WO2006043642A1 - Fluid reactor - Google Patents

Fluid reactor Download PDF

Info

Publication number
WO2006043642A1
WO2006043642A1 PCT/JP2005/019327 JP2005019327W WO2006043642A1 WO 2006043642 A1 WO2006043642 A1 WO 2006043642A1 JP 2005019327 W JP2005019327 W JP 2005019327W WO 2006043642 A1 WO2006043642 A1 WO 2006043642A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
reaction
flow path
mixing
temperature
Prior art date
Application number
PCT/JP2005/019327
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Kato
Akihisa Hongo
Akira Goto
Isao Umeda
Mamoru Jinbo
Masahito Abe
Yoshinori Jono
Wataru Matsumura
Kazuyoshi Takeda
Hirokuni Hiyama
Masao Shinoda
Yoshihiro Mochizuki
Akira Fukuda
Masaru Ohsawa
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to JP2006543071A priority Critical patent/JPWO2006043642A1/en
Publication of WO2006043642A1 publication Critical patent/WO2006043642A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4317Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4338Mixers with a succession of converging-diverging cross-sections, i.e. undulating cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4523Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through sieves, screens or meshes which obstruct the whole diameter of the tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4524Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through foam-like inserts or through a bed of loose bodies, e.g. balls
    • B01F25/45241Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through foam-like inserts or through a bed of loose bodies, e.g. balls through a bed of balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • B01F33/3011Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions using a sheathing stream of a fluid surrounding a central stream of a different fluid, e.g. for reducing the cross-section of the central stream or to produce droplets from the central stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • B01F33/3012Interdigital streams, e.g. lamellae
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00801Means to assemble
    • B01J2219/0081Plurality of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00954Measured properties
    • B01J2219/00959Flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip

Definitions

  • the present invention relates to a fluid reaction device that reacts fluids in a minute space.
  • a fluid reaction device that reacts fluids in a minute space.
  • it relates to a micro-reactor that performs reactions such as continuous synthesis of drugs, genes, and proteins in a minute space.
  • the ratio of the surface area to the volume of the fluid is large, the diffusion time is shortened because the mass transfer distance is short (why Then, the diffusion time between materials is proportional to the square of the mutual distance (Fick's law), so the diffusion time is shortened, for example, the reaction distance between two substances in a normal batch reactor with a diameter of 1000 mm is 10 mm. If the reaction of microreactors with mutual distances of 500 ⁇ m, 100 ⁇ m, and 10 ⁇ m occurs at the same time as diffusion, the reaction time is 400 times, 10,000 times, and 1 million times, respectively, for a batch reactor.
  • a microreactor has been developed as a fluid reaction apparatus for reacting a liquid such as a reagent. Looking at the microreactor from the standpoint of a liquid supply system for flowing liquid, if the inner diameter of the flow path becomes smaller, the Reikarezu number becomes smaller and the liquid flow becomes laminar. In order to quickly mix the liquid in the laminar flow region, it is effective to make the inner diameter of the flow path as small as possible. This is because in the laminar flow region, molecular diffusion is the rate-limiting factor, and the liquid diffusion time is proportional to the square of the width of the channel.
  • FIG. 39 is a schematic diagram showing a flow rate measuring unit of a general mass flow controller.
  • the flow path 3001 is provided with a temperature adjustment mechanism 3002, and the upstream side first temperature sensor 3003 and the downstream side second temperature sensor 3004 are arranged downstream thereof. It has been done.
  • the temperature adjustment mechanism 3002 is controlled by the temperature control unit 3005 and heats the liquid flowing through the flow path 3001 at a predetermined rate of temperature change.
  • the second temperature sensor 3004 is connected to the temperature difference measuring device 3006, and the temperature change at the position of the second temperature sensor 3004 is recorded in the temperature difference measuring device 3006.
  • FIG. 40 is a graph showing the temperature distribution in the flow path.
  • the position of the first temperature sensor 3003 is represented by Pl
  • the position of the second temperature sensor 3004 is represented by P2.
  • Symbol D1 represents the temperature distribution when no liquid is flowing
  • symbol D2 represents the temperature distribution when the liquid is flowing.
  • a temperature difference ⁇ occurs at P2 between when the liquid is not flowing and when the liquid is flowing. Therefore, if the specific heat and specific gravity of the liquid are known in advance, the flow rate can be obtained from the temperature difference ⁇ .
  • Such a flow meter for obtaining a flow rate from a temperature difference is generally called a thermal flow meter.
  • the flow rate adjustment valve is controlled by the output of the flow meter.
  • the conventional mass flow controller has a mass flow control port for gas. Since it was developed based on the mechanism of the roller, it was difficult to use it in a microreactor where the upper limit of the allowable pressure was as low as 0.5 MPa or less. In particular, when a microchannel is used, the reaction product is expected to increase the pressure on the downstream side of the mass flow controller, and there is a risk that accurate flow measurement may not be performed due to liquid leakage. Therefore, the flow control device used in the microreactor is required to have a performance capable of performing accurate flow measurement even when the pressure of the liquid fluctuates and a high pressure response.
  • the conventional thermal flow meter obtains the flow rate from the temperature difference, the measurement of the flow rate is affected by the specific heat and specific gravity of the liquid. For this reason, it is necessary to correct the flow rate in consideration of specific heat and specific gravity for each type of liquid.
  • the temperature difference also depends on the viscosity of the liquid in addition to the specific heat and specific gravity, so the viscosity of the liquid also affects the flow measurement. The effect of viscosity on flow rate is described with reference to FIG.
  • FIG. 41 is a diagram showing the flow velocity distribution of the liquid flowing through the microchannel.
  • symbol VI represents low viscosity and liquid flow velocity distribution
  • symbol V2 represents high viscosity and liquid flow velocity distribution.
  • the average flow velocities of the two liquids are equal to each other, but the shape of the flow velocity distribution differs due to the difference in viscosity. That is, there is a difference in the flow velocity near the inner surface of the flow path 3001 between the high-viscosity liquid and the low-viscosity liquid even if the flow rates (average flow speed) are the same.
  • the temperature measured by the temperature sensor 3007 provided on the outer surface of the panel will be different.
  • a plunger pump device or a motor is used.
  • the plunger pump forms, for example, a pump chamber by partitioning a space in the cylinder, and each of the pump chambers is connected to a suction pipe via a suction valve and a discharge valve. And the discharge pipe are connected, and the partition plate is reciprocated by a predetermined driving means.
  • suction the suction valve is opened and the discharge valve is closed, and the partition plate is moved in the direction of expansion of the pump chamber.
  • discharge the suction valve is closed, the discharge valve is opened, and the partition plate is contracted by the pump chamber. Move in the direction you want.
  • One plunger pump operates intermittently as shown in Fig. 105 (a).
  • a conventional dual plunger pump uses a grooved cam as a drive transmission means, but it is difficult to machine and accuracy is difficult to obtain. Further, the backlash at the time of switching between forward and reverse is reduced. There are drawbacks such as the need to do so.
  • an open cam such as an end face cam can only operate in one direction, it is necessary to use a spring that biases the plunger toward the cam. However, in this case, when the plunger is pushed out, the panel needs to be resisted against the urging force, so that the motor load becomes large.
  • the uniform state means that the product produced by the reaction is naturally a by-product, unreacted raw materials, other impurities, components that have been eluted in the piping, etc. Is required.
  • PAT Process Analytical Technology
  • the present invention has been made in view of the above circumstances, and by utilizing the characteristics of the reaction in the micro space, a plurality of fluids can be mixed to perform various chemical reaction operations efficiently. In addition, it can be manufactured at low cost, is easy to maintain, and is a good practical mass production method. An object is to provide a suitable fluid reaction apparatus.
  • the flow rate of the fluid can be accurately measured and adjusted without depending on the specific gravity, specific heat, viscosity, and pressure fluctuation of the fluid.
  • an object of the present invention is to provide a liquid feeding device capable of continuous operation with suppressed pulsation in a fluid reaction device that reacts fluids in a minute space.
  • microreactor channel structure for realizing a mixing and reaction with high yield and selectivity is specifically provided.
  • Another object of the present invention is to provide an analysis system that can output analysis results in a short time without the need for screening by off-line analysis.
  • the present invention also provides an overall configuration of a convenient microreactor device.
  • the present invention is not limited to this, but includes the following inventions.
  • Fluid that introduces and reacts a plurality of fluids into a reaction channel having a micro reaction space In a reaction apparatus, an introduction unit that individually introduces fluids used for the reaction and a fluid are joined and mixed A mixing flow path, fluid transport means for transporting fluid toward the mixing flow path via a plurality of transport pipes, flow rate control means for controlling the flow rate of the fluid, and temperature of the reaction flow path
  • a fluid reaction apparatus comprising a temperature control means, a deriving section for deriving a substance after reaction from a recovery port, and an operation control means for controlling these operations.
  • a fluid reaction apparatus further comprising a flat plate-shaped mixed substrate, wherein the mixed flow path for mixing and mixing the fluids is provided in the flat plate-shaped mixed substrate.
  • the fluid reaction device according to 1).
  • the micro reaction space has a channel having a channel width of 500 ⁇ or less.
  • the fluid reaction device according to any one of (2) to (4).
  • the fluid to be introduced is a gas or a liquid, and the substance after the reaction is either a gas, a liquid or a solid, or a mixture thereof, and the fluid to be introduced is a continuous flow.
  • the fluid transporting means is a plunger pump device in which a pair of plunger pumps are connected in parallel, and a cam mechanism that interlocks the plungers of the plunger pumps so as to alternately advance,
  • a plunger pump device comprising: a fluid pressure device that presses each plunger toward the cam mechanism when retracted; and a control unit that controls the operation of the fluid pressure device in accordance with the operation cycle of the plunger.
  • the fluid reaction device according to any one of (2) to (7).
  • the pair of plunger pumps respectively perform an acceleration process and a deceleration process at the initial stage and the final stage of the discharge operation, and the timing is set so that one acceleration process and the other deceleration process overlap each other.
  • the fluid transport means is a plunger pump device, each having a separate drive device, and a pair of plunger pumps connected in parallel between the liquid source and the microreactor flow path; A flowmeter installed in the microreactor flow path and a control unit that alternately discharges the pair of plunger pumps at a constant predetermined feed rate.
  • the control unit is configured so that the plunger pump discharges.
  • the plunger pump device according to any one of (2) to (7), characterized in that the feed speed is adjusted at a predetermined timing based on a measured value of the flowmeter at the time of reading. Fluid reaction device.
  • the plunger pump device includes a pressure sensor installed in the microreactor flow path, and the controller is configured to control the feed rate based on an output value of the pressure sensor.
  • the control unit of the plunger pump device performs an acceleration process and a deceleration process in the initial stage and the final stage of the discharge operation of the pair of plunger pumps, respectively.
  • the control unit of the plunger pump device controls the plunger pump to perform a fixed stop process between forward and backward movements. (12) to (: 15) The fluid reaction device according to any one of the above.
  • the plunger pump device force includes a position sensor that detects a position of a plunger of the plunger pump, and the control unit controls a feed speed based on an output of the position sensor.
  • the fluid reaction device according to any one of (16).
  • the flow rate control means includes a sensor unit that measures the volume of the passing fluid, and a passage amount control unit that controls a passage area through which the fluid passes based on measurement information of the sensor unit.
  • the fluid reaction device according to any one of the above (2) to (: 17).
  • the flow rate control unit is a flow rate adjustment device that adjusts the flow rate of the fluid flowing through the flow path, and includes a temperature control mechanism that heats or cools the fluid flowing through the flow path, From the time difference between the time when the temperature of the fluid at the first measurement point changes and the time when the temperature of the fluid changes at the second measurement point downstream of the first measurement point, the flow of the fluid flowing in the flow path
  • a flow rate measurement unit for calculating a flow rate
  • a downstream temperature sensor for measuring the temperature of the fluid passing through the second measurement point
  • a control valve provided on the downstream side of the downstream temperature sensor, and the flow rate measurement
  • a control unit that controls the control valve so that the flow rate of the fluid is constant based on the flow rate obtained by the unit, (2) to (: 18)
  • the fluid reaction device according to any one of the above.
  • the flow rate measuring unit of the flow rate adjusting device calculates a time difference between two points corresponding to each other on a temperature curve indicating a temperature change of the fluid at the first measurement point and the second measurement point.
  • the upstream temperature sensor of the flow rate adjusting device includes a sensor holder that contacts a fluid flowing through the flow path, and a thermistor inserted into the sensor holder to a position close to the flow path.
  • the downstream temperature sensor of the flow rate adjusting device includes a sensor holder that contacts the fluid flowing through the flow path, and a thermistor inserted into the sensor holder to a position close to the flow path.
  • the fluid reaction device according to any one of (19) to (22).
  • An environmental temperature control mechanism for maintaining a constant temperature in a space including at least the first measurement point and the second measurement point is further provided. (19) to (23 ) The fluid reaction device according to any one of the above.
  • the temperature adjustment mechanism of the flow rate adjusting device includes a structure having a cylindrical part in which holes forming the flow path are formed, and a heat transfer part that transfers heat to the cylindrical part, and the structure
  • the fluid reaction device according to any one of (19) to (25), further comprising a temperature control member that heats or cools the heat transfer section of the body.
  • the control valve of the flow rate adjusting device includes a valve that adjusts the flow rate and a drive source that drives the valve, and the drive source includes a piezoelectric element, an electromagnet, a servo motor, Or the stepping motor is provided,
  • the fluid reaction apparatus as described in any one of (19)-(26) characterized by the above-mentioned.
  • the control valve of the flow rate adjusting device includes a valve that adjusts the flow rate and a drive source that drives the valve, and the drive source includes a plurality of stacked piezoelectric elements.
  • the fluid reaction device according to any one of (19) to (27), wherein the fluid reaction device has a structure.
  • the flow rate of the fluid passing through the control valve is from 0 ⁇ 01 to: 10 L / h, according to (19) to (29), Fluid reaction device.
  • the material of the flow control device is stainless steel, titanium, polyether ether ketone, polytetrafluoroethylene, or polychloroethylene, (19) to (31)
  • a temperature control mechanism in which the flow rate control means temperature-controls the fluid flowing through the flow path for a short time at a predetermined temperature control position, and a temperature measurement position downstream of the temperature control position of the flow path.
  • a flow rate measuring device including at least one main temperature sensor disposed in the position, and determining the passage of temperature-controlled fluid based on a temperature change at a temperature measurement position observed by the main temperature sensor, In the flow rate measuring device that calculates the flow rate based on the determination result, a sub-temperature sensor is installed at a position upstream of the temperature control position of the flow path, and the temperature measurement value of the main temperature sensor is used as the sub-temperature.
  • the fluid reaction device according to any one of (2) to (18), wherein the fluid reaction device is corrected by a measurement value of a sensor.
  • the correction of the flow rate measuring device is performed by obtaining a difference between a measured value of the main temperature sensor and a measured value of the sub temperature sensor, (33) The fluid reaction device.
  • At least two main temperature sensors are provided at different temperature measurement positions, and the flow rate is calculated based on a passage time difference between these temperature measurement positions.
  • the sub-temperature sensor of the flow rate measuring device may be configured such that the temperature is relative to the temperature control position.
  • the fluid reaction device according to any one of (33) to (37), wherein the fluid reaction device is at a position that is substantially symmetrical to the degree measurement position.
  • the temperature control mechanism of the flow rate measuring device includes a Peltier element, Seebeck element, electromagnetic wave generator, resistance heating wire, thermistor, or platinum resistor,
  • the fluid reaction device according to any one of (33) to (40).
  • reaction flow path is formed on a reaction substrate provided separately from the mixing substrate in order to advance the reaction of the fluid after mixing.
  • a fluid reaction device according to claim 1.
  • a first flow path selection switching valve is provided between the fluid transporting means and the mixing substrate, and a second flow path selection switching valve is provided between the mixing substrate and the substance recovery port.
  • the fluid reaction device After the fluid introduced into the mixing channel is mixed, it is provided with a fullness detecting means for judging that the fluid is filled in the mixing channel or Z and the reaction channel, and when the fluid is filled It is possible to stop the fluid transportation means or switch the flow path selection switching valve and control the fluid to stay in the mixing flow path and / or the reaction flow path for a certain time to adapt to the reaction end time.
  • the fluid reaction device according to any one of (2) to (46).
  • the fullness detection means is a fluid presence / absence sensor that detects a fluid that has started to exit from the substance recovery port, or a fluid presence / absence sensor that detects the presence or absence of fluid in the transport pipe after the mixing reaction.
  • the mixing channel and the reaction channel are individually provided with temperature measurement sensors, and the temperature can be individually controlled.
  • (2) to (48) The fluid reaction device according to (1) or (2).
  • the second flow path selection switching valve includes any of a nitrogen gas supply line, a pure water supply line, an organic solvent supply line, an acid supply line, a hydrogen water supply line, and an ozone water supply line.
  • the fluid reaction device according to any one of (45) to (53), wherein the fluid reaction device is connected to one or a plurality of members.
  • the installation space for the lead-out portion is provided with a table capable of holding two or more collection containers and a table moving mechanism, (4) to (54) The fluid reaction device according to any one of the above.
  • the table moving mechanism is a rotating mechanism or a reciprocating mechanism.
  • the light source unit of the multispectral analyzer is a light source that covers at least two wavelength regions of ultraviolet light, visible light, near infrared light, infrared light, and far infrared light.
  • the casing of the multispectral analyzer is configured to form one flow cell therein, and a plurality of the casings can be detachably mounted on a substrate.
  • the fluid reaction device according to any one of (59) to (62).
  • a fluid mixing device used in a fluid reaction device that reacts a plurality of fluids in a flow path including a micro reaction space, wherein a plurality of flat base materials are joined to each other and the plurality of fluids are respectively connected.
  • the header space is provided along the surface of the base material, and the fluid flows in the thickness direction of the base material.
  • a plurality of liquid separation channels that communicate between the header space and the merge space are formed such that the liquid separation channels from different header spaces open alternately at the inflow portion of the merge space.
  • the header spaces are provided on both sides of the merge space on the surface of the base material, and the liquid separation channels from different header spaces are shifted from each other in the inflow portion of the merge space.
  • the confluence space is formed so as to be bent so that a fluid flows along the surface of the base material after the fluid flows in the thickness direction of the base material.
  • the fluid mixing device according to any one of (7 :! to (73).
  • the member forming the flow path is made of hard glass such as SUS316, SUS304, Ti, quartz glass, Pyrex glass (registered trademark), PEEK (polyetheretherketone), PE (polyethylene), PVC (polyvinylchloride), (67) to (80) characterized by including one or more of PDMS (polydimethylsiloxane), Si, PTFE (polytetrafluoroethylene), PCTFE (polychlorotrifluoroethylene), and PFA (perfluoroalkoxylalkane).
  • hard glass such as SUS316, SUS304, Ti, quartz glass, Pyrex glass (registered trademark), PEEK (polyetheretherketone), PE (polyethylene), PVC (polyvinylchloride), (67) to (80) characterized by including one or more of PDMS (polydimethylsiloxane), Si, PTFE (polytetrafluoroethylene), PCTFE (polychloro
  • a plurality of fluid inlets and a single fluid outlet after mixing are present on the opposite surface of the substrate. (67) to (83) Fluid mixing device.
  • the mixed reaction substrate is provided in the same substrate, and a preliminary temperature adjustment unit is provided to raise or lower the fluid temperature toward the reaction temperature (67) to (84).
  • the fluid mixing device according to any one of the above.
  • a plurality of first flow paths communicating with the first fluid source and a plurality of second flow paths communicating with the second fluid source are formed inside the mixing flow path, respectively.
  • the manifold section is formed by laminating plate-like elements in which grooves constituting the first flow path and the second flow path are alternately formed, so that the opening end face can
  • the fluid reactor according to (85) wherein the first channel and the second channel are arranged in a staggered manner.
  • the representative dimension of the mixing promoting object is the first dimension immediately before the mixing promoting object.
  • a heat exchanger for heating or cooling the first flow path, the second flow path, the merge space and / or the fluid flowing downstream thereof is provided (86) The fluid reaction device according to any one of (95) to (9).
  • the heat exchanger is configured by stacking plate-like elements in which grooves constituting the heated fluid flow path and / or the heat medium flow path are stacked.
  • the fluid reaction device according to (96) is configured by stacking plate-like elements in which grooves constituting the heated fluid flow path and / or the heat medium flow path are stacked.
  • the heated fluid flow path of the heat exchanger that heats or cools the fluid flowing in the downstream side of the merge space is a delay loop for adjusting the synthesis reaction time, and the delay loop pattern is changed or the number of stacked layers is increased.
  • the fluid reaction device according to (96) or (97), wherein the residence time in the heat exchange can be adjusted by change.
  • the temperature adjustment case has a case main body and a lid, and the heat medium flow path is formed so as to communicate with them (103) to (: 105)
  • the fluid reaction device according to any one of the above.
  • a plurality of throttle holes provided in the first header of the case body into which the thermal fluid flows are directly connected to the second header of the lid, and the second header includes the mixed substrate and (2)
  • the temperature control means includes a temperature adjustment medium holding mechanism that surrounds the mixed substrate or the reaction substrate and adjusts the temperature of the mixed fluid, a temperature adjustment medium held by the holding mechanism, and a temperature measurement sensor And (2) to (66), and (100) to (: 108), wherein the heat transfer amount adjusting means for adjusting the heat transfer amount between the temperature adjusting medium and the mixed reaction fluid is provided.
  • a fluid reaction device according to any one of the above.
  • any one or more of silicon oil, fluorine oil, alcohol, liquid nitrogen, electric resistance heating wire, and Peltier element is used as the temperature adjusting medium. Fluid reaction device.
  • the operation control means is provided with a display mechanism for displaying the flow rate of the fluid and the reaction temperature (2) to (66), (100) to (: 117)
  • the fluid reaction device according to any one of the above.
  • the ratio of the interface between fluids can be improved, efficient mixing and reaction can be performed, and a simple configuration can be produced at low cost, making maintenance easy.
  • a microreactor such as can be provided.
  • a flow path measuring device that measures an accurate flow rate without being affected by physical properties such as specific gravity, specific heat, and viscosity of the fluid, and a flow rate adjustment device that can maintain a desired flow rate. Can be provided.
  • FIG. 1 is a diagram showing an overall liquid flow of a fluid reaction device according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing the overall configuration of the fluid reaction device in FIG. 1.
  • FIG. 3 is (a) a plan view and (b) a front view showing the overall configuration of the fluid reaction apparatus of FIG. 1.
  • FIG. 6 is a diagram showing another embodiment of the mass flow controller.
  • FIG. 7A is a plan view and FIG. 7B is a cross-sectional view showing a configuration of a mixed substrate.
  • FIG. 8 is an enlarged view showing a mixing portion of the mixed substrate.
  • FIG. 9A is a plan view showing the structure of a reaction substrate
  • FIG. 9B is a cross-sectional view.
  • FIG. 10 shows another structure of the reaction substrate, (a) is a longitudinal sectional view along the flow path, (b) is (a) FIG. 6B is a cross-sectional view taken along the line bb, and (C) is a cross-sectional view showing still another configuration.
  • FIG. 15 (a) to (c) are diagrams showing still another configuration of the mixing unit.
  • FIG. 17] (a) to (c) are diagrams showing still another configuration of the mixing section.
  • FIG. 19 (a) Plan view showing another configuration of the mixing channel, and (b) An enlarged view of the main part of (a).
  • FIG. 28 is a plan view showing the configuration of the mixing / reaction unit.
  • FIG. 29 (a) Front view of first heat exchange element constituting preheating block, (b) Front view of first heat exchange element and second heat exchange element overlapped, (c) FIG. 3 is a cross-sectional view of a first heat exchange element.
  • FIG. 31 is a diagram showing the flow of the heat medium in the preheating block.
  • FIG. 32] is a plan view showing the configuration of the mixing block.
  • FIG. 33 is an exploded perspective view showing the structure of the manifold.
  • First view 1 is a cross-sectional view of a heat exchange element 1.
  • FIG. 37B is a diagram schematically showing a manifold and a merge space according to still another embodiment of the present invention.
  • FIG. 37 is a diagram schematically showing a manifold and a merge space according to still another embodiment of the present invention.
  • FIG. 38B is a diagram schematically showing a manifold and a merge space according to still another embodiment of the present invention.
  • Gan 40 is a graph showing the temperature distribution in the flow path.
  • FIG. 41 is a diagram showing a flow velocity distribution of a fluid flowing through a micro channel.
  • FIG. 45 (a) is a cross-sectional view taken along the line Vn_Vn of FIG. 44, and FIG. 45 (b) is a cross-sectional view showing another configuration example of the structure shown in FIG. 45 (a).
  • FIG. 46 is an enlarged view showing another configuration example of the control valve shown in FIG. 43.
  • FIG. 47 is a schematic diagram showing a flow rate adjusting device according to a second embodiment of the present invention.
  • FIG. 50 is a perspective view of the spool shown in FIG. 48.
  • FIG. 51 is a schematic diagram showing a flow rate adjusting apparatus according to a fourth embodiment of the present invention.
  • FIG. 52 is a schematic diagram showing the entire fluid reaction apparatus.
  • FIG. 53 is a perspective view showing the overall configuration of the fluid reaction device of FIG.
  • FIG. 54 (a) is a plan view showing the overall configuration of the fluid reaction apparatus in FIG. 52, and FIG. 54 (b) is a front view.
  • FIG. 55 (a) is a plan view showing the configuration of the mixing section
  • FIG. 55 (b) is a cross-sectional view.
  • FIG. 56 is an enlarged view showing a merging portion of the mixing portion.
  • Fig. 57 (a) is a plan view showing the structure of the reaction section
  • Fig. 57 (b) is a cross-sectional view.
  • Fig. 58 (a) is a longitudinal sectional view showing another configuration of the reaction unit
  • Fig. 58 (b) is a cross-sectional view taken along the line xvm-xvm in Fig. 58 (a)
  • Fig. 58 (c) is the reaction unit.
  • FIG. 59 is a cross-sectional view showing still another configuration of the garden 59] is a perspective view showing the configuration of the temperature adjustment case.
  • FIG. 60 is a plan sectional view of the processing section
  • FIG. 60 (b) is a side sectional view
  • FIG. 60 (c) is a partially enlarged view of FIG. 60 (a)
  • FIG. 61 is a diagram showing another configuration of the product storage unit.
  • FIG. 62 (a) is a plan view showing another configuration of the merging portion
  • FIG. 62 (b) is an enlarged view showing the main part of FIG. 62 (a).
  • FIG. 63] is a plan view showing still another configuration of the junction.
  • FIG. 64 is a schematic diagram showing another configuration of the fluid reaction device.
  • FIG. 65 is a schematic diagram showing another configuration of the fluid reaction device.
  • FIG. 66 A schematic diagram showing another configuration of the fluid reaction device.
  • FIG. 68 is a perspective view showing a configuration of a processing unit in FIG. 67.
  • FIG. 68 is a perspective view showing a configuration of a processing unit in FIG. 67.
  • FIG. 69 is a schematic diagram showing another configuration of the fluid reaction device.
  • FIG. 70 is a schematic diagram showing a flow rate measuring unit of a general mass flow controller.
  • FIG. 71 is a graph showing a temperature distribution in a flow path.
  • FIG. 72 is a diagram showing a flow velocity distribution of a fluid flowing through a micro channel.
  • FIG. 73 is a diagram for explaining the principle by which the flow rate of fluid is measured.
  • FIG. 74 is a schematic diagram showing a flow rate adjusting apparatus according to the first embodiment of the present invention.
  • FIG. 75 is a diagram illustrating a configuration of a difference detection circuit.
  • FIG. 76 is an enlarged view showing another configuration example of the control valve shown in FIG.
  • FIG. 77 is a schematic view showing a flow rate adjusting apparatus according to a second embodiment of the present invention.
  • Fig. 78 is a diagram for explaining the principle by which the flow rate of fluid is measured.
  • FIG. 80 is a diagram for explaining the principle by which the flow rate of fluid is measured.
  • FIG. 82 is a schematic diagram showing a flow rate adjusting apparatus according to a fourth embodiment of the present invention.
  • FIG. 83 is a schematic view showing the whole fluid reaction apparatus.
  • FIG. 85 (a) is a plan view showing the overall configuration of the fluid reaction device of FIG. 83, and FIG. 85 (b) is a front view.
  • FIG. 86 (a) is a plan view showing the configuration of the mixing section
  • FIG. 86 (b) is a cross-sectional view.
  • Fig. 87 is an enlarged view of the confluence portion of the mixing portion.
  • FIG. 88 (a) is a plan view showing the structure of the reaction section
  • FIG. 88 (b) is a cross-sectional view.
  • FIG. 89 is a longitudinal sectional view showing another configuration of the reaction section
  • FIG. 89 (b) is a sectional view taken along the line xvm-xvm in FIG. 89 (a)
  • FIG. 89 (c) is a reaction. It is a transverse cross section showing other composition of a section
  • FIG. 90 is a perspective view showing the configuration of the temperature adjustment case.
  • FIG. 91 is a plan sectional view of the processing section
  • FIG. 91 (b) is a side sectional view
  • FIG. 91 (c) is a partially enlarged view of FIG. 91 (a)
  • FIG. 91 (d) is a diagram. It is the elements on larger scale of 91 (b).
  • FIG. 92 is a diagram showing another configuration of the product storage unit.
  • FIG. 93 (a) is a plan view showing another configuration of the merging section
  • FIG. 93 (b) is an enlarged view showing the main part of FIG. 93 (a).
  • FIG. 94] is a plan view showing still another configuration of the junction.
  • FIG. 96 is a schematic diagram showing another configuration of the fluid reaction device.
  • FIG. 97 is a schematic diagram showing another configuration of the fluid reaction device.
  • Fig. 98 is a schematic diagram showing another configuration of the fluid reaction device.
  • FIG. 99 is a perspective view showing a configuration of a processing unit in FIG. 98.
  • FIG. 99 is a perspective view showing a configuration of a processing unit in FIG. 98.
  • FIG. 100 is a schematic diagram showing another configuration of the fluid reaction device.
  • Fig. 101 (a) Overall view showing the plunger pump device of the first embodiment of the present invention, (b) showing the main part.
  • FIG. 102 is a diagram for explaining the operation of each part of one plunger pump.
  • FIG. 103 A diagram showing the operation of the plunger pump device of the first embodiment.
  • Fig. 104 is a diagram showing a plunger pump device according to a second embodiment of the present invention.
  • FIG. 105 (a) and (b) are diagrams for explaining the operation of the conventional plunger pump.
  • FIG. 106 is a diagram showing a plunger pump device according to an embodiment of the present invention.
  • FIG. 107 is a diagram showing a connection between a plunger pump device and a microreactor.
  • [Sen 111] is a graph illustrating control of the feed rate.
  • [Sen 112] is a graph for explaining the control operation in another embodiment.
  • FIG. 113 is a schematic diagram showing the entire fluid reaction apparatus. 114] FIG. 114 is a perspective view showing the overall configuration of the fluid reaction device of FIG. 113.
  • FIG. 115 (a) is a plan view showing the overall configuration of the fluid reaction apparatus in FIG. 8, and FIG. 115 (b) is a front view.
  • FIG. 116 (a) is a plan view showing the configuration of the mixing section
  • FIG. 116 (b) is a cross-sectional view.
  • “Sono 117] It is an enlarged view of the merging section of the mixing section.
  • FIG. 118 (a) is a plan view showing the structure of the reaction section
  • FIG. 118 (b) is a cross-sectional view.
  • FIG. 119 (a) is a longitudinal sectional view showing another structure of the reaction part
  • FIG. 119 (b) is a cross-sectional view taken along the line xvm_xvm in FIG. 119 (a)
  • FIG. It is a cross-sectional view showing another configuration.
  • FIG. 123 (a) is a plan view showing another configuration of the merging portion
  • FIG. 123 (b) is an enlarged view showing the main portion of FIG. 123 (a).
  • Fig. 124 is a plan view showing still another configuration of the junction.
  • Fig. 125 is a schematic diagram showing another configuration of the fluid reaction device.
  • Fig. 13 is a schematic diagram showing another configuration of the fluid reaction device.
  • FIG. 12 is a schematic diagram showing another configuration of the fluid reaction device.
  • FIG. 129 is a perspective view showing a configuration of a processing unit in FIG. 128.
  • FIG. 128 is a perspective view showing a configuration of a processing unit in FIG. 128.
  • FIG. 130 is a schematic diagram showing another configuration of the fluid reaction device.
  • Sono 131 is a diagram schematically showing a configuration of a multispectral analysis apparatus according to an embodiment of the present invention.
  • FIG. 1 is a diagram schematically showing a configuration of a multispectral analysis apparatus according to an embodiment of the present invention.
  • Sono 132 is a diagram showing an example of a reaction to be analyzed by this apparatus.
  • FIG. 13 is a diagram schematically showing a configuration of another embodiment of the multispectral analysis apparatus of the present invention.
  • Sono is a diagram schematically showing the configuration of another embodiment of the multispectral analyzer of the present invention.
  • FIG. 136 is a diagram showing a configuration of a modification of the embodiment of FIG. 136.
  • FIG. 138 is a diagram showing a configuration of another modified example of the embodiment of FIG. 136.
  • FIG. 138 is a diagram showing a configuration of another modified example of the embodiment of FIG. 136.
  • FIG. 139 (a) and (b) are diagrams schematically showing a usage state of the multispectral analyzer of one embodiment of the present invention.
  • FIG. 140 is a schematic diagram showing the entire fluid reaction apparatus.
  • FIG. 141 is a perspective view showing the overall configuration of the fluid reaction device of FIG. 140.
  • FIG. 142 (a) is a plan view showing the overall configuration of the fluid reaction device of FIG. 140, and FIG. 142 (b)
  • FIG. 143 (a) is a plan view showing the configuration of the mixing section
  • FIG. 143 (b) is a cross-sectional view.
  • [Sen 144] It is an enlarged view of the merge part of the mixing part.
  • FIG. 145 (a) is a plan view showing the structure of the reaction section
  • FIG. 145 (b) is a cross-sectional view.
  • Fig. 146 (a) is a longitudinal sectional view showing another configuration of the reaction unit
  • Fig. 146 (b) is a cross-sectional view taken along the line xvm-xvm in Fig. 146 (a)
  • Fig. 146 (c) is a diagram of the reaction unit. It is a cross-sectional view showing still another configuration.
  • FIG. 147 is a perspective view showing a configuration of a temperature adjustment case.
  • FIG. 148 is a plan sectional view of the processing section
  • FIG. 148 (b) is a side sectional view
  • FIG. 148 (c) is a partially enlarged view of FIG. 148 (a)
  • FIG. FIG. 148 is a partially enlarged view of (b).
  • FIG. 149 is a diagram showing another configuration of the product storage unit.
  • FIG. 150 (a) is a plan view showing another configuration of the merging portion
  • FIG. 150 (b) is an enlarged view showing the main portion of FIG. 150 (a).
  • FIG. 151] is a plan view showing still another configuration of the junction.
  • Fig. 152 is a schematic diagram showing another configuration of the fluid reaction device.
  • FIG. 153 is a schematic diagram showing another configuration of the fluid reaction device.
  • FIG. 154 is a schematic diagram showing another configuration of the fluid reaction device.
  • FIG. 155 is a schematic diagram showing another configuration of the fluid reaction device.
  • FIG. 156 is a perspective view showing a configuration of a processing unit in FIG. 155.
  • FIG. 156 is a perspective view showing a configuration of a processing unit in FIG. 155.
  • FIG. 157 is a schematic diagram showing another configuration of the fluid reaction device.
  • 1 Raw material storage section (raw material container installation space); 2 Distribution section (introduction section); 3 Processing section; 4 Production fluid storage section (collection container installation space); 5 Temperature control piping chamber; 6 Operation control means (Operation control section) ); 7 Heat medium controller (temperature adjustment means); 10A, 10B Raw material storage container; 12 Cleaning liquid container; 14 Nitrogen gas pressure source; 16A, 16B, 16C pump; 20 Mass flow controller; 20a, 20b Flow rate sensor; 24A, 24B Channel pressure measurement sensor; 26A, 26B Channel selection switching valve; 28 Backwash pump; 32 Channel selection switching valve; 40, 40a, 40b, 40c Mixed substrate; 42, 42a, 42b, 42c Reaction substrate; 46 Temperature adjustment case; 48 Preliminary calo heat flow path; 50, 51 Outlet flow path; 52, 52a, 52b, 52c, 52d, 52e, 52f Mixing part; 54, 54a, 54b, 54c, 54d Header part 55, 55a, 55b, 55c, 55d Header part
  • 6142a reaction unit; 6142b reaction unit; 6142 reaction unit; 6142a reaction unit; 6142b reaction unit; 6142a reaction unit; 6142b reaction unit; 6142 reaction unit; 6144a upper plate; 6144c lower plate; 6144b middle plate; 6144d, 6144e 6146 Each temperature adjustment case; 6146 Temperature adjustment 6147A, 6147B Inlet port; 6148A, 6148B Preheating channel; 6148 port; 6150A, 6150B outlet channel; 6150A outlet channel; 6150B outlet channel; 6150A, 61 50B outlet channel; 6156, 6155 Header section; 6155 Header section; 6156, 6157 Separation path; 6156 Separation path; 6156, 615 7 Separation path; 6157 Separation path; 6157a Communication hole; 6158 —Constant time merging space; 6158 Merging space; 6158a Merging space; 6158b Merging space; 6159 Open surface; 6160 Outflow port; 6162 Reaction channel; 6162,
  • 7001 Multispectral Analyzer 7010 Casing; 7014 Flow Cell; 7016 Internal Space; 7018 Partition; 7020 Light Emitting Unit; 7022 Light Receiving Unit; 7024 Light Source Unit; 7024a- 7024 g Light Source; 7026 Optical Fiber; 7028 Spectroscopic Unit; 7028a- 7028g Spectroscope 7028a Ultraviolet spectrometer; 7028b Visible light spectrometer; 7028c _ 7028e Near-infrared spectrometer; 7028f Infrared 7028g far infrared spectrometer; 7030 AD converter; 7032 control unit; 7034 display; 7036 storage device; 7038 alarm device; 7040 branch flow path; 7042 flow control valve; 7044 on-off valve; 7046 casing; 7048 Flow path; 7050 'Joint part; 705 2 Light emitting case; 7054 Light receiving case; 7056 Fixing nut; 7058 Mixing' reaction part; 7060 Micro Taenti part;
  • the present invention relates to a fluid reaction apparatus for reacting fluids in a minute space.
  • the present invention for achieving the above-mentioned object is not limited to this, but includes the following inventions.
  • Fluid that introduces and reacts a plurality of fluids into a reaction channel having a micro reaction space In a reaction apparatus, an introduction unit that individually introduces fluids used for the reaction and a fluid are joined and mixed A flat mixed substrate having a mixing flow path, a fluid transporting means for transporting fluid toward the mixing flow path via a plurality of transport pipes, a flow rate control means for controlling the flow rate of the fluid, and the reaction A fluid reaction apparatus comprising temperature control means for controlling the temperature of a flow path, a deriving section for deriving a substance after reaction, and operation control means for controlling these operations.
  • a microreactor as a practical mass production means is provided.
  • the present invention can reliably and continuously carry out a high yield reaction in a micro space.
  • a flow with a small Reino-Leles number in a microspace of the tens to hundreds of ⁇ m class becomes laminar, and mixing by molecular diffusion becomes the rate-limiting step.
  • mixing using laminar flow diffusion is more efficient than conventional mechanical stirring mixing in a micro space of several hundred zm or less. Since the mixing part where the fluid is mixed is a micro space, the diffusion time is shortened and uniform mixing is achieved in a short time. Productivity increases because it is no longer necessary to react and is safe and yield increases. In addition, even if the reaction is complicated and the reaction time is long, a high yield can be obtained by increasing the reaction rate or selectively reacting by using a microphone opening space.
  • the contact area with the heat medium fluid can be increased, and the heat transfer rate to the reaction fluid can be increased. Therefore, the temperature uniformity over the entire reaction fluid can be improved and the accuracy of temperature control can be improved.
  • Processes used can range from laboratory level to chemical production line, from organic synthesis, inorganic synthesis, catalytic reaction to bio-based biochemical synthesis and fine particle production.
  • the condition of the flow path in the mixed substrate needs to reduce the diffusion distance, that is, to have a micro dimension, from the relationship between the diffusion time and the diffusion distance that can be inferred from Fick's law. It is preferable to increase the area of the two-liquid interface after merging by providing a plurality of merging points or placing obstacles such as porous frit pillars in the flow path after merging.
  • the flow path width after merging is gradually reduced to 100 / m or less, if possible, to 40 zm or less, and the width of the two liquids in the merged flow is forcibly reduced, so that diffusion mixing can be performed in a shorter time. It is desirable to force it. This significantly shortens the mixing time, enables explosive reactions at room temperature, simplifies the reaction pathway in organic synthesis reactions, and reduces wasteful reactions. Impurities are extremely reduced at a low rate, and the amount of raw materials used is reduced, which is advantageous in terms of running costs.
  • a fluid reaction apparatus characterized in that an installation space for installing a storage container for individually storing fluids used for the reaction is provided.
  • an installation space in which a plurality of recovery containers for recovering the substance after reaction from the lead-out part can be installed. Fluid reaction device.
  • the microreaction space includes a flow channel having a flow channel width of 500 ⁇ m or less. .
  • the fluid to be introduced is a gas or a liquid
  • the substance after the reaction is either a gas, a liquid or a solid
  • a fluid reaction apparatus characterized in that the fluid introduced in the mixture is a continuous flow.
  • the flow rate control means includes a sensor unit that measures a volume of the passing fluid, and a fluid that passes based on measurement information of the sensor unit.
  • a fluid reaction device comprising a passage amount control unit for controlling a passing area.
  • a first flow path selection switching valve is provided between the fluid transporting means and the mixing substrate, the mixing substrate and the substance recovery port.
  • a fluid reaction apparatus characterized by comprising a second flow path selection switching valve between them.
  • the first flow path selection switching valve and the second flow path selection switching valve are automatic valves operated by an electric operation or a pneumatic operation. Toss Fluid reaction device.
  • the mixing channel or / and the reaction channel are filled with fluid. It is equipped with a fullness detection means that determines that the fluid has been transported, and when it is full, the fluid transport means is stopped or the first flow path selection switching valve is switched, and the fluid is mixed for a certain period of time to adapt to the reaction end time. Or / and a fluid reaction device characterized in that it can be controlled to stay in the reaction channel.
  • the fullness detection means includes a fluid presence sensor for detecting a fluid started from the substance recovery port, or the presence or absence of fluid in the transport pipe after the mixing reaction.
  • a fluid reaction apparatus characterized by being a fluid presence sensor for detecting a fluid.
  • a temperature measurement sensor is individually provided in the mixing channel and the reaction channel, and the temperature can be individually controlled.
  • a fluid reaction device characterized by that.
  • the second flow path selection switching valve is switched to change the normal flow direction in the mixing flow path and the reaction flow path.
  • the backwashing means includes a single piston pump as a pressure feeding means.
  • the first flow path selection switching valve includes a nitrogen gas supply line, a pure water supply line, an organic solvent supply line, an acid supply A fluid reaction device characterized by being connected to any one or more of a line, a hydrogen water supply line, and an ozone water supply line.
  • the second flow path selection switching valve includes a nitrogen gas supply line, a pure water supply line, an organic solvent supply line, an acid supply A fluid reaction device characterized by being connected to any one or more of a line, a hydrogen water supply line, and an ozone water supply line.
  • the installation space of the lead-out part includes:
  • a fluid reaction apparatus comprising a table capable of holding two or more recovery containers and a table moving mechanism.
  • the table moving mechanism is a rotating mechanism or a reciprocating mechanism.
  • a fluid reaction apparatus according to the invention described in (1) to (22), further comprising yield measuring means for measuring the yield of the substance after the reaction.
  • the header space of each fluid is configured to be continuously supplied to and mixed with each other, the header spaces of the respective fluids are provided on different surfaces of the base material, and the header spaces and the merged spaces are communicated with each other.
  • a fluid mixing apparatus wherein a plurality of liquid separation channels are formed such that liquid separation channels from different header spaces open alternately at an inflow portion of the merge space.
  • each of the header spaces is formed in a concentric arc shape on the different surfaces, and the merging space is disposed substantially on the center of these arcs.
  • a fluid mixing device characterized by that.
  • the header space is formed on the front and back surfaces of the base material, and the joining space is formed on one surface of the base material. And a liquid separation channel communicating with the header space on the other surface is provided through the base material.
  • a fluid mixing device used in a fluid reaction device for reacting a plurality of fluids in a flow path including a micro reaction space, wherein a plurality of plate-like base materials are joined to each other and the plurality of fluids are respectively connected.
  • the header space is provided along the surface of the base material, and the fluid flows in the thickness direction of the base material.
  • a plurality of liquid separation channels that communicate between the header space and the merge space are formed such that the liquid separation channels from different header spaces open alternately at the inflow portion of the merge space.
  • the merging space since the merging space is provided so that the fluid flows in the thickness direction of the base material, the merging space does not occupy the plate surface of the base material, and the header space and A plurality of liquid separation channels can be freely arranged on the plate surface of the substrate.
  • the header spaces are provided on both sides of the merge space on the surface of the base material, and liquid separation channels from different header spaces are arranged in the merge space.
  • a fluid mixing device wherein the fluid mixing device is opened at positions shifted from each other in the inflow portion.
  • fluid flows from different header spaces flow into positions shifted from each other while facing each other in the inflow portion of the confluence space, and form alternately adjacent flows with a swirl flow. And increase the area of the interface.
  • the header space of each fluid is provided on a different surface of the base material, and at least one of the liquid separation channels is provided through the base material,
  • the liquid separation flow paths from different header spaces are formed so as to face each other on opposite sides of the merge space and alternately adjacent on the same side of the merge space. Fluid mixing device.
  • the flow that is adjacent to each other in a plane becomes a two-layered flow that is three-dimensionally arranged, and the area of the interface is increased.
  • the merging space is a stream.
  • a fluid mixing apparatus wherein the body is bent and formed so as to flow along the substrate after the body flows in the plate thickness direction of the substrate.
  • the merging space is formed to be bent so that the fluid flows along the surface of the base material after flowing in the thickness direction of the base material. Increase in dimension in the thickness direction is suppressed.
  • [0207] (33) having a mixing flow path for continuously supplying and mixing a plurality of fluids to a space including a flow path width portion of 500 xm or less formed on a flat substrate;
  • a fluid mixing device wherein columnar obstacles having a diameter of 50 ⁇ m or less are arranged at equal intervals over a length of 5 mm or more along the confluence point of the fluid.
  • the fine columnar obstacles are dispersed and arranged along the flow from the confluence of the fluid in the mixing channel, so that the mixing device using the microchannel However, it is easily manufactured with a simple configuration.
  • the columnar obstacle is characterized in that a plurality of columns of columns are alternately arranged in the flow direction at different intervals.
  • the fluid having a portion where the width of the flow path gradually decreases and a portion where the width gradually increases after joining.
  • Mixing equipment It is preferable that the surface of the flow path that gradually decreases is on the same plane as the surface where a plurality of fluids merge.
  • the fluid mixing characterized by repeatedly reducing and expanding the width dimension and the depth dimension of the flow path after joining.
  • the minimum dimension is preferably 100 zm or less.
  • the flow path has a flat-shaped portion in which the dimension in the width direction is larger than the dimension in the depth direction. Fluid mixing device.
  • Hard glass such as SUS316, SUS304, Ti, quartz glass, Pyrex glass (registered trademark) , PEEK (polyetheretherketone), PE (polyethylene), PVC (polyvinylchloride), PD MS (polydimethylsiloxane), Si, PTFE (polytetrafluoroethylene), PCTFE (polychlorofluoroethylene), and PFA (perfluoroalkoxylalkane)
  • PEEK polyetheretherketone
  • PE polyethylene
  • PVC polyvinylchloride
  • PD MS polydimethylsiloxane
  • Si silicon
  • PTFE polytetrafluoroethylene
  • PCTFE polychlorofluoroethylene
  • PFA perfluoroalkoxylalkane
  • the material in the wetted part of the mixed and reaction substrate material should be able to be surface-catalyzed with little elution from the surface, have a certain degree of chemical resistance, and should withstand a wide temperature range of -40 to 150 ° C .
  • a part or all of the inner wall of the flow path is made of Au, Ag, Pt, Pd, Ni, Cu , Ru, Zr, Ta, Nb or a compound containing these metals.
  • the base material is a rectangle having a size of at least one side exceeding 150 mm. Mixing equipment.
  • a preliminary temperature adjustment unit that raises or lowers the temperature of the fluid toward the reaction temperature in the same substrate and the mixed reaction substrate is provided.
  • a fluid mixing device comprising the fluid mixing device.
  • the peripheral members forming the flow path of the reaction substrate are SUS316, SUS304, Ti, quartz glass, pyrex glass ( A fluid reaction device characterized by including one or more of hard glass such as registered trademark), PEEK, PE, PVC, PDMS, Si, PTFE, and PCTFE.
  • a part or all of the inner wall of the flow path of the reaction substrate is made of Au. , Ag, Pt, Pd, Ni, Cu, Ru, Zr, Ta, Nb, or a compound containing one or more of these metals Fluid reaction device.
  • the mixed substrate and / or the reaction substrate has a heat medium flow path.
  • a fluid reaction device characterized by being housed in a case.
  • the heat medium flow path creates a uniform flow along the entire area of the mixed substrate and / or reaction substrate, and adjusts the reaction region to a uniform temperature.
  • the heat medium flow path has a plurality of branch flow paths along front and back surfaces of the mixed substrate and / or reaction substrate. Characteristic fluid reaction device.
  • the temperature adjustment case has a case body and a lid, and the heat medium flow path is formed so as to connect them.
  • a fluid reaction device characterized by comprising:
  • the plurality of throttle holes provided in the first header of the case body into which the thermal fluid flows are directly connected to the second header of the lid,
  • the header of 2 is provided with a second restriction hole that is directly connected to a plurality of branch channels that form a flow parallel to the front and back surfaces of the mixed substrate and / or reaction substrate. Place.
  • a material for the temperature adjustment case is any one of Ti, Al, SUS304, and SUS316.
  • the temperature control means surrounds and mixes the fluid mixing substrate or the reaction substrate.
  • a temperature adjusting medium holding mechanism for adjusting the temperature of the fluid, a temperature adjusting medium held by the holding mechanism, a temperature measuring sensor, and a heat transfer amount adjusting means for adjusting the heat transfer amount between the temperature adjusting medium and the mixed reaction fluid.
  • a fluid reaction apparatus comprising:
  • silicon oil As the temperature adjusting medium, silicon oil, One or more of nitrogen oil, alcohol, liquid nitrogen, electric resistance heating wire, and Peltier element are used, and a fluid reaction device characterized by the above. Silicon oil, for example, can control a wide range of temperatures from 40 to 150 ° C with one fluid. Or, if the high temperature side is important, fluorinated oil is desirable, and if it is the low temperature side, alcohol is desirable.
  • the heat transfer amount adjusting means is any one of a pump flow rate adjustment, a flow rate adjustment valve, and an electric quantity.
  • the apparatus includes a separation and extraction means for separating necessary and unnecessary substances in the substance after the reaction.
  • a fluid reaction device characterized by that.
  • a liquid storage pan for storing liquid leaked at a lower portion of the fluid reaction device, and a leak A fluid reaction apparatus comprising a leak sensor for detecting liquid.
  • the operation control unit including the operation control means attached to the fluid reaction device includes a fluid A fluid reaction device comprising a display mechanism for displaying the flow rate and the reaction temperature.
  • Fig. 1 to Fig. 3 show an embodiment of the fluid reaction device of the present invention. It is a device to let you.
  • the apparatus of this embodiment is installed in a single installation space and unitized.
  • the installation space is rectangular and is divided into four regions along the longitudinal direction.
  • the first region on one end side is a raw material storage section (raw material container installation space) 1 in which a plurality of raw material storage containers 10A and 10B for storing a raw material fluid and its associated facilities are installed, and adjacent to the first storage area.
  • the area 2 is a liquid distribution section 2 in which a pump for supplying fluid from the raw material storage containers 10A and 10B to the processing section 3 and a switching valve for setting a flow path are installed.
  • the third region adjacent to the second region is a processing unit 3 that performs a predetermined process on the fed raw material fluid, and the fourth region on the other end side is a fluid obtained as a result of the processing.
  • an operation control unit 6 that is a computer for controlling the operation of each unit and a heat medium controller 7 for adjusting the temperature of the processing unit 3 are provided.
  • the operation control unit 6 and the heat medium controller 7 are provided separately from the reaction apparatus, but may be integrated as a matter of course.
  • a temperature adjusting piping chamber 5 is formed in the lower floor portion of the second to fourth regions, and is used to send a heating medium for heating or cooling to the processing substrates 40 and 42 described later. Piping is provided.
  • each facility by arranging each facility from the upstream side to the downstream side, the flow of fluid can be made smooth and the entire apparatus can be compactly integrated.
  • force that linearizes the arrangement of the equipment For example, if the entire space is close to a square, each equipment may be configured such that the fluid flow forms a loop. Such divisions are approximate, and each facility can be arranged as appropriate in order to make effective use of the vacant space during design.
  • a plurality (six in this embodiment) of storage containers 10A, 10B are installed. Of course, the necessary number of storage containers 10A and 10B may be used. By storing the same fluid in the two storage containers 10A and 10B and using them alternately, the processing can be performed continuously.
  • a cleaning liquid container 12 containing organic solvents such as acetone for line cleaning, hydrochloric acid, pure water, etc., or a nitrogen gas pressure source 14 for purging, etc. may be placed in the raw material reservoir 1 Good. Further, a waste liquid container 36 may be placed.
  • the liquid distribution section (introduction section) 2 is connected to the raw material storage containers 10A and 10B via fluid inlets.
  • Raw material pumps 16A and 16B and their associated facilities are installed.
  • the discharge amount of each raw material pump 16A, 16B is controlled by the number of rotations of the motors 18A, 18B driving the raw material pumps 16A, 16B, the raw material pumps 16A, 16B have pressure generating means and flow rate. It also serves as an adjustment means.
  • the raw material pumps 16A and 16B in Fig. 1 are of the piston type. Examples of other pressure generating means and flow rate adjusting means are shown in FIGS.
  • the pressure generating means and the flow rate adjusting means may be configured separately.
  • the liquid is pumped by sending pressure gas from the nitrogen gas pressure source 14 to the storage containers 10A and 10B, and the flow rate is adjusted by the mass flow controller 20 provided at the outlet.
  • the mass flow controller 20 has a sensor unit for measuring heat and a piezo-piezoelectric sensor, and a sensor unit for measuring the flow rate and a controller for controlling the flow rate.
  • the sensor unit may be, for example, an ultrasonic piezoelectric element type flow sensor 2 Oa as shown in FIG. 5 (a) or a differential pressure type flow sensor 20b as shown in FIG. 5 (b).
  • the controller section may be a controller 20d using a piezo piezoelectric element type spool shown in FIG. 5 (a) or (b) or a controller 20c using a magnetic levitation type spool as shown in FIG.
  • relief valves 22A and 22B arranged in the transport pipes 21A and 21B on the downstream side of the raw material pumps 16A and 16B, pressure sensors 24A and 24B in the flow path, flow paths Selection There are selector valves 26A, 26B and backwash pump 28.
  • the flow path selection switching valves 26A and 26B are connected to a cleaning liquid container 12 and a nitrogen gas pressure source 14 for purging, in addition to a normal line.
  • the backwash pump 28 is used when the inside of the flow path is blocked with a product.
  • the pump 28 discharges organic solvent, hydrochloric acid, pure water and the like from the cleaning liquid container 12 and is connected to the downstream outlet of the reaction substrate described later via the flow path selection switching valve 32.
  • the cleaning liquid flows in the opposite direction to the normal path, and is put into the waste liquid storage container 36 from the waste liquid port 34 through the flow path selection switching valves 26A and 26B from the inlet of the mixed substrate 40.
  • the pump 28 is preferably a single piston type pump so that the generated pressure is high and the product can be moved by the pulsating force.
  • the organic solvent acetone, ethanol, methanol, or the like is used, and nitric acid, phosphoric acid, or an organic acid may be used instead of hydrochloric acid.
  • Hydrogen water is a catalyst such as Pd and Ni Used as a side effect. Ozone water is used for oxidizing cleaning. It is also possible to receive the raw material solution from the inlet 140 via piping from an external raw material tank.
  • the processing unit 3 has two processing substrates, that is, a mixed substrate 40 and a reaction substrate 42 as shown in FIGS.
  • the mixed substrate 40 and the reaction substrate 42 are flat plate members formed by joining two or more laminated grooves having a predetermined shape formed on at least one surface of a thin plate-like substrate 44 .
  • the flow path is formed inside by the groove on the surface of the base material 44.
  • the shape and dimensions of the flow path are designed according to the reaction process of the treatment to be performed.
  • the material of the base material 44 is also selected according to the processing as described later, and designed to have a thickness necessary to withstand the working pressure.
  • Fig. 7 shows a mixed substrate 40 for performing preheating (preliminary temperature adjustment) and mixing processing.
  • the grooves forming the flow path are all formed in the intermediate plate 44b.
  • the solid line indicates the groove formed on the upper surface of the intermediate plate 44b
  • the chain line indicates the groove formed on the lower surface of the intermediate plate 44b. . That is, the two inflow ports 47 formed through the upper plate 44a communicate with the two preheating channels 48 formed on the upper surface of the middle plate 44b.
  • Each of these preheating channels 48 diverges on the way and expands, merges again, leads to outlet channels 50 and 51, and further to mixing unit 52.
  • One outlet channel 50 is formed on the upper surface of the middle plate 44b, and the other outlet channel 51 is formed on the lower surface of the middle plate 44b.
  • the mixing portion 52 includes header portions 54, 55 formed as arc-shaped grooves respectively communicating with the outlet channels 50, 51 on the upper and lower surfaces of the intermediate plate 44b.
  • header portions 54, 55 formed as arc-shaped grooves respectively communicating with the outlet channels 50, 51 on the upper and lower surfaces of the intermediate plate 44b.
  • the separation flow paths 56 and 57 and the merge space 58 are formed on the upper surface of the intermediate plate 44b, and the separation flow paths 56 and 57 are alternately arranged to communicate with the header portions 54 and 55, respectively.
  • the liquid separation flow path 57 that communicates with the header section 55 on the lower surface side communicates with the communication hole 57a that penetrates the intermediate plate 44b.
  • the merge space 58 is formed so that the width gradually decreases toward the outlet side at the other end, and the middle plate 44b and the other end side are formed. And an outflow port 60 formed through the lower plate 44c.
  • liquid separation channels 56 for liquid A and four liquid separation channels 57 for liquid B are alternately arranged on the opening surface 59 on the inlet side of the merge space 58.
  • the outflowing A and B liquids gradually reduce the width of the channel with alternating layered and striped flows. In this case, it reaches 40 zm, and both liquids are forcibly mixed. The width gradually increases thereafter, and a steady flow velocity is obtained.
  • FIGS. 9 (a) and 9 (b) show a reaction substrate 42.
  • two substrates 44 are joined to form a reaction substrate 42 of a total of 5 mm.
  • the reaction channel 62 is formed in a meandering manner, and a long channel is efficiently provided.
  • the reaction channel 62 is formed such that the connecting portions 62a and 62c connected to the inlet port 64 and the outlet port 65 are narrow and the central meandering portion 62b is wide. Therefore, it is squeezed at the entrance / exit and flows rapidly, avoiding by-product adhesion, and flows slowly at the center so that the heating and reaction time can be extended.
  • FIGS. 10 (a) and 10 (b) show another example of the reaction substrate 42a having a portion 63a in which the width of the shape of the flow path gradually decreases and a portion 63b in which the width gradually increases.
  • a reaction channel 63 is formed between the substrates 44d and 44e, the width dimension of which increases or decreases in the range of maximum a to minimum b.
  • the depth may be increased or decreased according to the increase or decrease of the width dimension. In this example, the depth changes from the maximum c to the minimum d so that the cross-sectional area of the channel is constant.
  • FIG. 10 (c) shows a cross section of the reaction flow path 63c in the reaction substrate 42b of another embodiment.
  • This reaction channel 63c has a flat shape with a large width e and a large depth, and has a wide heat transfer surface that intersects the direction of heat transfer from the thermal catalyst (indicated by an arrow). Heat transfer is effectively performed.
  • a catalyst is selected depending on the type of reaction.
  • the arrangement can be performed, for example, by applying to the inner surface of the flow path or as an obstacle to the flow path as will be described later.
  • the material forming at least the flow path of the base material 44 forming these substrates 40 and 42 is, for example, For example, SUS316, SUS304, Ti, quartz glass, Pyrex glass (registered trademark) hard glass, PEEK (polyetheretherketone), PE (polyethylene), PVC (polyvinylchloride), PD MS (polydimethylsiloxane), Si, PTFE (polytetrafluoroethylene), In consideration of the internal forces of PCTFE (polycnl orotrifluoroethylene) and PFA (perfluoroalkoxylalkane), chemical tolerance, pressure resistance, thermal conductivity, heat resistance, etc., a preferable one is selected.
  • PCTFE polycnl orotrifluoroethylene
  • PFA perfluoroalkoxylalkane
  • the wetted parts of the mixed substrate 40 and reaction substrate 42 material have little elution from the surface and can be surface-catalyzed, have a certain degree of chemical resistance, and have a wide temperature range of _40 to 150 ° C. I want something that can withstand.
  • FIG. 11 shows the configuration of the processing block.
  • the temperature adjustment case 46 includes a case main body 72 in which a space 70 for accommodating the processing substrates 40 and 42 is formed, and a lid portion covering the case main body 72. These are formed with grooves 76 constituting a plurality of parallel heat medium flow paths opened to the inner surface.
  • a liquid supply path 78 and a drainage path 80 (see FIG. 12 (a)) communicating with these grooves 76 are formed in the case body 72, and the liquid supply path 78 and the drainage path 80 are respectively connected to the liquid supply pipes. And connected to the heat medium controller 7 via a return pipe.
  • These liquid supply path 78 and drainage path 80 are also communicated with each other through the opening on the lid 74 side to be joined.
  • the processing substrates 40 and 42 are heated or cooled while completely accommodated in the temperature adjustment case 46, and the heat transfer fluid is the mixed substrate 40 or the front and back surfaces of the reaction substrate 42.
  • the heat transfer fluid is the mixed substrate 40 or the front and back surfaces of the reaction substrate
  • the heat medium controller 7 includes a control mechanism for correcting the medium temperature and a transport pump for transporting the heat medium.
  • the heat transfer fluid passes through the individual heat exchangers 82 and then reaches the heat transfer port 84 of the temperature adjustment case 46 of the mixed substrate 40 and the reaction substrate 42 via the heat transfer pipe.
  • the heat exchanger 82 can change individual temperatures of the heat medium, for example, by changing the amount of brine for cooling.
  • FIGS. 12 (a) to 12 (d) show other examples of the temperature adjustment case 46.
  • the heat medium flow path is provided inside the case main body 72 and the lid portion 74, respectively. Is formed.
  • the liquid supply path 78 has a double pipe configuration in which the tip of the liquid supply pipe 88 is inserted, and the heat medium flow path 92 is connected through the narrow communication path 90. Communicating with The drain side has the same configuration.
  • the mixed substrate 40 and the reaction substrate 42 are composed of bolts 94, nuts 95 and screws. They are stacked and joined via the spacer 96.
  • FIG. 12 (b) shows a path for supplying and discharging the raw material solution to the processing substrates 40 and 42 accommodated in the temperature adjustment case 46.
  • the flow between the processing substrates 40 and 42, for example, from the mixed substrate 40 to the reaction substrate 42 is performed via a communication pipe 100 that communicates the flow path 98 of the temperature adjustment case 46.
  • FIG. 12 (d) illustrates the structure of the inflow part and the outflow part of the liquid to the reaction substrate 42.
  • the liquid substrate of the processing substrates 40 and 42 is usually formed at the upper surface and the outlet at the lower surface.
  • the outlet 102 of the reaction substrate 42 is connected to the product fluid reservoir 4 via the recovery pipe 104.
  • the product fluid storage unit 4 is provided with a recovery container 108 on the downstream side of the heat exchanger 106 for cooling, the flow path selection switching valve 32 and the like.
  • the product fluid reservoir 4 in which the recovery container 108 is placed is isolated so as not to be affected by temperature and the like from other regions and to block toxic gas that may be generated from the product fluid.
  • FIG. 13 shows another embodiment of the product fluid reservoir 4, and a plurality of recovery containers 108 are held on the rotary table 112.
  • the actuator 114 for moving the rotary table 112 is a 180-degree rotary actuator.
  • the number of the recovery container 108 and the type of the actuator 114 can be appropriately selected.
  • the operation control unit 6 determines the replacement timing of the recovery container 108 using a liquid level detection sensor 11 lb that detects the liquid level of the recovery container 108, stops the liquid flow using the flow path selection switching valve 32, and recovers the substance. This is confirmed by the optical fluid detection sensor 11 la provided downstream of the port 110 and the actuator 114 is operated.
  • a process of producing a product such as a chemical solution using the fluid reaction apparatus configured as described above will be described.
  • the processes that can be automated are basically automatically controlled by the operation control unit 6.
  • the raw material solutions A and B required in the raw material reservoir 1 are prepared in the storage containers 10A and 10B.
  • the required mixed substrate 40 and reaction substrate 42 are selected as processing substrates and installed in the processing unit 3.
  • the temperature of the heat medium is set by the heat medium controller 7 and the amount of the brine in the heat exchanger 82 is adjusted to adjust the temperature of each heat medium path.
  • the temperature adjustment case 46 is circulated to maintain them at a predetermined temperature.
  • the temperature is controlled while flowing pure water for cleaning, etc. through the flow paths in the force processing boards 40, 42 managed by the temperature sensors 116, 118 provided at the inlet to the temperature adjustment case 46.
  • the measurement can be performed accurately by measuring with the temperature sensors 120 and 122 at the outlet of the mixed substrate 40 and feeding back.
  • the flow path selection switching valve 32 is switched, and the raw material storage containers 10A, 10B to the pumps 16A, 16B, the mixing substrate 40, the reaction substrate 42, the outlet 10 2 Then, a processing flow path from the recovery port 110 to the recovery container 108 is formed, and the pumps 16A and 16B are operated to feed the raw material solutions A and B at a predetermined flow rate, respectively.
  • the flow path selection valve 32 is an automatic valve that is actuated by an actuator, and these operations can be automatically operated.
  • the solutions are preheated to a predetermined temperature in the preheating unit, and then merged and mixed in the mixing unit 52.
  • each liquid flows from the header portions 54 and 55 via the separation flow paths 56 and 57 into the merge space 58 from the alternately arranged processing, and further the cross section decreases as it moves downward.
  • a micro-size flow is mixed regularly and mixed quickly according to Fick's law.
  • the reaction channel 62 is formed to be sufficiently wide compared to the mixing channel, so that even when the reaction rate is low, the reaction can be performed over a sufficient amount of time, resulting in a high yield. Can be obtained.
  • the obtained product is sent from the outlet 102 of the reaction channel 62 to the heat exchanger 106 via the recovery pipe 104, where it is cooled and P is collected from the recovery port 110. Flow into.
  • the raw material storage containers 10A and 10B are empty or the recovery container 108 is full, continuous operation is possible by switching the flow path selection switching valves 26A and 26B and replacing them with other containers. It is. If the reaction takes a long time, the liquid can be confined in the mixed substrate 40 and the reaction substrate 42 for a certain time to perform batch operation. Since the flow path selection valves 26 A and 26 B are also automatic valves, these operations can be automatically operated.
  • the pumps 16A and 16B in Fig. 1 may be temporarily stopped.
  • the inflow to the processing unit 3 may be stopped by switching the path selection switching valves 26A and 26B.
  • a fullness detection means for determining that the fluid is filled in the mixing channel or / and the reaction channel.
  • an optical fluid detection sensor 11 la as shown in FIG. 13 is used.
  • Fig. 14 (a) shows a mixing portion 52a of another embodiment.
  • the two header portions 54a, 55a are not arc-shaped but extend linearly in the width direction, and the joining space.
  • the front end side of 58a that is, the urging force on the header portion 54a, the width W on the other side is set to be substantially the same as the width of the header portion 54a.
  • the liquid separation channels 56a and 57a extend in parallel to each other and are formed so as to communicate the header portion and the merge space.
  • the merge space 58 is formed in a trapezoidal shape in plan view so that the width gradually decreases toward the outlet side at the other end, and is formed through the middle plate 44b and the lower plate 44c on the other end side.
  • the outlet port 60 is open.
  • the header portions 54a and 55a are formed separately on the upper and lower surfaces of the middle plate 44b, and the one header portion 55a and the liquid separation channel 57a penetrate the middle plate 44b.
  • the communication holes 57x communicate with each other.
  • This embodiment has advantages that the manufacturing process is easier and the shift to the scale-up model is easier than the embodiment of FIG.
  • the first point is that in the case of FIG. 8, the separation flow paths 56a and 57a are close to each other in the vicinity of the confluence space 58a. This is because there is no such problem in the embodiment.
  • the second point is related to the first point and will be described below.
  • the apparatus when a reaction apparatus including a mixing unit is used for manufacturing a pharmaceutical product, the apparatus is used not only at the development stage but also at the production stage. If we move from the development stage to the production stage, the mixing section must also support scale-up. For example, if the initial flow rate is 0. lL / h, preclinical is 1 The L / h level, the pilot plant level is 50 L / h, and the production plant level is 100 to 200 L / h, which requires a scale-up of about 1000 times compared to the original development machine.
  • the width of the flow path is a factor that affects the basic performance of the device and basically does not change, so the number of separation flow paths will be increased.
  • the part where the liquid separation channels 56 and 57 gather is the manufacturing neck. Therefore, if the minimum dimension of the grooves in this part is predetermined, the width on the header side increases as the number increases, resulting in an increase in the size (chip size) of the device. In the embodiment of FIG. 14 (a), the width W only increases as shown in FIG. 14 (b) in proportion to the processing amount, that is, in proportion to the processing amount.
  • FIG. 15 shows a mixing unit 52b according to still another embodiment.
  • the two header parts 54b and 55b are formed in a U shape in a plan view, and the two side branch parts 54x and 55x are formed. They are arranged symmetrically with respect to the same center line.
  • the merge space 58b is a space extending downward.
  • the side branch portions 54x and 55x forces of the two header portions 54b and 55b extend in parallel to the central line, and the separation flow channels 56b and 57b open in the merge space 58b.
  • the separation flow paths 56b and 57b from the different header portions 54b and 55b are arranged so as to be alternately adjacent to each other on the same side and open at positions facing each other on the opposite side in the merge space 58b. Yes.
  • the merge space 58b extends vertically in the lowermost base material 44d, but the shape, dimensions, etc. are the same as in the previous embodiment.
  • the flow from the separation flow paths 56b, 57b forms a flow that is alternately adjacent in a plane, but in this embodiment, this is a two-dimensional structure. It becomes the arranged laminar flow. Therefore, the area of the interface with the P-contacting flow increases and mixing by diffusion is further promoted. Moreover, since the opposing flows collide with each other, the flow becomes finer, and the mixing effect is enhanced by the effect of increasing the area of the interface.
  • This embodiment has the advantage of easy transition to the scale-up model as in the case of FIG.
  • FIG. 16 shows a mixing unit 52c according to still another embodiment.
  • the mixing space 58c is formed of an orthogonal part 58x extending downward and a parallel part 58y extending along the plate surface.
  • the total length of the mixing space 58b extends in the vertical direction, that is, in the thickness direction of the base material 44, the overall size increases, or conversely, the mixing space 58b increases. The problem is that the length is restricted. In addition, it is not easy in manufacturing to form a space in the thickness direction.
  • the mixing space 58c is formed of the orthogonal portion 58x extending downward and the parallel portion 58y extending along the plate surface, the increase in the plate thickness is slight, and the manufacturing process is processed to a flat plate surface. Then, it can be handled in the same process as other parts that are stacked.
  • FIG. 17 shows a mixing unit 52d of still another embodiment.
  • the two header units 54d and 55d are separated on both sides of the mixing space 58d.
  • the mixing space 58d is formed so as to extend downward along the plate surface once as shown in FIG.
  • the liquid separation flow paths 56d and 57d from the different header portions 54d and 55d are opposed to each other in the mixing space 58d and open while being shifted from each other.
  • the flow from the separation flow paths 56d and 57d forms adjacent flows alternately in a plane, and a mixing space is formed while forming a swirling flow between adjacent flows as shown in FIG. Go down 58d.
  • the swirl flow also increases the area of the interface between the two liquids, which can enhance the mixing effect.
  • FIG. 18 shows a modification of the mixing portion of FIG. 17, and the two header portions 54d and 55d are formed on the same side surface of the base material 44b. Since the mixing space 58c has the orthogonal portion 58x extending downward, the force S can be formed to form the two header portions 54d and 55d on both sides of the same surface as the mixing space 58c, and the separation flow paths 56d and 57d can be formed. This is because they can be opened alternately without interfering with each other.
  • FIG. 19 shows another embodiment of the mixing part 52e in the mixed substrate 40.
  • the obstacle 124 is placed over a predetermined distance L at a constant interval a in the merge space 58e that merges in a Y-shape.
  • Each obstacle 124 is arranged in a staggered pattern so that adjacent ones are shifted by half of the pitch in the flow direction. As a result, the interface meanders, so the interface area between the two fluids can be increased.
  • the obstacle 124 is arranged in a line in the merge space 58f.
  • the force S can be increased to increase the interface area. This is suitable for use in a narrower merge space 58f.
  • FIG. 21 shows another embodiment of the liquid flow of the processing unit 3 of the fluid reaction device.
  • the combination of the mixed substrate 40 ⁇ the reaction substrate 42 is provided with two systems Rl, R2, and further the raw material solution A, using the flow path selection switching valves 26A, 26B of the liquid distribution section 2.
  • B can be supplied to both systems Rl and R2.
  • the above-described batch operation can be continuously performed by alternately switching the line 1 with the flow path selection switching valves 26A and 26B. Of course, three or more such lines can be provided in parallel as appropriate. In this case, the flow path selection valve switching valves 26A and 26B can be automatically operated.
  • FIG. 22 shows an example in which a plurality of reaction substrates are arranged in series in the processing unit 3.
  • individual temperature sensors 120, 122a, 122b, and 122c are provided on a total of four processing substrates, that is, the mixed substrate 40 and the three reaction substrates 42a, 42b, and 42c. It is possible to control the temperature of 42b and 42c independently.
  • the configuration of the processing unit 3 of this embodiment is suitable for reactions in which the reaction time and reaction temperature are to be changed boldly and instantaneously, such as biochemical reactions. For example, a reaction such as 100 ° C for reaction substrate 42a and -20 ° C for reaction substrate 42b is possible with this system.
  • FIG. 23 shows an embodiment in which a plurality of mixed substrates 40 are provided in the processing unit 3.
  • a second mixed substrate 40a is provided downstream of the mixed substrate 40 and the reaction substrate 42 for mixing and reacting the A liquid and the B liquid.
  • the third raw material solution transported from the pump 16C is provided.
  • C solution which is a reactant, and mix.
  • the temperatures of these two mixed substrates 40, 40a and one reaction substrate 42 are individually controlled.
  • Liquid C may be a reaction terminator.
  • an in-line yield evaluator 126 is directly connected to the outlet 102 downstream of the second mixed substrate 40a. As a result, the yield of the chemical reaction result can be confirmed in real time, and can be immediately fed back to the process parameters.
  • the inline yield evaluator 126 is a method that can measure without separating the measurement object. There are methods such as light, near infrared spectroscopy, and ultraviolet absorption.
  • separation / extraction means 128 for separating unnecessary substances and necessary substances from the reaction product is further provided.
  • the separation / extraction means 128 includes a separation wall formed by a hydrophobic wall 130 that allows only hydrophobic molecules in the substance to pass therethrough and a hydrophilic wall 132 that allows only the hydrophilic molecules in the substance to pass through. It is branched on road 134.
  • the separated substances are collected in the collection containers 108 and 108a through the collection pipes 104 and 104a, respectively.
  • the separation and extraction means 128 it is also possible to use a membrane or a porous frit that can adsorb only a hydrophobic substance.
  • FIG. 24 shows an embodiment for carrying out a continuous reaction process by repeating mixing / reaction and separation / extraction. Unnecessary substances after the reaction of liquid A and liquid B are discharged out of the system through outlet 134a, and unnecessary substances in the second reaction with the liquid C remaining are discharged out of the system through outlet 134b.
  • the fourth solution, D solution may be a reaction stopper or another raw material solution.
  • an in-line yield evaluator 126 may be provided.
  • FIG. 25 (a) shows a configuration in which the circuit of FIG. 24 is stacked.
  • the fluid flows from top to bottom.
  • Each block in the figure is housed in a mixed substrate 40a, reaction substrate 42a, separation / extraction substrate 128a, mixed substrate 40b, reaction substrate 42b, separation / extraction substrate 128b, and mixed substrate 4 Oc force temperature adjustment case 46. Furthermore, it is laminated by Bonoleto 94, nut 95, and spacer 96.
  • the movement of the liquid between the substrates is performed through a communication path 100. Air is interposed between each block, and the heat control of the air is used to prevent the influence of heat from other blocks, thereby improving the temperature control accuracy.
  • a heat insulating material such as a silicon member 136 that is clean and contains bubbles.
  • the fluid introduced into the fluid reaction apparatus of the present invention is liquid, gas, and the recovered substance is liquid, gas, solid, or a mixture thereof. It is also possible to install a powder dissolver in the space of the raw material reservoir 1 in 1.
  • FIG. 26 shows an embodiment of the raw material reservoir 1 when the liquid A is a solution obtained by dissolving powder and the liquid B is originally liquid.
  • the raw material powder and solvent are introduced from the raw material inlet 142 of the powder dissolver 140.
  • the raw material powder is heated by the heater 144 and stirred by the stirrer 146.
  • the raw material fluid that has been dissolved and taken out is fed into the mixed substrate 40 and the reaction substrate 42 by the pump 16A from the pipe drawn into the outlet 148.
  • reference numeral 150 denotes a liquid reservoir pan provided at the lower part of the apparatus
  • 152 denotes a liquid leakage sensor installed on the liquid reservoir pan 150.
  • the liquid distribution unit 2, the processing unit 3, and the product fluid storage unit 4 are partitioned by partition walls 154 and 156, and covers 158, 160, and 162 are attached to the respective rooms so that they can be connected to the outside of the device. Isolated.
  • Reference numeral 164 denotes an exhaust port, which is connected to an exhaust fan and prevents toxic gas inside the device from leaking outside by making the pressure inside the device negative from outside the device.
  • the operation control unit 6 is equipped with a flow rate monitor 170 and a temperature monitor 172 that can monitor the flow rate of the fluid and the reaction temperature that are particularly important in the operation in the fluid reaction device. .
  • the present invention is not limited to these embodiments, and various modifications can be made along the spirit of the invention. Modification is possible. That is, the number of processing substrates connected in series or in parallel is determined to an appropriate number of 1 or more depending on the processing to be performed and the production volume. For example, the processing substrates may be sequentially inserted into a frame having slits. In this embodiment, the processing substrate is disposed horizontally, but may be disposed obliquely or vertically.
  • the present invention further relates to a microreactor that can be used in the fluid reaction apparatus and the fluid mixing apparatus of the present invention.
  • the present invention for achieving the above-mentioned object is not limited to this, but includes the following inventions.
  • a manifold section having a plurality of first flow paths communicating with the first fluid source and a plurality of second flow paths communicating with the second fluid source, respectively,
  • a manifold portion adjacent to the manifold portion, the manifold portion has an open end surface facing the merge space, and the openings of the first flow channel and the second flow channel are formed at the open end surface.
  • a microreactor that is arranged three-dimensionally so as to be alternately adjacent.
  • the outlet flows from the opening end surface of the manifold portion to the merge space.
  • the flow (collective flow) has a three-dimensional structure in which the flows of the first fluid and the second fluid (element flows) are alternately adjacent to each other, and the flow of one fluid surrounds the flow of the other fluid. Covered. Therefore, the ratio of the interfaces between these fluids is, for example, twice that of a parallel flow in a plane, and a mixing effect due to greater interdiffusion can be obtained.
  • the manifold section is formed by laminating plate-like elements in which grooves constituting the first flow path and the second flow path are alternately formed.
  • the microreactor is characterized in that the first flow path and the second flow path are arranged in a staggered manner on the opening end face.
  • the maximum width dimension in the cross section of the opening of the first channel and the second channel is 3000 ⁇ m or less.
  • the representative dimension of the mixing promoting object is an individual distance from the first flow path and the second flow path immediately before the mixing promoting object.
  • the flow of A microreactor characterized by being in the range of 0.1 to 10 times the narrow dimension.
  • the mixing-promoting object becomes a mere porous object, and sufficient mixing cannot be expected. Since the elemental flow of different fluids flowing in a staggered pattern flows in a lump shape, sufficient mixing cannot be obtained.
  • a throttle portion or a fluid lens in which a cross section of the flow path gradually decreases is provided on the downstream side of the merge space.
  • a minimum width of an imaginary cross section of each flow from the first flow path and the second flow path is a downstream portion of the throttle portion or the fluid lens.
  • the micro reaction condition can be configured in the element flow without using the physical micro dimension flow path.
  • the plurality of manifold parts are arranged so that the respective opening end faces thereof are opposed to each other in the merge space.
  • the heat exchanger is formed by laminating plate-like elements in which grooves constituting the heated fluid flow path and / or the heat medium flow path are formed.
  • a delay for adjusting a synthetic reaction time is provided in a heated fluid channel of a heat exchanger that heats or cools a fluid flowing downstream of the merge space.
  • a microreactor characterized in that the dwell time in heat exchange can be adjusted by changing the delay loop pattern or the number of stacked layers.
  • a laminating fluid that does not contaminate the heated fluid even if mixed in the heated fluid As the heat medium of the heat exchanger, a laminating fluid that does not contaminate the heated fluid even if mixed in the heated fluid.
  • the fluid that does not contaminate the fluid to be heated even if it is mixed into the fluid to be heated the fluid to be heated itself or a solution having a composition close to this is suitable.
  • FIG. 27 is a diagram showing an overall configuration of a compound production system using the microreactor of the present invention.
  • this compound production system two raw material supply rods B2001a and 2001b that supply raw material solutions La and Lb, respectively, and these raw material supply rods 2001a and 2001b are mixed to react by mixing raw material solutions La and Lb.
  • 'It has a reaction section 2002, a storage tank 2003 for temporarily storing reaction products, and a purification tank 2004 for further concentrating and purifying the products.
  • the two raw material supply units 2001a and 2001b are dissolving tanks 201 la and 201 lb in which raw materials such as powder are used as solutions of a predetermined concentration, respectively, and a reservoir for storing the resulting solution.
  • 2012a and 2012b, and downstream feed J of Lisano 2012a and 2012b is equipped with a raw material transfer pipe 2 014a and 2014b force S connected to the mixing and reaction section 2002 via fluid transfer pumps 2013a and 2013b, respectively.
  • RU Insulation tanks 201 la and 201 lb are equipped with thermal insulation jacket 2015 and stirrer 2016 as needed.
  • Reservoir 2003 which temporarily stores reaction products, is provided as necessary.
  • it is configured as a closed container equipped with a heat insulation jacket 2015 and a stirrer 2016, and has a predetermined sensor.
  • the refining tank 2004 concentrates the synthesized fluid in a vacuum atmosphere.
  • a vacuum pump 2017 and a collection container 2018 are provided.
  • each part of the above configuration is provided with an on-off valve, a flow rate adjustment valve, a flow meter, various sensors, a cleaning fluid circuit, and the like as necessary.
  • Sensors include temperature sensor (indicated by a letter in the figure), flow sensor (indicated by F in the figure), pressure sensor (indicated by Ps in the figure), liquid level sensor (indicated by L in the figure), pH sensor (in the figure) etc.).
  • a control device (not shown) for controlling each part individually and / or as a whole is provided.
  • the mixing / reaction section 2 includes two preheating blocks 2020a and 2020b that preheat the raw material solutions La and Lb, respectively, and two heated It has a mixing block 2040 that joins the raw material solutions La and Lb in a liquefied state, and a reaction block 2060 that guides the joined fluid to a further reduced diameter reaction channel and heats it to react.
  • Each of these blocks is constructed by connecting a flat plate having a channel in which the flow of the raw material solutions La and Lb and the heat medium Ma and Mb are formed in a groove shape and joining them together.
  • the preheating blocks 2020a and 2020b are plate-shaped first heat exchange elements 2022 in which a plurality of parallel solution flow paths 2021 for flowing the raw material solutions La and Lb are formed.
  • plate-like second heat exchange elements 2024 formed with a plurality of parallel heat medium flow paths 2023 through which the heat mediums Ma and Mb flow are respectively connected to the respective flow.
  • Road 2021, 2023 force S are alternately stacked so as to be orthogonal to each other.
  • the preheating blocks 2020a and 2020b are covered with cover plates 2025A and 2025B on the front and back, and are joined using fasteners such as bolts, seal members, or adhesives.
  • Each heat exchange element 2022, 2024 is provided with through holes 2026, 2027 in the vicinity of both ends of the flow path. These holes are connected to the solution flow path 2021 and the heat medium flow path 20 23, respectively, and to the additional plate IJ 2020A, It is in communication with 2025B's melting port 2028A, solution outflow port 2028 ⁇ , heat medium inflow port 2029 ⁇ , and heat medium outflow port 2029 ⁇ .
  • the raw material solutions La and Lb flow through the flow paths of the heat exchange elements 2022 and 2024.
  • the heat mediums Ma and Mb flow in series and flow in parallel through the flow paths of the heat exchange elements 2022 and 2024.
  • the heat mediums Ma and Mb pass through the heat exchange elements 2022 and 2024, respectively.
  • These heat exchange elements 2022 and 2024 use materials having good heat conductivity suitable for heat exchange, while the cover plates 2025A and 2025B are formed using materials having low heat conductivity.
  • the mixing block 2040 includes a plurality of plates inside a frame body 2043 formed of a plurality of members in which two raw material inflow channels 2041a and 2041b and one joining portion 2042 are formed. It is configured to accommodate a male hold 2046 that is formed by laminating shaped Mayuho Reded Element 2044A, 2044B and front and back canopy plates 2045a, 2045b.
  • the raw material inlets 2041a and 2041b are connected to the solution outlet port 2028B of the preheating blocks 2020a and 2020b, respectively, and the junction 2042 is connected to an inlet 2061 of the reaction block 2060 described later, as shown in FIG. And a merge space 2047 integrated with the.
  • each manifold element 2044A, 2044B includes a row of through liquid supply holes 2048a, 2048b that communicate with the raw material inflow channels 2041a, 2041b when they are stacked. Are arranged along the line.
  • the cover plates 2045a and 2045b are formed with through holes 2049a and 2049b, which have a force that can only be applied to one of the through holes 2048a and 2048b. These are the header portions formed on the frame 2043, respectively. It communicates with each raw material inflow channel 2041a, 2041b through 2050a, 205 Ob.
  • the manifold hold element 2 044A, 2044B has these penetrating supply night?
  • liquid separation flow paths 2051a and 2051b are formed extending almost to the center of the lj edge.
  • These liquid separation channels 2051a and 2051b are formed so as to have a large cross-sectional force arrow, and are alternately arranged to communicate with the raw material flow channels 2041a and 2041b, and have a predetermined length near the side edge.
