給装置 39、第 2吸引口 46、第 2気体吸引装置 49が、ガスシール機構 3により生成された気 流に起因する基板 Pの温度変化を補償する補償機構 5の少なくとも一部を構成して いる。即ち、本実施形態では補償機構 5の少なくとも一部がガスシール機構 3とは別 設されている。 [0063] The second gas temperature control device 52 adjusts the temperature of the gas blown from the blowing port 36 to the temperature of the liquid LQ in order to compensate for the temperature change of the substrate P caused by the air flow generated by the gas seal mechanism 3. Higher than. By making the temperature of the gas blown out from the air outlet 36 higher than the temperature of the liquid LQ, the temperature change of the substrate P caused by the air flow generated by the gas seal mechanism 3, specifically, a part of the liquid LQ It is possible to compensate for the local temperature drop of the substrate P due to the heat of vaporization caused by the vaporization of. In the present embodiment, the air outlet 36, the second gas temperature control device 52, the second gas supply device 39, the second suction port 46, and the second gas suction device 49 are generated by the gas seal mechanism 3. It constitutes at least a part of the compensation mechanism 5 that compensates for the temperature change of the substrate P caused by the air flow. That is, in this embodiment, at least a part of the compensation mechanism 5 is provided separately from the gas seal mechanism 3.
[0065] そして、本実施形態にぉ 、ても、ガスシール機構 3の噴射口 32より噴射した気体に よって、液体 LQの漏出を防止するとともに、基板 P上でシール部材 70を浮上支持さ せている。そして、光路空間 K1に対して噴射口 32の外側に設けられた補償機構 5の 吹き出し口 36より吹き出した気体によって、基板 Pの温度変化を補償している。すな わち、ガスシール機構 3は、液体 LQをシールするとともに、基板 P上でシール部材 70 を浮上支持させるための最適な流速で噴射口 32から気体を噴射することができる。 また、補償機構 5は、ガスシール機構 3により生成された気流に起因する基板 Pの温 度変化を補償するための最適な温度及び流速で、基板 Pに気体を吹き付けることが できる。この場合、補償機構 5は、吹き出し口 36から吹き出した気体を基板 P上での シール部材 70の浮上支持に寄与させる必要は無いため、基板 Pの温度変化を補償 するための最適な温度及び流速で吹き出し口 36から気体を吹き出すことができる。  In this embodiment, the liquid LQ is prevented from leaking by the gas injected from the injection port 32 of the gas seal mechanism 3 and the seal member 70 is supported to float on the substrate P. ing. The temperature change of the substrate P is compensated by the gas blown out from the blowout port 36 of the compensation mechanism 5 provided outside the injection port 32 with respect to the optical path space K1. In other words, the gas seal mechanism 3 can seal the liquid LQ and can inject gas from the injection port 32 at an optimum flow rate for floatingly supporting the seal member 70 on the substrate P. Further, the compensation mechanism 5 can blow gas onto the substrate P at an optimum temperature and flow rate for compensating for the temperature change of the substrate P caused by the air flow generated by the gas seal mechanism 3. In this case, the compensation mechanism 5 does not need to contribute the gas blown out from the blowout port 36 to the floating support of the seal member 70 on the substrate P. Therefore, the optimum temperature and flow rate for compensating for the temperature change of the substrate P The gas can be blown out from the air outlet 36.
[0066] また、本実施形態においては、シール部材 70の第 2供給流路 37及び第 2吸引流 路 47のそれぞれに、液体 LQの温度や基板 Pの温度よりも高 、温度の気体が流れる ため、この第 2供給流路 37及び第 2吸引流路 47を囲むように、断熱材 71が設けられ ている。これにより、基板 Pや液体 LQ等の温度変化 (温度上昇)を抑制することがで きる。  In the present embodiment, a gas having a temperature higher than the temperature of the liquid LQ and the temperature of the substrate P flows through each of the second supply channel 37 and the second suction channel 47 of the seal member 70. Therefore, a heat insulating material 71 is provided so as to surround the second supply channel 37 and the second suction channel 47. As a result, temperature changes (temperature rise) of the substrate P and the liquid LQ can be suppressed.
[0067] なお、本実施形態にお!、て、基板 Pの温度は、第 2気体温調装置 52によって温度 調整された吹き出し口 36から吹き出される気体によって調整可能なので、噴射口 32 から噴射する気体の温度を調整する気体温調装置 50を省略することも可能である。  In this embodiment, the temperature of the substrate P can be adjusted by the gas blown out from the blowout port 36 whose temperature has been adjusted by the second gas temperature adjusting device 52, so that the jetting from the jetting port 32 is possible. It is also possible to omit the gas temperature adjusting device 50 for adjusting the temperature of the gas to be performed.
[0068] <第 3実施形態 >  [0068] <Third embodiment>
次に、第 3実施形態について図 6を参照しながら説明する。本実施形態では補償機 構 5及び断熱構造 (断熱材) 71の構成が上述の第 1実施形態(図 4)と異なる。以下 の説明では、上述の第 1実施形態と同一又は同等の構成部分については同一の符 号を付してその説明を省略する。本実施形態の補償機構 5は、基板 Pに向カゝつて熱 を放射することによって、ガスシール機構 3により生成された気流に起因する基板 Pの 温度変化を補償する放射部 53を有している。本実施形態においては、放射部 53は 、シール部材 70のうち基板 Pと対向する下面 70Aの一部に複数設けられている。より 具体的には、放射部 53は、シール部材 70の下面 70Aにおいて、光路空間 K1に対 してガスシール機構 3の噴射口 32の外側に設けられている。放射部 53は、例えば遠 赤外線セラミックヒータ等によって構成されて 、る。基板 Pの表面と対向する位置に放 射部 53を設けることにより、放射部 53から放射された熱によって基板 Pを暖めること ができるため、ガスシール機構 3により生成された気流に起因する基板 Pの温度変化 (温度低下)を抑制することができる。また、図 6に示すように、シール部材 70の一部 として、放射部 53を囲むように断熱材 71を設けることにより、放射部 53に対向する基 板 Pの局所的な領域のみを暖め、他の領域や、液体 LQ、あるいは最終光学素子 LS 1の温度上昇を抑えることができる。 Next, a third embodiment will be described with reference to FIG. In the present embodiment, the structures of the compensation mechanism 5 and the heat insulating structure (heat insulating material) 71 are different from those of the first embodiment (FIG. 4). In the following description, the same reference numerals are used for the same or equivalent components as in the first embodiment. A description will be omitted. The compensation mechanism 5 of the present embodiment includes a radiating unit 53 that compensates for the temperature change of the substrate P caused by the air flow generated by the gas seal mechanism 3 by radiating heat toward the substrate P. Yes. In the present embodiment, a plurality of the radiating portions 53 are provided on a part of the lower surface 70A of the seal member 70 facing the substrate P. More specifically, the radiating portion 53 is provided outside the ejection port 32 of the gas seal mechanism 3 with respect to the optical path space K1 on the lower surface 70A of the seal member 70. The radiating unit 53 is constituted by, for example, a far infrared ceramic heater. By providing the radiating portion 53 at a position facing the surface of the substrate P, the substrate P can be warmed by the heat radiated from the radiating portion 53. Therefore, the substrate P caused by the air flow generated by the gas seal mechanism 3 is used. Temperature change (temperature decrease) can be suppressed. Further, as shown in FIG. 6, by providing a heat insulating material 71 as a part of the sealing member 70 so as to surround the radiating portion 53, only a local region of the substrate P facing the radiating portion 53 is heated. Temperature rise in other regions, liquid LQ, or final optical element LS 1 can be suppressed.
[0069] なお、本実施形態にお!、て、放射部 53から放射される熱と、気体温調装置 50で温 度調整されて噴射口 32より噴射される気体とを併用して、ガスシール機構 3により生 成された気流に起因する基板 Pの温度変化を補償してもよいし、放射部 53から放射 される熱のみで基板 Pの温度変化を補償するようにしてもよい。あるいは、第 2実施形 態で説明したような吹き出し口 36から吹き出される気体と放射部 53から放射される熱 との両方を用いて、基板 Pの温度変化を補償するようにしてもよい。また、本実施形態 では放射部 53を遠赤外線セラミックヒータで構成するものとした力 これに限らず、例 えばペルチェ素子など他の熱電素子、ある!/、は赤外光などの光照射装置などで構 成してちょい。  [0069] It should be noted that in this embodiment, the heat radiated from the radiating unit 53 and the gas temperature-adjusted by the gas temperature control device 50 and injected from the injection port 32 are used in combination. The temperature change of the substrate P caused by the air flow generated by the sealing mechanism 3 may be compensated, or the temperature change of the substrate P may be compensated only by the heat radiated from the radiating unit 53. Alternatively, the temperature change of the substrate P may be compensated by using both the gas blown from the blow-out port 36 and the heat radiated from the radiating unit 53 as described in the second embodiment. Further, in the present embodiment, the force that the radiating portion 53 is configured by a far infrared ceramic heater is not limited to this, for example, other thermoelectric elements such as a Peltier element, there is! /, A light irradiation device such as infrared light, etc. Make up with.
[0070] <第 4実施形態 >  [0070] <Fourth embodiment>
第 4実施形態について図 7を参照しながら説明する。本実施形態では補償機構 5の 構成が上述の各実施形態と異なる。以下の説明では、上述の実施形態と同一又は 同等の構成部分については同一の符号を付してその説明を省略する。本実施形態 の補償機構 5は、基板 Pを保持する基板ホルダ PHに設けられ、基板 Pの温度を調整 するホルダ温調装置 54を備えている。ホルダ温調装置 54は、熱を放射する放射部 を含んで構成されており、基板 P上の任意の領域を液体 LQの温度よりも高くすること ができる。ホルダ温調装置を構成する放射部 54は、上述の第 3実施形態同様、例え ば遠赤外線セラミックヒータ等によって構成される。 A fourth embodiment will be described with reference to FIG. In the present embodiment, the configuration of the compensation mechanism 5 is different from those of the above-described embodiments. In the following description, components that are the same as or equivalent to those in the above-described embodiment are given the same reference numerals, and descriptions thereof are omitted. The compensation mechanism 5 of this embodiment includes a holder temperature adjusting device 54 that is provided in a substrate holder PH that holds the substrate P and adjusts the temperature of the substrate P. The holder temperature controller 54 is a radiating part that radiates heat. The arbitrary region on the substrate P can be made higher than the temperature of the liquid LQ. The radiating section 54 constituting the holder temperature control device is constituted by, for example, a far-infrared ceramic heater or the like as in the third embodiment.
