WO2006061274A1 - Chip module and method for the production thereof - Google Patents

Chip module and method for the production thereof Download PDF

Info

Publication number
WO2006061274A1
WO2006061274A1 PCT/EP2005/055199 EP2005055199W WO2006061274A1 WO 2006061274 A1 WO2006061274 A1 WO 2006061274A1 EP 2005055199 W EP2005055199 W EP 2005055199W WO 2006061274 A1 WO2006061274 A1 WO 2006061274A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
chip
premold
pads
leads
Prior art date
Application number
PCT/EP2005/055199
Other languages
German (de)
French (fr)
Inventor
Ronny Ludwig
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2006061274A1 publication Critical patent/WO2006061274A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0077Other packages not provided for in groups B81B7/0035 - B81B7/0074
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0006Interconnects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0061Electrical connection means
    • G01L19/0084Electrical connection means to the outside of the housing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/141Monolithic housings, e.g. molded or one-piece housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Definitions

  • Chip module and method for its production
  • the invention relates to a chip module with a micromechanically structured sensor element for optical or stress-sensitive measurements, which can be used in particular in the automotive sector, and a method for its production.
  • Such chip modules may in particular be gas sensor modules with sensor chips for the detection of CO2, which may be e.g. used in CO2-powered automotive air conditioning systems for the detection of leaks.
  • Micromechanical sensor elements allow for cost-effective production of a standardized design of the measuring structures and accurate measurements. They are housed in suitable housings for protection against damage and contamination as well as for suitable optical alignment. The sensor module formed from the housing and the sensor element can subsequently be mounted on a substrate, e.g. a printed circuit board.
  • the chips are contacted on leadframes, for example, and the housing is injected or molded around the chips with part of the leadframe.
  • the pins of the leadframe extend laterally out of the housing for contacting and fastening the sensor module as connection pins.
  • housings are unsuitable. Therefore, premold housings are often used for such sensor chips, in which first a leadframe with several leads in a housing body of a molding material, generally a plastic or epoxy resin, is injected or molded.
  • the premold housings are based on SIP (Single Inline Packages), SOP (Small Outline Packages) or PSOP (Power Small Outline Packages) or similar housing designs.
  • One or more sensor chips are subsequently mounted in the premold housing, eg. B. glued, and contacted with the leads, eg by means of bonding wires.
  • the leads generally form bonding pads in the interior of the housing body for contacting with the contact pads of the sensor chip and extend laterally outwards through the housing body, where they laterally form protruding connection pins with which the gas sensor module can be fastened and contacted on the substrate.
  • the space required to mount the premold housings on the substrate is determined by the size of the housing and the width of the connection pins.
  • the laterally projecting, sensitive connection pins can bend during handling due to mechanical damage, which can lead to problems in the subsequent contacting on the substrate.
  • sensor chip modules with metal housings e.g. the TO design, known, which can be further processed in fürstecktechnik on the circuit boards.
  • TO design the TO design
  • such an assembly is very time consuming and expensive.
  • a premold housing is formed whose leads form bonding pads for contacting with the micromechanical measurement structure in the interior of the housing and also extend to the bottom of the housing floor. dens are bent such that they form on the underside of the housing exposed, advantageously round, contact areas, so-called ball pads.
  • the space requirement on the substrate is thus significantly reduced.
  • mechanical damage to the contacts can be avoided.
  • the ball pads can be directly attached and contacted to the substrate either via printed solder deposits or conductive adhesive deposits, or attached and contacted by the production of solder bumps or conductive bumps similar to flip chip mounting.
  • the solder or conductive adhesive contacts between the premold housing and the substrate can be additionally passivated and protected by filling underfiller material. This also achieves an additional mechanical attachment to the substrate.
  • the contacting of at least one chip in the interior of the premold housing is advantageously carried out by known wire bonds, which can be safely protected by filling the housing interior with passivation.
  • the leads of the premold housing according to the invention in this case make it possible to make contact with the sensor element via a shoulder region on the inside of the premold housing.
  • a plurality of ball pads may be formed as a ball grid array (BGA), for which purpose advantageously a leadframe with a plurality of differently long leads extending in a lateral direction is used, on which the ball pads in the lateral direction arranged offset to each other and each bent to the underside of the housing bottom.
  • BGA ball grid array
  • the invention can in principle be used for any chips, in particular over chips for stress-sensitive or optical applications.
  • Such chips may in particular be micromechanical sensor chips or micromechanical sensor elements with a plurality of chips, which for optical measurements, e.g. B. spectroscopic gas measurements, or z.
  • As stress-sensitive pressure or flow measurements can be used. In principle, but also z.
  • As optical chips or electro-optical chips are used, which require an optical access.
  • the z. B. requires six contacts and thus six ball pads, which can be formed as a BGA on the bottom of the housing, without that the housing is to be sized larger.
  • a leadframe strip with correspondingly structured leadframe areas is used, in which the leads are bent in common bend lines or fold lines.
  • the housing body are subsequently encapsulated or molded with a plastic or an epoxy resin and the resulting premold housing, advantageously after assembling the chips, separated by breaking the leads outside the premold housing, so that the individual premold housing in a few finished steps and cost and standardization can be trained.
  • FIG. 1 shows a section of a leadframe strip with a plurality of unbent leadframe areas
  • FIG. 2 shows the detail from FIG. 1 after the bending process in plan view (a) and in cross section (b)
  • FIG. 3 shows the cutout on the leadframe strip after the molding of housing bodies in the bent leadframe areas in plan view (a) and cross-section (b)
  • 4a to f a premold housing according to the invention with six BaII
  • FIG. 5 shows a two-channel gas sensor module first Embodiment of a chip module with the BGA premold package of Figure 4, a hermetically sealed two-channel thermopile chip and glued on the silicon chip cap filter chips with integrated aperture;
  • FIG. 6 shows the gas sensor module from FIG. 5 with additional chip calibration;
  • FIG. 7 a, b show cross sections through the gas sensor module of FIG. 6 along a long and a short lead;
  • FIG. 8 shows the gas sensor module from FIGS. 6, 7 after mounting on a substrate
  • FIG. 9a, b show a top view (a) and side view (b) of a dual-channel gas sensor according to another embodiment with the BGA premold housing and a hermetically sealed two-channel thermopile chip with extended housing edge before mounting the cover panel;
  • Fig. 10 shows the gas sensor module of Fig. 9 with additional, e.g. more transparent, chip assimilation;
  • the gas sensor module of Figure 7 or 8 with additionally mounted cover cover in plan view (a), side view (b) and cross-section (c).
  • FIGS. 5 to 11 shows a cross section through a hermetically sealed two-channel thermopile sensor produced in surface micromechanics, constructed as a chip stack, which can be inserted into the BGA premold housings according to the invention for forming the gas sensor modules of FIGS. 5 to 11.
  • a leadframe Strip 2 produced, of which in Fig. 1 a section is shown; the entire leaframe strip 2 extends in the longitudinal direction, that is, in Fig. 1 to the left and right, over several such cutouts.
  • the leadframe strip 2 is produced by punching a sheet, the z.
  • copper or a copper-tin alloy for. B.
  • CuSn ⁇ advantageously with a coating, for. As a nickel-gold coating exists.
  • a pattern of several leadframe areas 3 is punched, which correspond to the later premold housings in the approach.
