WO2006054582A1 - 旋回制御装置および建設機械 - Google Patents

旋回制御装置および建設機械 Download PDF

Info

Publication number
WO2006054582A1
WO2006054582A1 PCT/JP2005/021013 JP2005021013W WO2006054582A1 WO 2006054582 A1 WO2006054582 A1 WO 2006054582A1 JP 2005021013 W JP2005021013 W JP 2005021013W WO 2006054582 A1 WO2006054582 A1 WO 2006054582A1
Authority
WO
WIPO (PCT)
Prior art keywords
command value
speed
torque command
turning
value
Prior art date
Application number
PCT/JP2005/021013
Other languages
English (en)
French (fr)
Inventor
Tadashi Kawaguchi
Jun Morinaga
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to EP05807015.2A priority Critical patent/EP1813729B1/en
Priority to US11/791,040 priority patent/US7772792B2/en
Priority to CN2005800394549A priority patent/CN101061279B/zh
Priority to JP2006545091A priority patent/JP4167289B2/ja
Publication of WO2006054582A1 publication Critical patent/WO2006054582A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/207Control of propulsion units of the type electric propulsion units, e.g. electric motors or generators
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/123Drives or control devices specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/128Braking systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/20Controlling the acceleration or deceleration

Definitions

  • the swinging motion of the swinging body is performed by an electric motor. Therefore, even if the swinging body is swung simultaneously with the lifting operation of the hydraulically driven boom or arm, the swinging body can be operated evenly. Unaffected by climbing motion. For this reason, as compared with the case where the revolving body is also driven hydraulically, the loss in the control knob or the like can be reduced and the energy efficiency is good.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-11897
  • the torque command value for driving the electric motor is suppressed to a small value, thereby intentionally affecting the change in the moment of inertia on the turning speed.
  • this may cause problems such as a slow response during normal operation and a loss of workability if the operation feels.
  • the object of the present invention is to change the turning speed of the revolving structure in response to a disturbance due to a posture change or the like, and maintain a good feeling of operation during normal operation.
  • An object of the present invention is to provide a swing control device for a swing body and a construction machine.
  • disturbance refers to an action of changing the rotation speed of the electric motor other than the intended change of the rotation speed of the electric motor due to lever input.
  • the change in the inertia load due to the change in the moment of inertia around the swivel axis due to the posture change such as the operation of the boom or arm
  • the reaction force caused by the work implement coming into contact with the obstacle This applies to the force in the direction of gravity.
  • the turning control device of the present invention is a turning control device for controlling a turning body that turns with an electric motor, and a speed command value generated for turning the turning body at a predetermined target speed is provided.
  • the speed command value when the speed command value is changed from the absolute value of the first torque command value that is constant and is generated based on the speed command value when the actual speed of the swing body changes.
  • the second torque command value generated based on the control is controlled so that the absolute value is larger.
  • the swivel body is controlled to turn with a large second torque command value. It provides a comfortable feeling of operation and there is no worry that workability will be impaired.
  • a turning control device for controlling a turning body that turns with an electric motor, it is determined whether a disturbance is acting on the turning body, When the electric motor is driven with the first torque command value and no disturbance acts, the electric motor is driven with the second torque command value having an absolute value larger than the absolute value of the first torque command value. Desirable to control to.
  • the electric motor when the absolute value of the rate of change of the speed command value is larger than a predetermined value, the electric motor is driven with the second torque command value, and the speed command When the absolute value of the rate of change in value is less than or equal to a predetermined value, it is desirable to drive the electric motor with the first torque command value.
  • the rate of change of the speed command value is a value that can be calculated by differentiating the speed command value.
  • the speed command value may be a speed command value for operating a working machine or the like provided in the swing body in addition to the speed command value for driving the swing body.
  • the switching between the first and second torque command values is performed by comparison with the absolute value of the rate of change of the speed command value.
  • the speed command value is generated. If a sudden operation is performed, the absolute value of the change rate of the speed command value becomes larger than the predetermined value and a large second torque command value is output. The movement of the swivel body responds quickly to sudden operations. Conversely, when the lever operation is small and no force operation is performed, the absolute value of the rate of change of the speed command value is less than the predetermined value, so the swinging body still turns with a gentle response due to the small first torque command value To do. That is, the control range by the small first torque command value is increased.
  • a construction machine includes a revolving structure that revolves with an electric motor, and the above-described revolving control device according to the present invention for controlling the revolving structure.
  • the turning speed of the revolving structure can be changed according to the disturbance, and the operational feeling during normal operation can be maintained well. wear.
  • FIG. 1 is a plan view showing a construction machine according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an overall configuration of the construction machine according to the first embodiment.
  • FIG. 3 is a view for explaining the turning control device of the first embodiment.
  • FIG. 4 is a diagram for explaining a turning control method of the first embodiment.
  • FIG. 5 is another diagram for explaining the turning control device of the first embodiment.
  • FIG. 6 is a flowchart for explaining how to calculate a torque command value in the first embodiment.
  • FIG. 7 is a diagram for explaining a turning control device of a second embodiment.
  • FIG. 8 is a diagram for explaining a turning control device of a third embodiment.
  • FIG. 10 is a diagram for explaining a turning control device of a fourth embodiment.
  • FIG. 12 is a diagram for explaining a turning control device of a fifth embodiment.
  • FIG. 13 is a diagram for explaining a turning control device of a sixth embodiment.
  • FIG. 14 is another view for explaining the turning control device of the sixth embodiment.
  • [0017] 1 Electric turning excavator which is a construction machine, 4 ... Turning body, 5 ... Electric motor, 50 ... Turning control device, 51 ... (First) Speed command value generating means, 52 ... Acceleration command value calculation Means 53-FF Torque command value generating means 54 54 Torque command value generating means 55 55 Second speed command value generating means , 56 ... Work implement speed command value generation means, 57 ... Acceleration command value comparison judgment means, 58 ... Speed command value comparison judgment means, 541 ... Switch, ⁇ 1 ... Speed gain, ⁇ 2 ⁇ Speed gain.
  • an electric swing excavator 1 includes a swing body 4 installed on a track frame constituting a lower traveling body 2 via a swing circle 3, and the swing body 4 is a swing cycle 3 and illustrated. It is swiveled by an electric motor 5 that is engaged through a swing machinery (reduction gear) that does not.
  • the electric power source of the electric motor 5 is a generator 16 (see FIG. 2) mounted on the revolving structure 4, and this generator is driven by the engine 15 (see FIG. 2).
  • the electric swivel excavator 1 includes a swivel lever 10, a work machine lever 11, a controller 12, and a hydraulic control knob 14 in addition to the configuration described above.
  • a lever signal corresponding to the tilt angle is output to the controller 12.
  • the controller 12 issues a command to the hydraulic pump 13 and the hydraulic control valve 14 that drives each of the hydraulic cylinders 6A, 7A, 8A according to the value of the lever signal of the work machine lever 11, thereby Control the drive.
  • the controller 12 sends a command for adjusting the engine speed to the engine 15 to adjust the power generation amount as necessary. Command is issued to generator 16.
  • the controller 12 controls the turning operation of the swing body 4 by controlling the torque output of the electric motor 5.
  • the controller 12 includes a turning control device 50.
  • the turning control device 50 has a lever signal value of the turning lever 10 and an actual speed Vact of the electric motor 5 detected by a rotation speed sensor (not shown) (see FIG. 3). ), The final torque command value for the electric motor 5 is generated.
  • the torque command value is output to an inverter, not shown, and the inverter converts the torque command value into a current value and a voltage value, and controls the electric motor 5 to be driven at a target speed.
  • the turning control device 50 in this embodiment includes a speed command value generating means 51, an acceleration command value calculating means 52, an FF (feedforward) torque command value generating means 53, and a torque command value generating means. It has 54.
  • the FF torque command value generation means 53 multiplies the input acceleration command value G (t) by a preset inertia moment I to generate an FF torque command value.
  • the FF torque command value Tff was obtained by predicting the torque that seems to be necessary for accelerating the swing body 4 by also predicting the changing force of the speed command value Vo (t) based on the lever signal value of the swing lever The value is basically not a value that fluctuates due to the influence of disturbance.
  • the FF torque command value generating means 53 is a device for determining whether the absolute value of the acceleration command value G (t) is larger than a predetermined value. This determination result is also taken into consideration when generating the FF torque command value Tff.
  • the torque command value generating means 54 is generated by the speed command value Vo (t) generated by the speed command value generating means 51, the actual speed Vact fed back from the electric motor 5, and the FF torque command value generating means 53. A final torque command value is generated based on the FF torque command value Tff. At this time, the torque command value generation means 54 performs the following two processes.
  • the torque command value generation means 54 multiplies the deviation between the speed command value Vo (t) and the actual speed Vact by a speed gain K1 to generate a first torque command value T1.
  • the speed gain K1 is set so that the movement of the revolving structure 4 that is much smaller than the value used in the conventional electric swivel excavator is easily influenced by disturbances and the like!