[0071] 基板ホルダ PHは、基板ホルダ PHの基材 99上に設けられ、基板 Pの裏面を支持す る複数のピン状部材 97と、そのピン状部材 97を囲むように設けられた周壁部(リム部 ) 98とを備えており、基板 Pの裏面と基材 99と周壁部 98とで囲まれた空間を負圧に すること〖こよって、基板 Pを吸着保持する。すなわち、本実施形態の基板ホルダ PH は所謂ピンチャック機構を有して 、る。  The substrate holder PH is provided on the base material 99 of the substrate holder PH, and a plurality of pin-like members 97 that support the back surface of the substrate P, and a peripheral wall portion provided so as to surround the pin-like member 97 (Rim portion) 98 is provided, and the substrate P is adsorbed and held by applying a negative pressure to the space surrounded by the back surface of the substrate P, the base material 99, and the peripheral wall portion 98. That is, the substrate holder PH of this embodiment has a so-called pin chuck mechanism.
[0072] 放射部 54は、基板ホルダ PHのうち基板 Pの裏面と対向する位置に設けられている 。具体的には、放射部 54は、基板ホルダ PHの基材 99に複数埋設されている。放射 部 54は、基板 Pの裏面に向力 て熱を放射することによって、ガスシール機構 3によ り生成された気流に起因する基板 Pの温度変化を補償する。基板 Pの裏面と対向す る位置に放射部 54を設けることにより、放射部 54から放射された熱によって基板 Pを 暖めることができるため、ガスシール機構 3により生成された気流に起因する基板 Pの 温度変化 (温度低下)を抑制することができる。  The radiation portion 54 is provided at a position facing the back surface of the substrate P in the substrate holder PH. Specifically, a plurality of radiating portions 54 are embedded in the base material 99 of the substrate holder PH. The radiating unit 54 radiates heat toward the back surface of the substrate P to compensate for the temperature change of the substrate P caused by the air flow generated by the gas seal mechanism 3. By providing the radiating portion 54 at a position facing the back surface of the substrate P, the substrate P can be warmed by the heat radiated from the radiating portion 54, and thus the substrate P caused by the air flow generated by the gas seal mechanism 3 is used. Temperature change (temperature decrease) can be suppressed.
[0073] 本実施形態においては、基板ホルダ PHは、ピン状部材 97によって基板 Pの裏面 を支持しており、基板 Pと基板ホルダ PH (ピン状部材 97)との接触面積が小さいため 、基板ホルダ PH自体の温度を上昇させても、基板 Pを暖めることは困難である。そこ で、基板 Pの裏面と対向する位置に放射部 54を設け、基板 Pの裏面に向かって熱を 放射することで、基板 Pの温度調整を円滑に行うことができる。  In the present embodiment, the substrate holder PH supports the back surface of the substrate P by the pin-shaped member 97, and the contact area between the substrate P and the substrate holder PH (pin-shaped member 97) is small. Even if the temperature of the holder PH itself is increased, it is difficult to warm the substrate P. Therefore, by providing the radiation portion 54 at a position facing the back surface of the substrate P and radiating heat toward the back surface of the substrate P, the temperature of the substrate P can be adjusted smoothly.
[0074] また、図 7に示すように、基板ステージ PSTの上面 96近傍に放射部 54を埋設して も良い。これにより、例えば基板ステージ PSTの上面 96に液浸領域 LRを形成して所 定の処理 (基板 Pの外縁付近のショット領域の露光など)を行う場合であっても、ガス シール機構 3により生成された気流に起因する基板ステージ PSTの温度変化を補償 することができ、その所定の処理を円滑に行うことができる。  Further, as shown in FIG. 7, a radiating portion 54 may be embedded in the vicinity of the upper surface 96 of the substrate stage PST. Thus, for example, even when a predetermined process (such as exposure of a shot area near the outer edge of the substrate P) is performed by forming the immersion region LR on the upper surface 96 of the substrate stage PST, it is generated by the gas seal mechanism 3. The temperature change of the substrate stage PST caused by the generated air current can be compensated, and the predetermined processing can be performed smoothly.
[0075] ところで、第 4実施形態にぉ ヽては、基板ホルダ PHに設けられた各放射部 54と液 浸領域 LRとの相対位置が変動する。すなわち、本実施形態の露光装置 EXは、光路 空間 K1に対して基板 Pを保持した基板ホルダ PH (基板ステージ PST)を相対的に 移動しつつ、基板 Pに露光光 ELを照射する構成であるため、光路空間 K1に満たさ れた液体 LQ、すなわち液浸領域 LRと基板ステージ PST (基板ホルダ PH)に埋設さ れた複数の放射部 54のそれぞれとの相対位置が変動する。 By the way, in the fourth embodiment, the relative position of each radiation portion 54 provided in the substrate holder PH and the liquid immersion region LR varies. That is, the exposure apparatus EX of the present embodiment relatively moves the substrate holder PH (substrate stage PST) holding the substrate P with respect to the optical path space K1. Since it is configured to irradiate the substrate P with the exposure light EL while moving, the liquid LQ filled in the optical path space K1, that is, the plurality of radiations embedded in the immersion region LR and the substrate stage PST (substrate holder PH) The relative position with each of the parts 54 varies.
[0076] 図 8は投影光学系 PLと基板 Pとを相対的に移動しつつ露光するときの投影光学系 PL及び液浸領域 LRと基板 Pとの位置関係を模式的に示した図である。図 8におい て、基板 P上には、マスク Mのパターンが露光される複数のショット領域 S1〜S21が マトリクス状に設定されている。制御装置 CONTは、図 8中、矢印 ylで示すように、投 影光学系 PLの光軸 AX (投影領域 AR)と基板 Pとを相対的に移動しつつ、各ショット 領域 S1〜S21のそれぞれを順次露光する。このように、制御装置 CONTは、投影光 学系 PLに対して基板 P (基板ホルダ PH)を、各ショット領域の走査露光時には X軸方 向に、ショット領域間のステッピング時には Y軸方向、または X軸及び Y軸方向の両方 に移動しつつ基板 Pの露光動作を実行する。  FIG. 8 is a diagram schematically showing the positional relationship between the projection optical system PL and the liquid immersion region LR and the substrate P when exposure is performed while relatively moving the projection optical system PL and the substrate P. . In FIG. 8, on the substrate P, a plurality of shot areas S1 to S21 where the pattern of the mask M is exposed are set in a matrix. As shown by an arrow yl in FIG. 8, the control device CONT moves each of the shot areas S1 to S21 while relatively moving the optical axis AX (projection area AR) of the projection optical system PL and the substrate P. Are sequentially exposed. In this way, the control device CONT moves the substrate P (substrate holder PH) relative to the projection optical system PL in the X-axis direction during scanning exposure of each shot area, and in the Y-axis direction during stepping between shot areas, or The substrate P is exposed while moving in both the X-axis and Y-axis directions.
[0077] 基板 Pの移動に伴って、基板 P上の局所領域と液浸領域 LRの液体 LQとが接触す る力 図 8に示すように、投影領域 ARに対して液浸領域 LRは大きいので、例えば第 1ショット領域 S1に露光光 ELを照射して 、るときにぉ 、ても、液浸領域 LRの液体 LQ は、基板 P上の未だ露光されていない第 2、第 6、第 7、第 8ショット領域 S2、 S6、 S7、 S8等に接触する。すると、基板 P上の第 2、第 6、第 7、第 8ショット領域 S2、 S6、 S7、 S8等が、液体 LQの気化熱に起因して温度変化 (温度低下)する可能性がある。露 光される前の第 2、第 6、第 7、第 8ショット領域 S2、 S6、 S7、 S8等が温度低下すると 、その第 2、第 6、第 7、第 8ショット領域 S2、 S6、 S7、 S8等を露光するときのパターン 重ね合わせ精度が劣化する可能性がある。  [0077] The force with which the local region on the substrate P and the liquid LQ in the immersion region LR come into contact with the movement of the substrate P. As shown in FIG. 8, the immersion region LR is larger than the projection region AR. Therefore, for example, when the exposure light EL is irradiated to the first shot region S1, the liquid LQ in the immersion region LR is not exposed to the second, sixth, and second substrates on the substrate P. 7. Touch the 8th shot area S2, S6, S7, S8, etc. Then, the second, sixth, seventh, eighth shot regions S2, S6, S7, S8, etc. on the substrate P may change in temperature (temperature decrease) due to the heat of vaporization of the liquid LQ. When the temperature of the second, sixth, seventh, eighth shot regions S2, S6, S7, S8, etc. before exposure is lowered, the second, sixth, seventh, eighth shot regions S2, S6, Pattern overlay accuracy when exposing S7, S8, etc. may deteriorate.
[0078] そこで、基板ホルダ PHに、基板 P上に設定された複数のショット領域に応じた複数 の放射部 (温調部) 54を設けておき、制御装置 CONTは、基板 Pの移動状態 (位置、 移動速度、移動方向、移動軌跡等を含む)と、その移動状態に応じた光路空間 K1に 対する基板 P上の局所領域 (未露光領域であって液体 LQと接触した領域)との関係 に基づいて、複数の放射部 54のそれぞれを制御する。すなわち、制御装置 CONT は、第 1ショット領域 S1を液浸露光しているとき、第 1ショット領域 S1に対応して設けら れた放射部 54から基板 Pの裏面に向カゝつて熱を放射するとともに、液浸領域 LRの液 体 LQが接触する第 2、第 6、第 7、第 8ショット領域 S2、 S6、 S7、 S8のそれぞれに対 応して設けられた放射部 54のそれぞれから基板 Pの裏面に向かって熱を放射する。 こうすることにより、基板 P上の未だ露光されていない第 2、第 6、第 7、第 8ショット領 域 S2、 S6、 S7、 S8に液体 LQが接触しても、これら各第 2、第 6、第 7、第 8ショット領 域 S2、 S6、 S7、 S8の液体 LQの気化熱に起因する温度低下を抑制した状態で基板 Pを露光することができる。また、液体 LQが接触していないショット領域 (例えばショッ ト領域 S19、 S20、 S21等)に対応して設けられた放射部 54からは、基板 Pの裏面に 向力つて熱を放射しないようにすることで、基板 P (ショット領域 S 19、 S20、 S21等)の 不要な温度上昇を防止することができる。ここで、基板 Pの移動状態と、その移動状 態に応じた光路空間 K1に対する基板 P上の局所領域の位置との関係は、露光シー ケンス等によって予め定められており、制御装置 CONTに接続された記憶装置 MR Yに予め記憶させておくことができる。制御装置 CONTは、記憶装置 MRYに記憶さ れて 、る記憶情報と、基板ステージ PSTの位置情報をモニタするレーザ干渉計 94の 出力とに基づいて、各ショット領域 S1〜S21のそれぞれに対応して設けられた複数 の放射部 54のそれぞれを制御することができる。 Therefore, the substrate holder PH is provided with a plurality of radiation units (temperature control units) 54 corresponding to a plurality of shot regions set on the substrate P, and the control device CONT moves the substrate P in a moving state ( Position, moving speed, moving direction, moving trajectory, etc.) and the local area on the substrate P (area that is unexposed and in contact with the liquid LQ) with respect to the optical path space K1 corresponding to the moving state Based on the above, each of the plurality of radiating portions 54 is controlled. That is, when the first shot region S1 is subjected to immersion exposure, the control device CONT radiates heat from the radiation part 54 provided corresponding to the first shot region S1 toward the back surface of the substrate P. In addition, the immersion area LR liquid Heat is applied from each of the radiating portions 54 corresponding to each of the second, sixth, seventh, and eighth shot regions S2, S6, S7, and S8 to which the body LQ comes into contact toward the back surface of the substrate P. Radiate. In this way, even if the liquid LQ comes into contact with the second, sixth, seventh, and eighth shot areas S2, S6, S7, and S8 that have not been exposed on the substrate P, the second and second The substrate P can be exposed in a state in which the temperature drop due to the heat of vaporization of the liquid LQ in the sixth, seventh, and eighth shot regions S2, S6, S7, and S8 is suppressed. Also, do not radiate heat to the back surface of the substrate P from the radiating section 54 provided corresponding to the shot area where the liquid LQ is not in contact (for example, the shot areas S19, S20, S21, etc.). By doing so, unnecessary temperature rise of the substrate P (shot regions S19, S20, S21, etc.) can be prevented. Here, the relationship between the movement state of the substrate P and the position of the local region on the substrate P with respect to the optical path space K1 corresponding to the movement state is determined in advance by an exposure sequence or the like, and is connected to the control device CONT. The stored storage device MRY can be stored in advance. The control device CONT corresponds to each of the shot areas S1 to S21 based on the stored information stored in the storage device MRY and the output of the laser interferometer 94 that monitors the position information of the substrate stage PST. Each of the plurality of radiating portions 54 provided can be controlled.