  • the leadframe areas 3 each have a free space 4 and several, z. B.
  • leads 5 six parallel in the free space 4 extending leads 5, which are added to a - in Fig. 1 left - end in the leadframe strip 2 and in their other - right in Fig. 1 - End Scheme a ball pad. 6 7, on which, in turn, a narrower area of the lead 5 adjoins to the right, which is free in the free space 4.
  • the leads 5 are of an age-varying length, with their ball pads 6 and 7 offset from one another in the longitudinal direction of the leads 5.
  • the leads 5 can basically be aligned differently in the leadframe strip 2, z. B. in the transverse direction.
  • the stamped or structured leadframe strip 2 is subsequently bent by inserting corresponding punches into the leadframe areas 3 from above (or also correspondingly from below).
  • the leads 5 are bent such that they starting from the ground plane of the leadframe strip 2 in a first bend 8, z. B. substantially at right angles, bent downwards and in turn bent horizontally in at least one further counterbending 9.
  • Fig. 2b and 3b and z. B. also the cross sections of Fig. 4e, f can be seen, in this case a plurality of bending radii can be formed. It is relevant here that the leads 5 in their ball pads 6, 7 run horizontally and the left and right portions of the leads 5 next to the ball pads 6, 7 are bent in contrast upwards, so that the ball pads 6, 7 form the lowest level of the lead frame areas 3.
  • Fig. 3a, b are hereinafter housing body 10 of a
  • premold housing 1 are formed, which are separated from the leadframe strip 2 by cutting or punching the leads 5 below.
  • Each premold housing 1 thus has a housing body 10 and a leadframe 14 with a plurality of leads 5.
  • the punching line 12 during cutting or punching of the individual premold housing 1 runs through the leads 5 outside the housing body 10, so that the leads 5 are subsequently electrically separated.
  • the separation of the housing from the leadframe strip is advantageously carried out after the entire construction of the sensor module.
  • the housing bodies 10 are injection-molded such that they have a housing bottom 15 and a peripheral housing edge 16, whereby an upwardly open interior space 17 is formed.
  • the individual leads 5 are in each case exposed on one shoulder 18 of the housing body 10 in areas serving as bond pads 20 (FIG. 7a), and on the other hand lie in ball pads 6, 7 on the underside 15a of the housing floor 15 below free.
  • the housing edge 16 has a stop edge 22 (FIG. 7a) for the passivation medium to be introduced later, as will be described below.
  • FIGS. 5 to 7 show a first embodiment of a two-channel gas sensor module 24, in which a microstructured, shown in more detail in FIG. 12, in the preform housing 1
  • Sensor element 23 is glued, which is formed as a chip stack of a sensor chip 26, a cap chip 28 and two filter chips 30 a, b. in this connection is the sensor chip 26 on the housing bottom 15 of the gas sensor module 24 by means of an adhesive layer 25, for. As a conventional chip adhesive attached.
  • Two optical measuring structures 32 a, b are formed in the surface of the sensor chip 26 in surface micromachining (OMM), each measuring structure 32 a, b each having a membrane 33, a cavern 34 underneath the membrane 33 and a thermopile on the membrane 33 -Structure
  • OMM surface micromachining
  • thermopile structure 35 comprises interconnected interconnects formed of materials having different Seebeck coefficients and extending from the membrane 33 to the bulk material of the sensor chip 26.
  • thermopile structure 35 of each measuring structure 32 a, b is an absorber layer
  • a cavern 38 is formed, which serves as a common sensor space for both measuring structures 32 a, b and includes a vacuum.
  • the cap chip 28 is in this case on the sensor chip 26 in a vacuum-tight connection, for. B. Sealglas- connection 40, fixed so that the vacuum of the cavity 38 is sealed from the outside.
  • the two filter chips 30 a, b are fastened on the upper side of the cap chip 28 in each case by means of an adhesive layer 42 transparent to IR radiation.
  • the two optical measuring structures 32a, 32b of the dual-channel sensor element 23 serve for a first measurement and a reference measurement and are of identical design; the filter chips 30a, b bonded to the common cap chip 28 have different absorption characteristics.
  • the first filter chip 30a selectively absorbs infrared radiation in the CO2-relevant wavelength range at approximately 4.26 ⁇ m and the second filter chip 30b in a different reference wavelength range at, for example, 3.9 ⁇ m.
  • Incident IR radiation thus passes through the filter chips 30a, b, the transparent adhesive layers 42 and the common, for IR radiation transparent silicon cap chip 28, the cavern 38th and reaches the absorber layers 36 of the respective measurement structure 32a, b.
  • thermopile structure 35 Depending on the incident IR radiation, it heats up, so that its temperature increase is detected by the particular thermopile structure 35 underneath as a thermoelectric voltage and corresponding measuring voltages are generated.
  • the conductor tracks of the thermopile structure 35 are connected to contact pads 44 (or bond pads) on the upper side of the sensor chip 36 outside the cap chip 28, so that the measurement voltages generated in the two optical measurement structures 32 a, b can be read out via the contact pads 44 , and subsequently - in a manner known per se - from a difference or a ratio of the measurement signals, the content of CO2 in a measuring space between a radiation source, not shown, and the gas sensor module 24 can be determined.
  • the sensor elements 23 from the chips 26, 28 and 30 a, b are already produced at the wafer level in a conventional manner by the sensor chips 26 structured, the cap chips 28 etched and the respective wafer are mounted on each other, whereupon the sensor elements 23 from the wafer stack to be isolated.
  • the respective sensor elements 23 is glued to the housing bottom 15 via the adhesive layer 25, then the filter chips 30a, b are glued to the cap chip by means of the IR-transparent adhesive, subsequently the contact pads 44 of the sensor chip 26 to the bond pads 20 of the leads 5 via wire bonds 46 contacted and in the housing interior 17 of the premold housing 1 a passivation agent 50, z.
  • a passivation agent 50 As a common gel poured.
  • the passivation agent 50 in this case reaches the peripheral stop edge 22, which is arranged slightly below the surface of the filter chips 30a, 30b, so that the passivation means 50 does not cover the surface of the filter chips 30a, b.
  • the gas sensor module 24 has no laterally outwardly projecting connection pins, but only the ball grid array (BGA) forming ball pads 6 and 7, via which the gas sensor module 24 below on a substrate 52, for. B. a printed circuit board or a Ke- ramiksubstrat, fastened and contacted.
  • BGA ball grid array
  • B. silver conductive adhesive applied in screen printing on the circuit board 52 The assembly is thus carried out by gluing or soldering on the substrate 52.
  • the connecting means regions 54 are in this case received completely below the gas sensor module 24, so that no further lateral space on the substrate 52 is required.
  • FIGS. 9 to 11 show a two-channel gas sensor module 58 according to a further embodiment, with an otherwise corresponding structure such as the gas sensor module 24 of the first embodiment on the housing body 10 of the premold housing 1 on two opposite sides an upwardly projecting bending edge 60 of z. B. in addition 0.5 mm in length is formed.
  • the bending edge 60 is used to attach a cover cap 62 made of metal of z. B. 150 microns thickness.
  • a passivation agent 50 in particular a silicone gel, can be used that is permeable and softer than the passivating agent used in the first embodiment.
  • a protection of the interior 17 of the premold housing 1 and the passivation means 50 introduced therein takes place via the attached cover 61, which is fixed to the premold housing 1 by staking the bending edge 62 according to FIG. 10 a, b.
  • cover edges 64 of the diaphragm cover 62 are angled downward by 90 °, so that an additional lateral fixation is achieved.
  • the diaphragm cover 62 is thus fixed recorded and fixed, so that formed in it apertures 66 a, b above the two filter chips 30 a, b are positioned.
  • the diaphragm cover 62 thus serves, on the one hand, to protect the interior 17 of the premold housing 1, in particular also when using the soft passivation agent 50, so that no or hardly any dirt can penetrate, and, on the other hand, as an optical diaphragm or numerical aperture the optical measuring structures 23 a, b to keep stray radiation away.
  • filter chips 30 without aperture coating can be used.