  • the torque command value generating means 54 adds the FF torque command value generated by the FF torque command value generating means 53 to the first torque command value T1, and the second torque command value ⁇ 2 Is generated. Therefore, the absolute value of the second torque command value ⁇ 2 is larger than the absolute value of the first torque command value T1.
  • this second torque command value T2 is output as the final torque command value, when the swivel lever 10 is operated, it depends on the speed command value Vo (t) at that time.
  • the electric motor 5 is driven and controlled with a torque command value that is large enough to turn the revolving body 4.
  • the speed command value generating means 51 After the turning control device 50 reads the lever signal value (ST1), the speed command value generating means 51 generates a speed command value Vo (t) based on the lever signal value (ST2).
  • the acceleration command value calculation means 52 differentiates this speed command value Vo (t) and calculates an acceleration command value G (t) (ST3).
  • the FF torque command value generating means 53 generates an FF torque command value 3 ⁇ 4 ⁇ 3 ⁇ 4 using the acceleration command value G (t) and the moment of inertia I. At this time, the FF torque command value generating means 53 first determines the magnitude of the absolute value of the acceleration command value G (t) (ST4). If the absolute value of the acceleration command value G (t) is larger than the predetermined value !, multiply the value of the acceleration command value G (t) with the inertia moment I as it is to calculate the FF torque command value ⁇ ⁇ . (ST5) If the absolute value of the acceleration command value G (t) is less than or equal to the specified value, the FF torque command value is set to zero (ST6).
  • the torque command value generating means 54 multiplies the deviation between the speed command value Vo (t) and the actual speed Vact by the speed gain K1 to generate the first torque command value T1 (ST7). Then, the torque command value generating means 54 adds the FF torque command value generated by the FF torque command value generating means 53 to the first torque command value T1 to generate the second torque command value T2 (ST8).
  • the swing control device 50 of the electric swing excavator 1 uses a small speed gain K1.
  • the swing body 4 When a disturbance that changes the overall moment of inertia is applied, the change in the moment of inertia affects the turning speed of the rotating body 4, and the turning speed changes according to the expansion and contraction of the boom 6 and arm 7. Can be made. As a result, the turning operation can be performed with the same feeling as in the case of hydraulic drive.
  • the turning control device 50 includes the FF torque command value generation means 53. Further, the torque command value generating means 54 generates the second torque command value by adding the FF torque command value ⁇ ⁇ ⁇ ⁇ 3 ⁇ 4 to the first torque command value T1, and the first torque command value T or the second torque command value. ⁇ 2 was entered as the final torque command value.
  • the turning control device 50 of the present embodiment includes the acceleration command value comparison / determination unit 57 instead of the force of the FF torque command value generation unit 53. Based on the comparison result, the torque command value generation unit 54 finally Is different from the first embodiment in that the correct torque command value is switched between the first torque command value T1 and the second torque command value ⁇ 2.
  • the acceleration command value comparison / determination means 57 compares the absolute value of the acceleration command value G (t) with a predetermined value set in advance.
  • the torque command value generating means 54 generates the first torque command value T1 by multiplying the deviation between the speed command value Vo (t) and the actual speed Vact by a small value of the speed gain K1.
  • the second torque command value T2 is generated by multiplying the deviation by a large speed gain K2.
  • the control law is speed control that outputs a torque command value in accordance with the difference between the speed command value and the actual speed, and is P control.
  • the value comparison / determination means 57 determines that the acceleration command value G (t) is not more than a predetermined value. Then, based on the determination result of the acceleration command value comparison / determination unit 57, the torque command value generation unit 54 switches the switch 541 to the “N” side and sets the small first torque command value T1 as the final torque command value to the inverter. Output.
  • the acceleration command value comparison / determination means 57 with a large rate of change of the speed command value Vo (t) indicates that the acceleration command value G (t) has a predetermined value.
  • the torque command value generation means 54 switches the switch 541 to the “Y” side. That is, the torque command value generation means 54 outputs the large second torque command value ⁇ 2 to the inverter as the final torque command value.
  • the turning control device 50 when the turning body 4 is turned at a constant speed with the speed command value Vo (t) being substantially constant, the first speed generated by the small speed gain K1.
  • the swinging body 4 In order to control the swinging body 4 with the torque command value T1, if a disturbance is applied that causes the inertial moment of the entire rotating body 4 to change by expanding or contracting the boom 6 or the arm 7, the change in the inertial moment will still occur.
  • the turning speed of the revolving structure 4 is affected, and the turning speed can be changed according to the expansion and contraction of the boom 6 and the arm 7.
  • the FF torque command value generating means 53 is provided, and in the second embodiment, the acceleration command value comparing / determining means 57 is provided. Based on the acceleration command value G (t), the torque command value is generated or Change over.
  • the present embodiment is significantly different from the first embodiment in that the speed command value Vo (t) is changed based on the acceleration command value G (t). Further, the speed gain K1 in the present embodiment is a small value as in the first embodiment.
  • the turning control device 50 of the present embodiment includes a second speed command value generating means 51 similar to the speed command value generating means of the first embodiment, Speed command value generation means 55 is provided.
  • the second speed command value generating means 55 generates a second speed command value Vo2 (t) by a predetermined algorithm based on the acceleration command value G (t) calculated by the acceleration command value calculating means 52.
  • the configuration is different, but substantially the same effect as in the first embodiment can be obtained.
  • the FF torque command value ⁇ is generated based on the lever signal from the turning lever 10 via the acceleration command value G (t). Further, torque command value generating means 54 Then we used a small value of speed gain Kl.
  • the torque command value generating means 54 uses only a large speed gain K2.
  • the turning control device 50 of the present embodiment includes work implement speed command value generation means 56 as shown in FIG.
  • the work implement speed command value generation means 56 generates a work implement speed command value Vwo (t) based on the lever signal from the work implement lever 11 and outputs it to the FF torque command value generation means 53.
  • the work machine speed command value Vwo (t) is a signal output to an actuator side such as a hydraulic cylinder that operates the boom 6 and the arm 7.
  • the acceleration command value calculation means 52 calculates the acceleration command value G (t) from the speed command value Vo (t) generated based on the lever signal from the turning lever 10, and the acceleration command value
  • the comparison judgment means 57 judged the magnitude of the absolute value of the acceleration command value G (t) and switched the final torque command value between the first torque command value T1 and the second torque command value T2.
  • the turning control device 50 of the present embodiment includes a work implement speed command value generation means 56 and a speed command value comparison determination means 58.
  • Other configurations are substantially the same as those of the second embodiment.
  • the work implement speed command value generating means 56 generates a work implement speed command value Vwo (t) based on the lever signal from the work implement lever 11, and the speed command value comparison / determination means 58 is used for the work implement speed command value Vwo ( Determine the absolute value of t).
  • the torque command value generation means 54 of the present embodiment switches the switch 541 based on the determination result of the speed command value comparison determination means 58.
  • the absolute value of the work implement speed command value Vwo (t) from the work implement lever 11 1 side force by the speed command value comparison / determination means 58 is equal to or less than a predetermined value. If it is judged, the moment of inertia does not change so much (since the disturbance hardly acts), the switch 541 is switched to the “Y” side, and the large second torque command value ⁇ ⁇ ⁇ 2 generated by the speed gain ⁇ 2 Is output as the final torque command value.
  • This second torque command value drives the electric motor 5 (Fig. 1), realizing a turn with good response without being affected by disturbance. To do.
  • the work implement 9 is operated, and it is determined by the speed command value comparison / determination means 58 that the absolute value of the work implement speed command value Vwo (t) from the work implement lever 11 side force surpasses a predetermined value.
  • the switch is switched to the switch 541 force S “N” side, and the small first torque command value T1 generated by the speed gain K1 is finally Is output as a torque command value.
  • the turning speed changes according to the disturbance.
  • the acceleration command value G (t) is calculated from the speed command value Vo (t) generated based on the lever signal from the turning lever 10, and based on the acceleration command value G (t).
  • the second speed command value Vo2 (t) was generated.
  • the torque command value generating means 54 uses a small speed gain K1.
  • the work machine 9 is not operated and the moment of inertia does not change.
  • the work speed command value Vwo (t) having a value is not input to the second speed command value generating means 55, and the second speed command value Vo2 (t) does not produce a value. Therefore, the first speed command value Vol (t) force is not subtracted, and a large second torque command value T2 is generated by the large speed gain K2. Then, the second torque command value T2 is output as the final torque command value, and the electric motor 5 (FIG. 1) is driven to realize a turn with good response without being affected by disturbance.
  • the electric motor 5 is driven with a small first torque command value.
  • the present invention can be used for a control device when a revolving body is swiveled by an electric motor.
  • the machine on which such a control device is mounted is not limited to a construction machine. Even if it is a construction machine, it has a swivel body that can be swiveled by an electric motor, so it is not limited to shovels in particular! ,.

