WO2006095758A1 - Method of avoiding substrate inhibition by pqqgdh - Google Patents

Method of avoiding substrate inhibition by pqqgdh Download PDF

Info

Publication number
WO2006095758A1
WO2006095758A1 PCT/JP2006/304440 JP2006304440W WO2006095758A1 WO 2006095758 A1 WO2006095758 A1 WO 2006095758A1 JP 2006304440 W JP2006304440 W JP 2006304440W WO 2006095758 A1 WO2006095758 A1 WO 2006095758A1
Authority
WO
WIPO (PCT)
Prior art keywords
glucose
pqqgdh
gnolecose
measurement
substrate inhibition
Prior art date
Application number
PCT/JP2006/304440
Other languages
French (fr)
Japanese (ja)
Inventor
Tadanobu Matsumura
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Publication of WO2006095758A1 publication Critical patent/WO2006095758A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/84Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving inorganic compounds or pH
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • C12Q1/006Enzyme electrodes involving specific analytes or enzymes for glucose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/54Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving glucose or galactose

Definitions

  • the present invention relates to a method for avoiding substrate inhibition of pyroguchi quinoline quinone-dependent glucose dehydrogenase.
  • Pyroguchi quinoline quinone-dependent gnolecose dehydrogenase (also referred to as PQQGDH in this application) is gnorecose dehydrogenase (GDH) using pyroguchi quinoline quinone (PQQ) as a coenzyme. Since it catalyzes the reaction that oxidizes gnolecose to produce dalconolatatone, it can be used for blood glucose measurement. Blood glucose concentration is an extremely important index for clinical diagnosis as an important marker of diabetes.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-243949
  • Pyromouth quinoline quinone-dependent glucose dehydrogenase catalyzes the reaction that oxidizes D-glucose to produce D-darcono 1,5-latataton, and is not affected by dissolved oxygen in the reaction system. Because it has enzyme properties that do not require the addition of coenzymes, it is expected to have a wide range of uses such as blood glucose biochemical diagnostic agents as well as blood glucose sensors.
  • Patent Document 2 has reported studies using PQQGDH modification means at the gene level, but the mechanism of substrate inhibition has also been disclosed. There was no suggestion, and it was not even mentioned as a means to resolve substrate inhibition from the viewpoint of measurement reaction conditions.
  • Patent Document 2 W003Zl06668
  • Item 1 A method for reducing substrate inhibition in dalcose measurement, characterized in that the pH during measurement reaction is acidic in a method for measuring gno-record in a system containing pyroguchi quinoline quinone-dependent glucose dehydrogenase Item 2.
  • Glucose measuring reagent with reduced substrate inhibition characterized by containing pyroguchi quinoline quinone-dependent glucose dehydrogenase and acidic ⁇ during the measurement reaction Item 4.
  • Ferricyanide ion as a mediator The glucose measurement reagent according to Item 3, comprising
  • Glucose assay kit with reduced substrate inhibition characterized by containing pyroguchi quinoline quinone-dependent glucose dehydrogenase and ⁇ at the time of measurement reaction being acidic Item 6.
  • Ferricyanide as a mediator The glucose assembly kit according to Item 5, comprising an ion
  • Glucose sensor with reduced substrate inhibition characterized by containing pyroguchi quinoline quinone-dependent glucose dehydrogenase and acidic ⁇ during the measurement reaction Item 8. Felicyanide ion as a mediator
  • Avoidance of substrate inhibition according to the present invention enables high-concentration glucose measurement using a gnolecose measuring reagent, a gnolecose assembly kit, and a gnolecose sensor.
  • PQQGDH which can be applied to the method of the present invention, coordinates Pyroguchi quinoline quinone as a coenzyme and oxidizes D-glucose to produce D-darcono 1,5-latataton. It is an enzyme that catalyzes (ECl.
  • PQQGDH that can be applied to the method of the present invention is derived from, for example, Acinetobacter calcoaceticus LMD79.41 (A. M. Cleton- Jansen et al., J. Bacteriol., 170, 2121 (1988) and Mol. Gen. Gen et., 217, 430 (1989)), derived from Escherichia coli (A. M Cleton—Jansen et al., J. Bacteriol., 172, 6308 (1990)), derived from Gluconobacter oxydans (Mol. Gen. Genet., 229, 20 6 (1991) And those derived from Acine tobacter baumanni NCIMB11517 reported in Patent Document 1.
  • Acinetobacter calcoaceticus LMD79.41 A. M. Cleton- Jansen et al., J. Bacteriol., 170, 2121 (1988) and Mol. Gen. Gen et., 217, 430 (1989)
  • Acinetobacter baumannii (Acinetobacter baumannii) NCIMB 1151 7fe3 ⁇ 4 ⁇ 11, Acinetobacter calcoaceticus.
  • PQQGDH that can be applied to the method of the present invention is not limited to those exemplified above, as long as it has glucose dehydrogenase activity. Other amino acid residues may be added.
  • PQQGDH for example, commercially available products such as Toyobo GLD-321 can be used. Alternatively, it can be easily produced by those skilled in the art using known techniques in the technical field.
  • the above-mentioned natural microorganisms that produce PQQGDH, or the gene encoding natural PQQGDH as it is or after mutation expression vectors (many are known in the art)
  • a plasmid is inserted into a suitable host (many are known in the art, such as E. coli), and the transformant is cultured and centrifuged from the culture. After harvesting the cells, etc., destroy the cells by mechanical methods or enzymatic methods such as lysozyme, and if necessary, solubilize by adding a chelating agent such as EDT A or a surfactant. Water soluble, including PQQGDH A fraction can be obtained.
  • the expressed PQQGDH can be secreted directly into the culture medium by using an appropriate host vector system.
  • the PQQGDH-containing solution obtained as described above is subjected to, for example, vacuum concentration, membrane concentration, salting-out treatment such as ammonium sulfate or sodium sulfate, or hydrophilic organic solvents such as methanol, ethanol, acetone and the like. Precipitate by the fractional precipitation method. Heat treatment and isoelectric point treatment are also effective purification means.
  • purified PQQGDH can be obtained by performing gel filtration using an adsorbent or gel filter, adsorption chromatography, ion exchange chromatography, and affinity chromatography.
  • the purified enzyme preparation is preferably purified to such an extent that it shows a single band on electrophoresis (SDS-PAGE).
  • a heat treatment of preferably 25 to 50 ° C, more preferably 30 to 45 ° C may be performed.
  • concentration of PQQGDH in the present invention is not particularly limited.
  • the enzyme activity of PQQGDH can be measured by the following method.
  • NTB nitrotetrazolium blue
  • PMS phenazine methosulfate
  • One unit refers to the amount of PQQGDH enzyme that forms 0.5 mmol of diformazan per minute under the conditions described below.
  • D glucose solution: 0.5M (0.9 g D—glucose (molecular weight 180 ⁇ 16) / 10ml H20)
  • PIPES NaOH buffer, pH 6.5: 50 mM (1.51 g of PIPES (molecular weight 302.36) suspended in 60 mL of water, dissolved in 5 N NaOH, 2. 2 ml of 10% Triton X_100 (Use 5N NaOH for 25. Adjust the ptl to 6.5 ⁇ 0.05 with C and add 100 ml with water)
  • E. Enzyme Diluent ImM CaC12, 0.1% Triton X-100, 0.1 mM BSA-containing 50 mM PIPES _Na 0H buffer (pH 6.5)
  • the enzyme powder was dissolved in ice-cold enzyme diluent (E) immediately before the assembly and diluted to 0.1 -0.8 U / ml with the same buffer (use a plastic tube for the adhesion of the enzyme). Is preferred).
  • Vt Total volume (3. lml)
  • the pH at the time of measurement is acidic.
  • the pH is less than 7.0 and is not particularly limited, but the upper limit is preferably 6.5 or less, more preferably 6.0 or less, and even more preferably 5.5 or less in the present invention.
  • the lower limit is preferably pH 3.0 or higher, more preferably pH 3.5 or higher.
  • the preferred range in the present invention is pH 3.5 to 5.5.
  • buffers to make the pH during measurement acidic.
  • a buffer is not particularly limited as long as it has a buffer capacity capable of keeping the pH acidic.
  • Commonly used buffers include tris hydrochloric acid, boric acid, phosphoric acid, acetic acid, succinic acid, succinic acid, phthalic acid, maleic acid, glycine and their salts, MES, Bis_Tris, ADA, PIPES , ACES, MOPS 0, DES buffer such as BES, MOPS, TES, HEPES, etc. Do not form insoluble salts with calcium, buffer is preferred.