  • the parallel flow paths 2052a and 2052b are parallel to each other.
  • the parallel flow night passages 2052a and 2052b are opened on the side surfaces of the manifold elements 2044A and 2044B.
  • adjacent manifold elements 2044A and 2044B have different raw material flow paths 2041a and 2051b (parallel liquid separation flow paths 2052a and 2052b) at corresponding positions. It is configured to communicate with 2041b. That is, in the manifold element 2044A, the liquid separation channel 2051 communicated with the raw material inflow channel 2041a at the upper end in FIG. While there is a (parallel separation channel 2052a), the manifold element 2044B has a separation channel 2051b (parallel separation channel 2052b) communicating with the raw material inflow channel 2041b at the upper end. It is summer. Therefore, as shown in FIG.
  • outlets 2054a and 2054b of parallel liquid separation flow paths 2052a and 2052b communicating with different raw material inflow paths 2041a and 2041b are alternately adjacent to the opening end face 2053 of the Magni Horned 2046. Open in a grid pattern.
  • the reaction block 2060 is obtained by alternately stacking plate-like heat exchange elements 2063 and 2064 as shown in Fig. 36 between two cover plates 2062A and 2062B shown in Fig. 35.
  • the configuration is basically the same as the preheating blocks 2020a and 2020b.
  • plate-like heat exchange elements 2063 and 2064 each having a plurality of parallel solution flow paths and heat medium flow paths through which the combined solution Lm and the heat medium Mc flow are arranged so that the flow paths are orthogonal to each other.
  • the front and back surfaces are covered with cover plates 2062A and 2062B, and are joined using a fastener such as a bolt, a seal member, or an adhesive.
  • Each heat exchange element 2063, 2064 is provided with through holes near both ends of the flow path, which individually communicate with the solution flow path and the heat medium flow path, and communicate with the ports of the cover plates 2062A, 2062B. The solution and the heat medium joined to the flow path are circulated.
  • the inflow side cover plates 2062A and 2062B are provided with inflow ports 2061 having the same diameter as the confluence portion 2042 of the mixing block 2040 and opening so as to communicate therewith.
  • a throttle part (fluid lens) 2065 force S with a gradually decreasing cross-sectional dimension is provided on the downstream side of the inlet 2061, and the tip side thereof has a communication channel 2066 and a through channel 2067 of the cover plate 2062A.
  • the reaction flow path 2068 connects a plurality of parallel flow paths 2069 formed by grooves on the surface of the heat exchange element 2063 in series, so that the solution of the preheating blocks 2020a and 2020b Different from channel 2021.
  • the flow of the heat medium flow path 2070 and the heat medium Mc is the same as that in FIG.
  • the diaphragm 2065 has a similar cross section.
  • the cross-sectional dimensions remain small and the cross-sectional dimensions are reduced.
  • Sl and S2 are the cross-sectional areas before and after the throttle portion 2065, respectively.
  • the width w of the “element flow” is calculated as the product of the width W of the flow path and the cross-sectional dimension reduction ratio P in the mixing block 40 when the throttle portion 2065 changes in a similar manner.
  • the condition that the reaction in the combined flow is a micro reaction is not necessarily a physical channel width problem, but is a problem of the virtual “element flow” width as described above.
  • the interface ratio is increased to promote mixing, and the reaction rate can be improved in accordance with Fick's law.
  • the minimum width wmin in the cross section of the element flow is 500 / im or less.
  • the virtual minimum width wmin is 10 / im, which sufficiently satisfies this condition.
  • the temperature conditions are strictly controlled. That is, in each block, the temperature of the heat medium is measured by temperature sensors provided at the inlet and outlet of the flow path, and the temperature of the solution passing through the temperature sensor is also measured by each sensor. These measured values are input to the control device, and feedback control is performed so that the reaction is performed under optimum conditions.
  • the preheating block, the mixing block 2040, and the reaction block 2060 are configured by connecting plate-like elements, so that they can be completely disassembled and cleaned. It is also suitable for pharmaceutical manufacturing where precision for pure products is severe.
  • heat loss is extremely small and high-precision temperature control is possible.
  • each of the above-described units can be installed and operated by, for example, appropriately arranging them on a base provided with a flow path by machining, etching, or the like to form a unit. It becomes easy and the manufacturing cost can be reduced. It is also possible to construct by stacking multiple such bases and piping them, further saving space. Furthermore, each device can be integrally formed on the base to form a single chip. It is desirable to provide a control system that controls the processes of each part as necessary.
  • a sandwich structure may be used in which a flat plate with heat exchange is installed on both sides of a flat plate pipe with a mixer and reactor.
  • a flexible device configuration can be made possible by using a minimum configuration base with one or more devices and peripheral piping as a unit and stacking them together.
  • a continuous multistage synthesis reaction may be performed by combining a plurality of such unitized or chipped continuous synthesis systems and batch separation / purification systems.
  • the raw material fluid is preferably both liquids, but it is of course possible to use gases.
  • mixing can be performed in the mixing block 2040 with one as a gas and the other as a liquid. If microbubbles generated at this time are used, a high mixing action can be obtained.
  • the material constituting the flow path or the material of the surface coating of the flow path is a force S appropriately applied for the purpose of imparting heat conduction uniformity, catalyst support, chemical resistance, biosafety, etc. to the relevant part. For example, coating with diamond is also conceivable.
  • the raw material solutions La and Lb prepared in the dissolution tanks 2011a and 2011b in the raw material supply units 2001a and 2001b are stored in the reservoirs 2012a and 2012b.
  • a heating medium is flowed to set the heating (or cooling) temperature in the preheating blocks 2020a and 2020b and the reaction block 2060 to, for example, about _80 ° C to + 200 ° C. This value is held by control based on the measured value.
  • the raw material solutions La and Lb are pumped to the preheating blocks 2020a and 2020b, and flow into the heat medium flow path 2023 of each heat exchange element 2063 and 2064, where efficiency The heat reaches well and reaches a predetermined temperature.
  • the preheated raw material solutions La and Lb flow into the two solution inflow ports 2028A of the mixing block 2040, respectively, and the raw material flow paths 2041a and 2041b of the frame 2043 are applied to each other 2045a and 20 45b.
  • the flow passes through 2049a and 2049b, and then flows into the Mayo Redo elements 2044A and 2044B.
  • Open end face 2053 (this is a grid-like effluent outlet 2054a, 2054b and flows into the confluence 2042 to form a collective flow.
  • the circumference of one solution flow is covered with another solution. Therefore, even when the laminar flow is maintained under the microreaction conditions, the interface necessary for mutual diffusion between the two types of solutions can be sufficiently provided. Since the cross-sectional dimensions are relatively large in millimeters, solids are produced immediately after merging. Even when, as long as it disappears before the throttle portion 2065, it does not result in clogged immediately.
  • the collective flow composed of the raw material solutions La and Lb further flows from the merging portion 2042 into the throttle portion 2065, and the cross-sectional dimension of the “element flow” of the raw material solutions La and Lb in the reaction channel 2068 is further reduced.
  • the ratio of the interface in the merged flow is further increased, and interdiffusion is promoted at the interface to promote mixing, and when this flows into the reaction channel 2068 and reaches the reaction temperature, the reaction proceeds promptly.
  • the product synthesized by the reaction in this manner is discharged from the reaction block 2060 and stored in the storage tank 2003 under predetermined conditions. Further, the product is concentrated in a downstream purification tank 2004 under a vacuum atmosphere and recovered in a recovery container 2018.
  • An in-line sensor 2071 for evaluating the properties of the synthetic substance is arranged downstream of the reaction block 2060, and the operating conditions can be feedback controlled based on this measured value. In the illustrated example, a pH meter is used as the sensor, but an appropriate one can be selected according to the product.
  • the junction is 10mm x 10mm
  • the cross-sectional dimension reduction ratio is l / l 0.
  • the dimension of the reaction flow path 2068 below the rear throttle portion 2065 is lmm ⁇ lmm. If a laminar flow is maintained in the collective flow in the reaction channel 2068, the virtual minimum width wmin of the flow in the reaction channel 2068 is 100 / im, which substantially satisfies the conditions of the micro reaction space. . Therefore, according to this embodiment, it is possible to realize a micro reaction space of 100 zm class with only mm-size elements that can be easily processed. In this way, when the cross-sectional dimension is reduced by the throttle part, the maximum dimension of the flow path in the mixing block 2040 should be 1000 ⁇ m or more and 3000 ⁇ m or less to prevent clogging even if solids enter. You can.
  • the preheating blocks 2020a, 2020b, the mixing block 2040, and the reaction block 2060 are configured by connecting plate-like elements, respectively, so that they are completely disassembled and cleaned. Therefore, it is also suitable for pharmaceutical manufacturing with high precision against impurities.
  • FIG. 37A An embodiment in which a mixing promoting object is provided in place of providing the constricting part 2065 in the confluence part 2042 of the merging block 2040 is shown.
  • a fine spherical mixing promoting object 2072 is arranged in the merging portion 2042 so as to substantially correspond to the opening of the flow path of the mixing block 2040.
  • the spherical mixing promotion body 2072 By arranging the spherical mixing promotion body 2072 at a predetermined length along the flow path, the collective flow flowing out from the jet outlets 2054a and 2054b is diverted along these, so that the interface between the element flows The ratio can be improved.
  • the mixing promotion object 2072 becomes a mere porous object and sufficient mixing cannot be expected.
  • the typical length of the optimal mixing promoting body 2072 is preferably 0.1 to 10 times the maximum width of the element flow. The smaller the maximum width of the element flow, the faster the mixing can be expected. At least 800 zm or less, preferably 10 zm or less is good.
  • FIGS 37B to 37D show some examples.
  • Fig. 37B shows a plurality of mesh-like mixing promoting objects 2073 in which columns are arranged in a grid, arranged in the flow direction
  • Fig. 37C shows a mesh-like mixing promoting object 2074 in which parallel columns are arranged in parallel.
  • Figure 37D shows multiple arrangements with alternate orientations along the road.
  • a spherical mixing promotion object 2072 is arranged between the combination promotion objects 2073.
  • the reaction can be promoted by fixing an appropriate catalyst on the surface of the mixing promoting object 2072-2074.
  • the mixing promoting bodies 2072 to 2074 since the reaction proceeds in a relatively wide space, the flow path is not easily blocked even when a solid reaction product is generated. There is.
  • it may be used together with the throttle unit 2065.
  • a spherical mixing promotion object 2072 is provided on the downstream side of the throttle unit 2065
  • a throttle unit 2065 is provided on the downstream side of the spherical mixing promotion object 2072.
  • FIG. 38A shows the configuration of a microreactor according to another embodiment of the present invention, in which a set of mixing blocks 2040A and 2040B having the same structure are arranged to face each other. These?
  • the Kunjing blocks 2040A and 2040B are supplied with raw material solution La and Lb from the raw material supply tank B2001a and 2001b. To do. This promotes mixing by colliding each element flow to form a jet.
  • the shape of the merging portion 2042A is configured to draw the merging solution in a direction orthogonal to the collision surface.
  • the merging portion 2042A may be configured to be drawn out from its peripheral portion in a tangential direction as a disk-shaped space.
  • the mixing portion 2042A can be promoted without using the restricting portion 2065, so that the mixing can be promoted, so that the blockage of the flow path is avoided even when a solid product is generated by the reaction.
  • the mixing portion 2042A can be promoted without using the restricting portion 2065, so that the mixing can be promoted, so that the blockage of the flow path is avoided even when a solid product is generated by the reaction.
  • the mixing blocks 2040 are also opposed to each other by directional forces forming 180 degrees, but they may be opposed to each other at an angle smaller than 180 degrees to form a Y-shaped combined flow path. Good. Needless to say, the above embodiment is suitable for mixing two or more kinds of fluids at the same time. Further, since the temperatures of the two mixing blocks 40 can be set differently, it is also suitable when mixing fluids having different stable temperature conditions.
  • the present invention further relates to a flow control device that can be used in the fluid reaction device and the fluid mixing device of the present invention.
  • one aspect of the present invention is a flow rate adjusting device that adjusts the flow rate of a fluid that flows through a flow path, and a temperature control mechanism that heats or cools the fluid that flows through the flow path. And the time at which the fluid temperature at the first measurement point of the flow path changes and the time at which the fluid temperature at the second measurement point downstream of the first measurement point changes.
  • a flow rate measurement unit for calculating the flow rate of the fluid flowing through the flow path, a downstream temperature sensor for measuring the temperature of the fluid passing through the second measurement point, and a downstream side of the downstream temperature sensor.
  • a control unit that controls the control valve so that the flow rate of the fluid becomes constant based on the flow rate obtained by the flow rate measurement unit.
  • the vertical axis represents temperature and the horizontal axis represents time.
  • the fluid is heated by the temperature control mechanism, and the temperature of the fluid is increased at a predetermined rate of change as indicated by reference numeral T1.
  • T1 a predetermined rate of change
  • the temperature of the fluid at the first measurement point changes as indicated by C1.
  • the fluid temperature changes as indicated by reference symbol C2.
  • the time difference between the peak of the temperature curve C1 and the peak of the temperature curve C2 is At.
  • the flow rate of fluid can be obtained from the following formula.
  • Flow rate distance between the first measurement point and the second measurement point X cross-sectional area of the channel ⁇ time difference ⁇ t
  • the temperature of the fluid at the first measurement point changes as indicated by C1 '
  • the temperature at the second measurement point changes as indicated by C2'.
  • the time difference between the peak of temperature curve CI 'and the peak of temperature curve C2' is At. That is, the time difference between the temperature curve C1 and the temperature curve C2 and the time difference between the temperature curve C1 ′ and the temperature curve C2 ′ are the same. This is because, even if the specific gravity, specific heat, and viscosity of the fluid are different, the time difference between the upstream temperature curve and the downstream temperature curve depends only on the flow rate under the same fluid average flow velocity. .
  • Examples of fluids used in the present invention include reagents, organic solvents, biochemical substances, and the like.
  • screening is performed in which a number of reagents are used and tests are performed with various conditions such as concentration, solvent, and temperature changed. This screening requires accurate volume measurement regardless of the physical properties of the reagent.
  • a preferable development environment can be provided.
  • the flow rate measurement unit is based on a time difference between two points corresponding to each other on a temperature curve indicating a temperature change of the fluid at the first measurement point and the second measurement point. And calculating the flow rate of the fluid.
  • the force for measuring the time difference when the peaks of the two temperature curves appear is not limited to this.
  • the time difference at the time of rising of the temperature curve may be obtained, or the time difference at a time point deviated by a predetermined time from the peak may be obtained.
  • the time difference between two points corresponding to each other on the temperature curve is measured.
  • a preferred embodiment of the present invention is characterized in that an upstream temperature sensor for measuring the temperature of the fluid passing through the first measurement point is further provided.
  • the upstream temperature sensor may include a sensor holder that contacts the fluid flowing in the flow path, and a thermistor inserted into the sensor holder to a position close to the flow path.
  • the downstream temperature sensor may include a sensor holder that contacts the fluid flowing in the flow path, and a thermistor inserted into the sensor holder to a position close to the flow path.
  • an environmental temperature control mechanism is further provided that keeps the temperature of a space including at least the first measurement point and the second measurement point constant.
  • Temperature measurement of fluid flowing through a micro flow channel is affected by disturbance and may not be able to measure the flow rate accurately.
  • disturbance can be blocked by actively keeping the temperature at the first measurement point and the second measurement point constant. Therefore, the flow rate of the fluid can be measured accurately.
  • the temperature adjustment mechanism includes a Peltier element, a Seebeck element, an electromagnetic wave generator, or a resistance heating wire.
  • the temperature adjustment mechanism is not limited to the heating means, and a cooling means may be used.
  • the temperature adjustment mechanism is configured to heat or cool the structure having a cylindrical portion in which holes forming the flow path are formed, a heat transfer portion that transfers heat to the cylindrical portion, and the heat transfer portion of the structure. And a temperature control member.
  • control valve has a valve for adjusting a flow rate and a drive source for driving the valve, and the drive source includes a piezoelectric element, an electromagnet, a servo motor, Or, it is provided with a stepping motor.
  • the valve can be driven quickly based on the actual flow rate measured by the flow rate measurement unit, and the flow rate can be kept constant.
  • control valve has a valve for adjusting a flow rate and a drive source for driving the valve, and the drive source is formed by laminating a plurality of piezoelectric elements. It is characterized by having a structure.
  • the flow rate can be kept constant without being affected by high pressure or pressure fluctuation.
  • the pressure of the fluid passing through the control valve is IMPa ⁇ :! OMPa.
  • a preferred embodiment of the present invention is characterized in that the flow rate of the fluid passing through the control valve is from 0.01 to 10 L / h.
  • the channel is formed of a corrosion-resistant material. It is characterized by.
  • a preferred embodiment of the present invention is characterized in that the material is stainless steel, titanium, polyether ether ketone, polytetrafluoroethylene, or polychloroethylene.
  • Another aspect of the present invention includes a plurality of containers that store fluid, a mixing unit that mixes the fluid, a reaction unit that reacts the mixed fluid, and the flow rate adjusting device. It is a fluid reaction device.
  • FIG. 43 is a schematic diagram showing the flow rate adjusting device according to the first embodiment of the present invention.
  • the flow rate adjustment device of the present embodiment includes a flow rate measurement unit 3010 that measures the flow rate of the liquid (fluid) that flows through the flow path 3001, a control valve 3020 that adjusts the flow rate of the liquid, and a flow rate measurement unit.
  • the control unit 3030 basically controls the control valve 3020 based on the flow rate measured by the 3010.
  • the flow rate measuring unit 3010 includes a temperature adjustment mechanism 3002 that heats the liquid flowing through the flow path 3001 at a predetermined cycle, an upstream temperature sensor 3003 that measures the temperature of the liquid flowing through the flow path 3001, and a downstream temperature sensor 3004. And.
  • the temperature adjustment mechanism 3002 is provided so as to surround the wall portion of the flow path 3001 and heats the liquid through the wall portion of the flow path 3001. This temperature control mechanism 3002 is connected to the temperature control unit 3005 so as to heat the liquid at an optimum rate of temperature increase.
  • a Peltier element, Seebeck element, electromagnetic wave generator, resistance heater, or the like is preferably used.
  • the temperature adjustment mechanism 3002 may change the temperature of the liquid by cooling the liquid.
  • the upstream temperature sensor 3003 is disposed at the first measurement point P1 of the flow path 3001, and measures the temperature of the liquid passing through the first measurement point P1.
  • the downstream temperature sensor 3004 is arranged at the second measurement point P2 of the flow path 1, and measures the temperature of the liquid passing through the second measurement point P2.
  • the flow rate measuring unit 3010 includes a time difference measuring unit 3009 for obtaining the flow rate of the liquid based on the time difference when the heated liquid passes through the two measurement points PI and P2.
  • the upstream temperature sensor 3003 is located downstream of the temperature adjustment mechanism 3002, and the temperature adjustment mechanism 30 Located close to 02.
  • the downstream temperature sensor 3004 is located on the downstream side of the upstream temperature sensor 3003, and is arranged at a predetermined distance from the upstream temperature sensor 3003. Both the upstream temperature sensor 3003 and the downstream temperature sensor 3004 are attached to the outer surface of the flow path 3001 and measure the temperature of the liquid through the wall of the flow path 3001. As the upstream temperature sensor 3003 and the downstream temperature sensor 30 04, a thermistor thermometer or thermocouple with excellent response is preferably used.
  • the upstream temperature sensor 3003 and the downstream temperature sensor 3004 are connected to the time difference measuring unit 3009, and the outputs of the upstream temperature sensor 3003 and the downstream temperature sensor 3004 are sent to the time difference measuring unit 3009. ing.
  • the principle by which the liquid flow rate is measured by the time difference measuring unit 3009 is as already described with reference to FIG. That is, when the temperature adjustment mechanism 3002 heats the liquid while the liquid is flowing, the heated liquid flows downstream, and the first measurement point P1 on the upstream side and the second measurement point P2 on the downstream side Pass through in this order. At this time, the temperature of the liquid at the first measurement point P1 is measured by the upstream temperature sensor 3003, and the temperature of the liquid at the second measurement point P2 is measured by the downstream temperature sensor 3004.
  • the outputs of the upstream temperature sensor 3003 and the downstream temperature sensor 3004 are continuously sent to the time difference measurement unit 3009, where the peaks of temperature curve C1 and temperature curve C2 (see Fig. 42) are detected. Is done.
  • the peak of the temperature curve can be detected using a known method. For example, it is possible to judge the peak when the sign of the difference between the two measured values changes. Then, the difference between the time when the peak of the temperature curve C1 appears and the time when the peak of the temperature curve C2 appears is calculated, and the flow rate of the liquid flowing through the flow path 1 is obtained from the following equation.
  • the control valve 3020 is disposed downstream of the flow rate measuring unit 3010.
  • the control valve 3020 includes a piston (valve) 3021 disposed so as to oppose the liquid flow, and a piezoelectric element (drive source) 3022 that drives the piston 3021.
  • a piezoelectric element (piezoelectric actuator) 3022 is fixed to the back surface of the piston 3021, and the piezoelectric element 3022 and the piston 3021 are integrally formed.
  • the piston 3021 and the piezoelectric element 3022 are accommodated and moved in the piston chamber 3023.
  • a part of the channel 3001 is a T-junction, and the piston 3021 is arranged so that the liquid flowing into the T-junction hits the front surface of the piston 3021.
  • the piezoelectric element 3022 expands and contracts, thereby moving the piston 3021 along the liquid flow direction to adjust the opening degree of the piston 3021.
  • a throttle part 3001a is provided on the upstream side of the piston 3021. By narrowing the flow path 3001, the flow rate can be accurately adjusted by the piston 3021.
  • the above-described piston chamber 3023 is formed in a bottomed cylindrical shape, and the piston chamber 3023 is liquid-tightly fixed to the outer surface of the flow path 3001. With such a configuration, even when liquid leaks from the gap between the piston 3021 and the flow path 3001, the liquid is held inside the piston chamber 3023, so that leakage of the liquid to the outside is prevented.
  • a reaction product is generated on the downstream side of the flow control device by the reaction between the reagents.
  • the pressure of the liquid on the downstream side of the flow control device may increase, and the liquid may leak from the flow path 1.
  • leakage of liquid to the outside can be prevented by the bottomed cylindrical piston chamber 3023, so that accurate flow rate adjustment is possible.
  • the control unit 3030 includes an amplifier 3032 connected to the time difference measurement unit 3009, a comparison unit (PID control unit) 3033 that determines the opening of the piston 3021 for keeping the flow rate constant, and a piezoelectric element 3022 of the control valve 3020. And a piston drive circuit 3034 for generating a voltage to be applied to.
  • the amplifier 3032 amplifies the signal representing the liquid flow rate (actual flow rate) calculated by the time difference measurement unit 3009 and sends the amplified signal (actual flow rate) to the comparison unit 3033.
  • the set flow rate (target value) is input in advance to the comparison unit 3033.
  • the comparison unit 3033 compares the actual flow rate with the set flow rate, and determines the opening of the piston 3021 for matching the actual flow rate with the set flow rate. Calculate.
  • the piston 3021 calculated by the comparison unit 3033
  • the opening is converted into a voltage by the piston drive circuit 3034. This voltage is applied to the piezoelectric element 3022, and the piston 3021 is driven by the piezoelectric element 3022.
  • the control valve 3020 is controlled by the control unit 3030 so that the flow rate of the liquid passing through the control valve 3020 is always constant.
  • the distance of the flow path 3001 between the flow measurement unit 3010 and the control valve 3020 is preferably as short as possible. That is, the distance between the downstream temperature sensor 3004 and the piston 3021 is preferably 10 to 100 mm, more preferably 10 to 50 mm, and still more preferably 10 to 20 mm. Further, it is preferable to use a drive source (actuator) used for the control valve 3020 having excellent response such as a piezoelectric element. By doing so, the fluctuation (pulsation) of the flow rate flowing through the flow path 3001 can be quickly eliminated, and a constant flow rate can be maintained.
  • actuator drive source
  • This flow control device is suitably used for a fluid reaction device (microreactor) that reacts two or more kinds of liquids.
  • a fluid reaction device microreactor
  • the inner diameter of the flow path 30 01 of the flow control device according to the present embodiment is preferably 0.:! To 5 mm, more preferably 0.:! To 2 mm, and further preferably 0.1 to 1 mm. is there. If only a small amount is to be handled, the minimum diameter can be set to 0.02 mm.
  • the pressure of the liquid at the outlet of the flow rate adjusting device (downstream of the control valve 3020) is lMPa to 10 MPa, 2 MPa to 5 MPa, or 3 MPa to 4 MPa.
  • the material constituting the flow path 3001 is preferably one having corrosion resistance.
  • the upstream temperature sensor 3003 and the downstream temperature sensor 3004 measure the temperature of the liquid through the wall portion of the flow path 3001, so that the material constituting the flow path 3001 is made thermally conductive. Excellent, ⁇ 40 to: Those which can withstand a wide temperature range of 150 ° C. are preferable. Further, the material constituting the flow path 3001 is preferably one that can withstand the high pressure of the liquid.
  • the material constituting the flow path 3001 include stainless steel such as SUS316 or SUS304, Ti (titanium), quartz glass, or Pyrex (registered trademark) glass.
  • stainless steel such as SUS316 or SUS304, Ti (titanium), quartz glass, or Pyrex (registered trademark) glass.
  • examples include hard glass such as polyethylene, PEEK (polyetheretherketone), PE (polyethylene), PVC (polyvinylchlonde), PDMS (polydimethylsiloxane), s> i, PTFE (polytetrafluoroethylene), and PCTFE (polychlorotrifluoroethylene).
  • the wall thickness of the channel 3001 is preferably 0.01 to 0.1 lm.
  • the wall thickness of the channel 3 001 is preferably 0.5 to lmm. Considering thermal conductivity, it is preferable to use Ti with a small heat capacity. When resin is used, it is preferable to improve the thermal conductivity by locally reducing the thickness of the portion of the channel 3001 to which the upstream temperature sensor 3003 and the downstream temperature sensor 3004 are attached.
  • the flow path 3001 may be composed of a combination of a plurality of materials selected from the above materials. For example, a material having corrosion resistance may be used for the liquid contact portion of the flow path 3001, and a material having pressure resistance may be stacked on the outside thereof.
  • a material having corrosion resistance may be used for the liquid contact portion of the flow path 3001, and a material having pressure resistance may be stacked on the outside thereof.
  • the flow path 3001 in order to accurately measure the temperature of the liquid, it is preferable to configure the flow path 3001 as follows. That is, the portion where the upstream temperature sensor 3003 and the downstream temperature sensor 3004 are provided is made of a material having high thermal conductivity, and the portion between the upstream temperature sensor 3003 and the downstream temperature sensor 3004 is thermally conductive. Consists of low material. According to such a configuration, the influence of the flow path 3001 on the temperature measurement can be reduced, and the heat of the temperature control mechanism 3002 travels through the flow path 3001 and affects the measurement value of the downstream temperature sensor 3004. It
  • FIG. 44 is a cross-sectional view showing another configuration example of the temperature adjustment mechanism and the upstream temperature sensor.
  • a case body 3012 made of a fluororesin such as PTFE or PCTFE is subjected to hole addition to form a flow path 3001 extending in the longitudinal direction.
  • the case body 3012 is formed with a hole 3012 in a direction perpendicular to the flow path 3001 to form a recess 3012a.
  • a structure 3013 for heating the liquid flowing in the flow path 3001 is inserted.
  • FIG. 45 (a) is a sectional view taken along line VII-VII in FIG.
  • the structure 3013 includes a cylindrical portion 3013b in which a through-hole 3013a having a rectangular or circular cross section constituting the flow path 3001 is formed at the tip, and a case body 3012. And a heat transfer portion 3013c located outside. Heat transfer part 3013c is opposite to the end where through hole 3013a is formed It is provided at the end of the side.
  • the force that covers the outside of the copper heat transfer section 3013c with the cylindrical section 3013b made of chemical-resistant titanium The same material for the cylindrical section 3013b and the heat transfer section 3013c May be formed integrally.
  • the cylindrical portion 3013b is fixed to the case main body 3012 by fixing a fixing plate 3014 made of a heat-insulating material such as PEEK to the case main body 3012 with a Bonoleto 3015. Further, between the case main body 3012 and the cylindrical shell B3013b, a paper tray 3016 force S is placed, and the seal member 3016 prevents liquid leakage.
  • a temperature control member 3017 such as a heater or a Peltier element is attached to the heat transfer section 3013c of the structure 3013, and heat from the temperature control member 3017 is transferred to the cylindrical section 3013b via the heat transfer section 3013c. It is becoming possible. Therefore, the heat from the temperature adjustment member 3017 is transmitted through the copper heat transfer section 3013c, and is transmitted to the liquid passing through the through hole 3013a through the titanium cylindrical section 3013b. Thus, the liquid flowing through the flow path 3001 is heated by passing through the through hole 3013a of the structure 3013. Note that the copper heat transfer section 3013c and the temperature adjustment member 3017 do not come into direct contact with the liquid. When the liquid is cooled using a Peltier element or the like for the temperature adjustment member 3017, the heat flow is opposite to that described above.
  • FIG. 45 (b) is a cross-sectional view showing another configuration example of the structure described above.
  • titanium is chemically resistant, its thermal conductivity is worse than copper. Therefore, in the example shown in Fig. 45 (b), the cylindrical part 3013b and the heat transfer part 3013c of the structure 3013 are integrally formed of copper. ing. Further, the through hole 3013a is formed so that the cross section is circular or the like. The parts exposed to the liquid, such as the inner surface of the through hole 3013a and the outer surface of the cylindrical portion 3013b, are treated with a chemical resistant material. A seal member for preventing leakage of liquid is disposed between the cylindrical portion 3013b subjected to the plating process and the case body. With such a configuration, the heat from the temperature control member is more efficiently transmitted to the liquid flowing through the through hole 3013a.
  • the upstream temperature sensor 3003 is inserted into a hole 3012b formed in a direction perpendicular to the flow path 3001, and is made of a sensor phone that is made of a metal having chemical resistance such as titanium. 3003a and a thermistor 3003b inserted into the flow path 3001 to the position close to the position of the sensor Honoroda 3003a.
  • a through-hole constituting the flow path 3001 may be provided in the same manner as the structure 3013 of the heating unit.
  • Sensor holder 300 The force thermistor 3003b is configured so that the tip of 3a is in contact with the liquid in the flow path 3001.
  • the thermistor 3003b is not in direct contact with the liquid flowing in the flow path 3001.
  • the thermistor 300 3b can detect the temperature of the liquid flowing through the flow path 3001.
  • Sensor holder 300 3af, Bonoleto 3018 ⁇ Case body 3012 (This is fixed and fastened.
  • a seal member 3019 is arranged between the case body 3012 and the sensor holder 3003a. Note that when the liquid is cooled by using a Peltier element or the like for the temperature adjustment member 3017, the heat flow is opposite to that described above.
  • the sensor holder 3003a is formed from a metal having chemical resistance such as titanium.
  • the sensor holder 3003a is formed of copper having good heat conductivity and is in contact with the liquid.
  • FIG. 46 is an enlarged view showing another configuration example of the control valve.
  • the drive source that drives the piston 3021 is required to drive the piston 3021 against high-pressure liquid.
  • two piezoelectric elements 3022 are stacked in order to increase the driving force. With such a configuration, even when the liquid is at a high pressure, the opening ⁇ of the piston 3021 can be accurately adjusted, and the flow rate can be kept constant. If necessary, three or more piezoelectric elements may be laminated.
  • FIG. 47 is a schematic diagram showing a flow rate adjusting device according to a second embodiment of the present invention. Note that the configuration of the present embodiment that is not particularly described is the same as the configuration of the first embodiment described above, and thus the overlapping description is omitted.
  • the flow rate measurement unit 3010 obtains the flow rate using the temperature change of the liquid, and therefore cannot accurately obtain the flow rate when the ambient temperature changes. Therefore, in the present embodiment, the environmental temperature control mechanism 3011 is disposed in the flow rate measurement unit 3010 in order to stably measure the temperature of the liquid.
  • the environmental temperature control mechanism 3011 includes an upstream temperature sensor 3003 and a downstream temperature sensor 3004 that are airtightly housed in a partition wall 3011a.
  • Temperature controller 301 lb such as a Peltier element that adjusts the temperature of the internal space of the partition wall 301 la, a temperature sensor 3011c that measures the temperature of the internal space of the partition wall 301 la, and a signal from the temperature sensor 3011c (the internal space A temperature controller 30 id for controlling the temperature controller 3011b based on the actual temperature).
  • the temperature controller 3005 described above may be used as the temperature controller 301 Id.
  • the partition wall 301 la also has a heat insulating material force.
  • the temperature controller 301 lb is connected to the temperature controller 301 Id and is controlled by the temperature controller 3011d so as to keep the temperature of the internal space constant.
  • the upstream temperature sensor 3003 that is, the first measurement point P1
  • the downstream temperature sensor 3004 the second measurement point P2
  • the temperature around the part of the channel 3001 can be kept constant, and the thermal disturbance can be blocked. Therefore, the time difference measuring unit 3009 can accurately measure the flow rate, and as a result, the flow rate can be kept constant with high accuracy.
  • FIG. 48 is a schematic diagram showing a flow rate adjusting device according to a third embodiment of the present invention. Note that the configuration of the present embodiment that is not particularly described is the same as the configuration of the first embodiment described above, and thus the overlapping description is omitted.
  • the upstream temperature sensor 3003 is omitted, and the time difference measuring unit 3009 is connected to the temperature adjustment mechanism 3002 and the downstream temperature sensor 3004.
  • the first measurement point P1 is the position of the temperature adjustment mechanism 3002.
  • the principle by which the flow rate is measured by the flow rate measurement unit 3010 of the present embodiment will be described with reference to FIG.
  • the liquid flowing through the channel 3001 is heated by the temperature adjustment mechanism 3002, and the heating start time tl is recorded in the time difference measuring unit 3009.
  • the temperature adjustment mechanism 3002 that is, the first measurement point P1
  • the temperature of the liquid rises at a predetermined rate of change as indicated by the temperature curve T3.
  • the heated liquid flows through the flow path 3001, and eventually passes through the second measurement point P2.
  • the temperature curve C3 is detected by the downstream temperature sensor 3004.
  • the time difference measuring unit 3009 obtains the time difference At between the rise time tl of the temperature curve T3 and the rise time t2 of the temperature curve C3, and the liquid flow rate is calculated by the above-described equation. As with the example described with reference to FIG. 42, two temperature curve peaks appear. The time difference may be measured.
  • a cylindrical spool 3024 is used instead of the piston 3021.
  • the spool 3024 is disposed in the clog path of the flow path 3001, and the tip of the spool 3024 is slidably fitted in the flow path 3001.
  • a magnetic body (for example, an iron core) 3025 is attached to the end of the spool 3 024, and an electromagnet 3026 is disposed around the magnetic body 3025.
  • a seal member 3027 is disposed between the electromagnet 3026 and the flow path 3001, and the seal member 3027 prevents liquid leakage.
  • the magnetic body 3025 is driven by the electromagnetic force formed by the electromagnet 3026, whereby the spool 3024 moves along its axial direction.
  • the control valve 3020 having such a configuration is called a solenoid valve (solenoid valve).
  • FIG. 50 is a perspective view of the spool shown in FIG.
  • an obliquely extending groove 3024a is formed on the side surface of the spunole 3024.
  • the groove 3024a has a triangular cross-section, and the size of the cross section changes according to the axial position. That is, the cross section of the groove 3024a gradually decreases as the largest cross sectional position at the tip of the spool 3024 is directed to the opposite end. Since the liquid flows through the groove 3024a, the flow rate can be adjusted by moving the spool 3024 in the axial direction. In this case, the opening degree ⁇ of the spool (valve) 3024 can be expressed by the length of the groove 3024a protruding from the flow path 3001.
  • the control unit 3030 of this embodiment includes a spool drive circuit 3035 instead of the piston drive circuit.
  • the spool drive circuit 3035 converts the opening degree of the spool 3024 calculated by the comparison unit 3033 into a current, and the current is supplied to the electromagnet 3026 so that the spool 3024 moves.
  • the control valve 3020 is controlled by the control unit 3030 so that the flow rate of the liquid passing through the control valve 3020 is always constant. Note that it is preferable to use an electromagnet that can generate a large electromagnetic force in order to accurately maintain a constant flow rate even when the liquid is high pressure.
  • FIG. 51 is a schematic diagram showing a flow rate adjusting device according to a fourth embodiment of the present invention.
  • the configuration of the present embodiment that is not particularly described is the same as the configuration of the first embodiment described above, so A duplicate description is omitted.
  • the control valve 3020 of this embodiment includes an inverted triangular pyramid-shaped poppet 3041 instead of the piston 3021.
  • the poppet 3041 is positioned on the T-shaped path of the flow path 3001, and is arranged so that the tip thereof faces the liquid flow.
  • a shaft 3042 is fixed to the poppet 3041, and the shaft 3042 is fitted to a bottomed cylindrical shaft guide 3043.
  • a gear 3044 is provided on the outer peripheral surface of the shaft guide 3043, and this gear 3044 meshes with a gear 3046 connected to a servo motor 3045.
  • the shaft 3042 is not rotated by a rotation prevention mechanism (not shown) such as a key or a key groove (this is configured and laid down. Note that the poppet 3041, the shaft 3042, and the shaft guide 3043 are coaxial. Are aligned.
  • a sheath member 3047 force S is arranged between the shaft guide 3043 and the flow path 3001 to prevent the liquid from leaking from the flow path 3001.
  • a male screw 3042a is formed on the outer peripheral surface of the shaft 3042, and a female screw (not shown) that fits the male screw 3042a is formed on the inner peripheral surface of the shaft guide 3043.
  • the control unit 3030 of the present embodiment includes a poppet drive circuit 3048 instead of the piston drive circuit.
  • the poppet drive circuit 3048 converts the opening of the poppet 3041 calculated by the comparison unit 3033 into a current, and the current is supplied to the servo motor 3045 so that the poppet 3041 moves.
  • the control valve 3020 is controlled by the control unit 3030 so that the flow rate of the liquid passing through the control valve 3020 is always constant. Note that it is preferable to use a servo motor or stepping motor that can generate a large torque in order to accurately maintain a constant flow rate even when the liquid is high pressure.
  • the environmental temperature control mechanism 3011 according to the second embodiment may be incorporated in the third and fourth embodiments.
  • the flow control device according to the above-described embodiment is not only liquid but also gas. The flow rate can also be measured and controlled.
  • FIG. 52 to FIG. 54 are diagrams showing an entire configuration of a fluid reaction device incorporating a flow rate adjusting device according to an embodiment of the present invention.
  • the fluid reaction device described below is a device used to mix and react two or more liquids.
  • the fluid reaction apparatus is entirely installed in one installation space and packaged.
  • the installation space is rectangular and is divided into four areas along the longitudinal direction. That is, the first region on the one end side is a raw material storage section 3101 in which a plurality of storage containers 3110 (only two storage containers 3110A and 3110B are shown in FIG. 52) for storing the raw material liquid are installed.
  • the adjacent second region is a liquid distribution unit 3102 in which pumps 3116A and 3116B for transferring the raw material liquid in the storage container 3110 are installed.
  • the third region adjacent to the second region is a processing unit 3103 having a mixing unit (mixing chip) 3140 for mixing the raw material liquid and a reaction unit (reaction chip) 3142 for reacting the mixed raw material liquid.
  • a processing unit 3103 having a mixing unit (mixing chip) 3140 for mixing the raw material liquid and a reaction unit (reaction chip) 3142 for reacting the mixed raw material liquid.
  • the fourth region on the other end side is a product storage unit (collection container installation space) 3104 for deriving and storing the product obtained as a result of the processing.
  • the fluid reaction apparatus further includes an operation control unit 3106, which is a computer that controls the operation of each unit, and a heat medium controller 3107 that adjusts the temperature of the processing unit 3103 by flowing a heat medium through the temperature adjustment case 3146.
  • the operation control unit 3106 is equipped with a flow rate monitor 3270 and a temperature monitor 3272 that can monitor the flow rate and temperature of the liquid.
  • the operation control unit 3106 and the heat medium controller 3107 are provided separately from the fluid reaction device, but may of course be integrated.
  • a piping chamber 3105 is formed in the lower floor portion of the second to fourth areas, where a heating medium for heating or cooling is sent to the mixing section 3140 and the reaction section 3142. Piping is provided.
  • each part is linear, but for example, if the whole is close to a square and space, each part is liquid. It may be configured so that the current flow forms a loop.
  • reference numeral 3250 denotes a liquid reservoir pan provided in the lower part of the apparatus
  • reference numeral 3252 denotes a liquid leakage sensor installed on the liquid reservoir pan 3250.
  • the liquid distribution unit 3102, the processing unit 3103, and the product shell retention unit 3104 are partitioned by partition walls 3254 and 3256, and covers 3258, 3260, and 3262 are attached to the respective parts, and these parts are connected to the outside of the apparatus. Are separated.
  • Reference numeral 3264 denotes an exhaust port, which is connected to an exhaust fan (not shown). And by making the pressure inside the device negative from outside the device, toxic gas inside the device is prevented from leaking outside.
  • the raw material storage unit 3101 shown in Fig. 52 two storage containers 3110A and 3110B are installed. However, three or more storage containers may be used as necessary. For example, by storing the same liquid in two storage containers and using them alternately, the processing can be performed continuously.
  • the raw material storage unit 3101 may be provided with a cleaning liquid container 3112 containing an organic solvent such as acetone for line cleaning, hydrochloric acid, pure water, or the like, or a pressure source 3114 filled with a purge nitrogen gas. Further, the waste liquid container 3136 may be placed in the raw material reservoir 3101.
  • pumps 3116A and 3116B connected to the shell container 3110A and 3110B via transport pipes 3121A and 3121 are installed. Centrifugal pumps are used for pumps 3116A and 3116B in FIG.
  • the liquid distribution unit 3102 has a flow rate adjustment device 3300 ⁇ , 3300 ⁇ , a jizi valve 3122A, 3122B, a pressure measurement sensor 3124A, 3124B, a flow path switching valve 3126A. , 31 26mm, and backwash pump 3130.
  • the transport pipes 3121A and 3121B are connected to a cleaning liquid container 3112 and a pressure source 3114, respectively.
  • the backwash pump 3130 is used when the flow path of the mixing unit 3140 or the reaction unit 3142 is blocked by a product.
  • the backwash pump 3130 is connected to a cleaning liquid container 3112 that stores the cleaning liquid, and is further connected to an outlet of the reaction unit 3142 via a flow path switching valve 3132.
  • the cleaning liquid transferred by the backwash pump 3130 flows in the reverse direction of the normal flow. That is, the cleaning liquid also flows toward the inlet of the mixing unit 3140 with the outlet force of the reaction unit 3142, passes through the flow path switching valves 3126A and 3126B, and passes through a pipe not shown from the waste liquid port 3134 to the waste liquid storage container 31. Put in 36.
  • the backwash pump 3130 is preferably a single-piston pump so that the washing liquid with high discharge pressure can cause pulsation to remove the product.
  • an organic solvent hydrochloric acid, nitric acid, phosphoric acid, organic acid, pure water or the like is preferably used.
  • the organic solvent include acetone, ethanol, methanol and the like.
  • the introduction port 3240 shown in FIG. 52 is provided when pure water or hydrogen water is introduced from the outside, and can be used for cleaning instead of the cleaning liquid in the cleaning liquid container 3112.
  • Fig. 55 shows a mixing unit 3140 for preheating (preliminary temperature adjustment) and mixing of the raw material liquid.
  • the lower plate 3144c is joined to form a mixed portion 3140 having a total thickness of 5 mm.
  • the flow paths described below are all grooves formed on the surface of the intermediate plate 3144b.
  • the two inflow ports 3147A and 3147B formed through the upper plate 3144a communicate with the two preheating channels 3148A and 3148B formed on the upper surface of the middle plate 3144b, respectively.
  • These preheating flow paths 3148A and 3148B each branch in the middle and expand, and merge again.
  • the preliminary heating channels 3148A and 3148B communicate with the outlet channels 3150A and 3150B, respectively, and are connected to the outlet channels 3150A and 3150B through the junction 3152.
  • the outlet channel 3150B is formed on the upper surface of the intermediate plate 31 44b, and the outlet channel 3150B is formed on the lower surface of the intermediate plate 3144b.
  • FIG. 56 is an enlarged view of the junction shown in FIG.
  • the merge portion 3152 includes headers 154, 3155 formed on the upper and lower surfaces of the intermediate plate 3144b as arc-shaped grooves that communicate with the outlet flow paths 3150A, 3150B, and the headers B3154, A plurality of split night passages 3156, 3157 extending toward the center of the arc from the 3155 force and a split space 3158, 3157 force S, and a merge space 3158 for joining them.
  • the separation flow paths 3156 and 3157 and the merge space 3158 are formed on the upper surface of the intermediate plate 3144b, and the separation flow paths 3156 and 3157 are alternately arranged.
  • the lower header portion 3155 and the liquid separation flow path 3157 communicate with each other through a communication hole 3157a that penetrates the intermediate plate 3144b.
  • the merge space 3158 is formed so that its width gradually decreases toward the downstream side, and communicates with an outflow port 3160 formed through the middle plate 3144b and the lower plate 3144c.
  • the separation channel 3 Five 156 and four separation flow paths 3157 are alternately arranged. Separation flow path 3156, 3157 Force The two types of liquid that flowed out respectively flow downstream while forming a striped flow in the merge space 3158, and as the flow path width of the merge space 3158 gradually decreases, The two liquids are forcibly mixed. In this example, the flow path width of the merge space 3158 finally reaches 40 xm. If the processing technology accuracy is increased, the channel width can be reduced to 10 zm.
  • FIG. 57 (a) is a plan view showing the reaction section shown in FIG. 52
  • FIG. 57 (b) is a cross-sectional view of the reaction section shown in FIG. 57 (a).
  • two base materials 3144d and 3144e are joined to form a reaction portion 3142 having a thickness of 5 mm.
  • the reaction flow path 3162 meanders and provides a long flow path efficiently.
  • the reaction channel 3162 has communication rods B3162a and 3162c connected to the inlet port 3164 and the outlet port 3165, respectively, and a meander rod B portion 3162b communicating with the communication rods B3162a and 3162c.
  • the width of the meandering part 3162b which narrows the width of the communication rods B3162a and 3162c, is formed. Therefore, the liquid flows rapidly at the entrance / exit part to prevent by-products from adhering, and flows slowly at the meandering part 3162b, so that the heating and reaction time can be increased.
  • FIG. 58 (a) and FIG. 58 (b) show another example of the structure of the reaction section having the portion 316 3a in which the width of the reaction channel gradually decreases and the portion 3163b in which the width gradually increases.
  • a reaction flow path 3163 is formed between the base materials 3144d and 3144e so that the width dimension increases or decreases in the range of maximum a to minimum b. You can increase or decrease the depth as the width dimension increases or decreases. In this example, the depth changes from the maximum c to the minimum d so that the cross-sectional area of the reaction channel 3163 is constant.
  • FIG. 58 (c) is a cross-sectional view showing another configuration example of the reaction channel.
  • the reaction flow path 3163c has a flat shape with a large width e and a large heat transfer surface intersecting the heat transfer direction (indicated by an arrow) from the thermal catalyst. Therefore, heat is effectively transferred to the liquid in the reaction flow path 31 63c.
  • it is effective to dispose an appropriate catalyst in the merge space 3158 and the reaction flow paths 316 2 and 3163.
  • Such a catalyst is selected according to the type of reaction. For example, it can be applied to the inner surface of the flow path, or can be disposed as an obstacle to the flow path as will be described later.
  • a material for forming at least the flow path of the mixing unit 3140 and the reaction unit 3142 for example, SUS316, SUS304, Ti, quartz glass, Pyrex (registered trademark) glass, etc. From (Poly ChloroTriFluoroEthylene), a preferable one is selected in consideration of chemical resistance, pressure resistance, thermal conductivity, heat resistance, and the like.
  • the material of the wetted part of the mixing part 3140 and the reaction part 3142 should be able to be surface-catalyzed with little elution from the surface, have a certain degree of chemical resistance, and withstand a wide temperature range of _40 to 150 ° C .
  • FIG. 59 is a perspective view showing a configuration of a temperature adjustment case for adjusting the temperatures of the mixing section and the reaction section. Note that, in the following description, only the temperature adjustment case 3146 for adjusting the temperature of the reaction unit 3142 is described.
  • the temperature adjustment case 3146 for the mixing unit 3140 has the same configuration, and redundant description thereof is omitted. To do.
  • the temperature adjustment case 3146 includes a case main body 3172 in which a space 3170 that accommodates the reaction portion 3142 is formed, and a lid portion 3174 that covers the space 3170. Grooves 3176 constituting the medium flow path are formed. A liquid supply path 3178 and a drainage path 3180 (see FIG.
  • the liquid supply path 3178 and the drainage path 3180 are connected to the heat medium controller 3107, respectively.
  • the liquid supply passage 3178 communicates with the groove 3176 of the lid portion 3174 via the opening 3179
  • the drainage passage 3180 communicates with the groove 3176 of the lid portion 3174 via an opening (not shown).
  • the heat medium flowing through the groove 3176 is in direct contact with the front and back surfaces of the reaction unit 3142, and the reaction unit 3142 is heated (or cooled) while being completely accommodated in the temperature adjustment case 3146.
  • the heat medium controller 3107 includes a control mechanism for controlling the temperature of the heat medium and a pump for transferring the heat medium. As shown in FIG. 52, the heat medium passes through the heat exchanger 3182 and is then supplied to the temperature adjustment case 3146 of the mixing unit 3140 and the reaction unit 3142.
  • the heat exchanger 3182 can change the temperature of the heat medium supplied to the mixing unit 3140 and the reaction unit 3142 independently, for example, by changing the amount of brine for cooling.
  • the heat medium flow path 3192 includes the case body 3172 and the lid portion 3174, respectively. Formed inside It is.
  • the liquid supply path 3178 has a double pipe structure in which the tip of the liquid supply pipe 3188 is inserted, and is connected to the heat medium flow path 3192 via a thin communication path 3190. Communicate.
  • the drainage side has the same configuration.
  • the temperature adjustment case 3146 that accommodates the mixing unit 3140 and the temperature adjustment case 3146 that accommodates the reaction unit 3142 are stacked via a Bonoleto 3194, a nut 3195, and a spacer 3196. And combined.
  • FIG. 60 (b) shows a path for supplying and discharging the liquid to the mixing unit 3140 and the reaction unit 3142 accommodated in the temperature adjustment case 3146. That is, each liquid flows into and out of the mixing unit 3140 through the flow passage 3198 formed through the temperature adjustment case 3146. In addition, the liquid is circulated between the mixing unit 3140 and the reaction unit 3142 through a communication passage 3200 that communicates with the flow passage 3198 of the temperature adjustment case 3146.
  • FIG. 60 (d) illustrates the structure of the inflow portion and the outflow portion of the liquid in the reaction section 3142. In order to direct the liquid flow downward, the liquid inlet of the mixing unit 3140 and the reaction unit 3142 is usually formed on the upper surface and the outlet is formed on the lower surface.
  • the outlet 3202 of the reaction unit 3142 is connected to the product storage unit 3104 via a recovery pipe 3204.
  • the product storage unit 3104 is provided with a recovery container 3208 on the downstream side of the heat exchanger 3206 for cooling and the flow path switching valve 3132.
  • the product reservoir 3104 where the collection container 320 8 is placed is isolated so that it is not affected by temperature, etc. from other areas, and toxic gas that may be generated from the product is not leaked to the outside. Yes.
  • FIG. 61 shows another configuration example of the product storage unit 3104.
  • a plurality of recovery containers 3208 are installed on the turntable 3212.
  • the actuator 3214 for moving the rotary table 3212 is a 180-degree rotary rotary actuator.
  • the number of recovery containers 3208 and the type of the actuator 3214 can be selected as appropriate.
  • the operation control unit 3106 shown in FIG. 52 determines the replacement timing of the recovery container 3208 based on a signal from the liquid level detection sensor 321 lb for detecting the liquid level of the recovery container 3208, and the flow path switching valve 3132 (see FIG. 52).
  • the temperature of the heat medium is set by the heat medium controller 3107, and the temperature of each heat medium is adjusted by adjusting the amount of brine passing through the heat exchanger 3182, and the temperature of the mixing unit 3140 and reaction unit 3142 is adjusted.
  • Heat medium is circulated through case 3146 to maintain them at a predetermined temperature.
  • the temperature of the heat medium is measured by temperature sensors 3216 and 3218 provided at the inlet of the temperature adjustment case 3146.
  • a cleaning liquid such as pure water is supplied to the flow paths in the mixing unit 3140 and the reaction unit 3142 to perform pre-cleaning. While cleaning the flow path, the temperature of the cleaning solution is measured by the temperature sensor 3220 at the outlet of the mixing unit 3140 and the temperature sensor 3222 at the outlet of the reaction unit 3142, and the temperature of the cleaning solution is fed back to the heat medium controller 3107. To do. In this way, the mixing unit 3140 and the reaction unit 3142 are adjusted to a predetermined temperature.
  • the flow path switching valve 3132 is switched and the pumps 3116A and 3116B are driven to start the raw materials in the storage containers 3110A and 3110B. Each liquid is transferred.
  • the raw material liquid is adjusted to a predetermined flow rate by the flow rate adjusting devices 3300A and 3300B, and then reaches the recovery container 3208 via the mixing unit 3140, the reaction unit 3142, the outlet 3202 and the recovery port 3210.
  • the flow path switching valve 3132 is an automatic valve that is operated by an actuator, and this operation can also be performed automatically.
  • mixing unit 3140 the raw material liquids are heated to a predetermined temperature in preheating channels 3148A and 3148B (see FIG. 55), and then merged and mixed in merging unit 3152.
  • each liquid flows into the merge space 3158 via the liquid separation channels 3156 and 3157 from the header portions 3154 and 3155. Since the cross section of the merge space 3158 gradually decreases as it goes downstream, the micro-sized flows are mixed regularly, and the shell IJ is quickly mixed according to Fick's law. In that state, when it flows into the reaction flow path 3162 of the reaction unit 3142 maintained at a predetermined temperature, the reaction proceeds rapidly without being restricted by mass transfer or heat conduction.
  • the width of the reaction channel 3162 Is formed sufficiently wider than the width of the confluence space 3158, so that even when the reaction rate is low, the reaction can be carried out over a sufficient period of time, and a high yield and yield can be obtained.
  • the obtained product is sent from the outlet 3202 of the reaction channel 3162 to the heat exchanger 3206 via the recovery pipe 3204, where it is chilled P, and from the recovery port 3210 to the recovery container 3208. Inflow.
  • the operation control unit 3106 stops the operation of the pumps 3116A and 3116B and ends the processing.
  • the operation can be continued without stopping operation by switching the flow path switching valves 3126A and 3126B. Processing is possible.
  • the liquid can be confined in the mixing unit 3140 and the reaction unit 3142 for a certain period of time to perform batch operation. Since the flow path switching valves 3126A and 3126B are also automatic valves, these operations can be automatically operated.
  • the pumps 3116A and 3116B may be temporarily stopped, or the flow path switching valves 3126A and 3126B may be switched to stop the inflow of liquid into the processing unit 3103. This eliminates the need to increase the length of the reaction channel 3162 even when the reaction time of the liquid is long.
  • a fullness detection means for detecting that the merge space 3158 and / or the reaction flow path 3162 is filled with liquid.
  • an optical fluid detection sensor as shown in FIG. 61 is used.
  • the pumps 3116A and 3116B are stopped or the first flow path switching valve is switched to allow the liquid to reach the reaction end time. It stays in the confluence space 3158 and / or the reaction flow path 3162 for a certain period of time.
  • the flow rate of the liquid can be measured accurately, so that the measured flow rate and the liquid supply time force can be obtained. it can. Therefore, the operation control unit 3106 can adjust the production amount of the product based on the supply amount of the liquid, and can control the operation of the fluid reaction device. For example, when the liquid supply amount reaches a predetermined value, the operation control unit 3106 stops the operation of the pumps 31 16A and 3116B, or switches the flow path switching valves 3126A and 3126B. You may do it. As described above, by incorporating the flow control device according to the present invention in the fluid reaction device, the operation control unit 3106 can control the operation of each part of the fluid reaction device based on the supply amount of the liquid.
  • FIG. 62 (a) and FIG. 62 (b) show another configuration example of the merging section in the mixing section 3140.
  • the junction 3152a is configured by disposing an obstacle 3224 in a Y-shaped junction space 3158a over a predetermined distance L at a constant interval a.
  • the obstacles 3224 are arranged in a staggered pattern so that adjacent ones are displaced by half the pitch in the flow direction.
  • the interface 3125 between the liquid A and the liquid B meanders, so that the interface area (contact area) between the two liquids can be increased.
  • a row of obstacles 3224 are arranged in a zigzag along the flow direction at the center of the junction space 3158b, and the interface area can be similarly increased. This is suitable for use in the narrow space, merge space 3158b.
  • FIG. 64 shows another example of the configuration of the processing unit 3103 of the fluid reaction device. 52.
  • two systems Rl and R2 each having a combination of the mixing unit 3140 and the reaction unit 3142 are provided, and further, the flow path switching valves 3126A and 3126B of the liquid distribution unit 3102 are used.
  • Various types of raw material liquids can be supplied to any of the systems Rl and R2. In this way, the use of two systems has the ability to increase the amount of processing as needed, and various other methods of use. For example, if the reaction product precipitates solid particles or is easily clogged in the middle of piping, use one system as a backup.
  • the batch operation described above can be performed continuously by alternately switching the transfer lines by the flow path switching valves 3126A and 3126B.
  • three or more transfer lines can be provided in parallel as appropriate.
  • the flow path switching valves 3126A and 3126B can be automatically operated.
  • FIG. 65 shows an example in which a plurality of reaction units are arranged in series in the processing unit 3103.
  • one mixing unit 3140 and three reaction units 3142a, 3142b, 3142c are connected in series, and temperature sensors 3220, 3222a, 3222b, 3222c are provided with a force S, respectively.
  • the temperature of the reaction units 3142a, 3142b, and 3142c can be controlled independently according to the stage of the reaction. This configuration is similar to biochemical reactions in reaction time and reaction temperature. It is suitable for reactions that want to change the degree boldly and instantaneously. For example, a reaction such as reacting at 100 ° C in the reaction unit 3142a and reacting at -20 ° C in the reaction unit 3142b is possible with this system.
  • FIG. 66 is an example in which a plurality of mixing units are provided in the processing unit 3103.
  • a first mixing unit 3140 and a reaction unit 3142 for mixing and reacting liquid A and liquid B are provided, and a second mixing unit 3140a is provided downstream of the reaction unit 3142.
  • this mixing section 3140a the third raw material liquid or the C liquid which is the reactant transported from the pump 3116C is merged with the A liquid and the B liquid.
  • the temperatures of these two mixing sections 3140, 3140a and one reaction section 3142 are individually controlled.
  • Liquid C may be a reaction terminator.
  • the inline yield evaluator 3226 is directly connected to the outlet 3202 of the second mixing unit 3140a. As a result, the yield of the chemical reaction results can be confirmed in real time and can be immediately fed back to the process parameters.
  • the in-line yield evaluator 3226 includes methods such as infrared spectroscopy, near infrared spectroscopy, and ultraviolet absorption as methods that can be measured without separating the object to be measured.
  • a separation / extraction unit 3228 that separates unnecessary substances and necessary substances from the reaction product is further provided on the downstream side of the second mixing unit 3140a.
  • the separation / extraction section 3228 has a Y-shaped separation flow path 3234.
  • the liquid from the second mixing part 3140a is branched into two flows by the separation channel 3234, one in the channel formed by the hydrophobic wall 3230 that allows only the hydrophobic molecules in the substance to pass through, and the other in the channel It flows into the flow path formed by the hydrophilic wall 3232 that allows only hydrophilic molecules in the substance to pass through.
  • the separated substances are collected in collection containers 3208 and 3208a through collection pipes 3204 and 3204a, respectively.
  • a membrane or a porous frit that can adsorb only a hydrophobic substance may be used.
  • Fig. 67 is a configuration example for continuous processing by repeating mixing and reaction and separation and extraction.
  • the mixing unit 3140a for processing the A liquid and the B liquid, the reaction unit 3142a, and the separation / extraction unit 32 28a are arranged upstream, and the mixing unit for processing the liquid extracted from the separation / extraction unit 3228a and the C liquid.
  • 3140b, reaction unit 3142b, and separation / extraction unit 3228b are arranged on the downstream side. Unnecessary substances after reaction of liquid A and liquid B are separated from the outlet 3234a of the separation and extraction unit 3228a.
  • Unnecessary substances in the second reaction to which the liquid C is added are discharged out of the system from the outlet 3234b of the separation and extraction unit 3228b. Furthermore, a mixing unit 3140c for mixing the liquid extracted from the separation / extraction unit 3228b and the fourth liquid D is provided.
  • the D solution can be a reaction terminator or other raw material solution.
  • An inline yield evaluator 3226 may be provided on the downstream side of the mixing unit 3140c.
  • FIG. 68 (a) shows a configuration in which the respective parts in FIG. 67 are laminated.
  • the liquid flows downward.
  • the mixing unit 3140a, the reaction unit 3142a, the separation / extraction unit 3228a, the mixing unit 3140b, the reaction unit 31 42b, the separation / extraction unit 3228b, and the mixing unit 3140c are accommodated in the temperature adjustment case 3146, respectively, and the Bonoleto 3194 and the nut 3195
  • the spacers 3196 are stacked at a predetermined interval. The movement of the liquid between each part is performed through the communication passage 3200 (see Fig. 55 (b)).
  • Air is interposed between each part, and the heat insulation of the air is used so that it is not affected by the heat of other parts, thereby improving the accuracy of temperature control.
  • a heat insulating material such as a clean silicon member 3236 containing bubbles.
  • the fluid introduced into the fluid reaction apparatus is liquid or gas
  • the substance to be recovered is liquid, gas, solid or a mixture thereof.
  • a powder dissolver can be installed in the raw material reservoir 3101.
  • FIG. 69 shows a configuration example of the raw material reservoir 3101 in which one of the two raw material liquids is a solution in which powder is dissolved and the other is originally liquid.
  • the raw material powder and solvent are introduced from the raw material inlet 3242 of the powder dissolver 3240.
  • the raw material powder is dissolved by heating with the heater 3244 and stirring with the stirrer 3246, and the generated raw material liquid is pumped through the pipe 3249 drawn into the take-out port 3148 through the pump 3116A (thus,? Send the sound ⁇ 3140 and the reaction sound ⁇ 3142 ⁇ .
  • the flow rate adjusting device according to the present invention can be suitably used for a fluid reaction device (microreactor) that mixes and reacts fluids in a minute space.
  • a fluid reaction device microwave reactor
  • the present invention is not limited to the embodiments described so far and is not limited to the illustrated examples, and various modifications can be made without departing from the spirit of the present invention.
  • Guess I can get it.
  • the present invention is further used in the fluid reaction device and the fluid mixing device of the present invention.
  • the present invention also relates to a flow rate adjusting device capable of performing
  • the present invention for achieving the above-mentioned object is not limited to this, but includes the following inventions.
  • a temperature adjustment mechanism for adjusting the temperature of the fluid flowing through the flow path for a short time at a predetermined temperature adjustment position, and at least one temperature measurement position downstream of the temperature adjustment position of the flow path.
  • a flow rate measuring device for determining a passage time of a fluid whose temperature is adjusted based on a temperature change at a temperature measurement position observed by the main temperature sensor and calculating a flow rate based on the determination result.
  • the sub-temperature sensor is installed upstream of the temperature control position of the flow path, and the temperature measurement value of the main temperature sensor is corrected by the measurement value of the sub-temperature sensor.
  • the temperature of the flow path that has not been subjected to the temperature change due to the movement of the fluid is measured by the sub-temperature sensor installed on the upstream side of the flow path. Therefore, by correcting the temperature measurement value of the main temperature sensor with the measurement value of the sub temperature sensor, it is possible to detect the temperature change of the fluid excluding the influence of disturbance. Accordingly, it is possible to more accurately determine when the temperature-controlled fluid passes and to calculate the flow rate more accurately based on the determination result.
  • the location of the sub temperature sensor is a place where the influence of disturbance at the measurement position of the main temperature sensor (for example, the heat of the temperature control mechanism transmitted through the piping) can be measured.
  • the main temperature sensor for example, the heat of the temperature control mechanism transmitted through the piping
  • it is symmetrical with the main temperature sensor, or equidistant in the case of curved piping. Therefore, when sub-temperature sensors are installed for a plurality of main temperature sensors, they are installed at positions corresponding to each. Since this position is not necessarily a symmetrical position according to the situation at the site, an isothermal point when the flow rate is zero may be searched.
  • the vertical axis represents temperature and the horizontal axis represents time.
  • a thermal load is applied to the fluid as indicated by the symbol HL by the temperature control mechanism, and the temperature is increased at a predetermined rate of change.
  • temperature changes such as Sl and S2 are observed at the first measurement point P1 and the second measurement point P2, respectively.
  • the actual temperature change of the fluid is the difference, that is, the part marked with a thin line in Fig. 7 3 (a). This is shown as curve A Sl, ⁇ S2 in FIG. 73 (b).
  • the peak parts of the curves A Sl and A S2 are considered to measure the center point of the temperature-controlled liquid at the temperature control position Ph. Therefore, the time difference At is between the Pl and P2 fluids. This is considered to correspond to the time for moving. Therefore, the fluid flow rate can be obtained from the following equation.
  • the time difference between the upstream temperature curve and the downstream temperature curve depends only on the flow rate under the same average flow velocity of the fluid.
  • the way to ask does not change. For example, as shown in FIG. 72, even if the viscosity of the fluid changes, only the maximum flow rate changes and the average flow rate (ie, flow rate) does not change. Therefore, by measuring the time difference between the temperature curves that appear at the two measurement points, it is possible to accurately measure the flow rate without being affected by the physical properties of the fluid.
  • the flow rate is laminar because the internal diameter of the flow path is as small as 2 mm or less. It becomes. Therefore, the curve indicating the flow velocity distribution in the flow path is not disturbed and its shape is stable, which makes it possible to measure the flow rate based on the time difference of temperature change. This makes it unnecessary to know the physical properties of the reagent, such as the specific heat, specific gravity, and viscosity in advance, even when using various reagents, and simply setting the target flow rate.
  • the force S can be obtained with the desired flow rate.
  • Examples of the fluid used in the present invention include reagents, organic solvents, biochemical substances, and the like.
  • screening is performed in which a number of reagents are used and tests are performed with various conditions such as concentration, solvent, and temperature changed. This screening requires accurate volume measurement regardless of the physical properties of the reagent.
  • an accurate volume (flow rate) of a reagent can be obtained regardless of the type of reagent, and a preferable development environment can be provided.
  • the force measuring the time difference when the peaks of the two temperature curves appear is not limited to this.
  • the time difference at the rise of the temperature curve Alternatively, a time difference at a time point deviated from the peak by a predetermined time may be obtained.
  • the time difference between two points corresponding to each other on the temperature curve is measured.
  • the correction is performed by obtaining a difference between a measurement value of the main temperature sensor and a measurement value of the sub temperature sensor.
  • the method for obtaining the difference may be an analog method for directly obtaining the output difference as in a bridge circuit, or a digital method for processing after changing the analog / digital measurement signal.
  • the flow rate of the fluid is determined based on the time difference between the two corresponding points on the temperature curve indicating the temperature change of the fluid at the first measurement point and the second measurement point. Can be calculated. Note that the correction by the sub-temperature sensor may be performed for the main temperature sensor measurement values at both the first measurement point and the second measurement point, or only for the one with the greater influence of the disturbance. Good.
  • the time when the temperature measurement value after the correction reaches the extreme value is determined as the passage of the temperature-controlled fluid.
  • Flow rate measuring device to be used This is because the time point when the temperature measurement value reaches the minimum value (in the case of cooling) or the maximum value (in the case of heating) is considered to be the time when the portion affected by the temperature control passes.
  • the sub-temperature sensor is located substantially symmetrical to the temperature measurement position with respect to the temperature control position. Flow rate measuring device.
  • the measured value of the main temperature sensor or the sub temperature sensor is converted from analog to digital and incorporated into a digital circuit.
  • a flow rate measuring device characterized by
  • the temperature adjustment mechanism includes a Bellecher element, a Seebeck element, an electromagnetic wave generator, a resistance heating wire, a thermistor, or a platinum resistor.
  • a flow rate measuring device comprising: The temperature adjustment mechanism is not limited to the heating means, and a cooling means may be used.
  • the material is stainless steel, titanium, polyetheretherketone, polytetrafluoroethylene, or polytrifluoroethylene.
  • the control valve includes a valve for adjusting a flow rate and a drive source for driving the valve.
  • the drive source includes a piezoelectric element and an electromagnet. , A servo motor, or a stepping motor. According to the present invention, by using a drive source with good responsiveness, it is possible to quickly drive the valve based on the actual flow rate measured by the flow rate measurement unit and keep the flow rate constant.
  • control valve includes a valve for adjusting a flow rate and a drive source for driving the valve, and the drive source includes a plurality of piezoelectric elements.
  • a flow rate adjusting device characterized by having a laminated structure. According to the present invention, even when a high-pressure fluid flows, the flow rate can be kept constant without being affected by high pressure or pressure fluctuation.
  • the pressure of the fluid passing through the control valve is IMPa to:! OMPa.
  • the flow rate of the fluid passing through the control valve is 0.01 to:! OLZh. .
  • a plurality of containers that store fluid, a mixing unit that mixes the fluid, a reaction unit that reacts the mixed fluid, and the flow control device according to any one of (12) to (16) A fluid reaction device characterized by comprising:
  • FIG. 74 is a schematic diagram showing the flow rate adjusting device according to the first embodiment of the present invention.
  • the flow rate adjustment device of the present embodiment includes a flow rate measurement unit 4010 that measures the flow rate of the liquid (fluid) that flows through the flow path 4001, a control valve 4020 that adjusts the flow rate of the liquid, It basically comprises a control unit 4030 that controls the control valve 4020 based on the flow rate measured by the measurement unit (flow rate measuring device) 4010.
  • the flow rate measuring unit 4010 includes a temperature control mechanism 4002 that heats the liquid flowing through the flow path 4001 at a predetermined cycle, and a first measurement point downstream of the installation position (temperature control position Ph) of the temperature control mechanism 4002
  • the first main temperature sensor 4003 that measures the temperature of the liquid at Pml
  • the second main temperature sensor 40 04 that measures the temperature of the liquid at the second measurement point Pm2 downstream from the first measurement point Pml Is provided.
  • these primary temperature sensor and symmetrical (equidistant) to for each temperature adjustment mechanism 4002 upstream position Psl, the p s 2, respectively vice temperature sensor 4003a, 4a are provided.
  • the distance D between the temperature control mechanism 4002 and the first main temperature sensor 4003 and the distance D between the first main temperature sensor 4003 and the second main temperature sensor 4004 are not particularly limited, but 0.5 [mm] to 10 [mm] is preferred.
  • the temperature control mechanism 4002 is provided so as to surround the wall portion of the flow path 4001, and heats the liquid through the wall portion of the flow path 4001. This temperature control mechanism 4002 is connected to the temperature control unit 4005 so as to heat the liquid at an optimum rate of temperature increase.
  • a Peltier element, Seebeck element, electromagnetic wave generator, resistance heater, or the like is preferably used.
  • the temperature adjustment mechanism 4002 may change the temperature of the liquid by cooling the liquid.
  • the outputs of the first main temperature sensor 4003 and the first sub temperature sensor 4003a are input to the first difference detection circuit 8A.
  • the second main temperature sensor 4004 and the second sub temperature sensor The output of 4004a is input to the second difference detection circuit 4008B.
  • These differential detection circuits 4 008A and 4008B are constituted by a bridge circuit 4008C as shown in FIG. 75, if f columns, and the difference signals of the main temperature sensors 4003 and 4004 and the IJ temperature sensors 4003a and 4004a force, Output to the difference measurement unit 4009.
  • the time difference measurement unit 4009 calculates the time for the heated liquid to pass through the two measurement points PI and P2 from the change of each difference signal, and obtains the liquid flow rate, that is, the flow rate based on the difference.
  • the method for extracting the difference between the main temperature sensors 4003 and 4004 and the IJ temperature sensors 4003a and 4004a A method may be used in which the temperature signal is converted from analog to digital and incorporated into a digital circuit, and the difference is calculated by software.
  • the input may be made without passing through the bridge circuit, or the digital signal may be processed after the peak detection after passing through the bridge circuit.
  • the channel 4001 is basically a closed system and may handle liquids that are highly reactive or harmful to the environment or dangerous, it is not preferable to form an opening. Therefore, in this example, the temperature adjustment mechanism 4002, the first main temperature sensor 4003, and the second main temperature sensor 4004 are all attached to the outer surface of the pipe 4001A constituting the flow path 4001. Each sub temperature sensor is similarly attached to the outer surface of the flow path 4001. Therefore, these temperature sensors 4003, 4003a, 4004, 4004a measure the temperature of the liquid via the wall portion of the flow path 4001. As the temperature sensors 4003, 4003a, 4004, and 4004a, a thermistor type thermometer or a thermocouple having excellent responsiveness is preferably used.
  • the wall of the channel 4001, temperature adjustment mechanism 4002 and temperature sensor 4003, 40 03a, 4004, also to Yo Rere 0 Rere displaced even a 4004a, FIIT sensor 40 for 3 ⁇ 4 "03, 4004 and ⁇ IJ Temperature Sensors 4003a and 4004a preferably use the same installation method [0481]
  • the principle by which the flow rate of the liquid is measured by the time difference measuring unit 4009 is as described with reference to FIG. That is, when the temperature adjustment mechanism 4002 heats the liquid with a panoramic load as shown in FIG. 73 while the liquid is flowing, the heated liquid flows downstream, and the first measurement point Pml and the second measurement are performed. It passes through the point Pm2. At this time, the temperature of the liquid at the first measurement point Pml is measured by the first main temperature sensor 4003, and the temperature of the liquid at the second measurement point P2 is measured by the second main temperature sensor 4004.
  • the auxiliary temperature sensors 4003a and 4004a are arranged at positions opposite to the temperature control mechanism 4002 for the main temperature sensors 4003 and 4004, and the influence of ambient temperature change and tube wall heat transfer is measured. taking measurement.
  • the ambient temperature change and the temperature change of the fluid itself that has canceled the influence of tube wall heat transfer are measured.
  • the temperature change of the fluid itself can be detected accurately, so the distance between the temperature detection positions is increased and accurate flow rate detection is performed over a wide flow rate range. be able to.
  • the output signals of the first main temperature sensor 4003 and the sub temperature sensor 4003a (S1 and si in FIG. 7 3 (a)) are input to the difference detection circuit 4008A and the difference signals (FIG. 7 3 ( b) ⁇ S1) is output, and the output signals of the second temperature sensor 4004 and the sub temperature sensor 4004a (S2 and s2 in Fig. 73 (a)) are input to the difference detection circuit 4008B and their difference signals are output. ( ⁇ S2 in FIG. 73 (b)) is output, and these outputs are continuously sent to the time difference measurement unit 4009.
  • the flow rate is converted by the following formula.
  • Flow rate Distance between temperature measurement points (D) X channel cross-sectional area ⁇ time difference (A t) Note that the measurement time difference ⁇ in FIG. 73 (a) shows the case of the conventional method for comparison, and employs the time difference of the peak of the temperature measurement values of the main temperature sensors 4003 and 4004 themselves.
  • the time difference between the other two corresponding points of the force-temperature change curve obtained by determining the fluid flow rate based on the moving speed of the peak of temperature change may be obtained.
  • the time difference between the rises of two temperature forces may be obtained.
  • the above flow rate calculation method by the flow rate measurement unit 4010 may be produced by an analog circuit or digitally.
  • digital processing even if the signals from the temperature sensors 4003, 4003a, 4004, and 4004a are input after analog / digital conversion, the difference signals after passing through the difference detection circuits 4008A and 4008B are converted to analog / digital. You can also use the input method.
  • control valve 4020 is arranged on the downstream side of the flow rate measuring unit 4010.
  • the control valve 4020 includes a piston (valve) 4021 disposed so as to oppose the liquid flow, and a piezoelectric element (drive source) 4022 for driving the piston 4021.
  • the piezoelectric element (piezoelectric actuator) 4022 is fixed to the back surface of the piston 4021, and the piezoelectric element 4022 and the piston 4021 are integrally formed.
  • the piston 4021 and the piezoelectric element 4022 are accommodated in the piston chamber 4023 and moved.
  • the soot in the channel 4001 has a T-junction, and the piston 4021 is arranged so that the liquid flowing into the T-junction hits the front surface of the piston 4021.
  • a voltage is applied to the piezoelectric element 4022, the piezoelectric element 4022 expands and contracts, thereby moving the piston 4021 along the liquid flow direction to adjust the opening degree ⁇ of the piston 4021.
  • a throttle 4001a is provided on the upstream side of the piston 4021. By narrowing the flow path 4001, the flow rate can be accurately adjusted by the piston 4021.
  • the piston chamber 4023 described above is formed in a bottomed cylindrical shape, and the piston chamber 4023 is fixed to the outer surface of the flow path 4001 in a liquid-tight manner. With such a configuration, even when the gap force between the piston 4021 and the flow path 4001 leaks, the liquid is held inside the piston chamber 4023, so that leakage of the liquid to the outside is prevented.
  • a reaction product is generated on the downstream side of the flow control device by the reaction between the reagents.
  • the pressure of the liquid on the downstream side of the flow controller increases, and the flow path 4001 Force Liquid may leak.
  • leakage of liquid to the outside can be prevented by the bottomed cylindrical piston chamber 4023, so that accurate flow rate adjustment is possible.
  • the control unit 4030 includes an amplifier 4032 connected to the time difference measurement unit 4009, a comparison unit (PID control unit) 4033 that determines the opening of the piston 4021 for keeping the flow rate constant, and a piezoelectric element 4022 of the control valve 4020. And a piston drive circuit 4034 for generating a voltage to be applied to.
  • the amplifier 4032 amplifies the signal representing the liquid flow rate (actual flow rate) calculated by the time difference measurement unit 4009 and sends the amplified signal (actual flow rate) to the comparison unit 4033.
  • the set flow rate (target value) is input in advance to the comparison unit 4033.
  • the comparison unit 4033 compares the actual flow rate with the set flow rate, and determines the opening degree of the piston 4021 for matching the actual flow rate with the set flow rate. Calculate.
  • the opening degree of the piston 4021 calculated by the comparison unit 4033 is converted into a voltage by the piston drive circuit 4034. This voltage is applied to the piezoelectric element 4022, and the piston 4021 is driven by the piezoelectric element 4022. In this way, the control valve 4020 is controlled by the control unit 4030 so that the flow rate of the liquid passing through the control valve 4020 is always constant.
  • the distance of the flow path 4001 between the flow measurement unit 4010 and the control valve 4020 is preferably as short as possible. That is, the distance between the second main temperature sensor 4004 and the piston 4021 is preferably 10 to 100 mm, more preferably 10 to 50 mm, and still more preferably 10 to 20 mm.
  • a drive source (actuator) used for the control valve 4020 having excellent responsiveness such as a piezoelectric element. In this way, fluctuations (pulsations) in the flow rate flowing through the flow path 4001 can be quickly eliminated, and a constant flow rate can be maintained.
  • This flow control device is suitably used for a fluid reaction device (microreactor) that reacts two or more kinds of liquids.
  • a fluid reaction device microreactor
  • the inner diameter of the flow path 4001 of the flow control device according to the present embodiment is preferably 0.:! To 5 mm, more preferably 0.:! To 2 mm, and further preferably 0.1 to: 1mm. Also, if you want to handle only a small amount, The minimum diameter can be up to 0.02 mm. If the width (inner diameter) of the flow path is reduced, it becomes necessary to transfer the liquid at a high pressure.
  • the pressure of the liquid at the outlet of the flow rate adjusting device (downstream of the control valve 4020) is IMPa ⁇ : 10 MPa, 2 MPa ⁇ 5 MPa, or 3 MPa ⁇ 4 MPa.
  • Liquids to be handled include reagents, organic solvents, biochemical substances, and the like. Therefore, it is preferable that the material constituting the flow path 4001 has corrosion resistance. Further, as described above, the first main temperature sensor 4003 and the second main temperature sensor 4 measure the temperature of the liquid through the wall portion of the flow path 4001, so that the material constituting the flow path 4001 is It is preferable that it has excellent thermal conductivity and can withstand a wide temperature range of -40 to 150 ° C. Further, the material constituting the flow path 4001 is preferably one that can withstand the high pressure of the liquid.
  • the material constituting the flow path 4001 include hard glass such as SUS316, SUS304, Ti, quartz glass, and Pyrex (registered trademark) glass, PEEK (polyethere therketone), PE ⁇ polyethylene), Examples include PVC (polyvinylchlonde;), PDMS (Polydimethylsiioxane), Si, PTFE (polytetrafluoroethylene), PCTFE (Polychlorotrifluoroethylene), and PFA (perfluoroalkoxylalkane).
  • hard glass such as SUS316, SUS304, Ti, quartz glass, and Pyrex (registered trademark) glass
  • PEEK polyethere therketone
  • PVC polyvinylchlonde
  • PDMS Polydimethylsiioxane
  • Si silicon
  • PTFE polytetrafluoroethylene
  • PCTFE Polychlorotrifluoroethylene
  • PFA perfluoroalk
  • the wall thickness of the channel 4001 be 0.01 to 0.1 lm.
  • a resin such as PEEK, PTFE, PCTFE, or PFA
  • the wall thickness of the channel 4001 is preferably 0.:! To lmm.
  • thermal conductivity it is preferable to use Ti with a small heat capacity.
  • resin it is preferable to improve the thermal conductivity by locally reducing the thickness of the portion of the flow path 4001 to which the first main temperature sensor 4003 and the second main temperature sensor 4004 are attached.
  • FIG. 76 is an enlarged view showing another configuration example of the control valve.
  • the drive source that drives the piston 4021 is required to drive the piston 4021 against high-pressure liquid.
  • two piezoelectric elements 4022 are stacked in order to increase the driving force. With such a configuration, even when the liquid is at a high pressure, the opening angle of the piston 4021 can be accurately adjusted, and the flow rate can be kept constant. If necessary, three or more piezoelectric elements may be laminated.
  • FIG. 77 shows a second embodiment of the present invention, which simplifies the previous embodiment. It is a thing. Note that the configuration of the present embodiment that is not particularly described is the same as the configuration of the first embodiment described above, and thus redundant description thereof is omitted.
  • the time difference measuring unit 4009 has the power to judge the peak based on the difference (temperature curve of ⁇ S1 shown in FIG. 78) for the first temperature measurement position Pml.
  • the main temperature Sensor 4004 measured force Determine peak.
  • FIG. 79 is a schematic diagram showing a flow rate adjusting device according to a third embodiment of the present invention.
  • the first main temperature sensor 4003, the first sub temperature sensor 4003a, and the first difference detection circuit 4008A are omitted, and the flow rate measurement unit 4010
  • the second main temperature sensor 4004, the second sub temperature sensor 4004a, and the second difference detection circuit 4008B force time difference measurement unit 4009 are connected to each other.
  • the first measurement point P ml overlaps with the position Ph of the temperature adjustment mechanism 4002.
  • the liquid flowing in the channel 4001 is heated by the thermal load panelless HL by the temperature control mechanism 4002 and starts to rise in temperature. Heating pulses are rectangular, triangular, and sine waves Etc. are used as appropriate.
  • the loading time of the thermal load pulse HL is from 0.001 to 100 seconds, preferably from 0.01 second to 10 seconds, and more preferably from 0.1 to 1 second. Caro
  • the heated liquid flows through the channel 4001 and eventually passes through the second measurement point P2. At this time, the temperature curve ⁇ S2 is detected by the difference between the second temperature sensor 4004 and the first side temperature sensor 4004a.
  • the peak is determined by the time difference measuring unit 4009, the time difference At from the time of the representative point of the thermal load pulse HL is obtained, and the flow rate of the liquid is calculated by the above formula.
  • the point at the rear end of the pulse is used as the representative point of the thermal load pulse HL.
  • an appropriate point corresponding to the temperature rise of the fluid can be obtained experimentally and used. ,.
  • a columnar spool 4024 is used instead of the piston 4021.
  • the spunole 4024 is disposed in the clog path of the flow path 4001, and its tip is slidably fitted in the flow path 4001.
  • a magnetic body (for example, an iron core) 4025 is attached to the end of the spool 4024, and an electromagnet 4026 is disposed around the magnetic body 4025.
  • a seal member 4027 is disposed between the electromagnet 4026 and the flow path 4001, and liquid leakage is prevented by the seal member 4027.
  • the magnetic body 4025 is driven by the electromagnetic force formed by the electromagnet 4026, whereby the spool 4024 moves along its axial direction.
  • the control valve 4020 having such a configuration is called a solenoid valve (solenoid valve).
  • FIG. 81 is a perspective view of the spool shown in FIG. 79.
  • an obliquely extending groove 4024a is formed on the side surface of the spunole 4024.
  • the groove 4024a has a triangular cross-section, and the size of the cross section changes according to the axial position. That is, the cross-section of the groove 4024a gradually decreases as the cross-sectional position that is the largest at the tip of the spool 4024 is directed toward the opposite end. Since the liquid flows through the groove 4024a, the flow rate can be adjusted by moving the spool 4024 in the axial direction. In this case, the opening degree of the spool (valve) 4024 can be expressed by the length of the groove 4024a protruding from the flow path 4001.
  • the control unit 4030 of this embodiment includes a spool drive circuit 4035 instead of the piston drive circuit.
  • the spool drive circuit 4035 is a spool calculated by the comparison unit 4033.
  • the opening degree of the pool 4024 is converted into current, and this current is supplied to the electromagnet 4026, so that the spool 4024 moves.
  • the control valve 4020 is controlled by the control unit 4030 so that the flow rate of the liquid passing through the control valve 4020 is always constant. Note that it is preferable to use an electromagnet that can generate a large electromagnetic force in order to maintain a constant flow rate even when the liquid is at a high pressure.
  • FIG. 82 is a schematic diagram showing a flow rate adjusting device according to a fourth embodiment of the present invention. Since the configuration of the present embodiment not specifically described is the same as the configuration of the first embodiment described above, the redundant description thereof is omitted.
  • the control valve 4020 of the present embodiment includes an inverted triangular pyramid-shaped poppet 4041 instead of the piston 4021.
  • the poppet 4041 is located on the clog path of the flow path 4001, and is arranged so that the tip thereof faces the liquid flow.
  • a shaft 4042 is physically fixed to the poppet 40 41, and this shaft 4042 is fitted to a bottomed cylindrical shaft guide 4043.
  • a gear 4044 force s is provided on the outer peripheral surface of the shaft guide 4043, and the gear 4044 meshes with a gear 4046 connected to a servo motor 4045.
  • the shaft 4042 is configured not to rotate by a rotation prevention mechanism (not shown) such as a key or a key groove. Note that the poppet 4041, the shaft 4042, and the shaft guide 4043 are aligned on the same axis.
  • a seal member 4047 force S is disposed between the shaft guide 4043 and the flow path 4001, and the liquid is prevented from leaking from the flow path 4001.