[0079] なおここでは、複数の放射部 54はショット領域 S1〜S21のそれぞれに対応して設 けられているが、必ずしもショット領域 S1〜S21に対応して設ける必要はなぐ基板 P 上に設定された任意の分割領域に応じて放射部 54を設けるようにしてもよい。  [0079] Here, the plurality of radiating portions 54 are provided corresponding to each of the shot areas S1 to S21, but are not necessarily provided corresponding to the shot areas S1 to S21. The radiating portion 54 may be provided in accordance with any divided area.
[0080] なお本実施形態にお!ヽて、放射部 54から放射される熱と、気体温調装置 50で温 度調整された噴射口 32より噴射される気体とを併用して、ガスシール機構 3により生 成された気流に起因する基板 Pの温度変化を補償してもよいし、放射部 54から放射 される熱のみで基板 Pの温度変化を補償するようにしてもよい。あるいは、第 2実施形 態で説明したような吹き出し口 36から吹き出される気体、または第 3実施形態で説明 したようなシール部材 70に設けられた放射部 53から放射される熱を併用して、基板 Pの温度変化を補償するようにしてもよい。  [0080] Note that, in the present embodiment, a gas seal is formed by using in combination the heat radiated from the radiating unit 54 and the gas injected from the injection port 32 whose temperature is adjusted by the gas temperature adjusting device 50. The temperature change of the substrate P caused by the air flow generated by the mechanism 3 may be compensated, or the temperature change of the substrate P may be compensated only by the heat radiated from the radiating unit 54. Alternatively, the gas blown out from the outlet 36 as described in the second embodiment or the heat radiated from the radiating portion 53 provided in the seal member 70 as described in the third embodiment is used in combination. The temperature change of the substrate P may be compensated.
[0081] また、複数の放射部 54のうち、加熱すべき放射部 54の位置や数、加熱のタイミング や時間などの制御は、基板 Pに熱が伝わるまでの時間遅れを考慮して、フィードフォ ワード方式にしてもよい。なお、本実施形態では放射部 54を遠赤外線セラミックヒー タで構成するものとした力 これに限らず、例えばペルチェ素子など他の熱電素子、 あるいは温度制御される気体を噴出する装置などで構成してもよい。また、本実施形 態では基板ホルダ PHが基板ステージ PSTの一部と一体に形成される(即ち、基材 9 9が基板ステージ PSTの一部である)ものとした力 基板ホルダ PHと基板ステージ P STとを別々に構成してもよい。 [0081] In addition, among the plurality of radiating portions 54, the position and number of the radiating portions 54 to be heated, the timing and time of heating, and the like are controlled in consideration of the time delay until the heat is transferred to the substrate P. A forward method may be used. In this embodiment, the radiating portion 54 is connected to the far infrared ceramic heater. For example, another thermoelectric element such as a Peltier element, or a device for ejecting a temperature-controlled gas may be used. In this embodiment, the force that the substrate holder PH is formed integrally with a part of the substrate stage PST (that is, the base material 99 is a part of the substrate stage PST). The PST may be configured separately.
[0082] なお、上述の第 1〜第 4実施形態において、例えば図 9に示すような、温度センサ 8 0が設けられたダミー基板 DPに対してテスト露光を行い、そのときの温度を温度セン サ 80で計測し、温度センサ 80の計測結果に基づいて、実際に基板 Pの露光を行うと きに、噴射口 32から噴射する気体の温度、吹き出し口 36から吹き出す気体の温度、 及び放射部 53、 54から放射する熱量などを最適化することができる。  In the above first to fourth embodiments, for example, test exposure is performed on a dummy substrate DP provided with a temperature sensor 80 as shown in FIG. 9, and the temperature at that time is set as a temperature sensor. Measured by the sensor 80, and based on the measurement result of the temperature sensor 80, when actually exposing the substrate P, the temperature of the gas ejected from the ejection port 32, the temperature of the gas blown from the ejection port 36, and the radiation part The amount of heat radiated from 53 and 54 can be optimized.
[0083] 図 9において、ダミー基板 DPは、デバイス製造用の基板 Pと略同じ大きさ及び形状 を有しており、基板ホルダ PHはダミー基板 DPを保持可能である。ダミー基板 DPの 表面には複数の温度センサ 80が設けられている。温度センサ 80は、ダミー基板 DP の表面に設けられた複数のセンサ素子 81を有している。センサ素子 81は、例えば熱 電対により構成されている。温度センサ 80のセンサ素子 81の計測部(プローブ)は、 ダミー基板 DPの表面に露出している。また、ダミー基板 DP上には、温度センサ 80の 温度計測信号を記憶する記憶素子 85が設けられて 、る。記憶素子 85とセンサ素子 81 (温度センサ 80)とは信号伝達線 (ケーブル) 83を介して接続されており、センサ 素子 81 (温度センサ 80)の温度計測信号は、信号伝達線 (ケーブル) 83を介して記 憶素子 85に送られる。制御装置 CONTは、記憶素子 85に記憶されている温度計測 結果を抽出する(読み出す)ことができる。  In FIG. 9, the dummy substrate DP has substantially the same size and shape as the device manufacturing substrate P, and the substrate holder PH can hold the dummy substrate DP. A plurality of temperature sensors 80 are provided on the surface of the dummy substrate DP. The temperature sensor 80 has a plurality of sensor elements 81 provided on the surface of the dummy substrate DP. The sensor element 81 is composed of, for example, a thermocouple. The measurement part (probe) of the sensor element 81 of the temperature sensor 80 is exposed on the surface of the dummy substrate DP. On the dummy substrate DP, a storage element 85 for storing the temperature measurement signal of the temperature sensor 80 is provided. The storage element 85 and the sensor element 81 (temperature sensor 80) are connected via a signal transmission line (cable) 83. The temperature measurement signal of the sensor element 81 (temperature sensor 80) is connected to the signal transmission line (cable) 83. Is sent to the storage element 85. The control device CONT can extract (read out) the temperature measurement result stored in the storage element 85.
[0084] なおダミー基板 DPとして、半導体ウェハを用意し、その上に MEMS等の形成技術 を使ってセンサ素子を直接作り込んでもよぐこの場合、センサーアンプ、通信回路 等をそのウェハ上に作り込むことができる。  [0084] A semiconductor wafer may be prepared as the dummy substrate DP, and a sensor element may be directly formed thereon using a forming technique such as MEMS. In this case, a sensor amplifier, a communication circuit, etc. are formed on the wafer. Can be included.
[0085] 図 9のダミー基板 DPを基板ホルダ PHで保持し、ダミー基板 DPと投影光学系 PLと の間に液体 LQを満たした状態で、ガスシール機構 3によりダミー基板 DP上に気流を 生成しつつ、例えば基板 Pの露光動作時と全く同様に、投影光学系 PLの像面側で 基板ステージ PSTを移動することにより、制御装置 CONTは、ガスシール機構 3によ り生成された気流に起因するダミー基板 DPの温度変化を求めることができる。そして 、制御装置 CONTは、ダミー基板 DP上の温度センサ 80の計測結果に基づいて、液 体 LQの温度とダミー基板 DPの温度とがほぼ等しくなるように、例えば噴射口 32から 噴射される気体の温度を気体温調装置 50を使って調整し、そのときの調整量 (補正 量)を記憶する。そして、制御装置 CONTは、基板 Pを露光するときに、記憶した調 整量に基づ 1ヽて、噴射口 32から噴射される気体の温度を気体温調装置 50を使って 調整することにより、ガスシール機構 3により生成された気流に起因する基板 Pの温度 変化を補償しつつ、基板 Pを露光することができる。同様に、制御装置 CONTは、温 度センサ 80の計測結果に基づ 、て、液体 LQの温度とダミー基板 DPの温度とがほ ぼ等しくなるように、吹き出し口 36から吹き出される気体の温度を第 2気体温調装置 52を使って調整し、そのときの調整量を記憶し、基板 Pを露光するときには、記憶し た調整量に基づいて、吹き出し口 36から吹き出される気体の温度を第 2気体温調装 置 52を使って調整することにより、ガスシール機構 3により生成された気流に起因す る基板 Pの温度変化を補償しつつ、基板 Pを露光することができる。同様に、制御装 置 CONTは、温度センサ 80の計測結果に基づいて、液体 LQの温度と基板 Pの温 度とがほぼ等しくなるように、放射部 53から放射する熱量を最適化することができる。 なお、補償機構 5における前述の調整量 (補正量)は、基板 P上のショット領域に対応 付けて記憶してもよ 、し、あるいは基板 Pの XY位置に対応付けて記憶してもよ ヽ。 [0085] The dummy substrate DP in FIG. 9 is held by the substrate holder PH, and a gas flow is generated on the dummy substrate DP by the gas seal mechanism 3 while the liquid LQ is filled between the dummy substrate DP and the projection optical system PL. However, by moving the substrate stage PST on the image plane side of the projection optical system PL, for example, just as during the exposure operation of the substrate P, the control device CONT is operated by the gas seal mechanism 3. Therefore, the temperature change of the dummy substrate DP caused by the generated airflow can be obtained. Then, based on the measurement result of the temperature sensor 80 on the dummy substrate DP, the control device CONT, for example, gas injected from the injection port 32 so that the temperature of the liquid LQ and the temperature of the dummy substrate DP are substantially equal. Is adjusted using the gas temperature control device 50, and the adjustment amount (correction amount) at that time is stored. Then, the controller CONT adjusts the temperature of the gas injected from the injection port 32 using the gas temperature adjustment device 50 based on the stored adjustment amount when exposing the substrate P. The substrate P can be exposed while compensating for the temperature change of the substrate P caused by the air flow generated by the gas seal mechanism 3. Similarly, based on the measurement result of the temperature sensor 80, the control device CONT uses the temperature of the gas blown out from the outlet 36 so that the temperature of the liquid LQ and the temperature of the dummy substrate DP are approximately equal. Is adjusted using the second gas temperature control device 52, and the adjustment amount at that time is stored.When the substrate P is exposed, the temperature of the gas blown from the outlet 36 is adjusted based on the stored adjustment amount. By adjusting using the second gas temperature adjusting device 52, the substrate P can be exposed while compensating for the temperature change of the substrate P caused by the air flow generated by the gas seal mechanism 3. Similarly, the control device CONT can optimize the amount of heat radiated from the radiating unit 53 so that the temperature of the liquid LQ and the temperature of the substrate P are substantially equal based on the measurement result of the temperature sensor 80. it can. The adjustment amount (correction amount) in the compensation mechanism 5 may be stored in association with the shot area on the substrate P, or may be stored in association with the XY position of the substrate P. .