  • the concentration of these additives is not particularly limited as long as it has a buffering capacity, but the preferable upper limit is 10 mM or less, more preferably 50 mM or less. A preferred lower limit is 5 mM or more.
  • the content of the buffer in the lyophilized product is not particularly limited, but is preferably 0.1% (weight ratio) or more, particularly preferably 0.:! To 30% (weight ratio). Used in the range of.
  • These buffers may be added at the time of measurement, and may be preliminarily contained when preparing a reagent for measuring gnolecose, a gnolecose assembly kit or a glucose sensor described later. .
  • the liquid state, the dry state, etc. are not limited, and it is sufficient to function during measurement.
  • Substrate inhibition as used in the present invention refers to a phenomenon in which the reaction rate decreases at a constant concentration when the glucose (substrate) concentration of the sample to be measured is increased. When samples with various darose concentrations are measured, the glucose concentration immediately before the reaction rate decreases is measured.
  • reducing substrate inhibition means increasing the "maximum concentration at which substrate inhibition does not occur”.
  • normoglycemia is about 5 mM (90 mg / dl), and hyperglycemia is present. Value is 10mM
  • the effect of the present invention becomes more remarkable in a system including a mediator.
  • the mediator that can be applied to the method of the present invention is not particularly limited. (PMS) and 2,6-dichlorophenol indophenol (DCPIP), PMS and nitroblue tetrazolium (NBT), DCPIP alone, ferricyanide ion (as a compound) Potassium ferricyanide, etc.) alone, and Huekousen alone. Of these, ferricyanide ions (such as ferricyanium potassium as the compound) are preferred.
  • mediators may be added at the time of measurement, or may be included in advance when a glucose measurement reagent, a glucose assay kit, or a glucose sensor described later is prepared. In that case, the liquid state, the dry state, etc. are not asked and the measurement is not performed.
  • various components can coexist as necessary.
  • surfactants for example, surfactants, stabilizers, excipients and the like may be added.
  • PQQGDH can be further stabilized by adding calcium ions or salts thereof, amino acids such as glutamic acid, glutamine, and lysine, and serum albumin.
  • PQQGDH can be stabilized by containing calcium ions or calcium salts.
  • the calcium salt include calcium chloride, calcium acetate, calcium salt of inorganic acid such as calcium citrate, and calcium salt of organic acid.
  • the calcium ion content is preferably 1 X 10-4 to 1 X 10-2M.
  • the stabilizing effect of containing calcium ions or calcium salts is further improved by containing an amino acid selected from the group consisting of gnoretamic acid, glutamine and lysine.
  • the amino acid selected from the group consisting of glutamic acid, glutamine and lysine may be one type or two or more types.
  • BSA bovine serum albumin
  • OVA ovalbumin
  • (1) aspartic acid, gnoretamic acid, a-ketoglutaric acid, malic acid, a-ke PQQGDH can be stabilized by the coexistence of one or more compounds selected from the group consisting of togluconic acid, a- cyclodextrin and their salts, and (2) albumin.
  • glucose can be measured by the following various methods.
  • the reagent for measuring glucose, the glucose assay kit, and the glucose sensor of the present invention can take various forms such as liquid (aqueous solution, suspension, etc.), powdered by vacuum drying or spray drying, freeze drying, etc. .
  • the freeze-drying method is not particularly limited, but should be performed according to conventional methods.
  • the composition containing the enzyme of the present invention is not limited to a lyophilized product, but may be a solution in which the lyophilized product is redissolved.
  • the reagent for measuring glucose of the present invention typically includes a reagent necessary for measurement such as PQQGDH, a buffer solution, a mediator, a glucose standard solution for preparing a calibration curve, and a usage guideline.
  • the kit of the present invention can be provided, for example, as a lyophilized reagent or as a solution in a suitable storage solution.
  • the PQQGDH of the present invention can be provided in the form of a force apoenzyme provided in a holified form and can be holoed into a used B temple.
  • the glucose assay kit of the present invention typically includes reagents necessary for measurement such as PQQGDH, buffer, and mediator, a glucose standard solution for preparing a calibration curve, and usage guidelines.
  • the kit of the present invention can be provided, for example, as a lyophilized reagent or as a solution in a suitable storage solution.
  • the PQQGDH of the present invention is provided in the form of a holo, but it can also be provided in the form of an apoenzyme and holoed at the time of use.
  • a carbon electrode, a gold electrode, a platinum electrode, or the like is used as an electrode, and PQQGLD is immobilized on this electrode.
  • the immobilization method include a method using a crosslinking reagent, a method of encapsulating in a polymer matrix, a method of coating with a dialysis membrane, a method of using a photocrosslinking polymer, a conductive polymer, a redox polymer, or the like. It can be fixed in a polymer or adsorbed and fixed on an electrode together with an electron mediator represented by Huekousen or its derivatives, or a combination thereof.
  • the PQQGDH of the present invention may be immobilized in the form of a force apoenzyme that is immobilized on the electrode in a holo form, and PQQ may be supplied as a separate layer or in solution.
  • PQQGDH of the present invention is immobilized on a carbon electrode using dartalaldehyde, and then treated with a reagent having an amine group to block the gnoretaraldehyde.
  • Measurement of the gnolecose concentration can be performed as follows. Put the buffer in the thermostatic cell, and keep CaC12 and mediator at a constant temperature.
  • As the mediator potassium ferricyanide, phenazine methosulfate, or the like can be used.
  • As the working electrode an electrode on which the PQQGDH of the present invention is immobilized is used, and a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an Ag / AgCl electrode) are used. After a constant voltage is applied to the carbon electrode and the current becomes steady, a sample containing glucose is added and the increase in current is measured. The glucose concentration in the sample can be calculated according to the calibration curve prepared with the standard concentration of gnolecose solution.
  • D-Dalcono 1,5-Lataton + ferrocyanide ion The presence of ferrocyanide ion produced by reduction of ferricyanide ion was confirmed by measuring the decrease in absorbance at a wavelength of 420 nm by spectrophotometry.
  • PIPES NaOH buffer, ⁇ 6 ⁇ 5: 50 mM (1.51 g PIPES (molecular weight 302. 36) suspended in 60 mL of water was dissolved in 5 N NaOH, and 2 ml of 10% Triton X— 1 Calorie 00. Adjust the pH to 6 ⁇ 5 ⁇ 0 ⁇ 05 at 25 ° C using 5N NaOH, and add water to make 100 ml.
  • D-Gnolecose solution Based on 1500mM glucose solution prepared at 150, 300, 450, 600, 750, 900, 1050, 1200, 1350 and 1500mM respectively 1/10, 2/10, 3/10, 4 /
  • the same method was performed except that distilled water was added instead of the glucose solution, and a blank ( ⁇ OD blank) was measured.
  • the above operation was performed using a glucose solution having a concentration of 150 mM to 1500 mM.
  • FIG. 19 shows the concentration of each component in the reaction solution.
  • the change in absorbance per unit time was determined by calculating A ODZmin (A0D test 1 ⁇ OD blank).
  • the horizontal axis of the graph plots the glucose concentration in the reaction solution, and the vertical axis plots ⁇ OD / min corresponding to each glucose concentration.
  • Example 1 Based on the procedure of Example 1, the pH of the buffer was changed from 6.5 to 5.5. All other conditions were in accordance with Example 1.
  • the avoidance of substrate inhibition according to the present invention enables high-concentration glucose measurement with a gnolecose measurement reagent, a glucose assembly kit and a gnolecose sensor.