  • a male screw 4042a is formed on the outer peripheral surface of the shaft 4042, and a female screw (not shown) that fits the male screw 4042a is formed on the inner peripheral surface of the shaft guide 4043.
  • the control unit 4030 includes a poppet drive circuit 40 48 instead of the piston drive circuit.
  • the poppet drive circuit 4048 converts the opening of the poppet 4041 calculated by the comparison unit 4033 into a current, and this current is supplied to the servo motor 4045. Poppet 4041 moves.
  • the control valve 4020 is controlled by the control unit 4030 so that the flow rate of the liquid passing through the control valve 4020 is always constant. Note that it is preferable to use a servo motor or a stepping motor capable of generating a large torque in order to make the flow rate accurately constant even when the liquid is high pressure.
  • the above-described embodiments can be combined as necessary.
  • the environmental temperature control mechanism 4011 according to the second embodiment may be incorporated in the third and fourth embodiments.
  • the flow rate adjusting device according to the above-described embodiment can measure and control not only liquid but also gas flow rate.
  • FIG. 83 to FIG. 85 (b) are diagrams showing the overall configuration of a fluid reaction device incorporating a flow rate control device according to an embodiment of the present invention.
  • the fluid reaction apparatus described below is an apparatus used for mixing and reacting two or more kinds of liquids.
  • the fluid reaction device is entirely installed in one installation space and packaged.
  • the installation space is rectangular and is divided into four areas along the longitudinal direction. That is, the first region on the one end side is a raw material storage section 4101 in which a plurality of storage containers 4110 (only two storage containers 4110A and 4110B are shown in FIG. 83) for storing the raw material liquid are installed.
  • the adjacent second region is a liquid distribution unit 4102 in which pumps 4116A and 4116B for transferring the raw material liquid in the storage container 4110 are installed.
  • a third region adjacent to the second region is a processing unit 4103 having a mixing unit (mixing chip) 4140 for mixing the raw material liquid and a reaction unit (reaction chip) 4142 for reacting the mixed raw material liquid.
  • the fourth region on the other end side is a product storage part (collection container installation space) 4104 for deriving and storing the product obtained as a result of the treatment.
  • this fluid reaction device includes an operation control unit 4106, which is a computer that controls the operation of each unit, and a heat medium controller 4107 that adjusts the temperature of the processing unit 4103 by flowing a heat medium through the temperature adjustment case 4146.
  • the operation control unit 4106 is shown in FIG.
  • a flow rate monitor 4270 and a temperature monitor 4272 that can monitor the flow rate and temperature of the liquid are installed.
  • the operation control unit 4106 and the heat medium controller 4107 are provided separately from the fluid reaction device, but may of course be integrated.
  • a pipe 4001A chamber 4105 is formed in the lower floor portion of the second to fourth regions, where a heating medium for heating or cooling is sent to the mixing unit 4140 and the reaction unit 4142. Pipe 4001A is installed.
  • each part is linear, but for example, if the whole is close to a square, and if it is a space, each part may be configured so that the liquid flow forms a loop.
  • reference numeral 4250 denotes a liquid storage pan provided at the lower part of the apparatus
  • reference numeral 4252 denotes a liquid leakage sensor installed on the liquid storage pan 4250.
  • the distribution bottle 4102, the treatment bottle B4103, and the product shellfish retainer B4104 are partitioned by partition walls 4254 and 4256, and covers 4258, 4260, and 4262 are attached to each part, and these parts are connected to the outside of the apparatus. Are separated.
  • Reference numeral 4264 denotes an exhaust port, which is connected to an exhaust fan (not shown). And by making the pressure inside the device negative from outside the device, toxic gas inside the device is prevented from leaking outside.
  • the raw material storage unit 4101 shown in Fig. 83 two storage containers 4110A and 4110B are installed, but three or more storage containers may be used as necessary. For example, by storing the same liquid in two storage containers and using them alternately, the processing can be performed continuously.
  • the raw material storage unit 4101 may be provided with a cleaning liquid container 4112 containing an organic solvent such as acetone for line cleaning, hydrochloric acid, pure water, or the like, or a pressure source 4114 filled with a purge nitrogen gas. Further, the waste liquid container 4136 may be placed in the raw material storage unit 4101.
  • the liquid distribution section (introduction section) 4102 is provided with pumps 4116A and 4116B connected to the storage containers 4110A and 4110B via transport pipes 4121A and 4121B. Centrifugal pumps are used for pumps 4116A and 4116B in Fig. 83.
  • the liquid distribution unit 4102 is Flow control devices 300A and 300B, relief valves 4122A and 4122B, pressure measurement sensors 4124A and 4124B, flow path switching valves 4126A and 4126B, and a backwash pump 4130 disposed downstream of the pumps 4116A and 4116B .
  • the flow path switching valves 4126A and 4126B are connected to the cleaning liquid container 4112 and the pressure source 4114 in addition to the transport pipes 4121A and 4121B, respectively.
  • the backwash pump 4130 is used when the flow path of the mixing unit 4140 or the reaction unit 4142 is blocked by the product.
  • the backwash pump 4130 is connected to the cleaning liquid container 4112 for storing the cleaning liquid, and is further connected to the outlet of the reaction unit 4142 via the flow path switching valve 4132.
  • the cleaning liquid transferred by the backwash pump 4130 flows in the opposite direction to the normal flow. That is, the cleaning liquid also flows toward the inlet of the mixing unit 4140 as the outlet force of the reaction unit 4142, and enters the waste liquid storage container 4136 from the waste liquid port 4134 through the pipe 4001A (not shown) through the flow path switching valves 4126A and 4126B. .
  • the backwash pump 4130 is preferably a single-piston pump so that the washing liquid having a high discharge pressure can cause pulsation to remove the product.
  • an organic solvent hydrochloric acid, nitric acid, phosphoric acid, organic acid, pure water or the like is preferably used.
  • the organic solvent include acetone, ethanol, methanol and the like.
  • An inlet 4240 shown in FIG. 83 is provided when pure water or hydrogen water is introduced from the outside, and can be used for cleaning instead of the cleaning liquid in the cleaning liquid container 4112.
  • Fig. 86 shows a mixing unit 4140 for preheating (preliminary temperature adjustment) and mixing of the raw material liquid.
  • the lower plate 4144c is joined to form a mixed portion 4140 having a total thickness of 5 mm. Note that the flow paths described below are all grooves formed on the surface of the intermediate plate 4144b.
  • the two inflow ports 4147A and 4147B formed through the upper plate 4144a communicate with the two preheating channels 4148A and 4148B formed on the upper surface of the middle plate 4144b, respectively. These preheating channels 4148A and 4148B each branch in the middle and expand, and merge again.
  • the preliminary heating channels 4148A and 4148B communicate with the outlet channels 4150A and 4150B, respectively, and these outlet channels 4150A and 4150B communicate with the junction 4152.
  • the outlet channel 4150A is formed on the upper surface of the middle plate 4144b, and the outlet channel 4150B is formed on the lower surface of the middle plate 4144b.
  • FIG. 87 is an enlarged view of the junction shown in FIG. As shown in FIG. 87, the junction 4152
  • the header ⁇ 4155 formed on the upper and lower surfaces of the middle plate 4144b as arc-shaped grooves communicating with the outlet flow paths 4150A and 4150B, respectively, and the header ⁇ B4154 and 4155, and a plurality of components extending toward the center of the arc.
  • the night passages 4156 and 4157 and the separation passages 4156 and 4157 have a joining space 4158 where they merge.
  • the separation flow paths 4156 and 4157 and the merge space 4158 are formed on the upper surface of the intermediate plate 4144b, and the separation flow paths 4156 and 4157 are alternately arranged.
  • the merge space 4158 is formed so that the width gradually decreases toward the downstream side, and communicates with an outflow port 4160 formed through the middle plate 4144b and the lower plate 4144c.
  • FIG. 88 (a) is a plan view showing the reaction part shown in FIG. 83
  • FIG. 88 (b) is a cross-sectional view of the reaction part shown in FIG. 88 (a).
  • two base materials 4144d and 4144e are joined to form a reaction portion 4142 having a thickness of 5 mm.
  • the reaction flow path 4162 meanders, and a long flow path is efficiently provided.
  • the reaction flow path 4162 has connecting rods B4162a and 4162c connected to the inlet port 4164 and the outlet port 4165, respectively, and a meandering rod B portion 4162b communicating with the connecting rods B4162a and 4162c.
  • the width of the meandering part 4162b which is narrower than the width of the contact B4162a, 4162c, is formed. Accordingly, the liquid flows rapidly at the entrance and exit portions to prevent the adhesion of by-products, and flows slowly at the meandering portion 4162b so that the heating and reaction time can be increased.
  • FIGS. 89 (a) and 89 (b) show another configuration example of the reaction section having the portion 416 3a where the width of the reaction channel gradually decreases and the portion 4163b where the width of the reaction channel gradually increases.
  • a reaction channel 4163 is formed between the base materials 4144d and 4144e, the width dimension of which increases or decreases in the range of maximum a to minimum b. You can increase or decrease the depth as the width dimension increases or decreases. Les.
  • the depth changes from the maximum c to the minimum d so that the cross-sectional area of the reaction channel 4163 is constant.
  • FIG. 89 (c) is a cross-sectional view showing another configuration example of the reaction channel.
  • the reaction flow path 4163c has a flat shape with a large width e and a large heat transfer surface intersecting the direction of heat transfer from the thermal catalyst (indicated by an arrow). Therefore, heat is effectively transferred to the liquid in the reaction channel 41 63c.
  • it is effective to dispose an appropriate catalyst in the merge space 4158 and the reaction channels 4162 and 4163.
  • Such a catalyst is selected according to the type of reaction. For example, it can be applied to the inner surface of the flow path, or can be disposed as an obstacle to the flow path as described later.
  • the material forming at least the flow path of the mixing unit 4140 and the reaction unit 4142 includes, for example, SUS316, SUS304, Ti, quartz glass, Pyrex (registered trademark) glass or other hard gauze, PEEK, polyetheretherketone 8 PE ( polyethylene, PVC (polyvinylchlonae) ⁇ PDM3 ⁇ 4 (polydimethylsiloxane), Si, PTFE polytetrafluoroethylene), PCTFE (Poly chlorotrifluoroethylene), and PFA (perfluoroalkoxylalkane) A preferable one is selected in consideration.
  • the material of the wetted part of the mixing part 4140 and the reaction part 4142 has little elution from the surface, can be modified with a surface catalyst, has a certain degree of chemical resistance, and can withstand a wide temperature range of 40 to 150 ° C Is desirable.
  • FIG. 90 is a perspective view showing a configuration of a temperature adjustment case for adjusting the temperatures of the mixing section and the reaction section. Note that, in the following description, only the temperature adjustment case 4146 for adjusting the temperature of the reaction unit 4142 is described.
  • the temperature adjustment case 4146 for the mixing unit 4140 has the same configuration, and redundant description thereof is omitted. To do.
  • the temperature adjustment case 4146 includes a case main body 4172 in which a space 4170 for accommodating the reaction portion 4142 is formed, and a lid portion 4174 that covers the space 4170. Grooves 4176 constituting the medium flow path are formed. A liquid supply path 4178 and a drainage path 4180 (see FIG. 83) communicating with the groove 4176 are formed in the case body 4172.
  • Supply line 4178 has a lid
  • the drainage channel 4180 communicates with the groove 4176 of the portion 4174 through the opening 4179, and the drainage channel 4180 communicates with the groove 4176 of the lid portion 4174 through an opening (not shown).
  • the heat medium flowing through the groove 4176 is in direct contact with the front and back surfaces of the reaction unit 4142, and the reaction unit 4142 is heated (or cooled) while being completely accommodated in the temperature adjustment case 4146.
  • the heat medium controller 4107 includes a control mechanism for controlling the temperature of the heat medium and a pump for transferring the heat medium. As shown in FIG. 83, the heat medium passes through the heat exchanger 4182 and is then supplied to the temperature adjustment case 4146 of the mixing unit 4140 and the reaction unit 4142.
  • the heat exchanger 4182 can change the temperature of the heat medium supplied to the mixing unit 4140 and the reaction unit 4142 independently, for example, by changing the amount of brine for cooling.
  • FIGS. 91 (a) to 91 (d) show another example of the temperature adjustment case 4146.
  • the heat medium flow path 4192 is provided for each of the case main body 4172 and the lid portion 4174. It is formed inside.
  • the liquid supply path 4178 has a double pipe structure in which the tip of the liquid supply pipe 4001A4188 is inserted, and communicates with the heat medium flow path 4192 through a narrow communication path 4190. is doing.
  • the drainage side has the same configuration.
  • the temperature adjustment case 4146 that accommodates the mixing portion 4140 and the temperature adjustment case 4146 that accommodates the reaction portion 4142 are laminated via bolts 4194, nuts 4195, and a spacer 4196.
  • FIG. 91 (b) shows a path for supplying and discharging the liquid to and from the mixing unit 4140 and the reaction unit 4142 accommodated in the temperature adjustment case 4146. That is, each liquid flows into and out of the mixing unit 4140 through the flow passage 4198 formed through the temperature adjustment case 4146. In addition, the liquid is circulated between the mixing unit 4140 and the reaction unit 4142 through a communication passage 4200 that communicates with the flow passage 4198 of the temperature adjustment case 4146.
  • FIG. 91 (d) illustrates the structure of the liquid inflow and outflow of the reaction unit 4142. In order to direct the liquid flow downward, the liquid inlet of the mixing unit 4140 and the reaction unit 4142 is usually formed on the upper surface and the outlet is formed on the lower surface.
  • the outlet 4202 of the reaction unit 4142 is connected to the product storage unit 4104 via the recovery self-tube 4001A4204.
  • the product reservoir 4104 has a heat exchanger for cooling.
  • a recovery container 4208 is provided on the downstream side of the exchanger 4206 and the flow path switching valve 4132.
  • the product reservoir 4104 where the recycle container 4208 is placed is isolated so as not to be affected by temperature, etc. from other areas, and to prevent toxic gases that may be generated from the product from leaking outside. ing.
  • FIG. 92 shows another configuration example of the product storage unit 4104, and a plurality of recovery containers 4208 are installed on the turntable 4212.
  • an actuator 4214 for moving the rotary table 4212 is a 4180-degree rotary rotary actuator.
  • the operation control unit 4106 shown in FIG. 83 determines the replacement timing of the recovery container 4208 based on a signal from the liquid level detection sensor 421 lb for detecting the liquid level of the recovery container 4208, and the flow path switching valve 4132 (see FIG. 83).
  • the liquid flow is stopped by the optical fluid detection sensor 421 la installed downstream of the recovery port 4210, and the stop of the liquid flow is confirmed, and the actuator 42 14 is operated to move the other recovery container 4208 below the recovery port 4210. Move.
  • the operation of the fluid reaction apparatus is basically automatically controlled by the operation control unit 4106.
  • the storage containers 4110 A and 4110 B storing the raw material liquid are prepared.
  • the temperature of the heat medium is set by the heat medium controller 4107, and the temperature of each heat medium is adjusted by adjusting the amount of brine passing through the heat exchanger 4182, and the temperature of the mixing unit 4140 and reaction unit 4142 is adjusted.
  • Heat medium is passed through case 4146 to maintain them at a predetermined temperature.
  • the temperature of the heat medium is measured by temperature sensors 4216 and 4218 provided at the inlet of the temperature adjustment case 4146.
  • a cleaning liquid such as pure water is supplied to the flow paths in the mixing unit 4140 and the reaction unit 4142 to perform pre-cleaning. While cleaning the flow path, the temperature of the cleaning solution is measured by the temperature sensor 4220 at the outlet of the mixing unit 4140 and the temperature sensor 4222 at the outlet of the reaction unit 4142, and the temperature of the cleaning solution is fed back to the heat medium controller 4107. To do. In this way, the mixing unit 4140 and the reaction unit 4142 are adjusted to a predetermined temperature.
  • the flow path switching valve 4132 is switched and the pumps 4116A, 4116B are driven to store the storage containers 4110A, The raw material liquid in 4110B is transferred.
  • the raw material liquid is adjusted to a predetermined flow rate by the flow rate adjusting devices 4300A and 4300B, and then reaches the recovery container 4208 via the mixing unit 4140, the reaction unit 4142, the outlet 4202 and the recovery port 4210.
  • the flow path switching valve 4132 is an automatic valve that is actuated by an actuator, and this operation can also be performed automatically.
  • mixing unit 4140 the raw material liquids are heated to a predetermined temperature in preheating channels 4148A and 4148B (see FIG. 86), and then merged and mixed in merging unit 4152. At that time, as shown in FIG. 87, each liquid flows into the merge space 4158 via the liquid separation channels 4156 and 4157 from the header portions 4154 and 4155. Since the cross section of the confluence space 4158 gradually decreases as it goes downstream, the micro-sized flows are mixed regularly, and the shell IJ is quickly mixed according to Fick's law. In that state, when it flows into the reaction channel 4162 of the reaction unit 4142 maintained at a predetermined temperature, the reaction proceeds rapidly without being restricted by mass transfer or heat conduction.
  • the width of the reaction channel 4162 is sufficiently wide compared to the width of the merge space 4158, so that even when the reaction rate is low, the reaction can be performed for a long time, resulting in a high level of yield. Rate can be obtained.
  • the obtained product is sent to the heat exchanger 4206 via the recovery pipe 4001A4204 from the outlet 4202 of the reaction flow path 4162, where it is cooled and P is collected from the recovery port 4210. Inflow into 08.
  • the operation control unit 4106 stops the operation of the pumps 4116A, 4116B and ends the processing.
  • the operation can be continued without stopping by switching the flow path switching valves 4126A and 4126B. Processing is possible.
  • the pumps 4116A and 4116B may be temporarily stopped, or the flow path switching valves 4126A and 4126B may be switched to stop the inflow of liquid into the processing unit 4103. This makes it necessary to increase the length of the reaction channel 4162 even when the liquid reaction time is long. Disappears.
  • a fullness detection means for detecting that the confluence space 4158 and / or the reaction flow path 4162 is full of liquid.
  • an optical fluid detection sensor as shown in FIG. 92 is used.
  • the pumps 4116A and 4116B are stopped or the first flow path switching valve is switched to terminate the liquid reaction. It stays in the confluence space 4158 and Z or the reaction flow path 4162 for a certain period of time.
  • the operation control unit 4106 can adjust the production amount of the product based on the supply amount of the liquid, and can control the operation of the fluid reaction device.
  • the operation control unit 4106 may stop the operation of the pumps 4116A and 4116B or switch the flow path switching valves 4126A and 4126B when the liquid supply amount reaches a predetermined value.
  • the operation control unit 4106 can control the operation of each part of the fluid reaction device based on the supply amount of the liquid.
  • FIG. 93 (a) and FIG. 93 (b) show another configuration example of the merging section in the mixing section 4140.
  • the junction 4152a is configured by disposing an obstacle 4224 over a predetermined distance L at a constant interval a in a Y-shaped junction space 4158a.
  • the obstacles 4224 are arranged in a staggered pattern so that adjacent ones are displaced by half the pitch in the flow direction.
  • the interface 4125 between the liquid A and the liquid B meanders, so that the interface area (contact area) between the two liquids can be increased.
  • a row of obstacles 4224 are arranged in a zigzag along the flow direction at the center of the junction space 4158b, and the interface area can be similarly increased. This is suitable for use in the narrow merge space 4158b.
  • FIG. 95 shows another configuration example of the processing unit 4103 of the fluid reaction device.
  • the processing unit 4103 in FIG. Each of the two systems Rl and R2 is provided, and two kinds of raw material liquids can be supplied to any system Rl and R2 using the flow path switching valves 4126A and 4126B of the liquid distribution unit 4102.
  • the use of two systems has the ability to increase the amount of processing as needed, and various other methods of use.
  • the reaction product precipitates solid particles or is easily clogged in the middle of pipe 4001A, one system is used as a spare.
  • the above-described batch operation can be continuously performed by alternately switching the transfer lines by the flow path switching valves 4126A and 4126B.
  • three or more transfer lines can be provided in parallel as appropriate.
  • the channel switching valves 4126A and 4126B can be automatically operated.
  • Fig. 96 shows an example in which a plurality of reaction units are arranged in series in the processing unit 4103.
  • one mixing unit 4140 and three reaction units 4142a, 4142b, 4142c are connected in series, and temperature sensors 4220, 4222a, 4222b, 4222c are provided with forces S, respectively.
  • This configuration is suitable for reactions that require bold and instantaneous changes in reaction time and reaction temperature, such as biochemical reactions.
  • the reaction at 4 ° C in the reaction part 4142a and at -20 ° C in the reaction part 4142b is possible with this system.
  • FIG. 97 shows an example in which a plurality of mixing units are provided in the processing unit 4103.
  • a first mixing unit 4140 and a reaction unit 4142 for mixing and reacting liquid A and liquid B are provided, and a second mixing unit 4140a is provided downstream of the reaction unit 4142.
  • the mixing unit 4140a the third raw material liquid or the C liquid which is the reactant transported from the pump 4116C is merged with the A liquid and the B liquid.
  • the temperatures of these two mixing sections 4140, 4140a and one reaction section 4142 are individually controlled.
  • Liquid C may be a reaction terminator.
  • the inline yield evaluator 4226 is directly connected to the outlet 4202 of the second mixing unit 4140a.
  • the in-line yield evaluator 4226 includes methods such as infrared spectroscopy, near infrared spectroscopy, and ultraviolet absorption as methods that can be measured without separating the object to be measured.
  • a separation / extraction unit 4228 for separating an unnecessary substance and a necessary substance from reaction products is further provided on the downstream side of the second mixing unit 4140a. As shown in the figure, the separation / extraction section 4228 has a Y-shaped separation channel 4234.
  • the liquid from the second mixing section 4140a is branched into two flows by the separation channel 4234, one in the channel formed by the hydrophobic wall 4230 that allows only the hydrophobic molecules in the substance to pass through, and the other in the channel It flows into the flow path formed from the hydrophilic wall 4232 that allows only the hydrophilic molecules in the substance to pass through.
  • the separated substances are collected in collection containers 4208 and 4408a through collection pipes 4001A4204 and 4204a, respectively.
  • the separation / extraction unit 4228 it is also possible to use a membrane or a porous frit that can adsorb only a hydrophobic substance.
  • FIG. 98 shows a configuration example for continuous processing by repeating mixing and reaction and separation and extraction. That is, the mixing unit 4140a, the reaction unit 4142a, and the separation / extraction unit 4228a for processing the A liquid and the B liquid are arranged upstream, and the liquid extracted from the separation / extraction unit 4228a and the C liquid are processed. 4140b, reaction unit 4142b, and separation / extraction unit 4228b are arranged on the downstream side. Unnecessary substances after reaction of liquid A and liquid B are discharged from the outlet 4234a of the separation / extraction unit 4228a, and unnecessary substances in the second reaction with addition of liquid C are discharged from the outlet 4234b of the separation / extraction unit 4228b. Be taken out of the system.
  • a mixing unit 4140c is provided for mixing the liquid extracted from the separation / extraction unit 4228b and the fourth liquid D.
  • the D solution can be a reaction terminator or other raw material solution.
  • An inline yield evaluator 4226 may be provided on the downstream side of the mixing unit 4140c.
  • FIG. 99 (a) shows a configuration in which the respective parts in FIG. 98 are stacked.
  • the liquid flows downward.
  • the mixing unit 4140a, the reaction unit 4142a, the separation / extraction unit 4228a, the mixing unit 4140b, the reaction unit 41 42b, the separation / extraction unit 4228b, and the mixing unit 4140c are accommodated in a temperature adjustment case 4146, respectively, and a Bonoleto 4194 and a nut 4195.
  • the spacers 4196 are stacked at predetermined intervals by the spacer 4196. The movement of the liquid between each part is performed through the communication passage 4200 (see Fig. 86 (b)).
  • each temperature adjustment case 4146 it is preferable to cover each temperature adjustment case 4146 with a heat insulating material such as a clean silicon member 4236 containing bubbles.
  • the fluid introduced into the fluid reaction apparatus is liquid or gas, and the substance to be recovered is liquid, gas, solid or a mixture thereof.
  • the introduced substance is a solid such as a powder
  • a powder dissolver can be installed in the raw material reservoir 4101.
  • FIG. 100 shows a configuration example of the raw material reservoir 4101 when one of the two raw material liquids is a solution in which powder is dissolved and the other is originally liquid.
  • the raw material powder and solvent are introduced from the raw material inlet 4242 of the powder dissolver 4240.
  • the raw material powder is dissolved by heating by the heater 4244 and stirring by the stirrer 4246, and the generated raw material liquid is mixed by the pump 4116A from the pipe 4001A4249 by the pump 4116A and the mixing unit 4140 and It is sent to the reaction unit 4142.
  • the flow rate adjusting device according to the present invention can be suitably used for a fluid reaction device (microreactor) that mixes and reacts fluids in a minute space.
  • a fluid reaction device microwave reactor
  • the present invention is not limited to the embodiments described so far and is not limited to the illustrated examples, and various modifications can be made without departing from the spirit of the present invention.
  • Guess I can get it.
  • the present invention further relates to a plunger pump device that can be used in the fluid reaction device and the fluid mixing device of the present invention.
  • the present invention for achieving the above-mentioned object is not limited to this, but includes the following inventions.
  • Plunger pump device which is connected to a plunger pump device in which a pair of plunger pumps are connected in parallel, and interlocks so that the plungers of the plunger pumps move forward alternately.
  • a fluid pressure device that presses each plunger toward the force mechanism when retracted, and a control unit that controls the operation of the fluid pressure device according to the operation cycle of the plunger.
  • Plunger pump device characterized.
  • the cam mechanism advances the plunger of each plunger pump alternately, while the fluid pressure device presses each plunger toward the cam mechanism. It moves forward and backward while being positioned in order to perform pump operation.
  • the operation of the fluid pressure device is controlled by the control unit according to the operation cycle of the plunger. Unnecessary interference with the structure can be eliminated.
  • control unit stops the pressing by the fluid pressure device when each plunger moves forward.
  • the pair of plunger pumps respectively perform a speed increasing process and a speed reducing process at an initial stage and an end stage of the discharge operation, respectively, and one speed increasing process
  • the plunger pump device is characterized in that the timing is set so that the other deceleration process and the other deceleration process overlap each other.
  • each of the plunger pumps performs a fixed stopping process between forward movement and backward movement.
  • FIG. 101 is a diagram showing a dual plunger pump apparatus according to an embodiment of the present invention. For example, it is used for the purpose of continuously discharging a chemical solution at a constant flow rate into a microreactor.
  • This plunger pump device is composed of a pair of plunger pumps 5010 having the same structure.
  • Each plunger pump 5010 has a cylinder 5012, a plunger 5014 slidably provided in the cylinder 5012, and drive means for reciprocating these.
  • Inside the cylinder 5012 there is a partition wall 5016 that divides this space into two parts.
  • one (right side in this figure) is the pump space 5018 and the other (left side in this figure) is the actuator space. Called 5020.
  • Each plunger 5014 is composed of a disk-like piston 5022 disposed in the pump space 5018 and a rod 5024 connected thereto, and the rod 5024 is an end wall of the partition wall 5016 and the actuator space 5020.
  • 5050a is protruded outside the cylinder 5012
  • the pump space 5018 is partitioned by a piston 5022 into a pump chamber 5026 on the end side and a buffer chamber 5028 on the partition wall 5016 side, and a single structural force S is provided between the piston 5022 and the inner wall of the cylinder 5012. .
  • the end wall 5026a of the pump chamber 5026 is provided with a P discharge port 5030 and a suction port 5032, which are connected to a discharge line 5038 and a supply line 5042 connected to a fluid tank 5040 via check valves 5034 and 5036, respectively. It is connected. Thereby, fluid such as a chemical solution is sucked into the pump chamber 5026 from the suction port 5032 by the backward movement of the plunger 5014 (moving to the right in FIG. 101), and the forward movement of the plunger 5014 (moving to the left in FIG. 101). Is discharged from the discharge port 5030. It is preferable that the material of the wetted parts such as the plunger 5014 can handle corrosive or erosive chemicals. Titanium or the like is appropriately used.
  • This plunger pump device is provided with two types of driving means.
  • the first driving means is a cam mechanism 5050 provided on the outside of the cylinder 5012 and interlocks so that the plungers 5014 of the plunger pumps 5010 are alternately advanced.
  • This cam mechanism 5050 is provided at the outer end of a rod 5024 of a drive motor 5054 that rotates the camshaft 5052 at a constant speed, a pair of plate cams 5056 that are integrally installed on the camshaft 5052, and each plunger 5014.
  • Roller (cam follower) 5058 The plate cam 5056 has an outer shape of a predetermined shape, and the rod 5024 reciprocates in a predetermined displacement pattern by changing the contact position with the roller 5058 as it rotates.
  • the second drive means is a fluid pressure device 5060 (air cylinder) formed in the actuator space 5020 of the cylinder 5012. That is, a pressure plate 5062 is provided at the center of each rod 5024, and a pressure air chamber 5064 is formed between the pressure plate 5062 and the partition wall 5016.
  • the pressurized air chamber 5064 is provided with a port 5066 for introducing pressurized air, which is connected to a pressurized air source 5070 and a drain 5072 through an air control valve 5068 which is a solenoid valve.
  • a space between the pressure plate 5062 and the end wall 5020a of the actuator space 5020 communicates with the external space through an opening 5074 near the end wall.
  • the buffer chamber 5028 is connected to the drain 5072 via the port 5076 near the partition wall 5016 and the air control valve 5068, and should the fluid leak from the gap between the piston 5022 and the inner wall of the cylinder 5012. Even if it is, it will not leak out.
  • the air control valve 5068 In the first switching position where the solenoid is de-energized, the air control valve 5068 has a drain 5072 for both the pressure air chamber 5064 and the buffer space, as shown for the upper plunger pump 5010 in FIG. And the plunger 5014 is in the neutral state.
  • the pressure air chamber 5064 is connected to the pressure air source 5070, and the nother space is connected to the drain 5072. It will be in the state. Accordingly, the plunger 5014 is pushed in the direction of enlarging the pump chamber 5026 (leftward in FIG. 101).
  • the air cylinder 5060 that operates only in one direction is constituted by the piston 5022, the pressure air chamber 5064, the solenoid valve, and the pressurized air source.
  • the air pressure of the pressure air source 5070 is set to about 3 to 5 kgm2, for example.
  • a control unit 5080 is provided to control these two drive units in conjunction with each other.
  • the camshaft 5052 is provided with an encoder, and its output is input to the control unit 5080. Accordingly, the rotational position information of the camshaft 5052, that is, the reciprocating position information of each plunger 5014 is input to the control unit 5080.
  • the control unit 5080 controls the operation of the air cylinder 5060 by switching on and off the solenoid of the air control valve 5068 based on the reciprocating position information of the plunger 5014 given by the encoder 5082.
  • line A is a speed diagram of the plunger 5014 when the camshaft 5052 is rotated at a constant rotational speed. Forward direction,-indicates backward direction). Since the discharge amount is proportional to the speed of the plunger 5014, the vertical axis also represents the discharge amount. The horizontal axis is also the time axis.
  • Line B represents the pressing state of the plunger 5014 by the cam mechanism 5050
  • line C represents the on-off state of the air cylinder 5060
  • line D represents the volume change of the pump chamber 5026.
  • the plunger 5014 Since the pressure of the air cylinder 5060 is set to a value sufficient for the plunger 5014 to perform the fluid suction operation, the plunger 5014 performs the suction operation.
  • the rigidity of the cam mechanism 5050 and the driving force of the motor 5054 are set to withstand the pressing force of the air cylinder 5060, and the positioning function of the cam mechanism 5050 when the plunger 5014 is retracted is not impaired.
  • the plunger 5014 moves backward at the steady suction speed to perform the discharge operation within the rotation angle range of 225 to 330 degrees. Further, in the range of rotation angles 330 to 345 degrees, the plunger 5014 reduces the speed to 0 at a constant rate, and then the speed becomes 0 in the range of rotation angles 345 to 360 degrees, and the suction operation is stopped. As is clear from FIG. 101, since the suction time is shorter than the discharge time, the steady suction speed is larger than the steady discharge speed.
  • the two plunger pumps 5010 are driven by two plate cams 5056 attached to a common cam shaft 5052 so as to be 180 degrees out of phase. In other words, these operations are 180 degrees out of phase.
  • the discharge amount of the entire plunger pump device is the sum of the plunger pumps 5010 connected in parallel, and is represented by a two-dot chain line in FIG.
  • the speed increasing process rotation angle 0 to 15 degrees
  • the deceleration process rotating angle 180 to 195 degrees
  • the sum of the discharge amounts of these plunger pumps 5010 is constant, and pulsation does not occur when the operation is switched.
  • the plunger 5014 since the plunger 5014 is always in contact with the cam mechanism 5050, the plunger 5014 is reliably positioned by the contact surface of the plate cam 5056. Therefore, the discharge amount is controlled with high accuracy, and pulsation can be suppressed in this respect as well.
  • the cam mechanism 5050 Since the second drive means that can be turned on / off is used to press the plunger 5014 against the cam mechanism 5050, the cam mechanism 5050 must be turned off during forward movement. Thus, the load on the cam mechanism 5050 can be reduced. Therefore, the cost of the actuator such as the motor 5054 which is the driving device of the cam mechanism 5050 is reduced, and the friction at the contact portion of these members is reduced, thereby enabling a long life.
  • FIG. 104 shows another embodiment of the present invention, in which the cam mechanism 5050A uses an end face cam 5056A instead of the plate cam 5056A. Since this operation is basically the same as that of the above-described embodiment, description thereof is omitted.
  • the operating source of the fluid pressure device may be a pressure liquid rather than pressurized air.
  • the present invention further relates to a plunger pump device that can be used in the fluid reaction device and the fluid mixing device of the present invention.
  • the present invention for achieving the above-mentioned object is not limited to this, but includes the following inventions.
  • Plunger pump device each having a separate drive device, and a pair of plunger pumps connected in parallel between a liquid source and a microphone port reactor channel, and the microreactor channel And a control unit that alternately discharges the pair of plunger pumps at a constant predetermined feed rate, and the control unit is configured to discharge the flow rate when the plunger pump is discharging.
  • a plunger pump device that adjusts the feed rate at a predetermined timing based on a measured value of the meter.
  • a plunger pump device characterized by:
  • the plunger pump device is characterized in that the feed speed is finely adjusted only for one plunger pump during the switching control.
  • control unit performs control so that the plunger pump performs a fixed stop process between forward and backward movements.
  • a plunger pump device A plunger pump device.
  • each plunger pump performs a fixed stopping process between forward and backward movements, so that the next operation is performed after the flow and valve operation in each plunger pump stabilizes. You can start.
  • a position sensor for detecting a position of the plunger pump plunger is provided, and the control unit is based on an output of the position sensor.
  • a plunger pump device for controlling the feed rate is provided, and the control unit is based on an output of the position sensor.
  • Fig. 106 is a diagram showing a dual plunger pump apparatus according to an embodiment of the present invention. For example, it is used for the purpose of continuously discharging a chemical solution into a microreactor at a constant flow rate.
  • This plunger pump device 6001 is configured by a pair of plunger pumps 6010 having the same structure.
  • Each plunger pump 6010 has a cylinder 6012, a plunger 6014 provided so as to be operable in the cylinder 6012, a drive device 6019 for reciprocating them, and a control unit 6028 for controlling each part.
  • Each plunger 6014 is constituted by a disk-shaped piston 6016 and a rod 6018 coupled thereto, and a pump chamber 6017 is formed between the end portions.
  • the rod 6018 is connected to the driving device 6019 through the end wall.
  • the driving device 6019 has a feed screw 6022 that is rotated by a motor 6020 and a nut 6024 that is screwed to the feed screw 6022.
  • the nut 6024 is fixed to the end of the rod 7018.
  • a ball (bearing) is interposed between the feed screw 6022 and the nut 6024, and a smooth and highly accurate linear motion mechanism called a ball screw is configured.
  • a linear screw that detects the position of nut 6024 A scale (position sensor) 6026 is provided, and its output is sent to the controller 6028. Based on this output, the control unit 6028 can feedback control the rotation of the motor 6020 and accurately control the position and feed rate of the plunger 6014.
  • a seal structure is provided between the piston 6016 and the inner wall of the cylinder 6012.
  • the end wall of the pump chamber 6017 is provided with a discharge port 6030 and a suction port 6032, which are connected to a discharge line 6036 or a fluid tank 6038 via a check valve 6034, respectively. It is connected to the.
  • fluid such as a chemical solution is sucked into the pump chamber from the suction port 6032 by the backward movement of the plunger 6014 (moving to the left in FIG. 106) and discharged by the forward movement of the plunger 6014 (moving to the right in FIG. 106). It is discharged from the outlet port 6030.
  • the material of the wetted parts including the plunger 6014 should be able to cope with corrosive or erosive chemicals.
  • corrosive or erosive chemicals For example, Safaya, Ruby, Anolemina, Ceramic, SUS, Use Hastelloy, titanium, etc. as appropriate.
  • the discharge ports 6030 of the two plunger pumps 6010 merge and are connected to the raw material receiving port 6042 of the mic port reactor 6002.
  • This microreactor 6002 is provided with two raw material receiving ports 6042, which are joined at the mixing / reaction section 50 via the introduction flow path 6044.
  • the introduction channel 6044 is provided with a flow meter 6046 and a pressure sensor 6048, respectively, and these outputs are input to the control unit 6028 and used for control as described later.
  • the control unit 6028 is a force provided for each plunger pump device 6001.
  • one control unit 6028 may be shared.
  • these control units 6028 may be integrated with the control device of the microreactor 6002, for example.
  • FIG. 108 shows the operation of each plunger pump 6010
  • line A is a velocity diagram when the plunger 6014 reciprocates once.
  • the horizontal axis represents time as 360 degrees per cycle, and the vertical axis represents the speed of the plunger 6 014 (+ is the forward direction,-is the reverse direction). Since the discharge amount is proportional to the speed of the plunger 6014, the vertical axis also represents the discharge amount.
  • Line B represents the volume change of the pump chamber 6017.
  • FIG. 109 shows a state where the two plunger pumps 6010 are operating with the phase shifted by 180 degrees.
  • the two plunger pumps 6010 overlap each other in the initial stage and the final stage of the discharge process so that one performs the speed increasing process and the other performs the speed reducing process.
  • the plunger pump 6010 that performs the discharge operation is switched while the total flow rate is controlled to be constant.
  • a short stop process is provided after each plunger pump 6010 discharge operation and suction operation. Therefore, after the check valve 6034, 6036 of the discharge port 6030 or the suction port 6032 is securely closed, or after the flow has settled in this portion, the next suction or discharge operation starts. Pulsation due to backflow from stop valves 6034 and 6036 is prevented.
  • the steady feed speed Vc during discharge is determined based on the required discharge amount and the following formula.
  • FIG. 111 shows an example of the change in the measured value of the flow meter 6046 installed in the microreactor 6002 flow path, (b) shows an example of the change in the output value of the pressure sensor 6048, and (c) shows Examples of changes in the feed rate of the plunger 6014 are shown.
  • the control unit 6028 determines whether it is the timing of the adjustment work (step 1). This is performed, for example, by detecting the presence or absence of the command signal at the time of starting, or by detecting the presence or absence of a signal notifying that the timer has been operated for a predetermined time. At that time,
  • step 2 measure the flow rate when only the first plunger pump 6010 is discharging (step 2).
  • the average flow rate for a given time is calculated rather than the instantaneous flow rate at a certain point in time. Use the average value of the flow rate of one pump in several cycles in one cycle.
  • step 3 the difference between the measured flow rate and the specified flow rate is calculated, and it is determined whether or not this is larger than the preset allowable upper limit value (step 3). As shown in Fig. 111 (a), if the set upper limit value is exceeded, the feed rate adjustment amount is calculated (step 4), and the calculated value is calculated.
  • step 5 Make adjustments based on this (step 5).
  • the following formula based on Equation 2 is used to calculate the adjustment amount ⁇ .
  • Feed rate adjustment amount ⁇ Flow rate difference A LZ Plunger cross section S (Formula 3)
  • step 3 ⁇ L is smaller than the allowable upper limit value.
  • the second pump performs the same measurement and adjustment operation (Step 6 to Step 9), and the adjustment operation is completed.
  • a new steady feed speed Vc is determined, and along with this, a new pattern function P (t) is determined by adjusting the gradient of the switching process.
  • accurate flow rate output in the actual machine can be achieved with a simple control method.
  • step 6 to step 9 are omitted.
  • step 2 it is preferable to measure the flow rate of the discharge operation of the two pumps and average this to obtain the measured value.
  • F (p) The actual form of F (p) can be obtained, for example, by finding the PID control coefficient using a combination of experiments and theoretical analysis.
  • the pressure varies depending on the length and shape of the flow path, but the pressure is constant if a constant flow rate is maintained. For this reason, the change in pressure represents the flow rate fluctuation in the flow path, and if this is feedback controlled, the flow rate fluctuation can be suppressed.
  • the response of the pressure sensor 6048 is faster and more accurate than the general flow meter 6046, so it is suitable for suppressing fluctuations in the flow rate. In the switching process in which two pumps operate, the total flow rate is maintained by increasing one part of P (t) and decreasing the other in the control function of each pump. The meaning of feedback control is the same.
  • the feed force of the plunger 6014 is shifted due to a double error, gas is mixed into the fluid, or the check valve operation becomes unstable.
  • the discharge rate can be controlled so as to cancel out the generated pulsation.
  • Case 1 shows the pressure fluctuation during steady feeding
  • Case 6 002 shows the pressure fluctuation during steady feeding.
  • FIG. 113 to FIG. 115 (b) are diagrams showing an overall configuration of a fluid reaction apparatus incorporating a flow rate adjusting device according to an embodiment of the present invention.
  • the fluid reaction apparatus described below is an apparatus used for mixing and reacting two or more liquids.
  • the fluid reaction apparatus is entirely installed in one installation space and packaged.
  • this installation space is rectangular and is divided into four areas along the longitudinal direction.
  • the first region on one end side is a raw material storage section 6101 in which a plurality of storage containers 6110 for storing the raw material liquid (only two storage containers 6110A and 6110B are shown in FIG. 113) are installed.
  • the adjacent second region is a liquid distribution section 6102 in which double plunger pumps 6001A and 6001B for transferring the raw material liquid in the storage container 6110 are installed.
  • the third region adjacent to the second region is a processing unit 6103 having a mixing unit (mixing chip) 6140 for mixing the raw material liquid and a reaction unit (reaction chip) 6142 for reacting the mixed raw material liquid.
  • the fourth region on the other end side is a product storage section (collection container installation space) 6104 for deriving and storing the product obtained as a result of the treatment.
  • the fluid reaction device further includes an operation control unit 6106, which is a computer that controls the operation of each unit, and a heat medium controller 6107 that adjusts the temperature of the processing unit 6103 by flowing a heat medium through the temperature adjustment case 6146.
  • the operation control unit 6106 is equipped with a flow rate monitor 6270 and a temperature monitor 6272 that can monitor the flow rate and temperature of the liquid.
  • the operation control unit 6106 and the heat medium controller 610 7 is separate from the fluid reaction device, but may of course be integrated.
  • a piping chamber 6105 is formed in the lower floor portion of the second to fourth regions, and piping for sending a heating medium for heating or cooling to the mixing unit 6140 and the reaction unit 6142 is provided here. Is provided
  • each part is linear, but for example, if the whole is close to a square, and if it is a space, each part may be configured so that the liquid flow forms a loop.
  • the raw material reservoir 6101 may be provided with a cleaning liquid container 6112 containing an organic solvent such as acetone for line cleaning, hydrochloric acid, pure water, or a pressure source 6114 in which nitrogen gas for purging is sealed. Further, the waste liquid container 6136 may be placed in the raw material reservoir 6101.
  • the backwash pump 6130 is used when the flow path of the mixing unit 6140 or the reaction unit 6142 is blocked by a product.
  • the backwash pump 6130 is connected to a cleaning liquid container 6112 for storing the cleaning liquid, and is further connected to the outlet of the reaction unit 6142 via a flow path switching valve 6132.
  • the cleaning liquid transferred by the backwash pump 6130 flows in the opposite direction to the normal flow. That is, the cleaning liquid also flows toward the inlet of the mixing unit 6140 as the outlet force of the reaction unit 6142, and enters the waste liquid storage container 6136 from the waste liquid port 6134 through the pipe not shown through the flow path switching valves 6126A and 6126B.
  • the backwash pump 6130 is preferably a single-piston 16-type pump so that the washing liquid having a high discharge pressure can cause pulsation to remove the product.
  • an organic solvent hydrochloric acid, nitric acid, phosphoric acid, organic acid, pure water and the like are preferably used. Examples of organic solvents include acetone, ethanol, methanol and the like.
  • An introduction port 6240 shown in FIG. 113 is provided when pure water or hydrogen water is introduced from the outside, and can be used for cleaning instead of the cleaning liquid in the cleaning liquid container 6112.
  • Fig. 116 shows a mixing unit 6140 for preheating (preliminary temperature adjustment) and mixing of the raw material liquid.
  • the two inflow ports 6147A and 6147B formed through the upper plate 6144a communicate with the two preheating channels 6148A and 6148B formed on the upper surface of the middle plate 6144b, respectively. These preheating channels 6148A and 6148B each branch in the middle, expand, and merge again.
  • the preliminary heating channels 6148A and 6148B communicate with the outlet channels 6150A and 6150B, respectively, and these outlet channels 6150A and 6150B communicate with the junction B6152.
  • the outlet channel 6150A is formed on the upper surface of the middle plate 6144b, and the outlet channel 6150B is formed on the lower surface of the middle plate 6144b.
  • FIG. 117 is an enlarged view of the junction shown in FIG.
  • the merging portion 6152 has header portions 6154 and 6155 formed on the upper and lower surfaces of the middle plate 6144b as arc-shaped grooves communicating with the outlet flow paths 6150A and 6150B, respectively, and the header portion 6154.
  • 6155 force and a plurality of minute night passages 6156, 6157 extending in the direction toward the arc, and a merge space 6158 where these minute passages 6156, 6157 merge.
  • Separation channel 6156, 6157 and merge space 615 8 is formed on the upper surface of the intermediate plate 6144b, and the separation flow paths 6156 and 6157 are alternately arranged.
  • the merge space 6158 is formed so that the width gradually decreases toward the downstream side, and communicates with an outflow port 6160 formed through the middle plate 6144b and the lower plate 6144c.
  • the liquid separation channel 6156 and the four separation channels 6157 are alternately arranged on the opening 6159 on the inlet side of the merge space 6158.
  • the two types of liquid flowing out from the separation flow paths 6156 and 6157 flow downstream while forming a striped flow in the merge space 6158, and the flow path width of the merge space 6158 gradually decreases. Both liquids are forcibly mixed.
  • the flow path width of the merge space 6158 finally reaches 40 zm. If the processing technology accuracy is increased, the channel width can be reduced to 10 x m.
  • FIG. 118 (a) is a plan view showing the reaction part shown in FIG. 113
  • FIG. 118 (b) is a cross-sectional view of the reaction part shown in FIG. 118 (a).
  • two base materials 6144d and 6144e are joined to form a reaction portion 6142 having a thickness of 5 mm.
  • the reaction channel 6162 meanders, and a long channel is efficiently provided.
  • the reaction channel 6162 has connecting rods 6162a and 6162c connected to the inlet port 6164 and the outlet port 6165, respectively, and a meander rod B 6162b communicating with the connecting rods 6162a and 6162c.
  • the widths of B6162a and 6162c are narrow, and the width of the meandering portion 6162b is wide. Therefore, the liquid rapidly flows at the inlet / outlet portion to prevent adhesion of by-products, and flows slowly at the meandering portion 6162b, so that the heating and reaction time can be increased.
  • FIG. 119 (a) and FIG. 119 (b) show another configuration example of the reaction section having the portion 6 163a in which the width of the reaction channel gradually decreases and the portion 6163b in which the width gradually increases.
  • a reaction flow path 6163 is formed between the base materials 6144d and 6144e so that the width dimension increases and decreases in the range of maximum a to minimum b. You can increase or decrease the depth as the width dimension increases or decreases. In this example, the depth changes from the maximum c to the minimum d so that the cross-sectional area of the reaction channel 6163 is constant.
  • FIG. 119 (c) is a cross-sectional view showing another configuration example of the reaction channel.
  • the reaction flow path 6163c has a flat shape with a large width e and a deep thermal catalyst. Because it has a wide heat transfer surface that intersects the direction of heat transfer of heat (indicated by arrows), the reaction channel
  • Heat is effectively transferred to the liquid in 6163c.
  • it is effective in order to accelerate
  • Such a catalyst is selected according to the type of reaction. The arrangement can be performed, for example, by applying to the inner surface of the flow path or as an obstacle of the flow path as will be described later.
  • a material for forming at least the flow path of the mixing unit 6140 and the reaction unit 6142 for example, SUS316, SUS304, Ti, quartz glass, Pyrex (registered trademark) glass or the like, EEK (polyetheretherketone) ⁇ PE Considering chemical resistance, pressure resistance, thermal conductivity, heat resistance, etc. from (polyethylene), PVC (polyvinylchlonde), PDMS (Polydimethylsiloxane), Si, PTFE (polytetrafluoroethylene), PCTFE (Poly ChloroTriFluoroEthylene) choose the preferred one.
  • the material of the wetted part of the mixing part 6140 and the reaction part 6142 has little elution from the surface, can be modified with a surface catalyst, has some chemical resistance, and can withstand a wide temperature range of 40 to 150 ° C. desirable.
  • FIG. 120 is a perspective view showing a configuration of a temperature adjustment case for adjusting the temperatures of the mixing unit and the reaction unit. Note that, in the following description, only the temperature adjustment case 6146 for adjusting the temperature of the reaction unit 6142 will be described.
  • the temperature adjustment case 6146 for the mixing unit 6140 has the same configuration, and its overlapping description. Is omitted.
  • the temperature adjustment case 6146 includes a case main body 6172 in which a space 6170 for accommodating the reaction portion 6142 is formed, and a lid portion 6174 that covers the space 6170.
  • a groove 6176 constituting the heat medium flow path is formed.
  • a liquid supply path 6178 and a drainage path 6180 (see FIG. 113) communicating with the groove 6176 are formed in the case body 6172.
  • liquid supply path 6178 and drainage path 6180 are connected to the heat medium controller 6107, respectively. Les.
  • the liquid supply path 6178 communicates with the groove 6176 of the lid 6174 via the opening 6179, and the drainage path 6180 communicates with the groove 6176 of the lid 6174 via an opening (not shown).
  • the heat medium flowing through the groove 6176 directly contacts the front and back surfaces of the reaction unit 6142, and the reaction unit 6142 is heated and cooled while completely accommodated in the temperature adjustment case 6146.
  • the heat medium controller 6107 includes a control mechanism for controlling the temperature of the heat medium and a pump for transferring the heat medium.
  • the heat medium is heat exchange After passing through the vessel 6182, it is supplied to the temperature adjustment case 6146 of the mixing unit 6140 and the reaction unit 6142.
  • the heat exchanger 6182 can change the temperature of the heat medium supplied to the mixing unit 6140 and the reaction unit 6142 independently by changing the amount of brine for cooling, for example.
  • FIGS. 121 (a) to 121 (d) show another example of the temperature adjustment case 6146.
  • the heat medium flow path 6192 is provided for each of the case body 6172 and the lid portion 6174. It is formed inside.
  • the liquid supply path 6178 has a double pipe configuration in which the tip of the liquid supply pipe 6188 is inserted. It communicates with 6192.
  • the drainage side has the same configuration.
  • the temperature adjustment case 6146 that accommodates the mixing portion 6140 and the temperature adjustment case 6146 that accommodates the reaction portion 6142 are laminated via Bonoleto 6194, nut 6195, and spacer 6196. Are combined.
  • FIG. 121 (b) shows the supply and discharge paths of the liquid to and from the mixing unit 6140 and the reaction unit 6142 accommodated in the temperature adjustment case 6146. That is, each liquid flows into and out of the mixing unit 6140 through the flow passage 6198 formed through the temperature adjustment case 6146. In addition, the liquid is circulated between the mixing unit 6140 and the reaction unit 6142 through a communication passage 6200 that communicates with the flow passage 6198 of the temperature adjustment case 6146.
  • FIG. 121 (d) illustrates the structure of the inflow portion and the outflow portion of the liquid in the reaction portion 6142. In order to direct the liquid flow downward, the liquid inlet of the mixing unit 6140 and the reaction unit 6142 is normally formed on the upper surface and the outlet is formed on the lower surface.
  • the outlet 6202 of the reaction unit 6142 is connected to the product storage unit 6104 via a recovery pipe 6204.
  • the product storage unit 6104 is provided with a recovery container 6208 on the downstream side of the heat exchanger 6206 for cooling and the flow path switching valve 6132.
  • the product reservoir 6104 where the recovery container 6 208 is placed is isolated so that it is not affected by temperature, etc. from other areas, and toxic gases that may be generated from the product are not leaked to the outside. ing.
  • FIG. 122 shows another configuration example of the product storage unit 6104, and a plurality of collection containers 6208 are installed on the rotary table 6212.
  • an actuator 6214 for moving the rotary table 6212 is a 180-degree rotary rotary. It is a feature user.
  • the operation control unit 6106 shown in FIG. 113 determines the replacement timing of the recovery container 6208 based on a signal from the liquid level detection sensor 621 lb that detects the liquid level of the recovery container 6208, and the flow path switching valve 6132 (see FIG. 113). Stop the liquid flow with the optical fluid detection sensor 621 la provided downstream of the recovery port 6210, confirm the stop of the liquid flow, operate the actuator 6 214 to move the other recovery container 6208 below the recovery port 6210. Move.
  • the operation of the fluid reaction apparatus is basically automatically controlled by the operation control unit 6106.
  • the storage containers 6110 A and 6110 B storing the raw material liquid are prepared.
  • the temperature of the heat medium is set by the heat medium controller 6107, and the temperature of each heat medium is adjusted by adjusting the amount of brine passing through the heat exchanger 6182, and the temperature of the mixing unit 6140 and reaction unit 6142 is adjusted.
  • Heat medium is passed through case 6146 to maintain them at a predetermined temperature.
  • the temperature of the heat medium is measured by temperature sensors 6216 and 6218 provided at the inlet of the temperature adjustment case 6146.
  • a cleaning liquid such as pure water is supplied to the flow paths in the mixing unit 6140 and the reaction unit 6142 to perform pre-cleaning. While cleaning the flow path, the temperature of the cleaning solution is measured by the temperature sensor 6220 at the outlet of the mixing unit 6140 and the temperature sensor 6222 at the outlet of the reaction unit 6142, and the temperature of the cleaning solution is fed back to the heat medium controller 6107. To do. In this way, the mixing unit 6140 and the reaction unit 6142 are adjusted to a predetermined temperature.
  • the flow path switching valve 6132 is switched, and the plunger pumps 6001A and 6001B are driven, and the storage containers 6110A and 6110B Each raw material liquid is transferred.
  • the raw material liquid is adjusted to a predetermined flow rate by the flow rate adjusting devices 6300 A and 6300B, and then passes through the mixing unit 6140, the reaction unit 6142, the outlet port 6202, and the recovery port 6210 (this is the flow path switching).
  • the valve 6132 ⁇ is an automatic valve that is actuated by an actuator, and this operation can also be operated automatically.
  • mixing unit 6140 the raw material liquids are heated to a predetermined temperature in preheating channels 6148A and 6148B (see FIG. 116), and then merged and mixed in merging unit 6152.
  • each f night f as shown in Fig. 117, header ⁇ 6155 force, etc. f night flow path 6156, 61 It flows into the merge space 6158 via 57. Since the cross section of the merge space 6158 gradually decreases as it goes downstream, micro-sized flows are mixed regularly and mixed rapidly according to Fick's law. In that state, when it flows into the reaction flow path 6162 of the reaction section 6142 maintained at a predetermined temperature, the reaction proceeds rapidly without being restricted by mass transfer or heat conduction.
  • the width of the reaction channel 6162 is sufficiently wide compared to the width of the merge space 6158, so that even when the reaction rate is low, the reaction can be performed over a sufficient amount of time. Yields can be obtained.
  • the obtained product is sent from the outlet 202 of the reaction flow path 6162 to the heat exchanger 6206 via the recovery pipe 6204, where it is cooled and P is discharged to the recovery container 6208 from the recovery port 6210. Inflow.
  • the operation control unit 6106 stops the operation of the plunger pumps 6001A and 6001B and ends the processing.
  • the flow switching valves 6126A and 6126B can be switched continuously without stopping the operation. Processing is possible.
  • the plunger pumps 6001A and 6001B may be temporarily stopped, or the flow switching valves 6126A and 6126B may be switched to stop the flow of liquid into the processing unit 6103. ,.
  • a fullness detection means for detecting that the confluence space 6158 and Z or the reaction flow path 6162 are filled with liquid.
  • an optical fluid detection sensor as shown in FIG. 122 is used.
  • FIGS. 123 (a) and 123 (b) show another configuration example of the merging section in the mixing section 6140.
  • the junction 6152a is configured by disposing an obstacle 6224 over a predetermined distance L at a constant interval a in a Y-shaped junction space 6158a.
  • the obstacles 6224 are arranged in a staggered manner so that adjacent ones are displaced by half the pitch in the flow direction.
  • the interface 6125 between the liquid A and the liquid B meanders, so that the interface area (contact area) between the two liquids can be increased.
  • a row of obstacles 6224 are arranged in a zigzag along the flow direction in the center of the junction space 6158b, and the interface area can be similarly increased. This is suitable for use in the narrow merge space 6158b.
  • FIG. 125 shows another configuration example of the processing unit 6103 of the fluid reaction device.
  • the processing unit 6103 in FIG. 113 has two systems Rl and R2 each having a combination of the mixing unit 6140 and the reaction unit 6142, and further, the flow path switching valves 6126A and 6126B of the liquid distribution unit 6102.
  • This makes it possible to supply two types of raw material liquids to either system Rl or R2.
  • the use of two systems has the ability to increase the amount of processing as needed, and various other methods of use. For example, if the reaction product precipitates solid particles or is easily clogged in the middle of piping, use one system as a backup.
  • the batch operation described above can be continuously performed by alternately switching the transfer lines by the flow path switching valves 6126A and 6126B.
  • three or more transfer lines can be provided in parallel as appropriate.
  • the flow path switching valves 6126A and 6126B can be automatically operated.
  • FIG. 126 shows an example in which a plurality of reaction units are arranged in series in the processing unit 6103.
  • one mixing unit 6140 and three reaction units 6142a, 6142b, 6142c are connected in series, and temperature sensors 6220, 6222a, 6222b, 6222c are provided with a force S, respectively.
  • the temperature of the reaction units 6142a, 6142b, 6142c can be controlled independently according to the stage of the reaction.
  • This configuration is suitable for reactions that require bold and instantaneous changes in reaction time and reaction temperature, such as biochemical reactions.
  • a reaction such as reacting at 100 ° C in the reaction unit 6142a and reacting at _20 ° C in the reaction unit 6142b is possible with this system.
  • FIG. 127 shows an example in which a plurality of mixing units are provided in the processing unit 6103.
  • a first mixing unit 6140 and a reaction unit 6142 for mixing and reacting liquid A and liquid B are provided, and a second mixing unit 6140a is provided on the downstream side of the reaction unit 6142.
  • this mixing unit 614 Oa the third raw material liquid or the C liquid which is the reactant transported from the plunger pump 6116C is merged with the A liquid and the B liquid.
  • the temperatures of these two mixing sections 6140 and 6140a and one reaction section 6142 are individually controlled.
  • Liquid C may be a reaction terminator.
  • the in-line yield evaluator 226 is directly connected to the outlet 6202 of the second mixing unit 6140a.
  • the yield of the chemical reaction results can be confirmed in real time and can be immediately fed back to the process parameters.
  • an in-line yield evaluator 6226 there are methods such as infrared spectroscopy, near infrared spectroscopy, and ultraviolet absorption as methods that can be measured without separating the object to be measured.
  • a separation / extraction unit 6228 is further provided on the downstream side of the second mixing unit 6140a for separating unnecessary substances and necessary substances from the reaction product.
  • the separation / extraction section 6228 has a Y-shaped separation channel 6234.
  • the liquid from the second mixing section 6140a is branched into two flows by the separation channel 6234, one in the channel formed by the hydrophobic wall 6230 that allows only the hydrophobic molecules in the substance to pass through, and the other in the channel It flows into the flow path formed from the hydrophilic wall 6232 that allows only hydrophilic molecules in the substance to pass through.
  • the separated substances are collected in collection containers 6208 and 6208a through collection pipes 6204 and 6204a, respectively.
  • the separation / extraction unit 6228 it is possible to use a membrane or a porous frit that can adsorb only a hydrophobic substance.
  • Fig. 128 shows a configuration example for continuous processing by repeating mixing and reaction and separation and extraction.
  • the mixing unit 6140a for treating the liquid A and the liquid B, the reaction unit 6142a, and the separation / extraction unit 6228a are arranged on the upstream side
  • the part 6142b and the separation / extraction part 6228b are arranged on the downstream side. Unnecessary substances after the reaction of liquid A and liquid B are discharged from the outlet 6234a of the separation / extraction section 6228a, and unnecessary substances in the second reaction containing liquid C are discharged from the outlet 6234b of the separation / extraction section 6228b. Is taken out of the system.
  • a mixing unit 6140c is provided for mixing the liquid extracted from the separation / extraction unit 6228b and the fourth liquid D.
  • D liquid is Other raw material solutions may be used instead of reaction terminators.
  • An inline yield evaluator 6226 may be provided downstream of the mixing unit 6140c.
  • FIG. 129 (a) shows a configuration in which the respective parts in FIG. 23 are laminated.
  • the liquid flows downward.
  • the mixing unit 6140a, the reaction unit 6142a, the separation / extraction unit 6228a, the mixing unit 6140b, the reaction unit 6 142b, the separation / extraction unit 6228b, and the mixing unit 6140c are accommodated in the temperature adjustment case 6146, respectively, and the Bonoleto 6194 and the nut 6195
  • the spacers 6196 are stacked at a predetermined interval. The movement of the liquid between each part is performed through the communication passage 6200 (see Fig. 116 (b)).
  • each temperature adjustment case 6146 it is preferable to cover each temperature adjustment case 6146 with a heat insulating material such as a clean silicon member 623 6 containing bubbles.
  • the fluid introduced into the fluid reaction apparatus is liquid or gas
  • the substance to be recovered is liquid, gas, solid or a mixture thereof.
  • a powder dissolver can be installed in the raw material reservoir 6101.
  • FIG. 130 shows a configuration example of the raw material reservoir 6101 when one of the two raw material liquids is a solution in which powder is dissolved and the other is originally liquid.
  • the raw material powder and solvent are introduced from the raw material inlet 6242 of the powder dissolver 6240.
  • the raw material powder is dissolved by heating by the heater 6244 and stirring by the stirrer 246, and the generated raw material liquid is mixed by the plunger 6116A from the pipe 6249 drawn into the outlet 6148 by the mixing unit 6140. And is sent to the reaction unit 6142.
  • the present invention further relates to a multispectral analysis apparatus that can be used in the fluid reaction apparatus and the fluid mixing apparatus of the present invention.
  • the present invention for achieving the above-mentioned object is not limited to this, but includes the following inventions.
  • a multispectral analyzer for evaluating organic synthesis reaction results in a pharmaceutical / pharmaceutical production line and a pharmaceutical development stage, and having a plurality of light sources having different wavelengths.
  • a light source unit and a cell constituting a flow cell for circulating the liquid to be measured A plurality of light-emitting units and light-receiving units that are close to the liquid to be measured in the flow cell, a spectroscopic unit that individually performs spectroscopy of each wavelength obtained from the light-receiving unit, and a spectroscope
  • a multispectral analysis apparatus comprising: a control unit that arithmetically controls and outputs spectral information of a liquid to be measured.
  • a plurality of light beams having different wavelength regions are emitted from the light source unit, received by different spectrometers, and each wavelength spectrum that has passed through the liquid to be measured is individually measured. Done. Combining such multiple pieces of analysis information enables highly accurate and leak-free analysis.
  • the light source unit has at least two wavelength regions of ultraviolet light, visible light, near infrared light, infrared light, and far infrared light.
  • a multispectral analysis apparatus characterized by having a light source for covering.
  • the casing is configured to form a plurality of flow cells therein by a partition.
  • HI spectroscopic analyzer In the invention according to any one of (1) to (3), the casing is configured to form a plurality of flow cells therein by a partition.
  • the casing is configured to form one flow cell therein, and a plurality of the casings are detachably mounted on the substrate.
  • a multispectral analyzer characterized in that it can be attached.
  • FIG. 131 schematically shows a multispectral analysis apparatus 7001 according to an embodiment of the present invention.
  • the multispectral analysis apparatus 7001 is configured in a casing 7010 constituted by a pair of substrates.
  • the spectroscopic analyzer 7001 is used by being incorporated into a part of a member constituting the downstream portion of the microreactor.
  • a plurality of flow cells 7014 connected to a flow path (flow path through which a reaction product flows) 7012 on the downstream side of the microreactor are formed.
  • the flow cell 7014 is formed by partitioning an internal space 7016 having a rectangular flat plate shape as a whole by a plurality of partitions 7018, and a light emitting unit 7020 and a light receiving unit 7022 are arranged opposite to each other.
  • the dimensions can be reduced by accommodating a plurality of flow cells 7014 in the internal space 7016 in one casing 7010, and the analysis accuracy can be improved by suppressing variations in flow rate. It becomes possible. It is preferable that the flow path in the flow cell 7014 be shaped so as not to cause stagnant flow or resistance to passage.
  • the material constituting the casing 7010 is preferably one that has excellent thermal conductivity and can withstand a wide temperature range of 40 to 150 ° C. Further, the material constituting the flow path of the flow cell 7014 is preferably one that can withstand the high pressure of the liquid.
  • the material constituting the flow path include hard glass such as SUS316, SUS304, Ti, quartz glass, Pyrex (registered trademark) glass, PEEK (polyetheretherketone), PE (polyethylene), P VC (Poiyvmylchlonde), PDM3 ⁇ 4 (Polydimethylsiloxane), PTFE (polytetrafluoroethylene), PCTFE (Polychlorotrifluoroethylene), and PFA (perfluoroalkoxylalkane).
  • hard glass such as SUS316, SUS304, Ti, quartz glass, Pyrex (registered trademark) glass, PEEK (polyetheretherketone), PE (polyethylene), P VC (Poiyvmylchlonde), PDM3 ⁇ 4 (Polydimethylsiloxane), PTFE (polytetrafluoroethylene), PCTFE (Polychlorotrifluoroethylene), and PFA (perfluoroalkoxylalkane).
  • a light source unit 7024 having a plurality of light sources 7024a to 7024g that outputs light in different wavelength ranges is installed at a predetermined location in the vicinity of the flow cell 7014.
  • the light source 7024a that outputs ultraviolet light is a deuterium lamp
  • the light sources 7024b to 7024e that output near infrared light from visible light are neurogen lamps
  • the infrared light is a nichrome infrared light source 7024f. is there.
  • One halogen lamp may cover from visible light to near infrared light. By doing so, the size of the apparatus can be made more compact.
  • the light receiving unit 7022 is coupled to the spectroscopic unit 7028 having the spectrometers 7028a to 7028g installed in the vicinity of the flow cell 7014 by the optical fiber 7026.
  • the spectroscopes 7028a to 7028g are constituted by, for example, CCD elements, and can measure the intensity by dividing the light received by each of the wavelength bands.
  • each spectrometer 7028a to 7028g is installed, and the wavelength range shared by each spectrometer 7028a to 7028g is 200 to 400 nm (ultraviolet spectrometer 7028a), 400 to 700 nm (visible light spectrometer) 7028b), 7 00-1000 nm (first near infrared spectrometer 7028c), 1000-1700 nm (second near infrared spectrometer 7028d), 1700-2200 nm (third near infrared spectrometer 7028e), 2200-25000 nm ( Infrared spectrometer 7028f) and wavelength region exceeding 25000nm (far infrared spectrometer 7028g). It is not necessary to cover all of these combinations depending on the substance to be measured.
  • the optical path between the light emitting section 7020 and the light receiving section 7022 is formed in the fluid flow direction, and can be set according to a predetermined optical path length regardless of the flow path width.
  • the adjustment of the optical path length for each section flow path can be performed by changing the protruding lengths of the light emitting unit 7020 and the light receiving unit 7022.
  • the sample solution is usually diluted and analyzed offline, but in-line measurement is performed with the concentration remaining high, so the optical path length is shortened to avoid unnecessary reactions. Measure (eg 1 mm or less).
  • the near-infrared spectrometers 7028c to 7028e have relatively low sensitivity, so the optical path length is long (5 to 10 mm). As will be described later, in order to instantaneously simultaneously measure multiple components with a wide absorption wavelength, it is necessary to set the shape and dimensions of the flow cell 7014 according to the pros and cons of each wavelength region.
  • reaction products and reaction by-products are narrowed down in advance unless they are experimental, so light sources 7024a to 7024g and spectrometers 7028a to 7028g are prepared for wavelength absorption corresponding to the components to be generated. A combination of these may be used. In this case, even if there are multiple reaction by-products and they are unlikely to be produced, it is desirable to install them to satisfy, for example, FDA (US Food and Drug Administration) GMP (Applicable Manufacturing Standards). Les.
  • FDA US Food and Drug Administration
  • GMP Applicable Manufacturing Standards
  • the control unit 7032 displays the data such as the production amount, yield and conversion rate of the reaction product and reaction by-product on the display 7034 and stores them in the storage device 7036. These data are set in advance. When the specified threshold value is exceeded, an alarm is issued by the alarm device 7038, and when the threshold value is exceeded, the processing is automatically stopped. Further, the correlation between the above data and reaction conditions may be obtained in advance, and the reaction conditions of the microreactor, for example, reaction temperature, flow rate, pressure, etc. may be controlled based on the detection data. .
  • the ultraviolet spectrometer 7028a is suitable for reading the absorption spectrum trends of all components and detecting changes in yield and impurity amount.
  • Infrared spectrometer 7028f can cope with many organic functional groups of individual substances, but the intensity is too strong and may cause interference substances.
  • substitute near-infrared spectrometer 7028c 7028e when the solvent is water, water may be an interfering substance in the infrared spectrometer 7028f.
  • the visible light spectrometer 7028b is suitable for detecting a colored substance such as chlorophyll carotene. In this embodiment, three near infrared components
  • optical instruments 7028c 7028e The reason for using different types of optical instruments 7028c 7028e is that, in the near infrared region 700 2200 nm, the weak measurement capability is not created.For example, the conjugated system becomes longer due to the reaction or the peak due to subtle changes in the bond. This is to accurately read a small shift of.
  • the reaction in Fig. 132 (a) is an o-reaction reaction carried out in the solvent pyridine. If a positive reaction is carried out based on the micro-channel effect, the force s , which produces monobenzoylrezonoresinol, If the concentration in the flow path becomes unbalanced, the reaction proceeds further and dibenzoylresorcinol, a side reaction, is generated.
  • the formation of functional groups such as benzene rings and COOH can be determined by measuring the absorption region, and the ratio of mono- and di-forms can be detected.
  • the benzene ring can be measured with an infrared spectrometer 7028f, but the solvent pyridine can be detected as a background. In some cases, there is performance, measurement is impossible, or peaks overlap and are difficult to distinguish. In that case, a near infrared spectrometer 7028c to 7028e may be used.
  • a specific wavelength region force such that the difference in absorption intensity is sufficient when the number of benzoyl groups is 1 and 2, such as near-infrared spectrometers 7028c to 7028e or infrared If it exists in the region of the spectroscope 7028f, this may be selected. In this case as well, the absorption spectrum of the entire reaction system liquid is monitored with an ultraviolet spectrometer 7028a, and if there is a change in the reaction, an alarm is issued or the process is stopped.
  • near-infrared spectrometers 7028c to 7028e and infrared spectroscopy It is possible to use 7028f properly. Of course, both components may be measured individually in their respective wavelength ranges. In this case as well, the absorption spectrum of the whole solution is monitored by the UV spectrometer 7028a. If there is a change in the reaction, an alarm is issued or the process is stopped.
  • the reaction shown in Fig. 132 (c) is a hydrolysis reaction in which water is added to glycine anhydride and hydrochloric acid is used as a catalyst to turn into glycylglycine in one step of polypeptide synthesis. Since the reaction is the presence of water in the product, avoid the infrared spectrometer 7028f, which tends to interfere with absorption of water, and use the near-infrared spectrometer 7028c to 7028e area that is weakly sensitive and unaffected by water. And measure.
  • FIG. 133 shows a modification of the embodiment of FIG. 131, in which the flow cell 7014 is individually formed in the casing 7010, and the fluid flow path is branched and guided to each flow cell 7014. It is. As a result, each flow cell 7014 is not affected by the other flow cells 7014 and the flow resistance is low, so that the fluid flow becomes more uniform.
  • a flow rate adjusting valve 7042 is individually installed in the branch flow path 7040 to the flow cell 7014, so that it can be adjusted to an appropriate flow rate according to the characteristics of each spectrometer 7028a to 7028g. it can.
  • FIG. 134 shows a modification of the embodiment of FIG. 131, and shows a flow cell 7014. Force formed individually in the casing 7010 Each branch flow path 7040 is provided with an on-off valve 7044. As a result, only the opening / closing valve 7044 of the flow cell 7014 of the required wavelength is opened, and the unnecessary opening / closing valve 7044 of the flow cell 7014 is closed, thereby preventing the occurrence of excessive flow path resistance.
  • the flow cells 7014 are connected in series. In this embodiment, since there is no need for diversion, there is an advantage that it is easy to handle and easy to handle as long as the flow path resistance is taken into consideration.
  • FIG. 136 shows the structure of a multispectral analysis apparatus 7001 according to another embodiment.
  • a plurality of casings 7046 constituting one flow cell 7014 are arranged on a substrate 7047 inside.
  • Each casing 7046 is formed of a transparent material such as quartz glass, for example, and has a flow path 7048 formed therein.
  • the flow path 7048 opens on the side surface and forms a joint portion 7050.
  • a light emitting unit 7020 and a light receiving unit B7022 are placed with a flow path 7048 interposed therebetween, and these are connected to an external light source and a spectroscope (not shown) by an optical fiber 7026.
  • the width of the flow path 7048 is the optical path length that the light traverses.
  • Joint 7050 is connected to a microreactor etc. by piping.
  • the material of the casing 7046 may be PCTF E, PTFE, or PEEK with chemical resistance.
  • the light emitting part 7020 and the light receiving part 7022 are protected by quartz so that they do not come into direct contact with liquid.
  • the connection to the flow path 7048 is made via the joint portion 7050, the connection can be freely changed.
  • the flow of fluid to each flow cell 7014 may be either a parallel shunt or series, and an on-off valve 7044 may be provided for each flow cell 7014 to selectively flow.
  • FIG. 137 shows a modification of FIG. 136, in which the light emitting section 7020 and the light receiving section 7022 are projected into the flow path 7048 in order to set the optical path length short.
  • a taper portion 7049a for gradually expanding the diameter of the flow path 7048 is formed.
  • FIG. 138 shows a modification of FIG. 136, in which a plurality of cases 7046 arranged on the substrate 7047 can freely adjust the optical path length.
  • the light emitting case 7052 and the light receiving case 7054 are arranged to face each other across the flow path 7048 in the flow cell 7014. Both the light emitting case 7052 and the light receiving case 7054 are made of quartz.
  • a light emitting unit 7020 is installed in 7052.
  • a light receiving unit 7022 is attached.
  • At least one of the outer shapes of the light emitting case 7052 and the light receiving case 7054 is a screw, and is screwed into a fixing nut 7056 attached to the outer surface of the case 7046.
  • the optical path length is set to be shorter than that in the off-line and set to 10 mm to 0.5 mm, preferably 5 mm to 0.1 mm.
  • FIG. 139 (a) shows an embodiment of how to use the multispectral analyzer 7001 of the present invention, and the continuation of the reaction is stopped downstream of the mixing / reaction unit 7058 of the microreactor.
  • a micro Taenti part 7060 is installed for rapid cooling.
  • the micro Taenti part 7060 can have, for example, a water cooling jacket structure.
  • FIG. 139 (b) shows another embodiment of how to use the multispectral analysis apparatus 7001 of the present invention.
  • the multispectral analysis apparatus 7001 In the mixing of the microreactor, downstream of the reaction section 7058, the multispectral analysis apparatus 7001 And a three-way selector valve 7062 on the downstream side.
  • the three-way selector valve 7062 switches the line from the multispectral analyzer 7001 selectively to the normal product storage line 7064 and the spare line 7068 connected to the spare tank 7066.
  • the output signal of the multispectral analyzer 7001 is sent to the control unit 7032, and when the control unit 7032 determines that the component is abnormal, the three-way selector valve 7062 is switched to the spare tank 7066 side.
  • the control unit 7032 determines that the component is abnormal
  • FIG. 140 to FIG. 142 (b) are views showing the entire configuration of a fluid reaction apparatus incorporating a flow rate adjusting device according to an embodiment of the present invention.
  • the fluid reaction device described below mixes two or more types of liquids. It is an apparatus used for combining and reacting.
  • the fluid reaction apparatus is entirely installed in one installation space and packaged.
  • this installation space is rectangular and is divided into four areas along the longitudinal direction.
  • the first region on one end side is a raw material storage section 710 1 in which a plurality of storage containers 7110 for storing the raw material liquid (only two storage containers 7110A and 7110B are shown in FIG. 140) are installed.
  • the third region adjacent to the second region is a processing unit 7103 having a mixing unit (mixing chip) 7140 for mixing the raw material liquid and a reaction unit (reaction chip) 7142 for reacting the mixed raw material liquid.
  • a fourth region on the other end side is a product storage section (collection container installation space) 7104 for deriving and storing the product obtained as a result of the processing.
  • this fluid reaction device includes an operation control unit 7106, which is a computer that controls the operation of each unit, and a heat medium controller 7107 that adjusts the temperature of the processing unit 7103 by flowing a heat medium through the temperature adjustment case 7146.
  • the operation control unit 7106 is equipped with a flow rate monitor 7270 and a temperature monitor 7272 that can monitor the flow rate and temperature of the liquid.
  • the operation control unit 7106 and the heat medium controller 710 7 are provided separately from the fluid reaction device, but may of course be integrated. As shown in FIG.
  • a piping chamber 7105 is formed in the lower floor portion of the second to fourth regions, where piping for sending a heating medium for heating or cooling to the mixing unit 7140 and the reaction unit 7142 is formed. Is provided.
  • the operation control unit 7106 and the control unit 7032 of the multi-spectral analyzer 7001 are separate, but may be integrated as a matter of course.
  • each part is linear, but for example, if the whole is close to a square, and if it is a space, each part may be configured so that the liquid flow forms a loop.
  • reference numeral 7250 denotes a liquid reservoir pan provided at the lower part of the apparatus
  • reference numeral 7252 denotes a liquid leakage sensor installed on the liquid reservoir pan 7250.
  • liquid distribution ⁇ 7102, treatment ⁇ B7103, and product shellfish retainer are partitioned by partition walls 7254, 7256, and covers 7258, 7260, 7262 are attached to each part to separate them from the outside of the device.
  • Reference numeral 7264 denotes an exhaust port, which is connected to an exhaust fan (not shown). And by making the pressure inside the device negative from outside the device, toxic gas inside the device is prevented from leaking outside.
  • the raw material storage unit 7101 shown in Fig. 140 two storage containers 7110A and 7110B are installed, but three or more storage containers may be used as necessary. For example, by storing the same liquid in two storage containers and using them alternately, the processing can be performed continuously.
  • the raw material storage unit 7101 may be provided with a cleaning liquid container 7112 containing an organic solvent such as acetone for line cleaning, hydrochloric acid, pure water, or the like, or a pressure source 7114 filled with a purge nitrogen gas. Further, the waste liquid container 7136 may be placed in the raw material storage unit 7101.
  • the night section (introduction section) 7102 pumps 7116A and 7116B connected to shellfish container 7110A and 7110B via transport pipes 7121A and 7121 are installed. Centrifugal pumps are used for pumps 7116A and 7116B in FIG.
  • the liquid distribution unit 7102 includes flow control devices 7300 ⁇ and 7300 ⁇ disposed on the downstream side of the pumps 7116A and 7116B, relief valves 7122A and 7122B, pressure measurement sensors 7124A and 7124B, flow path switching valves 7126A and 7126 ⁇ , And a backwash pump 7130.
  • the flow path switching valves 7126A and 7126B are connected to the cleaning liquid container 7112 and the pressure source 7114 in addition to the transport pipes 7121A and 7121B, respectively.
  • the backwash pump 7130 is used when the flow path of the mixing unit 7140 or the reaction unit 7142 is blocked by a product.
  • the backwash pump 7130 is connected to a cleaning liquid container 7112 for storing cleaning liquid, and is further connected to an outlet of the reaction unit 7142 via a flow path switching valve 7132.
  • the cleaning liquid transferred by the backwash pump 7130 flows in the opposite direction to the normal flow.
  • the cleaning liquid also flows toward the inlet of the mixing unit 7140 with the outlet force of the reaction unit 7142, and enters the waste liquid storage container 7136 through the flow path switching valves 7126A and 7126B from the waste liquid port 7134 through a pipe (not shown).
  • the backwash pump 7130 is preferably a single-piston 16-type pump so that the washing liquid having a high discharge pressure can cause pulsation to remove the product.
  • the cleaning solution is organic An agent, hydrochloric acid, nitric acid, phosphoric acid, organic acid, pure water and the like are preferably used. Examples of organic solvents include acetone, ethanol, methanol and the like.
  • An introduction port 7240 shown in FIG. 140 is provided when pure water or hydrogen water is introduced from the outside, and can be used for cleaning instead of the cleaning liquid in the cleaning liquid container 7112.
  • Fig. 143 shows a mixing unit 7140 for preheating (preliminary temperature adjustment) and mixing of the raw material liquid.
  • the flow paths described below are all grooves formed on the surface of the intermediate plate 7144b.
  • the two inflow ports 7147A and 7147B formed through the upper plate 7144a communicate with the two preheating channels 7148A and 7148B formed on the upper surface of the middle plate 7144b, respectively.
  • These preheating flow paths 7148A and 7148B each branch in the middle, expand, and merge again.
  • the preliminary heating channels 7148A and 7148B communicate with the outlet channels 7150A and 7150B, respectively, and these outlet channels 7150A and 7150B lead to the junction.
  • the outlet channel 7150A is formed on the upper surface of the middle plate 7144b, and the outlet channel 7150B is formed on the lower surface of the middle plate 7144b.
  • FIG. 144 is an enlarged view of the merge portion shown in FIG.
  • the joining portion 7152 includes a header rod 7155 formed on the upper and lower surfaces of the middle plate 7144b as arc-shaped grooves communicating with the outlet channels 7150A and 7150B, and the header rods 7154 and 7155.
  • a plurality of branch night passages 7156, 7157 extending in the direction of the force and the arc, and a confluence space 7158 in which the separation night passages 7156, 7157 merge.
  • the separation flow paths 7156 and 7157 and the merge space 715 8 are formed on the upper surface of the intermediate plate 7144b, and the separation flow paths 7156 and 7157 are alternately arranged.
  • the merge space 7158 is formed so that the width gradually decreases toward the downstream side, and communicates with an outflow port 7160 formed through the middle plate 7144b and the lower plate 7144c.
  • FIG. 145 (a) is a plan view showing the reaction section shown in FIG. 140
  • FIG. 145 (b) is a cross-sectional view of the reaction section shown in FIG. 145 (a).
  • two base materials 7144d and 7144e are joined to form a reaction portion 7142 having a thickness of 5 mm.
  • the reaction flow path 7162 meanders, and provides a long flow path efficiently.
  • the reaction channel 7162 has contacts 7162a and 7162c connected to the inlet port 7164 and the outlet port 7165, respectively, and a meander rod B portion 7162b communicating with the contacts 7162a and 7162c.
  • B7162a and 7162c have a narrower meandering portion 7162b and a wider width. Therefore, the liquid rapidly flows at the inlet / outlet portion to prevent adhesion of by-products, and flows slowly at the meandering portion 7162b, so that the heating and reaction time can be increased.
  • FIGS. 146 (a) and 146 (b) show other examples of the reaction section having a portion 7163a where the width of the reaction channel gradually decreases and a portion 7163b where the width of the reaction channel gradually increases.
  • a reaction flow path 7163 is formed between the base materials 7144d and 7144e so that the width dimension increases and decreases in the range of maximum a to minimum b.
  • FIG. 146 (c) is a cross-sectional view showing another configuration example of the reaction channel.
  • the reaction flow path 7163c has a flat shape with a large width e and a large heat transfer surface intersecting the heat transfer direction (indicated by an arrow) of the thermal catalytic force. Therefore, heat is effectively transferred to the liquid in the reaction channel 7163c.
  • it is effective to dispose an appropriate catalyst in the merge space 7158 and the reaction flow channels 7 162 and 7163.
  • Such a catalyst is selected according to the type of reaction. The arrangement can be performed, for example, by applying to the inner surface of the flow path or as an obstacle of the flow path as will be described later.
  • the material forming at least the flow path of the mixing unit 7140 and the reaction unit 7142 is, for example, SUS316, SUS304, Ti, quartz glass, Pyrex (registered trademark) glass or other hard gauze, EEK (polyetheretherketone) ⁇ PE (polyethylene), PVC (polyvinylchlonde), PDMS (Polydimethylsiloxane), Si, PTFE (polytetrafluoroethylene), PCTFE (Poly ChloroTriFluoroEthylene) is preferably selected in consideration of chemical resistance, pressure resistance, thermal conductivity, heat resistance, and the like.
  • the material of the wetted part of the mixing part 7140 and the reaction part 7142 should be able to be surface-catalyzed with little elution from the surface, have a certain degree of chemical resistance, and withstand a wide temperature range of _40 to 150 ° C .
  • FIG. 147 is a perspective view showing a configuration of a temperature adjustment case for adjusting the temperatures of the mixing section and the reaction section. Note that, in the following description, only the temperature adjustment case 7146 for adjusting the temperature of the reaction unit 7142 is described.
  • the temperature adjustment case 7146 for the mixing unit 7140 has the same configuration, and redundant description thereof. Is omitted.
  • the temperature adjustment case 7146 includes a case main body 7172 in which a space 7170 for accommodating the reaction portion 7142 is formed, and a lid portion 7174 that covers the space 7170. Grooves 7176 constituting the heat medium flow path are formed. A liquid supply path 7178 and a drainage path 7180 (see FIG.
  • the liquid supply passage 7178 communicates with the groove 7176 of the lid portion 7174 through the opening 7179
  • the drainage passage 7180 communicates with the groove 7176 of the lid portion 7174 through an opening (not shown).
  • the heat medium flowing through the groove 7176 directly contacts the front and back surfaces of the reaction unit 7142, and the reaction unit 7142 is heated and cooled while being completely accommodated in the temperature adjustment case 7146.
  • the heat medium controller 7107 incorporates a control mechanism for controlling the temperature of the heat medium and a pump for transferring the heat medium. As shown in FIG. 140, the heat medium passes through the heat exchanger 7182 and is then supplied to the temperature adjustment case 7146 of the mixing unit 7140 and the reaction unit 7142.
  • the heat exchanger 7182 can change the temperature of the heat medium supplied to the mixing unit 7140 and the reaction unit 7142 independently, for example, by changing the amount of cooling water for cooling.