[0086] また、温度センサ 80を複数のショット領域 S1〜S21のそれぞれに対応するように設 けておくことにより、制御装置 CONTは、温度センサ 80の計測結果に基づいて、基 板ホルダ PHに埋設された複数の放射部 54のそれぞれを、基板 Pの移動状態に応じ て最適に制御することができる。  [0086] Further, by arranging the temperature sensor 80 so as to correspond to each of the plurality of shot regions S1 to S21, the control device CONT can be mounted on the substrate holder PH based on the measurement result of the temperature sensor 80. Each of the plurality of radiating portions 54 embedded can be optimally controlled according to the movement state of the substrate P.
[0087] なお、上述の第 1〜第 4実施形態において、シール部材 70は噴射口 32から噴射さ れる気体によって基板 P上で浮上支持されるが、ガスシール機構 3は光路空間 K1に 満たされる液体 LQをシールするだけでもよい。この場合、ガスシール機構 3とは別に 気体軸受機構を設ける、ある 、はシール部材 70を所定の支持機構で移動可能に支 持するようにしてもよい。例えば、投影光学系 PLを支持する支持部材とシール部材 7 0とを所定の支持機構で接続するようにしてもよい。また、ガスシール機構 3は少なくと もシール部材 70が容易に交換または着脱可能な構成、例えば複数のブロックに分 割可能な構成などとすることが好ましい。さらに、シール部材 70に接続される配管類 も着脱が容易であることが好まし 、。 In the first to fourth embodiments described above, the seal member 70 is levitated and supported on the substrate P by the gas ejected from the ejection port 32, but the gas seal mechanism 3 is filled in the optical path space K1. Just seal the liquid LQ. In this case, a gas bearing mechanism may be provided separately from the gas seal mechanism 3, or the seal member 70 may be supported so as to be movable by a predetermined support mechanism. For example, the support member that supports the projection optical system PL and the seal member 70 may be connected by a predetermined support mechanism. The gas seal mechanism 3 is at least However, it is preferable that the seal member 70 be configured to be easily replaceable or detachable, for example, a configuration that can be divided into plural blocks. Furthermore, it is preferable that the pipes connected to the seal member 70 are easy to attach and detach.
また、上述の第 1〜第 4実施形態では、ガスシール機構 3によって液体 LQを保持す る(液体 LQの不要な拡がりを防止する)ものとした力 必ずしもガスシールを用いなく てもよい。例えば、少なくとも基板 Pの露光動作時における、投影光学系 PLの最終光 学素子 LSI (又はシール部材 70の下面 70A)と基板 Pとの間隔を l〜3mm程度に設 定して、毛細管現象を利用することより、液体 LQを保持しつつ、液体 LQの供給、回 収を行うようにしてもよい。  Further, in the first to fourth embodiments described above, the force for holding the liquid LQ by the gas seal mechanism 3 (preventing unnecessary spread of the liquid LQ) may not necessarily use the gas seal. For example, at least during the exposure operation of the substrate P, the distance between the final optical element LSI (or the lower surface 70A of the seal member 70) of the projection optical system PL and the substrate P is set to about 1 to 3 mm, and capillary action is caused. By using the liquid LQ, the liquid LQ may be supplied and collected while holding the liquid LQ.
さらに、上述の第 1〜第 3実施形態ではシール部材 70に断熱材 71を設けるものとし た力 断熱材を設ける代わりに、あるいは断熱材と組み合わせて、例えばシール部材 70の温度を調整する機構を設けてもよい。勿論、補償機構 5などに起因するシール 部材 70の温度変化、ひいては液体 LQ、投影光学系 PLなどの温度変化が所定の許 容範囲内であるときは、前述した断熱材などを設けなくてもよい。  Further, in the first to third embodiments described above, a force for providing the heat insulating material 71 on the seal member 70 Instead of providing the heat insulating material, or in combination with the heat insulating material, for example, a mechanism for adjusting the temperature of the seal member 70 is provided. It may be provided. Of course, when the temperature change of the seal member 70 due to the compensation mechanism 5 and the like, and thus the temperature change of the liquid LQ, the projection optical system PL, etc. are within a predetermined allowable range, the above-described heat insulating material etc. may not be provided. Good.
なお、上述の第 1〜第 4実施形態では、ガスシール機構 3により生成された気流に より液体 LQの一部が気化することで生じる気化熱による基板 Pの温度変化を補償す るものとした力 ガスシール機構 3による気体の噴出を行わなくても液体 LQの一部が 気化し得るので、液体 LQをシールする気体の噴出を行わない、あるいはガスシール 機構 3を設けない場合にも、前述の補償機構 5によって気化熱による基板の温度変 化を補償するようにしてもょ ヽ。  In the first to fourth embodiments described above, the temperature change of the substrate P due to the heat of vaporization caused by the vaporization of part of the liquid LQ caused by the airflow generated by the gas seal mechanism 3 is compensated. Force Even if the gas seal mechanism 3 is not ejected, a part of the liquid LQ can be vaporized, so the gas seal mechanism 3 is not ejected or the gas seal mechanism 3 is not provided. Compensation mechanism 5 may compensate for substrate temperature changes due to heat of vaporization.
また、上述の第 1〜第 4実施形態では、光路空間 K1に満たされる液体 LQの温度と 基板 Pの温度とをほぼ等しくするものとしたが、前述の気化熱による基板 Pの局所的 な温度変化 (即ち、露光精度の変動)が所定の許容範囲内となっているならば、液体 LQの温度と基板 Pの温度とを異ならせてもよ 、。  In the first to fourth embodiments described above, the temperature of the liquid LQ filled in the optical path space K1 and the temperature of the substrate P are approximately equal. However, the local temperature of the substrate P due to the heat of vaporization described above is used. The temperature of the liquid LQ and the temperature of the substrate P may be different if the change (that is, the exposure accuracy fluctuation) is within a predetermined tolerance.
上述したように、上記各実施形態では液体 LQとして純水を用いて 、る。純水は、半 導体製造工場等で容易に大量に入手できるとともに、基板 P上のフォトレジスト、光学 素子 (レンズ)等に対する悪影響がない利点がある。また、純水は環境に対する悪影 響がないとともに、不純物の含有量が極めて低いため、基板 Pの表面、及び投影光 学系 PLの先端面に設けられている光学素子の表面を洗浄する作用も期待できる。 なお工場等力 供給される純水の純度が低 、場合には、露光装置が超純水製造器 を持つようにしてもよい。 As described above, in each of the above embodiments, pure water is used as the liquid LQ. Pure water has the advantage that it can be easily obtained in large quantities at semiconductor manufacturing factories and the like, and has no adverse effects on the photoresist on the substrate P, optical elements (lenses), and the like. In addition, pure water does not have an adverse effect on the environment, and the content of impurities is extremely low. It is also expected to clean the surface of the optical element provided on the tip of the academic system PL. If the purity of the pure water supplied from the factory is low, the exposure apparatus may have an ultrapure water production device.
[0089] そして、波長が 193nm程度の露光光 ELに対する純水(水)の屈折率 nはほぼ 1. 4 4と言われており、露光光 ELの光源として ArFエキシマレーザ光(波長 193nm)を用 いた場合、基板 P上では lZn、すなわち約 134nmに短波長化されて高い解像度が 得られる。更に、焦点深度は空気中に比べて約 n倍、すなわち約 1. 44倍に拡大され るため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、 投影光学系 PLの開口数をより増カロさせることができ、この点でも解像度が向上する。  [0089] The refractive index n of pure water (water) for exposure light EL having a wavelength of about 193 nm is said to be approximately 1. 44, and ArF excimer laser light (wavelength 193 nm) is used as the light source of exposure light EL. When used, on the substrate P, lZn, that is, the wavelength is shortened to about 134 nm to obtain a high resolution. In addition, since the depth of focus is magnified approximately n times, that is, approximately 1.44 times that in the air, the projection optical system PL can be used if it is sufficient to ensure the same depth of focus as in the air. The numerical aperture can be increased further, and the resolution is improved in this respect as well.
[0090] 上記各実施形態では、投影光学系 PLの先端に最終光学素子 LSIが取り付けられ ており、このレンズにより投影光学系 PLの光学特性、例えば収差 (球面収差、コマ収 差等)の調整を行うことができる。なお、投影光学系 PLの先端に取り付ける光学素子 としては、投影光学系 PLの光学特性の調整に用いる光学プレートであってもよい。あ るいは露光光 ELを透過可能な平行平面板 (カバープレートなど)であってもよ 、。  In each of the above embodiments, the final optical element LSI is attached to the tip of the projection optical system PL, and adjustment of optical characteristics of the projection optical system PL, such as aberration (spherical aberration, coma, etc.), is performed by this lens. It can be performed. Note that the optical element attached to the tip of the projection optical system PL may be an optical plate used for adjusting the optical characteristics of the projection optical system PL. Or it may be a plane parallel plate (such as a cover plate) that can transmit the exposure light EL.