Abstract

[PROBLEMS] To provide a method of avoiding any substrate inhibition by pyrroloquinoline quinone dependent glucose dehydrogenase. [MEANS FOR SOLVING PROBLEMS] With respect to the measurement of glucose in a system containing pyrroloquinoline quinone dependent glucose dehydrogenase, there is provided a method of reducing any substrate inhibition during glucose measurement, characterized in that the pH value at measuring reaction falls within the acid region.

Description

明 細 書  Specification
PQQGDHの基質阻害を回避する方法  How to avoid substrate inhibition of PQQGDH
技術分野  Technical field
[0001] 本発明は、ピロ口キノリンキノン依存性グルコース脱水素酵素の基質阻害を回避す る方法に関するものである。  [0001] The present invention relates to a method for avoiding substrate inhibition of pyroguchi quinoline quinone-dependent glucose dehydrogenase.
背景技術  Background art
[0002] ピロ口キノリンキノン依存性グノレコース脱水素酵素(本願では、 PQQGDHとも記載 する。)は、ピロ口キノリンキノン (PQQ)を補酵素とするグノレコース脱水素酵素(GDH )である。グノレコースを酸化してダルコノラタトンを生成する反応を触媒するから、血糖 の測定に用いることができる。血中グルコース濃度は、糖尿病の重要なマーカーとし て臨床診断上きわめて重要な指標である。現在、血中グルコース濃度の測定はバイ ォセンサーを用いる方法が主流となっている力 S、血中グルコース濃度の測定に使用 される酵素としてピロ口キノリンキノン依存性グルコース脱水素酵素が注目されている 。このような PQQGDHとして例えば、ァシネトパクター 'バウマンニ(Acinetobacter baumannii) NCIMB11517株力 S、ピロ口キノリンキノン依存性グルコース脱水素 酵素を産生することを見出し,遺伝子のクローニングならびに高発現系を構築した事 例(たとえば、特許文献 1を参照。)などが開示されている。  [0002] Pyroguchi quinoline quinone-dependent gnolecose dehydrogenase (also referred to as PQQGDH in this application) is gnorecose dehydrogenase (GDH) using pyroguchi quinoline quinone (PQQ) as a coenzyme. Since it catalyzes the reaction that oxidizes gnolecose to produce dalconolatatone, it can be used for blood glucose measurement. Blood glucose concentration is an extremely important index for clinical diagnosis as an important marker of diabetes. Currently, biosensors are the mainstream for measuring blood glucose levels S, and pyroguchi quinoline quinone-dependent glucose dehydrogenase is attracting attention as an enzyme used to measure blood glucose levels. . As such PQQGDH, for example, it was found that Acinetobacter baumannii NCIMB11517 strain S, pyroguchi quinoline quinone-dependent glucose dehydrogenase was produced, and a gene cloning and high expression system was constructed (for example, , See Patent Document 1).
特許文献 1:特開平 11 - 243949号公報  Patent Document 1: Japanese Patent Laid-Open No. 11-243949
図面の簡単な説明  Brief Description of Drawings
[0003] [図 1]PIPESバッファー、 ρΗ6· 5におけるグルコース濃度と PQQGDH反応速度の 関係  [0003] [Fig.1] Relationship between glucose concentration and PQQGDH reaction rate in PIPES buffer, ρΗ6.5
[図 2]PIPESバッファー、 ρΗ5· 5におけるグルコース濃度と PQQGDH反応速度の 関係  [Figure 2] Relationship between glucose concentration and PQQGDH reaction rate in PIPES buffer, ρΗ5 · 5
[図 3]2—ケトグルタル酸バッファー、 ρΗ6· 5におけるグルコース濃度と PQQGDH反 応速度の関係  [Figure 3] Relationship between glucose concentration and PQQGDH reaction rate in 2-ketoglutarate buffer, ρΗ6.5
[図 4]2—ケトグルタル酸バッファー、 ρΗ5· 5におけるグルコース濃度と PQQGDH反 応速度の関係 [図 5]リンゴ酸バッファー、 ρΗ6· 5におけるグノレコース濃度と PQQGDH反応速度の 関係 [Figure 4] Relationship between glucose concentration and PQQGDH reaction rate in 2-ketoglutarate buffer, ρΗ5 · 5 [Figure 5] Relationship between gnolecose concentration and PQQGDH reaction rate in malate buffer, ρΗ6 · 5
[図 6]リンゴ酸バッファー、 ρΗ5· 5におけるグノレコース濃度と PQQGDH反応速度の 関係  [Figure 6] Relationship between gnolecose concentration and PQQGDH reaction rate in malate buffer, ρΗ5 · 5
[図 7]こはく酸バッファー、 ρΗ6. 5におけるグルコース濃度と PQQGDH反応速度の 関係  [Fig.7] Relationship between glucose concentration and PQQGDH reaction rate in succinate buffer, ρΗ6.5
[図 8]こはく酸バッファー、 ρΗ5. 5におけるグルコース濃度と PQQGDH反応速度の 関係  [Fig.8] Relationship between glucose concentration and PQQGDH reaction rate in succinate buffer, ρΗ5.5
[図 9]ダルタル酸バッファー、 ρΗ6. 5におけるグルコース濃度と PQQGDH反応速度 の関係  [Figure 9] Relationship between glucose concentration and PQQGDH reaction rate in dartrate buffer, ρΗ6.5
[図 10]ダルタル酸バッファー、 ρΗ5. 5におけるグルコース濃度と PQQGDH反応速 度の関係  [Figure 10] Relationship between glucose concentration and PQQGDH reaction rate in dartrate buffer, ρΗ5.5
[図 11]MESバッファー、 ρΗ6· 5におけるグルコース濃度と PQQGDH反応速度の 関係  [Fig. 11] Relationship between glucose concentration and PQQGDH reaction rate in MES buffer, ρΗ6 · 5
[図 12]MESバッファー、 ρΗ5· 5におけるグルコース濃度と PQQGDH反応速度の 関係  [Figure 12] Relationship between glucose concentration and PQQGDH reaction rate in MES buffer, ρΗ5 · 5
[図 13]MOPSOバッファー、 ρΗ7· 0におけるグルコース濃度と PQQGDH反応速度 の関係  [Figure 13] Relationship between glucose concentration and PQQGDH reaction rate in MOPSO buffer, ρΗ7.0
[図 14]MOPSOバッファー、 ρΗ6· 5におけるグルコース濃度と PQQGDH反応速度 の関係  [Fig.14] Relationship between glucose concentration and PQQGDH reaction rate in MOPSO buffer, ρΗ6 · 5
[図 15]MOPSバッファー、 ρΗ7· 5におけるグルコース濃度と PQQGDH反応速度の 関係  [Figure 15] Relationship between glucose concentration and PQQGDH reaction rate in MOPS buffer, ρΗ7.5
[図 16]MOPSバッファー、 pH6. 5におけるグルコース濃度と PQQGDH反応速度の 関係  [Figure 16] Relationship between glucose concentration and PQQGDH reaction rate in MOPS buffer, pH 6.5
[図 17]フマル酸バッファー、 pH6. 5におけるグルコース濃度と PQQGDH反応速度 の関係  [Fig.17] Relationship between glucose concentration and PQQGDH reaction rate in fumarate buffer, pH 6.5
[図 18]フマル酸バッファー、 pH5. 5におけるグルコース濃度と PQQGDH反応速度 の関係 [図 19]グノレコース測定系における各成分の反応液中の濃度 [Figure 18] Relationship between glucose concentration and PQQGDH reaction rate in fumarate buffer, pH 5.5 [Fig.19] Concentration of each component in the reaction solution in the gnolecose measurement system
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ピロ口キノリンキノン依存性グルコース脱水素酵素は、 D—グルコースを酸化して D ダルコノー 1, 5—ラタトンを生成する反応を触媒する点、及び反応系の溶存酸素 の影響を受けず、補酵素添加を必要としない酵素特性を有する点より、血糖の生化 学診断薬はもちろん血糖センサー等幅広い用途が期待される反面、センサーへの 適用検討にあたっては感度低下の問題の指摘があった。 [0004] Pyromouth quinoline quinone-dependent glucose dehydrogenase catalyzes the reaction that oxidizes D-glucose to produce D-darcono 1,5-latataton, and is not affected by dissolved oxygen in the reaction system. Because it has enzyme properties that do not require the addition of coenzymes, it is expected to have a wide range of uses such as blood glucose biochemical diagnostic agents as well as blood glucose sensors.
課題を解決するための手段  Means for solving the problem
[0005] 本発明者らは上記課題を解決するため、その原因について鋭意研究したところ、一 般的に血糖センサーで電子のメディエーターとして使用されるフェリシアンィ匕物ィォ ンに対する反応性が低レ、ことがわかった。 [0005] In order to solve the above-mentioned problems, the present inventors have intensively studied the cause, and as a result, the reactivity to ferricyanide used as an electron mediator in a blood glucose sensor is generally low. I understood it.
我々はこの点についてさらに検討を加え、フェリシアンィ匕物イオンに対して反応性 が低い原因は、バッファー条件が中性付近で基質阻害の影響を受けているためであ ることを明らかにした。  We further investigated this point and clarified that the reason for the low reactivity to ferricyanide ions was that the buffer conditions were affected by substrate inhibition near neutrality.
これまで PQQGDHの基質阻害を回避する方策に関する報告としては特許文献 2 があり、その中では遺伝子レベルでの PQQGDH改変手段を用いた検討が報告され ているが、その基質阻害のメカニズムについては開示も示唆もされておらず、測定反 応条件の観点から基質阻害を解決する手段にっレ、ては、その可能性にすら触れら れていなかった。  To date, there has been a report on a method for avoiding substrate inhibition of PQQGDH, and Patent Document 2 has reported studies using PQQGDH modification means at the gene level, but the mechanism of substrate inhibition has also been disclosed. There was no suggestion, and it was not even mentioned as a means to resolve substrate inhibition from the viewpoint of measurement reaction conditions.
特許文献 2 :W〇03Zl06668  Patent Document 2: W003Zl06668
[0006] 本発明者らは、過去の方策とは異なる視点から、より簡便な基質阻害の回避策を探 ることとし、さらなる鋭意研究を実施した結果、グノレコース測定反応条件の pHを酸性 にすることにより PQQGDHの基質阻害を回避することができることを明らかにし、遂 に本発明を完成するに到った。即ち本発明は、 [0006] As a result of further diligent research, the present inventors have made a search for a simpler avoidance method for substrate inhibition from a viewpoint different from the past measures, and as a result, made the pH of the reaction conditions for the measurement of gnolecose acidic. As a result, it was clarified that the substrate inhibition of PQQGDH can be avoided, and the present invention has finally been completed. That is, the present invention