Abstract

 電動旋回ショベルの旋回制御装置50では、旋回体を定速旋回させる場合には、小さな第1トルク指令値T1で旋回体を旋回制御する。このため、ブームやアームの伸縮により旋回体の慣性モーメントが変化すると、その慣性モーメントの変化が旋回体の旋回速度に影響するようになり、油圧駆動の場合と同様な感覚で旋回操作ができる。これに対して、旋回レバー10を操作することで加速するようなときには、大きな第2トルク指令T2で旋回制御する。従って、加減速がもたついたりせず、きびきびした良好な操作感を得ることができ、作業性も損なわれる心配がない。

Description

明 細 書
旋回制御装置および建設機械
技術分野
[0001] 本発明は、電動モータによって旋回する旋回体の旋回制御装置および建設機械 に関する。
背景技術
[0002] 近年、旋回体を電動モータで駆動し、他の作業機や走行体を油圧ァクチユエータ で駆動するハイブリットタイプの電動旋回ショベルが開発されている(例えば、特許文 献 1参照)。
このような電動旋回ショベルでは、旋回体の旋回動作が電動モータで行われるため 、油圧駆動されるブームやアームの上昇動作と同時に旋回体を旋回させても、旋回 体の動作がブームやアームの上昇動作に影響されることがない。このため、旋回体を も油圧駆動する場合に比し、制御ノ レブ等でのロスを少なくでき、エネルギ効率が良 好である。
[0003] 特許文献 1 :特開 2001— 11897号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、電動旋回ショベルにお 、ては、旋回体の動作が作業機の動作に影 響されない分、油圧駆動のショベル力 乗り換えたオペレータが旋回体の動きに違 和感を覚える場合がある。
例えば、油圧駆動の場合では、旋回体を旋回させながらブームを下げたり、アーム を伸ばしたりして姿勢を変えると、旋回体全体の慣性モーメントが大きくなるため、旋 回体の回転速度は遅くなるのであるが、電動モータで旋回体を駆動すると、慣性モ 一メントの変化にかかわらず、旋回レバーの操作量に応じた旋回速度で旋回体が旋 回するのである。
[0005] そこで、旋回体を旋回制御するうえで、電動モータを駆動するためのトルク指令値 を小さく抑えることにより、そのような慣性モーメントの変化を旋回速度に意図的に影 響させることも考えられるが、これでは通常操作時のレスポンスが遅くなるなど、操作 感ゃ作業性が損なわれるという問題が生じる。
[0006] 本発明の目的は、姿勢変化等に伴う外乱を受けると、その外乱に応じて旋回体の 旋回速度を変化させることができるとともに、通常操作時における操作感ゃ作業性も 良好に維持できる旋回体の旋回制御装置および建設機械を提供することにある。
[0007] ここで外乱とは、レバー入力による意図した電動モータの回転速度の変化以外で、 電動モータの回転速度を変化させる作用をいう。例えば、電動旋回ショベルの場合、 ブームやアームの作動といった姿勢変化に伴う旋回軸回りの慣性モーメントの変化 による慣性負荷の変化、作業機が障害物と接触することによる反力、傾斜面における 作業時の重力方向への力、等がこれに該当する。
課題を解決するための手段
[0008] 本発明の旋回制御装置は、電動モータで旋回する旋回体を制御するための旋回 制御装置であって、前記旋回体を所定の目標速度で旋回させるために生成された 速度指令値が一定で、かつ前記旋回体の実速度が変化するときの前記速度指令値 に基づいて生成される第 1トルク指令値の絶対値よりも、前記速度指令値を変化させ たときの前記速度指令値に基づいて生成される第 2トルク指令値の絶対値の方が大 きくなるように制御することを特徴とする。
なお、旋回体の実速度が変化するときとは、外乱による影響のみならず、旋回体の 応答遅れにより旋回体の実速度が変化する場合をも含むものである。
[0009] このような本発明によれば、例えば、電動旋回ショベルと!/、つた建設機械で 、えば 、旋回制御装置は、速度指令値を略一定にして旋回体を定速で旋回させている状 態において、小さな第 1トルク指令値で旋回体を旋回制御する。このため、ブームや アームを伸縮させることにより、旋回体全体の慣性モーメントが変化すような外乱を作 用させると、その慣性モーメントの変化が旋回体の旋回速度に影響するようになり、ブ ームゃアームの伸縮に応じて旋回速度が変化し、油圧駆動の場合と同様な感覚で 旋回操作が行える。
一方、旋回レバーを操作すること等により速度指令値を変化させるような通常操作 時には、大きな第 2トルク指令値で旋回体が旋回制御されるので、きびきびした良好 な操作感が得られるとともに、作業性も損なわれる心配がない。
[0010] 本発明の旋回制御装置において、電動モータで旋回する旋回体を制御するため の旋回制御装置であって、前記旋回体に外乱が作用しているかを判定し、作用して いるときには、第 1トルク指令値で前記電動モータを駆動し、外乱が作用しないときに は、前記第 1トルク指令値の絶対値よりも大きい絶対値の第 2トルク指令値で前記電 動モータを駆動するように制御することが望ま 、。
[0011] このような本発明によれば、ブームやアームを伸縮させることで旋回体に外乱が作 用している力否かを、作業機の操作レバー等力もの信号によって判断する。そこで、 旋回レバーによる旋回操作中に、操作レバー等が操作された場合には、これを検出 して、旋回体に外乱が作用していると判断し、小さな第 1トルク指令値で旋回体を旋 回制御する。このためにやはり、ブームやアームの伸縮に応じて旋回速度が変化し、 油圧駆動の場合と同様な感覚で旋回操作が行える。
また、旋回レバーによる旋回操作のみが行われ、旋回中にブームやアームを一切 操作しない場合も、作業機の操作レバー等力もの信号によって判断されるため、この ような場合には、大きな第 2トルク指令値で旋回体が旋回制御し、前述と同様に、きび きびした良好な操作感が得られるとともに、作業性が損なわれる心配がない。
[0012] 本発明の旋回制御装置において、前記速度指令値の変化率の絶対値が所定値よ りも大きい場合には、前記第 2トルク指令値で前記電動モータを駆動し、前記速度指 令値の変化率の絶対値が所定値以下の場合には、前記第 1トルク指令値で前記電 動モータを駆動することが望まし 、。
ここで、速度指令値の変化率は、速度指令値を微分することで算出可能な値である 。また、速度指令値としては、旋回体を駆動するための速度指令値の他、旋回体に 設けられた作業機等を動作させるための速度指令値であってもよい。
[0013] このような本発明によれば、第 1、第 2トルク指令値の切換は、速度指令値の変化率 の絶対値との比較よつて行われるので、例えば、速度指令値を生成するためのレバ 一操作を行うにあたり、急操作を行った場合には、速度指令値の変化率の絶対値が 所定値よりも大きくなり、大きな第 2トルク指令値が出力されるので、そのような急操作 にも旋回体の動きがレスポンスよく反応することになる。 逆に、レバー操作を微小にし力操作しない場合には、速度指令値の変化率の絶対 値が所定値以下となるから、旋回体が依然として小さな第 1トルク指令値により緩や 力なレスポンスで旋回する。すなわち、小さな第 1トルク指令値による制御域が増す。
[0014] 本発明の建設機械は、電動モータで旋回する旋回体と、この旋回体を制御するた めの前述した本発明の旋回制御装置とを備えていることを特徴とする。
[0015] このような本発明によれば、前述したように、外乱に応じて旋回体の旋回速度を変 ィ匕させることができるとともに、通常操作時における操作感ゃ作業性も良好に維持で きる。
図面の簡単な説明
[0016] [図 1]本発明の第 1実施形態に係る建設機械を示す平面図。
[図 2]前記第 1実施形態の建設機械の全体構成を示す図。
[図 3]前記第 1実施形態の旋回制御装置を説明するための図。
[図 4]前記第 1実施形態の旋回制御方法を説明するための図。
[図 5]前記第 1実施形態の旋回制御装置を説明するための別の図。
[図 6]前記第 1実施形態におけるトルク指令値の算出の仕方を説明するためのフロー チャート。
[図 7]第 2実施形態の旋回制御装置を説明するための図。
[図 8]第 3実施形態の旋回制御装置を説明するための図。
[図 9]前記第 3実施形態の旋回制御装置を説明するための別の図。
[図 10]第 4実施形態の旋回制御装置を説明するための図。
[図 11]前記第 4実施形態の旋回制御装置を説明するための別の図。
[図 12]第 5実施形態の旋回制御装置を説明するための図。
[図 13]第 6実施形態の旋回制御装置を説明するための図。
[図 14]前記第 6実施形態の旋回制御装置を説明するための別の図。
符号の説明
[0017] 1…建設機械である電動旋回ショベル、 4…旋回体、 5…電動モータ、 50…旋回制 御装置、 51· ·· (第 1)速度指令値生成手段、 52…加速度指令値演算手段、 53-FF トルク指令値生成手段、 54…トルク指令値生成手段、 55· ··第 2速度指令値生成手 段、 56· ··作業機速度指令値生成手段、 57· ··加速度指令値比較判定手段、 58· ··速 度指令値比較判定手段、 541…スィッチ、 Κ1· ··速度ゲイン、 Κ2· ··速度ゲイン。 発明を実施するための最良の形態