[0091] なお、液体 LQの流れによって生じる投影光学系 PLの先端の光学素子と基板 Pと の間の圧力が大きい場合には、その光学素子を交換可能とするのではなぐその圧 力によって光学素子が動かな 、ように堅固に固定してもよ 、。  [0091] When the pressure between the optical element at the tip of the projection optical system PL and the substrate P generated by the flow of the liquid LQ is large, the optical element cannot be replaced. It can be fixed firmly so that the element does not move.
[0092] また、上記各実施形態では、投影光学系の先端の光学素子の像面側の光路空間 を液体で満たしている力 国際公開第 2004Z019128号パンフレットに開示されて V、るように、先端の光学素子のマスク側の光路空間も液体で満たす投影光学系を採 用することちでさる。  [0092] Further, in each of the above-described embodiments, the force that fills the optical path space on the image plane side of the optical element at the tip of the projection optical system with a liquid is disclosed in International Publication No. 2004Z019128 pamphlet V. This is achieved by adopting a projection optical system that fills the optical path space on the mask side of this optical element with a liquid.
[0093] さらに、上記各実施形態では、液浸機構 1のうち液体 LQの供給、回収を行うノズル 部材と、ガスシール機構 3のシール部材 70とが同一の部材であるものとした力 ノズ ル部材とシール部材とを異なる部材としてもよい。なお、液浸機構 1 (特にノズル部材 )の構造は、上述の構造に限られず、例えば欧州特許公開第 1420298号公報、国 際公開第 2004Z055803号公報、国際公開第 2004/057590号公報、国際公開 第 2005Z029559号公報などに記載されているものも用いることができる。  Furthermore, in each of the embodiments described above, the force nozzle in which the nozzle member that supplies and recovers the liquid LQ in the liquid immersion mechanism 1 and the seal member 70 of the gas seal mechanism 3 are the same member. The member and the seal member may be different members. The structure of the liquid immersion mechanism 1 (particularly the nozzle member) is not limited to the above-described structure. For example, European Patent Publication No. 1420298, International Publication No. 2004Z055803, International Publication No. 2004/057590, International Publication Those described in Japanese Patent No. 2005Z029559 can also be used.
[0094] なお、上記各実施形態では液体 LQが水(純水)であるが、水以外の液体であって もよい、例えば、露光光 ELの光源が Fレーザである場合、この Fレーザ光は水を透 In the above embodiments, the liquid LQ is water (pure water), but it is a liquid other than water. For example, when the light source of the exposure light EL is an F laser, the F laser light passes through water.
2 2  twenty two
過しないので、液体 LQとしては Fレーザ光を透過可能な例えば、過フッ化ポリエー  As a liquid LQ, it is possible to transmit F laser light.
2  2
テル(PFPE)、フッ素系オイル等のフッ素系流体であってもよい。この場合、液体 LQ と接触する部分には、例えばフッ素を含む極性の小さ 、分子構造の物質で薄膜を形 成することで親液化処理する。また、液体 LQとしては、その他にも、露光光 ELに対 する透過性があってできるだけ屈折率が高ぐ投影光学系 PLや基板 P表面に塗布さ れているフォトレジストに対して安定なもの(例えばセダー油)を用いることも可能であ る。  Fluorine-based fluids such as tellurium (PFPE) and fluorine-based oils may be used. In this case, the portion that comes into contact with the liquid LQ is subjected to a lyophilic treatment by forming a thin film with a substance having a small molecular structure and containing fluorine, for example. In addition, liquid LQ is stable against the projection optical system PL that is transparent to the exposure light EL and has a refractive index as high as possible, and to the photoresist applied to the surface of the substrate P. (For example, cedar oil) can also be used.
さらに、液体 LQとしては、屈折率が 1. 6〜1. 8程度のものを使用してもよい。また、 石英及び蛍石よりも屈折率が高い材料 (例えば 1. 6以上)で、少なくとも最終光学素 子 LSIを形成してもよい。液体 LQとして、種々の液体、例えば超臨界流体を用いる ことも可能である。  Furthermore, liquid LQ having a refractive index of about 1.6 to 1.8 may be used. Further, at least the final optical element LSI may be formed of a material having a higher refractive index than quartz and fluorite (for example, 1.6 or more). Various liquids such as a supercritical fluid can be used as the liquid LQ.
[0095] なお、上記各実施形態では干渉計システム(92、 94)を用いてマスクステージ MS T、基板ステージ PSTの位置情報を計測するものとしたが、これに限らず、例えばス テージに設けられるスケール(回折格子)を検出するエンコーダシステムを用いてもよ い。この場合、干渉計システムとエンコーダシステムの両方を備えるハイブリッドシス テムとし、干渉計システムの計測結果を用いてエンコーダシステムの計測結果の較正 (キャリブレーション)を行うことが好ましい。また、干渉計システムとエンコーダシステ ムとを切り替えて用いる、あるいはその両方を用いて、ステージの位置制御を行うよう にしてもよい。  In each of the above embodiments, the positional information of the mask stage MST and the substrate stage PST is measured using the interferometer system (92, 94). However, the present invention is not limited to this, and is provided in the stage, for example. An encoder system that detects the scale (diffraction grating) can be used. In this case, it is preferable that a hybrid system including both the interferometer system and the encoder system is used, and the measurement result of the encoder system is calibrated using the measurement result of the interferometer system. Further, the position control of the stage may be performed by switching between the interferometer system and the encoder system or using both.
[0096] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板、薄膜磁気ヘッド用のセラミックゥェ ノ、、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリコン ウェハ)等が適用される。  Note that the substrate P in each of the above embodiments is used not only for semiconductor wafers for manufacturing semiconductor devices, but also for glass substrates for display devices, ceramic wafers for thin film magnetic heads, or exposure apparatuses. Mask or reticle master (synthetic quartz, silicon wafer), etc. are applied.
[0097] 露光装置 EXとしては、マスク Mと基板 Pとを同期移動してマスク Mのパターンを走 查露光するステップ ·アンド'スキャン方式の走査型露光装置 (スキャニングステツパ) の他に、マスク Mと基板 Pとを静止した状態でマスク Mのパターンを一括露光し、基 板 Pを順次ステップ移動させるステップ ·アンド ·リピート方式の投影露光装置 (ステツ ノ )にも適用することができる。 [0097] As the exposure apparatus EX, in addition to a step-and-scan type scanning exposure apparatus (scanning stepper) that performs mask exposure by scanning the mask M and the substrate P synchronously, the mask M and the substrate P are used. A step-and-repeat projection exposure system (STEP) that exposes the pattern of the mask M in a state where M and the substrate P are stationary and moves the substrate P in steps. B).
[0098] また、露光装置 EXとしては、第 1パターンと基板 Pとをほぼ静止した状態で第 1バタ ーンの縮小像を投影光学系 (例えば 1Z8縮小倍率で反射素子を含まな 、屈折型投 影光学系)を用 、て基板 P上に一括露光する方式の露光装置にも適用できる。この 場合、更にその後に、第 2パターンと基板 Pとをほぼ静止した状態で第 2パターンの 縮小像をその投影光学系を用いて、第 1パターンと部分的に重ねて基板 P上に一括 露光するスティツチ方式の一括露光装置にも適用できる。また、ステイッチ方式の露 光装置としては、基板 P上で少なくとも 2つのパターンを部分的に重ねて転写し、基 板 Pを順次移動させるステップ 'アンド'ステイッチ方式の露光装置にも適用できる。  [0098] In addition, as the exposure apparatus EX, a reduced image of the first pattern is projected with the first pattern and the substrate P substantially stationary, for example, a refractive optical system that does not include a reflective element at a 1Z8 reduction magnification. It can also be applied to an exposure apparatus that uses a projection optical system) to perform batch exposure on the substrate P. In this case, after that, with the second pattern and the substrate P almost stationary, a reduced image of the second pattern is collectively exposed on the substrate P by partially overlapping the first pattern using the projection optical system. It can also be applied to a stitch type batch exposure apparatus. In addition, the stitch type exposure apparatus can also be applied to a step 'and' stitch type exposure apparatus in which at least two patterns are partially overlapped and transferred on the substrate P, and the substrate P is sequentially moved.
[0099] また、本発明は、特開平 10— 163099号公報、特開平 10— 214783号公報 (対応 する米国特許第 6, 590, 634号)、特表 2000— 505958号公報(対応する米国特 許第 5, 969, 441号)あるいは米国特許第 6, 208, 407号などに開示されているよう な複数の基板ステージを備えたツインステージ型の露光装置にも適用できる。本国 際出願で指定又は選択された国の法令で許容される限りにお ヽて、上記ツインステ ージ型の露光装置に関する公開公報及び米国特許の開示を援用して本文の記載 の一部とする。  [0099] Further, the present invention relates to JP-A-10-163099, JP-A-10-214783 (corresponding US Pat. No. 6,590,634), JP 2000-505958 (corresponding US Pat. (No. 5, 969, 441) or US Pat. No. 6,208, 407, etc., and can be applied to a twin stage type exposure apparatus having a plurality of substrate stages. To the extent permitted by the laws and regulations of the country designated or selected in the international application, the disclosure of the above-mentioned twin-stage type exposure apparatus and the disclosure of US patents are incorporated as part of this description. .
[0100] 更に、特開平 11 135400号公報、特開 2000— 164504号公報(対応する米国 特許第 6, 897, 963号)などに開示されているように、基板を保持する基板ステージ と基準マークが形成された基準部材、及び Z又は各種の光電センサを搭載した計測 ステージとを備えた露光装置にも本発明を適用することができる。本国際出願で指定 又は選択された国の法令で許容される限りにお ヽて、上記計測ステージを備える露 光装置に関する公開公報及び米国特許の開示を援用して本文の記載の一部とする  [0100] Further, as disclosed in JP-A-11 135400, JP-A-2000-164504 (corresponding US Pat. No. 6,897,963), etc., a substrate stage for holding the substrate and a reference mark The present invention can also be applied to an exposure apparatus provided with a reference member on which is formed, and a measurement stage on which Z or various photoelectric sensors are mounted. To the extent permitted by the laws and regulations of the country designated or selected in this international application, the disclosure of US publications and disclosures of U.S. patents with the above-described measurement stage are incorporated as part of this description.