項 1.ピロ口キノリンキノン依存性グルコース脱水素酵素を含む系においてグノレコー スを測定する方法において、測定反応時の pHが酸性であることを特徴とする、ダル コース測定における基質阻害を低減する方法 項 2.メディエーターとしてフェリシアン化物イオンを含む、項 1に記載のグルコース 測定方法 Item 1. A method for reducing substrate inhibition in dalcose measurement, characterized in that the pH during measurement reaction is acidic in a method for measuring gno-record in a system containing pyroguchi quinoline quinone-dependent glucose dehydrogenase Item 2. The glucose measurement method according to Item 1, comprising ferricyanide ion as a mediator
項 3. ピロ口キノリンキノン依存性グルコース脱水素酵素を含み、かつ、測定反応時 の ρΗが酸性であることを特徴とする、基質阻害を低減したグルコース測定試薬 項 4.メディエーターとしてフェリシアン化物イオンを含む、項 3に記載のグルコース 測定試薬  Item 3. Glucose measuring reagent with reduced substrate inhibition characterized by containing pyroguchi quinoline quinone-dependent glucose dehydrogenase and acidic ρΗ during the measurement reaction Item 4. Ferricyanide ion as a mediator The glucose measurement reagent according to Item 3, comprising
項 5. ピロ口キノリンキノン依存性グルコース脱水素酵素を含み、かつ、測定反応時 の ρΗが酸性であることを特徴とする、基質阻害を低減したグルコースアツセィキット 項 6.メディエーターとしてフェリシアン化物イオンを含む、項 5に記載のグルコース アツセィキット  Item 5. Glucose assay kit with reduced substrate inhibition characterized by containing pyroguchi quinoline quinone-dependent glucose dehydrogenase and ρΗ at the time of measurement reaction being acidic Item 6. Ferricyanide as a mediator The glucose assembly kit according to Item 5, comprising an ion
項 7. ピロ口キノリンキノン依存性グルコース脱水素酵素を含み、かつ、測定反応時 の ρΗが酸性であることを特徴とする、基質阻害を低減したグルコースセンサー 項 8.メディエーターとしてフェリシアン化物イオンを含む、項 7に記載のグルコース センサー  Item 7. Glucose sensor with reduced substrate inhibition characterized by containing pyroguchi quinoline quinone-dependent glucose dehydrogenase and acidic ρΗ during the measurement reaction Item 8. Felicyanide ion as a mediator The glucose sensor according to Item 7, comprising
である。  It is.
発明の効果  The invention's effect
[0007] 本発明による基質阻害回避は、グノレコース測定試薬、グノレコースアツセィキット及 びグノレコースセンサでの高濃度グルコース測定を可能にする。  [0007] Avoidance of substrate inhibition according to the present invention enables high-concentration glucose measurement using a gnolecose measuring reagent, a gnolecose assembly kit, and a gnolecose sensor.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 以下、本発明を詳細に説明する。 [0008] Hereinafter, the present invention will be described in detail.
[0009] 本発明の方法に適用することができる PQQGDHは、ピロ口キノリンキノンを補酵素 として配位し、 D—グルコースを酸化して D—ダルコノ一 1 , 5—ラタトンを生成すると いう反応を触媒する酵素 (ECl . 1. 5. 2 (旧 ECl . 1. 99. 17) )であり、由来や構造 に関しては特に限定するものではない。  [0009] PQQGDH, which can be applied to the method of the present invention, coordinates Pyroguchi quinoline quinone as a coenzyme and oxidizes D-glucose to produce D-darcono 1,5-latataton. It is an enzyme that catalyzes (ECl.
[0010] 本発明の方法に適用することができる PQQGDHは、例えば、ァシネトパクター '力 ノレコアセティカス(Acinetobacter calcoaceticus) LMD79. 41由来のもの(A. M . Cleton— Jansenら、 J. Bacteriol. , 170, 2121 (1988)および Mol. Gen. Gen et. , 217, 430 (1989) )、ェシエリヒア'コリ(Escherichia coli)由来のもの(A. M . Cleton— Jansenら、 J. Bacteriol. , 172, 6308 (1990) )、グノレコノノくクタ^ ~ ·ォキ シダンス(Gluconobacter oxydans)由来のもの(Mol. Gen. Genet. , 229, 20 6 (1991) )、及び、特許文献 1で報告されているァシネトバクタ一.バウマンニ(Acine tobacter baumanni) NCIMB11517由来のものなどが例示できる。 [0010] PQQGDH that can be applied to the method of the present invention is derived from, for example, Acinetobacter calcoaceticus LMD79.41 (A. M. Cleton- Jansen et al., J. Bacteriol., 170, 2121 (1988) and Mol. Gen. Gen et., 217, 430 (1989)), derived from Escherichia coli (A. M Cleton—Jansen et al., J. Bacteriol., 172, 6308 (1990)), derived from Gluconobacter oxydans (Mol. Gen. Genet., 229, 20 6 (1991) And those derived from Acine tobacter baumanni NCIMB11517 reported in Patent Document 1.
ただし、ェシエリヒア'コリなどに存在する膜型酵素を改変して可溶型にすることは困 難であり、起源としてはァシネトパクター 'カルコァセティカスもしくはァシネトパクター •バウマンニなどの可溶性 PQQGDHを選択することが好ましい。  However, it is difficult to modify the membrane enzyme present in Escherichia coli to make it soluble, and the origin is to select soluble PQQGDH such as Acinetopacter 'Calcoaceticus or Acinetopacter baumannii preferable.
なお、ァシネトパクター 'バウマンニ(Acinetobacter baumannii) NCIMB 1151 7fe¾ 冃11、 Acinetobacter calcoaceticusこ されてレヽた。  In addition, Acinetobacter baumannii (Acinetobacter baumannii) NCIMB 1151 7fe¾ 冃 11, Acinetobacter calcoaceticus.
[0011] 本発明の方法に適用することができる PQQGDHは、グルコースデヒドロゲナーゼ 活性を有する限り、上記に例示されたものにさらに他のアミノ酸残基の一部が欠失ま たは置換されていてもよぐまた他のアミノ酸残基が付加されていてもよい。 [0011] PQQGDH that can be applied to the method of the present invention is not limited to those exemplified above, as long as it has glucose dehydrogenase activity. Other amino acid residues may be added.
このような改変は当該技術分野における公知技術を用いて当業者であれば容易に 実施することが出来る。例えば、蛋白質に部位特異的変異を導入するために当該蛋 白質をコード  Such modifications can be easily carried out by those skilled in the art using known techniques in the art. For example, it encodes the protein to introduce site-specific mutations into the protein.
する遺伝子の塩基配列を置換するための種々の方法が、 Sambrookら著、 Molecul ar Cloning; A Laboratory Manual 第 2片 (1989) Cold Spring Harbor Laboratory Press, New Yorkに記載されている。  Various methods for substituting the base sequence of the gene to be described are described by Sambrook et al., Molecular Cloning; A Laboratory Manual, Part 2 (1989) Cold Spring Harbor Laboratory Press, New York.
[0012] これらの PQQGDHは、たとえば東洋紡績製 GLD— 321など市販のものを用いる こと力 S出来る。あるいは、当該技術分野における公知技術を用いて当業者であれば 容易に製造することが出来る。  [0012] For these PQQGDH, for example, commercially available products such as Toyobo GLD-321 can be used. Alternatively, it can be easily produced by those skilled in the art using known techniques in the technical field.
[0013] 例えば、上記の PQQGDHを生産する天然の微生物、あるいは、天然の PQQGD Hをコードする遺伝子をそのまま、あるいは、変異させてから、発現用ベクター(多くの ものが当該技術分野において知られている。例えばプラスミド。)に揷入し、適当な宿 主(多くのものが当該技術分野において知られている。例えば大腸菌。)に形質転換 させた形質転換体を培養し、培養液から遠心分離などで菌体を回収した後、菌体を 機械的方法またはリゾチームなどの酵素的方法で破壊し、また、必要に応じて EDT Aなどのキレート剤や界面活性剤等を添加して可溶化し、 PQQGDHを含む水溶性 画分を得ることができる。または適当な宿主ベクター系を用いることにより、発現した P QQGDHを直接培養液中に分泌させることが出来る。 [0013] For example, the above-mentioned natural microorganisms that produce PQQGDH, or the gene encoding natural PQQGDH as it is or after mutation, expression vectors (many are known in the art) For example, a plasmid is inserted into a suitable host (many are known in the art, such as E. coli), and the transformant is cultured and centrifuged from the culture. After harvesting the cells, etc., destroy the cells by mechanical methods or enzymatic methods such as lysozyme, and if necessary, solubilize by adding a chelating agent such as EDT A or a surfactant. Water soluble, including PQQGDH A fraction can be obtained. Alternatively, the expressed PQQGDH can be secreted directly into the culture medium by using an appropriate host vector system.
[0014] 上記のようにして得られた PQQGDH含有溶液を、例えば減圧濃縮、膜濃縮、さら に硫酸アンモニゥム、硫酸ナトリウムなどの塩析処理、あるいは親水性有機溶媒、例 えばメタノール、エタノール、アセトンなどによる分別沈殿法により沈殿せしめればよ レ、。また、加熱処理や等電点処理も有効な精製手段である。また、吸着剤あるいはゲ ルろ過剤などによるゲルろ過、吸着クロマトグラフィー、イオン交換クロマトグラフィー、 ァフィ二ティクロマトグラフィーを行うことにより、精製された PQQGDHを得ることがで きる。該精製酵素標品は、電気泳動(SDS— PAGE)的に単一のバンドを示す程度 に純化されていることが好ましい。  [0014] The PQQGDH-containing solution obtained as described above is subjected to, for example, vacuum concentration, membrane concentration, salting-out treatment such as ammonium sulfate or sodium sulfate, or hydrophilic organic solvents such as methanol, ethanol, acetone and the like. Precipitate by the fractional precipitation method. Heat treatment and isoelectric point treatment are also effective purification means. In addition, purified PQQGDH can be obtained by performing gel filtration using an adsorbent or gel filter, adsorption chromatography, ion exchange chromatography, and affinity chromatography. The purified enzyme preparation is preferably purified to such an extent that it shows a single band on electrophoresis (SDS-PAGE).
[0015] 上記工程と前後して、全 GDH酵素タンパク質に対するホロ型 PQQGDHの割合を 向上させるために、好ましくは 25〜50°C、より好ましくは 30〜45°Cの加熱処理を行 つても良い。  [0015] Before and after the above step, in order to improve the ratio of holo-type PQQGDH to the total GDH enzyme protein, a heat treatment of preferably 25 to 50 ° C, more preferably 30 to 45 ° C may be performed. .
[0016] 本発明における PQQGDHの濃度は特に制約がない。  [0016] The concentration of PQQGDH in the present invention is not particularly limited.