Abstract

The invention relates to a chip module, particularly for optical and stress-sensitive measurements, comprising at least the following: a premold housing (1) consisting of a housing body (10) which is made of a plastic or epoxy resin material and provided with a housing edge (16) and a housing bottom (15), in addition to a lead frame (14) which is injected therein and provided with several leads (5) which extend through the housing body (10) and which are bent in such a way that they extend respectively inside (17) the premold housing (1) in bond pads (20) and are laid bare on the lower side (15a) of the bottom of the housing (15) in ball pads (6,7) which are embodied in particular as a ball grid array, also comprising a chip (26) which is fixed inside the premold housing (1), preferably a microstructured sensor chip (26) for optical or stress sensitive measurements and whose contact pads (44) are contacted to the bond pads (20) via wire bonds. According to the invention, it is possible to keep the space requirement on the substrate to be kept as small as possible in comparison with modules having lateral connection spins and mechanical damage of the contacts can also be kept to a minimum, wherein an underfiller can be added for the purpose of completion.

Description

Chipmodul und Verfahren zu dessen Herstellung Chip module and method for its production
Die Erfindung betrifft ein Chipmodul mit einem mikromechanisch struk- turierten Sensorelement für optische oder stressempfindliche Messungen, das insbesondere im Automotive-Bereich verwendbar ist, sowie ein Verfahren zu dessen Herstellung.The invention relates to a chip module with a micromechanically structured sensor element for optical or stress-sensitive measurements, which can be used in particular in the automotive sector, and a method for its production.
Derartige Chipmodule können insbesondere Gassensormodule mit Sensorchips zur Detektion von CO2 sein, die z.B. in CO2-betriebenen KfZ- Klimaanlagen zur Detektion von Leckagen verwendet werden.Such chip modules may in particular be gas sensor modules with sensor chips for the detection of CO2, which may be e.g. used in CO2-powered automotive air conditioning systems for the detection of leaks.
Mikromechanische Sensorelemente ermöglichen bei kostengünstiger Herstellung eine standardisierte Ausbildung der Messstrukturen und genaue Messungen. Sie werden zum Schutz vor Beschädigung und Verschmutzung sowie zur geeigneten optischen Ausrichtung in geeigneten Gehäusen aufgenommen. Das aus dem Gehäuse und dem Sensorelement gebildete Sensormodul kann nachfolgend auf einem Substrat, z.B. einer Leiterplatte, befestigt werden.Micromechanical sensor elements allow for cost-effective production of a standardized design of the measuring structures and accurate measurements. They are housed in suitable housings for protection against damage and contamination as well as for suitable optical alignment. The sensor module formed from the housing and the sensor element can subsequently be mounted on a substrate, e.g. a printed circuit board.
Bei gemoldeten Modulen werden die Chips auf z.B. Leadframes kontaktiert und das Gehäuse um die Chips mit einem Teil des Leadframes gespritzt bzw. gemoldet. Die Pins des Leadframes erstrecken sich zur Kontaktierung und Befestigung des Sensormoduls als Anschlusspins seitlich aus dem Ge- häuse heraus. Für mikromechanische Sensorchips, die stressempfindlich sind oder einen offenen Zugang zur Chipoberfläche benötigen, wie z.B. Drucksensorchips oder optische Sensorchips, sind derartige Gehäusen jedoch ungeeignet. Daher werden für derartige Sensorchips oftmals Premoldgehäuse verwendet, bei denen zunächst ein Leadframe mit mehreren Leads in einen Gehäuseköper aus einem Moldmaterial, im allgemeinen ein Kunststoff oder E- poxidharz, eingespritzt bzw. eingemoldet wird. Die Premoldgehäuse orientie- ren sich im Design an SIP (Single Inline Packages), SOP (Small Outline Pa- ckages) oder PSOP (Power Small Outline Packages) oder ähnlichen Gehäusebauformen Ein oder mehrere Sensorchips werden nachfolgend in dem Premoldgehäuse befestigt, z. B. geklebt, und mit den Leads, z.B. mittels Bonddrähten, kontaktiert.In the case of molded modules, the chips are contacted on leadframes, for example, and the housing is injected or molded around the chips with part of the leadframe. The pins of the leadframe extend laterally out of the housing for contacting and fastening the sensor module as connection pins. For micromechanical sensor chips that are sensitive to stress or need an open access to the chip surface, such as pressure sensor chips or optical sensor chips, such housings are unsuitable. Therefore, premold housings are often used for such sensor chips, in which first a leadframe with several leads in a housing body of a molding material, generally a plastic or epoxy resin, is injected or molded. The premold housings are based on SIP (Single Inline Packages), SOP (Small Outline Packages) or PSOP (Power Small Outline Packages) or similar housing designs. One or more sensor chips are subsequently mounted in the premold housing, eg. B. glued, and contacted with the leads, eg by means of bonding wires.
Die Leads bilden hierbei im Allgemeinen im Innenraum des Gehäusekörpers Bondpads zur Kontaktierung mit den Kontaktpads des Sensorchips und erstrecken sich lateral durch den Gehäusekörper nach außen, wo sie seitlich vorstehende Anschlusspins ausbilden, mit denen das Gassensormo- dul auf dem Substrat befestigt und kontaktiert werden kann. Der zur Montage der Premoldgehäuse auf dem Substrat erforderliche Platz wird durch die Größe des Gehäuses und die Breite der Anschlusspins bestimmt. Die seitlich vorstehenden, empfindlichen Anschlusspins können jedoch während des Handlings durch mechanische Beschädigungen verbiegen, was zu Proble- men bei der nachfolgenden Kontaktierung auf dem Substrat führen kann.The leads generally form bonding pads in the interior of the housing body for contacting with the contact pads of the sensor chip and extend laterally outwards through the housing body, where they laterally form protruding connection pins with which the gas sensor module can be fastened and contacted on the substrate. The space required to mount the premold housings on the substrate is determined by the size of the housing and the width of the connection pins. However, the laterally projecting, sensitive connection pins can bend during handling due to mechanical damage, which can lead to problems in the subsequent contacting on the substrate.
Weiterhin sind Sensorchipmodule mit Metallgehäusen, z.B. der TO- Bauform, bekannt, die in Durchstecktechnik auf den Leiterplatten weiterverarbeitet werden können. Eine derartige Montage ist jedoch sehr zeitaufwen- dig und kostspielig.Furthermore, sensor chip modules with metal housings, e.g. the TO design, known, which can be further processed in Durchstecktechnik on the circuit boards. However, such an assembly is very time consuming and expensive.
Das erfindungsgemäße Chipmodul und das Verfahren zu seiner Herstellung weisen demgegenüber einige Vorteile auf. Erfindungsgemäß wird ein Premoldgehäuse ausgebildet, dessen Leads zum einen im Gehäuse- Innenraum Bondpads zur Kontaktierung mit der mikromechanischen Messstruktur ausbilden und zum anderen bis zu der Unterseite des Gehäusebo- dens derart gebogen sind, dass sie an der Gehäuseunterseite freiliegende, vorteilhafterweise runde, Kontaktbereiche, so genannte Ball-Pads, ausbilden.In contrast, the chip module according to the invention and the method for its production have some advantages. According to the invention, a premold housing is formed whose leads form bonding pads for contacting with the micromechanical measurement structure in the interior of the housing and also extend to the bottom of the housing floor. dens are bent such that they form on the underside of the housing exposed, advantageously round, contact areas, so-called ball pads.
Gegenüber bekannten Premoldgehäusen mit lateral nach außen abste- henden Anschlusspins wird somit der Platzbedarf auf dem Substrat deutlich gesenkt. Weiterhin können erfindungsgemäß mechanische Beschädigungen der Kontakte vermieden werden. Die Ball-Pads können auf dem Substrat entweder über gedruckte Lotdepots oder Leitkleberdepots direkt befestigt und kontaktiert werden oder durch die Erzeugung von Lot-Bumps oder Leit- kleber-Bumps, ähnlich der Flip-Chip-Montage, befestigt und kontaktiert werden. Die Lot- oder Leitkleberkontakte zwischen dem Premoldgehäuse und dem Substrat können ergänzend durch Einfüllen von Underfiller-Material passiviert und geschützt werden. Damit wird auch eine zusätzliche mechanische Befestigung zum Substrat erreicht.Compared with known premold housings with laterally outwardly projecting connection pins, the space requirement on the substrate is thus significantly reduced. Furthermore, according to the invention, mechanical damage to the contacts can be avoided. The ball pads can be directly attached and contacted to the substrate either via printed solder deposits or conductive adhesive deposits, or attached and contacted by the production of solder bumps or conductive bumps similar to flip chip mounting. The solder or conductive adhesive contacts between the premold housing and the substrate can be additionally passivated and protected by filling underfiller material. This also achieves an additional mechanical attachment to the substrate.