[0018] 〔第 1実施形態〕
〔1— 1〕全体構成
以下、本発明の第 1実施形態を図面に基づいて説明する。
図 1は、本実施形態に係る電動旋回ショベル (建設機械) 1を示す平面図、図 2は、 電動旋回ショベル 1の全体構成を示す図である。
[0019] 図 1において、電動旋回ショベル 1は、下部走行体 2を構成するトラックフレーム上 にスイングサークル 3を介して設置された旋回体 4を備え、この旋回体 4がスイングサ 一クル 3および図示しないスイングマシナリ(減速機)を介して嚙合する電動モータ 5 によって旋回駆動される。電動モータ 5の電力源は、旋回体 4に搭載の発電機 16 (図 2参照)であり、この発電機がエンジン 15 (図 2参照)によって駆動される。
[0020] 旋回体 4には、図 2にも示すように、油圧シリンダ 6A, 7A, 8Aによって動作される ブーム 6、アーム 7、およびパケット 8が設けられており、これらによって作業機 9が構 成されている。各油圧シリンダ 6A, 7A, 8Aの油圧源は、エンジン 15で駆動される油 圧ポンプ 13である。従って、電動旋回ショベル 1は、油圧駆動の作業機 9と電気駆動 の旋回体 4とを備えたハイブリット建設機械である。ただし、本発明に係る建設機械と しては、作業機の油圧源である油圧ポンプをも電動モータで駆動する電気駆動式建 設機械であってもよぐこのような場合には、各電動モータへの電力は、電源ケープ ルを通して外部の商用電源など力 供給される。
[0021] また、図 2において、電動旋回ショベル 1は、前述した構成の他、旋回レバー 10、作 業機レバー 11、コントローラ 12、および油圧制御ノ レブ 14を備えている。
旋回レバー 10および作業機レバー 11からは、傾倒角度に応じたレバー信号がコン トローラ 12に出力される。コントローラ 12は、作業機レバー 11のレバー信号の値に応 じて、油圧ポンプ 13と前記各油圧シリンダ 6A, 7A, 8Aを駆動する油圧制御バルブ 14とに指令を行うことで、作業機 9の駆動を制御する。また、コントローラ 12は、必要 に応じて、エンジン回転数を調節ための指令をエンジン 15に、発電量を調節するた めの指令を発電機 16に対し行う。
[0022] さらに、コントローラ 12は、電動モータ 5のトルク出力を制御することで、旋回体 4の 旋回動作を制御する。コントローラ 12は、このために旋回制御装置 50を備えており、 旋回制御装置 50は、旋回レバー 10のレバー信号値と図示しない回転速度センサで 検出された電動モータ 5の実速度 Vact (図 3参照)とに応じて、電動モータ 5に対する 最終的なトルク指令値を生成する。このトルク指令値は図示しな 、インバータに出力 され、インバータは、このトルク指令値を電流値および電圧値に変換し、電動モータ 5 を目標速度で駆動するように制御する。
[0023] 〔1 2〕旋回制御装置 50による制御構造
次に、旋回制御装置 50による制御構造について説明する。
本実施形態での旋回制御装置 50は、図 3に示すように、速度指令値生成手段 51、 加速度指令値演算手段 52、 FF (feedforward)トルク指令値生成手段 53、およびトル ク指令値生成手段 54を備えて 、る。
[0024] 速度指令値生成手段 51は、旋回レバー 10のレバー信号値に基づいて、電動モー タ 5に対する速度指令値 Vo(t)を生成する。具体的に、速度指令値生成手段 51は、 レバー信号値に応じたレバー指令速度値を生成し、このレバー指令速度値にフィル タ処理を行ったり変化量を制限したりして、速度指令値 Vo(t)を生成する。なお、本実 施形態においては、レバー信号値とレバー指令速度値とは比例関係にある。
[0025] 加速度指令値演算手段 52は、速度指令値生成手段 51で生成された速度指令値 Vo(t)に基づき、加速度指令値 G(t)を演算する。加速度指令値演算手段 52は、速度 指令値 Vo(t)を微分する機能を有しており、この微分によって加速度指令値 G(t)を算 出し、 FFトルク指令値生成手段 53に出力する。
[0026] FFトルク指令値生成手段 53は、入力された加速度指令値 G(t)に、予め設定された 所定値の慣性モーメント Iを掛け算することで、 FFトルク指令値 Τί¾生成する。つまり 、 FFトルク指令値 Tffは、旋回体 4を加速させるのに必要であると思われるトルクを、 旋回レバー 10のレバー信号値に基づく速度指令値 Vo(t)の変化力も予想して求めた 値であって、基本的に、外乱の影響により変動する値ではない。なお、 FFトルク指令 値生成手段 53は、加速度指令値 G(t)の絶対値が所定値よりも大きかを判定する機 能も有しており、この判定結果も、 FFトルク指令値 Tffの生成に際して考慮される。
[0027] トルク指令値生成手段 54は、速度指令値生成手段 51で生成された速度指令値 Vo (t)、電動モータ 5からフィードバックされた実速度 Vact、および FFトルク指令値生成 手段 53で生成された FFトルク指令値 Tffに基づ 、て、最終的なトルク指令値を生成 する。これに際し、トルク指令値生成手段 54は、以下の 2つの処理を行う。
[0028] 第 1の処理として、トルク指令値生成手段 54は、速度指令値 Vo(t)と実速度 Vactと の偏差に速度ゲイン K1を乗算して、第 1トルク指令値 T1を生成する。なお、速度ゲイ ン K1は、従来の電動旋回ショベルに用いられる値よりも非常に小さぐ旋回体 4の動 きが外乱等によって容易に影響されるように設定されて!、る。
第 2の処理として、トルク指令値生成手段 54は、第 1トルク指令値 T1に、 FFトルク指 令値生成手段 53で生成される FFトルク指令値 Τίϊ^加算して、第 2トルク指令値 Τ2を 生成する。従って、第 2トルク指令値 Τ2の絶対値は、第 1トルク指令値 T1の絶対値よ りも大きい。後述する他の実施形態でも同様である。
[0029] ここで、図 4に示すように、旋回体 4を一定速度で旋回させるため旋回レバー 10の 操作量が一定に維持されると (t2)、速度指令値 Vo(t)が一定となる。この場合には、 加速度指令値演算手段 52で算出される加速度指令値 G(t)は「0 (ゼロ)」であるから、 FFトルク指令値 Tfi¾「0」となり、第 1トルク指令値 T1には何も加算されない。従って、 このような定速旋回時には、図 3に示すように、小さな第 1トルク指令値のみ T1が最終 的なトルク指令値として出力され、これにより電動モータ 5が駆動されて、旋回体 4が 旋回制御される。
[0030] 図 4に戻り、このように旋回体 4が定速旋回している間に、ブーム 6やアーム 7が作動 すると(図 1参照)、電動旋回ショベル 1の姿勢が変化し、これらブーム 6およびアーム 7を含めた旋回体 4の慣性モーメントが変化する。そして、旋回体 4は小さな第 1トルク 指令値 T1で旋回して 、るために、慣性モーメントの変化等の外乱に影響されやす!/ヽ 。例えば、定速旋回させながらブーム 6を下げたり、アーム 7を伸ばしたりすると、慣性 モーメントが大きくなるから、旋回体 4はその影響を受けて速度が低下する (t3)。逆に 、ブーム 6を上げたり、アーム 7を縮めたりすると、慣性モーメントが小さくなり、速度が 増す。 [0031] 一方、旋回レバー 10を倒し込んで加速させたり(tl)、ニュートラル位置に戻して減 速、停止させたりする場合には、速度指令値 Vo(t)が旋回レバー 10の操作量に応じ て変化し、この変化量に基づいた加速度指令値 G(t)が生じる。そして、その加速度指 令値 G(t)に応じた FFトルク指令値 Tff¾S生成されて第 1トルク指令値 T1に加算され、 大きな第 2トルク指令値 T2が生成される。この場合、図 5に示すように、この第 2トルク 指令値 T2が最終的なトルク指令値として出力されるため、旋回レバー 10の操作時に は、その際の速度指令値 Vo(t)に応じて旋回体 4を旋回させるのに十分大きなトルク 指令値で電動モータ 5を駆動制御することになる。
[0032] [1 - 3]旋回制御装置 50でのトルク指令値の生成フロー
次に、図 6に基づいて、第 1トルク指令値 T1および第 2トルク指令値 T2の生成フロ 一について説明する。
[0033] 旋回制御装置 50がレバー信号値を読み込んだ後(ST1)、速度指令値生成手段 5 1は、このレバー信号値に基づいて、速度指令値 Vo(t)を生成する(ST2)。
そして、加速度指令値演算手段 52は、この速度指令値 Vo(t)を微分し、加速度指 令値 G(t)を算出する (ST3)。