[0017] PQQGDHの酵素活性は以下の方法により測定できる。 [0017] The enzyme activity of PQQGDH can be measured by the following method.
PQQGDH酵素活性の測定方法  Method for measuring PQQGDH enzyme activity
(1)測定原理  (1) Measurement principle
D—グルコース + PMS + PQQGDH → D—ダルコノ一 1 , 5—ラタトン + PMS ed)  D—Glucose + PMS + PQQGDH → D—Dalcono 1, 5—Lataton + PMS ed)
2PMS (red) + NTB → 2PMS + ジホルマザン  2PMS (red) + NTB → 2PMS + diformazan
フエナジンメトサルフェート(PMS) (red)によるニトロテトラゾリゥムブルー(NTB)の 還元により形成されたジホルマザンの存在は、 570nmで分光光度法により測定した  The presence of diformazan formed by the reduction of nitrotetrazolium blue (NTB) with phenazine methosulfate (PMS) (red) was measured spectrophotometrically at 570 nm.
(2)単位の定義 (2) Unit definition
1単位は、以下に記載の条件下で 1分当たりジホルマザンを 0. 5ミリモル形成させる PQQGDHの酵素量をいう。  One unit refers to the amount of PQQGDH enzyme that forms 0.5 mmol of diformazan per minute under the conditions described below.
(3)方法  (3) Method
試薬 A. D—グルコース溶液: 0· 5M (0. 9g D—グルコース(分子量 180· 16) /10ml H20) reagent A. D—glucose solution: 0.5M (0.9 g D—glucose (molecular weight 180 · 16) / 10ml H20)
B. PIPES— NaOH緩衝液, pH6. 5 : 50mM (60mLの水中に懸濁した 1. 51g の PIPES (分子量 302. 36)を、 5N NaOHに溶解し、 2. 2mlの 10% Triton X _ 100をカロ免る。 5N NaOHを用レヽて 25。Cで ptlを 6. 5 ± 0. 05に調整し、水をカロ えて 100mlとした。)  B. PIPES—NaOH buffer, pH 6.5: 50 mM (1.51 g of PIPES (molecular weight 302.36) suspended in 60 mL of water, dissolved in 5 N NaOH, 2. 2 ml of 10% Triton X_100 (Use 5N NaOH for 25. Adjust the ptl to 6.5 ± 0.05 with C and add 100 ml with water)
C. PMS溶液: 3. 0mM (9. 19mgのフエナジンメトサノレフェート(分子量 817. 65) /l0mlH2O)  C. PMS solution: 3.0mM (9.19mg phenazine methosanolate (molecular weight 817.65) / l0mlH2O)
D. NTB溶液: 6. 6mM (53. 96mgの二卜口テ卜ラゾリゥムブノレ一(分子量 817. 65) /l0mlH2O)  D. NTB solution: 6.6 mM (53. 96 mg of double-mouthed terazolium bunoleol (molecular weight 817.65) / l0mlH2O)
E.酵素希釈液: ImM CaC12, 0. 1 % Triton X- 100, 0. 1 % BSAを含 む 50mM PIPES _Na〇H緩衝液(pH6. 5)  E. Enzyme Diluent: ImM CaC12, 0.1% Triton X-100, 0.1 mM BSA-containing 50 mM PIPES _Na 0H buffer (pH 6.5)
手順 Steps
遮光ビンに以下の反応混合物を調製し、氷上で貯蔵した (用時調製) Prepare the following reaction mixture in a light-proof bottle and store on ice (prepared at the time of use)
1. 8ml D—グルコース溶液 (A) 1. 8ml D-glucose solution (A)
24. 6ml PIPES— NaOH緩衝液(pH6. 5) (B)  24. 6ml PIPES—NaOH buffer (pH 6.5) (B)
2. 0ml PMS溶液 (C)  2. 0ml PMS solution (C)
1. 0ml NTB溶液 (D) 上記アツセィ混合物中の濃度は次のとおり。  1. 0ml NTB solution (D) Concentrations in the above assembly are as follows.
PIPES緩衝液 42mM  PIPES buffer 42 mM
D—グルコース 30mM  D—Glucose 30 mM
PMS 0. 20mM  PMS 0.20mM
NTB 0. 22mM  NTB 0.22mM
3. 0mlの反応混合液を試験管(プラスチック製)に入れ、 37°Cで 5分間予備加温した 3. Put 0ml reaction mixture into a test tube (plastic) and preheat at 37 ° C for 5 minutes
0. 1mlの酵素溶液をカ卩え、穏やかに反転して混合した。 570nmでの水に対する吸光度の増加を 37°Cに維持しながら分光光度計で 4〜5分 間記録し、曲線の初期直線部分からの 1分当たりの A ODを計算した(ODテスト)。 同時に、酵素溶液に代えて酵素希釈液 (E)加えることを除いては同一の方法を繰 り返し、ブランク ( Δ ODブランク)を測定した。 0.1 ml of enzyme solution was added and gently inverted to mix. The increase in absorbance for water at 570 nm was recorded for 4-5 minutes with a spectrophotometer while maintaining at 37 ° C, and the A OD per minute from the initial linear portion of the curve was calculated (OD test). At the same time, a blank (ΔOD blank) was measured by repeating the same method except that an enzyme diluent (E) was added instead of the enzyme solution.
アツセィの直前に氷冷した酵素希釈液 (E)で酵素粉末を溶解し、同一の緩衝液で 0. 1 -0. 8U/mlに希釈した (該酵素の接着性のためにプラスチックチューブの使 用が好ましい)。  The enzyme powder was dissolved in ice-cold enzyme diluent (E) immediately before the assembly and diluted to 0.1 -0.8 U / ml with the same buffer (use a plastic tube for the adhesion of the enzyme). Is preferred).
十昇  Tojo
活性を以下の式を用いて計算する:  Activity is calculated using the following formula:
UZml= { A OD/min ( A ODテスト一 厶00ブランク) (1^7(20. 1 X 1. O XVs)  UZml = {A OD / min (A OD test 1 00 blank) (1 ^ 7 (20. 1 X 1. O XVs)
U/mg= (U/ml) X l/C  U / mg = (U / ml) X l / C
Vt :総体積(3. lml)  Vt: Total volume (3. lml)
Vs :サンプノレ体積(1. 0ml)  Vs: Sampnore volume (1.0ml)
20. 1:ジホルマザンの 1/2ミリモル分子吸光係数  20. 1: 1/2 mmol molecular extinction coefficient of diformazan
1. 0 :光路長(cm)  1. 0: Optical path length (cm)
df :希釈係数  df: dilution factor
C:溶液中の酵素濃度(c mg/ml)  C: Enzyme concentration in solution (c mg / ml)
[0018] 本発明の方法においては測定時の pHは酸性である。 pHが酸性とは 7. 0未満を指 し特に限定されないが、本発明において好ましい上限は pH6. 5以下、さらに好まし くは pH6. 0以下、さらに好ましくは pH5. 5以下である。本発明において好ましい下 限は pH3. 0以上、さらに好ましくは pH3. 5以上である。さらに本発明において好ま しい範囲は pH3. 5〜5. 5である。  [0018] In the method of the present invention, the pH at the time of measurement is acidic. The pH is less than 7.0 and is not particularly limited, but the upper limit is preferably 6.5 or less, more preferably 6.0 or less, and even more preferably 5.5 or less in the present invention. In the present invention, the lower limit is preferably pH 3.0 or higher, more preferably pH 3.5 or higher. Furthermore, the preferred range in the present invention is pH 3.5 to 5.5.
[0019] 本発明の方法において測定時の pHを酸性にするために、種々のバッファーを用い ること力 S出来る。そのようなバッファ一としては、 pHを酸性に保つことができる緩衝能 を持つものであれば特に限定されない。一般に使用することができるバッファ一種と しては、トリス塩酸、ホウ酸、リン酸、酢酸、クェン酸、コハク酸、フタル酸、マレイン酸、 グリシン及びそれらの塩などや MES、 Bis_Tris、 ADA, PIPES, ACES, MOPS 0、 BES、 MOPS, TES、 HEPES等のダット緩衝液などがあげられる。 カルシウムと不溶性の塩を形成しなレ、緩衝液が好ましレ、。 [0019] In the method of the present invention, it is possible to use various buffers to make the pH during measurement acidic. Such a buffer is not particularly limited as long as it has a buffer capacity capable of keeping the pH acidic. Commonly used buffers include tris hydrochloric acid, boric acid, phosphoric acid, acetic acid, succinic acid, succinic acid, phthalic acid, maleic acid, glycine and their salts, MES, Bis_Tris, ADA, PIPES , ACES, MOPS 0, DES buffer such as BES, MOPS, TES, HEPES, etc. Do not form insoluble salts with calcium, buffer is preferred.
これらのうち 1種のみを適用してもよいし、 2種以上を用いてもよレ、。さらには上記以 外を含む 1種以上の複合組成であってもよい。  Only one of these may be applied, or two or more may be used. Further, one or more composite compositions including those other than the above may be used.
また、これらの添加濃度としては、緩衝能を持つ範囲であれば特に限定されないが 、好ましい上限は lOOmM以下、より好ましくは 50mM以下である。好ましい下限は 5 mM以上である。  The concentration of these additives is not particularly limited as long as it has a buffering capacity, but the preferable upper limit is 10 mM or less, more preferably 50 mM or less. A preferred lower limit is 5 mM or more.
凍結乾燥物中においては緩衝剤の含有量は、特に限定されるものではないが、好 ましくは 0. 1 % (重量比)以上、特に好ましくは 0. :!〜 30% (重量比)の範囲で使用さ れる。  The content of the buffer in the lyophilized product is not particularly limited, but is preferably 0.1% (weight ratio) or more, particularly preferably 0.:! To 30% (weight ratio). Used in the range of.
これらは、種々の市販の試薬を用いることが出来る。  These can use various commercially available reagents.
[0020] これらのバッファ一は測定時に添カ卩してもょレ、し、後記するグノレコース測定用試薬、 グノレコースアツセィキットあるいはグルコースセンサーを作製するときに予め含有させ ておくこともできる。なお、その際には、液体状態、乾燥状態などの形態は問われず、 測定時に機能するようにしておけばよい。 [0020] These buffers may be added at the time of measurement, and may be preliminarily contained when preparing a reagent for measuring gnolecose, a gnolecose assembly kit or a glucose sensor described later. . In this case, the liquid state, the dry state, etc. are not limited, and it is sufficient to function during measurement.
[0021] 本発明でいう基質阻害とは、測定対象であるサンプノレのグルコース (基質)濃度を 上げていった際に、一定濃度を境に反応速度が低下する現象をさす。種々のダルコ ース濃度のサンプルを測定した場合、反応速度が低下する直前のグルコース濃度を[0021] Substrate inhibition as used in the present invention refers to a phenomenon in which the reaction rate decreases at a constant concentration when the glucose (substrate) concentration of the sample to be measured is increased. When samples with various darose concentrations are measured, the glucose concentration immediately before the reaction rate decreases is measured.
「基質阻害が起こらなレ、最高濃度」とみなす。 It is regarded as “the highest concentration at which substrate inhibition does not occur”.
[0022] また、「基質阻害を低減する」とは、「基質阻害が起こらない最高濃度」を上げること であるが、実際的には、正常血糖値が 5mM (90mg/dl)程度、高血糖値が 10mM[0022] In addition, "reducing substrate inhibition" means increasing the "maximum concentration at which substrate inhibition does not occur". In practice, however, normoglycemia is about 5 mM (90 mg / dl), and hyperglycemia is present. Value is 10mM