  • FIGS. 148 (a) to 148 (d) show another example of the temperature adjustment case 7146.
  • the heat medium flow path 7192 is provided for each of the case body 7172 and the lid portion 7174. It is formed inside.
  • the liquid supply path 7178 has a double pipe structure in which the tip of the liquid supply pipe 7188 is inserted. It communicates with 7192.
  • the drainage side has the same configuration.
  • the mixing unit 7140 The temperature adjustment case 7146 to be accommodated and the temperature adjustment case 7146 to accommodate the reaction portion 7142 are laminated and connected via a Bonole 7194, a nut 7195 and a spacer 7196.
  • FIG. 148 (b) shows a path for supplying and discharging the liquid to the mixing unit 7140 and the reaction unit 7142 accommodated in the temperature adjustment case 7146. That is, each liquid flows into and out of the mixing unit 7140 through the flow passage 7198 formed through the temperature adjustment case 7146. In addition, the liquid is circulated between the mixing unit 7140 and the reaction unit 7142 via a communication passage 200 that communicates with the flow passage 7198 of the temperature adjustment case 7146.
  • FIG. 148 (d) illustrates the structure of the liquid inflow and outflow of the reaction section 7142. In order to direct the flow of the liquid downward, the liquid inlet of the mixing unit 7140 and the reaction unit 7142 is normally formed on the upper surface and the outlet is formed on the lower surface.
  • the outlet 202 of the reaction unit 7142 is connected to the product storage unit 7104 via the recovery pipe 204.
  • the product storage unit 7104 is provided with a recovery container 7208 on the downstream side of the heat exchanger 7206 for cooling and the flow path switching valve 7132.
  • the product reservoir 7104 where the recovery container 7208 is placed is isolated so as not to be affected by temperature, etc. from other areas, and to prevent toxic gases that may be generated from the product from leaking outside. Yes.
  • FIG. 149 shows another configuration example of the product storage unit 7104, and a plurality of recovery containers 7208 are installed on the turntable 7212.
  • an actuator 7214 for moving the rotary table 7212 is a 180-degree rotary rotary actuator.
  • the operation control unit 7106 shown in FIG. 140 determines the replacement timing of the recovery container 7208 based on the signal from the liquid level detection sensor 721 lb that detects the liquid level of the recovery container 7208, and the flow path switching valve 7132 (see FIG. 140).
  • the liquid flow is stopped by the optical fluid detection sensor 721 la provided downstream of the recovery port 7210, and the stop of the liquid flow is confirmed, and the actuator 7 214 is operated to move the other recovery container 7208 below the recovery port 7210. Move.
  • the operation of the fluid reaction apparatus is basically automatically controlled by the operation control unit 7106.
  • the raw material storage unit 7101 the raw material liquid is stored.
  • the temperature of the heat medium is set by the heat medium controller 7107, and the temperature of each heat medium is adjusted by adjusting the amount of brine passing through the heat exchanger 7182, and the temperature of the mixing unit 7140 and reaction unit 7142 is adjusted.
  • Heat medium is passed through case 7146 to maintain them at a predetermined temperature.
  • the temperature of the heat medium is measured by temperature sensors 7216 and 7218 provided at the inlet of the temperature adjustment case 7146.
  • a cleaning liquid such as pure water is supplied to the flow paths in the mixing unit 7140 and the reaction unit 7142 to perform pre-cleaning. While cleaning the flow path, the temperature of the cleaning solution is measured by the temperature sensor 7220 at the outlet of the mixing unit 7140 and the temperature sensor 7222 at the outlet of the reaction unit 7142, and the temperature of the cleaning solution is fed back to the heat medium controller 7107. To do. In this way, the mixing unit 7140 and the reaction unit 7142 are adjusted to a predetermined temperature.
  • the flow path switching valve 7132 is switched and the pumps 7116A and 7116B are driven to start the raw materials in the storage containers 7110A and 7110B. Each liquid is transferred.
  • the raw material liquid is adjusted to a predetermined flow rate by the flow rate adjusting devices 7300A and 7300B, and then reaches the recovery container 7208 via the mixing unit 7140, the reaction unit 7142, the outlet 7202, and the recovery port 7210.
  • the flow path switching valve 7132 is an automatic valve that is operated by an actuator, and this operation can also be performed automatically.
  • the raw material liquids are heated to a predetermined temperature in the preheating channels 7148A and 7148B (see FIG. 143), and then merged and mixed in the merging unit 7152.
  • each liquid flows into the merge space 7158 via the liquid separation flow paths 7156 and 7157 from the header portions 7154 and 7155. Since the cross section of the confluence space 7158 gradually decreases in the downstream direction, the micro-sized flows are mixed regularly and mixed rapidly according to Fick's law. In that state, when it flows into the reaction flow path 7162 of the reaction section 7142 maintained at a predetermined temperature, the reaction proceeds rapidly without being restricted by mass transfer or heat conduction.
  • the reaction flow path 7162 is sufficiently wide compared to the width of the merge space 7158, even when the reaction rate is low, the reaction can be performed over a sufficient amount of time. Yields can be obtained.
  • the obtained product passes from the outlet 7202 of the reaction channel 7162 via the recovery pipe 7204.
  • the multispectral analyzer 7001 receives a plurality of light beams having different wavelength regions from the light source unit 7024 and receives the light at different spectral units 28, and the spectrum of each wavelength that has passed through the liquid to be measured is performed. The constituents are measured, and based on the results, various measures are taken as described.
  • the processing liquid that has passed through the multi-spectral analyzer 7001 is sent to the heat exchanger 7206, where it is cooled and flows into the recovery container 7208 through the recovery port 7210.
  • the operation control unit 7106 stops the operation of the pumps 7116A and 7116B and ends the process.
  • the operation can be continuously performed without stopping the operation by switching the flow path switching valves 7126A and 7126B. Processing is possible.
  • the liquid can be confined in the mixing unit 7140 and the reaction unit 7142 for a certain period of time to perform batch operation. Since the flow path switching valves 7126A and 7126B are also automatic valves, these operations can be automatically operated.
  • the pumps 7116A and 7116B may be temporarily stopped, or the flow switching valves 7126A and 7126B may be switched to stop the inflow of liquid into the processing unit 7103.
  • a fullness detection means for detecting that the merge space 7158 and / or the reaction flow path 7162 is full of liquid.
  • an optical fluid detection sensor as shown in FIG. 149 is used.
  • the pumps 7116A and 7116B are stopped or the first flow path switching valve is switched to adapt the liquid to the reaction end time. It is made to stay in the merge space 7158 and / or the reaction flow path 716 2 for a certain time.
  • FIGS. 150 (a) and 150 (b) show another configuration example of the merging section in the mixing section 7140.
  • FIG. The junction 7152a is configured by disposing an obstacle 7224 in a Y-shaped junction space 7158a over a predetermined distance L at a constant interval a.
  • each obstacle 7224 is displaced by half the pitch in the flow direction. It is arranged in a zigzag pattern.
  • the interface 7125 between the liquid A and the liquid B meanders, so that the interface area (contact area) between the two liquids can be increased.
  • a row of obstacles 7224 are arranged in a zigzag along the flow direction at the center of the junction space 7158b, and the interface area can be similarly increased. This is suitable for use in a narrow merge space 7158b.
  • FIG. 152 shows another configuration example of the processing unit 7103 of the fluid reaction device.
  • the processing unit 7103 in FIG. 10 is provided with two systems Rl and R2 each having a combination of the mixing unit 7140 and the reaction unit 7142, and further using the flow path switching valves 7126A and 7126B of the liquid distribution unit 7102.
  • Various types of raw material liquids can be supplied to any of the systems Rl and R2. In this way, using two systems, there is a force S that can increase the amount of processing as needed, and there are various other usage methods. For example, if the reaction product precipitates solid particles or is easily clogged in the middle of piping, use one system as a backup.
  • the batch operation described above can be continuously performed by alternately switching the transfer lines by the flow path switching valves 7126A and 7126B.
  • three or more transfer lines can be provided in parallel as appropriate.
  • the channel switching valves 7126A and 7126B can be automatically operated.
  • FIG. 153 shows an example in which a plurality of reaction units are arranged in series in the processing unit 7103.
  • one mixing unit 7140 and three reaction units 7142a, 7142b, and 7142c are connected in series, and temperature sensors 7220, 7222a, 7222b, and 7222c force S are provided to the respective units.
  • the temperature of the reaction units 7142a, 7142b, 7142c can be controlled independently according to the stage of the reaction.
  • This configuration is suitable for reactions that require bold and instantaneous changes in reaction time and reaction temperature, such as biochemical reactions.
  • a reaction such as reacting at 100 ° C in the reaction unit 7142a and reacting at _20 ° C in the reaction unit 7142b is possible with this system.
  • FIG. 154 shows an example in which a plurality of mixing units are provided in the processing unit 7103.
  • a first mixing unit 7140 and a reaction unit 7142 for mixing and reacting liquid A and liquid B are provided, and a second mixing unit 7140a is provided on the downstream side of the reaction unit 7142.
  • this mixing section 7120a the third raw material liquid or the C liquid which is the reactant transported from the pump 7116C is merged with the A liquid and the B liquid.
  • These two mixing parts 7140, 7140a and one reaction part 7142 The temperature of each is controlled individually.
  • Liquid C may be a reaction terminator.
  • the in-line yield evaluator 7226 is directly connected to the outlet 720 2 of the second mixing unit 7140a. As a result, the yield of the chemical reaction results can be confirmed in real time and can be immediately fed back to the process parameters.
  • the in-line yield evaluator 7226 includes methods such as infrared spectroscopy, near infrared spectroscopy, and ultraviolet absorption as methods that can be measured without separating the object to be measured.
  • a separation / extraction unit 7228 for separating unnecessary substances and necessary substances from the reaction product is further provided on the downstream side of the second mixing unit 7140a.
  • the separation / extraction section 7228 has a Y-shaped separation flow path 7234.
  • the liquid from the second mixing part 7140a is branched into two flows by a separation channel 7234, one is a channel formed from a hydrophobic wall 7230 that allows only hydrophobic molecules in the substance to pass through, and the other is It flows into the flow path formed from the hydrophilic wall 7232 that allows only hydrophilic molecules in the substance to pass through.
  • the separated substances are collected in collection containers 7208 and 7208a through collection pipes 7204 and 7204a, respectively.
  • the separation and extraction unit 7228 it is also possible to use a membrane or a porous frit that can adsorb only a hydrophobic substance.
  • FIG. 155 shows a configuration example for continuous processing by repeating mixing and reaction and separation and extraction.
  • a mixing unit 7140a that processes liquid A and liquid B, a reaction unit 7142a, and a separation / extraction unit 7228a are arranged on the upstream side
  • the part 7142b and the separation / extraction part 7228b are arranged on the downstream side.
  • a mixing unit 7140c is provided for mixing the liquid extracted from the separation / extraction unit 7228b and the fourth liquid D.
  • Liquid D may be a reaction stopper or other raw material solution.
  • An inline yield evaluator 7226 may be provided on the downstream side of the mixing unit 7140c.
  • FIG. 156 (a) shows a configuration in which the respective parts in FIG. 155 are stacked.
  • the liquid flows downward.
  • the mixing unit 7140a, the reaction unit 7142a, the separation / extraction unit 7228a, the mixing unit 7140b, the reaction unit 7 142b, the separation / extraction unit 7228b, and the mixing unit 7140c are connected to the temperature adjustment case 7146. Each of them is accommodated and further laminated by a Bonole 7194, a nut 7195, and a spacer 7196 at predetermined intervals. The movement of the liquid between each part is performed through the communication passage 7200 (see Fig. 143 (b)).
  • Air is interposed between each part, and the thermal insulation of the air is used so that it is not affected by the heat of other parts, improving the accuracy of temperature control.
  • a heat insulating material such as a clean silicon member 723 6 containing bubbles.
  • the fluid introduced into the fluid reaction apparatus is liquid or gas
  • the substance to be recovered is liquid, gas, solid or a mixture thereof.
  • a powder dissolver can be installed in the raw material reservoir 7101.
  • FIG. 157 is a configuration example of the raw material reservoir 7101 in which one of the two raw material liquids is a solution in which powder is dissolved and the other is originally liquid.
  • the raw material powder and solvent are introduced from the raw material inlet 7242 of the powder dissolver 7240.
  • the raw material powder is dissolved by heating by the heater 7244 and stirring by the stirrer 7246, and the generated raw material liquid is mixed by the pump 7116A from the pipe 7249 drawn into the takeout port 7148 by the mixing unit 7140 and It is designed to be sent to the reaction unit 7142.

Abstract

This invention provides a fluid reactor which can mix a plurality of fluids using a microspace and can efficiently conduct various chemical reaction work and thus is suitable as practical mass production means. In this fluid reactor, a plurality of fluids (A, B) are introduced into a reaction passage (62) having a microreaction space for reaction. The fluid reactor comprises an introduction part (2) for introducing individual fluids for reaction, a flat plate mixing substrate (40) with mixing passages (56, 57, 58) for allowing the fluids to meet together for mixing, fluid transport means(16A, 16B) for transporting fluids towards the mixing passages through a plurality of transport pipes (21A, 21B), flow rate control means (20) for regulating the flow rate of the fluids, temperature control means (7) for regulating the temperature of a reaction passage (62), a lead-out part (104) for leading out a material after the reaction, and an operation control means (6) for controlling these motions.

Description

明 細 書  Specification
流体反応装置  Fluid reaction device
技術分野  Technical field
[0001] 本発明は、微小空間で流体どうしを反応させる流体反応装置に関する。例えば、薬 品、遺伝子、タンパク質の連続合成などの反応を微細な空間において行うマイクロリ ァクタに関する。  The present invention relates to a fluid reaction device that reacts fluids in a minute space. For example, it relates to a micro-reactor that performs reactions such as continuous synthesis of drugs, genes, and proteins in a minute space.
背景技術  Background art
[0002] 従来行われていたバッチ式有機合成系反応器としては、研究所ではコルベン、ビ 一力一、試験管などが用いられ、薬品製造ラインでは大きくは数百リツターを越える 反応釜などが多く用いられていた。これらの反応容器では、たとえば爆発の危険のあ る反応では混合速度を極端に落とすか、反応温度をマイナスまで極端に下げるなど の手法が取られている。  [0002] As conventional batch-type organic synthesis reactors, Kolben, Bi-nichi, test tubes, etc. are used in laboratories, and reaction pots of over several hundreds of liters are widely used in chemical production lines. Many were used. In these reaction vessels, for example, in a reaction with an explosion risk, the mixing speed is extremely reduced or the reaction temperature is extremely lowered to minus.
[0003] また、反応時間の遅い反応の場合、従来の連続フロー式では内径 l〜5mm程度の キヤピラリー配管内を通過させることで反応を進行させていた力 配管外周から中心 への熱伝導に時間が掛かり、反応中間体の拡散時間も長くなるため、高選択性、高 収率性という面では不充分であった。  [0003] In the case of a reaction with a slow reaction time, the force that allowed the reaction to proceed by passing through a capillary pipe having an inner diameter of about 1 to 5 mm in the conventional continuous flow method takes time to conduct heat from the outer circumference of the pipe to the center. And the diffusion time of the reaction intermediate is increased, which is insufficient in terms of high selectivity and high yield.
[0004] 近年、これらの有機合成反応や生化学反応を数十ミクロンから数百ミクロンのマイク 口空間で行う動きが出ている。つまり、分析や化学合成を行う場合、原材料流体の混 合部分の相互反応距離を Ι μ π!〜 500 μ πιとすることで、いわゆるマイクロ反応状態で 反応を起こさせることが報告されている。混合部や反応部をマイクロ空間にするような 、マイクロ反応状態を用いることの利点として、流体の体積に対する表面積の比率が 大きくなること、物質移動距離が短くなつて拡散時間が短くなること (何故ならば、物 質どうしの拡散時間が相互距離の二乗に比例する(Fickの法則)により拡散時間が短 くなる。例えば、通常の直径 1000mmのバッチ式反応釜における二物質の反応相互 距離を 10mmとすると、相互距離 500 μ m、 100 μ m、 10 μ mのマイクロリアクタの反応が 拡散と同時に起こるとすれば、反応時間はバッチ式反応釜に対して、それぞれ 400倍 、 1万倍、 100万倍速くなる)、流体の体積が小さくなること、熱の移動、伝達がすばや くなり、物質の移動が効率よく行われること、速い反応にも物質の供給が追い付いて いけることなどであり、爆発性の反応でも常温下で可能になり、マイクロリアクタによれ ば難反応物質の連続合成が可能となる。また、従来のバッチ式反応釜では反応速度 を上げるため高温にすることがある力 マイクロリアクタの場合は反応速度が速レ、ため 常温でも反応が可能となる。さらに、バッチ式反応釜では混合部分の濃度(モル比) が不均一のため不要の中間生成物質が生じやすいが、マイクロリアクタでは、混合部 分の濃度が容易に均一になるため、不要な中間生成物が生じにくぐ高収率を得ると 同時に、さらに、高収率、高選択性な反応も可能になった。必要な成分だけを作り出 す反応もマイクロ空間を使用すればその可能性も出てきた。 [0004] In recent years, there has been a movement to perform these organic synthesis reactions and biochemical reactions in a microphone mouth space of several tens of microns to several hundreds of microns. In other words, when performing analysis and chemical synthesis, the interaction distance of the mixed part of the raw material fluid is Ι μ π! It has been reported that the reaction is caused in a so-called micro reaction state when it is set to ˜500 μπι. Advantages of using the microreaction state, such as making the mixing part and the reaction part into a microspace, are that the ratio of the surface area to the volume of the fluid is large, the diffusion time is shortened because the mass transfer distance is short (why Then, the diffusion time between materials is proportional to the square of the mutual distance (Fick's law), so the diffusion time is shortened, for example, the reaction distance between two substances in a normal batch reactor with a diameter of 1000 mm is 10 mm. If the reaction of microreactors with mutual distances of 500 μm, 100 μm, and 10 μm occurs at the same time as diffusion, the reaction time is 400 times, 10,000 times, and 1 million times, respectively, for a batch reactor. Times faster), fluid volume is reduced, heat transfer and transmission are faster This means that the substance can be transferred efficiently and the supply of the substance can catch up with fast reactions.Even explosive reactions can be performed at room temperature. Synthesis is possible. In addition, conventional batch reactors can be heated to increase the reaction rate. In the case of a microreactor, the reaction rate is fast, so reaction is possible even at room temperature. Furthermore, in batch reactors, the concentration (molar ratio) of the mixing part is not uniform, and unnecessary intermediate products are likely to be generated. However, in the microreactor, the concentration of the mixing part is easily uniformed, so unnecessary intermediate products are generated. In addition to obtaining a high yield that is difficult to produce, a high-yield and highly selective reaction is also possible. The possibility of creating reactions that produce only the necessary components has also emerged using microspace.
[0005] しかし、このマイクロ空間で混合、反応を行う反応装置にしても、現時点では研究所 領域を出るものは無ぐ薬品製造ラインで使用できるものは無かった。たとえば、各機 器の操作はマニュアルで使用流体を溜めておく貯留容器設置スペースが無かったり 、反応終了物質を入れる回収容器設置スペースが無かったり、回収口から回収出来 る物質を必要な物質と不要な物質との分別機能が無かったり、安全対策が無かった り、モニター機構が無かったりして、あくまで実験室レベルで使う機能しか持ち合わせ ていないものが多かった。また、マイクロ空間で混合させたとしても、後の反応時間を 稼ぐための空間は内径 lmm以上のチューブ配管内を流体を移動させるだけのもので あり、温度を均一に制御しなければならない反応には不向きであった。  [0005] However, there are no reactors that perform mixing and reaction in this micro space, and there are no reactors that can be used in a chemical production line. For example, there is no storage container installation space for manually storing the fluid used, or there is no collection container installation space for storing the reaction-terminated substance, and the materials that can be recovered from the recovery port are not necessary and necessary for the operation of each device. In many cases, there are no functions for separation from other substances, no safety measures, no monitoring mechanism, and only functions used at the laboratory level. In addition, even if mixing is performed in a micro space, the space for gaining later reaction time is merely to move the fluid through the tube piping with an inner diameter of lmm or more, and the reaction requires a uniform temperature control. Was unsuitable.
[0006] 近年、試薬などの液体を反応させるための流体反応装置として、マイクロリアクタの 開発が進められている。このマイクロリアクタを液を流す送液系の立場から見ると、流 路の内径が小さくなると、レイカレズ数が小さくなり、液体の流れは層流になる。層流 領域において液体を速やかに混合させるためには、流路の内径をできるだけ小さく することが有効である。これは、層流領域では分子拡散が律速因子となり、液体の拡 散時間は流路の幅の二乗に比例するからである。  In recent years, a microreactor has been developed as a fluid reaction apparatus for reacting a liquid such as a reagent. Looking at the microreactor from the standpoint of a liquid supply system for flowing liquid, if the inner diameter of the flow path becomes smaller, the Reikarezu number becomes smaller and the liquid flow becomes laminar. In order to quickly mix the liquid in the laminar flow region, it is effective to make the inner diameter of the flow path as small as possible. This is because in the laminar flow region, molecular diffusion is the rate-limiting factor, and the liquid diffusion time is proportional to the square of the width of the channel.
[0007] また、微小空間で流体どうしを反応させる流体反応装置においては、その装置で混 合を行う中心的な要素として、そのマイクロ流路構造の実用的具体化にも未だ検討 を要するところがある。これには、微小なマイクロ空間を生産技術を駆使して追求する ケースと、複雑な流路を成膜やエッチング等の工程を繰り返して形成すると、製造コ ストが高くなつたり、流路洗浄等のメンテナンスが容易でないなど、製造工程に伴うマ イク口リアクタとしての不利点を改善していくケースとがある。 [0007] In addition, in a fluid reaction device that reacts fluids in a minute space, as a central element for mixing in the device, there is still a point that needs to be studied for practical realization of the microchannel structure. . This can be achieved by using a case where a small micro space is pursued by making full use of production technology, and when a complicated flow path is formed by repeating processes such as film formation and etching. There are cases in which the disadvantages of the mic-reactor associated with the manufacturing process are improved.
[0008] 従来行われていた有機合成系反応器としては、研究所ではコルベン、ビーカー、 試験管などが用レ、られ、薬品製造ラインでは大きくは数百リツターを越える反応釜な どが多く用いられていた。これらの反応容器では、たとえば爆発の危険のある反応で は混合速度を極端に落とす力 反応温度をマイナスまで極端に下げるなどの手法が 取られている。  [0008] As organic synthesis reactors that have been used in the past, Kolben, beakers, test tubes, etc. are used in research laboratories, and reaction pots that exceed several hundreds of liters are widely used in chemical production lines. It was done. In these reaction vessels, for example, in the reaction with the danger of explosion, the force that drastically reduces the mixing speed is used. For example, the reaction temperature is extremely lowered to minus.
[0009] また、反応時間の遅い反応の場合、従来は内径 l〜5mm程度のキヤピラリー配管 内を通過させることで反応を進行させていた力 配管外周から中心への熱伝導に時 間が掛かり、反応中間体の拡散時間も長くなるため、高選択性、高収率性という面で は不充分であった。  [0009] In addition, in the case of a reaction with a slow reaction time, a force that has conventionally progressed by passing through a capillary pipe having an inner diameter of about 1 to 5 mm takes time for heat conduction from the outer periphery of the pipe to the center. Since the diffusion time of the reaction intermediate also becomes long, it was insufficient in terms of high selectivity and high yield.
[0010] 近年、これらの有機合成反応や生化学反応を数十ミクロンから数百ミクロンのマイク 口空間で行う動きが出ている。混合部や反応部をマイクロ空間にすることで、流体の 体積に対する表面積の比率が大きくなる、物質移動距離が短くなつて拡散時間が短 くなる、流体の体積が小さくなることで、熱の移動、伝達がすばやくなり、物質の移動 が効率よく行われるので、速い反応にも物質の供給が追い付いていけるなど、爆発 性の反応でも常温下で可能になったり、高収率、高選択性な反応も可能になった。 必要な成分だけを作り出す反応もマイクロ空間を使用すればその可能性も出てきた  [0010] In recent years, there has been a movement to perform these organic synthesis reactions and biochemical reactions in a microphone mouth space of several tens of microns to several hundreds of microns. By making the mixing part and reaction part into a micro space, the ratio of the surface area to the volume of the fluid is increased, the mass transfer distance is shortened and the diffusion time is shortened, and the volume of the fluid is reduced, thereby transferring heat. Because the transfer is quick and the substance is transferred efficiently, even the fast reaction can catch up with the substance supply.Even explosive reactions can be performed at room temperature, and high yield and high selectivity can be achieved. Reaction was also possible. The possibility of creating reactions that produce only the necessary ingredients has also emerged if microspace is used.
[0011] しかし、このマイクロ空間で混合、反応を行う反応装置にしても、現時点では研究 所領域を出るものは無ぐ薬品製造ラインで使用できるものは無かった。たとえば、各 機器の操作はマニュアルで使用流体を溜めておく貯留容器設置スペースが無かつ たり、反応終了物質を入れる回収容器設置スペースが無かったり、回収口から回収 出来る物質を必要な物質と不要な物質の分別機能が無かったり、安全対策が無かつ たり、モニター機構が無かったりして、あくまで実験室レベルで使う機能しか持ち合わ せていないものが多かった。また、マイクロ空間で混合させたとしても、後の反応時間 を稼ぐための空間は内径 lmm以上のチューブ配管内を流体を移動させるだけのもの で温度を均一に制御しなければならなレ、反応には不向きであつた。 [0012] 層流領域においては、流路の流れ方向に液体の濃度差があると、液体が不均一 に混合することになる。液体の混合が不均一となると、反応により生成された物質がさ らに原液と反応して副生成物が生じ、収率が低下してしまう。したがって、混合前の 各液体の流量は一定に保つ必要がある。し力 ながら、液体は、通常、ギヤポンプや ピストンポンプなどにより微小流路に移送されるため、液体がポンプの影響を受けて 液体の流れに脈動が生じてしまう。そこで、微小流路を流れる液体の流量を一定に 保っために、マスフローコントローラの導入が試みられている。 [0011] However, there are no reactors that can mix and react in this microspace and can be used on the chemical production line. For example, there is no storage container installation space for manually storing the fluid used in the operation of each device, there is no collection container installation space for containing the reaction-terminated substance, and substances that can be recovered from the recovery port are unnecessary and unnecessary. In many cases, there were no functions for separating substances, no safety measures, no monitoring mechanism, and so on, which had only functions used at the laboratory level. Even if mixing is performed in the micro space, the space for later reaction time is simply to move the fluid through the tube piping with an inner diameter of lmm or more, and the temperature must be controlled uniformly. It was unsuitable for. [0012] In the laminar flow region, if there is a difference in liquid concentration in the flow direction of the flow path, the liquid will be mixed unevenly. If the mixing of the liquid becomes uneven, the substance produced by the reaction further reacts with the stock solution to produce a by-product, resulting in a decrease in yield. Therefore, the flow rate of each liquid before mixing must be kept constant. However, since the liquid is usually transferred to the minute flow path by a gear pump or a piston pump, the liquid is affected by the pump and pulsation occurs in the liquid flow. Therefore, in order to keep the flow rate of the liquid flowing through the microchannel constant, introduction of a mass flow controller has been attempted.
[0013] 図 39は一般的なマスフローコントローラの流量測定部を示す模式図である。図 39 に示すように、流路 3001には温調機構 3002が設けられており、その下流側には上 流側の第 1の温度センサ 3003と下流側の第 2の温度センサ 3004とが配置されてい る。温調機構 3002は温度制御部 3005により制御され、流路 3001を流れる液体を 所定の温度変化率で加熱するようになっている。第 2の温度センサ 3004は温度差測 定器 3006に接続されており、第 2の温度センサ 3004の位置における温度変化が温 度差測定器 3006に記録されるようになっている。  FIG. 39 is a schematic diagram showing a flow rate measuring unit of a general mass flow controller. As shown in FIG. 39, the flow path 3001 is provided with a temperature adjustment mechanism 3002, and the upstream side first temperature sensor 3003 and the downstream side second temperature sensor 3004 are arranged downstream thereof. It has been done. The temperature adjustment mechanism 3002 is controlled by the temperature control unit 3005 and heats the liquid flowing through the flow path 3001 at a predetermined rate of temperature change. The second temperature sensor 3004 is connected to the temperature difference measuring device 3006, and the temperature change at the position of the second temperature sensor 3004 is recorded in the temperature difference measuring device 3006.
[0014] 図 40は流路の温度分布を示すグラフである。図 40において、第 1の温度センサ 30 03の位置を Pl、第 2の温度センサ 3004の位置を P2で表している。また、符号 D1は 液体が流れていないときの温度分布を表しており、符号 D2は液体が流れているとき の温度分布を表している。図 40に示すように、流路 3001内を液体が流れると、温度 分布を示す温度カーブが下流側にシフトする。このため、液体が流れていないときと 、液体が流れているときとでは、 P2において温度差 ΔΤが生じる。したがって、液体 の比熱および比重が予め分かっていれば、温度差 ΔΤから流量を求めることができる 。このような、温度差から流量を求める流量計は、一般に、熱式流量計と呼ばれてい る。  FIG. 40 is a graph showing the temperature distribution in the flow path. In FIG. 40, the position of the first temperature sensor 3003 is represented by Pl, and the position of the second temperature sensor 3004 is represented by P2. Symbol D1 represents the temperature distribution when no liquid is flowing, and symbol D2 represents the temperature distribution when the liquid is flowing. As shown in FIG. 40, when a liquid flows in the channel 3001, the temperature curve indicating the temperature distribution shifts to the downstream side. For this reason, a temperature difference ΔΤ occurs at P2 between when the liquid is not flowing and when the liquid is flowing. Therefore, if the specific heat and specific gravity of the liquid are known in advance, the flow rate can be obtained from the temperature difference ΔΤ. Such a flow meter for obtaining a flow rate from a temperature difference is generally called a thermal flow meter.
[0015] 一般的なマスフローコントローラでは、この流量計の出力によって、流量調整弁を 制御している。  [0015] In a general mass flow controller, the flow rate adjustment valve is controlled by the output of the flow meter.
[0016] 反応速度の遅い液体を微小流路内で十分に反応させるためには、流路を長くして 反応時間を確保する必要が生じる。このため、高い圧力で液体を圧送することが必 要となる。しかしながら、従来のマスフローコントローラは、気体用のマスフローコント口 ーラの機構をベースとして開発されているため、その許容圧力の上限が 0. 5MPa以 下と低ぐ高い圧力が必要とされるマイクロリアクタに使用するには困難があった。特 に、微小流路を用いている場合では、反応生成物によりマスフローコントローラの下 流側で圧力が上昇することが予想され、液体の漏洩により正確な流量測定が行われ ないおそれがある。したがって、マイクロリアクタに用いられる流量調整装置には、液 体の圧力が変動しても正確な流量測定を行うことができる性能及び高圧対応が要求 される。 [0016] In order to sufficiently react a liquid having a low reaction rate in the micro flow path, it is necessary to secure a reaction time by lengthening the flow path. For this reason, it is necessary to pump the liquid at a high pressure. However, the conventional mass flow controller has a mass flow control port for gas. Since it was developed based on the mechanism of the roller, it was difficult to use it in a microreactor where the upper limit of the allowable pressure was as low as 0.5 MPa or less. In particular, when a microchannel is used, the reaction product is expected to increase the pressure on the downstream side of the mass flow controller, and there is a risk that accurate flow measurement may not be performed due to liquid leakage. Therefore, the flow control device used in the microreactor is required to have a performance capable of performing accurate flow measurement even when the pressure of the liquid fluctuates and a high pressure response.
[0017] し力、しながら、従来の熱式流量計は温度差から流量を求めているため、流量の測 定が液体の比熱および比重の影響を受けることになる。このため、液体の種類ごとに 比熱や比重を考慮して流量を補正することが必要となる。また、従来の熱式流量計で は、比熱や比重に加えて、液体の粘度によっても温度差が変わってくるため、液体の 粘度も流量測定に影響を与えることになる。粘度が流量に与える影響について図 41 を参照して説明する。  However, since the conventional thermal flow meter obtains the flow rate from the temperature difference, the measurement of the flow rate is affected by the specific heat and specific gravity of the liquid. For this reason, it is necessary to correct the flow rate in consideration of specific heat and specific gravity for each type of liquid. In the conventional thermal flow meter, the temperature difference also depends on the viscosity of the liquid in addition to the specific heat and specific gravity, so the viscosity of the liquid also affects the flow measurement. The effect of viscosity on flow rate is described with reference to FIG.
[0018] 図 41は微小流路を流れる液体の流速分布を示す図である。図 41において、符号 VIは粘度の低レ、液体の流速分布を表し、符号 V2は粘度の高レ、液体の流速分布を 表している。図 41に示すように、この 2つの液体の平均流速は互いに等しいが、粘度 の違いから流速分布の形状が異なっている。すなわち、粘度の高い液体の場合と粘 度の低い液体との場合とでは、流量 (平均流速)が等しくても、流路 3001の内面近傍 の流速に差が生じ、このために、流路 3001の外面に設けられた温度センサ 3007に よって測定される温度に差が生じてしまう。したがって、流量を正確に測定するため には、予め液体の粘度を調べておき、粘度に基づいて流量を補正する必要が生じて くる。このように、従来の熱式流量計では、液体の比熱、比重、および粘度などの液 体の物性に基づいて流量を補正することが必要とされ、種々の試薬を取り扱う場合に は極めて煩雑な作業が必要であった。  FIG. 41 is a diagram showing the flow velocity distribution of the liquid flowing through the microchannel. In FIG. 41, symbol VI represents low viscosity and liquid flow velocity distribution, and symbol V2 represents high viscosity and liquid flow velocity distribution. As shown in Fig. 41, the average flow velocities of the two liquids are equal to each other, but the shape of the flow velocity distribution differs due to the difference in viscosity. That is, there is a difference in the flow velocity near the inner surface of the flow path 3001 between the high-viscosity liquid and the low-viscosity liquid even if the flow rates (average flow speed) are the same. The temperature measured by the temperature sensor 3007 provided on the outer surface of the panel will be different. Therefore, in order to accurately measure the flow rate, it is necessary to examine the viscosity of the liquid in advance and correct the flow rate based on the viscosity. As described above, in the conventional thermal flow meter, it is necessary to correct the flow rate based on the physical properties of the liquid such as the specific heat, specific gravity, and viscosity of the liquid, which is extremely complicated when handling various reagents. Work was necessary.
[0019] このように従来の送液系のマスフローコントローラでは流量計が薬液フリーとはなつ ていないという問題があることが分かる。  Thus, it can be seen that there is a problem that the flowmeter is not chemical-free in the conventional liquid flow system mass flow controller.
[0020] 微小空間で流体どうしを反応させる流体反応装置にぉレ、て、例えば薬液を連続的 に定流量で吐出するためには、上述したように、プランジャポンプ装置あるいはモー タ式ポンプ装置を用いることができる。 [0020] In order to discharge, for example, a chemical solution continuously at a constant flow rate to a fluid reaction device that reacts fluids in a minute space, as described above, a plunger pump device or a motor is used. Can be used.
[0021] ポンプ自らが低脈動であることが好ましいが、プランジャポンプは、例えば、シリンダ 内の空間を仕切ってポンプ室を形成し、ポンプ室にはそれぞれ吸入弁と吐出弁を介 して吸入配管と吐出配管を接続し、仕切板を所定の駆動手段によって往復動させる ように構成されている。吸入時は、吸入弁を開、吐出弁を閉として、仕切板をポンプ 室が拡大する方向に移動させ、吐出時は、吸入弁を閉、吐出弁を開として、仕切板 をポンプ室が収縮する方向に移動させる。 1台のプランジャポンプでは、図 105 (a) に示すように間欠運転になる。  [0021] Although it is preferable that the pump itself has low pulsation, the plunger pump forms, for example, a pump chamber by partitioning a space in the cylinder, and each of the pump chambers is connected to a suction pipe via a suction valve and a discharge valve. And the discharge pipe are connected, and the partition plate is reciprocated by a predetermined driving means. During suction, the suction valve is opened and the discharge valve is closed, and the partition plate is moved in the direction of expansion of the pump chamber. During discharge, the suction valve is closed, the discharge valve is opened, and the partition plate is contracted by the pump chamber. Move in the direction you want. One plunger pump operates intermittently as shown in Fig. 105 (a).
[0022] そこで、連続運転が必要な場合には、 2台のプランジャポンプを並列に設置したも のが用いられている。この装置では、図 105 (b)に示すように、吐出の切換を 180度 の周期で単純に切り換えている。し力、しながら、このような従来の 2連式プランジャポ ンプでは、切換時に吐出が一時途切れてしまい、脈動が生じる。この欠点を補うため に各プランジャにモータを付けて協調制御するものもある力 S、全体が大きくなりシステ ムも煩雑になってしまう。また 3連式にして脈動を抑えるものもある力 本体の大きさが 大きくなつてしまう。  [0022] Therefore, when continuous operation is required, a system in which two plunger pumps are installed in parallel is used. In this apparatus, as shown in FIG. 105 (b), the discharge is simply switched at a cycle of 180 degrees. However, in such a conventional double plunger pump, the discharge is temporarily interrupted at the time of switching and pulsation occurs. In order to compensate for this drawback, there is a force S that includes a motor attached to each plunger for coordinated control, which increases the overall size and complicates the system. In addition, there is a force that suppresses pulsation by using a triple system. The size of the main body increases.
[0023] 例えば、従来の 2連式プランジャポンプでは、駆動の伝達手段として溝カムを用い ているが、加工が難しい上に精度が出にくぐさらには前進と後退の切り換えの際の ガタを小さくする必要が有る等の欠点が有る。一方、端面カムのようなオープンなカム では、一方向の動作しかできないので、カムに向けてプランジャを付勢するバネを併 用する必要が有る。し力 ながら、この場合には、プランジャを押し出す際にパネに付 勢力に対する抗力が必要なため、モータ負荷が大きくなる欠点があった。  [0023] For example, a conventional dual plunger pump uses a grooved cam as a drive transmission means, but it is difficult to machine and accuracy is difficult to obtain. Further, the backlash at the time of switching between forward and reverse is reduced. There are drawbacks such as the need to do so. On the other hand, since an open cam such as an end face cam can only operate in one direction, it is necessary to use a spring that biases the plunger toward the cam. However, in this case, when the plunger is pushed out, the panel needs to be resisted against the urging force, so that the motor load becomes large.
[0024] さらに、プランジャポンプにおいては、吸入と吐出を切り換える際に、流れの状態や 弁体の動作が不安定になやすぐその結果として脈動が起こることがあった。  [0024] Furthermore, in the plunger pump, when switching between suction and discharge, pulsation may occur as soon as the flow state and the operation of the valve body become unstable.
[0025] このように、プランじやポンプを見ても、圧力脈動を発生しないように液を送ることに は、さらに、改善をは力、る必用性が残っている。  [0025] As described above, even when looking at the plan and the pump, there is still a need for further improvement in sending the liquid so that pressure pulsation does not occur.
[0026] マイクロリアクタで反応を起こし、所定の反応物を生産する品質保証という観点から 見ると、連続流れの場で反応させるマイクロリアクタ装置を医薬品製薬生産ラインで 使用する場合、 GMPや FDAの考えに基づいた品質管理が要求される。 GMPの基本 的考えは品質再現性の保証であり、ロット内では品質は均一でなければならい、とい う点にある。従来のバッチ処理では反応釜内の品質を均一にしておけばよ力 たも の力 連続流れであるマイクロリアクタでは時々刻々反応して流出してくる液体のどの ポイントを分析しても一様な状態に維持されていることが必要になってくる。一様な状 態とは反応によって出来た製品生成物は当然として、副生成物、未反応原料、その 他不純物、配管中力 溶出した成分などすベての状態が経時的変化がなく一様であ ること要求される。し力、も液体をサンプリング採取してオフラインで分析するのではなく 、液体が流れる主配管中で液体の多成分をリアルタイムに分析する手段が必要とな る。さらに米国 FDAでは PAT (Process Analytical Technology)として工程ごとの分析 のあり方について提唱され、それに基づいた医薬製造ライン構築が推進されており、 各工程ごとのインライン分析の必要性について議論されている。 [0026] From the viewpoint of quality assurance in which a reaction occurs in a microreactor and produces a predetermined reactant, when using a microreactor device that reacts in a continuous flow field in a pharmaceutical and pharmaceutical production line, it is based on the idea of GMP and FDA. Quality control is required. GMP basics The idea is to guarantee quality reproducibility, and that quality must be uniform within a lot. In conventional batch processing, the power should be uniform if the quality in the reaction kettle is uniform. In the microreactor, which is a continuous flow, it is in a uniform state no matter what point in the liquid that flows out by reaction from time to time. It will be necessary to be maintained. The uniform state means that the product produced by the reaction is naturally a by-product, unreacted raw materials, other impurities, components that have been eluted in the piping, etc. Is required. However, instead of sampling the liquid and analyzing it offline, there is a need for a means for analyzing in real time multiple components of the liquid in the main pipe through which the liquid flows. In addition, the US FDA has proposed PAT (Process Analytical Technology) as a way of analysis for each process, promoting the construction of a pharmaceutical production line based on that, and discussing the necessity of in-line analysis for each process.
[0027] これら液中の多成分をリアルタイムにインラインで分析するには測定する波長領域 を広く持ち、被測定物の多岐にわたる分子構造に対応できるようにしておかなければ ならない。また紫外から赤外、遠赤外までの領域はそれぞれ得意な領域と不得手な 領域があるためこれらの各波長領域を複数組み合わせることでお互いの不得手部分 を補うことにもなり、被測定物質が単一ではなく分子構造も多岐にわたる場合には有 効になる。 [0027] In order to analyze multiple components in these liquids in-line in real time, it is necessary to have a wide wavelength range for measurement and to be able to cope with a wide variety of molecular structures of the object to be measured. In addition, since there are areas that are good and weak in the ultraviolet, infrared, and far infrared areas, combining each of these wavelength areas can supplement each other's weak areas, and the substance to be measured This is effective when there is a wide variety of molecular structures.
[0028] 医薬品の開発段階では、試薬の種類や濃度、温度、流速など条件を種々振って、 いわゆるスクリーニングと言われる可能性のある反応を見つける作業がある。かなり候 補薬品が絞り込まれた後でも合成ルート最適化するため、同一試薬でも条件を振つ て同じような反応を繰り返し、その都度オフラインで分析し評価しなければならない。 この場合でもインラインでマルチ式の分析装置があれば、いちいちサンプリング採取 する必要がなく極短時間で分析結果を出すことが可能になる。  [0028] In the development stage of pharmaceuticals, there is an operation of finding a reaction that may be referred to as so-called screening by changing various conditions such as the type, concentration, temperature, and flow rate of reagents. In order to optimize the synthesis route even after the candidate chemicals have been narrowed down, the same reaction must be repeated under the same conditions with the same reagent, and each time it must be analyzed and evaluated offline. Even in this case, if there is an in-line multi-type analyzer, it is not necessary to sample each time, and the analysis result can be output in a very short time.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0029] 本発明は、前記事情に鑑みて為されたもので、マイクロ空間内の反応の特徴を生 かして複数の流体を混合させ、種々の化学反応作業を効率良く行うことができ、かつ 、低コストで製造でき、メンテナンスが容易であり、且つ実用的な量産手段としても好 適な流体反応装置を提供することを目的とする。 [0029] The present invention has been made in view of the above circumstances, and by utilizing the characteristics of the reaction in the micro space, a plurality of fluids can be mixed to perform various chemical reaction operations efficiently. In addition, it can be manufactured at low cost, is easy to maintain, and is a good practical mass production method. An object is to provide a suitable fluid reaction apparatus.
[0030] 本発明では求められるマイクロリアクタを実現するための一つ目的として、、流体の 比重、比熱、粘度、圧力変動に依存することなく流体の流量を精度よく測定し、かつ 調整することができる流量調整装置を提供してレ、る。  [0030] As one object for realizing the required microreactor in the present invention, the flow rate of the fluid can be accurately measured and adjusted without depending on the specific gravity, specific heat, viscosity, and pressure fluctuation of the fluid. Provide a flow control device.
[0031] さらに、本発明は、微小空間で流体どうしを反応させる流体反応装置において、脈 動を抑制した連続運転が可能な送液装置を提供することも目的とする。 [0031] Furthermore, an object of the present invention is to provide a liquid feeding device capable of continuous operation with suppressed pulsation in a fluid reaction device that reacts fluids in a minute space.
[0032] さらに、収率良ぐかつ、選択性のある、混合、反応を実現するための、マイクロリア クタ流路構造の具体的提供してレ、る。 [0032] Further, a microreactor channel structure for realizing a mixing and reaction with high yield and selectivity is specifically provided.
[0033] 本発明は、オフライン分析によるスクリーニング等が不要で短時間で分析結果を出 すことが可能な分析システムを提供することも目的とする。 [0033] Another object of the present invention is to provide an analysis system that can output analysis results in a short time without the need for screening by off-line analysis.
[0034] さらに、本発明は、利便性のあるマイクロリアクタ装置の全体構成の提供についても[0034] Further, the present invention also provides an overall configuration of a convenient microreactor device.
、 目的としている。 The purpose.
課題を解決するための手段  Means for solving the problem
[0035] 本発明は、これに限定されるものではなレ、が、以下の発明を包含する。  [0035] The present invention is not limited to this, but includes the following inventions.
[0036] (1) 複数の流体をマイクロ反応空間を有する反応流路に導入して反応させる流体 反応装置において、反応に使用する流体を個々に導入する導入部と、流体を合流さ せて混合する混合流路と、流体を複数の輸送管を介して前記混合流路に向けて輸 送する流体輸送手段と、流体の流量を制御する流量制御手段と、前記反応流路の 温度を制御する温度制御手段と、反応後の物質を回収口より導出する導出部と、こ れらの動作を制御する動作制御手段とを備えたことを特徴とする流体反応装置。  [0036] (1) Fluid that introduces and reacts a plurality of fluids into a reaction channel having a micro reaction space In a reaction apparatus, an introduction unit that individually introduces fluids used for the reaction and a fluid are joined and mixed A mixing flow path, fluid transport means for transporting fluid toward the mixing flow path via a plurality of transport pipes, flow rate control means for controlling the flow rate of the fluid, and temperature of the reaction flow path A fluid reaction apparatus comprising a temperature control means, a deriving section for deriving a substance after reaction from a recovery port, and an operation control means for controlling these operations.
[0037] (2) 平板状の混合基板をさらに備える流体反応装置であって、ここで、前記流体 を合流させて混合する前記混合流路が該平板状の混合基板に設けられている、 (1) に記載の流体反応装置。  [0037] (2) A fluid reaction apparatus further comprising a flat plate-shaped mixed substrate, wherein the mixed flow path for mixing and mixing the fluids is provided in the flat plate-shaped mixed substrate. The fluid reaction device according to 1).
[0038] (3) 反応に使用する流体を個々に溜めておく貯留容器を設置する設置スペース が設けられてレ、ることを特徴とする(2)に記載の流体反応装置。  [0038] (3) The fluid reaction apparatus according to (2), wherein an installation space is provided for installing a storage container for individually storing fluids used for the reaction.
[0039] (4) 反応後の物質を前記導出部より回収する回収容器を複数個設置可能な設置 スペースが設けられてレ、ることを特徴とする(2)または(3)に記載の流体反応装置。  [0039] (4) The fluid according to (2) or (3), wherein an installation space is provided in which a plurality of collection containers for collecting the substance after the reaction from the lead-out part can be installed. Reactor.
[0040] (5) 前記マイクロ反応空間には、流路幅 500 μ ΐη以下の流路が存在することを特 徴とする(2)〜(4)のレ、ずれかに記載の流体反応装置。 [0040] (5) The micro reaction space has a channel having a channel width of 500 μΐη or less. The fluid reaction device according to any one of (2) to (4).
[0041] (6) 導入される流体は気体または液体であり、反応後の物質は気体または液体ま たは固体のいずれか、またはそれらの混合体で、導入される流体が連続的な流れで あることを特徴とする(2)〜(5)のレ、ずれかに記載の流体反応装置。  [0041] (6) The fluid to be introduced is a gas or a liquid, and the substance after the reaction is either a gas, a liquid or a solid, or a mixture thereof, and the fluid to be introduced is a continuous flow. The fluid reaction device according to any one of (2) to (5) above, which is characterized in that it is present.
[0042] (7) 前記流体輸送手段は圧力発生手段または電気的誘電力相互作用手段を有 することを特徴とする(2)〜(6)のレ、ずれかに記載の流体反応装置。  [0042] (7) The fluid reaction device according to any one of (2) to (6), wherein the fluid transporting means includes a pressure generating means or an electric dielectric force interaction means.
[0043] (8) 前記流体輸送手段が、一対のプランジャポンプを並列に接続したプランジャ ポンプ装置であって、前記各プランジャポンプのプランジャをそれぞれが交互に前進 するように連動させるカム機構と、前記各プランジャをその後退時に前記カム機構に 向けて押圧する流体圧装置と、前記流体圧装置の動作を前記プランジャの動作サイ クルに応じて制御する制御部とを有することを特徴とするプランジャポンプ装置である 、(2)〜(7)のいずれかに記載の流体反応装置。  (8) The fluid transporting means is a plunger pump device in which a pair of plunger pumps are connected in parallel, and a cam mechanism that interlocks the plungers of the plunger pumps so as to alternately advance, A plunger pump device comprising: a fluid pressure device that presses each plunger toward the cam mechanism when retracted; and a control unit that controls the operation of the fluid pressure device in accordance with the operation cycle of the plunger. The fluid reaction device according to any one of (2) to (7).
[0044] (9) 前記プランジャポンプ装置の制御部は、各プランジャの前進時において、前 記流体圧装置による押圧を停止させることを特徴とする(8)に記載の流体反応装置。  [0044] (9) The fluid reaction device according to (8), wherein the control unit of the plunger pump device stops pressing by the fluid pressure device when each plunger moves forward.
[0045] (10) 前記一対のプランジャポンプはそれぞれ吐出動作の初期と終期において増 速過程と減速過程をそれぞれ行い、一方の増速過程と他方の減速過程が互いに重 なるようにタイミングが設定されていることを特徴とする(8)に記載の流体反応装置。  [0045] (10) The pair of plunger pumps respectively perform an acceleration process and a deceleration process at the initial stage and the final stage of the discharge operation, and the timing is set so that one acceleration process and the other deceleration process overlap each other. (4) The fluid reaction device described in (8) above.
[0046] (11) 前記各プランジャポンプは、前進と後退の間に一定の停止過程を行なうこと を特徴とする(8)に記載の流体反応装置。  [0046] (11) The fluid reaction device according to (8), wherein each of the plunger pumps performs a certain stop process between forward movement and backward movement.
[0047] (12) 前記流体輸送手段が、プランジャポンプ装置であって、それぞれ個別の駆 動装置を有し、液体源とマイクロリアクタ流路間において並列に接続された一対のプ ランジャポンプと、前記マイクロリアクタ流路内に設置された流量計と、前記一対のプ ランジャポンプを交互に一定の所定送り速度で吐出動作させる制御部を備え、前記 制御部は、前記プランジャポンプが吐出動作してレ、るときの前記流量計の測定値に 基づいて、所定のタイミングで前記送り速度を調整することを特徴とするプランジャポ ンプ装置である、 (2)〜(7)のいずれかに記載の流体反応装置。  [0047] (12) The fluid transport means is a plunger pump device, each having a separate drive device, and a pair of plunger pumps connected in parallel between the liquid source and the microreactor flow path; A flowmeter installed in the microreactor flow path and a control unit that alternately discharges the pair of plunger pumps at a constant predetermined feed rate. The control unit is configured so that the plunger pump discharges. The plunger pump device according to any one of (2) to (7), characterized in that the feed speed is adjusted at a predetermined timing based on a measured value of the flowmeter at the time of reading. Fluid reaction device.
[0048] (13) 前記プランジャポンプ装置が、前記マイクロリアクタ流路内に設置された圧 力センサを備え、前記制御部は、前記圧力センサの出力値に基づいて前記送り速度 を微調整することを特徴とする、(12)に記載の流体反応装置。 [0048] (13) The plunger pump device includes a pressure sensor installed in the microreactor flow path, and the controller is configured to control the feed rate based on an output value of the pressure sensor. The fluid reaction device according to (12), wherein the fluid reaction device is finely adjusted.
[0049] (14) 前記プランジャポンプ装置の前記制御部は、前記一対のプランジャポンプを 、それぞれが吐出動作の初期と終期において増速過程と減速過程を行い、一方の 増速過程と他方の減速過程が互いに重なるようにして流量を一定のまま切換制御す ることを特徴とする、(12)または(13)に記載の流体反応装置。  [0049] (14) The control unit of the plunger pump device performs an acceleration process and a deceleration process in the initial stage and the final stage of the discharge operation of the pair of plunger pumps, respectively. The fluid reaction apparatus according to (12) or (13), wherein the flow control is switched and controlled so that the processes overlap each other.
[0050] (15) 前記切換制御時には、前記送り速度の微調整を一方のプランジャポンプに ついてのみ行うことを特徴とする(14)に記載の流体反応装置。  [0050] (15) The fluid reaction device according to (14), wherein the feed speed is finely adjusted only for one plunger pump during the switching control.
[0051] (16) 前記プランジャポンプ装置の前記制御部は、前記プランジャポンプが前進と 後退の間に一定の停止過程を行うように制御することを特徴とする(12)〜(: 15)のい ずれかに記載の流体反応装置。  [0051] (16) The control unit of the plunger pump device controls the plunger pump to perform a fixed stop process between forward and backward movements. (12) to (: 15) The fluid reaction device according to any one of the above.
[0052] (17) 前記プランジャポンプ装置力 前記プランジャポンプのプランジャの位置を 検出する位置センサを備え、前記制御部はこの位置センサの出力に基づいて送り速 度を制御することを特徴とする、(12)〜(16)のいずれかに記載の流体反応装置。  [0052] (17) The plunger pump device force includes a position sensor that detects a position of a plunger of the plunger pump, and the control unit controls a feed speed based on an output of the position sensor. (12) The fluid reaction device according to any one of (16).
[0053] (18) 前記流量制御手段は通過流体の体積を測定するセンサ部と、センサ部の測 定情報を基に流体が通過する通過面積をコントロールする通過量コントロール部を 有してレ、ることを特徴とする(2)〜(: 17)のレ、ずれかに記載の流体反応装置。  [0053] (18) The flow rate control means includes a sensor unit that measures the volume of the passing fluid, and a passage amount control unit that controls a passage area through which the fluid passes based on measurement information of the sensor unit. The fluid reaction device according to any one of the above (2) to (: 17).
[0054] (19) 前記流量制御手段が、流路を流れる流体の流量を調整する流量調整装置 であって、前記流路を流れる流体を加熱または冷却する温調機構と、前記流路の第 1の測定点における流体の温度が変化する時刻と、前記第 1の測定点よりも下流側 の第 2の測定点における流体の温度が変化する時刻との時間差から前記流路内を 流れる流体の流量を算出する流量測定部と、前記第 2の測定点を通過する流体の温 度を測定する下流側温度センサと、前記下流側温度センサの下流側に設けられた 制御弁と、前記流量測定部により求められた流量に基づいて、流体の流量が一定と なるように前記制御弁を制御する制御部とを備えたことを特徴とする流量調整装置で ある、 (2)〜(: 18)のレ、ずれかに記載の流体反応装置。  (19) The flow rate control unit is a flow rate adjustment device that adjusts the flow rate of the fluid flowing through the flow path, and includes a temperature control mechanism that heats or cools the fluid flowing through the flow path, From the time difference between the time when the temperature of the fluid at the first measurement point changes and the time when the temperature of the fluid changes at the second measurement point downstream of the first measurement point, the flow of the fluid flowing in the flow path A flow rate measurement unit for calculating a flow rate, a downstream temperature sensor for measuring the temperature of the fluid passing through the second measurement point, a control valve provided on the downstream side of the downstream temperature sensor, and the flow rate measurement And a control unit that controls the control valve so that the flow rate of the fluid is constant based on the flow rate obtained by the unit, (2) to (: 18) The fluid reaction device according to any one of the above.
[0055] (20) 前記流量調整装置の前記流量測定部は、前記第 1の測定点および前記第 2の測定点における流体の温度変化を示す温度カーブ上の互いに対応する 2点間 の時間差に基づいて流体の流量を算出することを特徴とする、 (19)に記載の流体反 応装置。 (20) The flow rate measuring unit of the flow rate adjusting device calculates a time difference between two points corresponding to each other on a temperature curve indicating a temperature change of the fluid at the first measurement point and the second measurement point. The fluid flow rate according to (19), wherein the fluid flow rate is calculated based on Applicable equipment.
[0056] (21) 前記第 1の測定点を通過する流体の温度を測定する上流側温度センサをさ らに設けたことを特徴とする、(19)または(20)に記載の流体反応装置。  [0056] (21) The fluid reaction device according to (19) or (20), further comprising an upstream temperature sensor for measuring the temperature of the fluid passing through the first measurement point .
[0057] (22) 前記流量調整装置の前記上流側温度センサは、前記流路を流れる流体に 接触するセンサホルダと、前記流路に近い位置まで前記センサホルダの内部に揷入 されたサーミスタとを備えることを特徴とする、 (21)に記載の流体反応装置。  (22) The upstream temperature sensor of the flow rate adjusting device includes a sensor holder that contacts a fluid flowing through the flow path, and a thermistor inserted into the sensor holder to a position close to the flow path. The fluid reaction device according to (21), further comprising:
[0058] (23) 前記流量調整装置の前記下流側温度センサは、前記流路を流れる流体に 接触するセンサホルダと、前記流路に近い位置まで前記センサホルダの内部に揷入 されたサーミスタとを備えることを特徴とする、(19)〜(22)のいずれか一項に記載の 流体反応装置。  (23) The downstream temperature sensor of the flow rate adjusting device includes a sensor holder that contacts the fluid flowing through the flow path, and a thermistor inserted into the sensor holder to a position close to the flow path. (19) The fluid reaction device according to any one of (19) to (22).
[0059] (24) 少なくとも前記第 1の測定点と前記第 2の測定点とを含む空間の温度を一定 に保つ環境温度制御機構をさらに設けたことを特徴とする、 (19)〜(23)のいずれか 一項に記載の流体反応装置。  [0059] (24) An environmental temperature control mechanism for maintaining a constant temperature in a space including at least the first measurement point and the second measurement point is further provided. (19) to (23 ) The fluid reaction device according to any one of the above.
[0060] (25) 前記流量調整装置の前記温調機構は、ペルチェ素子、ゼーベック素子、電 磁波発生器、または抵抗加熱線を備えることを特徴とする、(19)〜(24)のいずれか 一項に記載の流体反応装置。 [0060] (25) Any of (19) to (24), wherein the temperature adjustment mechanism of the flow rate adjusting device includes a Peltier element, a Seebeck element, an electromagnetic wave generator, or a resistance heating wire. The fluid reaction apparatus according to one item.
[0061] (26) 前記流量調整装置の前記温調機構は、前記流路を構成する孔が形成され た円筒部と前記円筒部に熱を伝える伝熱部とを有する構造体と、前記構造体の伝熱 部を加熱または冷却する温調部材とを備えることを特徴とする、 (19)〜(25)のいず れか一項に記載の流体反応装置。 [0061] (26) The temperature adjustment mechanism of the flow rate adjusting device includes a structure having a cylindrical part in which holes forming the flow path are formed, and a heat transfer part that transfers heat to the cylindrical part, and the structure The fluid reaction device according to any one of (19) to (25), further comprising a temperature control member that heats or cools the heat transfer section of the body.
[0062] (27) 前記流量調整装置の前記制御弁は、流量を調整する弁と、前記弁を駆動 する駆動源とを有しており、該駆動源は、圧電素子、電磁石、サーボモータ、または ステッピングモータを備えていることを特徴とする、 (19)〜(26)のいずれか一項に記 載の流体反応装置。 (27) The control valve of the flow rate adjusting device includes a valve that adjusts the flow rate and a drive source that drives the valve, and the drive source includes a piezoelectric element, an electromagnet, a servo motor, Or the stepping motor is provided, The fluid reaction apparatus as described in any one of (19)-(26) characterized by the above-mentioned.
[0063] (28) 前記流量調整装置の前記制御弁は、流量を調整する弁と、前記弁を駆動 する駆動源とを有しており、該駆動源は、複数の圧電素子が積層された構造を有す ることを特徴とする、(19)〜(27)のいずれか一項に記載の流体反応装置。  (28) The control valve of the flow rate adjusting device includes a valve that adjusts the flow rate and a drive source that drives the valve, and the drive source includes a plurality of stacked piezoelectric elements. The fluid reaction device according to any one of (19) to (27), wherein the fluid reaction device has a structure.
[0064] (29) 前記制御弁を通過する流体の圧力は IMPa〜: !OMPaであることを特徴と する、(19)〜(28)のレ、ずれか一項に記載の流体反応装置。 [0064] (29) The pressure of the fluid passing through the control valve is IMPa˜:! OMPa. The fluid reaction device according to any one of (19) to (28).
[0065] (30) 前記制御弁を通過する流体の流量は 0· 01〜: 10L/hであることを特徴とす る、(19)〜(29)のレ、ずれか一項に記載の流体反応装置。  [0065] (30) The flow rate of the fluid passing through the control valve is from 0 · 01 to: 10 L / h, according to (19) to (29), Fluid reaction device.
[0066] (31) 前記流量調整装置の前記流路は、耐食性のある材料から形成されているこ とを特徴とする、(19)〜(30)のレ、ずれか一項に記載の流体反応装置。  [0066] (31) The fluid according to any one of (19) to (30), wherein the flow path of the flow rate adjusting device is formed of a corrosion-resistant material. Reactor.
[0067] (32) 前記流量調整装置の前記材料は、ステンレス鋼、チタン、ポリエーテルエー テルケトン、ポリ四フッ化工チレン、またはポリクロ口トリフルォロエチレンであることを 特徴とする、 (19)〜(31)のいずれかに記載の流体反応装置。  [0067] (32) The material of the flow control device is stainless steel, titanium, polyether ether ketone, polytetrafluoroethylene, or polychloroethylene, (19) to (31) The fluid reaction device according to any one of (31).
[0068] (33) 前記流量制御手段が、流路を流れる流体を所定の温調位置において短時 間温調する温調機構と、前記流路の前記温調位置より下流側の温度測定位置に配 置された少なくとも 1つの主温度センサとを備える流量測定装置であって、前記主温 度センサにより観測した温度測定位置における温度変化に基づいて温調された流体 の通過時を判断し、この判断結果に基づいて流量を算出する流量測定装置におい て、前記流路の前記温調位置より上流側に位置に副温度センサを設置し、当該主温 度センサの温度測定値を前記副温度センサの測定値により補正することを特徴とす る流量測定装置である、 (2)〜(18)のいずれかに記載の流体反応装置。  (33) A temperature control mechanism in which the flow rate control means temperature-controls the fluid flowing through the flow path for a short time at a predetermined temperature control position, and a temperature measurement position downstream of the temperature control position of the flow path. A flow rate measuring device including at least one main temperature sensor disposed in the position, and determining the passage of temperature-controlled fluid based on a temperature change at a temperature measurement position observed by the main temperature sensor, In the flow rate measuring device that calculates the flow rate based on the determination result, a sub-temperature sensor is installed at a position upstream of the temperature control position of the flow path, and the temperature measurement value of the main temperature sensor is used as the sub-temperature. The fluid reaction device according to any one of (2) to (18), wherein the fluid reaction device is corrected by a measurement value of a sensor.
[0069] (34) 前記流量測定装置の前記補正は、前記主温度センサの測定値と前記副温 度センサの測定値の差を求めることにより行われることを特徴とする、 (33)に記載の 流体反応装置。  [0069] (34) The correction of the flow rate measuring device is performed by obtaining a difference between a measured value of the main temperature sensor and a measured value of the sub temperature sensor, (33) The fluid reaction device.
[0070] (35) 前記主温度センサを異なる温度測定位置に少なくとも 2つ設け、これらの温 度測定位置における通過の時間差に基づいて流量を算出することを特徴とする、 (3 [0070] (35) At least two main temperature sensors are provided at different temperature measurement positions, and the flow rate is calculated based on a passage time difference between these temperature measurement positions.
3)または(34)に記載の流体反応装置。 The fluid reaction device according to 3) or (34).
[0071] (36) 前記温調機構が温調を行った時と、前記温度測定位置における通過時との 時間差に基づレ、て流量を算出することを特徴とする、 (33)または(34)に記載の流 体反応装置。 (36) The flow rate is calculated based on a time difference between the time when the temperature adjustment mechanism performs temperature adjustment and the passage at the temperature measurement position, (33) or ( 34) The fluid reaction apparatus according to 34).
[0072] (37) 前記補正後の温度測定値が極値に達した時点を温調流体の通過時と判断 することを特徴とする、(33)〜(36)のレ、ずれかに記載の流体反応装置。  [0072] (37) The point of (33) to (36), wherein the time point when the corrected temperature measurement value reaches the extreme value is determined as the passage of the temperature-controlled fluid. Fluid reaction device.
[0073] (38) 前記流量測定装置の前記副温度センサは、前記温調位置に対して前記温 度測定位置とほぼ対称の位置に有ることを特徴とする、(33)〜(37)のいずれかに 記載の流体反応装置。 (38) The sub-temperature sensor of the flow rate measuring device may be configured such that the temperature is relative to the temperature control position. The fluid reaction device according to any one of (33) to (37), wherein the fluid reaction device is at a position that is substantially symmetrical to the degree measurement position.
[0074] (39) 前記副温度センサの位置を、流路に沿って調整可能としてあることを特徴と する、 (33)〜(38)のレ、ずれかに記載の流体反応装置。  (39) The fluid reaction device according to (33) to (38), wherein the position of the sub temperature sensor is adjustable along the flow path.
[0075] (40) 前記主温度センサまたは副温度センサの測定値をアナログ Zデジタル変換 してデジタル回路に取り入れて処理することを特徴とする、(33)〜(39)のいずれか に記載の流体反応装置。 [0075] (40) The measurement value of the main temperature sensor or the sub temperature sensor is subjected to analog Z-digital conversion, is taken into a digital circuit and is processed, (33) to (39) Fluid reaction device.
[0076] (41) 前記流量測定装置の前記温調機構は、ペルチェ素子、ゼーベック素子、電 磁波発生器、抵抗加熱線、サーミスタ、または白金抵抗体を備えることを特徴とする、(41) The temperature control mechanism of the flow rate measuring device includes a Peltier element, Seebeck element, electromagnetic wave generator, resistance heating wire, thermistor, or platinum resistor,
(33)〜(40)のレ、ずれかに記載の流体反応装置。 The fluid reaction device according to any one of (33) to (40).
[0077] (42) 前記混合基板が複数設けられていることを特徴とする(2)〜 (41)のいずれ かに記載の流体反応装置。 (42) The fluid reaction device according to any one of (2) to (41), wherein a plurality of the mixed substrates are provided.
[0078] (43) 混合後の流体の反応を進行させるために、前記反応流路を前記混合基板と は別に設けた反応基板に形成したことを特徴とする(2)〜(42)のいずれかに記載の 流体反応装置。 [0078] (43) In any of (2) to (42), the reaction flow path is formed on a reaction substrate provided separately from the mixing substrate in order to advance the reaction of the fluid after mixing. A fluid reaction device according to claim 1.
[0079] (44) 前記反応基板が複数設けられていることを特徴とする(43)に記載の流体反 応装置。  [0079] (44) The fluid reaction device according to (43), wherein a plurality of the reaction substrates are provided.
[0080] (45) 前記流体輸送手段と前記混合基板の間に第 1の流路選択切換弁を、前記 混合基板と物質回収口の間に第 2の流路選択切換弁を具備したことを特徴としたこと を特徴とする(2)〜(44)のレ、ずれかに記載の流体反応装置。  (45) A first flow path selection switching valve is provided between the fluid transporting means and the mixing substrate, and a second flow path selection switching valve is provided between the mixing substrate and the substance recovery port. The fluid reaction device according to any one of (2) to (44), characterized in that it is characterized.
[0081] (46) 前記第 1の流路選択切換弁と第 2の流路選択切換弁は電気動作または空 気圧動作により作動する自動弁であることを特徴とする (45)に記載の流体反応装置  [0081] (46) The fluid according to (45), wherein the first flow path selection switching valve and the second flow path selection switching valve are automatic valves that are operated by electric operation or pneumatic operation. Reactor
[0082] (47) 混合流路に導入された流体が混合された後、混合流路または Zおよび反応 流路に流体が充満されたことを判断する充満検知手段を具備し、充満された時点で 流体の輸送手段を停止させまたは流路選択切換弁を切換え、流体を反応終結時間 に適応する一定時間混合流路または/および反応流路に滞留させておく制御が可 能なことを特徴とする(2)〜(46)のレ、ずれかに記載の流体反応装置。 [0083] (48) 前記充満検知手段は、物質回収口から出始めた流体を検知する流体有無 センサ、または、混合反応後の輸送管内の流体の有無を検知する流体有無センサで あることを特徴とする(47)に記載の流体反応装置。 [0082] (47) After the fluid introduced into the mixing channel is mixed, it is provided with a fullness detecting means for judging that the fluid is filled in the mixing channel or Z and the reaction channel, and when the fluid is filled It is possible to stop the fluid transportation means or switch the flow path selection switching valve and control the fluid to stay in the mixing flow path and / or the reaction flow path for a certain time to adapt to the reaction end time. The fluid reaction device according to any one of (2) to (46). (48) The fullness detection means is a fluid presence / absence sensor that detects a fluid that has started to exit from the substance recovery port, or a fluid presence / absence sensor that detects the presence or absence of fluid in the transport pipe after the mixing reaction. The fluid reaction device according to (47).
[0084] (49) 前記混合流路と前記反応流路には個別に温度測定センサが設けられ、個 別に温度制御が可能であることが特徴とすることを特徴とする(2)〜(48)のレ、ずれか に記載の流体反応装置。 (49) The mixing channel and the reaction channel are individually provided with temperature measurement sensors, and the temperature can be individually controlled. (2) to (48) The fluid reaction device according to (1) or (2).
[0085] (50) 前記混合基板と前記反応基板の少なくとも一部を積層させて配置させること を特徴とする(2)〜(49)のレ、ずれかに記載の流体反応装置。 [0085] (50) The fluid reaction device according to any one of (2) to (49), wherein at least a part of the mixed substrate and the reaction substrate are stacked and arranged.
[0086] (51) 流路選択切換弁を切り換えて、混合流路、反応流路内の通常の流れの方 向とは逆方向に流体を送り込む逆洗手段を具備したことを特徴とする(2)〜(50)の いずれかに記載の流体反応装置。 [0086] (51) The present invention is characterized by comprising backwashing means for switching the flow path selection switching valve to feed the fluid in the direction opposite to the normal flow direction in the mixing flow path and the reaction flow path ( The fluid reaction device according to any one of 2) to (50).
[0087] (52) 前記逆洗手段は、圧送手段として 1本ピストンポンプを有することが特徴であ ることを特徴とする(51)に記載の流体反応装置。 [0087] (52) The fluid reaction apparatus according to (51), wherein the backwashing means has a single piston pump as a pressure feeding means.
[0088] (53) 前記第 1の流路選択切換弁には窒素ガス供給ライン、純水供給ライン、有機 溶剤供給ライン、酸供給ライン、水素水供給ライン、およびオゾン水供給ラインのいず れカ 1または複数に接続されてレ、ることを特徴とする(45)〜(52)のいずれかに記載 の流体反応装置。 [0088] (53) The first flow path selection switching valve may be any one of a nitrogen gas supply line, a pure water supply line, an organic solvent supply line, an acid supply line, a hydrogen water supply line, and an ozone water supply line. The fluid reaction device according to any one of (45) to (52), wherein the fluid reaction device is connected to one or a plurality of members.
[0089] (54) 前記第 2の流路選択切換弁には窒素ガス供給ライン、純水供給ライン、有機 溶剤供給ライン、酸供給ライン、水素水供給ライン、およびオゾン水供給ラインのいず れカ 1または複数に接続されてレ、ることを特徴とする(45)〜(53)のいずれかに記載 の流体反応装置。  [54] (54) The second flow path selection switching valve includes any of a nitrogen gas supply line, a pure water supply line, an organic solvent supply line, an acid supply line, a hydrogen water supply line, and an ozone water supply line. The fluid reaction device according to any one of (45) to (53), wherein the fluid reaction device is connected to one or a plurality of members.
[0090] (55) 前記導出部の設置スペースには、 2個以上の回収容器を保持可能なテープ ルと、テーブル移動機構とを設けたことを特徴とする(4)〜(54)のレ、ずれかに記載の 流体反応装置。  (55) The installation space for the lead-out portion is provided with a table capable of holding two or more collection containers and a table moving mechanism, (4) to (54) The fluid reaction device according to any one of the above.
[0091] (56) 前記テーブル移動機構は回転機構または往復機構であることを特徴とする  (56) The table moving mechanism is a rotating mechanism or a reciprocating mechanism.
(55)に記載の流体反応装置。  (55) The fluid reaction device according to.
[0092] (57) 反応後の物質の収率を測定する収率測定手段が具備されていることを特徴 とする(2)〜(56)のレ、ずれかに記載の流体反応装置。 [0093] (58) 収率測定手段が紫外吸光、赤外分光、近赤外分光であることを特徴とする( 57)に記載の流体反応装置。 [57] (57) The fluid reaction apparatus according to any one of (2) to (56), wherein a yield measuring means for measuring the yield of the substance after the reaction is provided. [0093] (58) The fluid reaction apparatus according to (57), wherein the yield measuring means is ultraviolet absorption, infrared spectroscopy, or near infrared spectroscopy.
[0094] (59) 前記収率測定手段が、複数の波長の異なる光源を有する光源部と、被測定 液を流通させるフローセルを構成するケーシングと、上記フローセルにおいて被測定 液に近接する複数の発光部と受光部と、受光部から得られた各波長の分光を個々に 行う分光器を有する分光部と、分光器で得られた被測定液の分光情報を演算制御し て出力する制御部と  (59) The yield measuring means includes a light source unit having a plurality of light sources having different wavelengths, a casing constituting a flow cell for circulating the liquid to be measured, and a plurality of light emission in the flow cell adjacent to the liquid to be measured. And a light receiving unit, a spectroscopic unit having a spectroscope that individually performs spectroscopy of each wavelength obtained from the light receiving unit, and a control unit that controls and outputs spectroscopic information of the liquid to be measured obtained by the spectroscope
を具備したことを特徴とするマルチ分光分析装置である、 (57)に記載の流体反応装 置。  The fluid reaction device according to (57), wherein the fluid reaction device is a multispectral analysis device.
[0095] (60) 前記マルチ分光分析装置の上記光源部は、紫外光、可視光、近赤外光、 赤外光、遠赤外光のうち、少なくとも 2つ以上の波長領域をカバーする光源を有する ことを特徴とする(59)に記載の流体反応装置。  (60) The light source unit of the multispectral analyzer is a light source that covers at least two wavelength regions of ultraviolet light, visible light, near infrared light, infrared light, and far infrared light. The fluid reaction device according to (59), characterized by comprising:
[0096] (61) 前記マルチ分光分析装置の前記フローセルが複数形成され、各フローセル に発光部と受光部がそれぞれ配置されてレ、ることを特徴とする(59)または(60)に記 載の流体反応装置。 (61) (59) or (60), wherein a plurality of the flow cells of the multi-spectral analyzer are formed, and a light emitting unit and a light receiving unit are respectively arranged in each flow cell. Fluid reaction device.
[0097] (62) 前記マルチ分光分析装置の前記ケーシングは、仕切によって内部に複数の フローセルを形成するように構成されてレ、ることを特徴とする(59)〜(61)のレ、ずれ かに記載の流体反応装置。  [0097] (62) The shift and misalignment of (59) to (61), wherein the casing of the multispectral analyzer is configured to form a plurality of flow cells therein by a partition. A fluid reaction device according to claim 1.
[0098] (63) 前記マルチ分光分析装置の前記ケーシングは、内部に 1つのフローセルを 形成するように構成され、複数の前記ケーシングが基板上に着脱自在に取り付け可 能となっていることを特徴とする(59)〜(62)のいずれかに記載の流体反応装置。  (63) The casing of the multispectral analyzer is configured to form one flow cell therein, and a plurality of the casings can be detachably mounted on a substrate. The fluid reaction device according to any one of (59) to (62).
[0099] (64) 可視領域から近赤外領域の光源を一つの光源で兼用し、異なる受光部に 導くように構成したことを特徴とする(59)〜(63)のレ、ずれかに記載の流体反応装置  (64) (59) to (63) characterized in that the light source from the visible region to the near infrared region is shared by one light source and guided to different light receiving parts. The fluid reactor described
[0100] (65) 前記発光部と受光部間の距離を調整可能であることを特徴とする(59)〜(6[0100] (65) The distance between the light emitting unit and the light receiving unit can be adjusted. (59) to (6)
4)のレ、ずれかに記載の流体反応装置。 The fluid reaction device according to 4).
[0101] (66) 反応領域の下流側に、分光分析装置を有することを特徴とする、(59)〜(6 [0101] (66) (59) to (6) characterized by having a spectroscopic analyzer downstream of the reaction region.
5)のレ、ずれかに記載の流体反応装置。 [0102] (67) 複数の流体をマイクロ反応空間を含む流路において反応させる流体反応装 置に用いられる流体混合装置であって、複数の平板状の基材を接合し、複数の流体 をそれぞれのヘッダ空間から合流空間に連続的に供給して混合させるように構成さ れ、各流体の前記ヘッダ空間を前記基材の異なる表面に設け、前記各ヘッダ空間と 前記合流空間とを連通するそれぞれ複数の分液流路を、異なるヘッダ空間からの分 液流路が前記合流空間の流入部において交互に開口するように形成したことを特徴 とする流体混合装置。 The fluid reaction device according to 5). [0102] (67) A fluid mixing device used in a fluid reaction device for reacting a plurality of fluids in a flow path including a micro reaction space, wherein a plurality of flat base materials are joined to each other, and the plurality of fluids are respectively connected. The header space of each fluid is configured to be continuously supplied to and mixed with each other, the header spaces of the respective fluids are provided on different surfaces of the base material, and the header spaces and the merged spaces are communicated with each other. A fluid mixing apparatus, wherein a plurality of liquid separation channels are formed such that liquid separation channels from different header spaces open alternately at an inflow portion of the merge space.
[0103] (68) 前記各ヘッダ空間は、前記異なる表面において同心の円弧状に形成され、 前記合流空間はこれらの円弧のほぼ中心上に配置されていることを特徴とする(67) に記載の流体混合装置。  (68) Each of the header spaces is formed in a concentric arc shape on the different surfaces, and the merge space is disposed substantially on the center of these arcs. Fluid mixing device.
[0104] (69) 前記ヘッダ空間は前記基材のそれぞれ表裏面に形成され、前記合流空間 は前記基材の一方の表面に形成され、他方の表面上のヘッダ空間と連通する分液 流路は前記基材を貫通して設けられていることを特徴とする(67)または(68)に記載 の流体混合装置。  (69) The header space is formed on each of the front and back surfaces of the base material, and the merge space is formed on one surface of the base material and communicates with the header space on the other surface. The fluid mixing device according to (67) or (68), characterized in that is provided through the substrate.
[0105] (70) 前記各ヘッダ空間と前記合流空間とを連通する前記複数の分液流路は互 レ、に平行に延びて形成されていることを特徴とする(67)または(69)に記載の流体 混合装置。  [0105] (70) The plurality of liquid separation channels communicating the header space and the merge space are formed to extend in parallel with each other (67) or (69) The fluid mixing device according to 1.
[0106] (71) 複数の流体をマイクロ反応空間を含む流路において反応させる流体反応装 置に用いられる流体混合装置であって、複数の平板状の基材を接合し、複数の流体 をそれぞれのヘッダ空間から合流空間に連続的に供給して混合させるように構成さ れ、前記ヘッダ空間を前記基材の表面に沿って設け、前記合流空間を流体が前記 基材の板厚方向に流れるように設け、前記ヘッダ空間と前記合流空間とを連通する それぞれ複数の分液流路を、異なるヘッダ空間からの分液流路が前記合流空間の 流入部において交互に開口するように形成したことを特徴とする流体混合装置。  (71) A fluid mixing device used in a fluid reaction device that reacts a plurality of fluids in a flow path including a micro reaction space, wherein a plurality of flat base materials are joined to each other and the plurality of fluids are respectively connected. The header space is provided along the surface of the base material, and the fluid flows in the thickness direction of the base material. And a plurality of liquid separation channels that communicate between the header space and the merge space are formed such that the liquid separation channels from different header spaces open alternately at the inflow portion of the merge space. A fluid mixing device.
[0107] (72) 前記ヘッダ空間が前記基材の表面において前記合流空間の両側に設けら れ、異なるヘッダ空間からの分液流路どうしが前記合流空間の流入部において互い にずれた位置に開口していることを特徴とする(71)に記載の流体混合装置。  (72) The header spaces are provided on both sides of the merge space on the surface of the base material, and the liquid separation channels from different header spaces are shifted from each other in the inflow portion of the merge space. The fluid mixing device according to (71), wherein the fluid mixing device is open.
[0108] (73) 各流体の前記ヘッダ空間を前記基材の異なる表面に設け、分液流路の少 なくとも一方は前記基材を貫通して設けられ、異なるヘッダ空間からの分液流路どう しが前記合流空間の対向する側において相対向するように、かつ前記合流空間の 同じ側において交互に隣接するように形成されていることを特徴とする(71)に記載 の流体混合装置。 (73) The header space of each fluid is provided on a different surface of the base material to reduce the number of liquid separation channels. At least one is provided so as to penetrate the base material, so that the liquid separation channels from different header spaces are opposed to each other on the opposite side of the merge space, and alternately on the same side of the merge space. The fluid mixing device according to (71), wherein the fluid mixing device is formed so as to be adjacent to each other.
[0109] (74) 前記合流空間は、流体が前記基材の板厚方向に流れた後に、該基材の面 に沿って流れるように屈曲して形成されてレ、ることを特徴とする(7:!)〜(73)のレ、ず れかに記載の流体混合装置。  [0109] (74) The confluence space is formed so as to be bent so that a fluid flows along the surface of the base material after the fluid flows in the thickness direction of the base material. The fluid mixing device according to any one of (7 :!) to (73).
[0110] (75) 複数の流体を平板状の基材に形成された 500 x m以下の流路幅部分を含 む空間に連続的に供給して混合させる混合流路を有し、前記複数の流体の合流点 力、ら流れに沿って 5mm以上の長さに渡って直径 50 μ m以下の柱状の障害物が等 間隔に配置されていることを特徴とする流体混合装置。  [0110] (75) having a mixing channel that continuously supplies and mixes a plurality of fluids to a space including a channel width portion of 500 xm or less formed on a flat substrate, A fluid mixing device, wherein columnar obstacles having a diameter of 50 μm or less are arranged at equal intervals over a length of 5 mm or more along the confluence point of the fluid.
[0111] (76) 前記柱状の障害物は複数列の柱が列の間隔をずらして流れ方向に交互配 置されたことことを特徴とする(75)に記載の流体混合装置。  [0111] (76) The fluid mixing apparatus according to (75), wherein the columnar obstacle includes a plurality of columns of columns arranged alternately in the flow direction at different intervals.
[0112] (77) 前記柱状の障害物は複数で流れ方向に千鳥状に配置されていることを特 徴とする(75)または(76)に記載の流体混合装置。  [0112] (77) The fluid mixing device according to (75) or (76), wherein a plurality of the columnar obstacles are arranged in a staggered manner in the flow direction.
[0113] (78) 合流後において、流路の幅が徐々に小さくなる部分と徐々に大きくなる部分 を持つことを特徴とする(67)〜(77)のレ、ずれかに記載の流体混合装置。  [0113] (78) After mixing, the fluid mixing according to any one of (67) to (77), wherein the flow path width has a gradually decreasing portion and a gradually increasing portion. apparatus.
[0114] (79) 合流後において、流路の幅寸法と深さ寸法が交互に縮小、拡大を繰り返す ことを特徴とする(67)〜(78)のレ、ずれかに記載の流体混合装置。  [0114] (79) The fluid mixing device according to any one of (67) to (78), wherein the width dimension and the depth dimension of the flow path are alternately reduced and enlarged after the merge. .
[0115] (80) 合流後において、流路の幅方向寸法が深さ方向寸法よりも大きい扁平状部 分を有することを特徴とする(67)〜(79)のいずれかに記載の流体混合装置。  [80] (80) The fluid mixing according to any one of (67) to (79), wherein the fluid mixing has a flat portion whose width direction dimension is larger than the depth direction dimension after merging apparatus.
[0116] (81) 流路を形成する部材が、 SUS316, SUS304, Ti、石英ガラス、パイレックスガラ ス(登録商標)等の硬質ガラス、 PEEK (polyetheretherketone)、 PE (polyethylene)、 PVC (polyvinylchloride)、 PDMS (polydimethylsiloxane)、 Si、 PTFE (polytetrafluor oethylene)、 PCTFE (polychlorotrifluoroethylene)、および PFA (perfluoroalkoxylalk ane)の内の 1または複数を含むこと特徴とすることを特徴とする(67)〜(80)のいず れかに記載の流体混合装置。  [0116] (81) The member forming the flow path is made of hard glass such as SUS316, SUS304, Ti, quartz glass, Pyrex glass (registered trademark), PEEK (polyetheretherketone), PE (polyethylene), PVC (polyvinylchloride), (67) to (80) characterized by including one or more of PDMS (polydimethylsiloxane), Si, PTFE (polytetrafluoroethylene), PCTFE (polychlorotrifluoroethylene), and PFA (perfluoroalkoxylalkane). The fluid mixing device according to any one of the above.
[0117] (82) 流路の内壁の一部またはすベての材質力 Au、 Ag、 Pt、 Pd、 Ni、 Cu、 Ru、 Zr 、 Ta、 Nbまたはこれらの金属を含む化合物であることを特徴とする(67)〜(80)のレヽ ずれかに記載の流体混合装置。 [0117] (82) Material strength of part or all of the inner wall of the flow path Au, Ag, Pt, Pd, Ni, Cu, Ru, Zr The fluid mixing device according to any one of (67) to (80), wherein the fluid mixing device is Ta, Nb or a compound containing these metals.
[0118] (83) 前記基材は、少なくとも 1辺の大きさが 150mmを越える寸法の矩形であるこ とを特徴とする(67)〜(82)のいずれかに記載の流体混合装置。 [0118] (83) The fluid mixing apparatus according to any one of (67) to (82), wherein the base material is a rectangle having a dimension in which at least one side exceeds 150 mm.
[0119] (84) 流体の複数導入口と混合後の単一流体の出口は前記基板の反対側の面に 存在することを特徴とする(67)〜(83)のレ、ずれかに記載の流体混合装置。 (84) A plurality of fluid inlets and a single fluid outlet after mixing are present on the opposite surface of the substrate. (67) to (83) Fluid mixing device.
[0120] (85) 混合反応基板を同一基板内に、流体の温度を反応温度に向けて上昇、ま たは下降させる予備温度調整部を具備したことを特徴とする(67)〜(84)のいずれ かに記載の流体混合装置。 (85) The mixed reaction substrate is provided in the same substrate, and a preliminary temperature adjustment unit is provided to raise or lower the fluid temperature toward the reaction temperature (67) to (84). The fluid mixing device according to any one of the above.