Die Kontaktierung mindestens einen Chips im Innenraum des Premold- gehäuses erfolgt vorteilhafterweise über an sich bekannte Drahtbonds, die durch Auffüllen des Gehäuseinnenraums mit Passivierungsmittel sicher geschützt werden können. Die Leads des erfindungsgemäßen Premoldgehäu- ses ermöglichen hierbei eine Kontaktierung mit dem Sensorelement über einen Schulterbereich auf der Innenseite des Premoldgehäuses. Auf der Unterseite des Gehäuses können mehrere Ball-Pads als ball grid array (BGA) ausgebildet sein, wozu vorteilhafterweise ein Leadframe mit mehreren sich in einer lateralen Richtung parallel erstreckenden, unterschiedlich langen Leads verwendet wird, an denen die Ball-Pads in der lateralen Richtung zueinander versetzt angeordnet und jeweils an die Unterseite des Gehäusebodens gebogen sind.The contacting of at least one chip in the interior of the premold housing is advantageously carried out by known wire bonds, which can be safely protected by filling the housing interior with passivation. The leads of the premold housing according to the invention in this case make it possible to make contact with the sensor element via a shoulder region on the inside of the premold housing. On the underside of the housing, a plurality of ball pads may be formed as a ball grid array (BGA), for which purpose advantageously a leadframe with a plurality of differently long leads extending in a lateral direction is used, on which the ball pads in the lateral direction arranged offset to each other and each bent to the underside of the housing bottom.
Die Erfindung kann grundsätzlich für beliebige Chips, insbesondere a- ber für Chips für stressempfindliche oder optische Anwendungen verwendet werden. Derartige Chips können insbesondere mikromechanische Sensorchips bzw. mikromechanische Sensorelemente mit mehreren Chips sein, die für optische Messungen, z. B. spektroskopische Gasmessungen, oder z. B. stressempfindliche Druck- oder Durchfluss-Messungen verwendet werden. Grundsätzlich können aber auch z. B. optische Chips bzw. elektro-optische Chips eingesetzt werden, die einen optischen Zugang erfordern.The invention can in principle be used for any chips, in particular over chips for stress-sensitive or optical applications. Such chips may in particular be micromechanical sensor chips or micromechanical sensor elements with a plurality of chips, which for optical measurements, e.g. B. spectroscopic gas measurements, or z. As stress-sensitive pressure or flow measurements can be used. In principle, but also z. As optical chips or electro-optical chips are used, which require an optical access.
Erfindungsgemäß kann insbesondere ein zweikanaliger Gassensormodul ausgebildet werden, der z. B. sechs Kontakte und somit sechs Ball-Pads erfordert, die als BGA an der Unterseite des Gehäuses ausgebildet werden können, ohne dass hierzu dass Gehäuse größer zu dimensionieren ist.According to the invention, in particular a two-channel gas sensor module can be formed, the z. B. requires six contacts and thus six ball pads, which can be formed as a BGA on the bottom of the housing, without that the housing is to be sized larger.
Zur Herstellung des erfindungsgemäßen Premoldgehäuses wird vorzugsweise ein Leadframe-Streifen mit entsprechend strukturierten Leadfra- me-Bereichen verwendet, in denen die Leads in gemeinsamen Biegelinien bzw. Falzlinien gebogen werden. Die Gehäusekörper werden nachfolgend mit einem Kunststoff oder einem Epoxidharz umspritzt bzw. gemoldet und die somit entstandenen Premoldgehäuse werden, vorteilhafterweise nach der Montage der Chips, durch Zertrennen der Leads außerhalb der Premoldgehäuse vereinzelt, so dass die einzelnen Premoldgehäuse in wenigen fertigen Schritten und kostengünstig sowie standardisiert ausgebildet werden können.To produce the premold housing according to the invention, preferably a leadframe strip with correspondingly structured leadframe areas is used, in which the leads are bent in common bend lines or fold lines. The housing body are subsequently encapsulated or molded with a plastic or an epoxy resin and the resulting premold housing, advantageously after assembling the chips, separated by breaking the leads outside the premold housing, so that the individual premold housing in a few finished steps and cost and standardization can be trained.
Die Erfindung wird im Folgenden anhand der beiliegenden Zeichnungen an einigen Ausführungsformen näher erläutert. Es zeigen:The invention will be explained in more detail below with reference to the accompanying drawings of some embodiments. Show it:
Fig. 1 bis 3 die Herstellung erfindungsgemäßer Premold-Gehäuse in ei- nem Leadframestreifen:1 to 3 the production of premold housings according to the invention in a leadframe strip:
Fig. 1 einen Ausschnitt aus einem Leadframe-Streifen mit mehreren ungebogenen Leadframe-Bereichen;1 shows a section of a leadframe strip with a plurality of unbent leadframe areas;
Fig. 2 den Ausschnitt aus Fig. 1 nach dem Biegeprozess in Draufsicht (a) und im Querschnitt (b), Fig. 3 den Ausschnitt au dem Leadframe-Streifen nach dem Molden von Gehäusekörpern in die gebogenen Leadframe-Bereiche in Draufsicht (a) und Querschnitt (b), Fig. 4a bis f ein erfindungsgemäßes Premold-Gehäuse mit sechs BaII-2 shows the detail from FIG. 1 after the bending process in plan view (a) and in cross section (b), FIG. 3 shows the cutout on the leadframe strip after the molding of housing bodies in the bent leadframe areas in plan view (a) and cross-section (b), 4a to f a premold housing according to the invention with six BaII
Pads in Unteransicht (a), Durchsicht von unten (b), Durchsicht von oben (c), seitlicher Durchsicht (d), und Querschnitten durch ein längeres und ein kürzeres Lead (e, f), Fig. 5 ein zweikanaliges Gassensormodul als erste Ausführungsform eines Chipmoduls mit dem BGA-Premold-Gehäuse aus Figur 4, einem hermetisch dichten Zweikanal-Thermopile-Chip und auf dessen Silizium-Chipkappe aufgeklebten Filterchips mit integrierter Blende; Fig. 6 das Gassensormodul aus Fig. 5 mit ergänzender Chippassi- vierung;Pads in bottom view (a), bottom view (b), top view (c), side view (d), and cross sections through longer and shorter leads (e, f). FIG. 5 shows a two-channel gas sensor module first Embodiment of a chip module with the BGA premold package of Figure 4, a hermetically sealed two-channel thermopile chip and glued on the silicon chip cap filter chips with integrated aperture; FIG. 6 shows the gas sensor module from FIG. 5 with additional chip calibration; FIG.
Fig. 7a, b Querschnitte durch das Gassensormodul aus Fig. 6 entlang eines langen und eines kurzen Leads;7 a, b show cross sections through the gas sensor module of FIG. 6 along a long and a short lead; FIG.
Fig. 8 das Gassensormodul aus Fig. 6, 7 nach Montage auf einem Substrat;FIG. 8 shows the gas sensor module from FIGS. 6, 7 after mounting on a substrate;
Fig. 9a, b eine Draufsicht (a) und Seitenansicht (b) eines zweikanaligen Gassensors gemäß einer weiteren Ausführungsform mit dem BGA-Premold-Gehäuse und einem hermetisch dichten Zweikanal-Thermopile-Chip mit verlängertem Gehäuserand vor Montage der Deckelblende;9a, b show a top view (a) and side view (b) of a dual-channel gas sensor according to another embodiment with the BGA premold housing and a hermetically sealed two-channel thermopile chip with extended housing edge before mounting the cover panel;
Fig. 10 das Gassensormodul aus Fig. 9 mit zusätzlicher, z.B. transparenter, Chippassivierung;Fig. 10 shows the gas sensor module of Fig. 9 with additional, e.g. more transparent, chip assimilation;
Fig. 11a bis c das Gassensormodul aus Fig. 7 oder 8 mit zusätzlich montierter Deckelblende in Draufsicht (a), Seitenansicht (b) und Quer- schnitt (c);11a to c, the gas sensor module of Figure 7 or 8 with additionally mounted cover cover in plan view (a), side view (b) and cross-section (c).
Fig. 12 einen Querschnitt durch einen in Oberflächenmikromechanik hergestellten, hermetisch dichten Zweikanal-Thermopile- Sensor, als Chipstapel aufgebaut, der in die erfindungsgemäßen BGA-Premold-Gehäuse zur Ausbildung der Gassensor- module der Figuren 5 bis 11 einsetzbar ist.12 shows a cross section through a hermetically sealed two-channel thermopile sensor produced in surface micromechanics, constructed as a chip stack, which can be inserted into the BGA premold housings according to the invention for forming the gas sensor modules of FIGS. 5 to 11.
Zur Herstellung von Premold-Gehäusen 1 wird zunächst ein Leadframe- Streifen 2 hergestellt, von dem in Fig. 1 ein Ausschnitt gezeigt ist; der gesamte Leaframe-Streifen 2 erstreckt sich in Längsrichtung, d. h., in Fig. 1 nach links und rechts, über mehrere derartige Ausschnitte. Der Leadframe- Streifen 2 wird durch Stanzen eines Blechs hergestellt, das z. B. aus Kupfer oder einer Kupfer-Zinn-Legierung, z. B. CuSnβ, vorteilhafterweise mit einer Beschichtung, z. B. einer Nickel-Gold-Beschichtung, besteht. Hierbei wird in dem Leadframe-Streifen 2 ein Muster aus mehreren Leadframe-Bereichen 3 gestanzt, die im Ansatz den späteren Premoldgehäusen entsprechen. Die Leadframe-Bereiche 3 weisen jeweils einen Freiraum 4 und mehrere, z. B. sechs sich parallel in den Freiraum 4 erstreckende Leads 5 auf, die an einem - in Fig. 1 linken - Ende in dem Leadframe-Streifen 2 aufgenommen sind und in ihrem anderen - in Fig. 1 rechten - Endbereich einen Ball-Pad 6, 7 aufweisen, an dem sich nach rechts wiederum ein schmalerer Bereich des Leads 5 anschließt, der im Freiraum 4 frei steht. Die Leads 5 sind altemie- rend unterschiedlich lang ausgebildet, wobei ihre Ball-Pads 6 und 7 in Längsrichtung der Leads 5 zueinander versetzt sind. Hierdurch wird zum einen beim Stanzen der Ausschnitte 4 eine bessere Materialausnutzung, d. h. ein geringerer Verschnitt, und zum anderen durch das zweidimensionale Array eine bessere Platzausnutzung an der Unterseite der später auszubildenden Gehäuse erreicht. Die Leads 5 können im Leadframe-Streifen 2 grundsätzlich auch anders ausgerichtet sein, z. B. in dessen Querrichtung.For the production of premold packages 1, a leadframe Strip 2 produced, of which in Fig. 1 a section is shown; the entire leaframe strip 2 extends in the longitudinal direction, that is, in Fig. 1 to the left and right, over several such cutouts. The leadframe strip 2 is produced by punching a sheet, the z. As copper or a copper-tin alloy, for. B. CuSnβ, advantageously with a coating, for. As a nickel-gold coating exists. Here, in the leadframe strip 2, a pattern of several leadframe areas 3 is punched, which correspond to the later premold housings in the approach. The leadframe areas 3 each have a free space 4 and several, z. B. six parallel in the free space 4 extending leads 5, which are added to a - in Fig. 1 left - end in the leadframe strip 2 and in their other - right in Fig. 1 - Endbereich a ball pad. 6 7, on which, in turn, a narrower area of the lead 5 adjoins to the right, which is free in the free space 4. The leads 5 are of an age-varying length, with their ball pads 6 and 7 offset from one another in the longitudinal direction of the leads 5. As a result, on the one hand when punching the cutouts 4 a better material utilization, ie a lower waste, and on the other hand achieved by the two-dimensional array better space utilization on the bottom of the housing later trainees. The leads 5 can basically be aligned differently in the leadframe strip 2, z. B. in the transverse direction.