(180mgZdl)程度であることから判断して、それらより有意に高値である 30mM (54Judging from the fact that it is about (180mgZdl), it is 30mM (54
OmgZdl)まで基質阻害が認められなければ (すなわち「基質阻害が起こらない最高 濃度」が 30mM以上であれば)実用上十分である。 If no substrate inhibition is observed up to (OmgZdl) (that is, if the “maximum concentration at which substrate inhibition does not occur” is 30 mM or more), it is practically sufficient.
なお、グルコースの測定範囲は「基質阻害が起こらない最高濃度の上限」とは全く 異なるものである。  Note that the measurement range of glucose is completely different from the “upper limit of the maximum concentration at which substrate inhibition does not occur”.
[0023] 本発明の効果は、メディエーターを含む系においてより顕著なものとなる。本発明 の方法に適用できるメディエーターは特に限定されなレ、が、フエナジンメトサルフヱ一 ト(PMS)と 2, 6—ジクロロフエノールインドフエノール(DCPIP)との組み合わせ、 P MSとニトロブルーテトラゾリゥム(NBT)との組み合わせ、 DCPIP単独、フェリシアン 化物イオン (ィ匕合物としてはフェリシアン化カリウムなど)単独、フエ口セン単独などが 挙げられる。中でもフェリシアンィ匕物イオン (ィ匕合物としてはフェリシアンィ匕カリウムな ど)が好ましい。 [0023] The effect of the present invention becomes more remarkable in a system including a mediator. The mediator that can be applied to the method of the present invention is not particularly limited. (PMS) and 2,6-dichlorophenol indophenol (DCPIP), PMS and nitroblue tetrazolium (NBT), DCPIP alone, ferricyanide ion (as a compound) Potassium ferricyanide, etc.) alone, and Huekousen alone. Of these, ferricyanide ions (such as ferricyanium potassium as the compound) are preferred.
これらの各メディエーターは感度に様々な違いが存在するするために、添加濃度を 一律に規定する必要性はなレ、が、一般的には ImM以上の添カ卩が望ましい。  Since there are various differences in sensitivity among these mediators, it is not necessary to uniformly define the concentration of addition, but in general, an additive of ImM or higher is desirable.
[0024] これらのメディエーターは測定時に添加してもよいし、後記するグルコース測定用 試薬、グルコースアツセィキットあるいはグルコースセンサーを作製するときに予め含 有させておくこともできる。なお、その際には、液体状態、乾燥状態などの形態は問 われず、測 [0024] These mediators may be added at the time of measurement, or may be included in advance when a glucose measurement reagent, a glucose assay kit, or a glucose sensor described later is prepared. In that case, the liquid state, the dry state, etc. are not asked and the measurement is not performed.
定時に反応時に解離してイオンの状態になるようにしておけばよい。  It should be dissociated at the time of the reaction so as to be in an ionic state.
[0025] 本発明においてはさらに必要に応じて種々の成分を共存させることが出来る。例え ば、界面活性剤、安定化剤、賦形剤などを添加しても良い。 [0025] In the present invention, various components can coexist as necessary. For example, surfactants, stabilizers, excipients and the like may be added.
[0026] 例えば、カルシウムイオンまたはその塩、およびグルタミン酸、グルタミン、リジン等 のアミノ酸類、さらに血清アルブミン等を添加することにより PQQGDHをより安定化 すること力 Sできる。 [0026] For example, PQQGDH can be further stabilized by adding calcium ions or salts thereof, amino acids such as glutamic acid, glutamine, and lysine, and serum albumin.
[0027] 例えば、カルシウムイオンまたはカルシウム塩を含有させることにより、 PQQGDHを 安定化させることができる。カルシウム塩としては、塩化カルシウムまたは酢酸カルシ ゥムもしくはクェン酸カルシウム等の無機酸または有機酸のカルシウム塩などが例示 される。また、水性組成物において、カルシウムイオンの含有量は、 1 X 10-4〜1 X 1 0-2Mであることが好ましレ、。  [0027] For example, PQQGDH can be stabilized by containing calcium ions or calcium salts. Examples of the calcium salt include calcium chloride, calcium acetate, calcium salt of inorganic acid such as calcium citrate, and calcium salt of organic acid. In the aqueous composition, the calcium ion content is preferably 1 X 10-4 to 1 X 10-2M.
[0028] カルシウムイオンまたはカルシウム塩を含有させることによる安定化効果は、グノレタ ミン酸、グルタミンおよびリジンからなる群から選択されたアミノ酸を含有させることによ り、さらに向上する。グルタミン酸、グルタミンおよびリジンからなる群から選択されるァ ミノ酸は、 1種または 2種以上であってもよレ、。ここにさらに牛血清アルブミン(BSA)、 卵白アルブミン(OVA)を含有させてもょレ、。  [0028] The stabilizing effect of containing calcium ions or calcium salts is further improved by containing an amino acid selected from the group consisting of gnoretamic acid, glutamine and lysine. The amino acid selected from the group consisting of glutamic acid, glutamine and lysine may be one type or two or more types. Add bovine serum albumin (BSA) and ovalbumin (OVA).
[0029] あるいは、(1 )ァスパラギン酸、グノレタミン酸、 a—ケトグルタル酸、リンゴ酸、 a—ケ トグルコン酸、 a—サイクロデキストリンおよびそれらの塩からなる群から選ばれた 1種 または 2種以上の化合物および(2)アルブミンを共存せしめることにより、 PQQGDH を安定化することができる。 [0029] Alternatively, (1) aspartic acid, gnoretamic acid, a-ketoglutaric acid, malic acid, a-ke PQQGDH can be stabilized by the coexistence of one or more compounds selected from the group consisting of togluconic acid, a- cyclodextrin and their salts, and (2) albumin.
[0030] 本発明においては以下の種々の方法によりグルコースを測定することができる。  [0030] In the present invention, glucose can be measured by the following various methods.
本発明のグルコース測定用試薬、グルコースアツセィキット、グルコースセンサーは 、液状 (水溶液、懸濁液等)、真空乾燥やスプレードライなどにより粉末化したもの、 凍結乾燥など種々の形態をとることができる。凍結乾燥法としては、特に制限されるも のではなく常法に従つて行えばょレ、。本発明の酵素を含む組成物は凍結乾燥物に 限られず、凍結乾燥物を再溶解した溶液状態であってもよレ、。  The reagent for measuring glucose, the glucose assay kit, and the glucose sensor of the present invention can take various forms such as liquid (aqueous solution, suspension, etc.), powdered by vacuum drying or spray drying, freeze drying, etc. . The freeze-drying method is not particularly limited, but should be performed according to conventional methods. The composition containing the enzyme of the present invention is not limited to a lyophilized product, but may be a solution in which the lyophilized product is redissolved.
[0031] グルコース測定用試薬  [0031] Glucose measuring reagent
本発明のグルコース測定用試薬は、典型的には、 PQQGDH,緩衝液、メディエー ターなど測定に必要な試薬、キャリブレーションカーブ作製のためのグルコース標準 溶液、ならびに使用の指針を含む。本発明のキットは、例えば、凍結乾燥された試薬 として、または適切な保存溶液中の溶液として提供することができる。好ましくは本発 明の PQQGDHはホロ化した形態で提供される力 アポ酵素の形態で提供し、使用 B寺にホロィ匕することもできる。  The reagent for measuring glucose of the present invention typically includes a reagent necessary for measurement such as PQQGDH, a buffer solution, a mediator, a glucose standard solution for preparing a calibration curve, and a usage guideline. The kit of the present invention can be provided, for example, as a lyophilized reagent or as a solution in a suitable storage solution. Preferably, the PQQGDH of the present invention can be provided in the form of a force apoenzyme provided in a holified form and can be holoed into a used B temple.
[0032] グルコースアツセィキット  [0032] Glucose assembly kit
本発明のグルコースアツセィキットは、典型的には、 PQQGDH、緩衝液、メデイエ 一ターなど測定に必要な試薬、キャリブレーションカーブ作製のためのグルコース標 準溶液、ならびに使用の指針を含む。本発明のキットは、例えば、凍結乾燥された試 薬として、または適切な保存溶液中の溶液として提供することができる。好ましくは本 発明の PQQGDHはホロ化した形態で提供されるが、アポ酵素の形態で提供し、使 用時にホロィ匕することもできる。  The glucose assay kit of the present invention typically includes reagents necessary for measurement such as PQQGDH, buffer, and mediator, a glucose standard solution for preparing a calibration curve, and usage guidelines. The kit of the present invention can be provided, for example, as a lyophilized reagent or as a solution in a suitable storage solution. Preferably, the PQQGDH of the present invention is provided in the form of a holo, but it can also be provided in the form of an apoenzyme and holoed at the time of use.
[0033] グルコースセンサー  [0033] Glucose sensor
本発明のグルコースセンサーは、電極としては、カーボン電極、金電極、白金電極 などを用レ、、この電極上に PQQGLDを固定化する。固定化方法としては、架橋試薬 を用いる方法、高分子マトリックス中に封入する方法、透析膜で被覆する方法、光架 橋性ポリマー、導電性ポリマー、酸化還元ポリマーなどを用いる方法があり、あるいは フエ口センあるいはその誘導体に代表される電子メディエーターとともにポリマー中に 固定あるいは電極上に吸着固定してもよぐまたこれらを組み合わせて用いてもょレ、In the glucose sensor of the present invention, a carbon electrode, a gold electrode, a platinum electrode, or the like is used as an electrode, and PQQGLD is immobilized on this electrode. Examples of the immobilization method include a method using a crosslinking reagent, a method of encapsulating in a polymer matrix, a method of coating with a dialysis membrane, a method of using a photocrosslinking polymer, a conductive polymer, a redox polymer, or the like. It can be fixed in a polymer or adsorbed and fixed on an electrode together with an electron mediator represented by Huekousen or its derivatives, or a combination thereof.