[0101] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置、薄膜磁気ヘッド、撮像素子 (CCD)、マイクロマシン、 MEMS, DNAチッ プ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用で きる。 [0102] また、 CDや DVD等のディスク媒体を製造するためのスタンパー用原版 (所謂金型 )を作るためのビーム描画装置においても、ビームスポット照射用の対物レンズと被描 画原版との間に液体を満たす場合、本発明を同様に適用することができる。 [0101] The type of exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on a substrate P. An exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, an imaging device It can be widely applied to exposure devices for manufacturing devices (CCD), micromachines, MEMS, DNA chips, reticles or masks. [0102] Also, in a beam drawing apparatus for making a stamper master (so-called mold) for manufacturing a disk medium such as a CD or DVD, a beam spot irradiation objective lens and a drawing master In the case where the liquid is filled, the present invention can be similarly applied.
[0103] なお、上記各実施形態においては、光透過性の基板上に所定の遮光パターン (又 は位相パターン '減光パターン)を形成した光透過型マスクを用いた力 このマスクに 代えて、例えば米国特許第 6, 778, 257号公報に開示されているように、露光すベ きパターンの電子データに基づ 、て透過パターン又は反射パターン、あるいは発光 パターンを形成する電子マスク(可変成形マスクとも呼ばれ、例えば非発光型画像表 示素子(空間光変調器)の一種である DMD (Digital Micro-mirror Device)などを含 む)を用いてもよい。  In each of the above-described embodiments, force using a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern 'dimming pattern) is formed on a light-transmitting substrate. Instead of this mask, For example, as disclosed in US Pat. No. 6,778,257, an electronic mask (variable molding mask) that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed. For example, a DMD (Digital Micro-mirror Device) which is a kind of non-light emitting image display element (spatial light modulator) may be used.
[0104] また、国際公開第 2001Z035168号パンフレットに開示されているように、干渉縞 を基板 P上に形成することによって、基板 P上にライン 'アンド'スペースパターンを露 光する露光装置 (リソグラフィシステム)にも本発明を適用することができる。  [0104] Further, as disclosed in the pamphlet of International Publication No. 2001Z035168, an exposure apparatus (lithography system) that exposes a line 'and' space pattern on the substrate P by forming interference fringes on the substrate P. ) Can also be applied to the present invention.
さらに、例えば特表 2004— 519850号公報(対応する米国特許第 6, 611, 316号 )に開示されているように、 2つのマスクのパターンを、投影光学系を介して基板上で 合成し、 1回のスキャン露光によって基板上の 1つのショット領域をほぼ同時に二重露 光する露光装置にも本発明を適用することができる。  Furthermore, as disclosed in, for example, JP-T-2004-519850 (corresponding US Pat. No. 6,611,316), two mask patterns are synthesized on a substrate via a projection optical system, The present invention can also be applied to an exposure apparatus that double exposes one shot area on a substrate almost simultaneously by one scan exposure.
[0105] 以上のように、本願実施形態の露光装置 EXは、本願請求の範囲に挙げられた各 構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精 度を保つように、組み立てることで製造される。これら各種精度を確保するために、こ の組み立ての前後には、各種光学系については光学的精度を達成するための調整 、各種機械系については機械的精度を達成するための調整、各種電気系について は電気的精度を達成するための調整が行われる。各種サブシステムから露光装置へ の組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、 気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立 て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各 種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露 光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびク リーン度等が管理されたクリーンルームで行うことが望ましい。 [0105] As described above, the exposure apparatus EX of the present embodiment has various mechanical subsystems including the constituent elements recited in the claims of the present application with predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling to keep. In order to ensure these various accuracies, before and after the assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, various electrical systems Is adjusted to achieve electrical accuracy. The assembly process from various subsystems to the exposure system includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies for the entire exposure apparatus. The exposure equipment is manufactured at a temperature and It is desirable to perform in a clean room where the degree of leanness is controlled.
[0106] 半導体デバイス等のマイクロデバイスは、図 10に示すように、マイクロデバイスの機 能 ·性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 202、デバイスの基材である基板を製造するステップ 203、前述した 実施形態の露光装置 EXによりマスクのパターンを基板に露光する処理を含むステツ プ 204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ 工程を含む) 205、検査ステップ 206等を経て製造される。  As shown in FIG. 10, a microdevice such as a semiconductor device includes a step 201 for performing a function / performance design of the microdevice, a step 202 for manufacturing a mask (reticle) based on this design step, Step 203 for manufacturing a substrate as a base material, Step 204 including processing for exposing the mask pattern onto the substrate by the exposure apparatus EX of the above-described embodiment, Device assembly step (including dicing process, bonding process, and packaging process) It is manufactured through 205, inspection step 206 and the like.
産業上の利用可能性  Industrial applicability
[0107] 本発明によれば、液浸法に基づ!/、て基板を露光する際、基板の温度変化を抑制し て精度良く基板を露光することができる。それゆえ、本発明は、半導体素子、液晶表 示素子又はディスプレイ、薄膜磁気ヘッド、 CCD,マイクロマシン、 MEMS, DNAチ ップ、レチクル (マスク)のような広範囲な製品を製造するための露光装置に極めて有 用となる。 According to the present invention, when the substrate is exposed based on the immersion method, it is possible to accurately expose the substrate while suppressing the temperature change of the substrate. Therefore, the present invention provides an exposure apparatus for manufacturing a wide range of products such as semiconductor elements, liquid crystal display elements or displays, thin film magnetic heads, CCDs, micromachines, MEMS, DNA chips, and reticles (masks). Extremely useful.

Claims

請求の範囲 The scope of the claims
[1] 液体を介して基板に露光光を照射して前記基板を露光する露光装置において、 前記基板上に気流を生成しかつ前記露光光の光路空間に満たされた液体をシー ルするガスシール機構と、  [1] In an exposure apparatus that irradiates a substrate with exposure light through a liquid to expose the substrate, a gas seal that generates an air flow on the substrate and seals the liquid filled in an optical path space of the exposure light Mechanism,
前記ガスシール機構により生成された前記気流に起因する前記基板の温度変化を 補償する補償機構とを備えた露光装置。  An exposure apparatus comprising: a compensation mechanism that compensates for a temperature change of the substrate caused by the airflow generated by the gas seal mechanism.
[2] 前記補償機構は、前記気流により前記液体の一部が気化することで生じる気化熱 による前記基板の局所的な温度低下を補償する請求項 1記載の露光装置。  2. The exposure apparatus according to claim 1, wherein the compensation mechanism compensates for a local temperature drop of the substrate due to heat of vaporization caused by vaporization of a part of the liquid by the airflow.
[3] 前記ガスシール機構は、前記基板と対向するように設けられ、前記気流を生成する ために前記基板に向けて気体を噴射する噴射口を有する請求項 1又は 2記載の露 光装置。  [3] The exposure apparatus according to claim 1 or 2, wherein the gas seal mechanism is provided so as to face the substrate and has an injection port for injecting gas toward the substrate in order to generate the airflow.
[4] 前記補償機構は、前記噴射口から噴射される気体の温度を前記液体の温度よりも 高くする第 1温調装置を有する請求項 3記載の露光装置。  [4] The exposure apparatus according to [3], wherein the compensation mechanism includes a first temperature control device that makes a temperature of a gas ejected from the ejection port higher than a temperature of the liquid.
[5] 前記補償機構は、前記光路空間に対して前記噴射口の外側に設けられ、気体を 吹き出す吹き出し口と、 [5] The compensation mechanism is provided outside the ejection port with respect to the optical path space, and a blow-out port for blowing out gas.
前記吹き出し口から吹き出される気体の温度を前記液体の温度よりも高くする第 2 温調装置とを有する請求項 3又は 4記載の露光装置。  5. The exposure apparatus according to claim 3, further comprising a second temperature adjustment device configured to make a temperature of the gas blown from the blowout port higher than a temperature of the liquid.
[6] 前記ガスシール機構は、前記光路空間を囲むように設けられ、前記基板と対向する 所定面に前記噴射口が設けられたシール部材を有する請求項 3〜5の 、ずれか一 項記載の露光装置。 6. The gas sealing mechanism according to any one of claims 3 to 5, wherein the gas sealing mechanism includes a sealing member that is provided so as to surround the optical path space and that has the injection port provided on a predetermined surface facing the substrate. Exposure equipment.
[7] 前記シール部材は、前記光路空間に前記液体を供給する供給口を有する請求項 6記載の露光装置。  7. The exposure apparatus according to claim 6, wherein the seal member has a supply port that supplies the liquid to the optical path space.
[8] 前記シール部材は、前記所定面に設けられ、前記光路空間の液体を回収する回 収口を有する請求項 6又は請求項 7記載の露光装置。  [8] The exposure apparatus according to [6] or [7], wherein the seal member is provided on the predetermined surface and has a collection port for collecting the liquid in the optical path space.
[9] 前記ガスシール機構は、前記噴射口から前記基板に噴射された気体により前記基 板上で前記シール部材を支持する請求項 6〜8のいずれか一項記載の露光装置。 [9] The exposure apparatus according to any one of [6] to [8], wherein the gas seal mechanism supports the seal member on the substrate by gas jetted onto the substrate from the jet port.
[10] 前記補償機構はその少なくとも一部が前記シール部材に設けられ、前記基板の温 度を調整する請求項 6〜9のいずれか一項記載の露光装置。 [10] The exposure apparatus according to any one of [6] to [9], wherein at least a part of the compensation mechanism is provided on the seal member and adjusts the temperature of the substrate.
[11] 前記シール部材は、前記補償機構による前記基板の温度調整に起因して生じる熱 を断熱する構造を有する請求項 10記載の露光装置。 11. The exposure apparatus according to claim 10, wherein the seal member has a structure that insulates heat generated due to temperature adjustment of the substrate by the compensation mechanism.
[12] 前記シール部材は、前記液体と接触し得る部分、及び前記基板と対向する部分の 少なくとも一部に設けられる断熱構造を有する請求項 6〜 11の ヽずれか一項記載の 露光装置。 [12] The exposure apparatus according to any one of [6] to [11], wherein the seal member has a heat insulating structure provided in at least a part of a part that can contact the liquid and a part that faces the substrate.
[13] 前記補償機構は、前記基板に向力つて熱を放射することによって、前記基板の温 度変化を補償する放射部を有する請求項 1〜12のいずれか一項記載の露光装置。  [13] The exposure apparatus according to any one of [1] to [12], wherein the compensation mechanism has a radiation unit that compensates for a temperature change of the substrate by radiating heat toward the substrate.
[14] 前記放射部を囲むように設けられた断熱構造を有する請求項 13記載の露光装置。 14. The exposure apparatus according to claim 13, further comprising a heat insulating structure provided so as to surround the radiation portion.