Gemäß Fig. 2a, b wird der gestanzte bzw. strukturierte Leadframe- Streifen 2 nachfolgend gebogen, indem entsprechende Stempel von oben (oder auch entsprechend von unten) in die Leadframe-Bereiche 3 eingeführt werden. Hierdurch werden die Leads 5 derartig gebogen, dass sie von der Grundebene des Leadframe-Streifens 2 ausgehend in einer ersten Biegung 8, z. B. im Wesentlichen rechtwinklig, nach unten gebogen und in mindestens einer weiteren Gegenbiegung 9 wiederum horizontal gebogen werden. Wie dem Querschnitt der Fig. 2b und 3b sowie z. B. auch den Querschnitten der Fig. 4e, f zu entnehmen ist, können hierbei mehrere Biegeradien ausgebildet werden. Relevant ist hierbei, dass die Leads 5 in ihren Ball-Pads 6, 7 horizontal verlaufen und die linken und rechten Bereiche der Leads 5 neben den Ball-Pads 6, 7 demgegenüber nach oben gebogen sind, so dass die Ball-Pads 6, 7 die unterste Ebene der Leadframe-Bereiche 3 bilden.According to FIG. 2 a, b, the stamped or structured leadframe strip 2 is subsequently bent by inserting corresponding punches into the leadframe areas 3 from above (or also correspondingly from below). As a result, the leads 5 are bent such that they starting from the ground plane of the leadframe strip 2 in a first bend 8, z. B. substantially at right angles, bent downwards and in turn bent horizontally in at least one further counterbending 9. As the cross section of Fig. 2b and 3b and z. B. also the cross sections of Fig. 4e, f can be seen, in this case a plurality of bending radii can be formed. It is relevant here that the leads 5 in their ball pads 6, 7 run horizontally and the left and right portions of the leads 5 next to the ball pads 6, 7 are bent in contrast upwards, so that the ball pads 6, 7 form the lowest level of the lead frame areas 3.
Gemäß Fig. 3a, b werden nachfolgend Gehäusekörper 10 aus einemAccording to Fig. 3a, b are hereinafter housing body 10 of a
Moldmaterial, z. B. Kunststoff oder einem Epoxidharz, um die einzelnen Leadframe-Bereiche 3 gemoldet bzw. gespritzt, so dass Premoldgehäuse 1 gebildet werden, die nachfolgend aus dem Leadframe-Streifen 2 durch Ausschneiden bzw. Stanzen der Leads 5 vereinzelt werden. Jedes Premold- Gehäuse 1 weist somit einen Gehäusekörper 10 und einen Leadframe 14 mit mehreren Leads 5 auf. Die Stanzlinie 12 beim Ausschneiden bzw. Stanzen der einzelnen Premold-Gehäuse 1 verläuft durch die Leads 5 außerhalb der Gehäusekörper 10, so dass die Leads 5 nachfolgend elektrisch getrennt sind. Die Abtrennung der Gehäuse aus dem Leadframestreifen erfolgt vor- teilhafterweise nach dem gesamten Aufbau des Sensormoduls.Mold material, for. As plastic or an epoxy resin to the individual lead frame areas 3 gemoldet or injected, so that premold housing 1 are formed, which are separated from the leadframe strip 2 by cutting or punching the leads 5 below. Each premold housing 1 thus has a housing body 10 and a leadframe 14 with a plurality of leads 5. The punching line 12 during cutting or punching of the individual premold housing 1 runs through the leads 5 outside the housing body 10, so that the leads 5 are subsequently electrically separated. The separation of the housing from the leadframe strip is advantageously carried out after the entire construction of the sensor module.
Wie insbesondere Fig. 4a bis f zu entnehmen ist, werden die Gehäusekörper 10 derartig gespritzt, dass sie einen Gehäuseboden 15 und einen um- laufenen Gehäuserand 16 aufweisen, wodurch ein nach oben offener Innen- räum 17 gebildet wird. Die einzelnen Leads 5 liegen jeweils zum einen auf einer Schulter 18 des Gehäusekörpers 10 in Bereichen frei, die als Bondpads 20 (Fig. 7a) dienen, und zum anderen liegen sie in Ball-Pads 6, 7 an der Unterseite 15a des Gehäusebodens 15 nach unten frei. Der Gehäuserand 16 weist eine Stoppkante 22 (Fig. 7a) für das später einzuführende Passivie- rungsmittel auf, wie weiter unten beschrieben wird.As can be seen in particular from FIGS. 4 a to f, the housing bodies 10 are injection-molded such that they have a housing bottom 15 and a peripheral housing edge 16, whereby an upwardly open interior space 17 is formed. The individual leads 5 are in each case exposed on one shoulder 18 of the housing body 10 in areas serving as bond pads 20 (FIG. 7a), and on the other hand lie in ball pads 6, 7 on the underside 15a of the housing floor 15 below free. The housing edge 16 has a stop edge 22 (FIG. 7a) for the passivation medium to be introduced later, as will be described below.
In das Premold-Gehäuse 1 wird nachfolgend mindestens ein mikrostrukturierter Chip eingeklebt. Die Figuren 5 bis 7 zeigen eine erste Ausführungsform eines zweikanaligen Gassensormoduls 24, bei dem in das Pre- mold-Gehäuse 1 ein in Fig. 12 detaillierter gezeigtes mikrostrukturiertesAt least one microstructured chip is subsequently glued into the premold housing 1. FIGS. 5 to 7 show a first embodiment of a two-channel gas sensor module 24, in which a microstructured, shown in more detail in FIG. 12, in the preform housing 1
Sensorelement 23 eingeklebt wird, das als Chipstapel aus einem Sensorchip 26, einem Kappenchip 28 und zwei Filterchips 30 a, b gebildet ist. Hierbei wird der Sensorchip 26 auf dem Gehäuseboden 15 des Gassensormoduls 24 mittels einer Klebstoffschicht 25, z. B. einem üblichen Chipklebstoff, befestigt.Sensor element 23 is glued, which is formed as a chip stack of a sensor chip 26, a cap chip 28 and two filter chips 30 a, b. in this connection is the sensor chip 26 on the housing bottom 15 of the gas sensor module 24 by means of an adhesive layer 25, for. As a conventional chip adhesive attached.
In dem Sensorchip 26 sind in Oberflächenmikromechanik (OMM) in an sich bekannter Weise zwei optische Messstrukturen 32 a, b ausgebildet, wobei jede Messstruktur 32 a,b jeweils eine Membran 33, unterhalb der Membran 33 eine Kaverne 34 und auf der Membran 33 eine Thermopile-StrukturTwo optical measuring structures 32 a, b are formed in the surface of the sensor chip 26 in surface micromachining (OMM), each measuring structure 32 a, b each having a membrane 33, a cavern 34 underneath the membrane 33 and a thermopile on the membrane 33 -Structure
35 aus miteinander kontaktierten Leiterbahnen aufweist, die aus Materialien mit unterschiedlichen Seebeck-Koeffizienten ausgebildet sind und sich von der Membran 33 bis in das Bulkmaterial des Sensorchips 26 erstrecken. Auf der Thermopile-Struktur 35 jeder Messtruktur 32 a, b ist eine Absorberschicht35 comprises interconnected interconnects formed of materials having different Seebeck coefficients and extending from the membrane 33 to the bulk material of the sensor chip 26. On the thermopile structure 35 of each measuring structure 32 a, b is an absorber layer
36 aus einem Infrarot-Strahlung absorbierenden Material, z. B. einem Metalloxid, aufgetragen. Auf der Unterseite des Kappenchips 28 ist eine Kaverne 38 ausgebildet, die als gemeinsamer Sensorraum für beide Messstrukturen 32 a, b dient und ein Vakuum einschließt. Der Kappenchips 28 ist hierbei auf dem Sensorchip 26 in einer vakuumdichten Verbindung, z. B. Sealglas- Verbindung 40, befestigt, so dass das Vakuum der Kaverne 38 gegenüber dem Außenraum abgedichtet ist. Die beiden Filterchips 30 a, b sind auf der Oberseite des Kappenchips 28 jeweils mittels einer für IR-Strahlung transparenten Klebstoffschicht 42 befestigt.36 of an infrared radiation absorbing material, for. As a metal oxide applied. On the underside of the cap chip 28, a cavern 38 is formed, which serves as a common sensor space for both measuring structures 32 a, b and includes a vacuum. The cap chip 28 is in this case on the sensor chip 26 in a vacuum-tight connection, for. B. Sealglas- connection 40, fixed so that the vacuum of the cavity 38 is sealed from the outside. The two filter chips 30 a, b are fastened on the upper side of the cap chip 28 in each case by means of an adhesive layer 42 transparent to IR radiation.