。好ましくは本発明の PQQGDHはホロ化した形態で電極上に固定化する力 アポ 酵素の形態で固定化し、 PQQを別の層としてまたは溶液中で供給することも可能で ある。典型的には、ダルタルアルデヒドを用いて本発明の PQQGDHをカーボン電極 上に固定化した後、アミン基を有する試薬で処理してグノレタルアルデヒドをブロッキン グする。 . Preferably, the PQQGDH of the present invention may be immobilized in the form of a force apoenzyme that is immobilized on the electrode in a holo form, and PQQ may be supplied as a separate layer or in solution. Typically, PQQGDH of the present invention is immobilized on a carbon electrode using dartalaldehyde, and then treated with a reagent having an amine group to block the gnoretaraldehyde.
[0034] グノレコース濃度の測定は、以下のようにして行うことができる。恒温セルに緩衝液を 入れ、 CaC12、およびメディエーターをカ卩えて一定温度に維持する。メディエーターと しては、フェリシアン化カリウム、フエナジンメトサルフェートなどを用いることができる。 作用電極として本発明の PQQGDHを固定化した電極を用レ、、対極(例えば白金電 極)および参照電極(例えば Ag/AgCl電極)を用いる。カーボン電極に一定の電圧 を印加して、電流が定常になった後、グルコースを含む試料を加えて電流の増加を 測定する。標準濃度のグノレコース溶液により作製したキャリブレーションカーブに従 レ、、試料中のグルコース濃度を計算することができる。  [0034] Measurement of the gnolecose concentration can be performed as follows. Put the buffer in the thermostatic cell, and keep CaC12 and mediator at a constant temperature. As the mediator, potassium ferricyanide, phenazine methosulfate, or the like can be used. As the working electrode, an electrode on which the PQQGDH of the present invention is immobilized is used, and a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an Ag / AgCl electrode) are used. After a constant voltage is applied to the carbon electrode and the current becomes steady, a sample containing glucose is added and the increase in current is measured. The glucose concentration in the sample can be calculated according to the calibration curve prepared with the standard concentration of gnolecose solution.
実施例  Example
[0035] 以下、本発明を実施例に基づきより詳細に説明するが、本発明は実施例によって 限定されることはない。  Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the examples.
[0036] 実施例 1 [0036] Example 1
グノレコース測定系を用いた基質阻害の確認  Confirmation of substrate inhibition using the gnolecose measurement system
測定原理  Measurement principle
PQQGDH  PQQGDH
D -グルコース +フェリシアン化物イオン→  D-glucose + ferricyanide ion →
D—ダルコノ一 1, 5—ラタトン + フエロシアン化物イオン フェリシアン化物イオンの還元により生じたフエロシアン化物イオンの存在は、分光光 度法により波長 420nmでの吸光度の減少を測定することで確認した。  D-Dalcono 1,5-Lataton + ferrocyanide ion The presence of ferrocyanide ion produced by reduction of ferricyanide ion was confirmed by measuring the decrease in absorbance at a wavelength of 420 nm by spectrophotometry.
(2)方法  (2) Method
試薬 A. PIPES— NaOH緩衝液, ρΗ6· 5 : 50mM (60mLの水中に懸濁した 1. 51gの PIPES (分子量 302. 36)を、 5N NaOHに溶解し、 2· 2mlの 10% Triton X— 1 00をカロえる。 5N NaOHを用いて 25°Cで pHを 6· 5 ± 0· 05に調整し、水を加えて 1 00mlとした。) reagent A. PIPES—NaOH buffer, ρΗ6 · 5: 50 mM (1.51 g PIPES (molecular weight 302. 36) suspended in 60 mL of water was dissolved in 5 N NaOH, and 2 ml of 10% Triton X— 1 Calorie 00. Adjust the pH to 6 · 5 ± 0 · 05 at 25 ° C using 5N NaOH, and add water to make 100 ml.)
B.フェリシアン化カリウム溶液: 50mM (0. 165g フェリシアン化カリウム(分子量 32 B. Potassium ferricyanide solution: 50 mM (0.165 g potassium ferricyanide (molecular weight 32
9. 25)を 10ml 蒸留水にて溶解した) 9. 25) was dissolved in 10ml distilled water)
C. PQQGDH溶液: 8000U/ml (約 lOOmg PQQGDH (東洋紡績社製 : GLD - 321)を蒸留水 10mlに溶解した) サンプル  C. PQQGDH solution: 8000 U / ml (about lOOmg PQQGDH (Toyobo Co., Ltd .: GLD-321) dissolved in 10 ml of distilled water) Sample
D—グノレコース溶液:各々 150, 300, 450, 600, 750, 900, 1050, 1200, 1350 及び 1500mMの各濃度(270g D—グノレコース(分子量 180. 16) /l000mlH2O にて調製した 1500mMグルコース溶液を基準にして、 1/10, 2/10, 3/10, 4/ D-Gnolecose solution: Based on 1500mM glucose solution prepared at 150, 300, 450, 600, 750, 900, 1050, 1200, 1350 and 1500mM respectively 1/10, 2/10, 3/10, 4 /
10, 5/10, 6/10, 7/10, 8/10, 9/10水希釈して作成した) 手順 (10, 5/10, 6/10, 7/10, 8/10, 9/10)
1.遮光ビンに以下の反応混合物を調製し、氷上で貯蔵した (用時調製)  1. Prepare the following reaction mixture in a light-proof bottle and store it on ice (preparation before use)
49. 6ml PIPES— NaOH緩衝液(pH6. 5) (A) 49. 6ml PIPES—NaOH buffer (pH 6.5) (A)
4. 0ml フェリシアン化カリウム溶液 (B)  4. 0ml potassium ferricyanide solution (B)
5. 6ml (C)  5. 6ml (C)
2. 3. 0mlの反応混合液を試験管(プラスチック製)に入れ、 37°Cで 5分間予備加 温した。  2. 3. 0 ml of the reaction mixture was placed in a test tube (plastic) and pre-warmed at 37 ° C for 5 minutes.
3. 0. 1mlのグルコース溶液を加え、穏やかに混合した。  3. Add 0.1 ml glucose solution and mix gently.
4. 420nmでの水に対する吸光度の減少を 37°Cに維持しながら分光光度計で 1〜 3分間記録し、曲線の初期直線部分からの 1分間当たりの A ODを計算した( A OD テスト)  4. Record the decrease in absorbance for water at 420nm at 37 ° C for 1-3 minutes with a spectrophotometer and calculate the A OD per minute from the initial linear part of the curve (A OD test)
同時に、グルコース溶液に代えて蒸留水を加えることを除いては同一の方法を実 施し、ブランク( Δ ODブランク)を測定した。 上記操作を、各 150mM〜 1500mMの各濃度のグルコース溶液を用レ、て実施し た。 At the same time, the same method was performed except that distilled water was added instead of the glucose solution, and a blank (ΔOD blank) was measured. The above operation was performed using a glucose solution having a concentration of 150 mM to 1500 mM.
[0037] 各成分の反応液中の濃度を図 19に示す。  [0037] FIG. 19 shows the concentration of each component in the reaction solution.
[0038] 計算 [0038] Calculation
A ODZmin ( A〇Dテスト一 Δ ODブランク)を算出することにより、単位時間当た りの吸光度変化を求めた。  The change in absorbance per unit time was determined by calculating A ODZmin (A0D test 1 ΔOD blank).
グラフの横軸に反応液中のグルコース濃度、縦軸に各グルコース濃度に対応する Δ OD/minをプロットする。  The horizontal axis of the graph plots the glucose concentration in the reaction solution, and the vertical axis plots Δ OD / min corresponding to each glucose concentration.
図 1に示すように、本条件ではグルコース濃度 10mMを上限として A ODZmin、 すなわち反応速度が伸びず、高値グルコース濃度にレ、くに従い反応速度が低下す ることから、基質阻害の影響が確認できる。  As shown in Fig. 1, under this condition, AODZmin with a glucose concentration of 10 mM as the upper limit, that is, the reaction rate does not increase, and the reaction rate decreases with increasing glucose concentration, so the effect of substrate inhibition can be confirmed. .
[0039] 実施例 2 [0039] Example 2
グノレコース測定系の pH条件を変更することによる基質阻害回避の確認  Confirmation of substrate inhibition avoidance by changing the pH condition of the gnolecose measurement system
実施例 1の手法に基き、バッファーの pHを 6. 5から 5. 5に変更して実施した。その 他の条件は全て実施例 1に従った。  Based on the procedure of Example 1, the pH of the buffer was changed from 6.5 to 5.5. All other conditions were in accordance with Example 1.
図 2に示すように、バッファーの pHを中性付近から酸性側へ移行することにより、 1 OmMで頭打ちとなっていた反応速度が高値グルコース濃度まで伸び続け、 40mM まで上昇することが明らかになった。またその後も同速度を維持し、反応速度低下は 認められな力つた。また全体として反応速度自体の伸びも認められた。  As shown in Fig. 2, it was found that the reaction rate, which had reached the peak at 1 OmM, continued to increase to a high glucose concentration and increased to 40 mM by shifting the buffer pH from near neutral to acidic. It was. After that, the same speed was maintained and the reaction speed was not decreased. In addition, an overall increase in the reaction rate was also observed.
このように、バッファーの pHを中性付近から酸性側へ移行することにより、基質阻害 を回避することができることが明らかとなった。  Thus, it became clear that substrate inhibition can be avoided by shifting the pH of the buffer from near neutral to acidic.
[0040] 実施例 3 [0040] Example 3
実施例 1 , 2の手法に基き、バッファ一種として 2_ケトグノレタル酸、リンゴ酸、こはく 酸、グノレタル酸、フマル酸を用いた場合、またダットバッファーである MES、 MOPS 0、 MOPSを用いた場合の確認を実施した。なお、ダットバッファーに関しては、それ ぞれのもつ pH緩衝域を参考にし、 MOPSOは pH7. 0と pH6. 5で、また MOPSは p H7. 5と pH6. 5で確認を実施した。  Based on the methods of Examples 1 and 2, when 2_ketognoletaric acid, malic acid, succinic acid, gnoretalic acid, and fumaric acid are used as one kind of buffer, and when DES buffers MES, MOPS 0, and MOPS are used Confirmation was carried out. Regarding Dat buffer, MOPSO was confirmed at pH 7.0 and pH 6.5, and MOPS was confirmed at pH 7.5 and pH 6.5, referring to the pH buffer range of each.
図 3〜図 18に示すとおり、その他のバッファ一種においても pHを酸性側へ移行する ことにより、基質阻害を低減できることを確認することが出来た。これにより、本効果は 特定のバッファ一種に限定されることなぐ一般的に認められる効果であると言える。 産業上の利用可能性 As shown in Fig. 3 to Fig. 18, the pH shifts to the acidic side in other buffer types as well. It was confirmed that the substrate inhibition could be reduced. Thus, it can be said that this effect is generally recognized without being limited to a specific buffer type. Industrial applicability
本発明による基質阻害回避は、グノレコース測定試薬、グルコースアツセィキット及び グノレコースセンサでの高濃度グルコース測定を可能にする。 The avoidance of substrate inhibition according to the present invention enables high-concentration glucose measurement with a gnolecose measurement reagent, a glucose assembly kit and a gnolecose sensor.