[0034] FFトルク指令値生成手段 53は、この加速度指令値 G(t)と慣性モーメント Iとを用い て FFトルク指令値 Τί¾生成する。これに際し、 FFトルク指令値生成手段 53は、先ず 、加速度指令値 G(t)の絶対値の大きさの判定を行う(ST4)。加速度指令値 G(t)の 絶対値が所定値よりも大き!、場合には、加速度指令値 G(t)の値をそのまま慣性モー メント Iと掛算して、 FFトルク指令値 Τίϊ^算出し (ST5)、加速度指令値 G(t)の絶対値 が所定値以下の場合には、 FFトルク指令値 Τί¾ゼロとする(ST6)
[0035] 一方、トルク指令値生成手段 54は、速度指令値 Vo(t)と実速度 Vactとの偏差に速 度ゲイン K1を乗算して、第 1トルク指令値 T1を生成する(ST7)。そして、トルク指令 値生成手段 54は、第 1トルク指令値 T1に FFトルク指令値生成手段 53で生成される FFトルク指令値 Τί¾加算して第 2トルク指令値 T2を生成する(ST8)。
[0036] 〔1 4〕本実施形態による効果
このような本実施形態によれば、以下の効果がある。
すなわち、電動旋回ショベル 1の旋回制御装置 50は、小さな速度ゲイン K1を用い て算出された第 1トルク指令値 Tlを含む最終的なトルク指令値を生成するため、例え ば、速度指令値 Vo(t)を一定にして旋回体 4を定速旋回させる場合に旋回体 4全体の 慣性モーメントが変化するような外乱を作用させると、その慣性モーメントの変化が旋 回体 4の旋回速度に影響するようになり、ブーム 6やアーム 7の伸縮に応じて旋回速 度を変化させることができる。これにより、油圧駆動の場合と同様な感覚で旋回操作 ができる。
[0037] これに対して、旋回レバー 10を操作することで速度指令値 Vo(t)を変化させて加速 するようなときには、大きな第 2トルク指令値 T2で旋回体 4を旋回制御するので、加減 速力もたついたりせず、きびきびした良好な操作感を得ることができ、作業性が損な われる心配がない。
[0038] 〔第 2実施形態〕
以下、図 7に基づき、本発明の第 2実施形態に係る旋回制御装置 50について説明 する。
前述した第 1実施形態では、旋回制御装置 50は、 FFトルク指令値生成手段 53を 備えていた。また、トルク指令値生成手段 54が、第 1トルク指令値 T1に FFトルク指令 値 Τί¾加算することで第 2トルク指令値を生成し、第 1トルク指令値 Tほたは第 2トル ク指令値 Τ2を最終的なトルク指令値として ヽた。
これに対し、本実施形態の旋回制御装置 50では、 FFトルク指令値生成手段 53の 力わりに加速度指令値比較判定手段 57を備え、この比較結果に基づき、トルク指令 値生成手段 54が、最終的なトルク指令値を第 1トルク指令値 T1および第 2トルク指令 値 Τ2間で切り換える点が、第 1実施形態とは大きく異なる。
[0039] 具体的に本実施形態において、加速度指令値比較判定手段 57は、加速度指令値 G(t)の絶対値を予め設定された所定値と比較する。
トルク指令値生成手段 54は、速度指令値 Vo(t)と実速度 Vactとの偏差に小さな値 の速度ゲイン K1を乗算して第 1トルク指令値 T1を生成する。また、第 1トルク指令値 T1とは別に、前記偏差に大きな値の速度ゲイン K2を乗算して第 2トルク指令値 T2を 生成する。なお、制御則としては、第 1実施形態と同様、速度指令値と実速度との偏 差に応じてトルク指令値を出力する速度制御であり、 P制御である。 [0040] ここで、旋回体 4を略一定速度で旋回させるような場合には、速度指令値 Vo(t)の変 化率が小さぐ加速度指令値 G(t)も小さくなるため、加速度指令値比較判定手段 57 は、加速度指令値 G(t)が所定値以下と判定する。そして、トルク指令値生成手段 54 は、加速度指令値比較判定手段 57の判定結果に基づき、スィッチ 541を「N」側に 切り換えて小さな第 1トルク指令値 T1を最終的なトルク指令値としてインバータに出 力する。
[0041] 一方、旋回体 4がある程度加速して 、るときには、速度指令値 Vo(t)の変化率が大 きぐ加速度指令値比較判定手段 57は、加速度指令値 G(t)が所定値を越えると判定 するため、トルク指令値生成手段 54は、スィッチ 541を「Y」側に切り換える。つまり、ト ルク指令値生成手段 54は、大きな第 2トルク指令値 Τ2を最終的なトルク指令値として インバータに出力するのである。
[0042] 本実施形態によれば、旋回制御装置 50は、速度指令値 Vo(t)を略一定にして旋回 体 4を定速旋回させる場合には、小さな速度ゲイン K1によって生成される第 1トルク 指令値 T1で旋回体 4を旋回制御するため、ブーム 6やアーム 7を伸縮させることで旋 回体 4全体の慣性モーメントが変化すような外乱を作用させると、やはり慣性モーメン トの変化が旋回体 4の旋回速度に影響するようになり、ブーム 6やアーム 7の伸縮に 応じて旋回速度を変化させることができる。
[0043] これに対して、旋回レバー 10の操作によって加速するようなときには、大きな速度 ゲイン K2によって生成される第 2トルク指令値 T2で旋回体 4を旋回制御するから、レ スポンスのよ 、操作を実現できる。
[0044] さらに、第 1、第 2トルク指令値 Tl, T2の切換が、予め設定される所定値と、加速度 指令値 G(t)の絶対値との比較により行われるので、例えば、旋回レバー 10を一気に 傾倒させると、加速度指令値 G(t)の絶対値が即座に所定値を越えるようになり、動き 出しから大きな第 2トルク指令値で旋回させることができる。従って、旋回体 4の旋回 状態を旋回レバー 10の動きにレスポンスよく追従させることができ、急旋回等を確実 に実現できる。旋回レバー 10を一気に-ユートラルに戻すような急停止の場合も同 様である。
[0045] 〔第 3実施形態〕 以下、図 8および図 9に基づき、本発明の第 3実施形態に係る旋回制御装置 50に ついて説明する。
前述した第 1実施形態では FFトルク指令値生成手段 53が、第 2実施形態では加速 度指令値比較判定手段 57が備えられており、加速度指令値 G(t)に基づきトルク指令 値の生成または切り換えをして 、た。
これに対し、本実施形態では、加速度指令値 G(t)に基づき速度指令値 Vo(t)を変更 する点が、第 1実施形態とは大きく異なる。また、本実施形態での速度ゲイン K1は、 第 1実施形態と同様に小さい値である。
[0046] このために、本実施形態の旋回制御装置 50は、図 8に示すように、第 1実施形態の 速度指令値生成手段と同様な第 1速度指令値生成手段 51の他、第 2速度指令値生 成手段 55を備えている。第 2速度指令値生成手段 55は、加速度指令値演算手段 5 2で演算された加速度指令値 G(t)に基づき、所定のアルゴリズムによって第 2速度指 令値 Vo2(t)を生成する。
[0047] ここで、旋回レバー 10の操作によって旋回体 4を加速させるようなときには、加速度 指令値 G(t) (減速時の負の加速指令値を含む)に値が生じるため、第 2速度指令値 V o2(t)も値を持つことになる。そして、この第 2速度指令値 Vo2(t)が第 1速度指令値 Vo l(t)に加算されて速度指令値 Vo(t)が生成され、この加算された速度指令値 Vo(t)によ る大きな第 2トルク指令値 T2が生成される。
[0048] なお、図 9に示すように、加速していない定速旋回の場合には、加速度指令値 G(t) は生成されないので、第 1速度指令値 Vol(t)のみによる小さな第 1トルク指令値 T1が 生成される。
[0049] 本実施家形態においても、構成は異なるが、第 1実施形態と略同様な効果を得るこ とがでさる。
[0050] 〔第 4実施形態〕
以下、図 10および図 11に基づき、本発明の第 4実施形態に係る旋回制御装置 50 について説明する。
前述した第 1実施形態では、旋回レバー 10からのレバー信号をもとに加速度指令 値 G(t)を介して FFトルク指令値 Τίϊ^生成していた。また、トルク指令値生成手段 54 では小さな値の速度ゲイン Klを用いて 、た。
これに対し、本実施形態では、作業機レバー 11 (例えば、図 1に示すブーム 6操作 用)からのレバー信号をもとに作業機速度指令値 Vwo(t)を介して FFトルク指令値 Tff を生成する点、トルク指令値生成手段 54では大きな速度ゲイン K2のみを用いる点、 が第 1実施形態とは大きく異なる。
[0051] このために、本実施形態の旋回制御装置 50は、図 10に示すように、作業機速度指 令値生成手段 56を備えている。作業機速度指令値生成手段 56は、作業機レバー 1 1からのレバー信号に基づ 、て作業機速度指令値 Vwo(t)を生成し、 FFトルク指令値 生成手段 53に出力する。なお、作業機速度指令値 Vwo(t)は、ブーム 6やアーム 7を 動作させる油圧シリンダ等のァクチユエータ側に出力される信号である。
また、本実施形態のトルク指令値生成手段 54は、速度指令値生成手段 51で生成 された速度指令値 Vo(t)と実速度 Vactとの偏差に大きな速度ゲイン K2を乗算して、 第 2トルク指令値 T2を生成する。