[0121] (86) 前記混合流路が、第 1の流体源に連通する第 1の流路と、第 2の流体源に連 通する第 2の流路とがそれぞれ内部に複数形成されたマ二ホールド部と、該マニホー ルド部に隣接する合流空間とを有しており、前記マ二ホールド部は前記合流空間に 面する開口端面を有し、前記第 1の流路と第 2の流路の開口は、前記開口端面にお いて交互に隣接するように立体的に配置されていることを特徴とする、 (1)に記載の 流体反応装置。 (86) A plurality of first flow paths communicating with the first fluid source and a plurality of second flow paths communicating with the second fluid source are formed inside the mixing flow path, respectively. A manifold holding portion and a merge space adjacent to the manifold portion, the manifold hold portion having an open end surface facing the merge space, the first flow path and the second flow path. The fluid reaction device according to (1), wherein the openings of the flow path are three-dimensionally arranged so as to be alternately adjacent to each other at the opening end face.
[0122] (87) 前記マ二ホールド部は、前記第 1の流路と第 2の流路を構成する溝が交互 に形成された板状のエレメントを積層することにより、前記開口端面においてこれら第 一の流路と第二の流路が千鳥状に配置されてレ、ることを特徴とする(85)に記載の流 体反応装置。  (87) The manifold section is formed by laminating plate-like elements in which grooves constituting the first flow path and the second flow path are alternately formed, so that the opening end face can The fluid reactor according to (85), wherein the first channel and the second channel are arranged in a staggered manner.
[0123] (88) 前記第 1の流路と第 2の流路の前記開口の断面における最大幅寸法が 3000  (88) The maximum width dimension in the cross section of the opening of the first channel and the second channel is 3000.
β m以下であることを特徴とする(86)または(87)に記載の流体反応装置。  The fluid reaction apparatus according to (86) or (87), wherein the fluid reaction apparatus is β m or less.
[0124] (89) 前記合流空間またはその下流側に、前記第 1の流路と第 2の流路からの流 れ混合を迂回させる混合促進物体が設けられてレ、ることを特徴とする(86)〜(88)の いずれかに記載の流体反応装置。 (89) A mixing promoting object for bypassing flow mixing from the first flow path and the second flow path is provided in the merging space or the downstream side thereof. (86)-(88) The fluid reaction apparatus according to any one of (88).
[0125] (90) 前記混合促進物体の表面に、触媒作用を有する物質を設けたことを特徴と する(89)に記載の流体反応装置。 [0125] (90) The fluid reaction apparatus according to (89), wherein a substance having a catalytic action is provided on a surface of the mixing promoting object.
[0126] (91) 前記混合促進物体の代表寸法が、該混合促進物体の直前における前記第(91) The representative dimension of the mixing promoting object is the first dimension immediately before the mixing promoting object.
1の流路と第 2の流路からの個々の流れの最小幅寸法の 0.1倍から 10倍の範囲内に あることを特徴とする(89)または(90)に記載の流体反応装置。 Within 0.1 to 10 times the minimum width dimension of the individual flows from the first and second channels The fluid reactor according to (89) or (90), wherein
[0127] (92) 前記合流空間の下流側に、流路断面が徐々に減少する絞り部または流体 レンズが設けられてレ、ることを特徴とする(86)〜(91)のレ、ずれかに記載の流体反応 装置。 [0127] (92) The deviation or deviation of (86) to (91), characterized in that a throttle part or a fluid lens in which the flow path cross section gradually decreases is provided on the downstream side of the merge space. The fluid reaction device according to claim 1.
[0128] (93) 前記第 1の流路と第 2の流路からの個々の流れの仮想断面の最小幅が、前 記絞り部または流体レンズの下流側部分において 500 μ m以下になっていることを特 徴とする(92)に記載の流体反応装置。  [93] (93) The minimum width of the virtual cross section of each flow from the first flow path and the second flow path is 500 μm or less at the downstream portion of the throttle part or the fluid lens. (92). The fluid reaction device according to (92).
[0129] (94) 前記開口端面と前記絞り部または流体レンズとは、ほぼ相似な流路断面を 有することを特徴とする(92)または(93)に記載の流体反応装置。 (94) The fluid reaction device according to (92) or (93), wherein the opening end surface and the throttle portion or the fluid lens have substantially similar flow path cross sections.
[0130] (95) 複数の前記マ二ホールド部が、前記合流空間においてそれぞれの開口端 面を対向させるように配置されてレ、ることを特徴とする(86)〜(94)のレ、ずれかに記 載の流体反応装置。 (95) The trays of (86) to (94), wherein the plurality of manifolds are arranged so that the respective opening end faces are opposed to each other in the merging space. Fluid reaction device as described in any one of the above.
[0131] (96) 前記第 1の流路、第 2の流路、前記合流空間および/またはその下流側を 流れる流体を加熱または冷却する熱交換器を設けたことを特徴とする(86)〜(95) のレ、ずれかに記載の流体反応装置。  (96) A heat exchanger for heating or cooling the first flow path, the second flow path, the merge space and / or the fluid flowing downstream thereof is provided (86) The fluid reaction device according to any one of (95) to (9).
[0132] (97) 前記熱交換器は、被加熱流体流路および/または熱媒体流路を構成する 溝が形成された板状のエレメントを積層することにより構成されていることを特徴とす る(96)に記載の流体反応装置。 [0132] (97) The heat exchanger is configured by stacking plate-like elements in which grooves constituting the heated fluid flow path and / or the heat medium flow path are stacked. The fluid reaction device according to (96).
[0133] (98) 前記合流空間の下流側を流れる流体を加熱または冷却する熱交換器の被 加熱流体流路を合成反応時間調整用のディレイループとし、ディレイループパター ンの変更または積層枚数の変更により熱交換内の滞留時間を調整可能となっている ことを特徴とする(96)または(97)に記載の流体反応装置。 [0133] (98) The heated fluid flow path of the heat exchanger that heats or cools the fluid flowing in the downstream side of the merge space is a delay loop for adjusting the synthesis reaction time, and the delay loop pattern is changed or the number of stacked layers is increased. The fluid reaction device according to (96) or (97), wherein the residence time in the heat exchange can be adjusted by change.
[0134] (99) 前記熱交換器の熱媒体として、被加熱流体に混入しても被加熱流体を汚染 しない流体を用いることを特徴とする(96)〜(98)のいずれかに記載の流体反応装 置。 [0134] (99) The fluid according to any one of (96) to (98), wherein a fluid that does not contaminate the heated fluid even if mixed into the heated fluid is used as the heat medium of the heat exchanger. Fluid reaction device.
[0135] (100) 前記混合基板として、 (67)〜(85)のいずれかの流体混合装置を用いるこ とを特徴とする(2)〜(66)のレ、ずれかに記載の流体反応装置。  (100) The fluid reaction according to (2) to (66), wherein the fluid mixing device according to any one of (67) to (85) is used as the mixing substrate. apparatus.
[0136] (101) 前記反応基板の流路を形成する周囲部材は SUS316、 SUS304、 Ti、石英ガ ラス、パイレックスガラス(登録商標)等の硬質ガラス、 PEEK、 PE、 PVC、 PDMS、 Si、 P TFE、 PCTFEの内の 1または複数を含むこと特徴とすることを特徴とする(2)〜(66)、 (100)のいずれかに記載の流体反応装置。 (101) The surrounding members forming the flow path of the reaction substrate are SUS316, SUS304, Ti, quartz (2) to (66) characterized by containing one or more of hard glass such as glass, Pyrex glass (registered trademark), PEEK, PE, PVC, PDMS, Si, PTFE, and PCTFE ), (100).
[0137] (102) 前記反応基板の流路の内壁の一部またはすベての材質力 u、 Ag、 Pt、 Pd 、 Ni、 Cu、 Ru、 Zr、 Ta、 Nbの内の 1または複数またはこれらの金属を含む化合物であ ることを特徴とする(2)〜(66)、(100)、および(101)のいずれかに記載の流体反 応装置。 (102) Material force of part or all of inner wall of flow path of reaction substrate 1 or more of u, Ag, Pt, Pd, Ni, Cu, Ru, Zr, Ta, Nb or The fluid reaction device according to any one of (2) to (66), (100), and (101), which is a compound containing these metals.
[0138] (103) 前記混合基板および Zまたは反応基板が、熱媒体流路を有する温度調整 ケース内に収容されてレ、ることを特徴とする(2)〜(66)、および(100)〜(102)のい ずれかに記載の流体反応装置。  (103) (2) to (66) and (100), wherein the mixed substrate and Z or the reaction substrate are accommodated in a temperature adjustment case having a heat medium flow path. The fluid reaction device according to any one of to (102).
[0139] (104) 前記該熱媒体流体流路内に温度測定手段が設けられていることを特徴と する(103)に記載の流体反応装置。 (104) The fluid reaction device according to (103), characterized in that a temperature measuring means is provided in the heat medium fluid flow path.
[0140] (105) 前記熱媒体流路は、前記混合基板および/または反応基板の表裏面に 沿った複数の分岐流路を有することを特徴とする(102)または(103)に記載の流体 反応装置。 (105) The fluid according to (102) or (103), wherein the heat medium passage has a plurality of branch passages along front and back surfaces of the mixed substrate and / or reaction substrate. Reactor.
[0141] (106) 前記温度調整ケースはケース本体と蓋部を有し、前記熱媒体流路はこれ らを連絡するように形成されていることを特徴とする(103)〜(: 105)のいずれかに記 載の流体反応装置。  (106) The temperature adjustment case has a case main body and a lid, and the heat medium flow path is formed so as to communicate with them (103) to (: 105) The fluid reaction device according to any one of the above.
[0142] (107) 熱流体が流入する前記ケース本体の第 1のヘッダに設けられた複数の絞り 穴が前記蓋部の第 2のヘッダと直結し、第 2のヘッダには前記混合基板および/また は反応基板の表裏面に平行な流れを形成する複数の分岐流路へと直結する第 2の 絞り穴が設けられていることを特徴とする(106)に記載の流体反応装置。  (107) A plurality of throttle holes provided in the first header of the case body into which the thermal fluid flows are directly connected to the second header of the lid, and the second header includes the mixed substrate and (2) The fluid reaction apparatus as set forth in (106), characterized in that a second restriction hole is provided that is directly connected to a plurality of branch flow paths that form a flow parallel to the front and back surfaces of the reaction substrate.
[0143] (108) 前記温度調整ケースの材料は Ti、 Al、 SUS304、 SUS316のいずれかである ことを特徴とする(48)〜(: 107)のいずれかに記載の流体反応装置。  (108) The fluid reaction device according to any one of (48) to (: 107), wherein the material of the temperature adjustment case is any one of Ti, Al, SUS304, and SUS316.
[0144] (109) 前記温度制御手段は、前記混合基板または反応基板を囲い込み混合流 体の温度を調整する温度調整媒体保持機構と、保持機構に保持された温度調整媒 体と、温度測定センサと、温度調整媒体と混合反応流体の間の伝熱量を調整する伝 熱量調整手段を備えたことを特徴とする(2)〜(66)、および(100)〜(: 108)のレ、ず れかに記載の流体反応装置。 (109) The temperature control means includes a temperature adjustment medium holding mechanism that surrounds the mixed substrate or the reaction substrate and adjusts the temperature of the mixed fluid, a temperature adjustment medium held by the holding mechanism, and a temperature measurement sensor And (2) to (66), and (100) to (: 108), wherein the heat transfer amount adjusting means for adjusting the heat transfer amount between the temperature adjusting medium and the mixed reaction fluid is provided. A fluid reaction device according to any one of the above.
[0145] (110) 前記温度調整媒体として、シリコンオイル、フッ素オイル、アルコール、液 体窒素、電気抵抗熱線、ペルチヱ素子のいずれ力 1または複数が用いられることを 特徴とする(109)に記載の流体反応装置。  [110] (110) As described in (109), any one or more of silicon oil, fluorine oil, alcohol, liquid nitrogen, electric resistance heating wire, and Peltier element is used as the temperature adjusting medium. Fluid reaction device.
[0146] (111) 前記伝熱量調整手段はポンプ流量調整、流量調整弁、電気量のいずれ 力、であることを特徴とする(109)または(110)に記載の流体反応装置。 (111) The fluid reaction device according to (109) or (110), wherein the heat transfer amount adjusting means is any one of a pump flow rate adjustment, a flow rate adjustment valve, and an electric quantity.
[0147] (112) 前記温度調整媒体保持機構を断熱部材で覆う構造にしたことを特徴とす る(109)〜(: 111)のいずれかに記載の流体反応装置。 (112) The fluid reaction device according to any one of (109) to (: 111), wherein the temperature adjustment medium holding mechanism is configured to be covered with a heat insulating member.
[0148] (113) 前記断熱部材はシリコンゴムであることを特徴とする(112)に記載の流体 反応装置。 (113) The fluid reaction device according to (112), wherein the heat insulating member is silicon rubber.
[0149] (114) 反応後物質中の必要物質と不要物質を分別する分離抽出手段を具備し たことを特徴とする(2)〜(66)、および(100)〜(: 113)のいずれかに記載の流体反 応装置。  [0149] (114) Any one of (2) to (66) and (100) to (: 113) characterized by having separation and extraction means for separating necessary and unnecessary substances in the substance after the reaction A fluid reaction device according to any one of the above.
[0150] (115) 粉体原料を液化溶解するための粉体溶解器を具備したことを特徴とする( 2)〜(66)、および(100)〜(: 114)のいずれかに記載の流体反応装置。  [0150] (115) According to any one of (2) to (66), and (100) to (: 114), characterized by comprising a powder dissolver for liquefying and dissolving the powder raw material Fluid reaction device.
[0151] (116) 流体反応装置内の一部または全域を装置外と隔離し、装置外の圧力より 負の圧力としたことを特徴とする(2)〜(66)、および(100)〜(: 115)のいずれかに記 載の流体反応装置。  [0151] (116) (2) to (66) and (100) to (100), characterized in that a part or the whole of the fluid reaction device is isolated from the outside of the device and is set to a negative pressure from the pressure outside the device. (: 115) The fluid reaction device according to any one of the above.
[0152] (117) 流体反応装置の下部において漏れた液を貯める液貯めパンと、漏れた液 を検知する漏液センサとを具備したことを特徴とする(2)〜(66)、(100)〜(116)の いずれかに記載の流体反応装置。  [0152] (117) (2) to (66), (100) characterized by comprising a liquid storage pan for storing the liquid leaked in the lower part of the fluid reaction device, and a liquid leak sensor for detecting the leaked liquid. ) To (116).
[0153] (118) 前記動作制御手段には、流体の流量と反応温度を表示する表示機構が 具備されていることを特徴とする(2)〜(66)、(100)〜(: 117)のレ、ずれかに記載の 流体反応装置。 (118) The operation control means is provided with a display mechanism for displaying the flow rate of the fluid and the reaction temperature (2) to (66), (100) to (: 117) The fluid reaction device according to any one of the above.
発明の効果  The invention's effect
[0154] 本発明によれば、マイクロ空間を使用して複数の流体を混合させ、種々の化学反 応作業を効率良く行うことができる、量産手段としての実用的な用途に好適な流体反 応装置を提供することができる。 [0155] 本発明によれば、微細な流路を交互に隣接させて合流空間に流入させる混合流路 を有する混合装置が、簡単な構成で容易に製造される。 [0154] According to the present invention, a plurality of fluids can be mixed using a micro space, and various chemical reaction operations can be performed efficiently, which is suitable for practical use as a mass production means. An apparatus can be provided. [0155] According to the present invention, a mixing apparatus having a mixing channel that allows fine channels to be alternately adjacent to each other and flow into the merge space is easily manufactured with a simple configuration.
[0156] 本発明によれば、混合流路における流体の合流点から流れに沿って微細な柱状の 障害物を分散して配置することにより、マイクロ流路を用いた混合装置が、簡単な構 成で容易に製造される。 [0156] According to the present invention, a fine columnar obstacle is dispersed and arranged along the flow from the confluence of fluids in the mixing channel, whereby the mixing device using the microchannel has a simple configuration. Easy to manufacture.
[0157] 本発明によれば量産装置に不可欠な自動化運転が可能になっている。また、薬品 製造ラインに不可欠な安全対策を提供することができる。 [0157] According to the present invention, it is possible to perform an automated operation indispensable for a mass production apparatus. It can also provide safety measures that are indispensable for chemical production lines.
[0158] 本発明によれば、流体どうしの間の界面の比率を向上させ、効率的な混合と反応を 行うことができるとともに、簡単な構成であって低コストで製造でき、メンテナンスが容 易であるようなマイクロリアクタを提供することができる。 [0158] According to the present invention, the ratio of the interface between fluids can be improved, efficient mixing and reaction can be performed, and a simple configuration can be produced at low cost, making maintenance easy. A microreactor such as can be provided.
[0159] 本発明によれば、流体の比重、比熱、および粘度などの物性に影響されることなく 正確な流量を測定する流路測定装置および所望の流量を維持することができる流量 調整装置を提供することができる。 [0159] According to the present invention, there is provided a flow path measuring device that measures an accurate flow rate without being affected by physical properties such as specific gravity, specific heat, and viscosity of the fluid, and a flow rate adjustment device that can maintain a desired flow rate. Can be provided.
[0160] 本発明によれば、脈動を抑制した連続運転が可能な送液装置を提供することがで きる。 [0160] According to the present invention, it is possible to provide a liquid delivery apparatus capable of continuous operation with suppressed pulsation.
本発明によれば、オフライン分析によるスクリーニング等が不要で短時間で分析結果 を出すことが可能になる。  According to the present invention, it is possible to obtain analysis results in a short time without the need for screening by off-line analysis.
図面の簡単な説明  Brief Description of Drawings
[0161] [図 1]この発明の実施の形態の流体反応装置の全体の液フローを示す図である。  FIG. 1 is a diagram showing an overall liquid flow of a fluid reaction device according to an embodiment of the present invention.
[図 2]図 1の流体反応装置の全体の構成を示す斜視図である。  2 is a perspective view showing the overall configuration of the fluid reaction device in FIG. 1. FIG.
[図 3]図 1の流体反応装置の全体の構成を示す(a)平面図、 (b)正面図である。  3 is (a) a plan view and (b) a front view showing the overall configuration of the fluid reaction apparatus of FIG. 1.
[図 4]原料用供給部の構成を示す図である。  FIG. 4 is a diagram showing a configuration of a raw material supply unit.
[図 5]マスフローコントローラを示す図である。  FIG. 5 is a diagram showing a mass flow controller.
[図 6]マスフローコントローラの他の実施の形態を示す図である。  FIG. 6 is a diagram showing another embodiment of the mass flow controller.
[図 7]混合基板の構成を示す(a)平面図、(b)断面図である。  FIG. 7A is a plan view and FIG. 7B is a cross-sectional view showing a configuration of a mixed substrate.
[図 8]混合基板の混合部を拡大して示す図である。  FIG. 8 is an enlarged view showing a mixing portion of the mixed substrate.
[図 9]反応基板の構成を示す(a)平面図、(b)断面図である。  FIG. 9A is a plan view showing the structure of a reaction substrate, and FIG. 9B is a cross-sectional view.
[図 10]反応基板の他の構成を示すもので、 (a)は流路に沿った縦断面図、 (b)は(a) における b— b矢視図であり、(C)はさらに他の構成を示す横断面図である。 FIG. 10 shows another structure of the reaction substrate, (a) is a longitudinal sectional view along the flow path, (b) is (a) FIG. 6B is a cross-sectional view taken along the line bb, and (C) is a cross-sectional view showing still another configuration.
[図 11]処理ブロックの構成を示す斜視図である。  FIG. 11 is a perspective view showing a configuration of a processing block.
園 12]処理ブロックが重ね合わせられた構造を示すもので、 (a)温度調整ケースの平 面断面図、(b)側面断面図、(c) (a)の要部を拡大して示す図、(d) (b)の要部を拡 大して示す図である。 12] Shows the structure in which the processing blocks are overlaid. (A) Plane sectional view of temperature adjustment case, (b) Side sectional view, (c) Diagram showing an enlarged view of the main part of (a) (D) It is a figure which expands and shows the principal part of (b).
園 13]他の実施の形態の生成流体貯留部の構成を示す図である。 [13] FIG. 13 is a diagram showing a configuration of a product fluid storage section according to another embodiment.
園 14] (a)および (b)は、混合部の他の構成を示す図である。 14] (a) and (b) are diagrams showing another configuration of the mixing unit.
[図 15] (a)ないし (c)は、混合部のさらなる他の構成を示す図である。  FIG. 15 (a) to (c) are diagrams showing still another configuration of the mixing unit.
園 16] (a)および (b)は、混合部のさらなる他の構成を示す図である。 16] (a) and (b) are diagrams showing still another configuration of the mixing unit.
[図 17] (a)ないし (c)は、混合部のさらなる他の構成を示す図である。  [FIG. 17] (a) to (c) are diagrams showing still another configuration of the mixing section.
園 18] (a)および (b)は、混合部のさらなる他の構成を示す図である。 (18) (a) and (b) are diagrams showing still another configuration of the mixing unit.
園 19]混合流路の他の構成を示す(a)平面図、(b) (a)の要部を拡大して示す図で ある。 FIG. 19] (a) Plan view showing another configuration of the mixing channel, and (b) An enlarged view of the main part of (a).
[図 20]混合流路のさらに他の構成を示す平面図である。  FIG. 20 is a plan view showing still another configuration of the mixing channel.
[図 21]この発明の他の実施の形態における処理部のフロー図である。  FIG. 21 is a flowchart of a processing unit in another embodiment of the present invention.
[図 22]この発明のさらに他の実施の形態における処理部のフロー図である。  FIG. 22 is a flowchart of a processing unit in still another embodiment of the present invention.
[図 23]この発明のさらに他の実施の形態における処理部のフロー図である。  FIG. 23 is a flowchart of a processing unit in still another embodiment of the present invention.
[図 24]この発明のさらに他の実施の形態における処理部のフロー図である。  FIG. 24 is a flowchart of a processing unit in still another embodiment of the present invention.
園 25]図 24の実施の形態の処理部の構成を示す斜視図である。 25] A perspective view showing the configuration of the processing unit of the embodiment of FIG.
園 26]この発明の他の実施の形態の原料貯留部の構成を示す斜視図である。 園 27]この発明の実施の形態のマイクロリアクタを用いた化合物製造システムの全体 構成を示す図である。 FIG. 26] is a perspective view showing a configuration of a raw material reservoir according to another embodiment of the present invention. Sono] is a diagram showing the overall configuration of a compound production system using a microreactor according to an embodiment of the present invention.
園 28]混合 ·反応部の構成を示す平面図である。 [28] FIG. 28 is a plan view showing the configuration of the mixing / reaction unit.
[図 29] (a)予熱ブロックを構成する第 1の熱交換エレメントの正面図、(b)同じく第 1の 熱交換エレメントと第 2の熱交換エレメントが重なった状態の正面図、(c)第 1の熱交 換エレメントの断面図である。  [FIG. 29] (a) Front view of first heat exchange element constituting preheating block, (b) Front view of first heat exchange element and second heat exchange element overlapped, (c) FIG. 3 is a cross-sectional view of a first heat exchange element.
[図 30]予熱ブロックにおける原料溶液の流れを示す図である。  FIG. 30 is a diagram showing the flow of a raw material solution in a preheating block.
[図 31]予熱ブロックにおける熱媒体の流れを示す図である。 園 32]混合ブロックの構成を示す平面図である。 FIG. 31 is a diagram showing the flow of the heat medium in the preheating block. FIG. 32] is a plan view showing the configuration of the mixing block.
園 33]マ二ホールドの構成を分解して示す斜視図である。 FIG. 33] is an exploded perspective view showing the structure of the manifold.
園 34]マ二ホールドと合流空間を模式的に示す図である。 [Sen 34] It is a diagram schematically showing the manifold hold and the merge space.
園 35]反応ブロックの(a)出口側のカバープレートを示す断面図、 (b)同じく正面図、 (c)入口側のカバープレートを示す正面図、 (d)同じく断面図である。 35] A cross-sectional view showing a cover plate on the outlet side of the reaction block, (b) a front view, (c) a front view showing a cover plate on the inlet side, and (d) a cross-sectional view.
園 36] (a)反応ブロックを構成する第 1の熱交換エレメントの正面図、(b)同じく第 1の 熱交換エレメントと第 2の熱交換エレメントが重なった状態の正面図、(c)第 1の熱交 換エレメントの断面図である。 36) (a) Front view of first heat exchange element constituting reaction block, (b) Front view of first heat exchange element and second heat exchange element overlapping, (c) First view 1 is a cross-sectional view of a heat exchange element 1. FIG.
園 37A]この発明の他の実施の形態のマ二ホールドと合流空間を模式的に示す図で ある。 37A] This is a diagram schematically showing a manifold and a merge space according to another embodiment of the present invention.
園 37B]この発明のさらに他の実施の形態のマ二ホールドと合流空間を模式的に示 す図である。 [37] FIG. 37B is a diagram schematically showing a manifold and a merge space according to still another embodiment of the present invention.
園 37C]この発明のさらに他の実施の形態のマ二ホールドと合流空間を模式的に示 す図である。 37C] This is a diagram schematically showing a manifold and a merge space according to still another embodiment of the present invention.
園 37D]この発明のさらに他の実施の形態のマ二ホールドと合流空間を模式的に示 す図である。 [37] It is a diagram schematically showing a manifold and a merge space according to still another embodiment of the present invention.
園 37E]この発明のさらに他の実施の形態のマ二ホールドと合流空間を模式的に示 す図である。 [Sen 37E] This is a diagram schematically showing a manifold and a merge space according to still another embodiment of the present invention.
園 37F]この発明のさらに他の実施の形態のマ二ホールドと合流空間を模式的に示 す図である。 [37] FIG. 37 is a diagram schematically showing a manifold and a merge space according to still another embodiment of the present invention.
園 38A]この発明のさらに他の実施の形態のマ二ホールドと合流空間を模式的に示 す図である。 [38A] It is a diagram schematically showing a manifold and a merge space according to still another embodiment of the present invention.
園 38B]この発明のさらに他の実施の形態のマ二ホールドと合流空間を模式的に示 す図である。 [38] FIG. 38B is a diagram schematically showing a manifold and a merge space according to still another embodiment of the present invention.
園 39]—般的なマスフローコントローラの流量測定部を示す模式図である。 [39] FIG. 39 is a schematic diagram showing a flow rate measurement unit of a general mass flow controller.
園 40]流路の温度分布を示すグラフである。 Gan 40] is a graph showing the temperature distribution in the flow path.
[図 41]微小流路を流れる流体の流速分布を示す図である。  FIG. 41 is a diagram showing a flow velocity distribution of a fluid flowing through a micro channel.
園 42]流体の流量が測定される原理を説明するための図である。 [図 43]本発明の第 1の実施形態に係る流量調整装置を示す模式図である。 Fig. 42] is a diagram for explaining the principle by which the flow rate of fluid is measured. FIG. 43 is a schematic diagram showing a flow rate adjusting device according to the first embodiment of the present invention.
園 44]図 43に示す温調機構と上流側温度センサの他の構成例を示す断面図である 44] is a cross-sectional view showing another configuration example of the temperature control mechanism and the upstream temperature sensor shown in FIG.
[図 45]図 45 (a)は図 44の Vn_Vn線断面図、図 45 (b)は図 45 (a)に示す構造体の 他の構成例を示す断面図である。 45 (a) is a cross-sectional view taken along the line Vn_Vn of FIG. 44, and FIG. 45 (b) is a cross-sectional view showing another configuration example of the structure shown in FIG. 45 (a).
[図 46]図 43に示す制御弁の他の構成例を示す拡大図である。  FIG. 46 is an enlarged view showing another configuration example of the control valve shown in FIG. 43.
[図 47]本発明の第 2の実施形態に係る流量調整装置を示す模式図である。  FIG. 47 is a schematic diagram showing a flow rate adjusting device according to a second embodiment of the present invention.
[図 48]本発明の第 3の実施形態に係る流量調整装置を示す模式図である。  FIG. 48 is a schematic diagram showing a flow rate adjusting device according to a third embodiment of the present invention.
園 49]流体の流量が測定される原理を説明するための図である。 [49] FIG. 49 is a diagram for explaining the principle by which the flow rate of fluid is measured.
[図 50]図 48に示すスプールの斜視図である。  FIG. 50 is a perspective view of the spool shown in FIG. 48.
[図 51]本発明の第 4の実施形態に係る流量調整装置を示す模式図である。  FIG. 51 is a schematic diagram showing a flow rate adjusting apparatus according to a fourth embodiment of the present invention.
[図 52]流体反応装置の全体を示す模式図である。  FIG. 52 is a schematic diagram showing the entire fluid reaction apparatus.
園 53]図 52の流体反応装置の全体の構成を示す斜視図である。 [53] FIG. 53 is a perspective view showing the overall configuration of the fluid reaction device of FIG.
[図 54]図 54 (a)は図 52の流体反応装置の全体の構成を示す平面図、図 54 (b)は正 面図である。  54 (a) is a plan view showing the overall configuration of the fluid reaction apparatus in FIG. 52, and FIG. 54 (b) is a front view.
園 55]図 55 (a)は混合部の構成を示す平面図、図 55 (b)は断面図である。 55] FIG. 55 (a) is a plan view showing the configuration of the mixing section, and FIG. 55 (b) is a cross-sectional view.
[図 56]混合部の合流部を拡大して示す図である。 FIG. 56 is an enlarged view showing a merging portion of the mixing portion.
園 57]図 57 (a)は反応部の構成を示す平面図、図 57 (b)は断面図である。 Fig. 57 (a) is a plan view showing the structure of the reaction section, and Fig. 57 (b) is a cross-sectional view.
園 58]図 58 (a)は反応部の他の構成を示す縦断面図、図 58 (b)は図 58 (a)におけ る xvm-xvm線断面図、図 58 (c)は反応部のさらに他の構成を示す横断面図である 園 59]温度調整ケースの構成を示す斜視図である。 Fig. 58 (a) is a longitudinal sectional view showing another configuration of the reaction unit, Fig. 58 (b) is a cross-sectional view taken along the line xvm-xvm in Fig. 58 (a), and Fig. 58 (c) is the reaction unit. FIG. 59 is a cross-sectional view showing still another configuration of the garden 59] is a perspective view showing the configuration of the temperature adjustment case.
[図 60]図 60 (a)は処理部の平面断面図、図 60 (b)は側面断面図、図 60 (c)は図 60 ( a)の部分拡大図、図 60 (d)は図 60 (b)の部分拡大図である。  [FIG. 60] FIG. 60 (a) is a plan sectional view of the processing section, FIG. 60 (b) is a side sectional view, FIG. 60 (c) is a partially enlarged view of FIG. 60 (a), and FIG. It is the elements on larger scale of 60 (b).
園 61]生成物貯留部の他の構成を示す図である。 FIG. 61 is a diagram showing another configuration of the product storage unit.
[図 62]図 62 (a)は合流部の他の構成を示す平面図、図 62 (b)は図 62 (a)の要部を 拡大して示す図である。  FIG. 62 (a) is a plan view showing another configuration of the merging portion, and FIG. 62 (b) is an enlarged view showing the main part of FIG. 62 (a).
園 63]合流部のさらに他の構成を示す平面図である。 [図 64]流体反応装置の他の構成を示す模式図である。 FIG. 63] is a plan view showing still another configuration of the junction. FIG. 64 is a schematic diagram showing another configuration of the fluid reaction device.
園 65]流体反応装置の他の構成を示す模式図である。 [65] FIG. 65 is a schematic diagram showing another configuration of the fluid reaction device.
園 66]流体反応装置の他の構成を示す模式図である。 FIG. 66] A schematic diagram showing another configuration of the fluid reaction device.
園 67]流体反応装置の他の構成を示す模式図である。 [Nora 67] It is a schematic diagram showing another configuration of the fluid reaction device.
[図 68]図 67の処理部の構成を示す斜視図である。  68 is a perspective view showing a configuration of a processing unit in FIG. 67. FIG.
園 69]流体反応装置の他の構成を示す模式図である。 [69] FIG. 69 is a schematic diagram showing another configuration of the fluid reaction device.
園 70]—般的なマスフローコントローラの流量測定部を示す模式図である。 FIG. 70] is a schematic diagram showing a flow rate measuring unit of a general mass flow controller.
[図 71]流路の温度分布を示すグラフである。  FIG. 71 is a graph showing a temperature distribution in a flow path.
[図 72]微小流路を流れる流体の流速分布を示す図である。  FIG. 72 is a diagram showing a flow velocity distribution of a fluid flowing through a micro channel.
園 73]流体の流量が測定される原理を説明するための図である。 FIG. 73 is a diagram for explaining the principle by which the flow rate of fluid is measured.
[図 74]本発明の第 1の実施の形態に係る流量調整装置を示す模式図である。  FIG. 74 is a schematic diagram showing a flow rate adjusting apparatus according to the first embodiment of the present invention.
園 75]差分検出回路の構成を示す図である。 FIG. 75 is a diagram illustrating a configuration of a difference detection circuit.
園 76]図 74に示す制御弁の他の構成例を示す拡大図である。 FIG. 76] is an enlarged view showing another configuration example of the control valve shown in FIG.
[図 77]本発明の第 2の実施の形態に係る流量調整装置を示す模式図である。  FIG. 77 is a schematic view showing a flow rate adjusting apparatus according to a second embodiment of the present invention.
園 78]流体の流量が測定される原理を説明するための図である。 Fig. 78] is a diagram for explaining the principle by which the flow rate of fluid is measured.
[図 79]本発明の第 3の実施の形態に係る流量調整装置を示す模式図である。  FIG. 79 is a schematic diagram showing a flow rate adjusting apparatus according to a third embodiment of the present invention.
園 80]流体の流量が測定される原理を説明するための図である。 FIG. 80 is a diagram for explaining the principle by which the flow rate of fluid is measured.
[図 81]図 79に示すスプールの斜視図である。  81 is a perspective view of the spool shown in FIG. 79. FIG.
[図 82]本発明の第 4の実施の形態に係る流量調整装置を示す模式図である。  FIG. 82 is a schematic diagram showing a flow rate adjusting apparatus according to a fourth embodiment of the present invention.
[図 83]流体反応装置の全体を示す模式図である。  FIG. 83 is a schematic view showing the whole fluid reaction apparatus.
園 84]図 83の流体反応装置の全体の構成を示す斜視図である。 FIG. 84] is a perspective view showing the overall configuration of the fluid reaction device in FIG. 83.
[図 85]図 85 (a)は図 83の流体反応装置の全体の構成を示す平面図、図 85 (b)は正 面図である。  FIG. 85 (a) is a plan view showing the overall configuration of the fluid reaction device of FIG. 83, and FIG. 85 (b) is a front view.
[図 86]図 86 (a)は混合部の構成を示す平面図、図 86 (b)は断面図である。  FIG. 86 (a) is a plan view showing the configuration of the mixing section, and FIG. 86 (b) is a cross-sectional view.
園 87]混合部の合流部を拡大して示す図である。 Fig. 87] is an enlarged view of the confluence portion of the mixing portion.
[図 88]図 88 (a)は反応部の構成を示す平面図、図 88 (b)は断面図である。  FIG. 88 (a) is a plan view showing the structure of the reaction section, and FIG. 88 (b) is a cross-sectional view.
[図 89]図 89 (a)は反応部の他の構成を示す縦断面図、図 89 (b)は図 89 (a)におけ る xvm-xvm線断面図、図 89 (c)は反応部のさらに他の構成を示す横断面図である 園 90]温度調整ケースの構成を示す斜視図である。 [FIG. 89] FIG. 89 (a) is a longitudinal sectional view showing another configuration of the reaction section, FIG. 89 (b) is a sectional view taken along the line xvm-xvm in FIG. 89 (a), and FIG. 89 (c) is a reaction. It is a transverse cross section showing other composition of a section FIG. 90 is a perspective view showing the configuration of the temperature adjustment case.
[図 91]図 91 (a)は処理部の平面断面図、図 91 (b)は側面断面図、図 91 (c)は図 91 ( a)の部分拡大図、図 91 (d)は図 91 (b)の部分拡大図である。  [FIG. 91] FIG. 91 (a) is a plan sectional view of the processing section, FIG. 91 (b) is a side sectional view, FIG. 91 (c) is a partially enlarged view of FIG. 91 (a), and FIG. 91 (d) is a diagram. It is the elements on larger scale of 91 (b).
[図 92]生成物貯留部の他の構成を示す図である。 FIG. 92 is a diagram showing another configuration of the product storage unit.
[図 93]図 93 (a)は合流部の他の構成を示す平面図、図 93 (b)は図 93 (a)の要部を 拡大して示す図である。  FIG. 93 (a) is a plan view showing another configuration of the merging section, and FIG. 93 (b) is an enlarged view showing the main part of FIG. 93 (a).
園 94]合流部のさらに他の構成を示す平面図である。 FIG. 94] is a plan view showing still another configuration of the junction.
園 95]流体反応装置の他の構成を示す模式図である。 FIG. 95 is a schematic diagram showing another configuration of the fluid reaction device.
園 96]流体反応装置の他の構成を示す模式図である。 FIG. 96] is a schematic diagram showing another configuration of the fluid reaction device.
園 97]流体反応装置の他の構成を示す模式図である。 FIG. 97] is a schematic diagram showing another configuration of the fluid reaction device.
園 98]流体反応装置の他の構成を示す模式図である。 Fig. 98] is a schematic diagram showing another configuration of the fluid reaction device.
[図 99]図 98の処理部の構成を示す斜視図である。 99 is a perspective view showing a configuration of a processing unit in FIG. 98. FIG.
園 100]流体反応装置の他の構成を示す模式図である。 FIG. 100 is a schematic diagram showing another configuration of the fluid reaction device.
園 101]この発明の第 1の実施の形態のプランジャポンプ装置を示す(a)全体図、(b) 要部を示す図である。 Fig. 101] (a) Overall view showing the plunger pump device of the first embodiment of the present invention, (b) showing the main part.
[図 102] 1つのプランジャポンプの各部の動作を説明する図である。  FIG. 102 is a diagram for explaining the operation of each part of one plunger pump.
園 103]第 1の実施の形態のプランジャポンプ装置の動作を示す図である。 FIG. 103] A diagram showing the operation of the plunger pump device of the first embodiment.
[図 104]この発明の第 2の実施の形態のプランジャポンプ装置を示す図である。  Fig. 104 is a diagram showing a plunger pump device according to a second embodiment of the present invention.
[図 105] (a), (b)はそれぞれ従来のプランジャポンプの動作を説明する図である。  [Fig. 105] (a) and (b) are diagrams for explaining the operation of the conventional plunger pump.
[図 106]この発明の一実施の形態のプランジャポンプ装置を示す図である。  FIG. 106 is a diagram showing a plunger pump device according to an embodiment of the present invention.
[図 107]プランジャポンプ装置とマイクロリアクタの接続を示す図である。  FIG. 107 is a diagram showing a connection between a plunger pump device and a microreactor.
[図 108] 1つのプランジャポンプの送り速度のパターンを示すグラフである。  FIG. 108 is a graph showing a feed rate pattern of one plunger pump.
[図 109]プランジャポンプ装置全体の送り速度のパターンを示すグラフである。  FIG. 109 is a graph showing a feed rate pattern of the entire plunger pump device.
園 110]送り速度の調整動作を説明するフロー図である。 FIG. 110] is a flowchart for explaining the feed speed adjustment operation.
園 111]送り速度の制御を説明するグラフである。 [Sen 111] is a graph illustrating control of the feed rate.
園 112]他の実施の形態における制御動作を説明するグラフである。 [Sen 112] is a graph for explaining the control operation in another embodiment.
[図 113]流体反応装置の全体を示す模式図である。 園 114]図 113の流体反応装置の全体の構成を示す斜視図である。 FIG. 113 is a schematic diagram showing the entire fluid reaction apparatus. 114] FIG. 114 is a perspective view showing the overall configuration of the fluid reaction device of FIG. 113.
[図 115]図 115 (a)は図 8の流体反応装置の全体の構成を示す平面図、図 115 (b)は 正面図である。  115 (a) is a plan view showing the overall configuration of the fluid reaction apparatus in FIG. 8, and FIG. 115 (b) is a front view.
[図 116]図 116 (a)は混合部の構成を示す平面図、図 116 (b)は断面図である。 園 117]混合部の合流部を拡大して示す図である。  116 (a) is a plan view showing the configuration of the mixing section, and FIG. 116 (b) is a cross-sectional view. [Sono 117] It is an enlarged view of the merging section of the mixing section.
[図 118]図 118 (a)は反応部の構成を示す平面図、図 118 (b)は断面図である。  FIG. 118 (a) is a plan view showing the structure of the reaction section, and FIG. 118 (b) is a cross-sectional view.
[図 119]図 119 (a)は反応部の他の構成を示す縦断面図、図 119 (b)は図 119 (a)に おける xvm_xvm線断面図、図 119 (c)は反応部のさらに他の構成を示す横断面 図である。  [FIG. 119] FIG. 119 (a) is a longitudinal sectional view showing another structure of the reaction part, FIG. 119 (b) is a cross-sectional view taken along the line xvm_xvm in FIG. 119 (a), and FIG. It is a cross-sectional view showing another configuration.
園 120]温度調整ケースの構成を示す斜視図である。 [120] FIG. 120 is a perspective view showing a configuration of a temperature adjustment case.
[図 121]図 121 (a)は処理部の平面断面図、図 121 (b)は側面断面図、図 121 (c)は 図 121 (a)の部分拡大図、図 121 (d)は図 121 (b)の部分拡大図である。  [FIG. 121] FIG. 121 (a) is a plan sectional view of the processing section, FIG. 121 (b) is a side sectional view, FIG. 121 (c) is a partially enlarged view of FIG. 121 (a), and FIG. 121 (d) is a diagram. It is the elements on larger scale of 121 (b).
園 122]生成物貯留部の他の構成を示す図である。 Fig. 122] is a diagram showing another configuration of the product storage unit.
[図 123]図 123 (a)は合流部の他の構成を示す平面図、図 123 (b)は図 123 (a)の要 部を拡大して示す図である。  FIG. 123 (a) is a plan view showing another configuration of the merging portion, and FIG. 123 (b) is an enlarged view showing the main portion of FIG. 123 (a).
園 124]合流部のさらに他の構成を示す平面図である。 Fig. 124] is a plan view showing still another configuration of the junction.
園 125]流体反応装置の他の構成を示す模式図である。 Fig. 125] is a schematic diagram showing another configuration of the fluid reaction device.
園 126]流体反応装置の他の構成を示す模式図である。 Fig. 126] Fig. 13 is a schematic diagram showing another configuration of the fluid reaction device.
園 127]流体反応装置の他の構成を示す模式図である。 [Sen-127] FIG. 12 is a schematic diagram showing another configuration of the fluid reaction device.
園 128]流体反応装置の他の構成を示す模式図である。 [128] FIG. 128 is a schematic diagram showing another configuration of the fluid reaction device.
[図 129]図 128の処理部の構成を示す斜視図である。 129 is a perspective view showing a configuration of a processing unit in FIG. 128. FIG.
園 130]流体反応装置の他の構成を示す模式図である。 FIG. 130 is a schematic diagram showing another configuration of the fluid reaction device.
園 131]この発明の一実施の形態のマルチ分光分析装置の構成を模式的に示す図 である。 Sono 131] is a diagram schematically showing a configuration of a multispectral analysis apparatus according to an embodiment of the present invention. FIG.
園 132]この装置で分析する反応の例を示す図である。 Sono 132] is a diagram showing an example of a reaction to be analyzed by this apparatus.
園 133]この発明のマルチ分光分析装置の他の実施の形態の構成を模式的に示す 図である。 [13] FIG. 13 is a diagram schematically showing a configuration of another embodiment of the multispectral analysis apparatus of the present invention.
園 134]この発明のマルチ分光分析装置の他の実施の形態の構成を模式的に示す 図である。 Sono 134] schematically shows the configuration of another embodiment of the multispectral analyzer of the present invention. FIG.
園 135]この発明のマルチ分光分析装置の他の実施の形態の構成を模式的に示す 図である。 [135] FIG. 135 is a diagram schematically showing a configuration of another embodiment of the multispectral analyzer of the present invention.
園 136]この発明のマルチ分光分析装置の他の実施の形態の構成を模式的に示す 図である。 Sono] is a diagram schematically showing the configuration of another embodiment of the multispectral analyzer of the present invention.
園 137]図 136の実施の形態の変形例の構成を示す図である。 137] FIG. 136 is a diagram showing a configuration of a modification of the embodiment of FIG. 136.
[図 138]図 136の実施の形態の他の変形例の構成を示す図である。  138 is a diagram showing a configuration of another modified example of the embodiment of FIG. 136. FIG.
[図 139] (a)及び (b)は、この発明の一実施の形態のマルチ分光分析装置の使用形 態を模式的に示す図である。  [FIG. 139] (a) and (b) are diagrams schematically showing a usage state of the multispectral analyzer of one embodiment of the present invention.
[図 140]流体反応装置の全体を示す模式図である。  FIG. 140 is a schematic diagram showing the entire fluid reaction apparatus.
園 141]図 140の流体反応装置の全体の構成を示す斜視図である。 FIG. 141] is a perspective view showing the overall configuration of the fluid reaction device of FIG. 140.
[図 142]図 142 (a)は図 140の流体反応装置の全体の構成を示す平面図、図 142 (b [FIG. 142] FIG. 142 (a) is a plan view showing the overall configuration of the fluid reaction device of FIG. 140, and FIG. 142 (b)
)は正面図である。 ) Is a front view.
園 143]図 143 (a)は混合部の構成を示す平面図、図 143 (b)は断面図である。 園 144]混合部の合流部を拡大して示す図である。 143] FIG. 143 (a) is a plan view showing the configuration of the mixing section, and FIG. 143 (b) is a cross-sectional view. [Sen 144] It is an enlarged view of the merge part of the mixing part.
園 145]図 145 (a)は反応部の構成を示す平面図、図 145 (b)は断面図である。 園 146]図 146 (a)は反応部の他の構成を示す縦断面図、図 146 (b)は図 146 (a)に おける xvm-xvm線断面図、図 146 (c)は反応部のさらに他の構成を示す横断面 図である。 145] FIG. 145 (a) is a plan view showing the structure of the reaction section, and FIG. 145 (b) is a cross-sectional view. 146] Fig. 146 (a) is a longitudinal sectional view showing another configuration of the reaction unit, Fig. 146 (b) is a cross-sectional view taken along the line xvm-xvm in Fig. 146 (a), and Fig. 146 (c) is a diagram of the reaction unit. It is a cross-sectional view showing still another configuration.
園 147]温度調整ケースの構成を示す斜視図である。 FIG. 147 is a perspective view showing a configuration of a temperature adjustment case.
[図 148]図 148 (a)は処理部の平面断面図、図 148 (b)は側面断面図、図 148 (c)は 図 148 (a)の部分拡大図、図 148 (d)は図 148 (b)の部分拡大図である。  [FIG. 148] FIG. 148 (a) is a plan sectional view of the processing section, FIG. 148 (b) is a side sectional view, FIG. 148 (c) is a partially enlarged view of FIG. 148 (a), and FIG. FIG. 148 is a partially enlarged view of (b).
[図 149]生成物貯留部の他の構成を示す図である。 FIG. 149 is a diagram showing another configuration of the product storage unit.
[図 150]図 150 (a)は合流部の他の構成を示す平面図、図 150 (b)は図 150 (a)の要 部を拡大して示す図である。  FIG. 150 (a) is a plan view showing another configuration of the merging portion, and FIG. 150 (b) is an enlarged view showing the main portion of FIG. 150 (a).
園 151]合流部のさらに他の構成を示す平面図である。 FIG. 151] is a plan view showing still another configuration of the junction.
園 152]流体反応装置の他の構成を示す模式図である。 Fig. 152] is a schematic diagram showing another configuration of the fluid reaction device.
園 153]流体反応装置の他の構成を示す模式図である。 [図 154]流体反応装置の他の構成を示す模式図である。 FIG. 153 is a schematic diagram showing another configuration of the fluid reaction device. FIG. 154 is a schematic diagram showing another configuration of the fluid reaction device.
[図 155]流体反応装置の他の構成を示す模式図である。 FIG. 155 is a schematic diagram showing another configuration of the fluid reaction device.
[図 156]図 155の処理部の構成を示す斜視図である。 156 is a perspective view showing a configuration of a processing unit in FIG. 155. FIG.
[図 157]流体反応装置の他の構成を示す模式図である。 FIG. 157 is a schematic diagram showing another configuration of the fluid reaction device.
符号の説明 Explanation of symbols
1 原料貯留部 (原料容器設置スペース); 2 配液部(導入部); 3 処理部; 4 生成 流体貯留部(回収容器設置スペース); 5 温度調整配管室; 6 動作制御手段 (動作 制御部); 7 熱媒体コントローラ(温度調整手段); 10A, 10B 原料貯留容器; 12 洗浄液容器; 14 窒素ガス圧力源; 16A, 16B, 16C ポンプ; 20 マスフローコント ローラ; 20a, 20b 流量センサ; 21A, 21B 輸送管; 24A, 24B 流路内圧力測定 センサ; 26A, 26B 流路選択切換弁; 28 逆洗ポンプ; 32 流路選択切換弁; 40, 40a, 40b, 40c 混合基板; 42, 42a, 42b, 42c 反応基板; 46 温度調整ケース; 48 予備カロ熱流路; 50, 51 出口流路; 52, 52a, 52b, 52c, 52d, 52e, 52f 混 合部; 54, 54a, 54b, 54c, 54d ヘッダ部; 55, 55a, 55b, 55c, 55d ヘッダ部; 5 6, 56a, 56b, 56c, 56d 分液流路; 57, 57a, 57b, 57c, 57d 分液流路; 58, 5 8a, 58b, 58c, 58d, 58e, 58f 合流空間; 62 反応流路; 72 ケース本体; 74 蓋 部; 82 熱交換器; 84 熱媒体流入口; 88 給液配管; 90 連通路; 92 熱媒体流 路; 98 流通路; 100 連絡配管; 102 流出口; 104, 104a 回収配管(導出部); 1 06 熱交換器; 108, 108a 回収容器; 110 物質回収口; 111a 光学的流体検知 センサ; 111b 液面検知センサ; 112 回転テーブル; 114 ァクチユエータ; 116, 1 18, 120, 122, 120, 122a, 122b, 122c 温度センサ; 124 障害物; 126 収率 評価器; 128, 128a, 128b 分離抽出基板; 130 疎水性壁面; 132 親水性壁面; 134 分離流路; 170 流量モニタ; 172 温度モニタ; 154、 156 隔壁; 158, 160 , 162 カバー; 164 排気ポート; A, B 原料溶液;  1 Raw material storage section (raw material container installation space); 2 Distribution section (introduction section); 3 Processing section; 4 Production fluid storage section (collection container installation space); 5 Temperature control piping chamber; 6 Operation control means (Operation control section) ); 7 Heat medium controller (temperature adjustment means); 10A, 10B Raw material storage container; 12 Cleaning liquid container; 14 Nitrogen gas pressure source; 16A, 16B, 16C pump; 20 Mass flow controller; 20a, 20b Flow rate sensor; 24A, 24B Channel pressure measurement sensor; 26A, 26B Channel selection switching valve; 28 Backwash pump; 32 Channel selection switching valve; 40, 40a, 40b, 40c Mixed substrate; 42, 42a, 42b, 42c Reaction substrate; 46 Temperature adjustment case; 48 Preliminary calo heat flow path; 50, 51 Outlet flow path; 52, 52a, 52b, 52c, 52d, 52e, 52f Mixing part; 54, 54a, 54b, 54c, 54d Header part 55, 55a, 55b, 55c, 55d Header part; 5 6, 56a, 56b, 56c, 56d Separation channel; 57, 57a, 57b, 57c, 57d Separation channel; 58, 5 8a, 58b, 58c , 58d, 58e, 58 f Junction space; 62 Reaction channel; 72 Case body; 74 Lid; 82 Heat exchanger; 84 Heat medium inlet; 88 Liquid supply pipe; 90 Communication path; 92 Heat medium path; 98 Flow path; 100 Connection pipe 102 Outlet; 104, 104a Recovery piping (outlet); 1 06 Heat exchanger; 108, 108a Recovery container; 110 Material recovery port; 111a Optical fluid detection sensor; 111b Liquid level detection sensor; 112 Rotary table; 116, 1 18, 120, 122, 120, 122a, 122b, 122c Temperature sensor; 124 Obstacle; 126 Yield evaluator; 128, 128a, 128b Separation extraction substrate; 130 Hydrophobic wall; 132 Hydrophilic wall; 134 Separation channel; 170 Flow monitor; 172 Temperature monitor; 154, 156 Bulkhead; 158, 160, 162 Cover; 164 Exhaust port; A, B Raw material solution;
2001 a, 2001b 原料供給部; 2002 混合 ·反応部; 2020a, 2020b 予熱ブロッ ク; 2040, 2040A, 2040B 混合ブロック; 2041a, 2041b 原料流入路; 2044A, 2044B マユホーノレドエレメント; 2046 マ二ホーノレド; 2047 合流空 ; 2052a, 2 052b 平行分液流路; 2053 開口端面; 2054a, 2054b 噴出口; 2060 反応ブ ロック; 2065 絞り部; 2068 反応流路; 2071 インラインセンサ; 2072〜2074 混 合促進物体; La, Lb 原料溶液; p 断面寸法減少比; 2001a, 2001b Raw material supply section; 2002 Mixing and reaction section; 2020a, 2020b Preheating block; 2040, 2040A, 2040B Mixing block; 2041a, 2041b Raw material inflow path; 2044A, 2044B 2047 Combined air; 2052a, 2 052b Parallel separation flow path; 2053 Open end face; 2054a, 2054b Outlet; 2060 Reactor Lock; 2065 Restriction part; 2068 Reaction flow path; 2071 In-line sensor; 2072-2074 Mixing acceleration object; La, Lb raw material solution;
3001 流路; 3002 温調機構; 3003 上流側温度センサ; 3004 下流側温度セ ンサ; 3005 温度制御部; 3006 温度差測定器; 3007 温度センサ; 3009 時間 差測定部; 3010 流量測定部; 3012 ケース本体; 3013 構造体; 3013a 貫通孔 ; 3013b 円筒部; 3013c 伝熱部; 3014 固定プレート; 3016 シーノレ部材; 3017 温調部材; 3019 シール部材; 3020 制御弁; 3021 ピストン; 3022 圧電素子; 3023 ピストン室; 3024 スプール; 3025 磁性体; 3026 電磁石; 3027 シーノレ 部材; 3030 制御部; 3032 増幅器; 3033 比較器; 3034 ピストン駆動回路; 30 35 スプーノレ駆動回路; 3041 ポペット; 3042 シャフト; 3043 シャフトガイド; 304 4, 3046 歯車; 3045 サーボモータ; 3047 シール部材; 3048 ポペット駆動回 路; 3101 原料貯留部; 3102 配液部; 3103 処理部; 3104 生成物貯留部; 310 5 配管室; 3106 動作制御手段 (動作制御部); 3107 熱媒体コントローラ(温度調 整手段); 3110A, 3110B 貯留容器; 3112 洗浄液容器; 3114 圧力源; 3116A , 3116B, 3116C ポンプ; 3121A, 3121B 輸送管; 3124A, 3124B 圧力セン サ; 3126A, 3126B 流路切換弁; 3130 逆洗ポンプ; 3132 流路切換弁; 3140, 3140a, 3140b, 3140c 混合部; 3142, 3142a, 3142b, 3142c 反応部; 3146 温度調整ケース; 3148A, 3148B 予備カロ熱流路; 3150A, 3150B 出口流路; 3152, 3152a, 3152b 合流部; 3154, 3155 ヘッダ部; 3156, 3157 分液流路 ; 3158, 3158a, 3158b 合流空間; 3162 反応流路; 3172 ケース本体; 3174 蓋部; 3182 熱交換器; 3184 熱媒体流入口; 3188 給液配管; 3190 連通路; 3 192 熱媒体流路; 3198 流通路; 3200 連絡通路; 3202 流出口; 3204, 3204 a 回収配管(導出部); 3206 熱交換器; 3208, 3208a 回収容器; 3210 回収口 ; 3211a 光学的流体検知センサ; 321 lb 液面検知センサ; 3212 回転テーブル; 3214 ァクチユエータ; 3216, 3218, 3220, 3222, 3222a, 3222b, 3222c 温 度センサ; 3224 障害物; 3226 収率評価器; 3228, 3228a, 3228b 分離抽出 部; 3230 疎水性壁面; 3232 親水性壁面; 3234 分離流路; 3270 流量モニタ; 3272 温度モニタ; 3254, 3256 隔壁; 3258, 3260, 3262 カバー; 3264 排 気ポート; 3300A, 3300B 流量調整装置; 3001 Flow path; 3002 Temperature control mechanism; 3003 Upstream temperature sensor; 3004 Downstream temperature sensor; 3005 Temperature control unit; 3006 Temperature difference measuring device; 3007 Temperature sensor; 3009 Time difference measurement unit; 3010 Flow rate measurement unit; Body; 3013 Structure; 3013a Through hole; 3013b Cylindrical part; 3013c Heat transfer part; 3014 Fixed plate; 3016 Seat member; 3017 Temperature control member; 3019 Seal member; 3020 Control valve; 3021 Piston; 3022 Piezoelectric element; 3024 Spool; 3025 Magnetic body; 3026 Electromagnet; 3027 Scene member; 3030 Control unit; 3032 Amplifier; 3033 Comparator; 3034 Piston drive circuit; 30 35 Spunole drive circuit; 3041 Poppet; 3042 Shaft; 3046 Gear; 3045 Servo motor; 3047 Sealing member; 3048 Poppet drive circuit; 3101 Raw material storage part; 3102 Liquid distribution part; 3103 Treatment part; 3104 Product storage part; 310 5 Piping 3106 Operation control means (operation control section); 3107 Heat medium controller (temperature adjustment means); 3110A, 3110B storage container; 3112 Cleaning liquid container; 3114 Pressure source; 3116A, 3116B, 3116C pump; 3121A, 3121B Transport pipe; 3124A, 3124B Pressure sensor; 3126A, 3126B Channel switching valve; 3130 Backwash pump; 3132 Channel switching valve; 3140, 3140a, 3140b, 3140c Mixing section; 3142, 3142a, 3142b, 3142c Reaction section; 3146 Temperature adjustment case 3148A, 3148B Preliminary Caloric Heat Channel; 3150A, 3150B Outlet Channel; 3152, 3152a, 3152b Merge Port; 3154, 3155 Header; 3156, 3157 Separation Channel; 3158, 3158a, 3158b Merge Space; 3162 Reaction Channel 3172 Case body; 3174 Lid; 3182 Heat exchanger; 3184 Heat medium inlet; 3188 Supply pipe; 3190 Communication path; 3 192 Heat medium path; 3198 Flow path; 3200 Communication path; 3202 Outlet; 3204 a Recovery piping (outlet); 3206 Heat exchanger; 3208, 3208a Recovery container; 3210 Recovery port; 3211a 321 lb level sensor; 3212 rotary table; 3214 actuator; 3216, 3218, 3220, 3222, 3222a, 3222b, 3222c temperature sensor; 3224 obstacle; 3226 yield evaluator; 3228, 3228a 3230 Hydrophobic wall; 3232 Hydrophilic wall; 3234 Separation channel; 3270 Flow monitor; 3272 Temperature monitor; 3254, 3256 Bulkhead; 3258, 3260, 3262 Cover; Air port; 3300A, 3300B Flow control device;
4001 流路; 4002 温調機構; 4003 第 1の主温度センサ; 4003a 第 1の副温 度センサ; 4004 第 2の主温度センサ; 4004a 第 2の副温度センサ; 4005 温度制 御部; 4006 温度差測定器; 4008A, 4008B 差分検出回路; 4008C ブリッジ回 路; 4007 温度センサ; 4009 時間差測定部; 4010 流量測定部; 4012 ケース 本体; 4013 構造体; 4013a 貫通孔; 4013b 円筒部; 4013c 伝熱部; 4014 固 定プレート; 4016 シール部材; 4017 温調部材; 4019 シール部材; 4020 制御 弁; 4021 ピストン; 4022 圧電素子; 4023 ピストン室; 4024 スプーノレ; 4025 磁十生体; 4026 電磁石; 4027 シーノレ部材; 4030 制卸部; 4032 増幅器; 4033 比較器; 4034 ピストン駆動回路; 4035 スプール駆動回路; 4041 ポペット; 40 42 シャフト; 4043 シャフトガイド; 4044, 4046 歯車; 4045 サーボモータ; 404 7 シール部材; 4048 ポペット駆動回路; 4101 原料貯留部; 4102 配液部; 410 3 処理部; 4104 生成物貯留部; 4105 配管室; 4106 動作制御手段(動作制御 部); 4107 熱媒体コントローラ(温度調整手段); 4110A, 4110B 貯留容器; 411 2 洗浄液容器; 4114 圧力源; 4116A, 4116B, 4116C ポンプ; 4121A, 4121 Β 輸送管; 4124A, 4124B 圧力センサ; 4126A, 4126B 流路切換弁; 4130 逆洗ポンプ; 4132 流路切換弁; 4140, 4140a, 4140b, 4140c 混合部; 4142, 4142a, 4142b, 4142c 反応部; 4146 温度調整ケース; 4148A, 4148B 予備 カロ熱流路; 4150A, 4150B 出口流路; 4152, 4152a, 4152b 合流部; 4154, 4 155 ヘッダ部; 4156, 4157 分液流路; 4158, 4158a, 4158b 合流空間; 416 2 反応流路; 4172 ケース本体; 4174 蓋部; 4182 熱交換器; 4184 熱媒体流 入口; 4188 給液配管; 4190 連通路; 4192 熱媒体流路; 4198 流通路; 4200 連絡通路; 4202 流出口; 4204, 4204a 回収配管(導出部); 4206 熱交換器; 4208, 4208a 回収容器; 4210 回収口; 4211a 光学的流体検知センサ; 421 lb 液面検知センサ; 4212 回転テーブル; 4214 ァクチユエータ; 4216, 4218, 42 20, 4222, 4222a, 4222b, 4222c 温度センサ; 4224 障害物; 4226 収率評 価器; 4228, 4228a, 4228b 分離抽出部; 4230 疎水性壁面; 4232 親水性壁 面; 4234 分離流路; 4270 流量モニタ; 4272 温度モニタ; 4254, 4256 隔壁; 4258, 4260, 4262 カバー; 4264 排気ポー卜; 4300A, 4300B 流量調整装置 4001 Flow path; 4002 Temperature control mechanism; 4003 First main temperature sensor; 4003a First sub temperature sensor; 4004 Second main temperature sensor; 4004a Second sub temperature sensor; 4005 Temperature control unit; 4006 Temperature 4008A, 4008B Difference detection circuit; 4008C Bridge circuit; 4007 Temperature sensor; 4009 Time difference measurement part; 4010 Flow rate measurement part; 4012 Case body; 4013 Structure; 4013a Through hole; 4013b Cylindrical part; 4013c Heat transfer part 4014 Fixed plate; 4016 Sealing member; 4017 Temperature control member; 4019 Sealing member; 4020 Control valve; 4021 Piston; 4022 Piezoelectric element; 4023 Piston chamber; 4024 Spunole; 4025 Magnetic body; 4026 Electromagnet; 4032 Amplifier; 4033 Comparator; 4034 Piston drive circuit; 4035 Spool drive circuit; 4041 Poppet; 40 42 Shaft; 4043 Shaft guide; 4044, 4046 Gear; 4045 Servo motor; 404 7 Seal 4048 Poppet drive circuit; 4101 Raw material storage unit; 4102 Distribution unit; 410 3 Processing unit; 4104 Product storage unit; 4105 Piping chamber; 4106 Operation control means (operation control unit); 4107 Heat medium controller (temperature adjustment means) 4110A, 4110B Reservoir; 411 2 Cleaning fluid container; 4114 Pressure source; 4116A, 4116B, 4116C Pump; 4121A, 4121 輸送 Transport pipe; 4124A, 4124B Pressure sensor; 4126A, 4126B Flow switching valve; 4130 Backwash pump; 4140, 4140a, 4140b, 4140c Mixing section; 4142, 4142a, 4142b, 4142c Reaction section; 4146 Temperature adjustment case; 4148A, 4148B Preliminary Calo heat flow path; 4154, 4 155 Header part; 4156, 4157 Separation flow path; 4158, 4158a, 4158b Merge space; 416 2 Reaction flow path; 4172 Case body; 4174 Lid; 4182 Heat exchanger; 4184 Heating medium flow inlet 4188 Supply pipe; 4190 Communication path; 4192 Heat medium flow path; 4198 Flow path; 4200 Communication path; 420 2 Outlet; 4204, 4204a Recovery pipe (outlet); 4206 Heat exchanger; 4208, 4208a Recovery container; 4210 Recovery port; 4211a Optical fluid detection sensor; 421 lb Liquid level detection sensor; 4212 Rotary table; 4214 Actuator; 4216, 4218, 42 20, 4222, 4222a, 4222b, 4222c Temperature sensor; 4224 Obstacle; 4226 Yield evaluator; 4228, 4228a, 4228b Separation extractor; 4230 Hydrophobic wall; 4232 Hydrophilic wall surface; 4234 Separation 4270 Flow monitor; 4272 Temperature monitor; 4254, 4256 Bulkhead; 4258, 4260, 4262 Cover; 4264 Exhaust port; 4300A, 4300B Flow control device
5010 プランジャポンプ; 5012 シリンダ; 5014 プランジャ; 5016 隔壁; 5022 ピストン; 5024 ロッド; 5026 ポンプ室; 5028 ノ ッファ室; 5030 吐出ポート; 503 2 吸込ポー卜; 5034, 5036 逆止弁; 5050 カム機構; 5054 モータ; 5056 板力 ム; 5056A 端面カム; 5058 ローラ(カムフォロワ); 5060 エアシリンダ(流体圧装 置); 5062 圧力板; 5064 圧力空気室; 5068 空気制御弁; 5070 圧力空気源; 5072 ドレン; 5080 制御部; 5082 エンコーダ; 5010 Plunger pump; 5012 Cylinder; 5014 Plunger; 5016 Bulkhead; 5022 Piston; 5024 Rod; 5026 Pump chamber; 5028 Noffer chamber; 5030 Discharge port; 503 2 Suction port rod; 5034, 5036 Check valve; 5050 Cam mechanism; Motor; 5056 Plate force; 5056A End cam; 5058 Roller (cam follower); 5060 Air cylinder (fluid pressure device); 5062 Pressure plate; 5064 Pressure air chamber; 5068 Air control valve; 5070 Pressure air source; 5072 Drain; Control unit; 5082 encoder;
6001 プランジャポンプ装置; 6002 マイクロリアクタ; 6010 プランジャポンプ; 6 012 シリンダ; 6014 プランジャ; 6016 ピストン; 6017 ポンプ室; 6018 ロッド; 6 019 駆動装置; 6020 モータ; 6022 送りねじ; 6024 ナツ卜; 6026 リニアスケー ル; 6028 制御部; 6030 吐出ポート; 6032 吸込ポート; 6034 逆止弁; 6036 吐出ライン; 6038 流体タンク; 6040 供給ライン; 6042 原料受入ポート; 6044 導入流路; 6046 流量計; 6048 圧力センサ; 6050 混合'反応部; 6101 原料貯 留部; 6102 配液部; 6103 処理部; 6104 生成物貯留部; 6105 配管室; 6107 熱媒体コントローラ; 6110 貯留容器; 6110A, 6110B 貯留容器; 6110 貯留 容器; 6110A, 6110B 貯留容器; 6112 洗浄液容器; 6114 圧力源; 6116A, 6 116B, 6116C プランジャポンプ; 6121A, 6121B 輸送管; 6122A, 122B リリ ーフ弁; 6124A, 6124B 圧力測定センサ; 6125 界面; 6126A, 6126B 流路切 換弁; 6126A 流路切換弁; 6126A, 6126B 流路切換弁; 6130 逆洗ポンプ; 61 32 流路切換弁; 6134 廃液口; 6136 廃液容器; 6136 廃液貯留容器; 6140 混合部; 6140a 混合部; 6140, 6140a 混合部; 6140a 混合部; 6140b 混合部 ; 6140c 混合部; 6140a 混合部; 6140b 混合部; 6140c 混合部; 6140 混合 部; 6142 反応部; 6142a 反応部; 6142b 反応部; 6142 反応部; 6142a, 614 2b, 6142c 反応部  6001 Plunger pump device; 6002 Microreactor; 6010 Plunger pump; 6 012 Cylinder; 6014 Plunger; 6016 Piston; 6017 Pump chamber; 6018 Rod; 6 019 Drive device; 6020 Motor; 6022 Feed screw; 6024 Natsu 卜; Control unit; 6030 Discharge port; 6032 Suction port; 6034 Check valve; 6036 Discharge line; 6038 Fluid tank; 6040 Supply line; 6042 Raw material reception port; 6044 Introduction flow path; 6046 Flow meter; 6048 Pressure sensor; 6101 Raw material storage section; 6102 Distribution section; 6103 Treatment section; 6104 Product storage section; 6105 Piping chamber; 6107 Heat medium controller; 6110 Storage container; 6110A, 6110B Storage container; 6110 Storage container; 6110A, 6110B storage Container; 6112 Cleaning fluid container; 6114 Pressure source; 6116A, 6 116B, 6116C Plunger pump; 6121A, 6121B Transport pipe; 6122A, 122B Relief valve; 6124A, 6124B 6126 Interface: 6126A, 6126B Channel switching valve; 6126A Channel switching valve; 6126A, 6126B Channel switching valve; 6130 Backwash pump; 61 32 Channel switching valve; 6134 Waste liquid port; 6136 Waste liquid container; 6140a mixing unit; 6140b mixing unit; 6140c mixing unit; 6140a mixing unit; 6140b mixing unit; 6140c mixing unit; 6140 mixing unit; 6142 reaction unit; 6142a reaction part; 6142b reaction part; 6142 reaction part; 6142a, 614 2b, 6142c reaction part
; 6142a 反応部; 6142b 反応部; 6142 反応部; 6142a 反応部; 6142b 反応 部; 6142a 反応部; 6142b 反応部; 6142 反応部; 6144a 上板; 6144c 下板; 6144b 中板; 6144d, 6144e 基材; 6146 各温度調整ケース; 6146 温度調整 ケース; 6147A, 6147B 流入ポート; 6148A, 6148B 予備加熱流路; 6148 口 ; 6150A, 6150B 出口流路; 6150A 出口流路; 6150B 出口流路; 6150A, 61 50B 出口流路; 6152 合流部; 6152a 合流部; 6152b 合流部; 6154, 6155 ヘッダ部; 6155 ヘッダ部; 6156, 6157 分液流路; 6156 分液流路; 6156, 615 7 分液流路; 6157 分液流路; 6157a 連絡孔; 6158 —定時間合流空間; 6158 合流空間; 6158a 合流空間; 6158b 合流空間; 6159 開口面; 6160 流出ポ ート; 6162 反応流路; 6162, 6163 反応流路; 6162 反応流路; 6162b 蛇行部 分; 6162a, 6162c 連絡部; 6163 反応流路; 6163c 反応流路; 6163a 部分; 6163b 部分; 6164 入口ポート; 6165 出口ポート; 6170 空間; 6172 ケース 本体; 6174 蓋部; 6176 溝; 6178 給液路; 6179 開口; 6180 排液路; 6182 熱交換器; 6188 給液配管; 6190 連通路; 6192 熱媒体流路; 6194 ボルト; 61 95 ナット; 6196 スぺーサ; 6198 流通路; 6200 連絡通路; 6202 流出口; 620 4 回収酉己管; 6204, 6204a 回収配管; 6206 熱交換器; 6208 回収容器; 6208 , 6208a 回収容器; 6210 回収口; 6211a 光学的流体検知センサ; 6211b 液 面検知センサ; 6212 回転テーブル; 6214 ァクチユエータ; 6216, 6218 温度セ ンサ; 6220 温度センサ; 6220, 6222a, 6222b, 6222c 温度センサ; 6222 温 度センサ; 6224 各障害物; 6224 障害物; 6226 インライン収率評価器; 6228 分離抽出部; 6228a 分離抽出部; 6228b 分離抽出部; 6228a 分離抽出部; 622 8b 分離抽出部; 6228a 分離抽出部; 6228b 分離抽出部; 6230 疎水性壁面; 6232 親水性壁面; 6234 分離流路; 6234a 排出口; 6234b 排出口; 6236 シ リコン部材;6240 導入口; 6240 粉体溶解器; 6242 原料導入口; 6244 ヒータ; 6246 攪拌器; 6249 配管; 6250 パン; 6250 符号; 6252 符号; 6254, 6256 壁; 6258, 6260, 6262 力ノ 一; 6264 符号; 6270 流量モニタ; 6272 温 度モニタ; 6300A, 6300B 流量調整装置; 6142a reaction unit; 6142b reaction unit; 6142 reaction unit; 6142a reaction unit; 6142b reaction unit; 6142a reaction unit; 6142b reaction unit; 6142 reaction unit; 6144a upper plate; 6144c lower plate; 6144b middle plate; 6144d, 6144e 6146 Each temperature adjustment case; 6146 Temperature adjustment 6147A, 6147B Inlet port; 6148A, 6148B Preheating channel; 6148 port; 6150A, 6150B outlet channel; 6150A outlet channel; 6150B outlet channel; 6150A, 61 50B outlet channel; 6156, 6155 Header section; 6155 Header section; 6156, 6157 Separation path; 6156 Separation path; 6156, 615 7 Separation path; 6157 Separation path; 6157a Communication hole; 6158 —Constant time merging space; 6158 Merging space; 6158a Merging space; 6158b Merging space; 6159 Open surface; 6160 Outflow port; 6162 Reaction channel; 6162, 6163 Reaction channel; 6162 Reaction channel; 6162b Meandering part; 6163a, 6162c communication part; 6163 reaction channel; 6163c reaction channel; 6163a part; 6163b part; 6164 inlet port; 6165 outlet port; 6170 space; 6172 case body; 6174 lid part; 6176 groove; 6180 Drainage path; 6182 Heat exchanger; 6188 Supply pipe; 6190 Communication path; 6192 Heat medium path; 6194 Bolt; 61 95 Nut; 6196 Spacer; 6198 Flow passage; 6200 Communication passage; 6202 Outlet; 620 4 Recovery self-pipe; 6204, 6204a Recovery piping; 6206 Heat exchanger; 6208 Recovery vessel; 6208, 6208a Recovery 6210 Recovery port; 6211a Optical fluid detection sensor; 6211b Liquid level detection sensor; 6212 Rotary table; 6214 Actuator; 6216, 6218 Temperature sensor; 6220 Temperature sensor; 6220, 6222a, 6222b, 6222c Temperature sensor; 6222 Temperature 6224 obstacles; 6226 obstacles; 6226 inline yield evaluator; 6228 separation and extraction unit; 6228a separation and extraction unit; 6228b separation and extraction unit; 6228a separation and extraction unit; 622 8b separation and extraction unit; 6228a separation and extraction unit; 6230 Hydrophobic wall; 6234 Separation channel; 6234a outlet; 6234b outlet; 6236 Silicon member; 6240 inlet; 6240 Powder dissolver; 6242 Raw material inlet; 6244 Heater; 6246 agitator; 6249 Piping; 6250 Pan; 6250 Code; 6252 Code; 6254, 6256 Wall; 6258, 6260, 6262 Force No .; 6264 Code; 6270 Flow Monitor; 6272 Temperature Monitor; 6300A, 6300B Flow Controller;
7001 マルチ分光分析装置; 7010 ケーシング; 7014 フローセル; 7016 内部 空間; 7018 仕切; 7020 発光部; 7022 受光部; 7024 光源部; 7024a— 7024 g 光源; 7026 光ファイバ; 7028 分光部; 7028a— 7028g 分光器; 7028a 紫 外分光器; 7028b 可視光分光器; 7028c _ 7028e 近赤外分光器; 7028f 赤外 分光器; 7028g 遠赤外分光器; 7030 AD変換器; 7032 制御部; 7034 デイス プレイ; 7036 記憶装置; 7038 警報装置; 7040 分岐流路; 7042 流量調整弁; 7044 開閉弁; 7046 ケーシング; 7047 基板; 7048 流路; 7050 '継手部; 705 2 発光ケース; 7054 受光ケース; 7056 固定ナット; 7058 混合'反応部; 7060 マイクロタエンチ部; 7062 3方切換弁; 7064 製品貯蔵ライン; 7066 予備タンク ; 7068 予備ライン; 7101 原料貯留部; 7102 配液部; 7103 処理部; 7104 生 成物貯留部; 7105 配管室; 7107 熱媒体コントローラ; 7110 貯留容器; 7110A , 7110B 貯留容器; 7110 貯留容器; 7110A, 7110B 貯留容器; 7112 洗浄 液容器;7114 圧力源; 7116A, 7116B ポンプ; 7116C ポンプ; 7116A ポン プ; 7121A, 7121B 輸送管; 7122A, 7122B リリーフ弁; 7124A, 7124B 圧力 測定センサ; 7125 界面; 7126A, 7126B 流路切換弁; 7126A 流路切換弁; 71 26A, 7126B 流路切換弁; 7130 逆洗ポンプ; 7132 流路切換弁; 7134 廃液 口; 7136 廃液容器; 7136 廃液貯留容器; 7140 混合部; 7140a 混合部; 714 0, 7140a 混合部; 7140a 混合部; 7140b 混合部; 7140c 混合部; 7140a 混 合部; 7140b 混合部; 7140c 混合部; 7140 混合部; 7142 反応部; 7142a 反 応部; 7142b 反応部; 7142 反応部; 7142a, 7142b, 7142c 反応部; 7142a 反応部; 7142b 反応部; 7142 反応部; 7142a 反応部; 7142b 反応部; 7142a 反応部; 7142b 反応部; 7142 反応部; 7144a 上板; 7144c 下板; 7144b 中板; 7144d, 7144e 基材; 7146 各温度調整ケース; 7146 温度調整ケース; 7 147A, 7147B 流入ポート; 7148A, 7148B 予備カロ熱流路; 7148 口; 7150A , 7150B 出口流路; 7150A 出口流路; 7150B 出口流路; 7150A, 7150B 出 口流路; 7152 合流部; 7152a 合流部; 7152b 合流部; 7154, 7155 ヘッダ部 ; 7155 ヘッダ部; 7156, 7157 分液流路; 7156 分液流路; 7156, 7157 分液 流路; 7157 分液流路; 7157a 連絡孔; 7158 —定時間合流空間; 7158 合流 空間; 7158a 合流空間; 7158b 合流空間; 7159 開口面; 7160 流出ポート; 71 62 反応流路; 7162, 7163 反応流路; 7162 反応流路; 7162b 蛇行部分; 716 2a, 7162c 連絡部; 7163 反応流路; 7163c 反応流路; 7163a 部分; 7163b 部分; 7164 入口ポート; 7165 出口ポート; 7170 空間; 7172 ケース本体; 717 4 蓋部; 7176 溝; 7178 給液路; 7179 開口; 7180 排液路; 7182 熱交換器 ; 7188 給液配管; 7190 連通路; 7192 熱媒体流路; 7194 ボルト; 7195 ナツ ト; 7196 スぺーサ; 7198 流通路; 7200 連絡通路; 7202 流出口; 7204 回収 酉己管; 7204, 7204a 回収酉己管; 7206 熱交換器; 7208 回収容器; 7208, 7208 a 回収容器; 7210 回収口; 7211a 光学的流体検知センサ; 721 lb 液面検知セ ンサ; 7212 回転テーブル; 7214 ァクチユエータ; 7216, 7218 温度センサ; 72 20 温度センサ; 7220, 7222a, 7222b, 7222c 温度センサ; 7222 温度センサ ; 7224 各障害物; 7224 障害物; 7226 インライン収率評価器; 7228 分離抽出 部; 7228a 分離抽出部; 7228b 分離抽出部; 7228a 分離抽出部; 7228b 分離 抽出部; 7228a 分離抽出部; 7228b 分離抽出部; 7230 疎水性壁面; 7232 親 水性壁面; 7234 分離流路; 7234a 排出口; 7234b 排出口; 7236 シリコン部材 ; 7240 導入口; 7240 粉体溶解器; 7242 原料導入口; 7244 ヒータ; 7246 攪 拌器; 7249 配管; 7250 パン; 7250 符号; 7252 符号; 7254, 7256 隔壁; 7 258, 7260, 7262 カバー; 7264 符号; 7270 流量モニタ; 7272 温度モニタ; 7300A, 7300B 流量調整装置 7001 Multispectral Analyzer; 7010 Casing; 7014 Flow Cell; 7016 Internal Space; 7018 Partition; 7020 Light Emitting Unit; 7022 Light Receiving Unit; 7024 Light Source Unit; 7024a- 7024 g Light Source; 7026 Optical Fiber; 7028 Spectroscopic Unit; 7028a- 7028g Spectroscope 7028a Ultraviolet spectrometer; 7028b Visible light spectrometer; 7028c _ 7028e Near-infrared spectrometer; 7028f Infrared 7028g far infrared spectrometer; 7030 AD converter; 7032 control unit; 7034 display; 7036 storage device; 7038 alarm device; 7040 branch flow path; 7042 flow control valve; 7044 on-off valve; 7046 casing; 7048 Flow path; 7050 'Joint part; 705 2 Light emitting case; 7054 Light receiving case; 7056 Fixing nut; 7058 Mixing' reaction part; 7060 Micro Taenti part; 7062 Three-way switching valve; 7064 Product storage line; 7068 Preliminary line; 7101 Raw material storage part; 7102 Distribution part; 7103 Processing part; 7104 Product storage part; 7105 Piping chamber; 7107 Heat transfer controller; 7110 Storage container; 7110A, 7110B storage container; 7110 Storage container; 7110B Storage container; 7112 Cleaning liquid container; 7114 Pressure source; 7116A, 7116B pump; 7116C pump; 7116A pump; 7121A, 7121B Transport pipe; 7122A, 7122B Relief valve; 7124A, 7124B Flow path 7126A Channel switching valve; 71 26A, 7126B Channel switching valve; 7130 Backwash pump; 7132 Channel switching valve; 7134 Waste liquid port; 7136 Waste liquid container; 7136 Waste liquid storage container; 7140 Mixing section; 7140a mixing part; 7140b mixing part; 7140c mixing part; 7140b mixing part; 7140c mixing part; 7140c mixing part; 7142 reaction part; 7142a reaction part; 7142b reaction part; 7142 reaction 7142a, 7142b, 7142c reaction part; 7142a reaction part; 7142b reaction part; 7142 reaction part; 7142a reaction part; 7142b reaction part; 7142a reaction part; 7142b reaction part; 7142a reaction part; 7144a upper plate; 7144b Middle plate; 7144d, 7144e Base material; 7146 Each temperature adjustment case; 7146 Temperature adjustment case; 7 147A, 7147B Inflow port; 7148A, 7148B Preliminary calorie heat flow path; 7148 port; 7150B outlet channel; 7150A, 7150B outlet channel; 7152 junction; 7152a junction; 715 2b Junction; 7154, 7155 Header; 7155 Header; 7156, 7157 Separator; 7156 Separator; 7156, 7157 Separator; 7157 Separator; 7157a Connection hole; 7158 — Fixed time 7158 Merged space; 7158a Merged space; 7158b Merged space; 7159 Open surface; 7160 Outflow port; 71 62 Reaction channel; 7162, 7163 Reaction channel; 7162 Reaction channel; 7162b Meandering part; 716 2a, 7162c 7163 reaction channel; 7163c reaction channel; 7163a part; 7163b part; 7164 inlet port; 7165 outlet port; 7170 space; 7172 case body; 4 Lid; 7176 Groove; 7178 Supply path; 7179 Opening; 7180 Drain path; 7182 Heat exchanger; 7188 Supply pipe; 7190 Communication path; 7192 Heat medium path; 7194 Bolt; 7195 Nut; 7196 Space 7198 Flow path; 7200 Communication path; 7202 Outlet; 7204 Recovery Self-tube; 7204, 7204a Recovery Self-tube; 7206 Heat exchanger; 7208 Recovery container; 7208, 7208 a Recovery container; 7210 Recovery port; 721 lb level sensor; 7212 rotary table; 7214 actuator; 7216, 7218 temperature sensor; 72 20 temperature sensor; 7220, 7222a, 7222b, 7222c temperature sensor; 7222 temperature sensor; 7224 obstacles; 7228 Obstacle; 7226 Inline yield evaluator; 7228 Separation and extraction unit; 7228a Separation and extraction unit; 7228b Separation and extraction unit; 7228a Separation and extraction unit; 7228b Separation and extraction unit; 7228b Separation and extraction unit; 7228b Separation and extraction unit; 7232 Hydrophilic wall; 7234 Separation channel; 723 7234 Silicone; 7240 Inlet; 7240 Powder dissolver; 7242 Raw material inlet; 7244 Heater; 7246 Stirrer; 7249 Piping; 7250 Pan; 7250 Code; 7252 Code; 7254, 7256 7258, 7260, 7262 Cover; 7264 Symbol; 7270 Flow monitor; 7272 Temperature monitor; 7300A, 7300B Flow regulator
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0163] y»^^¾f¾ [0163] y »^^ ¾f¾
本発明は、微小空間で流体どうしを反応させる流体反応装置に関する。  The present invention relates to a fluid reaction apparatus for reacting fluids in a minute space.
[0164] 上述した目的を達成するための本発明は、これに限定されるものではなレ、が、以下 の発明を包含する。 The present invention for achieving the above-mentioned object is not limited to this, but includes the following inventions.
[0165] (1) 複数の流体をマイクロ反応空間を有する反応流路に導入して反応させる流体 反応装置において、反応に使用する流体を個々に導入する導入部と、流体を合流さ せて混合する混合流路を有する平板状の混合基板と、流体を複数の輸送管を介し て前記混合流路に向けて輸送する流体輸送手段と、流体の流量を制御する流量制 御手段と、前記反応流路の温度を制御する温度制御手段と、反応後の物質を導出 する導出部と、これらの動作を制御する動作制御手段を備えたことを特徴とする流体 反応装置。  [0165] (1) Fluid that introduces and reacts a plurality of fluids into a reaction channel having a micro reaction space In a reaction apparatus, an introduction unit that individually introduces fluids used for the reaction and a fluid are joined and mixed A flat mixed substrate having a mixing flow path, a fluid transporting means for transporting fluid toward the mixing flow path via a plurality of transport pipes, a flow rate control means for controlling the flow rate of the fluid, and the reaction A fluid reaction apparatus comprising temperature control means for controlling the temperature of a flow path, a deriving section for deriving a substance after reaction, and operation control means for controlling these operations.