Claims

請求の範囲 The scope of the claims
[1] ピロ口キノリンキノン依存性グノレコース脱水素酵素を含む系においてグルコースを測 定する方法において、測定反応時の pHが酸性であることを特徴とする、グルコース 測定における基質阻害を低減する方法。  [1] A method for reducing substrate inhibition in glucose measurement, wherein glucose is measured in a system containing pyroguchi quinoline quinone-dependent gnolecose dehydrogenase, wherein the pH during the measurement reaction is acidic.
[2] メディエーターとしてフェリシアン化物イオンを含む、請求項 1に記載のグノレコース測 定方法。  [2] The method for measuring gnolecose according to claim 1, comprising ferricyanide ions as mediators.
[3] ピロ口キノリンキノン依存性グノレコース脱水素酵素を含み、かつ、測定反応時の pHが 酸性であることを特徴とする、基質阻害を低減したグルコース測定試薬。  [3] A glucose measurement reagent with reduced substrate inhibition, characterized by comprising pyroguchi quinoline quinone-dependent gnolecose dehydrogenase and having an acidic pH during the measurement reaction.
[4] メディエーターとしてフェリシアン化物イオンを含む、請求項 3に記載のグノレコース測 [4] The gnolecose measurement according to claim 3, comprising ferricyanide ions as mediators.
[5] ピロ口キノリンキノン依存性グノレコース脱水素酵素を含み、かつ、測定反応時の pHが 酸性であることを特徴とする、基質阻害を低減したグノレコースアツセィキット。 [5] A gnolecose assay kit with reduced substrate inhibition, characterized by containing pyroguchi quinoline quinone-dependent gnolecose dehydrogenase and having an acidic pH during the measurement reaction.
[6] メディエーターとしてフェリシアン化物イオンを含む、請求項 5に記載のグルコースァ ッセィキット。  6. The glucose assay kit according to claim 5, comprising ferricyanide ion as a mediator.
[7] ピロ口キノリンキノン依存性グノレコース脱水素酵素を含み、かつ、測定反応時の pHが 酸性であることを特徴とする、基質阻害を低減したグノレコースセンサー。  [7] A gnolecose sensor with reduced substrate inhibition, characterized by containing a pyroguchi quinoline quinone-dependent gnolecose dehydrogenase and having an acidic pH during the measurement reaction.
[8] メディエーターとしてフェリシアン化物イオンを含む、請求項 7に記載のグノレコースセ ンサ一。  [8] The gnolecose sensor according to claim 7, comprising ferricyanide ions as mediators.
PCT/JP2006/304440 2005-03-11 2006-03-08 Method of avoiding substrate inhibition by pqqgdh WO2006095758A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005069000 2005-03-11
JP2005-069000 2005-03-11
JP2005-175453 2005-06-15
JP2005175453A JP2006280360A (en) 2005-03-11 2005-06-15 Method for avoiding substrate inhibition of pqqgdh

Publications (1)

Publication Number Publication Date
WO2006095758A1 true WO2006095758A1 (en) 2006-09-14

Family

ID=36953352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304440 WO2006095758A1 (en) 2005-03-11 2006-03-08 Method of avoiding substrate inhibition by pqqgdh

Country Status (2)

Country Link
JP (1) JP2006280360A (en)
WO (1) WO2006095758A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002073181A1 (en) * 2001-03-13 2002-09-19 Koji Sode Enzyme electrode
EP1367120A2 (en) * 2002-05-27 2003-12-03 Toyo Boseki Kabushiki Kaisha Modified pyrroloquinoline quinone (PQQ) dependent glucose dehydrogenase with superior substrate specificity and stability
WO2003106668A1 (en) * 2002-06-13 2003-12-24 Sode Koji Glucose dehydrogenase
JP2004173538A (en) * 2002-11-25 2004-06-24 Amano Enzyme Inc Pyrroloquinolinequinone dependent glucose dehydrogenase
JP2005073630A (en) * 2003-09-02 2005-03-24 Toyobo Co Ltd Method for modifying reactivity of enzyme and modified enzyme having modified reactivity
WO2005026340A1 (en) * 2003-09-08 2005-03-24 Toyo Boseki Kabushiki Kaisha Pyrroloquinoline quinone (pqq)-dependent glucose dehydrogenase modification having excellent substrate specificity
JP2005073631A (en) * 2003-09-02 2005-03-24 Toyobo Co Ltd Method for modifying substrate specificity of enzyme and modified enzyme having modified substrate specificity
JP2006034165A (en) * 2004-07-27 2006-02-09 Toyobo Co Ltd Method for producing pqqgdh

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002073181A1 (en) * 2001-03-13 2002-09-19 Koji Sode Enzyme electrode
EP1367120A2 (en) * 2002-05-27 2003-12-03 Toyo Boseki Kabushiki Kaisha Modified pyrroloquinoline quinone (PQQ) dependent glucose dehydrogenase with superior substrate specificity and stability
WO2003106668A1 (en) * 2002-06-13 2003-12-24 Sode Koji Glucose dehydrogenase
JP2004173538A (en) * 2002-11-25 2004-06-24 Amano Enzyme Inc Pyrroloquinolinequinone dependent glucose dehydrogenase
JP2005073630A (en) * 2003-09-02 2005-03-24 Toyobo Co Ltd Method for modifying reactivity of enzyme and modified enzyme having modified reactivity
JP2005073631A (en) * 2003-09-02 2005-03-24 Toyobo Co Ltd Method for modifying substrate specificity of enzyme and modified enzyme having modified substrate specificity
WO2005026340A1 (en) * 2003-09-08 2005-03-24 Toyo Boseki Kabushiki Kaisha Pyrroloquinoline quinone (pqq)-dependent glucose dehydrogenase modification having excellent substrate specificity
JP2006034165A (en) * 2004-07-27 2006-02-09 Toyobo Co Ltd Method for producing pqqgdh

Also Published As

Publication number Publication date
JP2006280360A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP5843924B2 (en) A fusion protein of glucose dehydrogenase and cytochrome
EP2003199B1 (en) Glucose dehydrogenase
US20080003628A1 (en) Method for enhancing stability of a composition comprising soluble glucose dehydrogenase (gdh)
US20080090278A1 (en) Method for enhancing stability of a composition comprising soluble glucose dehydrogenase (gdh)
EP1367120A2 (en) Modified pyrroloquinoline quinone (PQQ) dependent glucose dehydrogenase with superior substrate specificity and stability
US20070037237A1 (en) Method for improving substrate specificity of pyrroloquinoline quinone-dependent glucose dehydrogenase
US7244600B2 (en) Glucose dehydrogenase
US8900844B2 (en) Glucose dehydrogenase
US7479383B2 (en) Modified pyrroloquinoline quinone (PQQ) dependent glucose dehydrogenase excellent in substrate specificity
JP2007043982A (en) Composition for measuring glucose, improved with its substrate specificity
JP2004344145A (en) Pyrroloquinoline quinone (pqq) dependent modified glucosedehydrogenase substance excellent in substrate specificity and stability
US7381540B2 (en) Composition for measuring glucose having improved substrate specificity
WO2006095758A1 (en) Method of avoiding substrate inhibition by pqqgdh
JP7276530B2 (en) Enzyme preparation for glucose measurement
JP2006149378A (en) Pqq-dependent glucose dehydrogenase composition
EP1752530A1 (en) Composition for suppression PQQGDH reaction inhibition
WO2006046524A1 (en) Pqq-dependent glucose dehydrogenase composition
JP4478865B2 (en) Modified metalloenzyme
JP2004313172A (en) Modified product of pyrrolo-quinoline quinone (ppq)-dependent glucose dehyrogenase excellent in substrate specificity or stability
JP2007116935A (en) Composition for improving substrate specificity of pqqgdh
JP2006217811A (en) Modified product of pqq (pyrroloquinoline quinone)-dependent glucose dehydrogenase having excellent substrate specificity
JP2007043983A (en) Modified type pyrroloquinoline quinone-dependent glucose dehydrogenase excellent in substrate specificity
JP4591074B2 (en) Heat-treated dehydrogenase
JP2018145155A (en) Electron mediator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06728759

Country of ref document: EP

Kind code of ref document: A1