[0052] このような実施形態では、作業機レバー 11が操作され、ブーム 6等が作動して慣性 モーメントが変化し、これが外乱として旋回体 4 (図 1)に作用する場合には、作業機レ バー 11側からの作業機速度指令値 Vwo(t)に基づいて FFトルク指令値 Tff¾S生成さ れ、第 2トルク指令値 T2カゝら FFトルク指令値 Tff¾S減算されて小さな第 1トルク指令値 T1が生成される。そして、この第 1トルク指令値 T1が、最終的なトルク指令値としてィ ンバータに出力される。すなわち、小さな第 1トルク指令値 T1によって電動モータ 5 ( 図 1)が駆動され、慣性モーメントの変化が旋回体 4 (図 1)の動きに影響するようにな る。
[0053] これに対して、作業機レバー 11が操作されないことで慣性モーメントが変化せず、 外乱が作用しない状態では、作業機レバー 11側力 の作業機速度指令値 Vwo(t)が 生成されず、同時に FFトルク指令値 Τίϊ¾生成されない。このため、図 11に示すよう に、第 2トルク指令値 Τ2力もは何も減算されず、大きな第 2トルク指令値 Τ2がそのまま 最終的なトルク指令値としてインバータに出力される。すなわち、大きな第 2トルク指 令値 Τ2で電動モータ 5が駆動されることにより、旋回体 4のレスポンスのよい旋回を実 現できるのである。 [0054] 従って、本実施形態においても、構成は異なる力 外乱に応じて旋回体の旋回速 度を変化させることができるとともに、通常操作時における操作感ゃ作業性も良好に 維持でき、本発明の目的を達成できる。
[0055] 〔第 5実施形態〕
以下、図 12に基づき、本発明の第 5実施形態に係る旋回制御装置 50について説 明する。
前述した第 2実施形態では、旋回レバー 10からのレバー信号に基づいて生成され た速度指令値 Vo(t)から加速度指令値演算手段 52が加速度指令値 G(t)を算出し、 加速度指令値比較判定手段 57が加速度指令値 G(t)の絶対値の大きさを判定して、 最終的なトルク指令値を第 1トルク指令値 T1および第 2トルク指令値 T2間で切り換え ていた。
これに対し、本実施形態では、図 12に示すように、作業機レバー 11からのレバー 信号に基づ 、て生成された作業機速度指令値 Vwo(t)の絶対値の大きさを判定して 、各トルク指令値 Tl, T2間で切り換える点が、第 2実施形態とは異なる。
[0056] このために、本実施形態の旋回制御装置 50は、作業機速度指令値生成手段 56お よび速度指令値比較判定手段 58を備えている。他の構成は、第 2実施形態と略同じ である。
作業機速度指令値生成手段 56は、作業機レバー 11からのレバー信号に基づいて 作業機速度指令値 Vwo(t)を生成し、速度指令値比較判定手段 58は、作業機速度 指令値 Vwo(t)の絶対値の大きさを判定する。
また、本実施形態のトルク指令値生成手段 54は、速度指令値比較判定手段 58の 判定結果に基づいて、スィッチ 541を切り換える。
[0057] つまり、作業機 9を動作させず、速度指令値比較判定手段 58により作業機レバー 1 1側力ゝらの作業機速度指令値 Vwo(t)の絶対値が所定値以下であると判定された場 合には、慣性モーメントがさほど変化しないため(外乱がほとんど作用しないため)、 スィッチ 541が「Y」側に切り換えられ、速度ゲイン Κ2により生成された大きな第 2トル ク指令値 Τ2が最終的なトルク指令値として出力される。そして、この第 2トルク指令値 で電動モータ 5 (図 1)が駆動され、外乱に影響されないレスポンスのよい旋回が実現 する。
[0058] 反対に、作業機 9を動作させ、速度指令値比較判定手段 58により作業機レバー 11 側力ゝらの作業機速度指令値 Vwo(t)の絶対値が所定値を越えたと判定された場合に は、慣性モーメントが大きく変化するため(外乱が大きく作用するため)、スィッチ 541 力 S「N」側に切り換えられ、速度ゲイン K1により生成された小さな第 1トルク指令値 T1 が最終的なトルク指令値として出力される。これにより、外乱に応じて旋回速度が変 ィ匕するようになる。
[0059] 本実施形態でも、構成は異なるが、本発明の目的を達成できる。また、以下の効果 がある。
すなわち、第 1、第 2トルク指令値 Tl, T2の切換が、予め設定される所定値と、作業 機レバー 11側力 の作業機速度指令値 Vwo(t)の絶対値との比較により行われるの で、ブーム 6やアーム 7を僅かに伸縮させた程度では、その作業機速度指令値 Vwo(t )の絶対値が所定値以下となり、依然として大きな第 2トルク指令値 T2により、旋回体 4を応答性よく旋回させることができる。このことは、旋回しながらブーム 6やアーム 7を スムーズに移動させて、パケット 8の歯先を旋回方向の任意の位置に精度よく位置合 わせするのに好都合であり、作業機レバー 11を微操作する場合に特に有効である( ファインコントロール)。
[0060] 〔第 6実施形態〕
以下、図 13および図 14に基づき、本発明の第 6実施形態に係る旋回制御装置 50 について説明する。
前述した第 3実施形態では、旋回レバー 10からのレバー信号に基づいて生成され た速度指令値 Vo(t)から加速度指令値 G(t)を算出し、加速度指令値 G(t)にに基づい て、第 2速度指令値 Vo2(t)を生成していた。また、トルク指令値生成手段 54では、小 さな値の速度ゲイン K1が用いられて 、た。
これに対し、本実施形態では、作業機レバー 11側力 の作業機速度指令値 Vwo(t) に基づ!/、て第 2速度指令値 Vo2(t)を生成する点、トルク指令値生成手段 54では大き な速度ゲイン K2が用いられる点、が第 3実施形態とは大きく異なる。
[0061] 本実施形態では、作業機 9を動作させず、慣性モーメントが変化しな 、場合には、 第 2速度指令値生成手段 55には値を持った作業機速度指令値 Vwo(t)が入力されず 、第 2速度指令値 Vo2(t)も値を生じない。このため、第 1速度指令値 Vol(t)力 は何も 減算されず、大きな速度ゲイン K2により、大きな第 2トルク指令値 T2が生成される。 そして、この第 2トルク指令値 T2が最終的なトルク指令値として出力されて電動モー タ 5 (図 1)が駆動され、外乱に影響されないレスポンスのよい旋回が実現する。
[0062] 反対に、作業機 9を動作させ、慣性モーメントが変化する場合には、作業機レバー 11側力 の値を持った作業機速度指令値 Vwo(t)により第 2速度指令値 Vo2(t)が生 成され、第 1速度指令値 Vol(t)力 第 2速度指令値 Vo2(t)が減算される。このため、 大きな速度ゲイン K2を用いているにもかかわらず、小さな第 1トルク指令値 T1が生成 され、この第 1トルク指令値 T1が最終的なトルク指令値として出力される。これにより、 外乱に応じて旋回速度が変化するようになる。
[0063] 本実施形態でも、構成は異なるが、第 4実施形態と同様の効果を得ることができ、 本発明の目的を達成できる。
[0064] なお、本発明を実施するための最良の構成、方法などは、以上の記載で開示され ているが、本発明は、これに限定されるものではない。
前記第 4〜第 6実施形態では、本発明の請求項 2に係る「旋回体に作用する外乱」 とは、ブーム 6やアーム 7を伸縮させたときの旋回体 4に生じる慣性モーメントの変化 のことであった力 本発明はこれに限定されない。
例えば、旋回体 4が旋回しているとき、パケット 8等が大きな岩石等にぶっかると、そ の旋回が阻害されて急負荷が電動モータ 5に加わるので、モータはその外力に対し て対抗して急に大きな力を出力し、よってオペレータに大きな衝撃が加わることにな るのであるが、このような外力も本発明「旋回体に作用する外乱」に含まれる。
そして、この場合には、例えば、外力(外乱)が作用している否力を速度指令値と実 速度との偏差の大きさ等により判定し、外力が作用していると判断されたときには、小 さな第 1トルク指令値で電動モータ 5を駆動する。
これによれば、旋回体 4の旋回が外力に影響されやすいことから、外力が作用した 際の衝撃を旋回体 4自身の緩慢な旋回によって吸収でき、乗り心地を改善できる。
[0065] その他、本発明は、主に特定の実施形態に関して特に図示され、かつ、説明されて いるが、本発明の技術的思想および目的の範囲力 逸脱することなぐ以上述べた 実施形態に対し、形状、数量、その他の詳細な構成において、当業者が様々な変形 をカロえることができるものである。
従って、上記に開示した形状、数量などを限定した記載は、本発明の理解を容易 にするために例示的に記載したものであり、本発明を限定するものではないから、そ れらの形状、数量などの限定の一部もしくは全部の限定を外した部材の名称での記 載は、本発明に含まれるものである。
産業上の利用可能性
本発明は、旋回体を電動モータで旋回駆動させる際の制御装置に利用できる。ま た、このような制御装置が搭載される機械としては、建設機械には限定されない。し 力も、建設機械の場合であっても、旋回体を有しており、それが電動モータで旋回駆 動されればょ 、から、特にショベルに限定されな!、。