[0166] (1)に記載の発明によれば、実用的な量産手段としてのマイクロリアクタが提供され 、本発明は、マイクロ空間における高収率な反応を確実に且つ連続的に行わせるこ とができる。液体と液体の反応では数十から数百 μ mクラスのマイクロ空間内のレイノ ノレズ数は小さぐ流れは層流になり、分子拡散による混合が律速段階になる。逆を言 えば、数百 z m以下のマイクロ空間では従来型機械式撹拌混合よりも、層流拡散を 利用した混合の方が効率がよい。流体が混合される混合部がマイクロ空間であるの で、拡散時間が短縮され、短時間で均一混合になるため、たとえば爆発性の反応で も温度をマイナス 50°Cというような極低温での反応にする必要がなくなり、安全で収 率が上がるため生産性が高くなる。また、反応が複雑で反応時間が長レ、ものでも、マ イク口空間にすることにより反応速度を高めたり選択的に反応させることで、高収率が 得られるようになった。 [0166] According to the invention described in (1), a microreactor as a practical mass production means is provided. The present invention can reliably and continuously carry out a high yield reaction in a micro space. In a liquid-liquid reaction, a flow with a small Reino-Leles number in a microspace of the tens to hundreds of μm class becomes laminar, and mixing by molecular diffusion becomes the rate-limiting step. In other words, mixing using laminar flow diffusion is more efficient than conventional mechanical stirring mixing in a micro space of several hundred zm or less. Since the mixing part where the fluid is mixed is a micro space, the diffusion time is shortened and uniform mixing is achieved in a short time. Productivity increases because it is no longer necessary to react and is safe and yield increases. In addition, even if the reaction is complicated and the reaction time is long, a high yield can be obtained by increasing the reaction rate or selectively reacting by using a microphone opening space.
[0167] また、混合を平板状の混合基板において行うことで、熱媒体流体との接触面積を大 きくし、反応流体への熱伝達速度を速くすることができる。したがって、反応流体全域 での温度均一性を高め、温度制御の精度を高めることができる。使用されるプロセス は有機合成、無機合成、触媒反応からバイオ系生化学合成、微粒子製造まで、実験 室レベルから薬品製造ラインまで広く対応可能である。  [0167] Further, by performing mixing on a flat mixed substrate, the contact area with the heat medium fluid can be increased, and the heat transfer rate to the reaction fluid can be increased. Therefore, the temperature uniformity over the entire reaction fluid can be improved and the accuracy of temperature control can be improved. Processes used can range from laboratory level to chemical production line, from organic synthesis, inorganic synthesis, catalytic reaction to bio-based biochemical synthesis and fine particle production.
[0168] 混合基板内の流路の条件は、フィックの法則から推測できる拡散時間と拡散距離 の関係から、拡散距離を小さぐ即ちマイクロ寸法にすることが必要である。合流個所 を複数設けたり、ポーラスフリットゃピラーなどの障害物を合流後の流路に置くことに より、合流後の 2液界面面積を大きくすることが好ましい。  [0168] The condition of the flow path in the mixed substrate needs to reduce the diffusion distance, that is, to have a micro dimension, from the relationship between the diffusion time and the diffusion distance that can be inferred from Fick's law. It is preferable to increase the area of the two-liquid interface after merging by providing a plurality of merging points or placing obstacles such as porous frit pillars in the flow path after merging.
[0169] 合流個所を並列に複数設ける場合は、それらの合流個所には極力時間差を生じさ せないことが望ましい。また、合流後の流路幅を徐々に 100 / m以下、可能ならば 40 z m以下まで縮小させ、合流した流れの中での 2液の幅を強制的に縮め、拡散混合 をより短時間に強制的に行わせることが望ましい。これによつて混合時間は格段に短 くなり、爆発性の反応は常温でも可能になり、有機合成反応における反応経路をシン プルに出来、無駄な反応が少なくなるため、高選択性で高収率で不純物が生成が極 端に少なくなり、原料の使用量も下がってランニングコスト面でも有利になる。  [0169] When a plurality of merge points are provided in parallel, it is desirable that a time difference is not generated as much as possible at these merge points. In addition, the flow path width after merging is gradually reduced to 100 / m or less, if possible, to 40 zm or less, and the width of the two liquids in the merged flow is forcibly reduced, so that diffusion mixing can be performed in a shorter time. It is desirable to force it. This significantly shortens the mixing time, enables explosive reactions at room temperature, simplifies the reaction pathway in organic synthesis reactions, and reduces wasteful reactions. Impurities are extremely reduced at a low rate, and the amount of raw materials used is reduced, which is advantageous in terms of running costs.
[0170] (2) (1)に記載の発明において、反応に使用する流体を個々に溜めておく貯留 容器を設置する設置スペースが設けられていることを特徴とする流体反応装置。 [0171] (3) (1)または(2)に記載の発明において、反応後の物質を前記導出部より回収 する回収容器を複数個設置可能な設置スペースが設けられていることを特徴とする 流体反応装置。 [0170] (2) In the invention described in (1), a fluid reaction apparatus characterized in that an installation space for installing a storage container for individually storing fluids used for the reaction is provided. [0171] (3) In the invention described in (1) or (2), there is provided an installation space in which a plurality of recovery containers for recovering the substance after reaction from the lead-out part can be installed. Fluid reaction device.
[0172] (4) (1)ないし(3)のいずれかに記載の発明において、前記マイクロ反応空間に は、流路幅 500 μ m以下の流路が存在することを特徴とする流体反応装置。  [0172] (4) In the invention according to any one of (1) to (3), the microreaction space includes a flow channel having a flow channel width of 500 μm or less. .
[0173] (5) (1)ないし (4)のいずれかに記載の発明において、導入される流体は気体ま たは液体であり、反応後の物質は気体または液体または固体のいずれ力、、またはそ れらの混合体で、導入される流体が連続的な流れであることを特徴とする流体反応 装置。  [0173] (5) In the invention according to any one of (1) to (4), the fluid to be introduced is a gas or a liquid, and the substance after the reaction is either a gas, a liquid or a solid, Alternatively, a fluid reaction apparatus characterized in that the fluid introduced in the mixture is a continuous flow.
[0174] (6) (1)ないし(5)のいずれかに記載の発明において、前記流体輸送手段は圧 力発生手段または電気的誘電力相互作用手段を有することを特徴とする流体反応 装置。  [0174] (6) The fluid reaction device according to any one of (1) to (5), wherein the fluid transporting means includes a pressure generating means or an electric dielectric force interaction means.
[0175] (7) (1)ないし(6)のいずれかに記載の発明において、前記流量制御手段は通 過流体の体積を測定するセンサ部と、センサ部の測定情報を基に流体が通過する通 過面積をコントロールする通過量コントロール部を有していることを特徴とする流体反 応装置。  [0175] (7) In the invention according to any one of (1) to (6), the flow rate control means includes a sensor unit that measures a volume of the passing fluid, and a fluid that passes based on measurement information of the sensor unit. A fluid reaction device comprising a passage amount control unit for controlling a passing area.
[0176] (8) (1)ないし(7)のいずれかに記載の発明において、前記混合基板が複数設け られてレ、ることを特徴とする流体反応装置。  (8) The fluid reaction device according to any one of (1) to (7), wherein a plurality of the mixed substrates are provided.
[0177] (9) (1)ないし(8)のいずれかに記載の発明において、混合後の流体の反応を進 行させるために、前記反応流路を前記混合基板とは別に設けた反応基板に形成した ことを特徴とする流体反応装置。 [0177] (9) In the invention according to any one of (1) to (8), in order to advance the reaction of the fluid after mixing, the reaction substrate provided with the reaction channel separately from the mixing substrate A fluid reaction device characterized in that it is formed.
[0178] (10) (9)に記載の発明において、前記反応基板が複数設けられていることを特 徴とする流体反応装置。 (10) In the invention described in (9), a fluid reaction apparatus characterized in that a plurality of the reaction substrates are provided.
[0179] (11) (1)ないし(11)のいずれかに記載の発明において、前記流体輸送手段と 前記混合基板の間に第 1の流路選択切換弁を、前記混合基板と物質回収口の間に 第 2の流路選択切換弁を具備したことを特徴としたことを特徴とする流体反応装置。 [0179] (11) In the invention according to any one of (1) to (11), a first flow path selection switching valve is provided between the fluid transporting means and the mixing substrate, the mixing substrate and the substance recovery port. A fluid reaction apparatus characterized by comprising a second flow path selection switching valve between them.
[0180] (12) (11)に記載の発明において、前記第 1の流路選択切換弁と第 2の流路選 択切換弁は電気動作または空気圧動作により作動する自動弁であることを特徴とす る流体反応装置。 [0180] (12) In the invention described in (11), the first flow path selection switching valve and the second flow path selection switching valve are automatic valves operated by an electric operation or a pneumatic operation. Toss Fluid reaction device.
[0181] (13) (1)ないし(12)のいずれかに記載の発明において、混合流路に導入された 流体が混合された後、混合流路または/および反応流路に流体が充満されたことを 判断する充満検知手段を具備し、充満された時点で流体の輸送手段を停止させまた は第 1の流路選択切換弁を切換え、流体を反応終結時間に適応する一定時間混合 流路または/および反応流路に滞留させておく制御が可能なことを特徴とする流体 反応装置。  [0181] (13) In the invention according to any one of (1) to (12), after the fluid introduced into the mixing channel is mixed, the mixing channel or / and the reaction channel are filled with fluid. It is equipped with a fullness detection means that determines that the fluid has been transported, and when it is full, the fluid transport means is stopped or the first flow path selection switching valve is switched, and the fluid is mixed for a certain period of time to adapt to the reaction end time. Or / and a fluid reaction device characterized in that it can be controlled to stay in the reaction channel.
[0182] (14) (13)に記載の発明において、前記充満検知手段は、物質回収口から出始 めた流体を検知する流体有無センサ、または、混合反応後の輸送管内の流体の有 無を検知する流体有無センサであることを特徴とする流体反応装置。  [0182] (14) In the invention described in (13), the fullness detection means includes a fluid presence sensor for detecting a fluid started from the substance recovery port, or the presence or absence of fluid in the transport pipe after the mixing reaction. A fluid reaction apparatus, characterized by being a fluid presence sensor for detecting a fluid.
[0183] (15) (1)ないし(14)のいずれかに記載の発明において、前記混合流路と前記 反応流路には個別に温度測定センサが設けられ、個別に温度制御が可能であること が特徴とすることを特徴とする流体反応装置。 (15) In the invention according to any one of (1) to (14), a temperature measurement sensor is individually provided in the mixing channel and the reaction channel, and the temperature can be individually controlled. A fluid reaction device characterized by that.
[0184] (16) (1)ないし(15)のいずれかに記載の発明において、前記混合基板と前記 反応基板の少なくとも一部を積層させて配置させることを特徴とする流体反応装置。 [0184] (16) In the invention according to any one of (1) to (15), a fluid reaction device characterized in that at least a part of the mixed substrate and the reaction substrate are stacked.
[0185] (17) (1)ないし(16)のいずれかに記載の発明において、前記第 2の流路選択切 換弁を切り換えて、混合流路、反応流路内の通常の流れの方向とは逆方向に流体を 送り込む逆洗手段を具備したことを特徴とする流体反応装置。 [0185] (17) In the invention according to any one of (1) to (16), the second flow path selection switching valve is switched to change the normal flow direction in the mixing flow path and the reaction flow path. Has a backwashing means for feeding fluid in the reverse direction.
[0186] (18) (17)に記載の発明において、前記逆洗手段は、圧送手段として 1本ピストン ポンプを有することを特徴とする流体反応装置。 [0186] (18) In the invention described in (17), the backwashing means includes a single piston pump as a pressure feeding means.
[0187] (19) (11)ないし(18)のいずれかに記載の発明において、前記第 1の流路選択 切換弁には窒素ガス供給ライン、純水供給ライン、有機溶剤供給ライン、酸供給ライ ン、水素水供給ライン、およびオゾン水供給ラインのいずれ力 4または複数に接続さ れてレ、ることを特徴とする流体反応装置。 [0187] (19) In the invention according to any one of (11) to (18), the first flow path selection switching valve includes a nitrogen gas supply line, a pure water supply line, an organic solvent supply line, an acid supply A fluid reaction device characterized by being connected to any one or more of a line, a hydrogen water supply line, and an ozone water supply line.
[0188] (20) (11)ないし(19)のいずれかに記載の発明において、前記第 2の流路選択 切換弁には窒素ガス供給ライン、純水供給ライン、有機溶剤供給ライン、酸供給ライ ン、水素水供給ライン、およびオゾン水供給ラインのいずれ力 4または複数に接続さ れてレ、ることを特徴とする流体反応装置。 [0189] (21) (3)ないし(20)に記載の発明において、前記導出部の設置スペースには、[0188] (20) In the invention according to any one of (11) to (19), the second flow path selection switching valve includes a nitrogen gas supply line, a pure water supply line, an organic solvent supply line, an acid supply A fluid reaction device characterized by being connected to any one or more of a line, a hydrogen water supply line, and an ozone water supply line. [0189] (21) In the invention described in (3) to (20), the installation space of the lead-out part includes:
2個以上の回収容器を保持可能なテーブルと、テーブル移動機構とを設けたことを 特徴とする流体反応装置。 A fluid reaction apparatus comprising a table capable of holding two or more recovery containers and a table moving mechanism.
[0190] (22) (21)に記載の発明において、前記テーブル移動機構は回転機構または往 復機構であることを特徴とする流体反応装置。 [0190] (22) In the invention described in (21), the table moving mechanism is a rotating mechanism or a reciprocating mechanism.
[0191] (23) (1)ないし(22)に記載の発明において、反応後の物質の収率を測定する 収率測定手段が具備されていることを特徴とする流体反応装置。 [0191] (23) A fluid reaction apparatus according to the invention described in (1) to (22), further comprising yield measuring means for measuring the yield of the substance after the reaction.
[0192] (24) (23)に記載の発明において、収率測定手段が紫外吸光、赤外分光、近赤 外分光であることを特徴とする流体反応装置。  [0192] (24) The fluid reaction apparatus according to the invention described in (23), wherein the yield measuring means is ultraviolet absorption, infrared spectroscopy, or near infrared spectroscopy.
[0193] (25) 複数の流体をマイクロ反応空間を含む流路において反応させる流体反応装 置に用いられる流体混合装置であって、複数の平板状の基材を接合し、複数の流体 をそれぞれのヘッダ空間から合流空間に連続的に供給して混合させるように構成さ れ、各流体の前記ヘッダ空間を前記基材の異なる表面に設け、前記各ヘッダ空間と 前記合流空間とを連通するそれぞれ複数の分液流路を、異なるヘッダ空間からの分 液流路が前記合流空間の流入部において交互に開口するように形成したことを特徴 とする流体混合装置。  [0193] (25) A fluid mixing device used in a fluid reaction device for reacting a plurality of fluids in a flow path including a micro reaction space, wherein a plurality of plate-like base materials are joined to each other and the plurality of fluids are respectively connected. The header space of each fluid is configured to be continuously supplied to and mixed with each other, the header spaces of the respective fluids are provided on different surfaces of the base material, and the header spaces and the merged spaces are communicated with each other. A fluid mixing apparatus, wherein a plurality of liquid separation channels are formed such that liquid separation channels from different header spaces open alternately at an inflow portion of the merge space.
[0194] (25)に記載の発明によれば、基材の表面に所定の流路を加工して接合することに より、微細な流路を交互に隣接させて合流空間に流入させる混合流路を有する混合 装置が、簡単な構成で容易に製造される。  [0194] According to the invention described in (25), by mixing a predetermined flow path on the surface of the base material, the mixed flow that causes the fine flow paths to be alternately adjacent to each other and flow into the merge space A mixing device having a channel is easily manufactured with a simple configuration.
[0195] (26) (25)に記載の発明において、前記各ヘッダ空間は、前記異なる表面にお いて同心の円弧状に形成され、前記合流空間はこれらの円弧のほぼ中心上に配置 されてレ、ることを特徴とする流体混合装置。 [0195] (26) In the invention described in (25), each of the header spaces is formed in a concentric arc shape on the different surfaces, and the merging space is disposed substantially on the center of these arcs. A fluid mixing device characterized by that.
[0196] (27) (25)または(26)に記載の発明において、前記ヘッダ空間は前記基材のそ れぞれ表裏面に形成され、前記合流空間は前記基材の一方の表面に形成され、他 方の表面上のヘッダ空間と連通する分液流路は前記基材を貫通して設けられている ことを特徴とする流体混合装置。 [0196] (27) In the invention described in (25) or (26), the header space is formed on the front and back surfaces of the base material, and the joining space is formed on one surface of the base material. And a liquid separation channel communicating with the header space on the other surface is provided through the base material.
[0197] (28) (25)または(27)に記載の発明において、前記各ヘッダ空間と前記合流空 間とを連通する前記複数の分液流路は互いに平行に延びて形成されていることを特 徴とする流体混合装置。 [0197] (28) In the invention described in (25) or (27), the plurality of liquid separation channels communicating the header spaces and the merge spaces are formed to extend in parallel to each other. Special Fluid mixing device.
[0198] (28)に記載の発明によれば、複数の分液流路が互いに平行に延びて形成されて いるので、合流空間側で集中することがなぐ設計や製造が容易である。  [0198] According to the invention described in (28), since the plurality of liquid separation channels are formed so as to extend in parallel with each other, the design and manufacture that do not concentrate on the merge space side are easy.
[0199] (29) 複数の流体をマイクロ反応空間を含む流路において反応させる流体反応装 置に用いられる流体混合装置であって、複数の平板状の基材を接合し、複数の流体 をそれぞれのヘッダ空間から合流空間に連続的に供給して混合させるように構成さ れ、前記ヘッダ空間を前記基材の表面に沿って設け、前記合流空間を流体が前記 基材の板厚方向に流れるように設け、前記ヘッダ空間と前記合流空間とを連通する それぞれ複数の分液流路を、異なるヘッダ空間からの分液流路が前記合流空間の 流入部において交互に開口するように形成したことを特徴とする流体混合装置。  [0199] (29) A fluid mixing device used in a fluid reaction device for reacting a plurality of fluids in a flow path including a micro reaction space, wherein a plurality of plate-like base materials are joined to each other and the plurality of fluids are respectively connected. The header space is provided along the surface of the base material, and the fluid flows in the thickness direction of the base material. A plurality of liquid separation channels that communicate between the header space and the merge space are formed such that the liquid separation channels from different header spaces open alternately at the inflow portion of the merge space. A fluid mixing device.
[0200] (29)に記載の発明によれば、合流空間を流体が基材の板厚方向に流れるように 設けているので、合流空間が基材の板面を占拠せず、ヘッダ空間と複数の分液流路 とを基材の板面上に自由に配置することができる。  [0200] According to the invention described in (29), since the merging space is provided so that the fluid flows in the thickness direction of the base material, the merging space does not occupy the plate surface of the base material, and the header space and A plurality of liquid separation channels can be freely arranged on the plate surface of the substrate.
[0201] (30) (29)に記載の発明において、前記ヘッダ空間が前記基材の表面において 前記合流空間の両側に設けられ、異なるヘッダ空間からの分液流路どうしが前記合 流空間の流入部において互いにずれた位置に開口していることを特徴とする流体混 合装置。  [0201] (30) In the invention described in (29), the header spaces are provided on both sides of the merge space on the surface of the base material, and liquid separation channels from different header spaces are arranged in the merge space. A fluid mixing device, wherein the fluid mixing device is opened at positions shifted from each other in the inflow portion.
[0202] (30)に記載の発明によれば、異なるヘッダ空間からの流体力 合流空間の流入部 において対向しつつ互いにずれた位置に流入し、旋回流を伴いながら交互に隣接 する流れを形成し、界面の面積を増加させる。  [0202] According to the invention described in (30), fluid flows from different header spaces flow into positions shifted from each other while facing each other in the inflow portion of the confluence space, and form alternately adjacent flows with a swirl flow. And increase the area of the interface.
[0203] (31) (29)に記載の発明において、各流体の前記ヘッダ空間を前記基材の異な る表面に設け、分液流路の少なくとも一方は前記基材を貫通して設けられ、異なるへ ッダ空間からの分液流路どうしが前記合流空間の対向する側において相対向するよ うに、かつ前記合流空間の同じ側において交互に隣接するように形成されていること を特徴とする流体混合装置。  [0203] (31) In the invention described in (29), the header space of each fluid is provided on a different surface of the base material, and at least one of the liquid separation channels is provided through the base material, The liquid separation flow paths from different header spaces are formed so as to face each other on opposite sides of the merge space and alternately adjacent on the same side of the merge space. Fluid mixing device.
[0204] (31)に記載の発明によれば、平面的に交互に隣接する流れが 2層になって立体 的に配置された層状の流れとなって、界面の面積を増加させる。  [0204] According to the invention described in (31), the flow that is adjacent to each other in a plane becomes a two-layered flow that is three-dimensionally arranged, and the area of the interface is increased.
[0205] (32) (29)ないし(31)のいずれかに記載の発明において、前記合流空間は、流 体が前記基材の板厚方向に流れた後に、該基材に沿って流れるように屈曲して形成 されてレ、ることを特徴とする流体混合装置。 [0205] (32) In the invention according to any one of (29) to (31), the merging space is a stream. A fluid mixing apparatus, wherein the body is bent and formed so as to flow along the substrate after the body flows in the plate thickness direction of the substrate.
[0206] (32)に記載の発明によれば、合流空間は、流体が基材の板厚方向に流れた後に 基材の面に沿って流れるように屈曲して形成されているので、板厚方向の寸法増加 が抑制される。  [0206] According to the invention described in (32), the merging space is formed to be bent so that the fluid flows along the surface of the base material after flowing in the thickness direction of the base material. Increase in dimension in the thickness direction is suppressed.
[0207] (33) 複数の流体を平板状の基材に形成された 500 x m以下の流路幅部分を含 む空間に連続的に供給して混合させる混合流路を有し、前記複数の流体の合流点 力、ら流れに沿って 5mm以上の長さに渡って直径 50 μ m以下の柱状の障害物が等 間隔に配置されていることを特徴とする流体混合装置。  [0207] (33) having a mixing flow path for continuously supplying and mixing a plurality of fluids to a space including a flow path width portion of 500 xm or less formed on a flat substrate; A fluid mixing device, wherein columnar obstacles having a diameter of 50 μm or less are arranged at equal intervals over a length of 5 mm or more along the confluence point of the fluid.
[0208] (33)に記載の発明によれば、混合流路における流体の合流点から流れに沿って 微細な柱状の障害物を分散して配置することにより、マイクロ流路を用いた混合装置 が、簡単な構成で容易に製造される。 [0208] According to the invention described in (33), the fine columnar obstacles are dispersed and arranged along the flow from the confluence of the fluid in the mixing channel, so that the mixing device using the microchannel However, it is easily manufactured with a simple configuration.
[0209] (34) (33)に記載の発明において、前記柱状の障害物は複数列の柱が列の間隔 をずらして流れ方向に交互配置されたことことを特徴とする流体混合装置。 [0209] (34) In the invention described in (33), the columnar obstacle is characterized in that a plurality of columns of columns are alternately arranged in the flow direction at different intervals.
[0210] (35) (33)または(34)に記載の発明において、前記柱状の障害物は複数で流れ 方向に千鳥状に配置されていることを特徴とする流体混合装置。 [0210] (35) In the invention described in (33) or (34), a plurality of the columnar obstacles are arranged in a staggered manner in the flow direction.
[0211] (36) (25)ないし(35)のいずれかに記載の発明において、合流後において、流 路の幅が徐々に小さくなる部分と徐々に大きくなる部分を持つことを特徴とする流体 混合装置。徐々に小さくなる流路の面は複数流体の合流する面と同一面上であるこ とが好ましい。 [36] (36) In the invention according to any one of (25) to (35), the fluid having a portion where the width of the flow path gradually decreases and a portion where the width gradually increases after joining. Mixing equipment. It is preferable that the surface of the flow path that gradually decreases is on the same plane as the surface where a plurality of fluids merge.
[0212] (37) (25)ないし(36)のいずれかに記載の発明において、合流後において、流 路の幅寸法と深さ寸法が交互に縮小、拡大を繰り返すことを特徴とする流体混合装 置。その最小寸法は 100 z m以下であることが好ましい。  [0212] (37) In the invention according to any one of (25) to (36), the fluid mixing characterized by repeatedly reducing and expanding the width dimension and the depth dimension of the flow path after joining. Equipment. The minimum dimension is preferably 100 zm or less.
[0213] (38) (25)ないし(37)のいずれかに記載の発明において、合流後において、流 路の幅方向寸法が深さ方向寸法よりも大きい扁平状部分を有することを特徴とする 流体混合装置。 [0213] (38) In the invention according to any one of (25) to (37), after joining, the flow path has a flat-shaped portion in which the dimension in the width direction is larger than the dimension in the depth direction. Fluid mixing device.
[0214] (39) (25)ないし(38)のいずれかに記載の発明において、流路を形成する部材 力 SUS316、 SUS304、 Ti、石英ガラス、パイレックスガラス(登録商標)等の硬質ガラス 、 PEEK (polyetheretherketone)、 PE (polyethylene)、 PVC (polyvinylchloride)、 PD MS (polydimethylsiloxane)、 Si、 PTFE (polytetrafluoroethylene)、 PCTFE (polychl orotrifluoroethylene)、および PFA (perfluoroalkoxylalkane)の内の 1または複数を含 むこと特徴とすることを特徴とする流体混合装置。これらの素材から、耐薬品性、耐圧 性、熱伝導性の面を考慮して、好ましいものが選択される。混合、反応基板材料の接 液部の材質は、表面からの溶出が少なく表面触媒修飾が可能で、ある程度の耐薬品 性を持ち、—40〜: 150°Cの広い温度範囲に耐えるものが望ましい。 [0214] (39) In the invention according to any one of (25) to (38), a member forming the flow path. Hard glass such as SUS316, SUS304, Ti, quartz glass, Pyrex glass (registered trademark) , PEEK (polyetheretherketone), PE (polyethylene), PVC (polyvinylchloride), PD MS (polydimethylsiloxane), Si, PTFE (polytetrafluoroethylene), PCTFE (polychlorofluoroethylene), and PFA (perfluoroalkoxylalkane) A fluid mixing apparatus characterized by the above. From these materials, preferable materials are selected in consideration of chemical resistance, pressure resistance, and thermal conductivity. The material in the wetted part of the mixed and reaction substrate material should be able to be surface-catalyzed with little elution from the surface, have a certain degree of chemical resistance, and should withstand a wide temperature range of -40 to 150 ° C .
[0215] (40) (25)ないし(38)のいずれかに記載の発明において、流路の内壁の一部ま たはすベての材質が、 Au、 Ag、 Pt、 Pd、 Ni、 Cu、 Ru、 Zr、 Ta、 Nbまたはこれらの金属 を含む化合物であることを特徴とする流体混合装置。  [0215] (40) In the invention according to any one of (25) to (38), a part or all of the inner wall of the flow path is made of Au, Ag, Pt, Pd, Ni, Cu , Ru, Zr, Ta, Nb or a compound containing these metals.
[0216] (41) (25)ないし (40)のいずれかに記載の発明において、前記基材は、少なくと も 1辺の大きさが 150mmを越える寸法の矩形であることを特徴とする流体混合装置。  [0216] (41) In the invention according to any one of (25) to (40), the base material is a rectangle having a size of at least one side exceeding 150 mm. Mixing equipment.
[0217] (42) (25)ないし (41)のいずれかに記載の発明において、流体の複数導入口と 混合後の単一流体の出口は前記基板の反対側の面に存在することを特徴とする流 体混合装置。  [0217] (42) In the invention according to any one of (25) to (41), a plurality of fluid inlets and a single fluid outlet after mixing are present on the opposite surface of the substrate. Fluid mixing device.
[0218] (43) (25)ないし (42)のいずれかに記載の発明において、混合反応基板を同一 基板内に、流体の温度を反応温度に向けて上昇、または下降させる予備温度調整 部を具備したことを特徴とする流体混合装置。  [0218] (43) In the invention according to any one of (25) to (42), a preliminary temperature adjustment unit that raises or lowers the temperature of the fluid toward the reaction temperature in the same substrate and the mixed reaction substrate is provided. A fluid mixing device comprising the fluid mixing device.
[0219] (44) (1)ないし(24)のいずれかに記載の発明において、前記混合基板として、(  [0219] (44) In the invention according to any one of (1) to (24), as the mixed substrate,
25)なレ、し (43)のレ、ずれかの流体混合装置を用いることを特徴とする流体反応装置  25) Nashireshi (43) A fluid reaction device characterized by using any one of the fluid mixing devices
[0220] (45) (1)ないし(24)、および (44)のいずれかに記載の発明において、反応基板 の流路を形成する周囲部材は SUS316、 SUS304, Ti、石英ガラス、パイレックスガラス( 登録商標)等の硬質ガラス、 PEEK, PE、 PVC、 PDMS、 Si、 PTFE, PCTFEの内の 1ま たは複数を含むこと特徴とすることを特徴とする流体反応装置。 [0220] (45) In the invention according to any one of (1) to (24) and (44), the peripheral members forming the flow path of the reaction substrate are SUS316, SUS304, Ti, quartz glass, pyrex glass ( A fluid reaction device characterized by including one or more of hard glass such as registered trademark), PEEK, PE, PVC, PDMS, Si, PTFE, and PCTFE.
[0221] (46) (1)ないし(24)、(44)、および (45)のいずれかに記載の発明において、反 応基板の流路の内壁の一部またはすベての材質が Au、 Ag、 Pt、 Pd、 Ni、 Cu、 Ru、 Zr 、 Ta、 Nbの内の 1または複数またはこれらの金属を含む化合物であることを特徴とす る流体反応装置。 [0221] (46) In the invention according to any one of (1) to (24), (44), and (45), a part or all of the inner wall of the flow path of the reaction substrate is made of Au. , Ag, Pt, Pd, Ni, Cu, Ru, Zr, Ta, Nb, or a compound containing one or more of these metals Fluid reaction device.
[0222] (47) (1)ないし(24)、および(44)ないし(46)のいずれかに記載の発明におい て、前記混合基板および/または反応基板が、熱媒体流路を有する温度調整ケー ス内に収容されていることを特徴とする流体反応装置。これにより、熱媒体流路が混 合基板および/または反応基板の全域に沿って均一な流れを作り、反応領域を均 一な温度に調整する。  [0222] (47) In the invention according to any one of (1) to (24) and (44) to (46), the mixed substrate and / or the reaction substrate has a heat medium flow path. A fluid reaction device characterized by being housed in a case. As a result, the heat medium flow path creates a uniform flow along the entire area of the mixed substrate and / or reaction substrate, and adjusts the reaction region to a uniform temperature.
[0223] (48) (47)に記載の発明において、前記該熱媒体流体流路内に温度測定手段 が設けられてレ、ることを特徴とする流体反応装置。  [0223] (48) The fluid reaction apparatus according to the invention described in (47), wherein a temperature measuring means is provided in the heat medium fluid flow path.
[0224] (49) (46)または (47)に記載の発明において、前記熱媒体流路は、前記混合基 板および/または反応基板の表裏面に沿った複数の分岐流路を有することを特徴と する流体反応装置。 [0224] (49) In the invention described in (46) or (47), the heat medium flow path has a plurality of branch flow paths along front and back surfaces of the mixed substrate and / or reaction substrate. Characteristic fluid reaction device.
[0225] (50) (47)ないし (49)のいずれかに記載の発明において、前記温度調整ケース はケース本体と蓋部を有し、前記熱媒体流路はこれらを連絡するように形成されてい ることを特徴とする流体反応装置。  [0225] (50) In the invention according to any one of (47) to (49), the temperature adjustment case has a case body and a lid, and the heat medium flow path is formed so as to connect them. A fluid reaction device characterized by comprising:
[0226] (51) (50)に記載の発明において、熱流体が流入する前記ケース本体の第 1の ヘッダに設けられた複数の絞り穴が前記蓋部の第 2のヘッダと直結し、第 2のヘッダ には前記混合基板および/または反応基板の表裏面に平行な流れを形成する複数 の分岐流路へと直結する第 2の絞り穴が設けられていることを特徴とする流体反応装 置。  [0226] (51) In the invention described in (50), the plurality of throttle holes provided in the first header of the case body into which the thermal fluid flows are directly connected to the second header of the lid, The header of 2 is provided with a second restriction hole that is directly connected to a plurality of branch channels that form a flow parallel to the front and back surfaces of the mixed substrate and / or reaction substrate. Place.
[0227] (52) (47)ないし(51)のいずれかに記載の発明において、前記温度調整ケース の材料は Ti、 Al、 SUS304、 SUS316のいずれかであることを特徴とする流体反応装置  [0227] (52) In the invention according to any one of (47) to (51), a material for the temperature adjustment case is any one of Ti, Al, SUS304, and SUS316.
[0228] (53) (1)ないし(24)、および(44)ないし(52)のいずれかに記載の発明にぉレ、 て、前記温度制御手段は、流体混合基板または反応基板を囲い込み混合流体の温 度を調整する温度調整媒体保持機構と、保持機構に保持された温度調整媒体と、 温度測定センサと、温度調整媒体と混合反応流体の間の伝熱量を調整する伝熱量 調整手段を備えたことを特徴とする流体反応装置。 (53) In the invention according to any one of (1) to (24) and (44) to (52), the temperature control means surrounds and mixes the fluid mixing substrate or the reaction substrate. A temperature adjusting medium holding mechanism for adjusting the temperature of the fluid, a temperature adjusting medium held by the holding mechanism, a temperature measuring sensor, and a heat transfer amount adjusting means for adjusting the heat transfer amount between the temperature adjusting medium and the mixed reaction fluid. A fluid reaction apparatus comprising:
[0229] (54) (53)に記載の発明において、前記温度調整媒体として、シリコンオイル、フ ッ素オイル、アルコール、液体窒素、電気抵抗熱線、ペルチェ素子のいずれか 1また は複数が用いられることを特徴とする流体反応装置。シリコンオイルは、たとえば 4 0〜: 150°Cと広い範囲の温度制御を 1つの流体で行うことができる。または高温側を 重視するならばフッ素系オイル、低温側ならばアルコール系が望ましレ、。 [0229] (54) In the invention described in (53), as the temperature adjusting medium, silicon oil, One or more of nitrogen oil, alcohol, liquid nitrogen, electric resistance heating wire, and Peltier element are used, and a fluid reaction device characterized by the above. Silicon oil, for example, can control a wide range of temperatures from 40 to 150 ° C with one fluid. Or, if the high temperature side is important, fluorinated oil is desirable, and if it is the low temperature side, alcohol is desirable.
[0230] (55) (53)または(54)に記載の発明において、伝熱量調整手段はポンプ流量調 整、流量調整弁、電気量のいずれかであることを特徴とする流体反応装置。  [0230] (55) In the invention described in (53) or (54), the heat transfer amount adjusting means is any one of a pump flow rate adjustment, a flow rate adjustment valve, and an electric quantity.
[0231] (56) (53)ないし(55)のいずれかに記載の発明において、温度調整媒体保持機 構を断熱部材で覆う構造にしたことを特徴とする流体反応装置。  [0231] (56) The fluid reaction apparatus according to any one of (53) to (55), wherein the temperature adjusting medium holding mechanism is covered with a heat insulating member.
[0232] (57) (56)に記載の発明において、断熱部材はシリコンゴムであることを特徴とす る流体反応装置。  [0232] (57) The fluid reaction apparatus according to the invention described in (56), wherein the heat insulating member is silicon rubber.
[0233] (58) (1)ないし(24)、および(44)ないし(57)のいずれかに記載の発明におい て、反応後物質中の必要物質、不要物質を分別する分離抽出手段を具備したことを 特徴とする流体反応装置。  [0233] (58) In the invention according to any one of (1) to (24) and (44) to (57), the apparatus includes a separation and extraction means for separating necessary and unnecessary substances in the substance after the reaction. A fluid reaction device characterized by that.
[0234] (59) (1)ないし(24)、および(44)ないし(58)のいずれかに記載の発明におい て、粉体原料を液化溶解するための粉体溶解器を具備したことを特徴とする流体反 応装置。 [0234] (59) In the invention according to any one of (1) to (24) and (44) to (58), a powder dissolver for liquefying and dissolving a powder raw material is provided. Characteristic fluid reaction device.
[0235] (60) (1)ないし(24)、および(44)ないし(59)のいずれかに記載の発明におい て、流体反応装置内の一部または全域を装置外と隔離し、装置外の圧力より負の圧 力としたことを特徴とする流体反応装置。  [0235] (60) In the invention according to any one of (1) to (24) and (44) to (59), a part or the whole of the fluid reaction device is isolated from the outside of the device, A fluid reaction device characterized in that the pressure is more negative than the pressure of.
[0236] (61) (1)ないし(24)、および(44)ないし(60)のいずれかに記載の発明におい て、流体反応装置の下部において漏れた液を貯める液貯めパンと、漏れた液を検知 する漏液センサとを具備したことを特徴とする流体反応装置。 (61) In the invention according to any one of (1) to (24) and (44) to (60), a liquid storage pan for storing liquid leaked at a lower portion of the fluid reaction device, and a leak A fluid reaction apparatus comprising a leak sensor for detecting liquid.
[0237] (62) (1)ないし(24)、および(44)ないし(61)のいずれかに記載の発明におい て、流体反応装置に付属した動作制御手段を含む動作制御部には、流体の流量と 反応温度を表示する表示機構が具備されていることを特徴とする流体反応装置。 [0237] (62) In the invention according to any one of (1) to (24) and (44) to (61), the operation control unit including the operation control means attached to the fluid reaction device includes a fluid A fluid reaction device comprising a display mechanism for displaying the flow rate and the reaction temperature.
[0238] 以下、図面を参照してこの発明の実施の形態のマイクロ反応装置について説明す る。 [0238] Hereinafter, a microreaction apparatus according to an embodiment of the present invention will be described with reference to the drawings.
[0239] 図 1ないし図 3は本発明の流体反応装置の実施例であり、 2液を混合した後に反応 させる装置である。図 2又は図 3に示すように、この実施の形態の装置は、全体が 1つ の設置スペースに設置されてユニットィ匕されている。この実施の形態では、この設置 スペースは長方形であり、長手方向に沿って 4つの領域に区画される。 [0239] Fig. 1 to Fig. 3 show an embodiment of the fluid reaction device of the present invention. It is a device to let you. As shown in FIG. 2 or FIG. 3, the apparatus of this embodiment is installed in a single installation space and unitized. In this embodiment, the installation space is rectangular and is divided into four regions along the longitudinal direction.
[0240] 一端側の第 1の領域は原料流体を貯留する複数の原料貯留容器 10A, 10Bとそ の付帯設備が設置された原料貯留部 (原料容器設置スペース) 1であり、それに隣接 する第 2の領域は流体を原料貯留容器 10A, 10Bから処理部 3に供給するポンプや 流路を設定する切換弁等が設置された配液部 2となっている。第 2の領域に隣接する 第 3の領域は、送液された原料流体に所定の処理を施す処理部 3となっており、他端 側の第 4の領域は、処理の結果得られた流体(生成流体)を導出部より導出して貯留 する生成流体貯留部(回収容器設置スペース) 4である。また、各部の動作の制御を 行うコンピュータである動作制御部 6と、処理部 3の温度調整を行うための熱媒体コン トローラ 7が設けられている。なお、この実施の形態では、動作制御部 6と熱媒体コン トローラ 7は反応装置と別置きになっているが、勿論一体でも良い。図 2に示すように 、第 2〜第 4の領域の床下部分には温度調整配管室 5が形成され、ここには後述する 処理基板 40, 42へ加熱又は冷却用の熱媒体を送るための配管が設けられている。  [0240] The first region on one end side is a raw material storage section (raw material container installation space) 1 in which a plurality of raw material storage containers 10A and 10B for storing a raw material fluid and its associated facilities are installed, and adjacent to the first storage area. The area 2 is a liquid distribution section 2 in which a pump for supplying fluid from the raw material storage containers 10A and 10B to the processing section 3 and a switching valve for setting a flow path are installed. The third region adjacent to the second region is a processing unit 3 that performs a predetermined process on the fed raw material fluid, and the fourth region on the other end side is a fluid obtained as a result of the processing. This is a generated fluid storage section (recovery container installation space) 4 that stores (generated fluid) from the output section. Further, an operation control unit 6 that is a computer for controlling the operation of each unit and a heat medium controller 7 for adjusting the temperature of the processing unit 3 are provided. In this embodiment, the operation control unit 6 and the heat medium controller 7 are provided separately from the reaction apparatus, but may be integrated as a matter of course. As shown in FIG. 2, a temperature adjusting piping chamber 5 is formed in the lower floor portion of the second to fourth regions, and is used to send a heating medium for heating or cooling to the processing substrates 40 and 42 described later. Piping is provided.
[0241] このように、上流側から下流側へと各設備を配置することによって流体の流れを円 滑にし、かつ装置全体をコンパクトにまとめることができる。この実施の形態では、設 備の配列を直線状にした力 例えば、全体が正方形に近いスペースであれば、各設 備を流体の流れがループを形成するように構成してもよい。このような区画は概略の ものであり、設計の際には空いたスペースを有効に活用するために適宜に各設備を 配置することができる。  [0241] Thus, by arranging each facility from the upstream side to the downstream side, the flow of fluid can be made smooth and the entire apparatus can be compactly integrated. In this embodiment, force that linearizes the arrangement of the equipment. For example, if the entire space is close to a square, each equipment may be configured such that the fluid flow forms a loop. Such divisions are approximate, and each facility can be arranged as appropriate in order to make effective use of the vacant space during design.
[0242] 原料貯留部 1には、複数 (この実施の形態では 6個)の貯留容器 10A, 10Bが設置 されている。勿論必要な数の貯留容器 10A, 10Bを使用すればよい。同じ流体を 2 つの貯留容器 10A, 10Bに収容し、これらを交互に切り換えて用いることにより、処 理を継続的に行うことができる。外部からの流体源として、原料貯留部 1に、ライン洗 浄用のアセトンなどの有機溶剤、塩酸、純水などが入った洗浄液容器 12や、パージ 用等の窒素ガス圧力源 14を置いてもよい。また、廃液容器 36を置いてもよい。  [0242] In the raw material reservoir 1, a plurality (six in this embodiment) of storage containers 10A, 10B are installed. Of course, the necessary number of storage containers 10A and 10B may be used. By storing the same fluid in the two storage containers 10A and 10B and using them alternately, the processing can be performed continuously. As an external fluid source, a cleaning liquid container 12 containing organic solvents such as acetone for line cleaning, hydrochloric acid, pure water, etc., or a nitrogen gas pressure source 14 for purging, etc. may be placed in the raw material reservoir 1 Good. Further, a waste liquid container 36 may be placed.
[0243] 配液部(導入部) 2には、原料貯留容器 10A, 10Bに流体導入口を介して接続され た原料ポンプ 16A, 16Bとその付帯設備が設置されている。この実施の形態では、 各原料ポンプ 16A, 16Bの吐出量は原料ポンプ 16A, 16Bを駆動しているモーター 18A, 18Bの回転数により管理されるので、原料ポンプ 16A, 16Bは圧力発生手段 と流量調整手段を兼ねている。図 1における原料ポンプ 16A, 16Bはピストン式を例 としている。他の圧力発生手段、流量調整手段の例を図 4ないし図 6に示す。 [0243] The liquid distribution section (introduction section) 2 is connected to the raw material storage containers 10A and 10B via fluid inlets. Raw material pumps 16A and 16B and their associated facilities are installed. In this embodiment, since the discharge amount of each raw material pump 16A, 16B is controlled by the number of rotations of the motors 18A, 18B driving the raw material pumps 16A, 16B, the raw material pumps 16A, 16B have pressure generating means and flow rate. It also serves as an adjustment means. The raw material pumps 16A and 16B in Fig. 1 are of the piston type. Examples of other pressure generating means and flow rate adjusting means are shown in FIGS.
[0244] 圧力発生手段と流量調整手段とを別に構成してもよい。図 4では、貯留容器 10A, 10Bに窒素ガス圧力源 14より圧力ガスを送り込むことで液体を圧送し、出口に設けら れたマスフローコントローラ 20によって流量を調整している。マスフローコントローラ 2 0はセンサ部が熱線式、コントローラ部がピエゾ圧電式である力 流量を測定するセ ンサ部と流量をコントロールするコントローラ部を持っている他の流量調整手段でも 良レ、。センサ部は、たとえば図 5 (a)に示すような、超音波圧電素子式の流量センサ 2 Oaでもよいし、図 5 (b)に示すような差圧式流量センサ 20bでもよレ、。コントローラ部は 、図 5 (a)または(b)に示すピエゾ圧電素子式スプールを用いたコントローラ 20dでも よぐ図 6に示すような磁気浮上式スプールを用いたコントローラ 20cでもよい。  [0244] The pressure generating means and the flow rate adjusting means may be configured separately. In FIG. 4, the liquid is pumped by sending pressure gas from the nitrogen gas pressure source 14 to the storage containers 10A and 10B, and the flow rate is adjusted by the mass flow controller 20 provided at the outlet. The mass flow controller 20 has a sensor unit for measuring heat and a piezo-piezoelectric sensor, and a sensor unit for measuring the flow rate and a controller for controlling the flow rate. The sensor unit may be, for example, an ultrasonic piezoelectric element type flow sensor 2 Oa as shown in FIG. 5 (a) or a differential pressure type flow sensor 20b as shown in FIG. 5 (b). The controller section may be a controller 20d using a piezo piezoelectric element type spool shown in FIG. 5 (a) or (b) or a controller 20c using a magnetic levitation type spool as shown in FIG.
[0245] 配液部 2の付帯設備としては、原料ポンプ 16A, 16B下流側の各輸送管 21A, 21 Bに配置されたリリーフ弁 22A, 22B、流路内圧力測定センサ 24A, 24B、流路選択 切換弁 26A, 26B、逆洗ポンプ 28が有る。流路選択切換弁 26A, 26Bは、通常のラ イン以外に、洗浄液容器 12や、パージ用等の窒素ガス圧力源 14と接続されている。 逆洗ポンプ 28は、流路内が生成物で閉塞した場合に用いられる。ポンプ 28は、洗浄 液容器 12から有機溶剤、塩酸、純水などを吐き出し、流路選択切換弁 32を介して後 述する反応基板の下流側出口に接続される。洗浄液は通常経路とは逆に流れ、混 合基板 40の流入口から流路選択切換弁 26A, 26Bを経て廃液口 34から廃液貯留 容器 36に入れられる。ポンプ 28は発生圧力が高く脈動の力で生成物を移動させるこ とも可能なように 1本ピストン型のポンプが好ましい。有機溶剤はアセトン、エタノール 、メタノールなどが用いられ、塩酸の代わりに、硝酸、りん酸、有機酸を用いてもよい。 図 1のインフラ用水等の導入口 140は、工場設備として純水や水素水の供給設備を 持ってレ、る場合の導入口で、容器 10の設置スペース (原料貯留部) 1に置かれた洗 浄液容器 12内の洗浄液の代わりに洗浄に使用できる。水素水は Pd、 Niなどの触媒 付活用として使われる。オゾン水は、酸化性洗浄用として使われる。また、外部の原 料槽から配管を介してこの導入口 140から原料溶液を受け入れることもできる。 [0245] As ancillary equipment of the liquid distribution section 2, relief valves 22A and 22B arranged in the transport pipes 21A and 21B on the downstream side of the raw material pumps 16A and 16B, pressure sensors 24A and 24B in the flow path, flow paths Selection There are selector valves 26A, 26B and backwash pump 28. The flow path selection switching valves 26A and 26B are connected to a cleaning liquid container 12 and a nitrogen gas pressure source 14 for purging, in addition to a normal line. The backwash pump 28 is used when the inside of the flow path is blocked with a product. The pump 28 discharges organic solvent, hydrochloric acid, pure water and the like from the cleaning liquid container 12 and is connected to the downstream outlet of the reaction substrate described later via the flow path selection switching valve 32. The cleaning liquid flows in the opposite direction to the normal path, and is put into the waste liquid storage container 36 from the waste liquid port 34 through the flow path selection switching valves 26A and 26B from the inlet of the mixed substrate 40. The pump 28 is preferably a single piston type pump so that the generated pressure is high and the product can be moved by the pulsating force. As the organic solvent, acetone, ethanol, methanol, or the like is used, and nitric acid, phosphoric acid, or an organic acid may be used instead of hydrochloric acid. The introduction port 140 for infrastructure water, etc. in Fig. 1 is an introduction port for supplying pure water or hydrogen water as a factory facility, and was placed in the installation space (raw material storage) 1 of the container 10 It can be used for washing instead of the washing liquid in the washing liquid container 12. Hydrogen water is a catalyst such as Pd and Ni Used as a side effect. Ozone water is used for oxidizing cleaning. It is also possible to receive the raw material solution from the inlet 140 via piping from an external raw material tank.
[0246] 処理部 3は、この例では、図 7および図 9に示すような、 2枚の処理基板、すなわち、 混合基板 40と反応基板 42を有している。混合基板 40と反応基板 42は、薄板状の基 材 44の少なくとも一方の表面に所定形状の溝を加工したものを 2枚又はそれ以上重 ねて接合して構成された平板状の部材であり、基材 44の表面の溝により内部に流路 が形成されている。流路の形状や寸法は、行われる処理の反応プロセスに応じて設 計される。また、基材 44の材料も後述するように処理に合わせて選択し、使用圧力に 耐えるのに必要な厚さに設計する。これらの処理基板 40, 42は、図 11に示すように 、温度調整ケース 46に収容されて用いる。 [0246] In this example, the processing unit 3 has two processing substrates, that is, a mixed substrate 40 and a reaction substrate 42 as shown in FIGS. The mixed substrate 40 and the reaction substrate 42 are flat plate members formed by joining two or more laminated grooves having a predetermined shape formed on at least one surface of a thin plate-like substrate 44 . The flow path is formed inside by the groove on the surface of the base material 44. The shape and dimensions of the flow path are designed according to the reaction process of the treatment to be performed. The material of the base material 44 is also selected according to the processing as described later, and designed to have a thickness necessary to withstand the working pressure. These processing substrates 40 and 42 are accommodated in a temperature adjustment case 46 as shown in FIG.
[0247] 図 7は、予備加熱(予備温度調整)と混合処理を行うための混合基板 40を示すもの で、 3枚の薄板状の基材である上板 44a、中板 44b、下板 44cが接合されて全厚さ 5 mmの混合基板 40が形成されている。流路を形成する溝はいずれも中板 44bに形成 されており、図において、実線は中板 44bの上面に形成された溝、鎖線は中板 44b の下面に形成された溝を示している。すなわち、上板 44aを貫通して形成された 2つ の流入ポート 47は、中板 44bの上面に形成されたそれぞれ 2つの予備加熱流路 48 に連通する。これらの予備加熱流路 48はそれぞれ途中で分岐しかつそれぞれ拡大 し、再度合流して出口流路 50, 51に通じ、さらに混合部 52に通じている。一方の出 ロ流路 50は、中板 44bの上面に、他方の出口流路 51は中板 44bの下面に形成され ている。 [0247] Fig. 7 shows a mixed substrate 40 for performing preheating (preliminary temperature adjustment) and mixing processing. The upper plate 44a, the middle plate 44b, and the lower plate 44c, which are three thin plate-like substrates, are shown. Are mixed to form a mixed substrate 40 having a total thickness of 5 mm. The grooves forming the flow path are all formed in the intermediate plate 44b. In the figure, the solid line indicates the groove formed on the upper surface of the intermediate plate 44b, and the chain line indicates the groove formed on the lower surface of the intermediate plate 44b. . That is, the two inflow ports 47 formed through the upper plate 44a communicate with the two preheating channels 48 formed on the upper surface of the middle plate 44b. Each of these preheating channels 48 diverges on the way and expands, merges again, leads to outlet channels 50 and 51, and further to mixing unit 52. One outlet channel 50 is formed on the upper surface of the middle plate 44b, and the other outlet channel 51 is formed on the lower surface of the middle plate 44b.
[0248] 混合部 52は、図 8に拡大して示すように、中板 44bの上下面にそれぞれ出口流路 50, 51と通じる円弧状の溝として形成されたヘッダ部 54, 55と、このヘッダ部 54, 5 5の各点から円弧の中心に向かって延びる複数の分液流路 56, 57と、これらの表裏 の径方向流路が合流するように形成された合流空間 58とを有している。分液流路 56 , 57と合流空間 58は中板 44bの上面に形成され、分液流路 56, 57はそれぞれのへ ッダ部 54, 55に通じるものが交互に配置されている。下面側のヘッダ部 55に通じる 分液流路 57は、中板 44bを貫通する連絡孔 57aにより連通している。合流空間 58は 、他端の出口側に向けて徐々に幅が小さくなるように形成され、他端側の中板 44bお よび下板 44cを貫通して形成された流出ポート 60に開口している。 [0248] As shown in an enlarged view in Fig. 8, the mixing portion 52 includes header portions 54, 55 formed as arc-shaped grooves respectively communicating with the outlet channels 50, 51 on the upper and lower surfaces of the intermediate plate 44b. There are a plurality of liquid separation channels 56, 57 extending from the respective points of the header portions 54, 55 toward the center of the arc, and a merge space 58 formed so that the radial channels on the front and back sides merge. is doing. The separation flow paths 56 and 57 and the merge space 58 are formed on the upper surface of the intermediate plate 44b, and the separation flow paths 56 and 57 are alternately arranged to communicate with the header portions 54 and 55, respectively. The liquid separation flow path 57 that communicates with the header section 55 on the lower surface side communicates with the communication hole 57a that penetrates the intermediate plate 44b. The merge space 58 is formed so that the width gradually decreases toward the outlet side at the other end, and the middle plate 44b and the other end side are formed. And an outflow port 60 formed through the lower plate 44c.
[0249] 図示の例では、合流空間 58の入口側の開口面 59において A液の分液流路 56が 5 本、 B液の分液流路 57が 4本、交互に配置されている。流出した A液と B液は交互の 層状で縞状の流れのまま徐々に流路幅が縮小し、この場合は 40 z mに達し、強制 的に両液が混合されるようになる。幅はその後徐々に大きくなつており、定常流速が 得られるようになつている。 [0249] In the example shown in the figure, five liquid separation channels 56 for liquid A and four liquid separation channels 57 for liquid B are alternately arranged on the opening surface 59 on the inlet side of the merge space 58. The outflowing A and B liquids gradually reduce the width of the channel with alternating layered and striped flows. In this case, it reaches 40 zm, and both liquids are forcibly mixed. The width gradually increases thereafter, and a steady flow velocity is obtained.
[0250] 図 9 (a)および (b)は、反応基板 42を示すもので、この例では 2枚の基材 44が接合 されて計 5mmの反応基板 42が構成されている。この反応基板 42では、反応流路 62 が蛇行して形成され、長い流路を効率的に提供している。反応流路 62は、入口ポー ト 64および出口ポート 65につながる連絡部 62a, 62cが狭幅に、中央の蛇行部分 62 bは幅広に形成されている。したがって、出入口部分で絞られて急速に流れ、副生成 物の付着を避けており、中央部分では緩やかに流れて、加熱と反応の時間を長く取 ることができるようになつている。 [0250] FIGS. 9 (a) and 9 (b) show a reaction substrate 42. In this example, two substrates 44 are joined to form a reaction substrate 42 of a total of 5 mm. In the reaction substrate 42, the reaction channel 62 is formed in a meandering manner, and a long channel is efficiently provided. The reaction channel 62 is formed such that the connecting portions 62a and 62c connected to the inlet port 64 and the outlet port 65 are narrow and the central meandering portion 62b is wide. Therefore, it is squeezed at the entrance / exit and flows rapidly, avoiding by-product adhesion, and flows slowly at the center so that the heating and reaction time can be extended.
[0251] 図 10 (a)および (b)に示すのは、流路の形状の幅が除々に小さくなる部分 63aと除 々に大きくなる部分 63bを持つ反応基板 42aの他の例である。この実施の形態では、 基材 44d, 44eの間に、幅寸法が最大 aから最小 bの範囲で増減する反応流路 63が 形成されている。幅寸法の増減に合わせ、深さを増減させてもよい。この例では流路 の断面積が一定になるよう深さが最大 cから最小 dの範囲で変化するようになっている [0251] FIGS. 10 (a) and 10 (b) show another example of the reaction substrate 42a having a portion 63a in which the width of the shape of the flow path gradually decreases and a portion 63b in which the width gradually increases. In this embodiment, a reaction channel 63 is formed between the substrates 44d and 44e, the width dimension of which increases or decreases in the range of maximum a to minimum b. The depth may be increased or decreased according to the increase or decrease of the width dimension. In this example, the depth changes from the maximum c to the minimum d so that the cross-sectional area of the channel is constant.
[0252] 図 10 (c)は、他の実施の形態の反応基板 42b内の反応流路 63cの横断面を示して いる。この反応流路 63cは、幅 eは深さはり大きい扁平形状をしており、熱触媒からの 熱の伝達方向(矢印で表示)に交差する広い伝熱面を有するので、流路内の流体に 有効に熱の伝達が行われる。 [0252] FIG. 10 (c) shows a cross section of the reaction flow path 63c in the reaction substrate 42b of another embodiment. This reaction channel 63c has a flat shape with a large width e and a large depth, and has a wide heat transfer surface that intersects the direction of heat transfer from the thermal catalyst (indicated by an arrow). Heat transfer is effectively performed.
[0253] なお、合流空間 58や反応流路 62に、適当な触媒を配置することは反応を促進する ために有効である。このような触媒は反応の種類に応じて選択される。配置の仕方は 、例えば、流路の内面に塗布したり、後述するような流路の障害物として配置すること ができる。  [0253] It is effective to dispose an appropriate catalyst in the merge space 58 and the reaction channel 62 in order to promote the reaction. Such a catalyst is selected depending on the type of reaction. The arrangement can be performed, for example, by applying to the inner surface of the flow path or as an obstacle to the flow path as will be described later.
[0254] これらの基板 40, 42を形成する基材 44の少なくとも流路を形成する素材は、例え ば、 SUS316、 SUS304、 Ti、石英ガラス、パイレックスガラス(登録商標)等の硬質ガラス 、 PEEK (polyetheretherketone)、 PE (polyethylene)、 PVC (polyvinylchloride)、 PD MS (polydimethylsiloxane)、 Si、 PTFE (polytetrafluoroethylene)、 PCTFE (polycnl orotrifluoroethylene)、および PFA (perfluoroalkoxylalkane)の内力、ら、耐薬品十生、耐 圧性、熱伝導性、耐熱性等を考慮して、好ましいものを選択する。混合基板 40およ び反応基板 42材料の接液部の材質は、表面からの溶出が少なく表面触媒修飾が可 能で、ある程度の耐薬品性を持ち、 _40〜150°Cの広い温度範囲に耐えるものが望 ましい。 [0254] The material forming at least the flow path of the base material 44 forming these substrates 40 and 42 is, for example, For example, SUS316, SUS304, Ti, quartz glass, Pyrex glass (registered trademark) hard glass, PEEK (polyetheretherketone), PE (polyethylene), PVC (polyvinylchloride), PD MS (polydimethylsiloxane), Si, PTFE (polytetrafluoroethylene), In consideration of the internal forces of PCTFE (polycnl orotrifluoroethylene) and PFA (perfluoroalkoxylalkane), chemical tolerance, pressure resistance, thermal conductivity, heat resistance, etc., a preferable one is selected. The wetted parts of the mixed substrate 40 and reaction substrate 42 material have little elution from the surface and can be surface-catalyzed, have a certain degree of chemical resistance, and have a wide temperature range of _40 to 150 ° C. I want something that can withstand.
[0255] 図 11は、処理ブロックの構成を示すもので、温度調整ケース 46は、内部に処理基 板 40, 42を収容する空間 70が形成されるようなケース本体 72とこれを覆う蓋部 74と からなり、これらには複数の平行な熱媒体流路を構成する溝 76が内面に開口して形 成されている。ケース本体 72には、これらの溝 76に連通する給液路 78と排液路 80 ( 図 12 (a)参照)が形成され、これらの給液路 78と排液路 80はそれぞれ給液管および 戻し管を介して熱媒体コントローラ 7に接続されている。これら給液路 78と排液路 80 は、接合される蓋部 74側にも開口を介して連通している。このように、この例では、処 理基板 40, 42は温度調整ケース 46に完全に収容された状態で加熱ほたは冷却) され、熱媒体流体は混合基板 40、または反応基板 42の表裏面に直接接触している  FIG. 11 shows the configuration of the processing block. The temperature adjustment case 46 includes a case main body 72 in which a space 70 for accommodating the processing substrates 40 and 42 is formed, and a lid portion covering the case main body 72. These are formed with grooves 76 constituting a plurality of parallel heat medium flow paths opened to the inner surface. A liquid supply path 78 and a drainage path 80 (see FIG. 12 (a)) communicating with these grooves 76 are formed in the case body 72, and the liquid supply path 78 and the drainage path 80 are respectively connected to the liquid supply pipes. And connected to the heat medium controller 7 via a return pipe. These liquid supply path 78 and drainage path 80 are also communicated with each other through the opening on the lid 74 side to be joined. Thus, in this example, the processing substrates 40 and 42 are heated or cooled while completely accommodated in the temperature adjustment case 46, and the heat transfer fluid is the mixed substrate 40 or the front and back surfaces of the reaction substrate 42. In direct contact with
[0256] 熱媒体コントローラ 7には、媒体温度を補正する制御機構と熱媒体を輸送する輸送 ポンプが内蔵されている。熱媒体流体は個々の熱交換器 82を通過後、熱媒体配管 を介して混合基板 40や反応基板 42の温度調整ケース 46の熱媒体流入口 84に達 するようになつている。熱交換器 82は例えば冷却用の巿水の量を変えることで熱媒 体の個々の温度を変えられるようになつている。 [0256] The heat medium controller 7 includes a control mechanism for correcting the medium temperature and a transport pump for transporting the heat medium. The heat transfer fluid passes through the individual heat exchangers 82 and then reaches the heat transfer port 84 of the temperature adjustment case 46 of the mixed substrate 40 and the reaction substrate 42 via the heat transfer pipe. The heat exchanger 82 can change individual temperatures of the heat medium, for example, by changing the amount of brine for cooling.
[0257] 図 12 (a)〜(d)には、温度調整ケース 46の他の例が示されており、ここでは、熱媒 体流路はケース本体 72と蓋部 74のそれぞれの内部に形成されている。給液路 78は 、図 12 (c)に示すように、給液配管 88の先端が揷入された二重管の構成となってお り、細い連通路 90を介して熱媒体流路 92に連通している。排液側も同様の構成であ る。図 12 (b)に示すように、混合基板 40と反応基板 42はボルト 94、ナット 95及びス ぺーサ 96を介して積層して結合されてレ、る。 FIGS. 12 (a) to 12 (d) show other examples of the temperature adjustment case 46. Here, the heat medium flow path is provided inside the case main body 72 and the lid portion 74, respectively. Is formed. As shown in FIG. 12 (c), the liquid supply path 78 has a double pipe configuration in which the tip of the liquid supply pipe 88 is inserted, and the heat medium flow path 92 is connected through the narrow communication path 90. Communicating with The drain side has the same configuration. As shown in Fig. 12 (b), the mixed substrate 40 and the reaction substrate 42 are composed of bolts 94, nuts 95 and screws. They are stacked and joined via the spacer 96.
[0258] 図 12 (b)には、温度調整ケース 46に収容された処理基板 40, 42への原料溶液の 供給'排出の経路が示されている。すなわち、それぞれの溶液は、温度調整ケース 4 6を貫通して形成された流通路 98を介して混合基板 40へ流出入する。また、処理基 板 40, 42どうしの、例えば混合基板 40から反応基板 42への流通は、温度調整ケー ス 46の流通路 98を連絡する連絡配管 100を介して行う。図 12 (d)には、反応基板 4 2への液の流入部と流出部の構造が説明されている。液の流れを上方向から下方向 へ向かわせるために、通常は処理基板 40, 42の液の入口は上面に、出口は下面に 形成する。 [0258] FIG. 12 (b) shows a path for supplying and discharging the raw material solution to the processing substrates 40 and 42 accommodated in the temperature adjustment case 46. FIG. That is, each solution flows into and out of the mixed substrate 40 through the flow path 98 formed through the temperature adjustment case 46. In addition, the flow between the processing substrates 40 and 42, for example, from the mixed substrate 40 to the reaction substrate 42 is performed via a communication pipe 100 that communicates the flow path 98 of the temperature adjustment case 46. FIG. 12 (d) illustrates the structure of the inflow part and the outflow part of the liquid to the reaction substrate 42. In order to direct the liquid flow from the upper side to the lower side, the liquid substrate of the processing substrates 40 and 42 is usually formed at the upper surface and the outlet at the lower surface.
[0259] 図 1に示す実施の形態では、反応基板 42の流出口 102は、回収配管 104を介して 生成流体貯留部 4に接続されている。生成流体貯留部 4には、冷却用の熱交換器 1 06、流路選択切換弁 32等の下流側に回収容器 108が設けられている。回収容器 1 08が置かれる生成流体貯留部 4は、他の領域から温度等の影響を受けないように、 また生成流体から発生する可能性のある有毒ガスを遮断するように隔離されている。  In the embodiment shown in FIG. 1, the outlet 102 of the reaction substrate 42 is connected to the product fluid reservoir 4 via the recovery pipe 104. The product fluid storage unit 4 is provided with a recovery container 108 on the downstream side of the heat exchanger 106 for cooling, the flow path selection switching valve 32 and the like. The product fluid reservoir 4 in which the recovery container 108 is placed is isolated so as not to be affected by temperature and the like from other regions and to block toxic gas that may be generated from the product fluid.
[0260] 図 13は、生成流体貯留部 4の他の実施の形態を示すもので、複数の回収容器 10 8が回転テーブル 112上に保持されている。図 13の場合は、回収容器 108は 2個で あり、回転テーブル 112を移動させるァクチユエータ 114は 180度回転型ロータリーア クチユエータである。勿論、回収容器 108の数ゃァクチユエータ 114の種類は適宜に 選択可能である。動作制御部 6は、例えば、回収容器 108の液面を検知する液面検 知センサ 11 lbにより、回収容器 108の交換時期を判断し、流路選択切換弁 32により 液流を止め、物質回収口 110の下流に設けた光学的流体検知センサ 11 laによりこ れを確認して、ァクチユエータ 114を作動させる。  FIG. 13 shows another embodiment of the product fluid reservoir 4, and a plurality of recovery containers 108 are held on the rotary table 112. In the case of FIG. 13, there are two collection containers 108, and the actuator 114 for moving the rotary table 112 is a 180-degree rotary actuator. Of course, the number of the recovery container 108 and the type of the actuator 114 can be appropriately selected. For example, the operation control unit 6 determines the replacement timing of the recovery container 108 using a liquid level detection sensor 11 lb that detects the liquid level of the recovery container 108, stops the liquid flow using the flow path selection switching valve 32, and recovers the substance. This is confirmed by the optical fluid detection sensor 11 la provided downstream of the port 110 and the actuator 114 is operated.
[0261] 上記のように構成された流体反応装置により、薬液等の製品を生産する工程を説 明する。なお、自動化できる工程は基本的に動作制御部 6によって自動制御される。  [0261] A process of producing a product such as a chemical solution using the fluid reaction apparatus configured as described above will be described. The processes that can be automated are basically automatically controlled by the operation control unit 6.
[0262] まず、原料貯留部 1において必要な原料溶液 A, Bを、貯留容器 10A, 10Bに用意 しておく。処理基板として必要な混合基板 40と反応基板 42を選び、処理部 3に設置 する。熱媒体コントローラ 7により熱媒体の温度を設定し、熱交換器 82の巿水の量を 調整して各熱媒体経路の温度をそれぞれ調整し、混合基板 40および反応基板 42 の温度調整ケース 46へ流通させてこれらを所定の温度に維持する。温度の制御は、 温度調整ケース 46への入口に設けた温度センサ 116, 118により管理される力 処 理基板 40, 42内の流路に洗浄用の純水等を流す間に、その温度を混合基板 40の 出口の温度センサ 120, 122で測定し、フィードバックすることにより、正確に行うこと ができる。 [0262] First, the raw material solutions A and B required in the raw material reservoir 1 are prepared in the storage containers 10A and 10B. The required mixed substrate 40 and reaction substrate 42 are selected as processing substrates and installed in the processing unit 3. The temperature of the heat medium is set by the heat medium controller 7 and the amount of the brine in the heat exchanger 82 is adjusted to adjust the temperature of each heat medium path. The temperature adjustment case 46 is circulated to maintain them at a predetermined temperature. The temperature is controlled while flowing pure water for cleaning, etc. through the flow paths in the force processing boards 40, 42 managed by the temperature sensors 116, 118 provided at the inlet to the temperature adjustment case 46. The measurement can be performed accurately by measuring with the temperature sensors 120 and 122 at the outlet of the mixed substrate 40 and feeding back.
[0263] 温度が調整され、流路の洗浄を終えてから、流路選択切換弁 32を切り換え、原料 貯留容器 10A, 10Bからポンプ 16A, 16B、混合基板 40、反応基板 42、流出口 10 2、回収口 110を経て回収容器 108に至る処理流路を構成し、ポンプ 16A, 16Bを 作動して所定の流量で原料溶液 A, Bをそれぞれ圧送する。流路選択弁 32をァクチ ユエータにより作動する自動弁としており、これらの動作は自動運転も可能である。  [0263] After the temperature is adjusted and the cleaning of the flow path is completed, the flow path selection switching valve 32 is switched, and the raw material storage containers 10A, 10B to the pumps 16A, 16B, the mixing substrate 40, the reaction substrate 42, the outlet 10 2 Then, a processing flow path from the recovery port 110 to the recovery container 108 is formed, and the pumps 16A and 16B are operated to feed the raw material solutions A and B at a predetermined flow rate, respectively. The flow path selection valve 32 is an automatic valve that is actuated by an actuator, and these operations can be automatically operated.
[0264] 混合基板 40においては、溶液は予備加熱部において所定の温度に予備加熱され た後、混合部 52において合流し、混合する。この際、各液はヘッダ部 54, 55から分 液流路 56, 57を経由して交互に配置した加工から合流空間 58に流入し、さらに下 流へ向力うに従い断面が減少するので、マイクロサイズの流れが規則的に混在する 流れとなり、フィックの法則に則って迅速に混合する。その状態で、反応温度に維持 された反応基板 42の反応流路 62に流入すると、反応は、物質移動や熱伝導の制約 を受けずに迅速に進行する。したがって、量産手段として充分実用的であるとともに、 反応速度の早い爆発性の反応でも低温下で行う必要がなくなる。また、この例では、 反応流路 62が混合流路に比べて充分幅が広く形成されているので、反応速度が遅 い反応の場合でも充分な時間を掛けて行うことができ、高い収率を得ることができる。  [0264] In the mixed substrate 40, the solutions are preheated to a predetermined temperature in the preheating unit, and then merged and mixed in the mixing unit 52. At this time, each liquid flows from the header portions 54 and 55 via the separation flow paths 56 and 57 into the merge space 58 from the alternately arranged processing, and further the cross section decreases as it moves downward. A micro-size flow is mixed regularly and mixed quickly according to Fick's law. In this state, when it flows into the reaction channel 62 of the reaction substrate 42 maintained at the reaction temperature, the reaction proceeds rapidly without being restricted by mass transfer or heat conduction. Therefore, it is sufficiently practical as a mass production means, and it is not necessary to carry out an explosive reaction with a high reaction rate at a low temperature. In this example, the reaction channel 62 is formed to be sufficiently wide compared to the mixing channel, so that even when the reaction rate is low, the reaction can be performed over a sufficient amount of time, resulting in a high yield. Can be obtained.
[0265] 得られた生成物は、反応流路 62の流出口 102から回収配管 104を経由して熱交 換器 106に送られ、ここで冷去 Pされて、回収口 110より回収容器 108に流入する。原 料貯留容器 10A, 10Bが空になったり、回収容器 108が満杯になったら、それぞれ 流路選択切換弁 26A, 26Bを切り換えて他の容器と交換することにより、連続的な運 転が可能である。なお、反応に時間が掛かる場合には、混合基板 40および反応基 板 42内に液を一定時間閉じ込めてバッチ運転することも可能である。流路選択弁 26 A、 26Bも自動弁であるのでこれらの動作は自動運転も可能である。  [0265] The obtained product is sent from the outlet 102 of the reaction channel 62 to the heat exchanger 106 via the recovery pipe 104, where it is cooled and P is collected from the recovery port 110. Flow into. When the raw material storage containers 10A and 10B are empty or the recovery container 108 is full, continuous operation is possible by switching the flow path selection switching valves 26A and 26B and replacing them with other containers. It is. If the reaction takes a long time, the liquid can be confined in the mixed substrate 40 and the reaction substrate 42 for a certain time to perform batch operation. Since the flow path selection valves 26 A and 26 B are also automatic valves, these operations can be automatically operated.
[0266] バッチ運転の方法は、図 1においてポンプ 16A, 16Bを一時停止してもよいし、流 路選択切換弁 26A, 26Bを切り換えて、処理部 3への流入を停止させてもよい。これ により、反応時間が長い場合でも反応流路 62の長さを長くする必要がなくなる。バッ チ運転の際は、混合流路または/および反応流路に流体が充満されたことを判断す る充満検知手段を用いて運転制御を行うことが好ましい。これは、例えば、図 13に示 すような光学的流体検知センサ 11 laが用いられる。これにより、混合流路または/ および反応流路に流体が充満されたと判断した時点で、流体の輸送手段を停止させ または第 1の流路選択切換弁を切換え、流体を反応終結時間に適応する一定時間 混合流路または/および反応流路に滞留させておく。 [0266] In the batch operation method, the pumps 16A and 16B in Fig. 1 may be temporarily stopped. The inflow to the processing unit 3 may be stopped by switching the path selection switching valves 26A and 26B. This eliminates the need to increase the length of the reaction channel 62 even when the reaction time is long. During the batch operation, it is preferable to perform operation control using a fullness detection means for determining that the fluid is filled in the mixing channel or / and the reaction channel. For example, an optical fluid detection sensor 11 la as shown in FIG. 13 is used. As a result, when it is determined that the mixing channel or / and the reaction channel is full of fluid, the fluid transport means is stopped or the first channel selection switching valve is switched to adapt the fluid to the reaction end time. Remain in the mixing channel and / or reaction channel for a certain period of time.
[0267] 図 14 (a)は、他の実施の形態の混合部 52aを示すもので、 2つのヘッダ部 54a, 55 aは円弧状ではなく幅方向に直線的に延びており、また合流空間 58aの前端側、す なわちヘッダ部 54aに向力、う側の幅 Wはヘッダ部 54aの幅とほぼ同じに設定されてい る。そして、分液流路 56a, 57aは互いに平行に延びて、ヘッダ部と合流空間を連絡 するように形成されている。合流空間 58は、他端の出口側に向けて徐々に幅が小さ くなるように、平面視において台形状に形成され、他端側の中板 44bおよび下板 44c を貫通して形成された流出ポート 60に開口している。出口側の幅 wは、縮小比(r= w/W)が処理対象に応じて適宜の値になるように選択する。  [0267] Fig. 14 (a) shows a mixing portion 52a of another embodiment. The two header portions 54a, 55a are not arc-shaped but extend linearly in the width direction, and the joining space. The front end side of 58a, that is, the urging force on the header portion 54a, the width W on the other side is set to be substantially the same as the width of the header portion 54a. The liquid separation channels 56a and 57a extend in parallel to each other and are formed so as to communicate the header portion and the merge space. The merge space 58 is formed in a trapezoidal shape in plan view so that the width gradually decreases toward the outlet side at the other end, and is formed through the middle plate 44b and the lower plate 44c on the other end side. The outlet port 60 is open. The width w on the exit side is selected so that the reduction ratio (r = w / W) becomes an appropriate value according to the processing target.
[0268] 先の実施の形態と同様に、ヘッダ部 54a, 55aは中板 44bの上下面に分かれて形 成され、一方のヘッダ部 55aと分液流路 57aとは、中板 44bを貫通する連絡孔 57xに より互いに連通している。  [0268] As in the previous embodiment, the header portions 54a and 55a are formed separately on the upper and lower surfaces of the middle plate 44b, and the one header portion 55a and the liquid separation channel 57a penetrate the middle plate 44b. The communication holes 57x communicate with each other.
[0269] この実施の形態では、図 8の実施の形態に比較して製造工程が容易であり、また、 スケールアップモデルへの移行が容易であるという利点が有る。第 1の点は、図 8の 場合は、合流空間 58aの近辺で分液流路 56a, 57aどうしが近接するので、この部分 の製造が他の部分より難しくなるが、図 14 (a)の実施の形態では、このような問題は 無いからである。  [0269] This embodiment has advantages that the manufacturing process is easier and the shift to the scale-up model is easier than the embodiment of FIG. The first point is that in the case of FIG. 8, the separation flow paths 56a and 57a are close to each other in the vicinity of the confluence space 58a. This is because there is no such problem in the embodiment.
[0270] 第 2の点は、第 1の点と関連するが、以下、説明する。例えば、混合部を含む反応 装置が医薬品の製造に用いられる場合、装置は、開発段階だけでなく生産段階でも 用いられる。開発段階から生産段階に移行すれば、混合部もスケールアップに対応 しなければならなレ、。例えば、開発初期の流量が 0. lL/hだとすれば、前臨床では 1 L/hレベル、パイロットプラントレベルで 50L/h、生産プラントレべノレで 100〜200L/h となり、当初の開発機に比べれば 1000倍前後のスケールアップが必要になる。混合 部において、流路の幅は装置の基本性能に影響する因子であり、基本的に変えない ので、分液流路の本数を増やすことになる。 [0270] The second point is related to the first point and will be described below. For example, when a reaction apparatus including a mixing unit is used for manufacturing a pharmaceutical product, the apparatus is used not only at the development stage but also at the production stage. If we move from the development stage to the production stage, the mixing section must also support scale-up. For example, if the initial flow rate is 0. lL / h, preclinical is 1 The L / h level, the pilot plant level is 50 L / h, and the production plant level is 100 to 200 L / h, which requires a scale-up of about 1000 times compared to the original development machine. In the mixing section, the width of the flow path is a factor that affects the basic performance of the device and basically does not change, so the number of separation flow paths will be increased.
[0271] 図 8の場合は、先に述べたように、分液流路 56, 57が集合する部分が製造上のネ ックとなる。従って、この部分の溝どうしの最小寸法が既定であれば、本数が増えるほ どヘッダ部側の幅が拡大してしまレ、、結果として装置の寸法 (チップサイズ)が大きく なってしまう。図 14 (a)の実施の形態では、処理量に応じて、つまり比例して、図 14 ( b)に示すように、幅 Wが大きくなるだけである。  [0271] In the case of Fig. 8, as described above, the part where the liquid separation channels 56 and 57 gather is the manufacturing neck. Therefore, if the minimum dimension of the grooves in this part is predetermined, the width on the header side increases as the number increases, resulting in an increase in the size (chip size) of the device. In the embodiment of FIG. 14 (a), the width W only increases as shown in FIG. 14 (b) in proportion to the processing amount, that is, in proportion to the processing amount.
[0272] また、図 8の場合は、スケールアップに伴って合流角度が変化するので、製造工程 が複雑化する。場合によっては、合流角度が変化する結果、開発段階と同じ性能を スケールアップ後の生産段階で得られない力、もしれなレ、。一方、図 14 (a)の実施の 形態では、このような問題が無いことは明らかである。  [0272] Also, in the case of Fig. 8, the merging angle changes as the scale is increased, which complicates the manufacturing process. In some cases, as a result of the change in the merging angle, the same performance as the development stage cannot be obtained in the production stage after scale-up. On the other hand, it is clear that there is no such problem in the embodiment of FIG.
[0273] 図 15は、さらに他の実施の形態の混合部 52bを示すもので、 2つのヘッダ部 54b, 55bは、平面視においてコ字状に形成されて、 2つの側枝部 54x、 55xがそれぞれ同 じ中心線に対して対称になるように配置されている。合流空間 58bは、この例では、 下方に延びる空間である。 2つのヘッダ部 54b, 55bの側枝部 54x、 55x力らは、そ れぞれ中心線に向けて分液流路 56b, 57bが平行に延び、合流空間 58bに開口し ている。異なるヘッダ部 54b, 55bからの分液流路 56b, 57bは、合流空間 58bにお いて、同じ側については交互に隣接し、かつ反対側については互いに対向する位置 で開口するように配置されている。合流空間 58bは、最下層の基材 44d内を上下に 延びているが、形状、寸法等は先の実施の形態と同様である。  FIG. 15 shows a mixing unit 52b according to still another embodiment. The two header parts 54b and 55b are formed in a U shape in a plan view, and the two side branch parts 54x and 55x are formed. They are arranged symmetrically with respect to the same center line. In this example, the merge space 58b is a space extending downward. The side branch portions 54x and 55x forces of the two header portions 54b and 55b extend in parallel to the central line, and the separation flow channels 56b and 57b open in the merge space 58b. The separation flow paths 56b and 57b from the different header portions 54b and 55b are arranged so as to be alternately adjacent to each other on the same side and open at positions facing each other on the opposite side in the merge space 58b. Yes. The merge space 58b extends vertically in the lowermost base material 44d, but the shape, dimensions, etc. are the same as in the previous embodiment.
[0274] 図 15の実施の形態では、分液流路 56b, 57bからの流れが平面的に交互に隣接 する流れを形成するが、この実施の形態では、これが 2層になって立体的に配置され た層流となる。従って、 P 接する流れとの界面の面積が増えて、拡散による混合を一 層促進する。また、対向流どうしが衝突するので流れが微細化し、それによる界面の 面積増加効果によっても混合効果が高められる。この実施の形態が、スケールアップ モデルへの移行が容易であるという利点を有するのは、図 14の場合と同様である。 [0275] 図 16は、さらに他の実施の形態の混合部 52cを示すもので、混合空間 58cを下方 に延びる直交部 58xと板面に沿って延びる平行部 58yとから形成している。図 15で は、混合空間 58bの全長が上下方向に、すなわち、混合基板 40ゃ基材 44の厚さ方 向に延びているので、全体の寸法が増加する、あるいは、逆に混合空間 58bの長さ が制約されるという不具合を生じる。また、板厚方向に空間を形成することも製造上 容易ではない。この実施の形態では、混合空間 58cは下方に延びる直交部 58xと板 面に沿って延びる平行部 58yとから形成されているので、板厚の増加は僅かであり、 製造工程も平板表面に加工してから重ねるという他の部分と同じ工程で対応可能で ある。 [0274] In the embodiment of Fig. 15, the flow from the separation flow paths 56b, 57b forms a flow that is alternately adjacent in a plane, but in this embodiment, this is a two-dimensional structure. It becomes the arranged laminar flow. Therefore, the area of the interface with the P-contacting flow increases and mixing by diffusion is further promoted. Moreover, since the opposing flows collide with each other, the flow becomes finer, and the mixing effect is enhanced by the effect of increasing the area of the interface. This embodiment has the advantage of easy transition to the scale-up model as in the case of FIG. FIG. 16 shows a mixing unit 52c according to still another embodiment. The mixing space 58c is formed of an orthogonal part 58x extending downward and a parallel part 58y extending along the plate surface. In FIG. 15, since the total length of the mixing space 58b extends in the vertical direction, that is, in the thickness direction of the base material 44, the overall size increases, or conversely, the mixing space 58b increases. The problem is that the length is restricted. In addition, it is not easy in manufacturing to form a space in the thickness direction. In this embodiment, since the mixing space 58c is formed of the orthogonal portion 58x extending downward and the parallel portion 58y extending along the plate surface, the increase in the plate thickness is slight, and the manufacturing process is processed to a flat plate surface. Then, it can be handled in the same process as other parts that are stacked.
[0276] 図 17は、さらに他の実施の形態の混合部 52dを示すもので、 2つのヘッダ部 54d, 55dは、同図(a)に示すように、混合空間 58dの両側にそれぞれ分かれて配置され ており、混合空間 58dは、同図(b)に示すように、一旦下方に延びた後に板面に沿つ て延びて形成されている。異なるヘッダ部 54d, 55dからの分液流路 56d, 57dは、 混合空間 58dにおいて対向してかつ互いにずれて開口している。分液流路 56d, 57 dからの流れは平面的に交互に隣接する流れを形成し、かつ隣接する流れの間で、 同図(c)に示すように、旋回流を形成しながら混合空間 58dを下降する。この場合の 旋回流も 2つの液の界面の面積を増加させ、混合効果を高めることができる。  [0276] Fig. 17 shows a mixing unit 52d of still another embodiment. As shown in Fig. 17 (a), the two header units 54d and 55d are separated on both sides of the mixing space 58d. The mixing space 58d is formed so as to extend downward along the plate surface once as shown in FIG. The liquid separation flow paths 56d and 57d from the different header portions 54d and 55d are opposed to each other in the mixing space 58d and open while being shifted from each other. The flow from the separation flow paths 56d and 57d forms adjacent flows alternately in a plane, and a mixing space is formed while forming a swirling flow between adjacent flows as shown in FIG. Go down 58d. In this case, the swirl flow also increases the area of the interface between the two liquids, which can enhance the mixing effect.
[0277] 図 18は、図 17の混合部の変形例を示すもので、 2つのヘッダ部 54d, 55dは、基 材 44bの同じ側の面に形成されている。混合空間 58cが下方に延びる直交部 58xを 有しているので、 2つのヘッダ部 54d, 55dを混合空間 58cと同一面の両側に形成す ること力 Sでき、分液流路 56d, 57dを互いに干渉することなぐ交互に開口させること ができるからである。  FIG. 18 shows a modification of the mixing portion of FIG. 17, and the two header portions 54d and 55d are formed on the same side surface of the base material 44b. Since the mixing space 58c has the orthogonal portion 58x extending downward, the force S can be formed to form the two header portions 54d and 55d on both sides of the same surface as the mixing space 58c, and the separation flow paths 56d and 57d can be formed. This is because they can be opened alternately without interfering with each other.
[0278] 図 19は、混合基板 40における混合部 52eの他の実施の形態を示すもので、 Y字 状に合流する合流空間 58eに、障害物 124を一定間隔 aで所定の距離 Lに渡って配 置したものである。この例では、 φ 50 z m以下である柱状の障害物 124を、合流点か ら L = 5mm以上に渡って 5列に配置した。各障害物 124は隣接するものが流れ方向 にピッチの半分ずつずれるように、千鳥状に配置されている。これによつて界面が蛇 行するので 2つの流体の界面面積を大きくすることができる。図 20の混合部 52fでは 、合流空間 58fに障害物 124を 1列に配置したもので、同様に界面面積を大きくする こと力 Sできる。これは、より狭い合流空間 58fで採用するのに好適である。 FIG. 19 shows another embodiment of the mixing part 52e in the mixed substrate 40. The obstacle 124 is placed over a predetermined distance L at a constant interval a in the merge space 58e that merges in a Y-shape. Are arranged. In this example, columnar obstacles 124 having a diameter of 50 zm or less are arranged in five rows from the merging point over L = 5 mm. Each obstacle 124 is arranged in a staggered pattern so that adjacent ones are shifted by half of the pitch in the flow direction. As a result, the interface meanders, so the interface area between the two fluids can be increased. In the mixing section 52f in Fig. 20, The obstacle 124 is arranged in a line in the merge space 58f. Similarly, the force S can be increased to increase the interface area. This is suitable for use in a narrower merge space 58f.