Die beiden optischen Messstrukturen 32a, 32b des zweikanaligen Sensorelementes 23 dienen einer ersten Messung und einer Referenzmessung und sind identisch ausgebildet; die auf den gemeinsamen Kappenchip 28 geklebten Filterchips 30a, b weisen unterschiedliche Absorptionscharakteristiken auf. Hierbei absorbiert der erste Filterchip 30a Infrarot-Strahlung selektiv in dem für CO2 relevanten Wellenlängenbereich bei ca. 4,26μm und der zweite Filterchip 30b in einem hiervon verschiedenen Referenzwellenlängen- bereich bei z.B. 3,9μm. Einfallende IR-Strahlung gelangt somit durch die Filterchips 30a, b, die transparenten Klebstoffschichten 42 und den gemeinsamen, für IR-Strahlung transparenten Silizium-Kappenchip 28, die Kaverne 38 und gelangt auf die Absorberschichten 36 der jeweiligen Messstruktur 32a, b. Je nach einfallender IR-Strahlung erwärmt sich diese, so dass ihre Temperaturerhöhung durch die hierunter liegende jeweilige Thermopile-Struktur 35 als Thermospannung detektiert wird und entsprechende Messspannungen er- zeugt werden. Die Leiterbahnen der Thermopile-Struktur 35 sind mit Kon- taktpads 44 (bzw. Bondpads) auf der Oberseite des Sensorchips 36 außerhalb des Kappenchips 28 verbunden, so dass die in den beiden optischen Messstrukturen 32a, b erzeugten Messspannungen über die Kontaktpads 44 ausgelesen werden können, und nachfolgend - in an sich bekannter Weise - aus einer Differenz oder einem Verhältnis der Messsignale der Gehalt an CO2 in einem Messraum zwischen einer nicht gezeigten Strahlungsquelle und dem Gassensormodul 24 ermittelt werden kann.The two optical measuring structures 32a, 32b of the dual-channel sensor element 23 serve for a first measurement and a reference measurement and are of identical design; the filter chips 30a, b bonded to the common cap chip 28 have different absorption characteristics. In this case, the first filter chip 30a selectively absorbs infrared radiation in the CO2-relevant wavelength range at approximately 4.26 μm and the second filter chip 30b in a different reference wavelength range at, for example, 3.9 μm. Incident IR radiation thus passes through the filter chips 30a, b, the transparent adhesive layers 42 and the common, for IR radiation transparent silicon cap chip 28, the cavern 38th and reaches the absorber layers 36 of the respective measurement structure 32a, b. Depending on the incident IR radiation, it heats up, so that its temperature increase is detected by the particular thermopile structure 35 underneath as a thermoelectric voltage and corresponding measuring voltages are generated. The conductor tracks of the thermopile structure 35 are connected to contact pads 44 (or bond pads) on the upper side of the sensor chip 36 outside the cap chip 28, so that the measurement voltages generated in the two optical measurement structures 32 a, b can be read out via the contact pads 44 , and subsequently - in a manner known per se - from a difference or a ratio of the measurement signals, the content of CO2 in a measuring space between a radiation source, not shown, and the gas sensor module 24 can be determined.
Die Sensorelemente 23 aus den Chips 26, 28 und 30 a, b werden in an sich bekannter Weise bereits auf Waferebene erzeugt, indem die Sensorchips 26 strukturiert, die Kappenchips 28 geätzt und die betreffenden Wafer aufeinander montiert werden, woraufhin die Sensorelemente 23 aus dem Waferstapel vereinzelt werden. Das jeweilige Sensorelemente 23 wird über die Klebstoffschicht 25 auf den Gehäuseboden 15 geklebt, danach werden die Filterchips 30a,b mittels des IR-transparenten Klebstoffes auf den Kappenchip geklebt, nachfolgend werden die Kontaktpads 44 des Sensorchips 26 mit den Bondpads 20 der Leads 5 über Drahtbonds 46 kontaktiert und in den Gehäuseinnenraum 17 des Premoldgehäuses 1 ein Passivierungsmittel 50, z. B. ein übliches Gel, eingegossen. Das Passivierungsmittel 50 gelangt hierbei bis zu der umlaufenden Stoppkante 22, die etwas unterhalb der Oberfläche der Filterchips 30a, 30b angeordnet ist, so dass das Passivierungsmittel 50 nicht die Oberfläche der Filterchips 30a, b bedeckt.The sensor elements 23 from the chips 26, 28 and 30 a, b are already produced at the wafer level in a conventional manner by the sensor chips 26 structured, the cap chips 28 etched and the respective wafer are mounted on each other, whereupon the sensor elements 23 from the wafer stack to be isolated. The respective sensor elements 23 is glued to the housing bottom 15 via the adhesive layer 25, then the filter chips 30a, b are glued to the cap chip by means of the IR-transparent adhesive, subsequently the contact pads 44 of the sensor chip 26 to the bond pads 20 of the leads 5 via wire bonds 46 contacted and in the housing interior 17 of the premold housing 1 a passivation agent 50, z. As a common gel poured. The passivation agent 50 in this case reaches the peripheral stop edge 22, which is arranged slightly below the surface of the filter chips 30a, 30b, so that the passivation means 50 does not cover the surface of the filter chips 30a, b.
Das erfindungsgemäße Gassensormodul 24 weist keine seitlich nach außen ragenden Anschlusspins, sondern lediglich die ein Ball Grid Array (BGA) bildenden Ball-Pads 6 und 7 auf, über die das Gassensormodul 24 nachfolgend auf einem Substrat 52, z. B. einer Leiterplatte oder einem Ke- ramiksubstrat, befestigt und kontaktiert wird. Hierzu werden als elektrisch leitfähige Verbindungsmittelbereiche 54 bzw.Ball-Kontakte Lot-Depots aus Lotmaterial in Schablonendruck oder entsprechende Leitkleber-Depots aus z. B. Silberleitkleber in Siebdruck auf der Leiterplatte 52 aufgebracht. Die Mon- tage erfolgt somit durch Kleben oder Löten auf dem Substrat 52. Die Verbindungsmittelbereiche 54 sind hierbei vollständig unterhalb des Gassensormoduls 24 aufgenommen, so dass kein weiterer lateraler Platz auf dem Substrat 52 benötigt wird. Sie sind weiterhin vor direkten mechanischen Beeinträchtigungen geschützt. Ergänzend kann in den Zwischenraum 56 zwischen dem Gassensormodul 24 und dem Substrat 52, d. h. um die Verbindungsmittelbereiche 54 herum, ein angedeutetes Underfiller-Material 57 aus einem elektrisch nicht leitenden Material, eingebracht werden, um die Verbindungsmittelbereiche 54 vor Umwelteinflüssen zu schützen und die mechanische Verbindungsstabilität des Gehäuses zum Substrat zu erhöhen.The gas sensor module 24 according to the invention has no laterally outwardly projecting connection pins, but only the ball grid array (BGA) forming ball pads 6 and 7, via which the gas sensor module 24 below on a substrate 52, for. B. a printed circuit board or a Ke- ramiksubstrat, fastened and contacted. For this purpose, as electrically conductive connecting means regions 54 and ball contacts solder depots of solder material in stencil printing or corresponding conductive adhesive deposits from z. B. silver conductive adhesive applied in screen printing on the circuit board 52. The assembly is thus carried out by gluing or soldering on the substrate 52. The connecting means regions 54 are in this case received completely below the gas sensor module 24, so that no further lateral space on the substrate 52 is required. They are further protected against direct mechanical damage. In addition, in the intermediate space 56 between the gas sensor module 24 and the substrate 52, ie around the connecting means regions 54, an indicated underfill material 57 made of an electrically non-conductive material, introduced to protect the connecting means 54 from environmental influences and the mechanical connection stability of the housing to increase the substrate.
Die Figuren 9 bis 11 zeigen ein zweikanaliges Gassensormodul 58 gemäß einer weiteren Ausführungsform, bei dem bei ansonsten entsprechendem Aufbau wie dem Gassensormodul 24 der ersten Ausführungsform an dem Gehäusekörper 10 des Premold-Gehäuses 1 an zwei gegenüberliegen- den Seiten ein nach oben abstehender Biegerand 60 von z. B. zusätzlich 0,5 mm Länge ausgebildet ist. Der Biegerand 60 dient der Befestigung eines Blendendeckels 62 aus Metall von z. B. 150 μm Dicke. Bei dieser Ausführungsform kann ein Passivierungsmittel 50, insbesondere ein Silikongel, verwendet werden, das I R-durch lässig und weicher als das in der ersten Aus- führungsform verwendete Passivierungsmittel ist. Ein Schutz des Innenraums 17 des Premold-Gehäuses 1 und des hierin eingebrachten Passivierungsmittel 50 erfolgt über den aufgesetzten Blendendeckel 61 , der durch Heißverstemmen des Biegerandes 62 gemäß Fig. 10a, b auf den Premold- Gehäuse 1 befestigt wird. Ergänzend werden an den beiden weiteren Seiten des Gehäuses 1 , an denen kein Biegerand 60 ausgebildet ist, Deckelkanten 64 des Blendendeckels 62 um 90° nach unten abgewinkelt, so dass eine zusätzliche laterale Fixierung erreicht wird. Der Blendendeckel 62 ist somit fest aufgenommen und fixiert, so dass in ihm ausgebildete Blenden 66 a, b oberhalb der beiden Filterchips 30a, b positioniert sind. Der Blendendeckel 62 dient somit zum einen dem Schutz des Innenraums 17 des Premold- Gehäuses 1 , insbesondere auch bei der Verwendung des weichen Passivie- rungsmittels 50, so dass kein oder kaum Schmutz eindringen kann, und zum anderen als optische Blende bzw. numerische Apertur für die optischen Messstrukturen 23 a, b, um Streustrahlung fern zu halten. Bei der zweiten Ausführungsform können somit Filterchips 30 ohne Blendenbeschichtung verwendet werden. FIGS. 9 to 11 show a two-channel gas sensor module 58 according to a further embodiment, with an otherwise corresponding structure such as the gas sensor module 24 of the first embodiment on the housing body 10 of the premold housing 1 on two opposite sides an upwardly projecting bending edge 60 of z. B. in addition 0.5 mm in length is formed. The bending edge 60 is used to attach a cover cap 62 made of metal of z. B. 150 microns thickness. In this embodiment, a passivation agent 50, in particular a silicone gel, can be used that is permeable and softer than the passivating agent used in the first embodiment. A protection of the interior 17 of the premold housing 1 and the passivation means 50 introduced therein takes place via the attached cover 61, which is fixed to the premold housing 1 by staking the bending edge 62 according to FIG. 10 a, b. In addition, at the other two sides of the housing 1, on which no bending edge 60 is formed, cover edges 64 of the diaphragm cover 62 are angled downward by 90 °, so that an additional lateral fixation is achieved. The diaphragm cover 62 is thus fixed recorded and fixed, so that formed in it apertures 66 a, b above the two filter chips 30 a, b are positioned. The diaphragm cover 62 thus serves, on the one hand, to protect the interior 17 of the premold housing 1, in particular also when using the soft passivation agent 50, so that no or hardly any dirt can penetrate, and, on the other hand, as an optical diaphragm or numerical aperture the optical measuring structures 23 a, b to keep stray radiation away. Thus, in the second embodiment, filter chips 30 without aperture coating can be used.