Claims

請求の範囲
[1] 電動モータで旋回する旋回体を制御するための旋回制御装置であって、
前記旋回体を所定の目標速度で旋回させるために生成された速度指令値が略一 定で、かつ前記旋回体の実速度が変化するときの前記速度指令値に基づいて生成 される第 1トルク指令値の絶対値よりも、
前記速度指令値を変化させたときの前記速度指令値に基づいて生成される第 2ト ルク指令値の絶対値の方が大きくなるように制御する
ことを特徴とする旋回制御装置。
[2] 電動モータで旋回する旋回体を制御するための旋回制御装置であって、
前記旋回体に外乱が作用しているかを判定し、
作用しているときには、第 1トルク指令値で前記電動モータを駆動し、
外乱が作用しないときには、前記第 1トルク指令値の絶対値よりも大きい絶対値の 第 2トルク指令値で前記電動モータを駆動するように制御する
ことを特徴とする旋回制御装置。
[3] 請求項 1または請求項 2に記載の旋回制御装置において、
前記速度指令値の変化率の絶対値が所定値よりも大き 、場合には、前記第 2トルク 指令値で前記電動モータを駆動し、
前記速度指令値の変化率の絶対値が所定値以下の場合には、前記第 1トルク指 令値で前記電動モータを駆動する
ことを特徴とする旋回制御装置。
[4] 建設機械において、
電動モータで旋回する旋回体と、
この旋回体を制御するための請求項 1な 、し請求項 3の 、ずれかに記載の旋回制 御装置とを備えている
ことを特徴とする建設機械。
PCT/JP2005/021013 2004-11-17 2005-11-16 旋回制御装置および建設機械 WO2006054582A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05807015.2A EP1813729B1 (en) 2004-11-17 2005-11-16 Rotation control device and construction machine
US11/791,040 US7772792B2 (en) 2004-11-17 2005-11-16 Rotation control device
CN2005800394549A CN101061279B (zh) 2004-11-17 2005-11-16 旋转控制装置以及建设机械
JP2006545091A JP4167289B2 (ja) 2004-11-17 2005-11-16 旋回制御装置および建設機械

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-333678 2004-11-17
JP2004333678 2004-11-17

Publications (1)

Publication Number Publication Date
WO2006054582A1 true WO2006054582A1 (ja) 2006-05-26

Family

ID=36407123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021013 WO2006054582A1 (ja) 2004-11-17 2005-11-16 旋回制御装置および建設機械

Country Status (5)

Country Link
US (1) US7772792B2 (ja)
EP (2) EP1813729B1 (ja)
JP (1) JP4167289B2 (ja)
CN (1) CN101061279B (ja)
WO (1) WO2006054582A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1905902A2 (en) 2006-09-29 2008-04-02 Kobelco Construction Machinery Co., Ltd. Rotation control device for working machine
EP1961869A1 (en) 2007-02-21 2008-08-27 Kobelco Construction Machinery Co., Ltd. Rotation control device and working machine therewith
JP2008231902A (ja) * 2007-02-21 2008-10-02 Kobelco Contstruction Machinery Ltd 旋回制御装置及びこれを備えた作業機械
WO2009019826A1 (ja) * 2007-08-03 2009-02-12 Daikin Industries, Ltd. 旋回体の駆動制御装置
JP2009121127A (ja) * 2007-11-14 2009-06-04 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 旋回制御装置
JP2010106511A (ja) * 2008-10-29 2010-05-13 Kobelco Contstruction Machinery Ltd 作業機械の旋回制御装置
WO2010150846A1 (ja) * 2009-06-25 2010-12-29 日立建機株式会社 作業機械の旋回制御装置
WO2012099211A1 (ja) * 2011-01-21 2012-07-26 日立建機株式会社 作業機械の旋回制御装置
CN104011300A (zh) * 2011-12-28 2014-08-27 住友建机株式会社 回转控制装置及方法
JP2015196946A (ja) * 2014-03-31 2015-11-09 住友重機械工業株式会社 電動旋回装置
JP2015196968A (ja) * 2014-03-31 2015-11-09 住友建機株式会社 ショベル
WO2023188767A1 (ja) * 2022-03-30 2023-10-05 コベルコ建機株式会社 作業機械の旋回制御装置およびこれを備えた作業機械