[0279] 図 21は、流体反応装置の処理部 3の液フローの他の実施の形態を示すものである 。これは、図 1の処理部 3において、混合基板 40→反応基板 42の組み合わせを 2系 統 Rl, R2設け、さらに配液部 2の流路選択切換弁 26A, 26Bを用いて原料溶液 A, Bをいずれの系統 Rl, R2にも供給可能にしたものである。この実施の形態では、 2系 統を用いることで、必要に応じて処理量を増やすことができる力 その他にも種々の 使用方法が有る。例えば、反応生成物が固体粒子を析出しやすぐ配管途中で詰ま りやすい場合などでは、それに備えて一方の系統を予備として使用する。また、流路 選択切換弁 26A, 26Bでライン 1を交互に切り換えて、上述したバッチ運転を連続的 に行うことができる。勿論、このようなラインは、 3以上を適宜に並列して設けることが できる。この場合も流路選択弁切換弁 26A、 26Bは自動操作が可能である。  FIG. 21 shows another embodiment of the liquid flow of the processing unit 3 of the fluid reaction device. This is because, in the processing section 3 of FIG. 1, the combination of the mixed substrate 40 → the reaction substrate 42 is provided with two systems Rl, R2, and further the raw material solution A, using the flow path selection switching valves 26A, 26B of the liquid distribution section 2. B can be supplied to both systems Rl and R2. In this embodiment, there are various usage methods in addition to the ability to increase the processing amount as needed by using two systems. For example, when the reaction product deposits solid particles or is easily clogged in the middle of piping, one system is used as a backup in preparation. Further, the above-described batch operation can be continuously performed by alternately switching the line 1 with the flow path selection switching valves 26A and 26B. Of course, three or more such lines can be provided in parallel as appropriate. In this case, the flow path selection valve switching valves 26A and 26B can be automatically operated.
[0280] 図 22は、処理部 3において反応基板を複数直列に配置した例を示す。この例では 、混合基板 40と 3つの反応基板 42a, 42b, 42cの計 4つの処理基板に個々の温度 センサ 120, 122a, 122b, 122cを設けており、反応の段階に応じて反応基板 42a, 42b, 42cを独立して温度制御することが可能である。この実施の形態の処理部 3の 構成は、生化学反応のように反応時間と反応温度を大胆に且つ瞬時に変化させた い反応に適している。たとえば反応基板 42aでは 100°C、反応基板 42bでは— 20°C というような反応もこのシステムでは可能になる。  FIG. 22 shows an example in which a plurality of reaction substrates are arranged in series in the processing unit 3. In this example, individual temperature sensors 120, 122a, 122b, and 122c are provided on a total of four processing substrates, that is, the mixed substrate 40 and the three reaction substrates 42a, 42b, and 42c. It is possible to control the temperature of 42b and 42c independently. The configuration of the processing unit 3 of this embodiment is suitable for reactions in which the reaction time and reaction temperature are to be changed boldly and instantaneously, such as biochemical reactions. For example, a reaction such as 100 ° C for reaction substrate 42a and -20 ° C for reaction substrate 42b is possible with this system.
[0281] 図 23は、処理部 3において混合基板 40を複数設けた実施の形態である。この実施 の形態では、 A液と B液を混合し反応させる混合基板 40と反応基板 42の下流に、第 2の混合基板 40aが設けられ、ここでポンプ 16Cから輸送された第 3の原料溶液また は反応剤である C液と合流し、混合する。これらの 2つの混合基板 40, 40aと 1つの反 応基板 42の温度は個別に制御される。なお、 C液は反応停止剤でもよい。  FIG. 23 shows an embodiment in which a plurality of mixed substrates 40 are provided in the processing unit 3. In this embodiment, a second mixed substrate 40a is provided downstream of the mixed substrate 40 and the reaction substrate 42 for mixing and reacting the A liquid and the B liquid. Here, the third raw material solution transported from the pump 16C is provided. Alternatively, combine with C solution, which is a reactant, and mix. The temperatures of these two mixed substrates 40, 40a and one reaction substrate 42 are individually controlled. Liquid C may be a reaction terminator.
[0282] この実施の形態では、インラインの収率評価器 126が第 2の混合基板 40aの下流の 流出口 102に直接接続されている。これにより、化学反応の結果の収率をリアルタイ ムで確認でき、直ぐにプロセスパラメータへフィードバックすることが可能ととなる。イン ライン収率評価器 126としては、測定物を分離せずに測定可能な方法として赤外分 光、近赤外分光、紫外吸光等の方法がある。 [0282] In this embodiment, an in-line yield evaluator 126 is directly connected to the outlet 102 downstream of the second mixed substrate 40a. As a result, the yield of the chemical reaction result can be confirmed in real time, and can be immediately fed back to the process parameters. The inline yield evaluator 126 is a method that can measure without separating the measurement object. There are methods such as light, near infrared spectroscopy, and ultraviolet absorption.
[0283] この実施の形態では、さらに、反応生成物の中から不要な物質と必要な物質を分 離する分離抽出手段 128が設けられている。図示する例は、分離抽出手段 128とし て、物質内の疎水性分子のみを通過させる疎水性壁面 130と、物質内の親水性分 子のみを通過させる親水性壁面 132でそれぞれ形成された分離流路 134に分岐さ せたものである。分離した物質は、それぞれ回収配管 104, 104aを介して回収容器 108, 108aに回収される。分離抽出手段 128としては、その他に、疎水性物質だけ を吸着可能な膜やポーラスフリットを使用することも考えられる。  [0283] In this embodiment, separation / extraction means 128 for separating unnecessary substances and necessary substances from the reaction product is further provided. In the example shown in the figure, the separation / extraction means 128 includes a separation wall formed by a hydrophobic wall 130 that allows only hydrophobic molecules in the substance to pass therethrough and a hydrophilic wall 132 that allows only the hydrophilic molecules in the substance to pass through. It is branched on road 134. The separated substances are collected in the collection containers 108 and 108a through the collection pipes 104 and 104a, respectively. As the separation and extraction means 128, it is also possible to use a membrane or a porous frit that can adsorb only a hydrophobic substance.
[0284] 図 24は、混合 ·反応と分離抽出を繰り返して連続反応処理するための実施の形態 である。 A液と B液が反応した後の不要物質は排出口 134aから系外に出され、 C液 をカロえた第 2の反応における不要物質は排出口 134bから系外に出される。第 4の液 である D液は反応停止剤でもよぐ他の原料溶液でも良い。最後にインライン収率評 価器 126を設けても良い。  [0284] FIG. 24 shows an embodiment for carrying out a continuous reaction process by repeating mixing / reaction and separation / extraction. Unnecessary substances after the reaction of liquid A and liquid B are discharged out of the system through outlet 134a, and unnecessary substances in the second reaction with the liquid C remaining are discharged out of the system through outlet 134b. The fourth solution, D solution, may be a reaction stopper or another raw material solution. Finally, an in-line yield evaluator 126 may be provided.
[0285] 図 25 (a)には、図 24の回路を積層化した構成が示されている。流体は上方から下 方へ流れる。図中の各ブロックは、それぞれ混合基板 40a、反応基板 42a、分離抽出 基板 128a、混合基板 40b、反応基板 42b、分離抽出基板 128b、および混合基板 4 Oc力 温度調整ケース 46に収容されて構成され、さらにボノレト 94、ナット 95、スぺー サ 96によって積層化されている。図 9に示すように、各基板間の液の移動は連絡通 路 100で行われる。各ブロックどうしの間には空気を介在させ、空気の断熱性を利用 して他のブロックの熱影響を受けないようにして、温度制御精度を向上させている。 図 25 (b)に示すように、各ブロックの周りをクリーンで気泡を含んだシリコン部材 136 等の断熱材で覆うのが好ましい。  FIG. 25 (a) shows a configuration in which the circuit of FIG. 24 is stacked. The fluid flows from top to bottom. Each block in the figure is housed in a mixed substrate 40a, reaction substrate 42a, separation / extraction substrate 128a, mixed substrate 40b, reaction substrate 42b, separation / extraction substrate 128b, and mixed substrate 4 Oc force temperature adjustment case 46. Furthermore, it is laminated by Bonoleto 94, nut 95, and spacer 96. As shown in FIG. 9, the movement of the liquid between the substrates is performed through a communication path 100. Air is interposed between each block, and the heat control of the air is used to prevent the influence of heat from other blocks, thereby improving the temperature control accuracy. As shown in FIG. 25 (b), it is preferable to cover each block with a heat insulating material such as a silicon member 136 that is clean and contains bubbles.
[0286] 本発明の流体反応装置に導入される流体は液体、気体、回収される物質は液体、 気体、固体またはこれらの混合体であるが、導入物質が粉体などの固体の場合は図 1における原料貯留部 1のスペースに粉体溶解器を設置することも可能である。図 26 は、 A液が粉体を溶解した溶液、 B液は元々液体の場合の原料貯留部 1の実施の形 態である。原料の粉体と溶媒は粉体溶解器 140の原料導入口 142から導入される。 この実施の形態では、原料粉体をヒータ 144による加熱と攪拌器 146による攪拌によ つて溶解し、生成した原料流体を取出し口 148に引き込まれた配管より、ポンプ 16A によって、混合基板 40、反応基板 42に送り込むようになつている。 [0286] The fluid introduced into the fluid reaction apparatus of the present invention is liquid, gas, and the recovered substance is liquid, gas, solid, or a mixture thereof. It is also possible to install a powder dissolver in the space of the raw material reservoir 1 in 1. FIG. 26 shows an embodiment of the raw material reservoir 1 when the liquid A is a solution obtained by dissolving powder and the liquid B is originally liquid. The raw material powder and solvent are introduced from the raw material inlet 142 of the powder dissolver 140. In this embodiment, the raw material powder is heated by the heater 144 and stirred by the stirrer 146. Then, the raw material fluid that has been dissolved and taken out is fed into the mixed substrate 40 and the reaction substrate 42 by the pump 16A from the pipe drawn into the outlet 148.
[0287] 図 2において、 150は装置下部に設けられた液溜めパンであり、 152は液溜めパン 150上に設置された漏液センサを示す。またこの装置例では、配液部 2、処理部 3、 生成流体貯留部 4は隔壁 154、 156により区画されており、各部屋にはカバー 158, 160, 162が取り付けられて装置外部とこれらを隔離している。 164は排気ポートであ り、排気ファンと接続され、装置内の圧力を装置外より負とすることで装置内の有毒ガ スが外部に漏出することを防いでいる。  In FIG. 2, reference numeral 150 denotes a liquid reservoir pan provided at the lower part of the apparatus, and 152 denotes a liquid leakage sensor installed on the liquid reservoir pan 150. In this device example, the liquid distribution unit 2, the processing unit 3, and the product fluid storage unit 4 are partitioned by partition walls 154 and 156, and covers 158, 160, and 162 are attached to the respective rooms so that they can be connected to the outside of the device. Isolated. Reference numeral 164 denotes an exhaust port, which is connected to an exhaust fan and prevents toxic gas inside the device from leaking outside by making the pressure inside the device negative from outside the device.
[0288] また、動作制御部 6には、図 1に示すように、流体反応装置内の動作で特に重要な 流体の流量と反応温度をモニタできる流量モニタ 170、温度モニタ 172が搭載されて いる。  [0288] In addition, as shown in Fig. 1, the operation control unit 6 is equipped with a flow rate monitor 170 and a temperature monitor 172 that can monitor the flow rate of the fluid and the reaction temperature that are particularly important in the operation in the fluid reaction device. .
[0289] 以上、本発明の流体反応装置のいくつかの回路構成を実施の形態に沿って説明 したが、本発明はこれらの実施の形態に限られるものではなぐ発明の趣旨に沿って 種々の改変が可能である。すなわち、直列あるいは並列する処理基板の数は、施す 処理や生産量に応じて、 1以上の適宜の数に決められる。処理基板の結合の仕方は 、例えば、スリットを形成した枠体に順次挿入するようにしてもよい。この実施の形態 では、処理基板を水平に配置しているが、斜め又は垂直に配置してもよい。  [0289] While several circuit configurations of the fluid reaction device of the present invention have been described according to the embodiments, the present invention is not limited to these embodiments, and various modifications can be made along the spirit of the invention. Modification is possible. That is, the number of processing substrates connected in series or in parallel is determined to an appropriate number of 1 or more depending on the processing to be performed and the production volume. For example, the processing substrates may be sequentially inserted into a frame having slits. In this embodiment, the processing substrate is disposed horizontally, but may be disposed obliquely or vertically.
[0290] マイクロリアクタ  [0290] Microreactor
本発明は、さらに、本発明の流体反応装置及び流体混合装置において使用するこ とができるマイクロリアクタにも関する。  The present invention further relates to a microreactor that can be used in the fluid reaction apparatus and the fluid mixing apparatus of the present invention.
[0291] 上述した目的を達成するための本発明は、これに限定されるものではなレ、が、以下 の発明を包含する。  [0291] The present invention for achieving the above-mentioned object is not limited to this, but includes the following inventions.
[0292] (1) 第 1の流体源に連通する第 1の流路と、第 2の流体源に連通する第 2の流路と がそれぞれ内部に複数形成されたマ二ホールド部と、該マニホールド部に隣接する 合流空間とを有し、前記マ二ホールド部は前記合流空間に面する開口端面を有し、 前記第 1の流路と第 2の流路の開口は、前記開口端面において交互に隣接するよう に立体的に配置されていることを特徴とするマイクロリアクタ。  [0292] (1) A manifold section having a plurality of first flow paths communicating with the first fluid source and a plurality of second flow paths communicating with the second fluid source, respectively, A manifold portion adjacent to the manifold portion, the manifold portion has an open end surface facing the merge space, and the openings of the first flow channel and the second flow channel are formed at the open end surface. A microreactor that is arranged three-dimensionally so as to be alternately adjacent.
[0293] (1)に記載の発明によれば、マ二ホールド部の開口端面から合流空間に流出する 流れ (集合流)は、第 1の流体と第 2の流体のそれぞれの流れ (要素流れ)が交互に 隣接する立体的構造になっており、一方の流体の流れは他方の流体の流れに周囲 を覆われている。したがって、これらの流体どうしの間の界面の比率は例えば、平面 的に並列した流れに比べて 2倍となり、より大きな相互拡散による混合効果を得ること ができる。 [0293] According to the invention described in (1), the outlet flows from the opening end surface of the manifold portion to the merge space. The flow (collective flow) has a three-dimensional structure in which the flows of the first fluid and the second fluid (element flows) are alternately adjacent to each other, and the flow of one fluid surrounds the flow of the other fluid. Covered. Therefore, the ratio of the interfaces between these fluids is, for example, twice that of a parallel flow in a plane, and a mixing effect due to greater interdiffusion can be obtained.
[0294] (2) (1)に記載の発明において、前記マ二ホールド部は、前記第 1の流路と第 2の 流路を構成する溝が交互に形成された板状のエレメントを積層することにより、前記 開口端面においてこれら第一の流路と第二の流路が千鳥状に配置されていることを 特徴とするマイクロリアクタ。  [0294] (2) In the invention described in (1), the manifold section is formed by laminating plate-like elements in which grooves constituting the first flow path and the second flow path are alternately formed. Thus, the microreactor is characterized in that the first flow path and the second flow path are arranged in a staggered manner on the opening end face.
[0295] (2)に記載の発明によれば、要素流れが交互に隣接する立体的な集合流を作るマ 二ホールド部を容易に構築することができる。  [0295] According to the invention described in (2), it is possible to easily construct a manifold section that creates a three-dimensional collective flow in which element flows are alternately adjacent.
[0296] (3) (1)または(2)に記載の発明において、前記第 1の流路と第 2の流路の前記 開口の断面における最大幅寸法が 3000 μ m以下であることを特徴とするマイクロリア クタ。  [0296] (3) In the invention described in (1) or (2), the maximum width dimension in the cross section of the opening of the first channel and the second channel is 3000 μm or less. A microreactor.
[0297] (3)に記載の発明によれば、第 1の流路と第 2の流路に固形物が混入しても閉塞せ ずに、混合を促進することができ、下流側に絞り部または流体レンズを設けることによ り、マイクロ反応状態の条件を形成することができる。  [0297] According to the invention described in (3), even if solid matter is mixed into the first flow path and the second flow path, mixing can be promoted without clogging, and the downstream side can be throttled. By providing the part or the fluid lens, the condition of the micro reaction state can be formed.
[0298] (4) (1)ないし(3)のいずれかに記載の発明において、前記合流空間またはその 下流側に、前記第 1の流路と第 2の流路からの流れ混合を迂回させる促進物体が設 けられてレ、ることを特徴とするマイクロリアクタ。 [0298] (4) In the invention according to any one of (1) to (3), flow mixing from the first flow path and the second flow path is bypassed in the merge space or downstream thereof. A microreactor characterized in that a promoting object is installed.
[0299] (4)に記載の発明によれば、集合流が混合促進物体を迂回する際に界面が湾曲 するので、界面の比率がさらに大きくなつて混合が促進され、また、流路断面も減少 するので、マイクロ反応を促進することができる。 [0299] According to the invention described in (4), since the interface is curved when the collective flow bypasses the mixing promoting object, the mixing is promoted when the ratio of the interface is further increased, and the cross section of the flow path is also increased. Since it decreases, microreaction can be promoted.
[0300] (5) (4)に記載の発明において、前記混合促進物体の表面に、触媒作用を有す る物質を設けたことを特徴とするマイクロリアクタ。 [0300] (5) The microreactor according to the invention described in (4), wherein a substance having a catalytic action is provided on the surface of the mixing promoting object.
[0301] (5)に記載の発明によれば、該物質の触媒作用により、所要の反応が促進される。 [0301] According to the invention described in (5), the required reaction is promoted by the catalytic action of the substance.
[0302] (6) (4)または(5)に記載の発明において、前記混合促進物体の代表寸法が、該 混合促進物体の直前における前記第 1の流路と第 2の流路からの個々の流れの最 小幅寸法の 0.1倍から 10倍の範囲内にあることを特徴とするマイクロリアクタ。 [0302] (6) In the invention described in (4) or (5), the representative dimension of the mixing promoting object is an individual distance from the first flow path and the second flow path immediately before the mixing promoting object. Of the flow of A microreactor characterized by being in the range of 0.1 to 10 times the narrow dimension.
[0303] 混合促進物体の大きさが要素流れの最小幅寸法 (代表寸法)と比較して小さすぎる と、混合促進物体は単なる多孔質物体となり十分な混合が期待できず、また大きすぎ ると千鳥状に流入する異種流体の要素流れが塊状に流動するため、やはり十分な混 合が得られない。 [0303] If the size of the mixing-promoting object is too small compared to the minimum width (representative dimension) of the element flow, the mixing-promoting object becomes a mere porous object, and sufficient mixing cannot be expected. Since the elemental flow of different fluids flowing in a staggered pattern flows in a lump shape, sufficient mixing cannot be obtained.
[0304] (7) (1)ないし(6)のいずれかに記載の発明において、前記合流空間の下流側に 、流路断面が徐々に減少する絞り部または流体レンズが設けられていることを特徴と するマイクロリアクタ。  [0304] (7) In the invention according to any one of (1) to (6), a throttle portion or a fluid lens in which a cross section of the flow path gradually decreases is provided on the downstream side of the merge space. Characteristic microreactor.
[0305] (7)に記載の発明によれば、集合流が絞り部または流体レンズを通過する際に、そ の断面寸法が徐々に減少し、要素流れを維持しつつその代表寸法が減少する。した がって、マイクロ反応条件が強化され、要素流れの寸法に依存する界面の比率も大 きく向上する。  [0305] According to the invention described in (7), when the collective flow passes through the constricted portion or the fluid lens, the cross-sectional dimension gradually decreases, and the representative dimension decreases while maintaining the element flow. . Therefore, the microreaction conditions are enhanced and the ratio of the interfaces depending on the element flow dimensions is greatly improved.
[0306] (8) (7)に記載の発明において、前記第 1の流路と第 2の流路からの個々の流れ の仮想断面の最小幅が、前記絞り部または流体レンズの下流側部分において 500 μ m以下になっていることを特徴とするマイクロリアクタ。  [0306] (8) In the invention described in (7), a minimum width of an imaginary cross section of each flow from the first flow path and the second flow path is a downstream portion of the throttle portion or the fluid lens. A microreactor characterized in that it is 500 μm or less.
[0307] (8)に記載の発明によれば、物理的なマイクロ寸法の流路を用いることなぐ要素流 れにおいてマイクロ反応条件を構成することができる。 [0307] According to the invention described in (8), the micro reaction condition can be configured in the element flow without using the physical micro dimension flow path.
[0308] (9) (7)または(8)に記載の発明において、前記開口端面と前記絞り部または流 体レンズとは、ほぼ相似な流路断面を有することを特徴とするマイクロリアクタ。 (9) The microreactor according to the invention described in (7) or (8), wherein the opening end face and the throttle part or the fluid lens have substantially similar flow path cross sections.
[0309] (9)に記載の発明によれば、絞り部または流体レンズを通過する際に形状変化を伴 わないので、要素流れを維持しつつその代表寸法を減少させることが容易になる。 [0309] According to the invention described in (9), since the shape does not change when passing through the throttle portion or the fluid lens, it is easy to reduce the representative dimension while maintaining the element flow.
[0310] (10) (1)ないし(9)のいずれかに記載の発明において、複数の前記マ二ホール ド部が、前記合流空間においてそれぞれの開口端面を対向させるように配置されて レ、ることを特徴とするマイクロリアクタ。 [0310] (10) In the invention according to any one of (1) to (9), the plurality of manifold parts are arranged so that the respective opening end faces thereof are opposed to each other in the merge space. A microreactor characterized by that.
[0311] (10)に記載の発明によれば、マ二ホールド部からの集合流どうしをさらに衝突させ て、乱流によるさらなる混合促進作用を得ることができる。 [0311] According to the invention described in (10), it is possible to obtain a further mixing promoting effect by turbulent flow by further colliding the collective flows from the manifold section.
[0312] (11) (1)ないし(10)のいずれかに記載の発明において、前記第 1の流路、第 2 の流路、前記合流空間および/またはその下流側を流れる流体を加熱または冷却 する熱交換器を設けたことを特徴とするマイクロリアクタ。これにより、爆発性反応や 難反応に対する温度制御を精密に行い、マイクロ反応の効果を高めることができる。 [0312] (11) In the invention according to any one of (1) to (10), the fluid flowing in the first flow path, the second flow path, the merge space and / or the downstream side thereof is heated or cooling A microreactor provided with a heat exchanger for performing the operation. This makes it possible to precisely control the temperature for explosive reactions and difficult reactions and enhance the effect of microreactions.
[0313] (12) (11)に記載の発明において、前記熱交換器は、被加熱流体流路および/ または熱媒体流路を構成する溝が形成された板状のエレメントを積層することにより 構成されていることを特徴とするマイクロリアクタ。これにより、積層するエレメントを適 宜に選択し、あるいは積層数を変更することで、対象とする反応に適した熱交換量や 熱交換パターンを得るように調整可能である。  [0313] (12) In the invention described in (11), the heat exchanger is formed by laminating plate-like elements in which grooves constituting the heated fluid flow path and / or the heat medium flow path are formed. A microreactor characterized by being configured. Accordingly, it is possible to adjust the heat exchange amount and the heat exchange pattern suitable for the target reaction by appropriately selecting the elements to be laminated or changing the number of laminated layers.
[0314] (13) (11)または(12)に記載の発明において、前記合流空間の下流側を流れる 流体を加熱または冷却する熱交換器の被加熱流体流路を合成反応時間調整用の ディレイループとし、ディレイループパターンの変更または積層枚数の変更により熱 交換内の滞留時間を調整可能となっていることを特徴とするマイクロリアクタ。  [0314] (13) In the invention described in (11) or (12), a delay for adjusting a synthetic reaction time is provided in a heated fluid channel of a heat exchanger that heats or cools a fluid flowing downstream of the merge space. A microreactor characterized in that the dwell time in heat exchange can be adjusted by changing the delay loop pattern or the number of stacked layers.
[0315] (14) (11)ないし(13)のいずれかに記載の発明において、前記熱交換器の熱媒 体として、被加熱流体に混入しても被加熱流体を汚染しなレヽ流体を用いることを特徴 とするマイクロリアクタ。被加熱流体に混入しても被加熱流体を汚染しなレヽ流体として は、被加熱流体自体や、これと近い組成の溶液が好適である。  [0315] (14) In the invention according to any one of (11) to (13), as the heat medium of the heat exchanger, a laminating fluid that does not contaminate the heated fluid even if mixed in the heated fluid. A microreactor characterized by being used. As the fluid that does not contaminate the fluid to be heated even if it is mixed into the fluid to be heated, the fluid to be heated itself or a solution having a composition close to this is suitable.
[0316] 以下、図面を参照してこの発明の実施の形態を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0317] 図 27は、この発明のマイクロリアクタを用いた化合物製造システムの全体構成を示 す図である。この化合物製造システムは、原料溶液 La, Lbをそれぞれ供給する 2つ の原料供給咅 B2001a, 2001bと、これらの原料供給咅 2001a, 2001b力らの原料溶 液 La, Lbを混合して反応させる混合'反応部 2002と、反応生成物を一時貯留する 貯留槽 2003と、さらに生成物を濃縮 ·精製する精製槽 2004とを有している。  [0317] FIG. 27 is a diagram showing an overall configuration of a compound production system using the microreactor of the present invention. In this compound production system, two raw material supply rods B2001a and 2001b that supply raw material solutions La and Lb, respectively, and these raw material supply rods 2001a and 2001b are mixed to react by mixing raw material solutions La and Lb. 'It has a reaction section 2002, a storage tank 2003 for temporarily storing reaction products, and a purification tank 2004 for further concentrating and purifying the products.
[0318] 2つの原料供給部 2001a, 2001bは、この実施の形態では、それぞれ粉体状等の 原料を所定濃度の溶液とする溶解槽 201 la, 201 lbと、できた溶液を貯留するリザ ーノ 2012a, 2012bとを有し、リザーノ 2012a, 2012bの下流佃 Jにはそれぞれ流体 移送ポンプ 2013a, 2013bを介して混合 ·反応部 2002に連通する原料移送配管 2 014a, 2014b力 S設けられてレ、る。溶解槽 201 la, 201 lbには必要に応じて保温ジ ャケット 2015や撹拌機 2016が設けられている。  [0318] In this embodiment, the two raw material supply units 2001a and 2001b are dissolving tanks 201 la and 201 lb in which raw materials such as powder are used as solutions of a predetermined concentration, respectively, and a reservoir for storing the resulting solution. 2012a and 2012b, and downstream feed J of Lisano 2012a and 2012b is equipped with a raw material transfer pipe 2 014a and 2014b force S connected to the mixing and reaction section 2002 via fluid transfer pumps 2013a and 2013b, respectively. RU Insulation tanks 201 la and 201 lb are equipped with thermal insulation jacket 2015 and stirrer 2016 as needed.
[0319] 反応生成物を一時貯留する貯留槽 2003は、必要に応じて設けるもので、この実施 の形態では、保温ジャケット 2015や撹拌機 2016を備えた密閉容器として構成され、 所定のセンサを有している。精製槽 2004は、この実施の形態では、合成された流体 を真空雰囲気下で濃縮するもので、保温ジャケット 2015や撹拌機 2016の他に、真 空ポンプ 2017や回収容器 2018が設けられている。 [0319] Reservoir 2003, which temporarily stores reaction products, is provided as necessary. In this form, it is configured as a closed container equipped with a heat insulation jacket 2015 and a stirrer 2016, and has a predetermined sensor. In this embodiment, the refining tank 2004 concentrates the synthesized fluid in a vacuum atmosphere. In addition to the heat insulation jacket 2015 and the agitator 2016, a vacuum pump 2017 and a collection container 2018 are provided.
[0320] また、上記構成の各部には、必要に応じて、開閉弁、流量調整弁、流量計、各種の センサ、洗浄流体回路等が設けられている。センサとしては、温度センサ(図中丁で 表示)、流量センサ(図中 Fで表示)、圧力センサ(図中 Psで表示)、液面センサ(図中 Lで表示)、 pHセンサ(図中 pHで表示)等が有る。また、各部を個別におよび/また は全体として制御する制御装置(図示略)が設けられてレ、る。  [0320] In addition, each part of the above configuration is provided with an on-off valve, a flow rate adjustment valve, a flow meter, various sensors, a cleaning fluid circuit, and the like as necessary. Sensors include temperature sensor (indicated by a letter in the figure), flow sensor (indicated by F in the figure), pressure sensor (indicated by Ps in the figure), liquid level sensor (indicated by L in the figure), pH sensor (in the figure) etc.). Further, a control device (not shown) for controlling each part individually and / or as a whole is provided.
[0321] 混合'反応部 2は、この実施の形態では、図 28に示すように、原料溶液 La, Lbをそ れぞれ予備加熱する 2つの予熱ブロック 2020a, 2020bと、加熱された 2つの原料溶 液 La, Lbをそれぞれ細流にした状態で合流させる混合ブロック 2040と、合流した流 体をさらに縮径した反応流路に導き、加熱して反応させる反応ブロック 2060とを有し ている。これらのブロックは、いずれも原料溶液 La, Lbや熱媒体 Ma, Mbを流通させ る流路が溝状に形成された平板を重ねて接合して、マ二ホールドを構築したものであ る。  In this embodiment, as shown in FIG. 28, the mixing / reaction section 2 includes two preheating blocks 2020a and 2020b that preheat the raw material solutions La and Lb, respectively, and two heated It has a mixing block 2040 that joins the raw material solutions La and Lb in a liquefied state, and a reaction block 2060 that guides the joined fluid to a further reduced diameter reaction channel and heats it to react. Each of these blocks is constructed by connecting a flat plate having a channel in which the flow of the raw material solutions La and Lb and the heat medium Ma and Mb are formed in a groove shape and joining them together.
[0322] 予熱ブロック 2020a, 2020bは、図 29 (a)に示すように、原料溶液 La, Lbを流す複 数の平行な溶液流路 2021が形成された板状の第 1の熱交換エレメント 2022と、図 2 9 (b)に示すように、熱媒体 Ma, Mbを流す複数の平行な熱媒体流路 2023が形成さ れた板状の第 2の熱交換エレメント 2024とを、それぞれの流路 2021, 2023力 S互レヽ に直交するように交互に積層して構成している。予熱ブロック 2020a, 2020bは、表 裏をカバープレート 2025A, 2025Bで覆ってボルト等の締結具、シール部材、ある いは接着剤を用いて結合している。各熱交換エレメント 2022, 2024には流路の両 端近傍に貫通孔 2026, 2027が設けられ、これらは溶液流路 2021と熱媒体流路 20 23に個另 IJに通じるとともにカノ一プレート 2025A, 2025Bの溶夜流人ポート 2028A 、溶液流出ポート 2028Β、熱媒体流入ポート 2029Α、熱媒体流出ポート 2029Βと連 通している。  [0322] As shown in Fig. 29 (a), the preheating blocks 2020a and 2020b are plate-shaped first heat exchange elements 2022 in which a plurality of parallel solution flow paths 2021 for flowing the raw material solutions La and Lb are formed. As shown in FIG. 29 (b), plate-like second heat exchange elements 2024 formed with a plurality of parallel heat medium flow paths 2023 through which the heat mediums Ma and Mb flow are respectively connected to the respective flow. Road 2021, 2023 force S are alternately stacked so as to be orthogonal to each other. The preheating blocks 2020a and 2020b are covered with cover plates 2025A and 2025B on the front and back, and are joined using fasteners such as bolts, seal members, or adhesives. Each heat exchange element 2022, 2024 is provided with through holes 2026, 2027 in the vicinity of both ends of the flow path. These holes are connected to the solution flow path 2021 and the heat medium flow path 20 23, respectively, and to the additional plate IJ 2020A, It is in communication with 2025B's melting port 2028A, solution outflow port 2028Β, heat medium inflow port 2029Α, and heat medium outflow port 2029Β.
[0323] 原料溶液 La, Lbは、図 30に示すように、各熱交換エレメント 2022, 2024の流路を 直列に流れ、熱媒体 Ma, Mbは、図 31に示すように、各熱交換エレメント 2022, 20 24の流路を並列に流れるようになっており、ここで熱交換エレメント 2022, 2024を介 して熱交換を行う。これらの熱交換エレメント 2022, 2024は熱交換に好適な熱伝導 性の良い素材を用い、一方、カバープレート 2025A, 2025Bは、熱伝導性の小さい 素材を用いて形成されてレ、る。 [0323] As shown in Fig. 30, the raw material solutions La and Lb flow through the flow paths of the heat exchange elements 2022 and 2024. As shown in FIG. 31, the heat mediums Ma and Mb flow in series and flow in parallel through the flow paths of the heat exchange elements 2022 and 2024. Here, the heat mediums Ma and Mb pass through the heat exchange elements 2022 and 2024, respectively. Heat exchange. These heat exchange elements 2022 and 2024 use materials having good heat conductivity suitable for heat exchange, while the cover plates 2025A and 2025B are formed using materials having low heat conductivity.
[0324] 混合ブロック 2040は、図 32に示すように、 2つの原料流入路 2041a, 2041bと 1つ の合流部 2042とが形成された複数の部材からなる枠体 2043の内部に、複数の板 状のマユホーノレドエレメン卜 2044A, 2044Bと表裏のカノ一プレー卜 2045a, 2045 bが積層されて構成されたマ二ホールド 2046が収容されて構成されている。原料流 入路 2041a, 2041bはそれぞれ予熱ブロック 2020a, 2020bの溶液流出ポート 202 8Bに接続され、合流部 2042は後述する反応ブロック 2060の流入口 2061に接続さ れ、図 28に示すように、これと一体の合流空間 2047を構成している。  [0324] As shown in FIG. 32, the mixing block 2040 includes a plurality of plates inside a frame body 2043 formed of a plurality of members in which two raw material inflow channels 2041a and 2041b and one joining portion 2042 are formed. It is configured to accommodate a male hold 2046 that is formed by laminating shaped Mayuho Reded Element 2044A, 2044B and front and back canopy plates 2045a, 2045b. The raw material inlets 2041a and 2041b are connected to the solution outlet port 2028B of the preheating blocks 2020a and 2020b, respectively, and the junction 2042 is connected to an inlet 2061 of the reaction block 2060 described later, as shown in FIG. And a merge space 2047 integrated with the.
[0325] 図 33に示すように、各マ二ホールドエレメント 2044A, 2044Bには、重ねた時に各 原料流入路 2041a, 2041bに連通する貫通給液孔 2048a, 2048bがそれぞれ幅 方向に位置の異なる列に沿って複数配置されている。カバープレート 2045a, 2045 bには、一方の貫通給 ί夜孑し 2048a, 2048bのみに な力 Sる貫通孑し 2049a, 2049b が形成されており、これらはそれぞれ枠体 2043に形成されたヘッダ部 2050a, 205 Obを介して各原料流入路 2041a, 2041bに連通している。マ二ホールドエレメント 2 044A, 2044Bには、これらの貫通給 ί夜?し 2048a, 2048b力らー但 lj端縁咅のほぼ中 央に向かって延びる分液流路 2051a, 2051bが形成されている。これらの分液流路 2051a, 2051bは、断面力矢巨形になるように形成され、原料流人路 2041a, 2041b に連通するものが交互に並ぶように、また、側縁部近傍の所定長さ部分では互いに 平行な平行分 ί夜流路 2052a, 2052bとなってレヽる。平行分 f夜流路 2052a, 2052b はマ二ホールドエレメント 2044A, 2044Bの側面において開口している。  [0325] As shown in FIG. 33, each manifold element 2044A, 2044B includes a row of through liquid supply holes 2048a, 2048b that communicate with the raw material inflow channels 2041a, 2041b when they are stacked. Are arranged along the line. The cover plates 2045a and 2045b are formed with through holes 2049a and 2049b, which have a force that can only be applied to one of the through holes 2048a and 2048b. These are the header portions formed on the frame 2043, respectively. It communicates with each raw material inflow channel 2041a, 2041b through 2050a, 205 Ob. The manifold hold element 2 044A, 2044B has these penetrating supply night? However, 2048a and 2048b forces are formed, but liquid separation flow paths 2051a and 2051b are formed extending almost to the center of the lj edge. These liquid separation channels 2051a and 2051b are formed so as to have a large cross-sectional force arrow, and are alternately arranged to communicate with the raw material flow channels 2041a and 2041b, and have a predetermined length near the side edge. At this point, the parallel flow paths 2052a and 2052b are parallel to each other. The parallel flow night passages 2052a and 2052b are opened on the side surfaces of the manifold elements 2044A and 2044B.
[0326] 図 33に示すように、隣接するマ二ホールドエレメント 2044A, 2044Bは、対応する 位置の分液流路 2051a, 2051b (平行分液流路 2052a, 2052b)が異なる原料流 入路 2041a, 2041bに連通するように構成されている。つまり、マ二ホールドエレメン ト 2044Aでは、図 33において上端に原料流入路 2041 aに連通する分液流路 2051 a (平行分液流路 2052a)が有るのに対して、マ二ホールドエレメント 2044Bでは、上 端に原料流入路 2041bに連通する分液流路 2051b (平行分液流路 2052b)が有る ようになつている。したがって、図 34に示すように、マ二ホーノレド 2046の開口端面 20 53には、異なる原料流入路 2041a, 2041bに連通する平行分液流路 2052a, 205 2bの噴出口 2054a, 2054bが交互に隣接する格子状に開口している。 [0326] As shown in FIG. 33, adjacent manifold elements 2044A and 2044B have different raw material flow paths 2041a and 2051b (parallel liquid separation flow paths 2052a and 2052b) at corresponding positions. It is configured to communicate with 2041b. That is, in the manifold element 2044A, the liquid separation channel 2051 communicated with the raw material inflow channel 2041a at the upper end in FIG. While there is a (parallel separation channel 2052a), the manifold element 2044B has a separation channel 2051b (parallel separation channel 2052b) communicating with the raw material inflow channel 2041b at the upper end. It is summer. Therefore, as shown in FIG. 34, outlets 2054a and 2054b of parallel liquid separation flow paths 2052a and 2052b communicating with different raw material inflow paths 2041a and 2041b are alternately adjacent to the opening end face 2053 of the Magni Horned 2046. Open in a grid pattern.
[0327] 反応ブロック 2060は、図 35に示す 2枚のカバープレート 2062A, 2062Bの間に、 図 36に示すような板状の熱交換エレメント 2063, 2064を交互に積層したもので、熱 交換器としての構成は、基本的に先の予熱ブロック 2020a, 2020bと同様である。す なわち、合流溶液 Lmおよび熱媒体 Mcを流す複数の平行な溶液流路と熱媒体流路 がそれぞれ形成された板状の熱交換エレメント 2063, 2064を、それぞれの流路が 互いに直交するように交互に積層し、表裏をカバープレート 2062A, 2062Bで覆つ てボルト等の締結具、シール部材、あるいは接着剤を用いて結合している。各熱交換 エレメント 2063, 2064には流路の両端近傍に貫通孔が設けられ、これらは溶液流 路と熱媒体流路に個別に通じるとともにカバープレート 2062A, 2062Bのポートと連 通しており、これらの流路に合流した溶液および熱媒体を流通させるようになつてい る。 [0327] The reaction block 2060 is obtained by alternately stacking plate-like heat exchange elements 2063 and 2064 as shown in Fig. 36 between two cover plates 2062A and 2062B shown in Fig. 35. The configuration is basically the same as the preheating blocks 2020a and 2020b. In other words, plate-like heat exchange elements 2063 and 2064 each having a plurality of parallel solution flow paths and heat medium flow paths through which the combined solution Lm and the heat medium Mc flow are arranged so that the flow paths are orthogonal to each other. The front and back surfaces are covered with cover plates 2062A and 2062B, and are joined using a fastener such as a bolt, a seal member, or an adhesive. Each heat exchange element 2063, 2064 is provided with through holes near both ends of the flow path, which individually communicate with the solution flow path and the heat medium flow path, and communicate with the ports of the cover plates 2062A, 2062B. The solution and the heat medium joined to the flow path are circulated.
[0328] 流入側のカバープレート 2062A, 2062Bには、混合ブロック 2040の合流部 2042 と同径でこれと連絡するように開口する流入口 2061が設けられている。この流入口 2 061の下流側には徐々に断面寸法が小さくなる絞り部(流体レンズ) 2065力 S設けら れており、その先端側はカバープレート 2062Aの連絡流路 2066、貫通流路 2067 を介して熱交換エレメント 2063の反応流路 2068に通じている。図 36 (a)に示すよう に、反応流路 2068は、熱交換エレメント 2063の表面に溝によって形成された複数 の平行流路 2069を直列に結んでいる点で、予熱ブロック 2020a, 2020bの溶液流 路 2021とは異なる。熱媒体流路 2070および熱媒体 Mcの流れは、図 31の場合と同 じなので、説明を省略する。  [0328] The inflow side cover plates 2062A and 2062B are provided with inflow ports 2061 having the same diameter as the confluence portion 2042 of the mixing block 2040 and opening so as to communicate therewith. A throttle part (fluid lens) 2065 force S with a gradually decreasing cross-sectional dimension is provided on the downstream side of the inlet 2061, and the tip side thereof has a communication channel 2066 and a through channel 2067 of the cover plate 2062A. To the reaction flow path 2068 of the heat exchange element 2063. As shown in FIG. 36 (a), the reaction flow path 2068 connects a plurality of parallel flow paths 2069 formed by grooves on the surface of the heat exchange element 2063 in series, so that the solution of the preheating blocks 2020a and 2020b Different from channel 2021. The flow of the heat medium flow path 2070 and the heat medium Mc is the same as that in FIG.
[0329] 絞り部 2065は、この実施の形態では、図 34に示すように、断面が相似的に変化す る。すなわち断面形状が正方形のまま変わらずに、断面寸法が小さくなるようになつ ている。これにより、混合ブロック 2040の開口から流出し、合流した後完全に混合す る前の状態で存在すると想定される個々の溶液の流れ(「要素流れ」と言う。)の断面 寸法を均等に減少させることができる。 [0329] In this embodiment, as shown in Fig. 34, the diaphragm 2065 has a similar cross section. In other words, the cross-sectional dimensions remain small and the cross-sectional dimensions are reduced. As a result, it flows out from the opening of the mixing block 2040, and after mixing, mix thoroughly. It is possible to evenly reduce the cross-sectional dimensions of individual solution flows (referred to as “element flows”) that are assumed to exist in a previous state.
[0330] 例えば、上記の実施の形態の場合において、混合ブロック 2040における流路断面 寸法が100〃 111 100 111でぁり、 1つのマ二ホールドエレメント 2044A, 2044Bの並 列する流路数が 10であるとすれば、合流部 42の断面寸法は約 lmm X 1mmである。 絞り部 2065における断面寸法減少比 =(S1/S2)1/2)を 1/10とすると、絞り部 206 5後の反応流路 2068の寸法は O. lmm X 0.1mmであり、反応流路 2068における原料 溶液 La, Lbの「要素流れ」の断面寸法は 10 x m X 10 z mとなる。なお、 Sl, S2はそ れぞれ絞り部 2065の前後の断面積である。この「要素流れ」の幅 wは、絞り部 2065 が相似的変化をする場合は、混合ブロック 40における流路の幅 Wと断面寸法減少 比 Pの積として算出される。 [0330] For example, in the case of the above embodiment, the cross-sectional dimension of the mixing block 2040 is 100 mm 111 100 111, and the number of parallel flow paths of one manifold element 2044A, 2044B is ten. If so, the cross-sectional dimension of the junction 42 is about lmm X 1 mm. If the cross-sectional dimension reduction ratio at the throttle 2065 = (S1 / S2) 1/2 ) is 1/10, the dimension of the reaction channel 2068 after the throttle 2065 is O.lmm x 0.1mm, and the reaction channel The cross-sectional dimension of the “element flow” of the raw material solutions La and Lb in 2068 is 10 × m × 10 zm. Sl and S2 are the cross-sectional areas before and after the throttle portion 2065, respectively. The width w of the “element flow” is calculated as the product of the width W of the flow path and the cross-sectional dimension reduction ratio P in the mixing block 40 when the throttle portion 2065 changes in a similar manner.
[0331] w=W X p  [0331] w = W X p
合流した流れにおける反応がマイクロ反応である条件は、必ずしも物理的な流路幅 の問題ではなぐある条件下では、上記のような仮想的な「要素流れ」の幅の問題で ある。つまり、「要素流れ」の幅を充分小さくすることにより、界面比率を上昇させて混 合を促進し、また、 Fickの法則に則って、反応速度を向上させることができる。このよう な効果を得るには、要素流れの断面における幅の最小値 wminが 500 /i m以下である ことが好ましレ、。上記の例では、この仮想最小幅 wminは、 10 /i mであり、充分にこの 条件を満たしている。  The condition that the reaction in the combined flow is a micro reaction is not necessarily a physical channel width problem, but is a problem of the virtual “element flow” width as described above. In other words, by sufficiently reducing the width of the “element flow”, the interface ratio is increased to promote mixing, and the reaction rate can be improved in accordance with Fick's law. In order to obtain such an effect, it is preferable that the minimum width wmin in the cross section of the element flow is 500 / im or less. In the above example, the virtual minimum width wmin is 10 / im, which sufficiently satisfies this condition.
[0332] 上述した混合ブロック 2040、反応ブロック 2060においては、温度条件が厳密に制 御されている。すなわち、各ブロックにおいて、熱媒体の温度は流路の入口と出口に 設けた温度センサで測定され、また、これを通過する溶液の温度もそれぞれのセンサ で測定されている。これらの測定値は、制御装置に入力されて、反応が最適の条件 下行われるようにフィードバック制御してレ、る。  [0332] In the mixing block 2040 and the reaction block 2060 described above, the temperature conditions are strictly controlled. That is, in each block, the temperature of the heat medium is measured by temperature sensors provided at the inlet and outlet of the flow path, and the temperature of the solution passing through the temperature sensor is also measured by each sensor. These measured values are input to the control device, and feedback control is performed so that the reaction is performed under optimum conditions.
[0333] 上記において、エレメントに流路となる溝を形成する方法としては、機械加工、エツ チング等、寸法や素材に応じて適宜の方法が採用される。この実施の形態では、予 熱ブロック、混合ブロック 2040、反応ブロック 2060を、それぞれ板状のエレメントを 結合して構成しているので、これらを完全に分解して洗浄することが可能であり、不 純物に対する精度が厳しい医薬製造などにも適している。また、予熱ブロック 2020a , 2020b,混合ブロック 2040、反応ブロック 2060の間に溶液を移送するための配管 がないため熱損失が極めて少なく高精度の温度制御が可能である。 [0333] In the above, as a method of forming a groove serving as a flow path in the element, an appropriate method such as machining, etching, or the like is employed depending on dimensions and materials. In this embodiment, the preheating block, the mixing block 2040, and the reaction block 2060 are configured by connecting plate-like elements, so that they can be completely disassembled and cleaned. It is also suitable for pharmaceutical manufacturing where precision for pure products is severe. In addition, since there is no pipe for transferring the solution between the preheating blocks 2020a and 2020b, the mixing block 2040, and the reaction block 2060, heat loss is extremely small and high-precision temperature control is possible.
[0334] また、上述した各部を構成する機器は、例えば、機械加工やエッチングなどで流路 を設けた基盤上に、適宜に配置するようにして、ユニット化することにより、設置や操 作が容易となり、製造コストも低減することができる。このような基盤を複数重ねて立 体化し、これらを配管することで構築することもでき、さらなる省スペース化が可能とな る。さらには、基盤上に各機器を一体カ卩ェしてワンチップ状にしたものとすることもで きる。必要に応じて、各部のプロセスを制御する制御システムを設けることが望ましい [0334] In addition, the devices that constitute each of the above-described units can be installed and operated by, for example, appropriately arranging them on a base provided with a flow path by machining, etching, or the like to form a unit. It becomes easy and the manufacturing cost can be reduced. It is also possible to construct by stacking multiple such bases and piping them, further saving space. Furthermore, each device can be integrally formed on the base to form a single chip. It is desirable to provide a control system that controls the processes of each part as necessary.
[0335] 精密温度制御を可能とするため、ミキサー、リアクタ部分を設置した平板配管部の 両面に熱交換を設置した平板で囲みサンドイッチ構造にしてもよい。また、 1個以上 の機器と周辺配管を設けた最小構成の基盤をユニットとし、これを複数個重ねて結合 することでフレキシブルな装置構成を可能とすることができる。また、このようなュニッ ト化し、またはチップ化した連続合成システムとバッチ式分離 ·精製システムを複数結 合して、連続多段合成反応を行わせるようにしてもよい。 [0335] In order to enable precise temperature control, a sandwich structure may be used in which a flat plate with heat exchange is installed on both sides of a flat plate pipe with a mixer and reactor. Also, a flexible device configuration can be made possible by using a minimum configuration base with one or more devices and peripheral piping as a unit and stacking them together. Further, a continuous multistage synthesis reaction may be performed by combining a plurality of such unitized or chipped continuous synthesis systems and batch separation / purification systems.
[0336] 原料流体は双方が液体である場合が好適であるが、気体どうしでも勿論可能である 。また、一方を気体、他方を液体として混合ブロック 2040内で混合することができる。 この際に発生するマイクロバブルを利用すれば高い混合作用を得ることができる。流 路を構成する素材、あるいは流路の表面コーティングの素材は、該当部分に熱伝導 均一性、触媒担持性、耐薬品性、生体安全性などを付与する目的で適宜に行われ る力 S、例えばダイヤモンドをコーティングすることも考えられる。  [0336] The raw material fluid is preferably both liquids, but it is of course possible to use gases. In addition, mixing can be performed in the mixing block 2040 with one as a gas and the other as a liquid. If microbubbles generated at this time are used, a high mixing action can be obtained. The material constituting the flow path or the material of the surface coating of the flow path is a force S appropriately applied for the purpose of imparting heat conduction uniformity, catalyst support, chemical resistance, biosafety, etc. to the relevant part. For example, coating with diamond is also conceivable.
[0337] 以下、前記のように構成された化合物製造システムを用いて医薬等の化合物を製 造する方法を説明する。原料供給部 2001a, 2001bにおいて溶解槽 2011a, 2011 bで溶製された原料溶液 La, Lbはリザーバ 2012a, 2012bに貯留されている。混合 '反応部 2002では、それぞれ熱媒体を流して、予熱ブロック 2020a, 2020bおよび 反応ブロック 2060における加熱(または冷却)温度を、例えば約 _80°C〜 + 200°Cに 設定し、各温度はセンサの測定値に基づく制御でその値に保持される。 [0338] 流体移送ポンプ 2013a, 2013bの稼動によって、原料溶液 La, Lbは予熱ブロック 2020a, 2020bに圧送され、各熱交換エレメント 2063, 2064の熱媒体流路 2023 に分岐して流れ、ここで効率良く熱交換して所定温度に到達する。予備加熱された 各原料溶液 La, Lbは、それぞれ混合ブロック 2040の 2つの溶液流入ポート 2028A に流人し、枠体 2043の原料流人路 2041a, 2041b力、らカノ一プレー卜 2045a, 20 45bの貫通孑し 2049a, 2049bを経由して各マユホーノレドエレメント 2044A, 2044B の分 f夜流路 2051a, 2051bに流れ、さらに、平行分 f夜流路 2052a, 2052bを経由し て、マユホーノレド 2046の開口端面 2053 (こ格子状 ίこ開口する噴出口 2054a, 2054 bから合流部 2042に流出して集合流を形成する。ここで、 1つの溶液の流れの周囲 が他の溶液で覆われているので、マイクロ反応の条件下で層流が維持された集合流 となる場合でも、 2種の溶液間の相互拡散に必要な界面を充分に提供することができ る。また、合流部 2042の断面寸法はミリメートル単位で比較的大きいので、合流直後 に固形物が生成した場合でも、絞り部 2065までに消滅するものであれば、即座に詰 まりを生じることはない。 [0337] Hereinafter, a method of producing a compound such as a pharmaceutical using the compound production system configured as described above will be described. The raw material solutions La and Lb prepared in the dissolution tanks 2011a and 2011b in the raw material supply units 2001a and 2001b are stored in the reservoirs 2012a and 2012b. In the mixing 'reactor 2002, a heating medium is flowed to set the heating (or cooling) temperature in the preheating blocks 2020a and 2020b and the reaction block 2060 to, for example, about _80 ° C to + 200 ° C. This value is held by control based on the measured value. [0338] With the operation of the fluid transfer pumps 2013a and 2013b, the raw material solutions La and Lb are pumped to the preheating blocks 2020a and 2020b, and flow into the heat medium flow path 2023 of each heat exchange element 2063 and 2064, where efficiency The heat reaches well and reaches a predetermined temperature. The preheated raw material solutions La and Lb flow into the two solution inflow ports 2028A of the mixing block 2040, respectively, and the raw material flow paths 2041a and 2041b of the frame 2043 are applied to each other 2045a and 20 45b. The flow passes through 2049a and 2049b, and then flows into the Mayo Redo elements 2044A and 2044B. Open end face 2053 (this is a grid-like effluent outlet 2054a, 2054b and flows into the confluence 2042 to form a collective flow. Here, the circumference of one solution flow is covered with another solution. Therefore, even when the laminar flow is maintained under the microreaction conditions, the interface necessary for mutual diffusion between the two types of solutions can be sufficiently provided. Since the cross-sectional dimensions are relatively large in millimeters, solids are produced immediately after merging. Even when, as long as it disappears before the throttle portion 2065, it does not result in clogged immediately.
[0339] 原料溶液 La, Lbからなる集合流は、さらに合流部 2042から絞り部 2065に流入し 、反応流路 2068における原料溶液 La, Lbの「要素流れ」の断面寸法もさらに減少 する。これにより、合流した流れにおける界面の比率がさらに大きくなり、界面におい て相互拡散して混合が促進され、これが反応流路 2068に流入して反応温度に達し た時に、速やかに反応が進行する。  [0339] The collective flow composed of the raw material solutions La and Lb further flows from the merging portion 2042 into the throttle portion 2065, and the cross-sectional dimension of the “element flow” of the raw material solutions La and Lb in the reaction channel 2068 is further reduced. As a result, the ratio of the interface in the merged flow is further increased, and interdiffusion is promoted at the interface to promote mixing, and when this flows into the reaction channel 2068 and reaches the reaction temperature, the reaction proceeds promptly.
[0340] このようにして反応によって合成された生成物は、反応ブロック 2060から排出され 、貯留槽 2003において所定の条件下で貯留される。さらに、生成物は、下流の精製 槽 2004において真空雰囲気下で濃縮され、回収容器 2018に回収される。反応ブ ロック 2060の下流に、合成物質の性状を評価するインラインセンサ 2071を配置し、 この測定値に基づレ、て運転条件をフィードバック制御することができる。図示例では センサとして pH計を用いているが、生成物に応じて適宜を選択することができる。  [0340] The product synthesized by the reaction in this manner is discharged from the reaction block 2060 and stored in the storage tank 2003 under predetermined conditions. Further, the product is concentrated in a downstream purification tank 2004 under a vacuum atmosphere and recovered in a recovery container 2018. An in-line sensor 2071 for evaluating the properties of the synthetic substance is arranged downstream of the reaction block 2060, and the operating conditions can be feedback controlled based on this measured value. In the illustrated example, a pH meter is used as the sensor, but an appropriate one can be selected according to the product.
[0341] なお、上記の実施の形態において、混合ブロック 2040における流路の寸法を例え ば lmm X lmmに設定しても、合流部が 10mm X 10mmとなり、断面寸法減少比を l/l 0とすれば、後方の絞り部 2065以下の反応流路 2068の寸法は、 lmm X lmmとなる。 この反応流路 2068内の集合流において層流が維持されているとすれば、反応流路 2068での流れの仮想最小幅 wminは 100 /i mとなり、実質的にマイクロ反応空間の条 件を満たす。したがって、この実施の形態によれば、容易に加工可能な mmサイズ寸 法のエレメントのみで 100 z m級のマイクロ反応空間を実現できる。このように絞り部 により断面寸法を減少させる場合には、混合ブロック 2040における流路の最大寸法 を 1000 μ m以上 3000 μ m以下とすることで、固形物が進入しても詰まりを防止するこ とができる。 [0341] In the above embodiment, even if the size of the flow path in the mixing block 2040 is set to, for example, lmm x lmm, the junction is 10mm x 10mm, and the cross-sectional dimension reduction ratio is l / l 0. In this case, the dimension of the reaction flow path 2068 below the rear throttle portion 2065 is lmm × lmm. If a laminar flow is maintained in the collective flow in the reaction channel 2068, the virtual minimum width wmin of the flow in the reaction channel 2068 is 100 / im, which substantially satisfies the conditions of the micro reaction space. . Therefore, according to this embodiment, it is possible to realize a micro reaction space of 100 zm class with only mm-size elements that can be easily processed. In this way, when the cross-sectional dimension is reduced by the throttle part, the maximum dimension of the flow path in the mixing block 2040 should be 1000 μm or more and 3000 μm or less to prevent clogging even if solids enter. You can.
[0342] 上記の実施の形態では、予熱ブロック 2020a, 2020b,混合ブロック 2040、反応 ブロック 2060を、それぞれ板状のエレメントを結合して構成しているので、これらを完 全に分解して洗浄することが可能であり、不純物に対する精度が厳しい医薬製造な どにも適している。  [0342] In the above embodiment, the preheating blocks 2020a, 2020b, the mixing block 2040, and the reaction block 2060 are configured by connecting plate-like elements, respectively, so that they are completely disassembled and cleaned. Therefore, it is also suitable for pharmaceutical manufacturing with high precision against impurities.
[0343] 図 37A〜図 37Dは、?昆合ブロック 2040の合流部 2042に絞り部 2065を設ける代 わりに、混合促進物体を設けた実施の形態を示すものである。図 37Aは、合流部 20 42に微細な球状の混合促進物体 2072を、概ね混合ブロック 2040の流路の開口に 対応するように配置している。球状の混合促進物体 2072を、流路に沿って所定の長 さの部分に配置することにより、噴出口 2054a, 2054bから流出した集合流がこれら に沿って迂回するので、要素流れどうしの界面の比率を向上させることができる。  [0343] Figures 37A to 37D An embodiment in which a mixing promoting object is provided in place of providing the constricting part 2065 in the confluence part 2042 of the merging block 2040 is shown. In FIG. 37A, a fine spherical mixing promoting object 2072 is arranged in the merging portion 2042 so as to substantially correspond to the opening of the flow path of the mixing block 2040. By arranging the spherical mixing promotion body 2072 at a predetermined length along the flow path, the collective flow flowing out from the jet outlets 2054a and 2054b is diverted along these, so that the interface between the element flows The ratio can be improved.
[0344] 混合促進物体 2072の大きさが要素流れの代表長さと比較して小さすぎると、混合 促進物体 2072は単なる多孔質物体となり十分な混合が期待できず、また大きすぎる と千鳥状に流入する異種流体の要素流れがかたまりとなって流動するため、やはり十 分な混合が得られない。最適な混合促進物体 2072の代表長さは、要素流れの最大 幅の 0.1倍から 10倍が望ましい。なお、要素流れの最大幅は小さいほど迅速な混合が 期待でき、少なくとも 800 z m以下、好ましくは 10 z m以下が良い。  [0344] When the size of the mixing promotion object 2072 is too small compared to the representative length of the element flow, the mixing promotion object 2072 becomes a mere porous object and sufficient mixing cannot be expected. As a result, the elements flow of the different fluids flow as a group, so that sufficient mixing cannot be obtained. The typical length of the optimal mixing promoting body 2072 is preferably 0.1 to 10 times the maximum width of the element flow. The smaller the maximum width of the element flow, the faster the mixing can be expected. At least 800 zm or less, preferably 10 zm or less is good.
[0345] 混合促進物体は、種々の形状のものを適宜に採用することができ、また、適宜にこ れらを組み合わせることができる。図 37B〜図 37Dにそのレ、くつかの例を示す。図 3 7Bは、柱状体を格子状に組んだ網状の混合促進物体 2073を、流れ方向に複数枚 配置したもの、図 37Cは、平行な柱状体を並列した網状の混合促進物体 2074を、 流路に沿って向きが交互になるように複数配置したもの、図 37Dは、 2枚の網状の混 合促進物体 2073の間に球状の混合促進物体 2072を配置したものである。 [0345] As the mixing promoting object, various shapes can be adopted as appropriate, and these can be appropriately combined. Figures 37B to 37D show some examples. Fig. 37B shows a plurality of mesh-like mixing promoting objects 2073 in which columns are arranged in a grid, arranged in the flow direction, and Fig. 37C shows a mesh-like mixing promoting object 2074 in which parallel columns are arranged in parallel. Figure 37D shows multiple arrangements with alternate orientations along the road. A spherical mixing promotion object 2072 is arranged between the combination promotion objects 2073.
[0346] なお、混合促進物体 2072〜2074の表面に適切な触媒を固定すれば、反応を促 進させることができる。混合促進物体 2072〜2074を用いたこれらの実施の形態に おいては、反応が比較的広い空間内で進行するため、固形状の反応生成物が生じ る場合でも流路が閉塞しにくいという利点がある。なお、混合促進物体 2072〜2074 だけでは混合が不十分な場合は、絞り部 2065と併用してもよい。図 37Eでは、絞り 部 2065の下流側に球状の混合促進物体 2072を設けており、図 37Fでは、球状の 混合促進物体 2072の下流側に絞り部 2065を設けたものである。 [0346] It should be noted that the reaction can be promoted by fixing an appropriate catalyst on the surface of the mixing promoting object 2072-2074. In these embodiments using the mixing promoting bodies 2072 to 2074, since the reaction proceeds in a relatively wide space, the flow path is not easily blocked even when a solid reaction product is generated. There is. In addition, when mixing is insufficient only with the mixing promoting object 2072 to 2074, it may be used together with the throttle unit 2065. In FIG. 37E, a spherical mixing promotion object 2072 is provided on the downstream side of the throttle unit 2065, and in FIG. 37F, a throttle unit 2065 is provided on the downstream side of the spherical mixing promotion object 2072.
[0347] 図 38Aは、この発明の他の実施の形態のマイクロリアクタの構成を示すもので、一 組の同じ構造の混合ブロック 2040A, 2040Bを対向させて配置したものである。これ らの?昆合ブロック 2040A, 2040Bには、原料供給咅 B2001a, 2001b力らの原料溶 液 La, Lbが供給されている力 向かい合う噴出口 2054a, 2054bからは異なる原料 溶液 La, Lbが流出するように配置する。これにより、それぞれの要素流れを衝突させ て噴流を形成することで、混合を促進する。合流部 2042Aの形状は、衝突面に直交 する方向に合流溶液を引き出す構成となるが、例えば、円盤状の空間としてその周 辺部から接線方向に引き出す構成としても良い。 FIG. 38A shows the configuration of a microreactor according to another embodiment of the present invention, in which a set of mixing blocks 2040A and 2040B having the same structure are arranged to face each other. these? The Kunjing blocks 2040A and 2040B are supplied with raw material solution La and Lb from the raw material supply tank B2001a and 2001b. To do. This promotes mixing by colliding each element flow to form a jet. The shape of the merging portion 2042A is configured to draw the merging solution in a direction orthogonal to the collision surface. For example, the merging portion 2042A may be configured to be drawn out from its peripheral portion in a tangential direction as a disk-shaped space.
[0348] この実施の形態では、絞り部 2065を用いずに、広い合流部 2042Aのままで混合 を促進することができるので、反応によって固形の生成物が生じる場合でも流路の閉 塞を回避することができる利点が有る。勿論、場合に応じて、図 38Bに示すように、絞 り部 2065と併用してもよぐあるいは図示しないが、混合促進物体 2072と併用しても よい。 [0348] In this embodiment, the mixing portion 2042A can be promoted without using the restricting portion 2065, so that the mixing can be promoted, so that the blockage of the flow path is avoided even when a solid product is generated by the reaction. There are advantages that can be done. Of course, depending on the case, as shown in FIG. 38B, it may be used together with the narrowing portion 2065 or may be used together with the mixing promoting object 2072 although not shown.
[0349] これらの実施の形態では、混合ブロック 2040を互いに 180度をなす方向力も対向 させているが、 180度より小さい角度で対向させて、 Y字状の合流路を形成するよう にしてもよい。上記の実施の形態では、 2種の流体を混合させるようにした力 2種以 上の流体を同時に混合させるのに好適であることは言うまでもなレ、。また、 2つの混合 ブロック 40の温度を異なるように設定できるので、安定温度条件が異なる流体を混合 させる場合にも好適である。  [0349] In these embodiments, the mixing blocks 2040 are also opposed to each other by directional forces forming 180 degrees, but they may be opposed to each other at an angle smaller than 180 degrees to form a Y-shaped combined flow path. Good. Needless to say, the above embodiment is suitable for mixing two or more kinds of fluids at the same time. Further, since the temperatures of the two mixing blocks 40 can be set differently, it is also suitable when mixing fluids having different stable temperature conditions.
[0350] 流量調 置 本発明は、さらに、本発明の流体反応装置及び流体混合装置において使用するこ とができる流量調整装置にも関する。 [0350] Flow rate adjustment The present invention further relates to a flow control device that can be used in the fluid reaction device and the fluid mixing device of the present invention.
[0351] 上述した目的を達成するために、本発明の一態様は、流路を流れる流体の流量を 調整する流量調整装置であって、前記流路を流れる流体を加熱または冷却する温 調機構と、前記流路の第 1の測定点における流体の温度が変化する時刻と、前記第 1の測定点よりも下流側の第 2の測定点における流体の温度が変化する時刻との時 間差から前記流路内を流れる流体の流量を算出する流量測定部と、前記第 2の測定 点を通過する流体の温度を測定する下流側温度センサと、前記下流側温度センサ の下流側に設けられた制御弁と、前記流量測定部により求められた流量に基づいて 、流体の流量が一定となるように前記制御弁を制御する制御部とを備えたことを特徴 とする流量調整装置である。  [0351] In order to achieve the above-described object, one aspect of the present invention is a flow rate adjusting device that adjusts the flow rate of a fluid that flows through a flow path, and a temperature control mechanism that heats or cools the fluid that flows through the flow path. And the time at which the fluid temperature at the first measurement point of the flow path changes and the time at which the fluid temperature at the second measurement point downstream of the first measurement point changes. A flow rate measurement unit for calculating the flow rate of the fluid flowing through the flow path, a downstream temperature sensor for measuring the temperature of the fluid passing through the second measurement point, and a downstream side of the downstream temperature sensor. And a control unit that controls the control valve so that the flow rate of the fluid becomes constant based on the flow rate obtained by the flow rate measurement unit.
[0352] 本発明によって流体の流量が測定される原理について図 42を参照して説明する。  The principle by which the flow rate of fluid is measured according to the present invention will be described with reference to FIG.
図 42において、縦軸は温度を表し、横軸は時間を表している。まず、温調機構により 流体を加熱し、流体の温度を符号 T1に示すように所定の変化率で上昇させる。この とき、流体が流路内を流れていると、第 1の測定点での流体の温度は符号 C1に示す ように変化する。さらに、第 1の測定点の下流側に位置する第 2の測定点では、流体 の温度は符号 C2に示すように変化する。この場合、温度カーブ C1のピークと温度力 ーブ C2のピークとの時間差は A tである。そして、流体の流量は以下の式から求める こと力 Sできる。  In FIG. 42, the vertical axis represents temperature and the horizontal axis represents time. First, the fluid is heated by the temperature control mechanism, and the temperature of the fluid is increased at a predetermined rate of change as indicated by reference numeral T1. At this time, if the fluid is flowing in the flow path, the temperature of the fluid at the first measurement point changes as indicated by C1. Furthermore, at the second measurement point located downstream of the first measurement point, the fluid temperature changes as indicated by reference symbol C2. In this case, the time difference between the peak of the temperature curve C1 and the peak of the temperature curve C2 is At. And the flow rate of fluid can be obtained from the following formula.
[0353] 流量 =第 1の測定点と第 2の測定点との距離 X流路断面積 ÷時間差 Δ t  [0353] Flow rate = distance between the first measurement point and the second measurement point X cross-sectional area of the channel ÷ time difference Δ t
比重、比熱、および粘度の異なる流体が流れた場合は、第 1の測定点での流体の 温度は符号 C1'のように変化し、第 2の測定点での温度は符号 C2'のように変化す る。そして、温度カーブ CI'のピークと温度カーブ C2'のピークとの時間差は A tとな る。つまり、上述した温度カーブ C1と温度カーブ C2との時間差と、温度カーブ C1'と 温度カーブ C2'との時間差は同じである。これは、流体の比重、比熱、粘度が異なつ ても、流体の平均流速が同一の条件下では、上流側の温度カーブと下流側の温度 カーブとの時間差は流量のみに依存するからである。例えば、図 41に示すように、流 体の粘度が変わっても、最大流速が変わるのみで平均流速 (すなわち流量)は変わ らなレ、。したがって、 2つの測定点に現れる温度カーブの時間差を測定すれば、流体 の物性の影響を受けずに正確な流量測定が可能になる。 When fluids with different specific gravity, specific heat, and viscosity flow, the temperature of the fluid at the first measurement point changes as indicated by C1 ', and the temperature at the second measurement point changes as indicated by C2'. Change. The time difference between the peak of temperature curve CI 'and the peak of temperature curve C2' is At. That is, the time difference between the temperature curve C1 and the temperature curve C2 and the time difference between the temperature curve C1 ′ and the temperature curve C2 ′ are the same. This is because, even if the specific gravity, specific heat, and viscosity of the fluid are different, the time difference between the upstream temperature curve and the downstream temperature curve depends only on the flow rate under the same fluid average flow velocity. . For example, as shown in Figure 41, even if the viscosity of the fluid changes, the average flow velocity (ie flow rate) changes only by changing the maximum flow velocity. Ranare. Therefore, if the time difference between the temperature curves that appear at the two measurement points is measured, accurate flow measurement is possible without being affected by the physical properties of the fluid.
[0354] 流量が 0. 01〜: 10L/hさらには 0. 01〜2L/hと少ない場合では、流路の内径が 2 mm以下と小さぐレイノルズ数は小さくなるため流体の流れが層流となる。したがって 、流路内での流速分布を示すカーブに乱れが無くその形状が安定していることが温 度変化の時間差に基づく流量の測定を可能にしている。これにより種々の試薬を用 レ、た試験を行う場合であっても、事前に試薬の比熱、比重、および粘度などの物性 値を把握することが不要となり、単に目標とする流量を設定するだけで所望の流量を 得ること力 Sできる。 [0354] When the flow rate is as low as 0.01 to 10 L / h or even 0.01 to 2 L / h, the Reynolds number becomes small as the inner diameter of the flow path is 2 mm or less, so the fluid flow is laminar. It becomes. Therefore, the curve indicating the flow velocity distribution in the flow path is not disturbed and its shape is stable, which makes it possible to measure the flow rate based on the time difference of temperature change. This makes it unnecessary to know the physical properties of the reagent, such as the specific heat, specific gravity, and viscosity in advance, even when using various reagents, and simply setting the target flow rate. The force S can be obtained with the desired flow rate.
[0355] 本発明に用いられる流体の例としては、試薬、有機溶剤、生化学物質などが挙げら れる。例えば、医薬品の開発段階においては、数多くの試薬を用いて、濃度、溶媒、 温度などの条件を様々に変化させて試験を行う、いわゆるスクリーニングが行われる 。このスクリーニングでは、試薬の物性に左右されず、正確な体積を測定することが 求められる。本発明によれば、試薬の種類によらず正確な試薬の体積 (流量)を求め ること力 Sできるので、好ましい開発環境を提供することができる。  [0355] Examples of fluids used in the present invention include reagents, organic solvents, biochemical substances, and the like. For example, in the development stage of pharmaceuticals, so-called screening is performed in which a number of reagents are used and tests are performed with various conditions such as concentration, solvent, and temperature changed. This screening requires accurate volume measurement regardless of the physical properties of the reagent. According to the present invention, since it is possible to obtain an accurate volume (flow rate) of a reagent regardless of the type of reagent, a preferable development environment can be provided.
[0356] 本発明の好ましい態様は、前記流量測定部は、前記第 1の測定点および前記第 2 の測定点における流体の温度変化を示す温度カーブ上の互いに対応する 2点間の 時間差に基づいて流体の流量を算出することを特徴とする。  [0356] In a preferred aspect of the present invention, the flow rate measurement unit is based on a time difference between two points corresponding to each other on a temperature curve indicating a temperature change of the fluid at the first measurement point and the second measurement point. And calculating the flow rate of the fluid.
[0357] 図 42に示した例では、 2つの温度カーブのピークが現れるときの時間差を測定して いる力 本発明はこれに限られなレ、。例えば、温度カーブの立ち上がり時の時間差を 求めてもよぐまた、ピークから所定時間だけずれた時点の時間差を求めてもよい。こ のように、本発明では、温度カーブ上の互いに対応する 2点間の時間差を測定する。  [0357] In the example shown in Fig. 42, the force for measuring the time difference when the peaks of the two temperature curves appear. The present invention is not limited to this. For example, the time difference at the time of rising of the temperature curve may be obtained, or the time difference at a time point deviated by a predetermined time from the peak may be obtained. Thus, in the present invention, the time difference between two points corresponding to each other on the temperature curve is measured.
[0358] 本発明の好ましい態様は、前記第 1の測定点を通過する流体の温度を測定する上 流側温度センサをさらに設けたことを特徴とする。また、前記上流側温度センサは、 前記流路を流れる流体に接触するセンサホルダと、前記流路に近い位置まで前記セ ンサホルダの内部に揷入されたサーミスタとを備えていてもよい。さらに、前記下流側 温度センサは、前記流路を流れる流体に接触するセンサホルダと、前記流路に近い 位置まで前記センサホルダの内部に揷入されたサーミスタとを備えていてもよい。 [0359] 本発明の好ましい態様は、少なくとも前記第 1の測定点と前記第 2の測定点とを含 む空間の温度を一定に保つ環境温度制御機構をさらに設けたことを特徴とする。 [0358] A preferred embodiment of the present invention is characterized in that an upstream temperature sensor for measuring the temperature of the fluid passing through the first measurement point is further provided. The upstream temperature sensor may include a sensor holder that contacts the fluid flowing in the flow path, and a thermistor inserted into the sensor holder to a position close to the flow path. Further, the downstream temperature sensor may include a sensor holder that contacts the fluid flowing in the flow path, and a thermistor inserted into the sensor holder to a position close to the flow path. [0359] A preferred aspect of the present invention is characterized in that an environmental temperature control mechanism is further provided that keeps the temperature of a space including at least the first measurement point and the second measurement point constant.
[0360] 微小流路を流れる流体の温度測定は外乱の影響を受けやすぐ正確な流量測定 ができないおそれがある。本発明によれば、第 1の測定点および第 2の測定点の温 度を積極的に一定に保つことにより、外乱を遮断することができる。したがって、流体 の流量を正確に測定することができる。  [0360] Temperature measurement of fluid flowing through a micro flow channel is affected by disturbance and may not be able to measure the flow rate accurately. According to the present invention, disturbance can be blocked by actively keeping the temperature at the first measurement point and the second measurement point constant. Therefore, the flow rate of the fluid can be measured accurately.
[0361] 本発明の好ましい態様は、前記温調機構は、ペルチェ素子、ゼーベック素子、電磁 波発生器、または抵抗加熱線を備えることを特徴とする。  [0361] In a preferred aspect of the present invention, the temperature adjustment mechanism includes a Peltier element, a Seebeck element, an electromagnetic wave generator, or a resistance heating wire.
[0362] 温調機構としては、加熱手段に限らず、冷却手段を用いてもよい。また、前記温調 機構は、前記流路を構成する孔が形成された円筒部と前記円筒部に熱を伝える伝 熱部とを有する構造体と、前記構造体の伝熱部を加熱または冷却する温調部材とを 備えていてもよい。  [0362] The temperature adjustment mechanism is not limited to the heating means, and a cooling means may be used. In addition, the temperature adjustment mechanism is configured to heat or cool the structure having a cylindrical portion in which holes forming the flow path are formed, a heat transfer portion that transfers heat to the cylindrical portion, and the heat transfer portion of the structure. And a temperature control member.
[0363] 本発明の好ましい態様は、前記制御弁は、流量を調整する弁と、前記弁を駆動す る駆動源とを有しており、該駆動源は、圧電素子、電磁石、サーボモータ、またはス テツビングモータを備えてレ、ることを特徴とする。  [0363] In a preferred aspect of the present invention, the control valve has a valve for adjusting a flow rate and a drive source for driving the valve, and the drive source includes a piezoelectric element, an electromagnet, a servo motor, Or, it is provided with a stepping motor.
[0364] 本発明によれば、応答性の良好な駆動源を用いることにより、流量測定部により測 定された実流量に基づいて速やかに弁を駆動させて流量を一定に保つことができる  [0364] According to the present invention, by using a driving source with good responsiveness, the valve can be driven quickly based on the actual flow rate measured by the flow rate measurement unit, and the flow rate can be kept constant.
[0365] 本発明の好ましい態様は、前記制御弁は、流量を調整する弁と、前記弁を駆動す る駆動源とを有しており、該駆動源は、複数の圧電素子が積層された構造を有するこ とを特徴とする。 [0365] In a preferred aspect of the present invention, the control valve has a valve for adjusting a flow rate and a drive source for driving the valve, and the drive source is formed by laminating a plurality of piezoelectric elements. It is characterized by having a structure.
[0366] 本発明によれば、高圧の流体が流れる場合であっても、高圧や圧力変動の影響を 受けることなく流量を一定に保つことができる。  [0366] According to the present invention, even when a high-pressure fluid flows, the flow rate can be kept constant without being affected by high pressure or pressure fluctuation.
[0367] 本発明の好ましい態様は、前記制御弁を通過する流体の圧力は IMPa〜: !OMPa であることを特徴とする。 [0367] In a preferred aspect of the present invention, the pressure of the fluid passing through the control valve is IMPa ~:! OMPa.
[0368] 本発明の好ましい態様は、前記制御弁を通過する流体の流量は 0. 01〜: 10L/h であることを特徴とする。 [0368] A preferred embodiment of the present invention is characterized in that the flow rate of the fluid passing through the control valve is from 0.01 to 10 L / h.
[0369] 本発明の好ましい態様は、前記流路は、耐食性のある材料から形成されていること を特徴とする。 [0369] In a preferred aspect of the present invention, the channel is formed of a corrosion-resistant material. It is characterized by.
[0370] 本発明の好ましい態様は、前記材料は、ステンレス鋼、チタン、ポリエーテルエーテ ノレケトン、ポリ四フッ化工チレン、またはポリクロ口トリフルォロエチレンであることを特 徴とする。  [0370] A preferred embodiment of the present invention is characterized in that the material is stainless steel, titanium, polyether ether ketone, polytetrafluoroethylene, or polychloroethylene.
[0371] 本発明の他の態様は、流体を貯留する複数の容器と、流体を混合させる混合部と、 混合した流体を反応させる反応部と、上記流量調整装置とを備えたことを特徴とする 流体反応装置である。  [0371] Another aspect of the present invention includes a plurality of containers that store fluid, a mixing unit that mixes the fluid, a reaction unit that reacts the mixed fluid, and the flow rate adjusting device. It is a fluid reaction device.
[0372] 以下、本発明の実施形態に係る流量調整装置について図面を参照して説明する。  Hereinafter, a flow rate adjusting device according to an embodiment of the present invention will be described with reference to the drawings.
図 43は本発明の第 1の実施形態に係る流量調整装置を示す模式図である。図 43に 示すように、本実施形態の流量調整装置は、流路 3001を流れる液体 (流体)の流量 を測定する流量測定部 3010と、液体の流量を調整する制御弁 3020と、流量測定部 3010により測定された流量に基づいて制御弁 3020を制御する制御部 3030とから 基本的に構成されている。  FIG. 43 is a schematic diagram showing the flow rate adjusting device according to the first embodiment of the present invention. As shown in FIG. 43, the flow rate adjustment device of the present embodiment includes a flow rate measurement unit 3010 that measures the flow rate of the liquid (fluid) that flows through the flow path 3001, a control valve 3020 that adjusts the flow rate of the liquid, and a flow rate measurement unit. The control unit 3030 basically controls the control valve 3020 based on the flow rate measured by the 3010.
[0373] 流量測定部 3010は、流路 3001を流れる液体を所定の周期で加熱する温調機構 3002と、流路 3001を流れる液体の温度を測定する上流側温度センサ 3003および 下流側温度センサ 3004とを備えている。温調機構 3002は流路 3001の壁部を取り 囲むように設けられており、流路 3001の壁部を介して液体を加熱する。この温調機 構 3002は温度制御部 3005に接続されており、最適な温度上昇率で液体を加熱す るようになっている。なお、温調機構 3002としては、ペルチェ素子、ゼーベック素子、 電磁波発生器、抵抗加熱器などが好適に用いられる。また、温調機構 3002は、液 体を冷却することで液体に温度変化を与えるようにしてもよい。  [0373] The flow rate measuring unit 3010 includes a temperature adjustment mechanism 3002 that heats the liquid flowing through the flow path 3001 at a predetermined cycle, an upstream temperature sensor 3003 that measures the temperature of the liquid flowing through the flow path 3001, and a downstream temperature sensor 3004. And. The temperature adjustment mechanism 3002 is provided so as to surround the wall portion of the flow path 3001 and heats the liquid through the wall portion of the flow path 3001. This temperature control mechanism 3002 is connected to the temperature control unit 3005 so as to heat the liquid at an optimum rate of temperature increase. As the temperature adjustment mechanism 3002, a Peltier element, Seebeck element, electromagnetic wave generator, resistance heater, or the like is preferably used. The temperature adjustment mechanism 3002 may change the temperature of the liquid by cooling the liquid.
[0374] 上流側温度センサ 3003は、流路 3001の第 1の測定点 P1に配置されており、この 第 1の測定点 P1を通過する液体の温度を測定する。下流側温度センサ 3004は、流 路 1の第 2の測定点 P2に配置されており、この第 2の測定点 P2を通過する液体の温 度を測定する。また、流量測定部 3010は、加熱された液体が 2つの測定点 PI , P2 を通過する時間差に基づいて液体の流量を求める時間差測定部 3009を備えている  [0374] The upstream temperature sensor 3003 is disposed at the first measurement point P1 of the flow path 3001, and measures the temperature of the liquid passing through the first measurement point P1. The downstream temperature sensor 3004 is arranged at the second measurement point P2 of the flow path 1, and measures the temperature of the liquid passing through the second measurement point P2. Further, the flow rate measuring unit 3010 includes a time difference measuring unit 3009 for obtaining the flow rate of the liquid based on the time difference when the heated liquid passes through the two measurement points PI and P2.
[0375] 上流側温度センサ 3003は温調機構 3002の下流側に位置しており、温調機構 30 02に近接して配置されている。下流側温度センサ 3004は上流側温度センサ 3003 の下流側に位置しており、上流側温度センサ 3003から所定の距離だけ離間して配 置されている。上流側温度センサ 3003および下流側温度センサ 3004は、いずれも 流路 3001の外面に取り付けられており、流路 3001の壁部を介して液体の温度を測 定するようになっている。なお、上流側温度センサ 3003および下流側温度センサ 30 04としては、応答性に優れたサーミスタ式温度計や熱電対などが好適に用いられる [0375] The upstream temperature sensor 3003 is located downstream of the temperature adjustment mechanism 3002, and the temperature adjustment mechanism 30 Located close to 02. The downstream temperature sensor 3004 is located on the downstream side of the upstream temperature sensor 3003, and is arranged at a predetermined distance from the upstream temperature sensor 3003. Both the upstream temperature sensor 3003 and the downstream temperature sensor 3004 are attached to the outer surface of the flow path 3001 and measure the temperature of the liquid through the wall of the flow path 3001. As the upstream temperature sensor 3003 and the downstream temperature sensor 30 04, a thermistor thermometer or thermocouple with excellent response is preferably used.
[0376] 上流側温度センサ 3003と下流側温度センサ 3004は時間差測定部 3009に接続 されており、上流側温度センサ 3003および下流側温度センサ 3004の出力が時間 差測定部 3009に送られるようになつている。この時間差測定部 3009により液体の流 量が測定される原理は、図 42を参照して既に説明した通りである。すなわち、液体が 流れてレ、る状態で温調機構 3002が液体を加熱すると、加熱された液体が下流側に 流れ、上流側の第 1の測定点 P1および下流側の第 2の測定点 P2をこの順に通過す る。このとき、第 1の測定点 P1における液体の温度は上流側温度センサ 3003により 測定され、第 2の測定点 P2における液体の温度は下流側温度センサ 3004により測 定される。 [0376] The upstream temperature sensor 3003 and the downstream temperature sensor 3004 are connected to the time difference measuring unit 3009, and the outputs of the upstream temperature sensor 3003 and the downstream temperature sensor 3004 are sent to the time difference measuring unit 3009. ing. The principle by which the liquid flow rate is measured by the time difference measuring unit 3009 is as already described with reference to FIG. That is, when the temperature adjustment mechanism 3002 heats the liquid while the liquid is flowing, the heated liquid flows downstream, and the first measurement point P1 on the upstream side and the second measurement point P2 on the downstream side Pass through in this order. At this time, the temperature of the liquid at the first measurement point P1 is measured by the upstream temperature sensor 3003, and the temperature of the liquid at the second measurement point P2 is measured by the downstream temperature sensor 3004.
[0377] 上流側温度センサ 3003と下流側温度センサ 3004の出力は連続的に時間差測定 部 3009に送られ、ここで温度カーブ C1および温度カーブ C2 (図 42参照)のそれぞ れのピークが検出される。なお、温度カーブのピークは、公知の方法を用いて検出す ること力 Sできる。例えば、前後 2つの測定値の差の符号が変わったときをピークと判断 すること力 Sできる。そして、温度カーブ C1のピークが現れた時間と、温度カーブ C2の ピークが現れた時間との差が算出され、以下の式から、流路 1を流れる液体の流量が 求められる。  [0377] The outputs of the upstream temperature sensor 3003 and the downstream temperature sensor 3004 are continuously sent to the time difference measurement unit 3009, where the peaks of temperature curve C1 and temperature curve C2 (see Fig. 42) are detected. Is done. The peak of the temperature curve can be detected using a known method. For example, it is possible to judge the peak when the sign of the difference between the two measured values changes. Then, the difference between the time when the peak of the temperature curve C1 appears and the time when the peak of the temperature curve C2 appears is calculated, and the flow rate of the liquid flowing through the flow path 1 is obtained from the following equation.
[0378] 流量 (L/h) =センサ間の距離 (第 1の測定点 PIと第 2の測定点 P2との距離) X流 路 1の断面積 ÷時間差  [0378] Flow rate (L / h) = distance between sensors (distance between first measurement point PI and second measurement point P2) X flow area 1 cross section ÷ time difference
なお、時間差を求めるに際して比較すべき点は温度カーブのピークに限られない。 すなわち、温度カーブ上の対応する 2点間の時間差を求めればよい。例えば、 2つの 温度カーブの立ち上がり時の時間差を求めてもよい。 [0379] 図 43に示すように、制御弁 3020は流量測定部 3010の下流側に配置されている。 この制御弁 3020は、液体の流れに対向するように配置されたピストン(弁) 3021と、 ピストン 3021を駆動する圧電素子 (駆動源) 3022とを備えている。圧電素子 (圧電ァ クチユエータ) 3022はピストン 3021の裏面に固定され、圧電素子 3022とピストン 30 21とは一体的に構成されている。ピストン 3021および圧電素子 3022はピストン室 3 023に収容されてレヽる。流路 3001の一部は T字路となっており、ピス卜ン 3021は、 T 字路に流れ込む液体がピストン 3021の前面にぶっかるように配置されている。圧電 素子 3022に電圧が印加されると圧電素子 3022が伸縮し、これによりピストン 3021 を液体の流れ方向に沿って移動させてピストン 3021の開度ひを調整する。 Note that the point to be compared when obtaining the time difference is not limited to the peak of the temperature curve. That is, the time difference between two corresponding points on the temperature curve can be obtained. For example, the time difference between the rises of two temperature curves may be obtained. As shown in FIG. 43, the control valve 3020 is disposed downstream of the flow rate measuring unit 3010. The control valve 3020 includes a piston (valve) 3021 disposed so as to oppose the liquid flow, and a piezoelectric element (drive source) 3022 that drives the piston 3021. A piezoelectric element (piezoelectric actuator) 3022 is fixed to the back surface of the piston 3021, and the piezoelectric element 3022 and the piston 3021 are integrally formed. The piston 3021 and the piezoelectric element 3022 are accommodated and moved in the piston chamber 3023. A part of the channel 3001 is a T-junction, and the piston 3021 is arranged so that the liquid flowing into the T-junction hits the front surface of the piston 3021. When a voltage is applied to the piezoelectric element 3022, the piezoelectric element 3022 expands and contracts, thereby moving the piston 3021 along the liquid flow direction to adjust the opening degree of the piston 3021.