Claims

Patentansprüche claims
1. Chipmodul, insbesondere für optische oder stressempfindliche An- Wendungen, das mindestens aufweist: ein Premoldgehäuse (1 ), das einen aus einem Kunststoff- oder Epoxidharz- Material gefertigen Gehäusekörper (10) mit einem Gehäuserand (16) und einem Gehäuseboden (15) und einen in den Gehäusekörper (10) eingespritzten Leadframe (14) mit mehreren Leads (5) aufweist, die sich durch den Gehäusekörper (10) erstrecken und derartig gebogen sind, dass sie jeweils im Innenraum (17) des Pre- moldgehäuses (1 ) in Bondpads (20) und auf der Unterseite (15a) des Gehäusebodens (15) in Ball-Pads (6, 7) freiliegen, und mindestens einen Chip (26, 28, 30a, b), der in dem Premoldgehäuse (1) befestigt ist und Kontaktpads (44) aufweist, die mit den Bondpads (20) der Leads (5) über sich durch den Innenraum (17) des Premoldgehäuses (1 ) erstreckende Drahtbonds (46) kontaktiert sind.1. Chip module, in particular for optical or stress-sensitive applications, which comprises at least: a premold housing (1) which has a housing body (10) made of a plastic or epoxy resin material with a housing edge (16) and a housing bottom (15) and a leadframe (14), which is injected into the housing body (10) and has a plurality of leads (5), which extend through the housing body (10) and are bent in such a way that they each lie in the interior (17) of the preform housing (1). in bonding pads (20) and on the underside (15a) of the housing bottom (15) in ball pads (6, 7), and at least one chip (26, 28, 30a, b) mounted in the premold housing (1) and contact pads (44) which are in contact with the bond pads (20) of the leads (5) via wire bonds (46) extending through the interior (17) of the premold housing (1).
2. Chipmodul nach Anspruch 1 , dadurch gekennzeichnet, dass das Premoldgehäuse (1 ) durch ein Surface mount technology - Verfahren montierbar ist.2. Chip module according to claim 1, characterized in that the premold housing (1) by a surface mount technology - method can be mounted.
3. Chipmodul nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in den Innenraum (17) des Premoldgehäuses (1 ) ein Passivie- rungsmittel (50) eingebracht ist, das die Bondpads (20) der Leads3. Chip module according to claim 1 or 2, characterized in that in the interior (17) of the premold housing (1) a Passivie- rungsmittel (50) is introduced, the bonding pads (20) of the leads
(5), die Kontaktpads (44) des Chips (26) und die Drahtbonds (46) vollständig umgibt.(5) completely surrounds the contact pads (44) of the chip (26) and the wire bonds (46).
4. Chipmodul nach Anspruch 3, dadurch gekennzeichnet, dass an der Innenseite des Gehäuserandes (16) eine umlaufende Stoppkante (22) zur Begrenzung der Füllhöhe des Passivierungsmittels (50) ausgebildet ist. 4. Chip module according to claim 3, characterized in that on the inside of the housing edge (16) has a circumferential stop edge (22) for limiting the filling level of the passivation means (50) is formed.
5. Chipmodul nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass Bondpads (20) auf der Oberseite einer Schulter (18) des Gehäuserandes (16) ausgebildet sind und die Leads (5) von den Bondpads (20) ausgehend in einer ersten Biegekante (8) nach unten gebogen und in mindestens einer weiteren Biegekante (9) vor den Ball-Pads (6, 7) wiederum gegengebogen sind.5. Chip module according to one of the preceding claims, characterized in that bonding pads (20) on the top of a shoulder (18) of the housing edge (16) are formed and the leads (5) of the bond pads (20) starting in a first bending edge ( 8) bent down and in at least one other bending edge (9) in front of the ball pads (6, 7) are in turn counter-bent.
6. Chipmodul nach einem der vorherigen Ansprüche, dadurch ge- kennzeichnet, dass die Leads (5) sich von einer Seite her parallel durch das Premoldgehäuse (1 ) erstrecken und bis zu den Ball-Pads (6, 7) unterschiedlich lang ausgebildet sind derartig, dass die Ball- Pads (6, 7) auf der Unterseite (15a) des Gehäusebodens (15) in lateraler Richtung und Längsrichtung zueinander versetzt ausgebildet sind.6. Chip module according to one of the preceding claims, character- ized in that the leads (5) extend from one side parallel through the premold housing (1) and formed to the ball pads (6, 7) of different lengths such in that the ball pads (6, 7) on the underside (15a) of the housing bottom (15) are offset from one another in the lateral direction and the longitudinal direction.
7. Chipmodul nach Anspruch 6, dadurch gekennzeichnet, dass die Leads (5) alternierend kürzer und länger ausgebildet sind und ein Ball Grid Array aus zueinander versetzten Ball-Pads (6, 7) aufwei- sen.7. Chip module according to claim 6, characterized in that the leads (5) are formed alternately shorter and longer and a ball grid array of mutually offset ball pads (6, 7) aufwei- sen.
8. Chipmodul nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass auf das Premoldgehäuse (1) ein Deckel (62) aufgesetzt und durch Umlegen eines vorstehenden Biegerandes (60) des Gehäusekörpers (10) heißverstemmt ist.8. Chip module according to one of the preceding claims, characterized in that on the premold housing (1) a lid (62) placed and hot-staked by moving a projecting bending edge (60) of the housing body (10).
9. Chipmodul nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass es ein Sensormodul (24, 58) ist, wobei in dem Premoldgehäuse (1 ) ein Sensorelement (23) mit mindestens einem mikrostrukturierten Sensorchip (26) für optische oder stressempfindliche Messungen aufgenommen ist. 9. Chip module according to one of the preceding claims, characterized in that it is a sensor module (24, 58), wherein in the premold housing (1) a sensor element (23) with at least one microstructured sensor chip (26) is recorded for optical or stress-sensitive measurements ,
10. Chipmodul nach Anspruch 9, dadurch gekennzeichnet, dass das Sensorelement (23) einen Chipstapel aus dem Sensorchip (26), einem Kappenchip (28) und mindestens zwei auf dem Kappenchip (28) befestigten Filterchips (30a, b) zur selektiven Absorption von Infrarotstrahlung unterschiedlicher Wellenlängenbereiche aufweist, wobei auf dem Sensorchip (26) mindestens zwei optische Messstrukturen (32a, b) zur Messung der durch die Filterchips (30a, b) gelangten Infrarotstrahlung ausgebildet sind.10. Chip module according to claim 9, characterized in that the sensor element (23) a chip stack of the sensor chip (26), a cap chip (28) and at least two on the cap chip (28) attached filter chip (30a, b) for the selective absorption of Infrared radiation of different wavelength ranges, wherein on the sensor chip (26) at least two optical measuring structures (32a, b) for measuring the through the filter chips (30a, b) reached infrared radiation are formed.
11. Chipmodul nach Anspruch 9, dadurch gekennzeichnet, dass es ein11. Chip module according to claim 9, characterized in that it is a
Sensormodul mit einem stressempfindlichen Sensorchip (26) für eine Druckmessung oder Durchflussmessung ist.Sensor module with a stress-sensitive sensor chip (26) for a pressure measurement or flow measurement is.
12. Verfahren zum Herstellen eines Chipmoduls (24, 58), mit mindes- tens folgenden Schritten:12. A method for producing a chip module (24, 58), with at least the following steps:
Bereitstellen eines Leadframe-Streifens (2) mit mehreren Leadfra- me-Bereichen (3), die jeweils mehrere Leads (5) mit jeweils einem Ball-Pad (6, 7) aufweisen, an einem Ende in dem Leadframe- Streifen (2) aufgenommen sind und an ihrem anderen Ende frei vor- stehen,Providing a leadframe strip (2) with a plurality of leadframe areas (3), each having a plurality of leads (5), each with a ball pad (6, 7), at one end in the leadframe strip (2) and are free at the other end,
Biegen der Leads (5) jedes Leadframe-Bereiches (3) derartig, dass jedes Lead (5) einen oberen Bereich für einen Bondpad (20) und einen unteren Bereich für einen Ball-Pad (6, 7) aufweist, Molden von Gehäusekörpern (10) um die gebogenen Leadframe- Bereiche (3) derartig, dass die Ball-Pads (6, 7) an der UnterseiteBending the leads (5) of each lead frame area (3) such that each lead (5) has a top area for a bond pad (20) and a bottom area for a ball pad (6, 7); 10) around the bent leadframe areas (3) such that the ball pads (6, 7) at the bottom
(15a) des Gehäusebodens (15) des Gehäusekörpers (10) freiliegen und die oberen Bereiche des Leads (5) jeweils einen Bondpad (20) auf einer Schulter (18) des Gehäusekörpers (10) ausbilden, Befestigen mindestens eines Chips (26) in dem Premoldgehäuse (1 ),(15a) of the housing bottom (15) of the housing body (10) and the upper portions of the lead (5) each form a bonding pad (20) on a shoulder (18) of the housing body (10), securing at least one chip (26) in the premold housing (1),
Kontaktieren des Chips (26) mit den Bondpads (20) der Leads (5), und Vereinzeln der Premoldgehäuse (1) aus dem Leadframe-Streifen (2) durch Zertrennen der Leads (5) außerhalb des Gehäusekörpers (10),Contacting the chip (26) with the bond pads (20) of the leads (5), and Separating the premold housings (1) from the leadframe strip (2) by severing the leads (5) outside the housing body (10),
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass zwischen Kontaktpads (44) des Chips (26) und den Bondpads (20) der Leads (5) Drahtbonds (46) ausgebildet werden, die sich durch den Innenraum (17) des Premoldgehäuses (1 ) erstrecken, und nachfolgend in den Innenraum (17) des Premoldgehäuses (1 ) Passivie- rungsmittel (50) eingegeben wird, das die Kontaktpads (44) des13. The method according to claim 12, characterized in that formed between contact pads (44) of the chip (26) and the bond pads (20) of the leads (5) wire bonds (46) extending through the interior (17) of the premold housing ( 1), and subsequently in the interior (17) of the premold housing (1) passivation medium (50) is input, which the contact pads (44) of the
Chips (26), die Bondpads (20) der Leads (5) und die Drahtbonds (46) bedeckt. Chips (26), the bond pads (20) of the leads (5) and the wire bonds (46) covered.
PCT/EP2005/055199 2004-12-07 2005-10-12 Chip module and method for the production thereof WO2006061274A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410058815 DE102004058815A1 (en) 2004-12-07 2004-12-07 Chip module and method for its production
DE102004058815.5 2004-12-07