[15] 前記液体の温度と前記基板の温度とがほぼ等しくなるように前記液体及び前記基 板の少なくとも一方の温度を調整する第 3温調装置をさらに備えた請求項 1〜14の15. The apparatus according to claim 1, further comprising a third temperature adjustment device that adjusts a temperature of at least one of the liquid and the substrate so that a temperature of the liquid and a temperature of the substrate are substantially equal.
V、ずれか一項記載の露光装置。 The exposure apparatus according to claim 1, wherein V is a deviation.
[16] 前記基板を保持する保持部材と、 [16] a holding member for holding the substrate;
前記保持部材に設けられ、前記基板の温度を前記液体の温度よりも高くする第 4温 調装置とをさらに備えた請求項 1〜15のいずれか一項記載の露光装置。  The exposure apparatus according to any one of claims 1 to 15, further comprising a fourth temperature control device provided on the holding member and configured to raise a temperature of the substrate higher than a temperature of the liquid.
[17] 前記第 4温調装置は、前記基板の裏面に向かって熱を放射することによって、前記 基板の温度変化を補償する放射部を有する請求項 16記載の露光装置。 17. The exposure apparatus according to claim 16, wherein the fourth temperature adjustment device has a radiation portion that compensates for a temperature change of the substrate by radiating heat toward the back surface of the substrate.
[18] 前記光路空間に対する前記基板の移動に伴って前記液体と接触する局所領域が 前記基板内で変位し、 [18] As the substrate moves with respect to the optical path space, a local region in contact with the liquid is displaced in the substrate,
前記第 4温調装置は、前記基板の異なる位置でそれぞれ温度を調整する複数の温 調部を有し、  The fourth temperature control device has a plurality of temperature control units that adjust the temperature at different positions of the substrate,
前記基板の移動状態、及び前記基板上の前記局所領域の位置に関する情報に基 づ 、て、前記複数の温調部のそれぞれを制御する制御装置をさらに備えた請求項 1 2. The apparatus according to claim 1, further comprising a control device that controls each of the plurality of temperature control units based on information relating to a moving state of the substrate and a position of the local region on the substrate.
6又は 17記載の露光装置。 The exposure apparatus according to 6 or 17.
[19] 前記基板と対向するように設けられ、前記液体を供給する供給口をさらに備えた請 求項 1〜 18の 、ずれか一項記載の露光装置。 [19] The exposure apparatus according to any one of [1] to [18], further comprising a supply port that is provided to face the substrate and supplies the liquid.
[20] 前記光路空間に対して前記供給口より外側であって、前記基板と対向するように設 けられ、前記液体を回収する回収口をさらに備えた請求項 19記載の露光装置。 20. The exposure apparatus according to claim 19, further comprising a recovery port that is provided outside the supply port with respect to the optical path space so as to face the substrate and recovers the liquid.
[21] 液体を介して基板に露光光を照射して前記基板を露光する露光装置にお!ヽて、 前記露光光の光路空間に前記液体を供給する液浸機構と、 [21] An exposure apparatus that exposes the substrate by irradiating the substrate with exposure light through a liquid! In a hurry An immersion mechanism for supplying the liquid to the optical path space of the exposure light;
前記液体の気化に起因する前記基板の温度変化を補償する補償機構と、を備える 露光装置。  An exposure apparatus comprising: a compensation mechanism that compensates for a temperature change of the substrate caused by vaporization of the liquid.
[22] 前記補償機構は、前記光路空間の外側にその一部が配置され、前記基板の温度 を調整する温調装置を有する請求項 21記載の露光装置。  22. The exposure apparatus according to claim 21, wherein a part of the compensation mechanism is disposed outside the optical path space and has a temperature adjustment device that adjusts the temperature of the substrate.
[23] 前記補償機構は、前記液浸機構のノズル部材にその一部が設けられ、前記基板の 温度を調整する温調装置を有する請求項 21又は 22記載の露光装置。 [23] The exposure apparatus according to [21] or [22], wherein the compensation mechanism is provided with a part of a nozzle member of the liquid immersion mechanism and has a temperature adjustment device for adjusting a temperature of the substrate.
[24] 前記基板を保持する保持部材をさらに備え、前記補償機構は、前記保持部材にそ の一部が設けられ、前記基板の温度を調整する温調装置を有する請求項 21〜23の24. The holding device according to claim 21, further comprising a holding member that holds the substrate, wherein the compensation mechanism includes a temperature adjustment device that includes a part of the holding member and adjusts the temperature of the substrate.
V、ずれか一項記載の露光装置。 The exposure apparatus according to claim 1, wherein V is a deviation.
[25] 請求項 1〜請求項 24の 、ずれか一項記載の露光装置を用いるデバイス製造方法 [25] A device manufacturing method using the exposure apparatus according to any one of claims 1 to 24
[26] 液体を介して基板に露光光を照射して前記基板を露光する露光方法にお!ヽて、 前記露光光の光路空間に前記液体を供給して液浸領域を形成し、前記液体の気 化に起因する前記基板の温度変化を補償する露光方法。 [26] An exposure method in which the substrate is exposed by irradiating the substrate with exposure light through a liquid! An exposure method in which the liquid is supplied to the optical path space of the exposure light to form an immersion area, and the temperature change of the substrate due to the vaporization of the liquid is compensated.
[27] 前記基板の表面及び裏面の少なくとも一方に熱を放射して、前記基板の温度を調 整する請求項 26記載の露光方法。 27. The exposure method according to claim 26, wherein the temperature of the substrate is adjusted by radiating heat to at least one of the front surface and the back surface of the substrate.
[28] 前記液浸領域の外側で前記基板に熱を放射して、前記基板の温度を調整する請 求項 26又は 27記載の露光方法。 [28] The exposure method according to claim 26 or 27, wherein the temperature of the substrate is adjusted by radiating heat to the substrate outside the immersion area.
[29] 請求項 26〜請求項 28の 、ずれか一項記載の露光方法を用いるデバイス製造方 法。 [29] A device manufacturing method using the exposure method according to any one of [26] to [28].
PCT/JP2006/305695 2005-03-23 2006-03-22 Exposure apparatus, exposure method and method for manufacturing device WO2006101120A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007509296A JP5040646B2 (en) 2005-03-23 2006-03-22 Exposure apparatus, exposure method, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-083756 2005-03-23
JP2005083756 2005-03-23

Publications (1)

Publication Number Publication Date
WO2006101120A1 true WO2006101120A1 (en) 2006-09-28

Family

ID=37023780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305695 WO2006101120A1 (en) 2005-03-23 2006-03-22 Exposure apparatus, exposure method and method for manufacturing device

Country Status (2)

Country Link
JP (7) JP5040646B2 (en)
WO (1) WO2006101120A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046523A1 (en) * 2005-10-18 2007-04-26 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
WO2008072647A1 (en) * 2006-12-13 2008-06-19 Canon Kabushiki Kaisha Exposure apparatus and device fabrication method
JP2008172214A (en) * 2006-12-08 2008-07-24 Asml Netherlands Bv Substrate support and lithographic process
JP2009272636A (en) * 2008-05-08 2009-11-19 Asml Netherlands Bv Liquid immersion lithographic device, drying device, liquid immersion metro logy device and method for manufacturing device
JP2009283619A (en) * 2008-05-21 2009-12-03 Nikon Corp Exposing apparatus, exposing method, and device manufacturing method
JP2009281945A (en) * 2008-05-23 2009-12-03 Nikon Corp Equipment and method for measuring position, system and method for forming pattern, system and method for exposure and method for manufacturing device
JP2010010707A (en) * 2005-06-21 2010-01-14 Asml Netherlands Bv Lithographic apparatus
JP2010034555A (en) * 2008-07-25 2010-02-12 Asml Netherlands Bv Fluid handling structure, lithographic apparatus, and method of manufacturing device
JP2010080861A (en) * 2008-09-29 2010-04-08 Nikon Corp Transfer apparatus and device manufacturing method
JP2011014901A (en) * 2009-06-30 2011-01-20 Asml Netherlands Bv Fluid handling structure, lithographic apparatus, and device manufacturing method
JP2011040767A (en) * 2006-05-18 2011-02-24 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2011171767A (en) * 2006-12-07 2011-09-01 Asml Netherlands Bv Drier, wetting unit, and method for removing liquid from surface
CN102621818A (en) * 2012-04-10 2012-08-01 中国科学院光电技术研究所 Immersion control device for lithography machine
US8351018B2 (en) 2008-05-08 2013-01-08 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US8421993B2 (en) 2008-05-08 2013-04-16 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US8451423B2 (en) 2008-06-18 2013-05-28 Asml Netherlands B.V. Lithographic apparatus and method
JP2013211564A (en) * 2006-01-19 2013-10-10 Nikon Corp Exposure device, exposure method, and device manufacturing method
US8705009B2 (en) 2009-09-28 2014-04-22 Asml Netherlands B.V. Heat pipe, lithographic apparatus and device manufacturing method
US9025126B2 (en) 2007-07-31 2015-05-05 Nikon Corporation Exposure apparatus adjusting method, exposure apparatus, and device fabricating method
JP2016075887A (en) * 2015-03-20 2016-05-12 株式会社ニコン Wet treatment device, and wet treatment method
JP2016075790A (en) * 2014-10-07 2016-05-12 株式会社ニコン Plotting device, plotting method, and wet treatment apparatus
WO2016096508A1 (en) * 2014-12-19 2016-06-23 Asml Netherlands B.V. A fluid handling structure, a lithographic apparatus and a device manufacturing method
US9632425B2 (en) 2006-12-07 2017-04-25 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7533068B2 (en) 2004-12-23 2009-05-12 D-Wave Systems, Inc. Analog processor comprising quantum devices
WO2006101120A1 (en) * 2005-03-23 2006-09-28 Nikon Corporation Exposure apparatus, exposure method and method for manufacturing device
US7468779B2 (en) * 2005-06-28 2008-12-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2008122127A1 (en) 2007-04-05 2008-10-16 D-Wave Systems Inc. Systems, methods and apparatus for anti-symmetric qubit-coupling
NL2009139A (en) * 2011-08-05 2013-02-06 Asml Netherlands Bv A fluid handling structure, a lithographic apparatus and a device manufacturing method.