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101112135B1 (ko) * 2009-07-28 2012-02-22 볼보 컨스트럭션 이큅먼트 에이비 전기모터를 이용한 건설기계의 선회 제어시스템 및 방법
KR101769484B1 (ko) * 2010-07-13 2017-08-18 볼보 컨스트럭션 이큅먼트 에이비 건설기계의 선회 제어 장치 및 그 방법
JP2014505807A (ja) * 2010-12-15 2014-03-06 ボルボ コンストラクション イクイップメント アーベー ハイブリッド建設機械用旋回制御システム
JP5790677B2 (ja) * 2013-02-15 2015-10-07 トヨタ自動車株式会社 移動制御装置、移動体制御方法、及び制御プログラム
US9181682B2 (en) 2013-04-23 2015-11-10 Caterpillar Inc. Aggressive and stable speed control
JP6150740B2 (ja) * 2014-02-20 2017-06-21 日立建機株式会社 建設機械
JP6630257B2 (ja) * 2016-09-30 2020-01-15 日立建機株式会社 建設機械
CA3042386A1 (en) 2016-11-02 2018-05-11 Clark Equipment Company System and method for defining a zone of operation for a lift arm
US10519626B2 (en) * 2017-11-16 2019-12-31 Caterpillar Inc. System and method for controlling machine
US10843575B2 (en) * 2017-11-30 2020-11-24 Caterpillar Inc. Control system for controlling operation of a drive motor
US11577796B2 (en) * 2019-07-11 2023-02-14 Deere & Company Auto track alignment and undercarriage swing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001010783A (ja) * 1999-06-29 2001-01-16 Kobe Steel Ltd 旋回式作業機械の旋回制御装置
JP2004169466A (ja) * 2002-11-21 2004-06-17 Komatsu Ltd 建設機械の機器配置構造

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3518444A (en) * 1964-10-23 1970-06-30 Bucyrus Erie Co Control system for excavating machinery
US6054844A (en) * 1998-04-21 2000-04-25 The Regents Of The University Of California Control method and apparatus for internal combustion engine electric hybrid vehicles
US6157884A (en) * 1998-09-25 2000-12-05 Nissan Motor Co., Ltd. Speed ratio control device and control method for automatic transmission
JP3877909B2 (ja) 1999-06-30 2007-02-07 株式会社神戸製鋼所 建設機械の旋回駆動装置
JP3620359B2 (ja) * 1999-08-10 2005-02-16 日産自動車株式会社 車両用走行制御装置
US6394208B1 (en) * 2000-03-30 2002-05-28 Ford Global Technologies, Inc. Starter/alternator control strategy to enhance driveability of a low storage requirement hybrid electric vehicle
JP3942948B2 (ja) * 2002-05-09 2007-07-11 株式会社神戸製鋼所 作業機械の旋回制御装置
US6777904B1 (en) * 2003-02-25 2004-08-17 Ford Global Technologies, Llc Method and system for controlling a motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001010783A (ja) * 1999-06-29 2001-01-16 Kobe Steel Ltd 旋回式作業機械の旋回制御装置
JP2004169466A (ja) * 2002-11-21 2004-06-17 Komatsu Ltd 建設機械の機器配置構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1813729A4 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088659A (ja) * 2006-09-29 2008-04-17 Kobelco Contstruction Machinery Ltd 作業機械の旋回制御装置
EP1905902A3 (en) * 2006-09-29 2008-07-02 Kobelco Construction Machinery Co., Ltd. Rotation control device for working machine
US8798872B2 (en) 2006-09-29 2014-08-05 Kobelco Construction Machinery Co., Ltd. Rotation control device for working machine
EP1905902A2 (en) 2006-09-29 2008-04-02 Kobelco Construction Machinery Co., Ltd. Rotation control device for working machine
EP2275606A3 (en) * 2007-02-21 2011-04-06 Kobelco Construction Machinery Co., Ltd. Rotation control device and working machine therewith
EP1961869A1 (en) 2007-02-21 2008-08-27 Kobelco Construction Machinery Co., Ltd. Rotation control device and working machine therewith
JP2008231902A (ja) * 2007-02-21 2008-10-02 Kobelco Contstruction Machinery Ltd 旋回制御装置及びこれを備えた作業機械
CN101250888B (zh) * 2007-02-21 2012-08-15 神钢建设机械株式会社 旋转控制装置及设有该装置的作业机械
US8190334B2 (en) 2007-02-21 2012-05-29 Kobelco Construction Machinery Co., Ltd. Rotation control device and working machine therewith
JP2009035988A (ja) * 2007-08-03 2009-02-19 Daikin Ind Ltd 旋回体の駆動制御装置
WO2009019826A1 (ja) * 2007-08-03 2009-02-12 Daikin Industries, Ltd. 旋回体の駆動制御装置
JP2009121127A (ja) * 2007-11-14 2009-06-04 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 旋回制御装置
JP2010106511A (ja) * 2008-10-29 2010-05-13 Kobelco Contstruction Machinery Ltd 作業機械の旋回制御装置
KR101379970B1 (ko) * 2009-06-25 2014-04-01 히다찌 겐끼 가부시키가이샤 작업 기계의 선회 제어 장치
US8818649B2 (en) 2009-06-25 2014-08-26 Hitachi Construction Machinery Co., Ltd. Rotation control device for working machine
WO2010150846A1 (ja) * 2009-06-25 2010-12-29 日立建機株式会社 作業機械の旋回制御装置
JP5356521B2 (ja) * 2009-06-25 2013-12-04 日立建機株式会社 作業機械の旋回制御装置
JP2012154023A (ja) * 2011-01-21 2012-08-16 Hitachi Constr Mach Co Ltd 作業機械の旋回制御装置
CN103328732A (zh) * 2011-01-21 2013-09-25 日立建机株式会社 作业机械的回转控制装置
WO2012099211A1 (ja) * 2011-01-21 2012-07-26 日立建機株式会社 作業機械の旋回制御装置
US9103093B2 (en) 2011-01-21 2015-08-11 Hitachi Construction Machinery Co., Ltd. Rotation control device of working machine
CN104011300A (zh) * 2011-12-28 2014-08-27 住友建机株式会社 回转控制装置及方法
JPWO2013099983A1 (ja) * 2011-12-28 2015-05-11 住友建機株式会社 旋回制御装置及び方法
US9284717B2 (en) 2011-12-28 2016-03-15 Sumitomo(S.H.I.) Construction Machinery Co., Ltd. Swivel control apparatus and method
JP2015196946A (ja) * 2014-03-31 2015-11-09 住友重機械工業株式会社 電動旋回装置
JP2015196968A (ja) * 2014-03-31 2015-11-09 住友建機株式会社 ショベル
WO2023188767A1 (ja) * 2022-03-30 2023-10-05 コベルコ建機株式会社 作業機械の旋回制御装置およびこれを備えた作業機械

Also Published As

Publication number Publication date
US7772792B2 (en) 2010-08-10
JP4167289B2 (ja) 2008-10-15
EP1813729A4 (en) 2014-09-03
CN101061279A (zh) 2007-10-24
EP1813729B1 (en) 2017-04-19
EP1813729A1 (en) 2007-08-01
JPWO2006054582A1 (ja) 2008-05-29
CN101061279B (zh) 2012-11-21
US20080164832A1 (en) 2008-07-10
EP2910690A1 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
WO2006054582A1 (ja) 旋回制御装置および建設機械
JP4851802B2 (ja) 建設機械の旋回駆動装置
JP4793352B2 (ja) 旋回制御装置及びこれを備えた作業機械
CN101057044B (zh) 回转控制装置以及建筑机械
EP1905902B1 (en) Working machine including a rotation control device
JP3942948B2 (ja) 作業機械の旋回制御装置
JP6695620B2 (ja) 建設機械
JP5969437B2 (ja) 建設機械
JP2007100327A (ja) 建設機械の駆動制御装置
JP2001010783A (ja) 旋回式作業機械の旋回制御装置
JP5476555B2 (ja) ハイブリッド式建設機械
JP5615732B2 (ja) 掘削機
JP2003184133A (ja) 油圧作業機の振動抑制装置
JP2004036303A (ja) 作業機械の旋回制御装置
JP2010095906A (ja) 建設機械および旋回制御装置
JP2010106511A (ja) 作業機械の旋回制御装置
WO2008041395A1 (fr) Contrôleur de moteur
JP4475301B2 (ja) 旋回体の駆動制御装置
WO1997011265A1 (fr) Dispositif de commande de la vitesse de rotation d'un moteur de machine a fonctionnement hydraulique
JP2004137702A (ja) 作業機械のアクチュエータ制御装置
JP2009027873A (ja) 旋回体の駆動制御装置
JP5353184B2 (ja) 作業機械の旋回制御装置
JP2011001736A (ja) 建設機械の旋回制御装置
JP5062128B2 (ja) 作業機械の旋回駆動装置
JP6347977B2 (ja) ショベル

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006545091

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580039454.9

Country of ref document: CN

Ref document number: 11791040

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2005807015

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005807015

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005807015

Country of ref document: EP