Publications (1)

Publication Number Publication Date
WO2006061274A1 true WO2006061274A1 (en) 2006-06-15

Family

ID=35432826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/055199 WO2006061274A1 (en) 2004-12-07 2005-10-12 Chip module and method for the production thereof

Country Status (2)

Country Link
DE (1) DE102004058815A1 (en)
WO (1) WO2006061274A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107324274A (en) * 2017-07-13 2017-11-07 中国工程物理研究院电子工程研究所 The package carrier three-dimensionally integrated for SIP

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007005630B4 (en) 2007-02-05 2019-08-08 Infineon Technologies Ag Sensor chip module and method for producing a sensor chip module
DE102007037841A1 (en) 2007-08-10 2009-02-12 Robert Bosch Gmbh Support module i.e. sensor support module, has module housing provided with contact surface, and support element connected with module housing by adhesive layer that exhibits anisotropic electrical conductivity
DE102007051870A1 (en) 2007-10-30 2009-05-07 Robert Bosch Gmbh Module housing and method for producing a module housing
DE102008041035A1 (en) 2008-08-06 2010-02-11 Robert Bosch Gmbh Electronic sensor or sensor device, in particular acceleration sensor, with a chip module installed in a sensor housing
CN103988066B (en) * 2011-12-02 2016-03-23 森尔公司 For air chamber and the formation method of the epoxy resin mold of optical measurement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145958A (en) * 1997-07-24 1999-02-16 Kyowa Kasei Kk Surface-mount parts and manufacture thereof
JP2000294713A (en) * 1999-04-07 2000-10-20 Apic Yamada Corp Lead frame, semiconductor package using the same and manufacture thereof
EP1096566A2 (en) * 1999-10-26 2001-05-02 Nec Corporation Electronic part and method of assembling the same
EP1187319A2 (en) * 2000-08-28 2002-03-13 Nec Corporation Lead frame set and saw filter using the same
US6521966B1 (en) * 1999-04-14 2003-02-18 Denso Corporation Semiconductor strain sensor
JP2004165567A (en) * 2002-11-15 2004-06-10 Mitsui High Tec Inc Lead frame for pre-mold package, manufacturing method therefor, pre-mold package and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145958A (en) * 1997-07-24 1999-02-16 Kyowa Kasei Kk Surface-mount parts and manufacture thereof
JP2000294713A (en) * 1999-04-07 2000-10-20 Apic Yamada Corp Lead frame, semiconductor package using the same and manufacture thereof
US6521966B1 (en) * 1999-04-14 2003-02-18 Denso Corporation Semiconductor strain sensor
EP1096566A2 (en) * 1999-10-26 2001-05-02 Nec Corporation Electronic part and method of assembling the same
EP1187319A2 (en) * 2000-08-28 2002-03-13 Nec Corporation Lead frame set and saw filter using the same
JP2004165567A (en) * 2002-11-15 2004-06-10 Mitsui High Tec Inc Lead frame for pre-mold package, manufacturing method therefor, pre-mold package and manufacturing method therefor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LONGFORD A ET AL: "The use of pre-molded leadframe cavity package technologies in photonic and RF applications", 27TH. IEEE/CPMT/SEMI INTERNATIONAL ELECTRONICS MANUFACTURING TECHNOLOGY SYMPOSIUM (IEMT), 17 - 18 JULY 2002, SAN JOSE, CA, 2002, Piscataway, NJ, USA, pages 348 - 352, XP010603439, ISBN: 0-7803-7301-4 *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 05 31 May 1999 (1999-05-31) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 13 5 February 2001 (2001-02-05) *
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 12 5 December 2003 (2003-12-05) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107324274A (en) * 2017-07-13 2017-11-07 中国工程物理研究院电子工程研究所 The package carrier three-dimensionally integrated for SIP
CN107324274B (en) * 2017-07-13 2024-04-05 中国工程物理研究院电子工程研究所 Encapsulation carrier for SIP three-dimensional integration

Also Published As

Publication number Publication date
DE102004058815A1 (en) 2006-06-08

Similar Documents

Publication Publication Date Title
DE102009038706B4 (en) sensor device
DE102010006132B4 (en) Miniaturized electrical component with a stack of a MEMS and an ASIC
DE102005016751B3 (en) Method for producing packaged electronic components
DE102010016696B4 (en) Semiconductor device
DE102009007837A1 (en) Sensor module and method for producing sensor modules
EP1472727A2 (en) Semiconductor component comprising a sensor surface or an actuator surface, and method for producing the same
DE102012108305A1 (en) Sensor component and method
DE10351761A1 (en) Dynamic value sensor, e.g. semiconductor acceleration sensor, has a switching circuit board that is arranged over the sensor moving element and is sealed to the sensor circuit board, thus also acting as a protection cap
DE102008027999A1 (en) Semiconductor sensor
EP1639639B1 (en) Optical sensor array and method for producing the same
WO2006061274A1 (en) Chip module and method for the production thereof
DE102010031452A1 (en) Low pressure sensor device with high accuracy and high sensitivity
EP3117457B1 (en) Electronic module and method of manufacturing an electronic module
DE102005016008B4 (en) Component module for mounting on a substrate
DE102020105333A1 (en) PRESSURE SENSORS ON FLEXIBLE SUBSTRATES FOR VOLTAGE DECOUPLING
DE112015004268T5 (en) Pressure sensor module
DE102014019690B4 (en) Method of manufacturing a gasket for an area-efficient pressure sensing device
DE102020110473B4 (en) INTEGRATION OF VOLTAGE DECOUPLING AND PARTICLE FILTER ON A SINGLE WAFER OR IN COMBINATION WITH A WAFER LEVEL HOUSING
DE102004031318A1 (en) Premold housing for receiving a component, useful particularly for preparing microelectronic or sensor modules, comprises housing body and metal lead frame
DE112018003765B4 (en) SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SEMICONDUCTOR DEVICE
DE102020108775B4 (en) SENSOR PACKAGES AND PROCESSES FOR THE MANUFACTURE OF SENSOR PACKAGES
DE102004061337A1 (en) Sensor has sensor chip with cap arranged as flip chip arrangement and electrical contacting of sensor chip is made by contact element which is arranged between substrate and carrier in area of electrical contacts and conductive strips
DE102004031317A1 (en) Gas sensor module, useful particularly for measuring carbon dioxide content of air in cars, comprises spectroscopic sensor, lead frame, filter chip and housing
DE102004010499A1 (en) Microstructured sensor
DE102015218355A1 (en) Microelectronic component arrangement and production method for a microelectronic component arrangement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 05791978

Country of ref document: EP

Kind code of ref document: A1