US10002107B2 (en) 2014-03-12 2018-06-19 D-Wave Systems Inc. Systems and methods for removing unwanted interactions in quantum devices
CN107771303B (en) 2015-04-21 2021-06-04 Asml荷兰有限公司 Lithographic apparatus
JP6707964B2 (en) * 2016-04-12 2020-06-10 日本精工株式会社 Positioning device and rotation mechanism
WO2019126396A1 (en) 2017-12-20 2019-06-27 D-Wave Systems Inc. Systems and methods for coupling qubits in a quantum processor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004289126A (en) * 2002-11-12 2004-10-14 Asml Netherlands Bv Lithography system and process for fabricating device
JP2005045223A (en) * 2003-06-27 2005-02-17 Asml Netherlands Bv Lithography apparatus and method for manufacturing device
JP2005252247A (en) * 2004-02-04 2005-09-15 Nikon Corp Exposure device, exposure method, and method of fabricating the device
JP2006054468A (en) * 2004-08-13 2006-02-23 Asml Netherlands Bv Lithography apparatus and device manufacturing method
JP2006156974A (en) * 2004-10-26 2006-06-15 Nikon Corp Method of processing substrate, exposure device and method of manufacturing device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821911A (en) * 1994-07-05 1996-01-23 Toppan Printing Co Ltd Exposing method
JP2000021725A (en) * 1998-06-30 2000-01-21 Seiko Epson Corp Apparatus for manufacturing semiconductor
JP2002083756A (en) * 2000-09-06 2002-03-22 Canon Inc Apparatus for adjusting substrate temperature
JP2003115451A (en) * 2001-07-30 2003-04-18 Canon Inc Exposure system and method of manufacturing device using the same
WO2004021418A1 (en) * 2002-08-29 2004-03-11 Nikon Corporation Temperature control method and device, and exposure method and apparatus
JP4608876B2 (en) * 2002-12-10 2011-01-12 株式会社ニコン Exposure apparatus and device manufacturing method
CN100446179C (en) * 2002-12-10 2008-12-24 株式会社尼康 Exposure apparatus and device manufacturing method
KR20050110033A (en) * 2003-03-25 2005-11-22 가부시키가이샤 니콘 Exposure system and device production method
JP4307130B2 (en) * 2003-04-08 2009-08-05 キヤノン株式会社 Exposure equipment
KR20110104084A (en) * 2003-04-09 2011-09-21 가부시키가이샤 니콘 Immersion lithography fluid control system
TW200511388A (en) * 2003-06-13 2005-03-16 Nikon Corp Exposure method, substrate stage, exposure apparatus and method for manufacturing device
JP3862678B2 (en) * 2003-06-27 2006-12-27 キヤノン株式会社 Exposure apparatus and device manufacturing method
US7738074B2 (en) * 2003-07-16 2010-06-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101477850B1 (en) * 2003-08-29 2014-12-30 가부시키가이샤 니콘 Liquid recovery apparatus, exposure apparatus, exposure method, and device production method
WO2006101120A1 (en) * 2005-03-23 2006-09-28 Nikon Corporation Exposure apparatus, exposure method and method for manufacturing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004289126A (en) * 2002-11-12 2004-10-14 Asml Netherlands Bv Lithography system and process for fabricating device
JP2005045223A (en) * 2003-06-27 2005-02-17 Asml Netherlands Bv Lithography apparatus and method for manufacturing device
JP2005252247A (en) * 2004-02-04 2005-09-15 Nikon Corp Exposure device, exposure method, and method of fabricating the device
JP2006054468A (en) * 2004-08-13 2006-02-23 Asml Netherlands Bv Lithography apparatus and device manufacturing method
JP2006156974A (en) * 2004-10-26 2006-06-15 Nikon Corp Method of processing substrate, exposure device and method of manufacturing device

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010707A (en) * 2005-06-21 2010-01-14 Asml Netherlands Bv Lithographic apparatus
US9268236B2 (en) 2005-06-21 2016-02-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method having heat pipe with fluid to cool substrate and/or substrate holder
JP2012124539A (en) * 2005-06-21 2012-06-28 Asml Netherlands Bv Lithographic apparatus
WO2007046523A1 (en) * 2005-10-18 2007-04-26 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
US7907251B2 (en) 2005-10-18 2011-03-15 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
JP2013211564A (en) * 2006-01-19 2013-10-10 Nikon Corp Exposure device, exposure method, and device manufacturing method
JP2013232673A (en) * 2006-05-18 2013-11-14 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2011040767A (en) * 2006-05-18 2011-02-24 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2011097081A (en) * 2006-05-18 2011-05-12 Asml Netherlands Bv Lithographic apparatus
US8681311B2 (en) 2006-05-18 2014-03-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10649349B2 (en) 2006-12-07 2020-05-12 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
US10185231B2 (en) 2006-12-07 2019-01-22 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
US9632425B2 (en) 2006-12-07 2017-04-25 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
JP2011171767A (en) * 2006-12-07 2011-09-01 Asml Netherlands Bv Drier, wetting unit, and method for removing liquid from surface
JP2008172214A (en) * 2006-12-08 2008-07-24 Asml Netherlands Bv Substrate support and lithographic process
WO2008072647A1 (en) * 2006-12-13 2008-06-19 Canon Kabushiki Kaisha Exposure apparatus and device fabrication method
KR101560007B1 (en) * 2007-07-31 2015-10-15 가부시키가이샤 니콘 Method for adjusting exposure apparatus exposure apparatus and device manufacturing method
US9025126B2 (en) 2007-07-31 2015-05-05 Nikon Corporation Exposure apparatus adjusting method, exposure apparatus, and device fabricating method
US8345218B2 (en) 2008-05-08 2013-01-01 Asml Netherlands B.V. Immersion lithographic apparatus, drying device, immersion metrology apparatus and device manufacturing method
JP2009272636A (en) * 2008-05-08 2009-11-19 Asml Netherlands Bv Liquid immersion lithographic device, drying device, liquid immersion metro logy device and method for manufacturing device
US8421993B2 (en) 2008-05-08 2013-04-16 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US8351018B2 (en) 2008-05-08 2013-01-08 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
JP2014099655A (en) * 2008-05-08 2014-05-29 Asml Netherlands Bv Fluid handling structure and method, and lithography device
EP2131241A3 (en) * 2008-05-08 2014-12-24 ASML Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
JP2009283619A (en) * 2008-05-21 2009-12-03 Nikon Corp Exposing apparatus, exposing method, and device manufacturing method
JP2009281945A (en) * 2008-05-23 2009-12-03 Nikon Corp Equipment and method for measuring position, system and method for forming pattern, system and method for exposure and method for manufacturing device
US8451423B2 (en) 2008-06-18 2013-05-28 Asml Netherlands B.V. Lithographic apparatus and method
US9383654B2 (en) 2008-07-25 2016-07-05 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US11143968B2 (en) 2008-07-25 2021-10-12 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
JP2010034555A (en) * 2008-07-25 2010-02-12 Asml Netherlands Bv Fluid handling structure, lithographic apparatus, and method of manufacturing device
JP2010080861A (en) * 2008-09-29 2010-04-08 Nikon Corp Transfer apparatus and device manufacturing method
JP2011014901A (en) * 2009-06-30 2011-01-20 Asml Netherlands Bv Fluid handling structure, lithographic apparatus, and device manufacturing method
US8472003B2 (en) 2009-06-30 2013-06-25 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US8705009B2 (en) 2009-09-28 2014-04-22 Asml Netherlands B.V. Heat pipe, lithographic apparatus and device manufacturing method
CN102621818A (en) * 2012-04-10 2012-08-01 中国科学院光电技术研究所 Immersion control device for lithography machine
JP2016075790A (en) * 2014-10-07 2016-05-12 株式会社ニコン Plotting device, plotting method, and wet treatment apparatus
KR20170097162A (en) * 2014-12-19 2017-08-25 에이에스엠엘 네델란즈 비.브이. A fluid handling structure, a lithographic apparatus and a device manufacturing method
JP2017538159A (en) * 2014-12-19 2017-12-21 エーエスエムエル ネザーランズ ビー.ブイ. Fluid handling structure, lithographic apparatus and device manufacturing method
KR102053155B1 (en) * 2014-12-19 2019-12-06 에이에스엠엘 네델란즈 비.브이. A fluid handling structure, a lithographic apparatus and a device manufacturing method
KR20190137176A (en) * 2014-12-19 2019-12-10 에이에스엠엘 네델란즈 비.브이. A fluid handling structure, a lithographic apparatus and a device manufacturing method
US10551748B2 (en) 2014-12-19 2020-02-04 Asml Netherlands B.V. Fluid handling structure, a lithographic apparatus and a device manufacturing method
WO2016096508A1 (en) * 2014-12-19 2016-06-23 Asml Netherlands B.V. A fluid handling structure, a lithographic apparatus and a device manufacturing method
US10859919B2 (en) 2014-12-19 2020-12-08 Asml Netherlands B.V. Fluid handling structure, a lithographic apparatus and a device manufacturing method
KR102288916B1 (en) * 2014-12-19 2021-08-12 에이에스엠엘 네델란즈 비.브이. A fluid handling structure, a lithographic apparatus and a device manufacturing method
JP2016075887A (en) * 2015-03-20 2016-05-12 株式会社ニコン Wet treatment device, and wet treatment method

Also Published As

Publication number Publication date
JP2012064974A (en) 2012-03-29
JP6330853B2 (en) 2018-05-30
JP2016186641A (en) 2016-10-27
JP2014170962A (en) 2014-09-18
JP2018205781A (en) 2018-12-27
JP6119798B2 (en) 2017-04-26
JP5962704B2 (en) 2016-08-03
JP2015212827A (en) 2015-11-26
JPWO2006101120A1 (en) 2008-09-04
JP5040646B2 (en) 2012-10-03
JP2017199020A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
JP6330853B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US8345217B2 (en) Liquid recovery member, exposure apparatus, exposing method, and device fabricating method
US8724077B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US8243254B2 (en) Exposing method, exposure apparatus, and device fabricating method
JP5516628B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2011035428A (en) Exposure apparatus, exposure method, and device producing method
US20160124317A1 (en) Exposure condition determination method, exposure method, exposure apparatus, and device manufacturing method involving detection of the situation of a liquid immersion region
JP2005252247A (en) Exposure device, exposure method, and method of fabricating the device
US9025126B2 (en) Exposure apparatus adjusting method, exposure apparatus, and device fabricating method
JP2008130597A (en) Surface treatment method and surface treatment apparatus, exposure method and exposure apparatus, and device manufacturing method
JP2011165798A (en) Aligner, method used by the aligner, method of manufacturing device, program, and recording medium
JP2008300771A (en) Liquid immersion exposure apparatus, device manufacturing method, and determining method of exposure condition
JP6477793B2 (en) Exposure apparatus and device manufacturing method
JP2019070861A (en) Exposure device, exposure method, and device manufacturing method
JP2007317829A (en) Holding mechanism, moving device, treating apparatus, and lithography system
JP2008243912A (en) Exposure device, exposure method, and manufacturing method for device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007509296

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729662

Country of ref document: EP

Kind code of ref document: A1