[0380] ピストン 3021の上流側には絞り部 3001aが設けられており、ここで流路 3001を絞 り込むことによりピストン 3021による正確な流量調整を可能としている。上述したピス トン室 3023は有底円筒状に形成されており、このピストン室 3023は流路 3001の外 面に液密に固定されている。このような構成により、ピストン 3021と流路 3001との隙 間から液体が漏れた場合でも、液体がピストン室 3023の内部に保持されるので、液 体の外部への漏洩が防止される。  [0380] A throttle part 3001a is provided on the upstream side of the piston 3021. By narrowing the flow path 3001, the flow rate can be accurately adjusted by the piston 3021. The above-described piston chamber 3023 is formed in a bottomed cylindrical shape, and the piston chamber 3023 is liquid-tightly fixed to the outer surface of the flow path 3001. With such a configuration, even when liquid leaks from the gap between the piston 3021 and the flow path 3001, the liquid is held inside the piston chamber 3023, so that leakage of the liquid to the outside is prevented.
[0381] 本実施形態に係る流量調整装置を組み込んだマイクロリアクタでは、試薬どうしの 反応により流量調整装置の下流側で反応生成物が生成される。この場合、反応生成 物の種類によっては、流量調整装置の下流側の液体の圧力が上昇し、流路 1から液 体が漏れるおそれがある。本実施形態によれば、有底円筒状のピストン室 3023によ り液体の外部への漏洩を防止することができるので、正確な流量調整が可能となる。  [0381] In the microreactor incorporating the flow control device according to the present embodiment, a reaction product is generated on the downstream side of the flow control device by the reaction between the reagents. In this case, depending on the type of reaction product, the pressure of the liquid on the downstream side of the flow control device may increase, and the liquid may leak from the flow path 1. According to the present embodiment, leakage of liquid to the outside can be prevented by the bottomed cylindrical piston chamber 3023, so that accurate flow rate adjustment is possible.
[0382] 次に、制御部 3030について説明する。制御部 3030は、時間差測定部 3009に接 続された増幅器 3032と、流量を一定に保っためのピストン 3021の開度を決定する 比較部(PID制御部) 3033と、制御弁 3020の圧電素子 3022に印加する電圧を生 成するピストン駆動回路 3034とを備えている。増幅器 3032は、時間差測定部 3009 により算出された液体の流量 (実流量)を表す信号を増幅し、増幅後の信号 (実流量 )を比較部 3033に送る。比較部 3033には設定流量(目標値)が予め入力されており 、比較部 3033は、実流量と設定流量とを比較し、実流量を設定流量に一致させるた めのピストン 3021の開度を演算する。比較部 3033により演算されたピストン 3021の 開度はピストン駆動回路 3034により電圧に変換される。そして、この電圧が圧電素 子 3022に印加され、圧電素子 3022によりピストン 3021が駆動される。このようにし て、制御弁 3020を通過する液体の流量が常に一定となるように制御部 3030によつ て制御弁 3020が制御される。 [0382] Next, the control unit 3030 will be described. The control unit 3030 includes an amplifier 3032 connected to the time difference measurement unit 3009, a comparison unit (PID control unit) 3033 that determines the opening of the piston 3021 for keeping the flow rate constant, and a piezoelectric element 3022 of the control valve 3020. And a piston drive circuit 3034 for generating a voltage to be applied to. The amplifier 3032 amplifies the signal representing the liquid flow rate (actual flow rate) calculated by the time difference measurement unit 3009 and sends the amplified signal (actual flow rate) to the comparison unit 3033. The set flow rate (target value) is input in advance to the comparison unit 3033. The comparison unit 3033 compares the actual flow rate with the set flow rate, and determines the opening of the piston 3021 for matching the actual flow rate with the set flow rate. Calculate. The piston 3021 calculated by the comparison unit 3033 The opening is converted into a voltage by the piston drive circuit 3034. This voltage is applied to the piezoelectric element 3022, and the piston 3021 is driven by the piezoelectric element 3022. In this way, the control valve 3020 is controlled by the control unit 3030 so that the flow rate of the liquid passing through the control valve 3020 is always constant.
[0383] 流量測定部 3010の測定結果を制御弁 3020の動作に速やかに反映させるために は、流量測定部 3010と制御弁 3020との間の流路 3001の距離はできるだけ短いこ とが好ましい。すなわち、下流側温度センサ 3004とピストン 3021との距離は、好まし くは 10〜100mm、より好ましくは 10〜50mm、さらに好ましくは 10〜20mmである。 また、制御弁 3020に用いられる駆動源(ァクチユエータ)には圧電素子のような応答 性の優れたものを用いることが好ましい。このようにすることで、流路 3001を流れる流 量の変動 (脈動)を速やかに解消することができ、一定の流量を保つことができる。  [0383] In order to quickly reflect the measurement result of the flow measurement unit 3010 in the operation of the control valve 3020, the distance of the flow path 3001 between the flow measurement unit 3010 and the control valve 3020 is preferably as short as possible. That is, the distance between the downstream temperature sensor 3004 and the piston 3021 is preferably 10 to 100 mm, more preferably 10 to 50 mm, and still more preferably 10 to 20 mm. Further, it is preferable to use a drive source (actuator) used for the control valve 3020 having excellent response such as a piezoelectric element. By doing so, the fluctuation (pulsation) of the flow rate flowing through the flow path 3001 can be quickly eliminated, and a constant flow rate can be maintained.
[0384] この流量調整装置は、 2種類またはそれ以上の液体を反応させる流体反応装置( マイクロリアクタ)に好適に用いられる。一般に、液体を混合させる混合空間が小さい ほど、液体の混合が速やかに行われる。本実施形態に係る流量調整装置の流路 30 01の内径は、好ましくは 0.:!〜 5mmであり、より好ましくは 0.:!〜 2mmであり、さらに 好ましくは 0. 1〜: 1mmである。また、微少量のみを取り扱い範囲とする場合には、最 小径を 0. 02mmまでとすることも可能である。なお、流路の幅(内径)が小さくなると、 液体を高圧で移送することが必要となってくる。本実施形態では、流量調整装置の 出口(制御弁 3020の下流側)における液体の圧力は lMPa〜10MPa、 2MPa〜5 MPa、または 3MPa〜4MPaである。  [0384] This flow control device is suitably used for a fluid reaction device (microreactor) that reacts two or more kinds of liquids. In general, the smaller the mixing space for mixing the liquid, the faster the liquid is mixed. The inner diameter of the flow path 30 01 of the flow control device according to the present embodiment is preferably 0.:! To 5 mm, more preferably 0.:! To 2 mm, and further preferably 0.1 to 1 mm. is there. If only a small amount is to be handled, the minimum diameter can be set to 0.02 mm. In addition, when the width (inner diameter) of the flow path becomes small, it becomes necessary to transfer the liquid at a high pressure. In the present embodiment, the pressure of the liquid at the outlet of the flow rate adjusting device (downstream of the control valve 3020) is lMPa to 10 MPa, 2 MPa to 5 MPa, or 3 MPa to 4 MPa.
[0385] 取り扱う液体としては、試薬、有機溶媒、生化学物質などが挙げられる。したがって 、流路 3001を構成する材料としては、耐食性を有するものであることが好ましい。ま た、上述したように、上流側温度センサ 3003および下流側温度センサ 3004は流路 3001の壁部を介して液体の温度を測定するため、流路 3001を構成する材料は、熱 伝導性に優れ、—40〜: 150°Cの広い温度範囲に耐えるものが好ましい。さらに、流 路 3001を構成する材料は、液体の高圧に耐えうるものであることが好ましい。これら の点を考慮し、流路 3001を構成する材料の好ましい例として、 SUS316または SUS 304などのステンレス鋼、 Ti (チタン)、石英ガラスまたはパイレックス(登録商標)ガラ スなどの硬質ガラス、 PEEK (polyetheretherketone)、 PE (polyethylene)、 PVC (poly vinylchlonde)、 PDMS (polydimethylsiloxane)、 s>i、 PTFE (polytetrafluoroethylene) 、 PCTFE (polychlorotrifluoroethylene)などの樹脂が挙げられる。 [0385] Examples of liquids to be handled include reagents, organic solvents, and biochemical substances. Therefore, the material constituting the flow path 3001 is preferably one having corrosion resistance. In addition, as described above, the upstream temperature sensor 3003 and the downstream temperature sensor 3004 measure the temperature of the liquid through the wall portion of the flow path 3001, so that the material constituting the flow path 3001 is made thermally conductive. Excellent, −40 to: Those which can withstand a wide temperature range of 150 ° C. are preferable. Further, the material constituting the flow path 3001 is preferably one that can withstand the high pressure of the liquid. Considering these points, preferable examples of the material constituting the flow path 3001 include stainless steel such as SUS316 or SUS304, Ti (titanium), quartz glass, or Pyrex (registered trademark) glass. Examples include hard glass such as polyethylene, PEEK (polyetheretherketone), PE (polyethylene), PVC (polyvinylchlonde), PDMS (polydimethylsiloxane), s> i, PTFE (polytetrafluoroethylene), and PCTFE (polychlorotrifluoroethylene).
[0386] ステンレス鋼または Tiを用いる場合は、流路 3001の壁部の肉厚は 0. 01〜0. lm mとすることが好ましぐ PEEK, PTFE, PCTFEなどの樹脂を用いる場合は、流路 3 001の壁部の肉厚は 0. 5〜lmmとすることが好ましレ、。熱伝導性を考えると、熱容 量の小さい Tiを用いることが好ましい。樹脂を用いる場合は、上流側温度センサ 300 3および下流側温度センサ 3004が取り付けられる流路 3001の部位の肉厚を局所的 に薄くして熱伝導率を向上させることが好ましい。 [0386] When stainless steel or Ti is used, the wall thickness of the channel 3001 is preferably 0.01 to 0.1 lm. When using a resin such as PEEK, PTFE, or PCTFE, The wall thickness of the channel 3 001 is preferably 0.5 to lmm. Considering thermal conductivity, it is preferable to use Ti with a small heat capacity. When resin is used, it is preferable to improve the thermal conductivity by locally reducing the thickness of the portion of the channel 3001 to which the upstream temperature sensor 3003 and the downstream temperature sensor 3004 are attached.
[0387] なお、流路 3001を上記材料の中から選択した複数の材料の組み合せから構成し てもよレ、。例えば、流路 3001の接液部に耐食性のある材料を用レ、、その外側に耐圧 性のある材料を重ねてもよい。また、液体の温度を正確に測定するためには、流路 3 001を次のように構成することが好ましい。すなわち、上流側温度センサ 3003および 下流側温度センサ 3004が設けられる部分を熱伝導率の高レ、材料で構成し、上流側 温度センサ 3003と下流側温度センサ 3004との間の部分を熱伝導率の低い材料で 構成する。このような構成によれば、流路 3001が温度測定に与える影響を小さくする ことができ、また、温調機構 3002の熱が流路 3001を伝って下流側温度センサ 3004 の測定値に影響を与えてしまうことを防止することができる。  [0387] The flow path 3001 may be composed of a combination of a plurality of materials selected from the above materials. For example, a material having corrosion resistance may be used for the liquid contact portion of the flow path 3001, and a material having pressure resistance may be stacked on the outside thereof. In addition, in order to accurately measure the temperature of the liquid, it is preferable to configure the flow path 3001 as follows. That is, the portion where the upstream temperature sensor 3003 and the downstream temperature sensor 3004 are provided is made of a material having high thermal conductivity, and the portion between the upstream temperature sensor 3003 and the downstream temperature sensor 3004 is thermally conductive. Consists of low material. According to such a configuration, the influence of the flow path 3001 on the temperature measurement can be reduced, and the heat of the temperature control mechanism 3002 travels through the flow path 3001 and affects the measurement value of the downstream temperature sensor 3004. It can prevent giving.
[0388] 図 44は、温調機構と上流側温度センサの他の構成例を示す断面図である。図 44 に示す例では、 PTFEや PCTFEなどのフッ素樹脂からなるケース本体 3012に孔加 ェが施されて、長手方向に延びる流路 3001が形成されている。また、ケース本体 30 12には、この流路 3001に直交する方向に孔加工が施されて凹部 3012aが形成さ れている。このケース本体 3012の凹部 3012aには、流路 3001を流れる液体を加熱 するための構造体 3013が揷入されている。  FIG. 44 is a cross-sectional view showing another configuration example of the temperature adjustment mechanism and the upstream temperature sensor. In the example shown in FIG. 44, a case body 3012 made of a fluororesin such as PTFE or PCTFE is subjected to hole addition to form a flow path 3001 extending in the longitudinal direction. The case body 3012 is formed with a hole 3012 in a direction perpendicular to the flow path 3001 to form a recess 3012a. In the recess 3012a of the case body 3012, a structure 3013 for heating the liquid flowing in the flow path 3001 is inserted.
[0389] 図 45 (a)は、図 44の VII—VII線断面図である。図 44および図 45 (a)に示すように、 構造体 3013は、流路 3001を構成する断面矩形状あるいは円形状の貫通孔 3013a が先端部に形成された円筒部 3013bと、ケース本体 3012の外側に位置する伝熱部 3013cとを備えている。伝熱部 3013cは、貫通孔 3013aが形成された端部とは反対 側の端部に設けられている。なお、図 45 (a)に示す例では、銅製の伝熱部 3013cの 外側を耐薬品性のあるチタン製の円筒部 3013bで覆っている力 円筒部 3013bと伝 熱部 3013cとを同一の材料により一体に形成してもよい。 FIG. 45 (a) is a sectional view taken along line VII-VII in FIG. As shown in FIGS. 44 and 45 (a), the structure 3013 includes a cylindrical portion 3013b in which a through-hole 3013a having a rectangular or circular cross section constituting the flow path 3001 is formed at the tip, and a case body 3012. And a heat transfer portion 3013c located outside. Heat transfer part 3013c is opposite to the end where through hole 3013a is formed It is provided at the end of the side. In the example shown in Fig. 45 (a), the force that covers the outside of the copper heat transfer section 3013c with the cylindrical section 3013b made of chemical-resistant titanium The same material for the cylindrical section 3013b and the heat transfer section 3013c May be formed integrally.
[0390] 円筒部 3013bは、例えば PEEKなどの断熱性を有する材料からなる固定プレート 3 014をボノレト 3015でケース本体 3012に固定することによりケース本体 3012に固定 される。また、ケース本体 3012と円筒咅 B3013bとの間には、シーノレ咅 才 3016力 S酉己 置されており、このシール部材 3016により液体の漏洩が防止されている。  [0390] The cylindrical portion 3013b is fixed to the case main body 3012 by fixing a fixing plate 3014 made of a heat-insulating material such as PEEK to the case main body 3012 with a Bonoleto 3015. Further, between the case main body 3012 and the cylindrical shell B3013b, a paper tray 3016 force S is placed, and the seal member 3016 prevents liquid leakage.
[0391] 構造体 3013の伝熱部 3013cにはヒータやペルチヱ素子などの温調部材 3017が 取り付けられており、伝熱部 3013cを介して温調部材 3017からの熱が円筒部 3013 bに伝えられるようになつている。したがって、温調部材 3017からの熱は、銅製の伝 熱部 3013cを伝わり、チタン製の円筒部 3013bを経て貫通孔 3013aを通過する液 体に伝達される。このように、流路 3001を流れる液体は、構造体 3013の貫通孔 301 3aを通過することにより加熱される。なお、銅製の伝熱部 3013cや温調部材 3017が 直接液体に接触することはない。なお、温調部材 3017にペルチヱ素子などを用いて 液体を冷却する場合には、熱の流れは上述のものと逆となる。  [0391] A temperature control member 3017 such as a heater or a Peltier element is attached to the heat transfer section 3013c of the structure 3013, and heat from the temperature control member 3017 is transferred to the cylindrical section 3013b via the heat transfer section 3013c. It is becoming possible. Therefore, the heat from the temperature adjustment member 3017 is transmitted through the copper heat transfer section 3013c, and is transmitted to the liquid passing through the through hole 3013a through the titanium cylindrical section 3013b. Thus, the liquid flowing through the flow path 3001 is heated by passing through the through hole 3013a of the structure 3013. Note that the copper heat transfer section 3013c and the temperature adjustment member 3017 do not come into direct contact with the liquid. When the liquid is cooled using a Peltier element or the like for the temperature adjustment member 3017, the heat flow is opposite to that described above.
[0392] 図 45 (b)は、上述した構造体の他の構成例を示す断面図である。チタンは耐薬品 性があるものの、熱伝導率は銅よりも悪いため、図 45 (b)に示す例では、構造体 301 3の円筒部 3013bと伝熱部 3013cを銅材で一体に形成している。また、貫通孔 301 3aは断面が円形などとなるように形成されている。貫通孔 3013aの内面および円筒 部 3013bの外面など液体に曝される部分には、耐薬品性を有する材料によってめつ き処理がなされている。めっき処理のなされた円筒部 3013bとケース本体との間には 、液体の漏洩を防止するためのシール部材が配置される。このような構成により、温 調部材からの熱が、より効率よく貫通孔 3013aを流れる液体に伝達される。  FIG. 45 (b) is a cross-sectional view showing another configuration example of the structure described above. Although titanium is chemically resistant, its thermal conductivity is worse than copper. Therefore, in the example shown in Fig. 45 (b), the cylindrical part 3013b and the heat transfer part 3013c of the structure 3013 are integrally formed of copper. ing. Further, the through hole 3013a is formed so that the cross section is circular or the like. The parts exposed to the liquid, such as the inner surface of the through hole 3013a and the outer surface of the cylindrical portion 3013b, are treated with a chemical resistant material. A seal member for preventing leakage of liquid is disposed between the cylindrical portion 3013b subjected to the plating process and the case body. With such a configuration, the heat from the temperature control member is more efficiently transmitted to the liquid flowing through the through hole 3013a.
[0393] 図 44に示すように、上流側温度センサ 3003は、流路 3001に直交する方向に形成 された孔 3012bに揷入されており、チタンなどの耐薬品性を有する金属からなるセン サホノレタ、、 3003aと、流路 3001に近レヽ位置までセンサホノレダ 3003aの内咅 こ挿人さ れたサ一ミスタ 3003bとを備えてレ、る。センサホルダ 3003aの先端には、加熱部の構 造体 3013と同様に流路 3001を構成する貫通孔を設けてもよレ、。センサホルダ 300 3aの先端は流路 3001中の液体に接触するようになっている力 サーミスタ 3003bは 、流路 3001を流れる液体には直接接触しないようになっている。このサーミスタ 300 3bによって流路 3001を流れる液の温度を検出することができる。センサホルダ 300 3afま、ボノレト 3018 ίこよりケース本体 3012(こ固定されてレヽる。また、ケース本体 3012 とセンサホノレダ 3003aとの間には、シール部材 3019が配置されており、このシール 部材 3019により液体の漏洩が防止されている。なお、温調部材 3017にペルチェ素 子などを用いて液体を冷却する場合には、熱の流れは上述のものと逆となる。 [0393] As shown in FIG. 44, the upstream temperature sensor 3003 is inserted into a hole 3012b formed in a direction perpendicular to the flow path 3001, and is made of a sensor phone that is made of a metal having chemical resistance such as titanium. 3003a and a thermistor 3003b inserted into the flow path 3001 to the position close to the position of the sensor Honoroda 3003a. At the tip of the sensor holder 3003a, a through-hole constituting the flow path 3001 may be provided in the same manner as the structure 3013 of the heating unit. Sensor holder 300 The force thermistor 3003b is configured so that the tip of 3a is in contact with the liquid in the flow path 3001. The thermistor 3003b is not in direct contact with the liquid flowing in the flow path 3001. The thermistor 300 3b can detect the temperature of the liquid flowing through the flow path 3001. Sensor holder 300 3af, Bonoleto 3018 ίCase body 3012 (This is fixed and fastened. In addition, a seal member 3019 is arranged between the case body 3012 and the sensor holder 3003a. Note that when the liquid is cooled by using a Peltier element or the like for the temperature adjustment member 3017, the heat flow is opposite to that described above.
[0394] なお、上述の例では、センサホルダ 3003aをチタンなどの耐薬品性を有する金属 から形成した例を説明したが、センサホルダ 3003aを伝熱性のよい銅により形成し、 液体に接触する部分には耐薬品性を有する材料によってめつき処理をしてもょレ、。こ のような構成とすれば、流路 3001を流れる液体の温度を効率よく検出することが可 能となる。また、図 44では、上流側温度センサ 3003についてのみ述べた力 図 44 に示す構造は、下流側温度センサ 3004にも適用できることは言うまでもない。  [0394] In the above example, the sensor holder 3003a is formed from a metal having chemical resistance such as titanium. However, the sensor holder 3003a is formed of copper having good heat conductivity and is in contact with the liquid. For squeezing, use chemical resistant materials. With such a configuration, the temperature of the liquid flowing through the flow path 3001 can be detected efficiently. 44, the force described only for the upstream temperature sensor 3003 can be applied to the downstream temperature sensor 3004.
[0395] 図 46は制御弁の他の構成例を示す拡大図である。上述したように、ピストン 3021 を駆動する駆動源には高圧の液体に抗してピストン 3021を駆動させることが要求さ れる。図 46に示す構成例では、駆動力を増すために、 2つの圧電素子 3022を積層 させている。このような構成により、液体が高圧の場合であっても、ピストン 3021の開 度 αを正確に調整することができ、流量を一定に保つことができる。なお、必要に応 じて 3つ以上の圧電素子を積層させてもよい。  FIG. 46 is an enlarged view showing another configuration example of the control valve. As described above, the drive source that drives the piston 3021 is required to drive the piston 3021 against high-pressure liquid. In the configuration example shown in FIG. 46, two piezoelectric elements 3022 are stacked in order to increase the driving force. With such a configuration, even when the liquid is at a high pressure, the opening α of the piston 3021 can be accurately adjusted, and the flow rate can be kept constant. If necessary, three or more piezoelectric elements may be laminated.
[0396] 次に、本発明の第 2の実施形態について図 47を参照して説明する。図 47は本発 明の第 2の実施形態に係る流量調整装置を示す模式図である。なお、特に説明しな い本実施形態の構成は、上述した第 1の実施形態の構成と同じであるので、その重 複する説明を省略する。  [0396] Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 47 is a schematic diagram showing a flow rate adjusting device according to a second embodiment of the present invention. Note that the configuration of the present embodiment that is not particularly described is the same as the configuration of the first embodiment described above, and thus the overlapping description is omitted.
[0397] 既に述べたように、流量測定部 3010は、液体の温度変化を利用して流量を求める ため、周囲雰囲気の温度が変化すると、正確な流量を求めることができなくなる。そこ で、本実施形態では、液体の温度を安定的に測定するために、環境温度制御機構 3 011を流量測定部 3010に配置している。この環境温度制御機構 3011は、上流側 温度センサ 3003および下流側温度センサ 3004を気密に収容する隔壁 3011aと、 隔壁 301 laの内部空間の温度を調整するペルチェ素子などの温調器 301 lbと、隔 壁 301 laの内部空間の温度を測定する温度センサ 3011cと、温度センサ 3011cか らの信号(内部空間の実温度)に基づいて温調器 3011bを制御する温度制御器 30 l idを備えている。なお、温度制御器 301 Idとして、上述した温度制御部 3005を用 いてもよい。 [0397] As already described, the flow rate measurement unit 3010 obtains the flow rate using the temperature change of the liquid, and therefore cannot accurately obtain the flow rate when the ambient temperature changes. Therefore, in the present embodiment, the environmental temperature control mechanism 3011 is disposed in the flow rate measurement unit 3010 in order to stably measure the temperature of the liquid. The environmental temperature control mechanism 3011 includes an upstream temperature sensor 3003 and a downstream temperature sensor 3004 that are airtightly housed in a partition wall 3011a. Temperature controller 301 lb such as a Peltier element that adjusts the temperature of the internal space of the partition wall 301 la, a temperature sensor 3011c that measures the temperature of the internal space of the partition wall 301 la, and a signal from the temperature sensor 3011c (the internal space A temperature controller 30 id for controlling the temperature controller 3011b based on the actual temperature). Note that the temperature controller 3005 described above may be used as the temperature controller 301 Id.
[0398] 隔壁 301 laは断熱材力も構成されている。温調器 301 lbは温度制御器 301 Idに 接続されており、内部空間の温度を一定に保つように温度制御器 3011dによって制 御される。このように構成された環境温度制御機構 3011によれば、上流側温度セン サ 3003 (すなわち第 1の測定点 P1)、下流側温度センサ 3004 (第 2の測定点 P2)、 およびその間に位置する流路 3001の部位の周囲の温度を一定に保つことができ、 熱的外乱を遮断することができる。したがって、時間差測定部 3009は正確な流量測 定を行うことができ、結果として、高い精度で流量を一定に保つことができる。  [0398] The partition wall 301 la also has a heat insulating material force. The temperature controller 301 lb is connected to the temperature controller 301 Id and is controlled by the temperature controller 3011d so as to keep the temperature of the internal space constant. According to the environmental temperature control mechanism 3011 configured as described above, the upstream temperature sensor 3003 (that is, the first measurement point P1), the downstream temperature sensor 3004 (the second measurement point P2), and the position between them. The temperature around the part of the channel 3001 can be kept constant, and the thermal disturbance can be blocked. Therefore, the time difference measuring unit 3009 can accurately measure the flow rate, and as a result, the flow rate can be kept constant with high accuracy.
[0399] 次に、本発明の第 3の実施形態について図 48を参照して説明する。図 48は本発 明の第 3の実施形態に係る流量調整装置を示す模式図である。なお、特に説明しな い本実施形態の構成は、上述した第 1の実施形態の構成と同じであるので、その重 複する説明を省略する。  Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 48 is a schematic diagram showing a flow rate adjusting device according to a third embodiment of the present invention. Note that the configuration of the present embodiment that is not particularly described is the same as the configuration of the first embodiment described above, and thus the overlapping description is omitted.
[0400] 図 48に示すように、本実施形態では、上流側温度センサ 3003が省かれており、時 間差測定部 3009は温調機構 3002および下流側温度センサ 3004に接続されてい る。本実施形態では、第 1の測定点 P1は温調機構 3002の位置となる。  As shown in FIG. 48, in this embodiment, the upstream temperature sensor 3003 is omitted, and the time difference measuring unit 3009 is connected to the temperature adjustment mechanism 3002 and the downstream temperature sensor 3004. In the present embodiment, the first measurement point P1 is the position of the temperature adjustment mechanism 3002.
[0401] ここで、本実施形態の流量測定部 3010により流量が測定される原理について図 4 9を参照して説明する。流路 3001を流れる液体は温調機構 3002により加熱され、加 熱開始時刻 tlが時間差測定部 3009に記録される。このとき、温調機構 3002 (すな わち第 1の測定点 P1)では、液体の温度は温度カーブ T3で示すように所定の変化 率で上昇する。加熱された液体は流路 3001を流れ、やがて第 2の測定点 P2を通過 する。このとき、下流側温度センサ 3004により温度カーブ C3が検出される。そして、 時間差測定部 3009により、温度カーブ T3の立ち上がり時点 tlと温度カーブ C3の 立ち上がり時点 t2との時間差 A tが求められ、上述した式により液体の流量が算出さ れる。なお、図 42を参照して説明した例と同様に、 2つの温度カーブのピークが現れ る時間差を測定してもよい。 [0401] Here, the principle by which the flow rate is measured by the flow rate measurement unit 3010 of the present embodiment will be described with reference to FIG. The liquid flowing through the channel 3001 is heated by the temperature adjustment mechanism 3002, and the heating start time tl is recorded in the time difference measuring unit 3009. At this time, in the temperature adjustment mechanism 3002 (that is, the first measurement point P1), the temperature of the liquid rises at a predetermined rate of change as indicated by the temperature curve T3. The heated liquid flows through the flow path 3001, and eventually passes through the second measurement point P2. At this time, the temperature curve C3 is detected by the downstream temperature sensor 3004. Then, the time difference measuring unit 3009 obtains the time difference At between the rise time tl of the temperature curve T3 and the rise time t2 of the temperature curve C3, and the liquid flow rate is calculated by the above-described equation. As with the example described with reference to FIG. 42, two temperature curve peaks appear. The time difference may be measured.
[0402] 図 48に示すように、本実施形態の制御弁 3020では、ピストン 3021に代えて円柱 状のスプール 3024が用いられている。このスプール 3024は流路 3001の丁字路に 配置されており、その先端は流路 3001に摺動可能に嵌め込まれている。スプール 3 024の端部には磁性体(例えば鉄心) 3025が取り付けられており、磁性体 3025の 周囲には電磁石 3026が配置されている。電磁石 3026と流路 3001との間にはシー ル部材 3027が配置されており、このシール部材 3027により液体の漏洩が防止され ている。磁性体 3025は電磁石 3026により形成された電磁力により駆動され、これに よりスプール 3024がその軸方向に沿って移動する。なお、このような構成を有する制 御弁 3020は、ソレノイドバルブ(電磁弁)と呼ばれている。  As shown in FIG. 48, in the control valve 3020 of this embodiment, a cylindrical spool 3024 is used instead of the piston 3021. The spool 3024 is disposed in the clog path of the flow path 3001, and the tip of the spool 3024 is slidably fitted in the flow path 3001. A magnetic body (for example, an iron core) 3025 is attached to the end of the spool 3 024, and an electromagnet 3026 is disposed around the magnetic body 3025. A seal member 3027 is disposed between the electromagnet 3026 and the flow path 3001, and the seal member 3027 prevents liquid leakage. The magnetic body 3025 is driven by the electromagnetic force formed by the electromagnet 3026, whereby the spool 3024 moves along its axial direction. The control valve 3020 having such a configuration is called a solenoid valve (solenoid valve).
[0403] 図 50は図 48に示すスプールの斜視図である。図 50に示すように、スプーノレ 3024 の側面には、斜めに延びる溝 3024aが形成されている。溝 3024aは三角形状の断 面を有しており、その断面の大きさは軸方向位置に応じて変化する。すなわち、溝 30 24aの断面はスプール 3024の先端において最も大きぐ断面位置が反対側端部に 向力うにしたがって徐々に小さくなる。液体はこの溝 3024aを通って流れるので、ス プール 3024を軸方向に移動させることにより流量を調整することができる。この場合 、スプール(弁) 3024の開度 αは、流路 3001から突出した溝 3024aの長さによって 表すことができる。  FIG. 50 is a perspective view of the spool shown in FIG. As shown in FIG. 50, an obliquely extending groove 3024a is formed on the side surface of the spunole 3024. The groove 3024a has a triangular cross-section, and the size of the cross section changes according to the axial position. That is, the cross section of the groove 3024a gradually decreases as the largest cross sectional position at the tip of the spool 3024 is directed to the opposite end. Since the liquid flows through the groove 3024a, the flow rate can be adjusted by moving the spool 3024 in the axial direction. In this case, the opening degree α of the spool (valve) 3024 can be expressed by the length of the groove 3024a protruding from the flow path 3001.
[0404] 本実施形態の制御部 3030は、ピストン駆動回路に代えて、スプール駆動回路 303 5を備えている。このスプール駆動回路 3035は、比較部 3033により演算されたスプ ール 3024の開度を電流に変換し、この電流が電磁石 3026に供給されることでスプ ール 3024が移動する。このようにして、制御弁 3020を通過する液体の流量が常に 一定となるように制御部 3030によって制御弁 3020が制御される。なお、液体が高圧 であっても正確に流量を一定とするために、大きな電磁力を発生させることができる 電磁石を用いることが好ましい。  [0404] The control unit 3030 of this embodiment includes a spool drive circuit 3035 instead of the piston drive circuit. The spool drive circuit 3035 converts the opening degree of the spool 3024 calculated by the comparison unit 3033 into a current, and the current is supplied to the electromagnet 3026 so that the spool 3024 moves. In this way, the control valve 3020 is controlled by the control unit 3030 so that the flow rate of the liquid passing through the control valve 3020 is always constant. Note that it is preferable to use an electromagnet that can generate a large electromagnetic force in order to accurately maintain a constant flow rate even when the liquid is high pressure.
[0405] 次に、本発明の第 4の実施形態について図 51を参照して説明する。図 51は本発 明の第 4の実施形態に係る流量調整装置を示す模式図である。なお、特に説明しな い本実施形態の構成は、上述した第 1の実施形態の構成と同じであるので、その重 複する説明を省略する。 Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 51 is a schematic diagram showing a flow rate adjusting device according to a fourth embodiment of the present invention. The configuration of the present embodiment that is not particularly described is the same as the configuration of the first embodiment described above, so A duplicate description is omitted.
[0406] 図 51に示すように、本実施形態の制御弁 3020は、ピストン 3021に代えて逆三角 錐形状のポペット 3041を備えている。このポペット 3041は、流路 3001の T字路に位 置しており、その先端が液体の流れに対向するように配置されている。ポペット 3041 にはシャフト 3042がー体的に固定されており、このシャフト 3042は有底円筒状のシ ャフトガイド 3043に嵌合されている。シャフトガイド 3043の外周面には歯車 3044が 設けられており、この歯車 3044は、サーボモータ 3045に連結された歯車 3046と嚙 み合っている。シャフト 3042は、キーやキー溝などの回転防止機構(図示せず)によ り回転しなレヽよう (こ構成されてレヽる。なお、ポペット 3041、シャフト 3042、およびシャ フトガイド 3043とは同軸上に整列されている。  As shown in FIG. 51, the control valve 3020 of this embodiment includes an inverted triangular pyramid-shaped poppet 3041 instead of the piston 3021. The poppet 3041 is positioned on the T-shaped path of the flow path 3001, and is arranged so that the tip thereof faces the liquid flow. A shaft 3042 is fixed to the poppet 3041, and the shaft 3042 is fitted to a bottomed cylindrical shaft guide 3043. A gear 3044 is provided on the outer peripheral surface of the shaft guide 3043, and this gear 3044 meshes with a gear 3046 connected to a servo motor 3045. The shaft 3042 is not rotated by a rotation prevention mechanism (not shown) such as a key or a key groove (this is configured and laid down. Note that the poppet 3041, the shaft 3042, and the shaft guide 3043 are coaxial. Are aligned.
[0407] シャフトガイド 3043と流路 3001との間にはシーノレ部材 3047力 S配置されており、液 体が流路 3001から漏洩してしまうことが防止されている。シャフト 3042の外周面に は雄ねじ 3042aが形成され、シャフトガイド 3043の内周面には、雄ねじ 3042aに嚙 み合う雌ねじ(図示せず)が形成されている。このような構成により、サーボモータ 304 5によりシャフトガイド 3043を回転させると、ポペット 3041が T字路の開口部に対して 垂直方向に移動し、これによりポペット(弁) 3041の開度 αが調整される。なお、サー ボモータの代わりにステッピングモータを使用してもよい。  A sheath member 3047 force S is arranged between the shaft guide 3043 and the flow path 3001 to prevent the liquid from leaking from the flow path 3001. A male screw 3042a is formed on the outer peripheral surface of the shaft 3042, and a female screw (not shown) that fits the male screw 3042a is formed on the inner peripheral surface of the shaft guide 3043. With this configuration, when the shaft guide 3043 is rotated by the servo motor 3045, the poppet 3041 moves in the vertical direction with respect to the opening of the T-junction, thereby adjusting the opening α of the poppet (valve) 3041. Is done. A stepping motor may be used instead of the servo motor.
[0408] 本実施形態の制御部 3030は、ピストン駆動回路に代えて、ポペット駆動回路 304 8を備えている。このポペット駆動回路 3048は、比較部 3033により演算されたポぺッ ト 3041の開度を電流に変換し、この電流がサーボモータ 3045に供給されることでポ ペット 3041が移動する。このようにして、第 1の実施形態と同様に、制御弁 3020を通 過する液体の流量が常に一定となるように制御部 3030によって制御弁 3020が制御 される。なお、液体が高圧であっても正確に流量を一定とするために、大きなトルクを 発生させることができるサーボモータまたはステッピングモータを用いることが好まし レ、。  [0408] The control unit 3030 of the present embodiment includes a poppet drive circuit 3048 instead of the piston drive circuit. The poppet drive circuit 3048 converts the opening of the poppet 3041 calculated by the comparison unit 3033 into a current, and the current is supplied to the servo motor 3045 so that the poppet 3041 moves. In this manner, similarly to the first embodiment, the control valve 3020 is controlled by the control unit 3030 so that the flow rate of the liquid passing through the control valve 3020 is always constant. Note that it is preferable to use a servo motor or stepping motor that can generate a large torque in order to accurately maintain a constant flow rate even when the liquid is high pressure.
[0409] なお、上述した実施形態は、必要に応じて組み合わせることができる。例えば、第 2 の実施形態に係る環境温度制御機構 3011を第 3および第 4の実施形態に組み込ん でもよい。また、上述した実施形態に係る流量調整装置は、液体のみならず気体の 流量を測定し、かつ制御することもできる。 [0409] The above-described embodiments can be combined as necessary. For example, the environmental temperature control mechanism 3011 according to the second embodiment may be incorporated in the third and fourth embodiments. Moreover, the flow control device according to the above-described embodiment is not only liquid but also gas. The flow rate can also be measured and controlled.
[0410] 次に、上述した本発明の一実施形態に係る流量調整装置を組み込んだ流体反応 装置(マイクロリアクタ)について説明する。図 52乃至図 54 (b)は本発明の一実施形 態に係る流量調整装置を組み込んだ流体反応装置の全体構成を示す図である。な お、以下に述べる流体反応装置は、 2種類またはそれ以上の液体を混合し、反応さ せるために用いられる装置である。  [0410] Next, a fluid reaction device (microreactor) incorporating the above-described flow rate control device according to an embodiment of the present invention will be described. FIG. 52 to FIG. 54 (b) are diagrams showing an entire configuration of a fluid reaction device incorporating a flow rate adjusting device according to an embodiment of the present invention. The fluid reaction device described below is a device used to mix and react two or more liquids.
[0411] 図 52,図 53,図 54 (a) ,および図 54 (b)に示すように、流体反応装置は、全体が 1 つの設置スペースに設置されてパッケージィ匕されている。この構成例では、この設置 スペースは長方形であり、長手方向に沿って 4つの領域に区画される。すなわち、一 端側の第 1の領域は、原料液を貯留する複数の貯留容器 3110 (図 52では 2つの貯 留容器 3110A, 3110Bのみを示す)が設置された原料貯留部 3101であり、それに 隣接する第 2の領域は、貯留容器 3110の原料液を移送するポンプ 3116A, 3116B などが設置された配液部 3102となっている。第 2の領域に隣接する第 3の領域は、 原料液を混同させる混合部(混合チップ) 3140および混合された原料液を反応させ る反応部(反応チップ) 3142を有する処理部 3103となっている。他端側の第 4の領 域は、処理の結果得られた生成物を導出して貯留する生成物貯留部(回収容器設 置スペース) 3104である。  [0411] As shown in FIG. 52, FIG. 53, FIG. 54 (a), and FIG. 54 (b), the fluid reaction apparatus is entirely installed in one installation space and packaged. In this configuration example, the installation space is rectangular and is divided into four areas along the longitudinal direction. That is, the first region on the one end side is a raw material storage section 3101 in which a plurality of storage containers 3110 (only two storage containers 3110A and 3110B are shown in FIG. 52) for storing the raw material liquid are installed. The adjacent second region is a liquid distribution unit 3102 in which pumps 3116A and 3116B for transferring the raw material liquid in the storage container 3110 are installed. The third region adjacent to the second region is a processing unit 3103 having a mixing unit (mixing chip) 3140 for mixing the raw material liquid and a reaction unit (reaction chip) 3142 for reacting the mixed raw material liquid. Yes. The fourth region on the other end side is a product storage unit (collection container installation space) 3104 for deriving and storing the product obtained as a result of the processing.
[0412] また、この流体反応装置は、各部の動作の制御を行うコンピュータである動作制御 部 3106と、温度調整ケース 3146に熱媒体を流して処理部 3103の温度調整を行う 熱媒体コントローラ 3107を備えている。また、動作制御部 3106には、図 52に示すよ うに、液体の流量と温度をモニタできる流量モニタ 3270および温度モニタ 3272が搭 載されている。なお、この構成例では、動作制御部 3106と熱媒体コントローラ 3107 は流体反応装置と別置きになっているが、勿論一体でも良い。図 53に示すように、第 2〜第 4の領域の床下部分には配管室 3105が形成され、ここには混合部 3140およ び反応部 3142へ加熱又は冷却用の熱媒体を送るための配管が設けられている。  [0412] The fluid reaction apparatus further includes an operation control unit 3106, which is a computer that controls the operation of each unit, and a heat medium controller 3107 that adjusts the temperature of the processing unit 3103 by flowing a heat medium through the temperature adjustment case 3146. I have. Further, as shown in FIG. 52, the operation control unit 3106 is equipped with a flow rate monitor 3270 and a temperature monitor 3272 that can monitor the flow rate and temperature of the liquid. In this configuration example, the operation control unit 3106 and the heat medium controller 3107 are provided separately from the fluid reaction device, but may of course be integrated. As shown in FIG. 53, a piping chamber 3105 is formed in the lower floor portion of the second to fourth areas, where a heating medium for heating or cooling is sent to the mixing section 3140 and the reaction section 3142. Piping is provided.
[0413] このように、上流側から下流側へと各部を配置することによって液体の流れを円滑 にし、かつ装置全体をコンパクトにまとめることができる。この構成例では、各部の配 列を直線状にしたが、例えば、全体が正方形に近レ、スペースであれば、各部を液体 の流れがループを形成するように構成してもよレ、。 [0413] In this way, by arranging the respective parts from the upstream side to the downstream side, the flow of the liquid can be made smooth, and the entire apparatus can be made compact. In this configuration example, the arrangement of each part is linear, but for example, if the whole is close to a square and space, each part is liquid. It may be configured so that the current flow forms a loop.
[0414] 図 53において、符号 3250は装置下部に設けられた液溜めパンであり、符号 3252 は液溜めパン 3250上に設置された漏液センサを示す。またこの装置例では、配液 部 3102、処理部 3103、生成物貝宁留部 3104は隔壁 3254, 3256により区画されて おり、各部にはカバー 3258, 3260, 3262が取り付けられて装置外部とこれらを隔 離している。符号 3264は排気ポートであり、図示しない排気ファンに接続されている 。そして、装置内の圧力を装置外より負とすることで装置内の有毒ガスが外部に漏出 することを防いでいる。  In FIG. 53, reference numeral 3250 denotes a liquid reservoir pan provided in the lower part of the apparatus, and reference numeral 3252 denotes a liquid leakage sensor installed on the liquid reservoir pan 3250. In this example of the apparatus, the liquid distribution unit 3102, the processing unit 3103, and the product shell retention unit 3104 are partitioned by partition walls 3254 and 3256, and covers 3258, 3260, and 3262 are attached to the respective parts, and these parts are connected to the outside of the apparatus. Are separated. Reference numeral 3264 denotes an exhaust port, which is connected to an exhaust fan (not shown). And by making the pressure inside the device negative from outside the device, toxic gas inside the device is prevented from leaking outside.
[0415] 図 52に示す原料貯留部 3101には、 2つの貯留容器 3110A, 3110Bが設置され ているが、必要に応じて 3つまたはそれ以上の貯留容器を使用してもよい。例えば、 同じ液体を 2つの貯留容器に収容し、これらを交互に切り換えて用いることにより、処 理を継続的に行うことができる。なお、原料貯留部 3101に、ライン洗浄用のアセトン などの有機溶剤、塩酸、純水などが入った洗浄液容器 3112や、パージ用の窒素ガ スが封入された圧力源 3114を設けてもよい。また、廃液容器 3136を原料貯留部 31 01に置いてもよい。  [0415] In the raw material storage unit 3101 shown in Fig. 52, two storage containers 3110A and 3110B are installed. However, three or more storage containers may be used as necessary. For example, by storing the same liquid in two storage containers and using them alternately, the processing can be performed continuously. Note that the raw material storage unit 3101 may be provided with a cleaning liquid container 3112 containing an organic solvent such as acetone for line cleaning, hydrochloric acid, pure water, or the like, or a pressure source 3114 filled with a purge nitrogen gas. Further, the waste liquid container 3136 may be placed in the raw material reservoir 3101.
[0416] 酉己 ί夜部(導入部) 3102には、貝宁留容器 3110A, 3110Bに輸送管 3121A, 3121 Βを介して接続されたポンプ 3116A, 3116Bが設置されている。図 52におけるボン プ 3116A, 3116Bには遠心式ポンプが使用されている。また、配液部 3102は、ポ ンプ 3116A, 3116Bの下流ィ則に酉己置された流量調整装置 3300Α, 3300Β、ジジ一 フ弁 3122A, 3122B、圧力測定センサ 3124A, 3124B、流路切換弁 3126A, 31 26Β、および逆洗ポンプ 3130を有してレヽる。流路切換弁 3126A, 3126Bま、輸送 管 3121A, 3121Bの他に、洗浄液容器 3112や、圧力源 3114にそれぞれ接続され ている。逆洗ポンプ 3130は、混合部 3140や反応部 3142の流路内が生成物によつ て閉塞した場合に用いられる。逆洗ポンプ 3130は洗浄液を貯留する洗浄液容器 31 12に接続され、さらに流路切換弁 3132を介して反応部 3142の出口に接続される。 逆洗ポンプ 3130により移送される洗浄液は通常の流れと逆に流れる。すなわち、洗 浄液は、反応部 3142の出口力も混合部 3140の入口に向かって流れ、流路切換弁 3126A, 3126Bを経て廃液口 3134から図示しない配管を通って廃液貯留容器 31 36に入れられる。 [0416] In the night section (introduction section) 3102, pumps 3116A and 3116B connected to the shell container 3110A and 3110B via transport pipes 3121A and 3121 are installed. Centrifugal pumps are used for pumps 3116A and 3116B in FIG. In addition, the liquid distribution unit 3102 has a flow rate adjustment device 3300Α, 3300Β, a jizi valve 3122A, 3122B, a pressure measurement sensor 3124A, 3124B, a flow path switching valve 3126A. , 31 26mm, and backwash pump 3130. In addition to the flow path switching valves 3126A and 3126B, the transport pipes 3121A and 3121B are connected to a cleaning liquid container 3112 and a pressure source 3114, respectively. The backwash pump 3130 is used when the flow path of the mixing unit 3140 or the reaction unit 3142 is blocked by a product. The backwash pump 3130 is connected to a cleaning liquid container 3112 that stores the cleaning liquid, and is further connected to an outlet of the reaction unit 3142 via a flow path switching valve 3132. The cleaning liquid transferred by the backwash pump 3130 flows in the reverse direction of the normal flow. That is, the cleaning liquid also flows toward the inlet of the mixing unit 3140 with the outlet force of the reaction unit 3142, passes through the flow path switching valves 3126A and 3126B, and passes through a pipe not shown from the waste liquid port 3134 to the waste liquid storage container 31. Put in 36.
[0417] 逆洗ポンプ 3130は吐出圧力が高ぐ洗浄液に脈動を起こさせて生成物を除去す ることが可能なように 1本ピストン型のポンプが好ましい。洗浄液としては、有機溶剤、 塩酸、硝酸、りん酸、有機酸、純水などが好適に用いられる。有機溶剤の例としては 、アセトン、エタノール、メタノールなどが挙げられる。図 52に示す導入口 3240は、 外部から純水や水素水を導入する場合に設けられたもので、洗浄液容器 3112内の 洗浄液の代わりに洗浄に使用できる。  [0417] The backwash pump 3130 is preferably a single-piston pump so that the washing liquid with high discharge pressure can cause pulsation to remove the product. As the cleaning liquid, an organic solvent, hydrochloric acid, nitric acid, phosphoric acid, organic acid, pure water or the like is preferably used. Examples of the organic solvent include acetone, ethanol, methanol and the like. The introduction port 3240 shown in FIG. 52 is provided when pure water or hydrogen water is introduced from the outside, and can be used for cleaning instead of the cleaning liquid in the cleaning liquid container 3112.
[0418] 図 55は、原料液の予備加熱 (予備温度調整)と混合を行うための混合部 3140を示 すもので、 3枚の薄板状の基材である上板 3144a、中板 3144b、下板 3144cが接合 されて全厚さ 5mmの混合部 3140が形成されている。なお、以下に説明する流路は いずれも中板 3144bの表面に形成された溝である。上板 3144aを貫通して形成され た 2つの流入ポート 3147A, 3147Bは、中板 3144bの上面に形成されたそれぞれ 2 つの予備加熱流路 3148A, 3148Bに連通する。これらの予備加熱流路 3148A, 3 148Bはそれぞれ途中で分岐しかつそれぞれ拡大し、再度合流する。さらに、予備加 熱流路 3148A, 3148Bはそれぞれ出口流路 3150A, 3150Bに連通し、これらの出 ロ流路 3150A, 3150Bま合流咅 3152に通じてレヽる。出口流路 3150Αίま、中板 31 44bの上面に、出口流路 3150Bは中板 3144bの下面に形成されている。  [0418] Fig. 55 shows a mixing unit 3140 for preheating (preliminary temperature adjustment) and mixing of the raw material liquid. The upper plate 3144a, the middle plate 3144b, which are three thin plate-like substrates, The lower plate 3144c is joined to form a mixed portion 3140 having a total thickness of 5 mm. Note that the flow paths described below are all grooves formed on the surface of the intermediate plate 3144b. The two inflow ports 3147A and 3147B formed through the upper plate 3144a communicate with the two preheating channels 3148A and 3148B formed on the upper surface of the middle plate 3144b, respectively. These preheating flow paths 3148A and 3148B each branch in the middle and expand, and merge again. Further, the preliminary heating channels 3148A and 3148B communicate with the outlet channels 3150A and 3150B, respectively, and are connected to the outlet channels 3150A and 3150B through the junction 3152. The outlet channel 3150B is formed on the upper surface of the intermediate plate 31 44b, and the outlet channel 3150B is formed on the lower surface of the intermediate plate 3144b.
[0419] 図 56は図 55に示す合流部の拡大図である。図 56に示すように、合流部 3152は、 出口流路 3150A, 3150Bに通じる円弧状の溝として中板 3144bの上下面にそれぞ れ形成されたヘッダ咅 154, 3155と、このヘッダ咅 B3154, 3155力ら円弧の中心に 向力つて延びる複数の分 ί夜流路 3156, 3157と、これらの分夜流路 3156, 3157力 S 合流する合流空間 3158とを有している。分液流路 3156, 3157と合流空間 3158は 中板 3144bの上面に形成され、分液流路 3156, 3157は交互に配置されている。下 面側のヘッダ部 3155と分液流路 3157とは、中板 3144bを貫通する連絡孔 3157a により連通している。合流空間 3158は、下流側に向けて幅が徐々に小さくなるように 形成され、中板 3144bおよび下板 3144cを貫通して形成された流出ポート 3160に 連通している。  FIG. 56 is an enlarged view of the junction shown in FIG. As shown in FIG. 56, the merge portion 3152 includes headers 154, 3155 formed on the upper and lower surfaces of the intermediate plate 3144b as arc-shaped grooves that communicate with the outlet flow paths 3150A, 3150B, and the headers B3154, A plurality of split night passages 3156, 3157 extending toward the center of the arc from the 3155 force and a split space 3158, 3157 force S, and a merge space 3158 for joining them. The separation flow paths 3156 and 3157 and the merge space 3158 are formed on the upper surface of the intermediate plate 3144b, and the separation flow paths 3156 and 3157 are alternately arranged. The lower header portion 3155 and the liquid separation flow path 3157 communicate with each other through a communication hole 3157a that penetrates the intermediate plate 3144b. The merge space 3158 is formed so that its width gradually decreases toward the downstream side, and communicates with an outflow port 3160 formed through the middle plate 3144b and the lower plate 3144c.
[0420] 図 56に示す例では、合流空間 3158の入口側の開口面 3159において分液流路 3 156が 5本、分液流路 3157が 4本、交互に配置されている。分液流路 3156, 3157 力 それぞれ流出した 2種類の液体は、合流空間 3158内で縞状の流れを形成しつ つ下流側に流れ、合流空間 3158の流路幅が徐々に縮小するに従い、強制的に両 液が混合される。この例では、合流空間 3158の流路幅は最終的に 40 x mに達する 。加工技術精度を上げれば、流路幅を 10 z mにすることも可能である。 [0420] In the example shown in Fig. 56, the separation channel 3 Five 156 and four separation flow paths 3157 are alternately arranged. Separation flow path 3156, 3157 Force The two types of liquid that flowed out respectively flow downstream while forming a striped flow in the merge space 3158, and as the flow path width of the merge space 3158 gradually decreases, The two liquids are forcibly mixed. In this example, the flow path width of the merge space 3158 finally reaches 40 xm. If the processing technology accuracy is increased, the channel width can be reduced to 10 zm.
[0421] 図 57 (a)は図 52に示す反応部を示す平面図、図 57 (b)は図 57 (a)に示す反応部 の断面図である。この例では、 2枚の基材 3144d, 3144eが接合されて厚さ 5mmの 反応部 3142が構成されている。この反応部 3142では、反応流路 3162が蛇行して おり、長い流路を効率的に提供している。反応流路 3162は、入口ポート 3164およ び出口ポート 3165にそれぞれつな力 Sる連絡咅 B3162a, 3162cと、連絡咅 B3162a, 3 162cに連通する蛇行咅 B分 3162bとを有しており、連絡咅 B3162a, 3162cの幅は狭 ぐ蛇行部分 3162bの幅が広く形成されている。したがって、出入口部分では液体が 急速に流れ、副生成物の付着を防止しており、蛇行部分 3162bでは緩やかに流れ て、加熱と反応の時間を長く取ることができるようになつている。  FIG. 57 (a) is a plan view showing the reaction section shown in FIG. 52, and FIG. 57 (b) is a cross-sectional view of the reaction section shown in FIG. 57 (a). In this example, two base materials 3144d and 3144e are joined to form a reaction portion 3142 having a thickness of 5 mm. In the reaction section 3142, the reaction flow path 3162 meanders and provides a long flow path efficiently. The reaction channel 3162 has communication rods B3162a and 3162c connected to the inlet port 3164 and the outlet port 3165, respectively, and a meander rod B portion 3162b communicating with the communication rods B3162a and 3162c. The width of the meandering part 3162b, which narrows the width of the communication rods B3162a and 3162c, is formed. Therefore, the liquid flows rapidly at the entrance / exit part to prevent by-products from adhering, and flows slowly at the meandering part 3162b, so that the heating and reaction time can be increased.
[0422] 図 58 (a)および図 58 (b)に示すのは、反応流路の幅が除々に小さくなる部分 316 3aと除々に大きくなる部分 3163bを持つ反応部の他の構成例である。この反応部 3 142aには、基材 3144d, 3144eの間に、幅寸法が最大 aから最小 bの範囲で増減す る反応流路 3163が形成されている。幅寸法の増減に合わせ、深さを増減させてもよ レ、。この例では、反応流路 3163の断面積が一定になるよう深さが最大 cから最小 dの 範囲で変化するようになってレ、る。  [0422] FIG. 58 (a) and FIG. 58 (b) show another example of the structure of the reaction section having the portion 316 3a in which the width of the reaction channel gradually decreases and the portion 3163b in which the width gradually increases. . In the reaction section 3 142a, a reaction flow path 3163 is formed between the base materials 3144d and 3144e so that the width dimension increases or decreases in the range of maximum a to minimum b. You can increase or decrease the depth as the width dimension increases or decreases. In this example, the depth changes from the maximum c to the minimum d so that the cross-sectional area of the reaction channel 3163 is constant.
[0423] 図 58 (c)は、反応流路の他の構成例を示す横断面図である。この反応部 3142bで は、反応流路 3163cは、その幅 eが深さはり大きい扁平形状を有しており、熱触媒か らの熱の伝達方向(矢印で表示)に交差する広い伝熱面を有するので、反応流路 31 63c内の液体に熱の伝達が有効に行われる。なお、合流空間 3158や反応流路 316 2, 3163に、適当な触媒を配置することは反応を促進するために有効である。このよ うな触媒は反応の種類に応じて選択される。配置の仕方は、例えば、流路の内面に 塗布したり、後述するような流路の障害物として配置することができる。  [0423] FIG. 58 (c) is a cross-sectional view showing another configuration example of the reaction channel. In the reaction section 3142b, the reaction flow path 3163c has a flat shape with a large width e and a large heat transfer surface intersecting the heat transfer direction (indicated by an arrow) from the thermal catalyst. Therefore, heat is effectively transferred to the liquid in the reaction flow path 31 63c. In order to promote the reaction, it is effective to dispose an appropriate catalyst in the merge space 3158 and the reaction flow paths 316 2 and 3163. Such a catalyst is selected according to the type of reaction. For example, it can be applied to the inner surface of the flow path, or can be disposed as an obstacle to the flow path as will be described later.
[0424] 混合部 3140および反応部 3142の少なくとも流路を形成する素材としては、例えば 、 SUS316、 SUS304、 Ti、石英ガラス、パイレックス(登録商標)ガラス等の硬質ガ フス、 PEEK (polyetheretherketone)、 PE (polyethylene)、 PVC (polyvinylchloride)、 PDMS (Polydimethylsiloxane)、 Si、 PTFE (polytetrafluoroethylene)、 PCTFE (Poly ChloroTriFluoroEthylene)の内から、耐薬品性、耐圧性、熱伝導性、耐熱性等を考 慮して、好ましいものを選択する。混合部 3140および反応部 3142の接液部の材質 は、表面からの溶出が少なく表面触媒修飾が可能で、ある程度の耐薬品性を持ち、 _40〜150°Cの広い温度範囲に耐えるものが望ましい。 [0424] As a material for forming at least the flow path of the mixing unit 3140 and the reaction unit 3142, for example, , SUS316, SUS304, Ti, quartz glass, Pyrex (registered trademark) glass, etc. From (Poly ChloroTriFluoroEthylene), a preferable one is selected in consideration of chemical resistance, pressure resistance, thermal conductivity, heat resistance, and the like. The material of the wetted part of the mixing part 3140 and the reaction part 3142 should be able to be surface-catalyzed with little elution from the surface, have a certain degree of chemical resistance, and withstand a wide temperature range of _40 to 150 ° C .
[0425] 図 59は、混合部および反応部の温度を調整する温度調整ケースの構成を示す斜 視図である。なお、以下の説明では、反応部 3142の温度を調整する温度調整ケー ス 3146についてのみ述べる力 混合部 3140のための温度調整ケース 3146も同様 の構成を有しており、その重複する説明を省略する。温度調整ケース 3146は、内部 に反応部 3142を収容する空間 3170が形成されたケース本体 3172と該空間 3170 を覆う蓋部 3174とを備えており、これらの内面には、平行に延びる複数の熱媒体流 路を構成する溝 3176が形成されている。ケース本体 3172には、溝 3176に連通す る給液路 3178と排液路 3180 (図 52参照)が形成され、これらの給液路 3178と排液 路 3180はそれぞれ熱媒体コントローラ 3107に接続されている。給液路 3178は、蓋 部 3174の溝 3176に開口 3179を介して連通し、排液路 3180も蓋部 3174の溝 317 6に図示しない開口を介して連通している。この例では、溝 3176を流れる熱媒体は 反応部 3142の表裏面に直接接触し、反応部 3142は温度調整ケース 3146に完全 に収容された状態で加熱 (または冷却)される。  [0425] FIG. 59 is a perspective view showing a configuration of a temperature adjustment case for adjusting the temperatures of the mixing section and the reaction section. Note that, in the following description, only the temperature adjustment case 3146 for adjusting the temperature of the reaction unit 3142 is described. The temperature adjustment case 3146 for the mixing unit 3140 has the same configuration, and redundant description thereof is omitted. To do. The temperature adjustment case 3146 includes a case main body 3172 in which a space 3170 that accommodates the reaction portion 3142 is formed, and a lid portion 3174 that covers the space 3170. Grooves 3176 constituting the medium flow path are formed. A liquid supply path 3178 and a drainage path 3180 (see FIG. 52) communicating with the groove 3176 are formed in the case body 3172, and the liquid supply path 3178 and the drainage path 3180 are connected to the heat medium controller 3107, respectively. ing. The liquid supply passage 3178 communicates with the groove 3176 of the lid portion 3174 via the opening 3179, and the drainage passage 3180 communicates with the groove 3176 of the lid portion 3174 via an opening (not shown). In this example, the heat medium flowing through the groove 3176 is in direct contact with the front and back surfaces of the reaction unit 3142, and the reaction unit 3142 is heated (or cooled) while being completely accommodated in the temperature adjustment case 3146.
[0426] 図示しないが、熱媒体コントローラ 3107には、熱媒体の温度を制御する制御機構 と熱媒体を移送するポンプが内蔵されている。図 52に示すように、熱媒体は熱交換 器 3182を通過後、混合部 3140および反応部 3142の温度調整ケース 3146に供給 されるようになつている。熱交換器 3182は例えば冷却用の巿水の量を変えることで 混合部 3140および反応部 3142に供給される熱媒体の温度を独立に変えられるよう になっている。  Although not shown, the heat medium controller 3107 includes a control mechanism for controlling the temperature of the heat medium and a pump for transferring the heat medium. As shown in FIG. 52, the heat medium passes through the heat exchanger 3182 and is then supplied to the temperature adjustment case 3146 of the mixing unit 3140 and the reaction unit 3142. The heat exchanger 3182 can change the temperature of the heat medium supplied to the mixing unit 3140 and the reaction unit 3142 independently, for example, by changing the amount of brine for cooling.
[0427] 図 60 (a)乃至図 60 (d)には、温度調整ケース 3146の他の例が示されており、ここ では、熱媒体流路 3192はケース本体 3172と蓋部 3174のそれぞれの内部に形成さ れている。給液路 3178は、図 60 (c)に示すように、給液配管 3188の先端が挿入さ れた二重管の構成となっており、細い連通路 3190を介して熱媒体流路 3192に連通 している。排液側も同様の構成である。図 60 (b)に示すように、混合部 3140を収容 する温度調整ケース 3146と反応部 3142を収容する温度調整ケース 3146とは、ボ ノレト 3194、ナット 3195およびスぺーサ 3196を介して積層して結合されてレ、る。 60 (a) to 60 (d) show another example of the temperature adjustment case 3146. Here, the heat medium flow path 3192 includes the case body 3172 and the lid portion 3174, respectively. Formed inside It is. As shown in FIG. 60 (c), the liquid supply path 3178 has a double pipe structure in which the tip of the liquid supply pipe 3188 is inserted, and is connected to the heat medium flow path 3192 via a thin communication path 3190. Communicate. The drainage side has the same configuration. As shown in FIG. 60 (b), the temperature adjustment case 3146 that accommodates the mixing unit 3140 and the temperature adjustment case 3146 that accommodates the reaction unit 3142 are stacked via a Bonoleto 3194, a nut 3195, and a spacer 3196. And combined.
[0428] 図 60 (b)には、温度調整ケース 3146に収容された混合部 3140および反応部 31 42への液体の供給 '排出の経路が示されている。すなわち、それぞれの液体は、温 度調整ケース 3146を貫通して形成された流通路 3198を介して混合部 3140へ流出 入する。また、混合部 3140と反応部 3142との間の液体の流通は、温度調整ケース 3146の流通路 3198を連絡する連絡通路 3200を介して行う。図 60 (d)には、反応 部 3142の液の流入部と流出部の構造が説明されている。液の流れを下方向へ向か わせるために、通常は混合部 3140および反応部 3142の液の入口は上面に、出口 は下面にそれぞれ形成する。  [0428] FIG. 60 (b) shows a path for supplying and discharging the liquid to the mixing unit 3140 and the reaction unit 3142 accommodated in the temperature adjustment case 3146. That is, each liquid flows into and out of the mixing unit 3140 through the flow passage 3198 formed through the temperature adjustment case 3146. In addition, the liquid is circulated between the mixing unit 3140 and the reaction unit 3142 through a communication passage 3200 that communicates with the flow passage 3198 of the temperature adjustment case 3146. FIG. 60 (d) illustrates the structure of the inflow portion and the outflow portion of the liquid in the reaction section 3142. In order to direct the liquid flow downward, the liquid inlet of the mixing unit 3140 and the reaction unit 3142 is usually formed on the upper surface and the outlet is formed on the lower surface.
[0429] 図 52に示すように、反応部 3142の流出口 3202は、回収配管 3204を介して生成 物貯留部 3104に接続されている。生成物貯留部 3104には、冷却用の熱交換器 32 06、流路切換弁 3132の下流側に回収容器 3208が設けられている。回収容器 320 8が置かれる生成物貯留部 3104は、他の領域から温度等の影響を受けないように、 また生成物から発生する可能性のある有毒ガスが外部に漏洩しないように隔離され ている。  As shown in FIG. 52, the outlet 3202 of the reaction unit 3142 is connected to the product storage unit 3104 via a recovery pipe 3204. The product storage unit 3104 is provided with a recovery container 3208 on the downstream side of the heat exchanger 3206 for cooling and the flow path switching valve 3132. The product reservoir 3104 where the collection container 320 8 is placed is isolated so that it is not affected by temperature, etc. from other areas, and toxic gas that may be generated from the product is not leaked to the outside. Yes.
[0430] 図 61は、生成物貯留部 3104の他の構成例を示すもので、複数の回収容器 3208 が回転テーブル 3212上に設置されている。この例では、回収容器 3208は 2個であ り、回転テーブル 3212を移動させるァクチユエータ 3214は 180度回転型ロータリー ァクチユエータである。勿論、回収容器 3208の数ゃァクチユエータ 3214の種類は 適宜に選択可能である。図 52に示す動作制御部 3106は、回収容器 3208の液面を 検知する液面検知センサ 321 lbからの信号により、回収容器 3208の交換時期を判 断し、流路切換弁 3132 (図 52参照)により液流を止め、回収口 3210の下流に設け た光学的流体検知センサ 321 laにより液流の停止を確認して、ァクチユエータ 3214 を作動させて他の回収容器 3208を回収口 3210の下方に移動させる。 [0431] 次に、上記のように構成された流体反応装置により、薬液等の液体 (原料液)を反 応させる工程について説明する。なお、流体反応装置の動作は基本的に動作制御 部 3106によって自動制御される。まず、原料貯留部 3101において、原料液を貯留 した貯留容器 3110A, 3110Bに用意しておく。熱媒体コントローラ 3107により熱媒 体の温度を設定し、熱交換器 3182を通過させる巿水の量を調整して各熱媒体の温 度をそれぞれ調整し、混合部 3140および反応部 3142の温度調整ケース 3146へ 熱媒体を流通させてこれらを所定の温度に維持する。熱媒体の温度は、温度調整ケ ース 3146の入口に設けた温度センサ 3216, 3218により測定される。 FIG. 61 shows another configuration example of the product storage unit 3104. A plurality of recovery containers 3208 are installed on the turntable 3212. In this example, there are two collection containers 3208, and the actuator 3214 for moving the rotary table 3212 is a 180-degree rotary rotary actuator. Of course, the number of recovery containers 3208 and the type of the actuator 3214 can be selected as appropriate. The operation control unit 3106 shown in FIG. 52 determines the replacement timing of the recovery container 3208 based on a signal from the liquid level detection sensor 321 lb for detecting the liquid level of the recovery container 3208, and the flow path switching valve 3132 (see FIG. 52). ), The liquid flow is stopped by the optical fluid detection sensor 321 la provided downstream of the recovery port 3210, and the actuator 3214 is operated to move the other recovery container 3208 below the recovery port 3210. Move. [0431] Next, a process of reacting a liquid (raw material solution) such as a chemical solution with the fluid reaction apparatus configured as described above will be described. The operation of the fluid reaction device is basically automatically controlled by the operation control unit 3106. First, in the raw material storage unit 3101, the storage containers 3110 A and 3110 B storing the raw material liquid are prepared. The temperature of the heat medium is set by the heat medium controller 3107, and the temperature of each heat medium is adjusted by adjusting the amount of brine passing through the heat exchanger 3182, and the temperature of the mixing unit 3140 and reaction unit 3142 is adjusted. Heat medium is circulated through case 3146 to maintain them at a predetermined temperature. The temperature of the heat medium is measured by temperature sensors 3216 and 3218 provided at the inlet of the temperature adjustment case 3146.
[0432] この例では、原料液を処理部 3103に供給する前に、混合部 3140および反応部 3 142内の流路に純水等の洗浄液を流して予め洗浄する。流路を洗浄している間、洗 浄液の温度を混合部 3140の出口の温度センサ 3220および反応部 3142の出口の 温度センサ 3222で測定し、洗浄液の温度を熱媒体コントローラ 3107にフィードバッ クする。このようにして、混合部 3140および反応部 3142を所定の温度に調整する。  [0432] In this example, before supplying the raw material liquid to the processing unit 3103, a cleaning liquid such as pure water is supplied to the flow paths in the mixing unit 3140 and the reaction unit 3142 to perform pre-cleaning. While cleaning the flow path, the temperature of the cleaning solution is measured by the temperature sensor 3220 at the outlet of the mixing unit 3140 and the temperature sensor 3222 at the outlet of the reaction unit 3142, and the temperature of the cleaning solution is fed back to the heat medium controller 3107. To do. In this way, the mixing unit 3140 and the reaction unit 3142 are adjusted to a predetermined temperature.
[0433] 混合部 3140および反応部 3142の温度が調整され、流路の洗浄を終えてから、流 路切換弁 3132を切り換え、ポンプ 3116A, 3116Bを駆動して、貯留容器 3110A, 3110B内の原料液をそれぞれ移送する。原料液は、流量調整装置 3300A, 3300 Bにより所定の流量に調整され、その後、混合部 3140、反応部 3142、流出口 3202 、回収口 3210を経て回収容器 3208に至る。なお、流路切換弁 3132はァクチユエ ータにより作動する自動弁としており、この動作は自動運転も可能である。  [0433] After the temperature of the mixing unit 3140 and the reaction unit 3142 is adjusted and the cleaning of the flow path is completed, the flow path switching valve 3132 is switched and the pumps 3116A and 3116B are driven to start the raw materials in the storage containers 3110A and 3110B. Each liquid is transferred. The raw material liquid is adjusted to a predetermined flow rate by the flow rate adjusting devices 3300A and 3300B, and then reaches the recovery container 3208 via the mixing unit 3140, the reaction unit 3142, the outlet 3202 and the recovery port 3210. Note that the flow path switching valve 3132 is an automatic valve that is operated by an actuator, and this operation can also be performed automatically.
[0434] 混合部 3140においては、原料液は予備加熱流路 3148A, 3148B (図 55参照)に おいて所定の温度に加熱された後、合流部 3152において合流し、混合する。その 際、各液は、図 56に示すように、ヘッダ部 3154, 3155力ら分液流路 3156, 3157 を経由して合流空間 3158に流入する。合流空間 3158の断面は下流へ向かうに従 ぃ徐々に減少するので、マイクロサイズの流れが規則的に混在し、フィックの法則に 貝 IJつて迅速に混合する。その状態で、所定の温度に維持された反応部 3142の反応 流路 3162に流入すると、反応は、物質移動や熱伝導の制約を受けずに迅速に進行 する。したがって、量産手段として充分実用的であるとともに、反応速度の早い爆発 性の反応でも低温下で行う必要がなくなる。また、この例では、反応流路 3162の幅 が合流空間 3158の幅に比べて充分広く形成されているので、反応速度が遅い場合 でも充分な時間をかけて行うことができ、高レ、収率を得ることができる。 In mixing unit 3140, the raw material liquids are heated to a predetermined temperature in preheating channels 3148A and 3148B (see FIG. 55), and then merged and mixed in merging unit 3152. At this time, as shown in FIG. 56, each liquid flows into the merge space 3158 via the liquid separation channels 3156 and 3157 from the header portions 3154 and 3155. Since the cross section of the merge space 3158 gradually decreases as it goes downstream, the micro-sized flows are mixed regularly, and the shell IJ is quickly mixed according to Fick's law. In that state, when it flows into the reaction flow path 3162 of the reaction unit 3142 maintained at a predetermined temperature, the reaction proceeds rapidly without being restricted by mass transfer or heat conduction. Therefore, it is sufficiently practical as a mass production means, and it is not necessary to carry out explosive reactions with a high reaction rate at low temperatures. In this example, the width of the reaction channel 3162 Is formed sufficiently wider than the width of the confluence space 3158, so that even when the reaction rate is low, the reaction can be carried out over a sufficient period of time, and a high yield and yield can be obtained.
[0435] 得られた生成物は、反応流路 3162の流出口 3202から回収配管 3204を経由して 熱交換器 3206に送られ、ここで冷去 Pされて、回収口 3210より回収容器 3208に流入 する。貯留容器 3110A, 3110Bが空になったり、回収容器 3208が満杯になったら、 動作制御部 3106によりポンプ 3116A, 3116Bの運転を停止させて処理を終了させ る。この場合、貯留容器 3110A, 3110Bの他に、追加の貯留容器を原料貯留部 31 01に予め用意しておけば、流路切換弁 3126A, 3126Bを切り換えることにより、運 転を停止させることなく連続的な処理が可能である。なお、反応に時間が掛かる場合 には、混合部 3140および反応部 3142内に液を一定時間閉じ込めてバッチ運転す ることも可能である。流路切換弁 3126A、 3126Bも自動弁であるのでこれらの動作 は自動運転も可能である。 [0435] The obtained product is sent from the outlet 3202 of the reaction channel 3162 to the heat exchanger 3206 via the recovery pipe 3204, where it is chilled P, and from the recovery port 3210 to the recovery container 3208. Inflow. When the storage containers 3110A and 3110B are empty or the collection container 3208 is full, the operation control unit 3106 stops the operation of the pumps 3116A and 3116B and ends the processing. In this case, in addition to the storage containers 3110A and 3110B, if an additional storage container is prepared in the raw material storage unit 3101 in advance, the operation can be continued without stopping operation by switching the flow path switching valves 3126A and 3126B. Processing is possible. If the reaction takes a long time, the liquid can be confined in the mixing unit 3140 and the reaction unit 3142 for a certain period of time to perform batch operation. Since the flow path switching valves 3126A and 3126B are also automatic valves, these operations can be automatically operated.
[0436] バッチ運転の方法は、ポンプ 3116A, 3116Bを一時停止してもよいし、流路切換 弁 3126A, 3126Bを切り換えて、処理部 3103への液体の流入を停止させてもよい 。これにより、液体の反応時間が長い場合でも反応流路 3162の長さを長くする必要 がなくなる。バッチ運転の際は、合流空間 3158および/または反応流路 3162に液 体が充満されたことを検知する充満検知手段を用いて運転制御を行うことが好ましい 。これは、例えば、図 61に示すような光学的流体検知センサが用いられる。これによ り、合流空間 3158および/または反応流路 3162に液体が充満されたと判断した時 点で、ポンプ 3116A, 3116Bを停止させまたは第 1の流路切換弁を切換え、液体を 反応終結時間に適応する一定時間合流空間 3158および/または反応流路 3162 に滞留させておく。  [0436] In the batch operation method, the pumps 3116A and 3116B may be temporarily stopped, or the flow path switching valves 3126A and 3126B may be switched to stop the inflow of liquid into the processing unit 3103. This eliminates the need to increase the length of the reaction channel 3162 even when the reaction time of the liquid is long. In batch operation, it is preferable to perform operation control using a fullness detection means for detecting that the merge space 3158 and / or the reaction flow path 3162 is filled with liquid. For example, an optical fluid detection sensor as shown in FIG. 61 is used. As a result, when it is determined that the confluence space 3158 and / or the reaction flow path 3162 is filled with the liquid, the pumps 3116A and 3116B are stopped or the first flow path switching valve is switched to allow the liquid to reach the reaction end time. It stays in the confluence space 3158 and / or the reaction flow path 3162 for a certain period of time.
[0437] なお、本発明に係る流量調整装置 3300A, 3300Bによれば、液体の流量を正確 に測定することができるので、測定された流量と液体の供給時間力 液体の供給量 を求めることができる。したがって、動作制御部 3106は液体の供給量に基づいて生 成物の生成量を調整することができ、また流体反応装置の動作を制御することができ る。例えば、液体の供給量が所定の値に達したときに動作制御部 3106がポンプ 31 16A, 3116Bの運転を停止させる、または流路切換弁 3126A, 3126Bを切り換える ようにしてもよい。このように、本発明に係る流量調整装置を流体反応装置に組み込 むことにより、動作制御部 3106は液体の供給量に基づいて流体反応装置の各部の 動作を制御することができる。 [0437] According to the flow rate adjusting devices 3300A and 3300B according to the present invention, the flow rate of the liquid can be measured accurately, so that the measured flow rate and the liquid supply time force can be obtained. it can. Therefore, the operation control unit 3106 can adjust the production amount of the product based on the supply amount of the liquid, and can control the operation of the fluid reaction device. For example, when the liquid supply amount reaches a predetermined value, the operation control unit 3106 stops the operation of the pumps 31 16A and 3116B, or switches the flow path switching valves 3126A and 3126B. You may do it. As described above, by incorporating the flow control device according to the present invention in the fluid reaction device, the operation control unit 3106 can control the operation of each part of the fluid reaction device based on the supply amount of the liquid.
[0438] 図 62 (a)および図 62 (b)は、混合部 3140における合流部の他の構成例を示すも のである。この合流部 3152aは、 Y字状の合流空間 3158aに、障害物 3224を一定 間隔 aで所定の距離 Lに亘つて配置したものである。この例では、直径 50 z m以下で ある柱状の障害物 3224を、合流点から L = 5mmに亘つて配置した。図 62 (b)に示 すように、各障害物 3224は隣接するものが流れ方向にピッチの半分だけずれるよう に、千鳥状に配置されている。これによつて液体 Aおよび液体 Bの界面 3125が蛇行 するので 2つの液体の界面面積 (接触面積)を大きくすることができる。図 63に示す 合流部 3152bでは、合流空間 3158bの中央部に一列の障害物 3224を流れ方向に 沿って千鳥状に配置したもので、同様に界面面積を大きくすることができる。これは、 狭レ、合流空間 3158bで採用するのに好適である。  FIG. 62 (a) and FIG. 62 (b) show another configuration example of the merging section in the mixing section 3140. The junction 3152a is configured by disposing an obstacle 3224 in a Y-shaped junction space 3158a over a predetermined distance L at a constant interval a. In this example, a columnar obstacle 3224 having a diameter of 50 zm or less was placed from the junction to L = 5 mm. As shown in Fig. 62 (b), the obstacles 3224 are arranged in a staggered pattern so that adjacent ones are displaced by half the pitch in the flow direction. As a result, the interface 3125 between the liquid A and the liquid B meanders, so that the interface area (contact area) between the two liquids can be increased. In a junction 3152b shown in FIG. 63, a row of obstacles 3224 are arranged in a zigzag along the flow direction at the center of the junction space 3158b, and the interface area can be similarly increased. This is suitable for use in the narrow space, merge space 3158b.
[0439] 図 64は、流体反応装置の処理部 3103の他の構成例を示すものである。これは、 図 52の処理部 3103において、混合部 3140と反応部 3142との組み合わせをそれ ぞれ有する 2系統 Rl , R2設け、さらに配液部 3102の流路切換弁 3126A, 3126B を用いて 2種類の原料液をいずれの系統 Rl , R2にも供給可能にしたものである。こ のように、 2系統を用いることで、必要に応じて処理量を増やすことができる力 その 他にも種々の使用方法が有る。例えば、反応生成物が固体粒子を析出しやすぐ配 管途中で詰まりやすい場合などでは、一方の系統を予備として使用する。また、流路 切換弁 3126A, 3126Bで移送ラインを交互に切り換えて、上述したバッチ運転を連 続的に行うことができる。勿論、 3系統以上の移送ラインを適宜に並列して設けること ができる。この場合も流路切換弁 3126A, 3126Bは自動操作が可能である。  FIG. 64 shows another example of the configuration of the processing unit 3103 of the fluid reaction device. 52. In the processing unit 3103 of FIG. 52, two systems Rl and R2 each having a combination of the mixing unit 3140 and the reaction unit 3142 are provided, and further, the flow path switching valves 3126A and 3126B of the liquid distribution unit 3102 are used. Various types of raw material liquids can be supplied to any of the systems Rl and R2. In this way, the use of two systems has the ability to increase the amount of processing as needed, and various other methods of use. For example, if the reaction product precipitates solid particles or is easily clogged in the middle of piping, use one system as a backup. In addition, the batch operation described above can be performed continuously by alternately switching the transfer lines by the flow path switching valves 3126A and 3126B. Of course, three or more transfer lines can be provided in parallel as appropriate. Also in this case, the flow path switching valves 3126A and 3126B can be automatically operated.
[0440] 図 65は、処理部 3103において反応部を複数直列に配置した例を示す。この例で は、 1つの混合部 3140と 3つの反応部 3142a, 3142b, 3142cが直列に接続されて おり、それぞれに温度センサ 3220, 3222a, 3222b, 3222c力 S設けられてレヽる。こ の例では、反応の段階に応じて反応部 3142a, 3142b, 3142cを独立して温度制 御することが可能となっている。この構成は、生化学反応のように反応時間と反応温 度を大胆に且つ瞬時に変化させたい反応に適している。たとえば反応部 3142aでは 100°Cで反応させ、反応部 3142bでは— 20°Cで反応させるというような反応もこのシ ステムでは可能になる。 FIG. 65 shows an example in which a plurality of reaction units are arranged in series in the processing unit 3103. In this example, one mixing unit 3140 and three reaction units 3142a, 3142b, 3142c are connected in series, and temperature sensors 3220, 3222a, 3222b, 3222c are provided with a force S, respectively. In this example, the temperature of the reaction units 3142a, 3142b, and 3142c can be controlled independently according to the stage of the reaction. This configuration is similar to biochemical reactions in reaction time and reaction temperature. It is suitable for reactions that want to change the degree boldly and instantaneously. For example, a reaction such as reacting at 100 ° C in the reaction unit 3142a and reacting at -20 ° C in the reaction unit 3142b is possible with this system.
[0441] 図 66は、処理部 3103において混合部を複数設けた例である。この構成例では、 A 液と B液を混合し反応させる第 1の混合部 3140および反応部 3142が設けられ、この 反応部 3142の下流側に第 2の混合部 3140aが設けられている。この混合部 3140a ではポンプ 3116Cから輸送された第 3の原料液または反応剤である C液が A液と B 液と合流し、混合する。これらの 2つの混合部 3140, 3140aと 1つの反応部 3142の 温度は個別に制御される。なお、 C液は反応停止剤でもよい。  FIG. 66 is an example in which a plurality of mixing units are provided in the processing unit 3103. In this configuration example, a first mixing unit 3140 and a reaction unit 3142 for mixing and reacting liquid A and liquid B are provided, and a second mixing unit 3140a is provided downstream of the reaction unit 3142. In this mixing section 3140a, the third raw material liquid or the C liquid which is the reactant transported from the pump 3116C is merged with the A liquid and the B liquid. The temperatures of these two mixing sections 3140, 3140a and one reaction section 3142 are individually controlled. Liquid C may be a reaction terminator.
[0442] この構成例では、インライン収率評価器 3226が第 2の混合部 3140aの流出口 320 2に直接接続されている。これにより、化学反応の結果の収率をリアルタイムで確認で き、直ぐにプロセスパラメータへフィードバックすることが可能となる。インライン収率評 価器 3226としては、被測定物を分離せずに測定可能な方法として赤外分光、近赤 外分光、紫外吸光等の方法がある。  In this configuration example, the inline yield evaluator 3226 is directly connected to the outlet 3202 of the second mixing unit 3140a. As a result, the yield of the chemical reaction results can be confirmed in real time and can be immediately fed back to the process parameters. The in-line yield evaluator 3226 includes methods such as infrared spectroscopy, near infrared spectroscopy, and ultraviolet absorption as methods that can be measured without separating the object to be measured.
[0443] この構成例では、さらに、反応生成物の中から不要な物質と必要な物質を分離する 分離抽出部 3228が第 2の混合部 3140aの下流側に設けられている。図示するよう に、分離抽出部 3228は、 Y字形の分離流路 3234を有している。第 2の混合部 3140 aからの液体は分離流路 3234により 2つの流れに分岐され、 1つは物質内の疎水性 分子のみを通過させる疎水性壁面 3230から形成された流路に、他方は物質内の親 水性分子のみを通過させる親水性壁面 3232から形成された流路に流れ込む。分離 した物質は、それぞれ回収酉己管 3204, 3204aを介して回収容器 3208, 3208aに 回収される。分離抽出部 3228としては、その他に、疎水性物質だけを吸着可能な膜 やポーラスフリットを使用することも考えられる。  [0443] In this configuration example, a separation / extraction unit 3228 that separates unnecessary substances and necessary substances from the reaction product is further provided on the downstream side of the second mixing unit 3140a. As shown in the figure, the separation / extraction section 3228 has a Y-shaped separation flow path 3234. The liquid from the second mixing part 3140a is branched into two flows by the separation channel 3234, one in the channel formed by the hydrophobic wall 3230 that allows only the hydrophobic molecules in the substance to pass through, and the other in the channel It flows into the flow path formed by the hydrophilic wall 3232 that allows only hydrophilic molecules in the substance to pass through. The separated substances are collected in collection containers 3208 and 3208a through collection pipes 3204 and 3204a, respectively. As the separation and extraction unit 3228, a membrane or a porous frit that can adsorb only a hydrophobic substance may be used.
[0444] 図 67は、混合 ·反応と分離抽出を繰り返して連続処理するための構成例である。す なわち、 A液と B液を処理する混合部 3140a、反応部 3142a、および分離抽出部 32 28aが上流側に配置され、分離抽出部 3228aから抽出された液体と C液を処理する 混合部 3140b、反応部 3142b、および分離抽出部 3228bが下流側に配置されてい る。 A液と B液が反応した後の不要物質は分離抽出部 3228aの排出口 3234aから系 外に出され、 C液を加えた第 2の反応における不要物質は分離抽出部 3228bの排 出口 3234bから系外に出される。さらに、分離抽出部 3228bから抽出された液体と 第 4の液である D液を混合させる混合部 3140cが設けられている。なお、 D液は反応 停止剤でもよぐ他の原料溶液でも良レ、。混合部 3140cの下流側にインライン収率 評価器 3226を設けても良い。 [0444] Fig. 67 is a configuration example for continuous processing by repeating mixing and reaction and separation and extraction. In other words, the mixing unit 3140a for processing the A liquid and the B liquid, the reaction unit 3142a, and the separation / extraction unit 32 28a are arranged upstream, and the mixing unit for processing the liquid extracted from the separation / extraction unit 3228a and the C liquid. 3140b, reaction unit 3142b, and separation / extraction unit 3228b are arranged on the downstream side. Unnecessary substances after reaction of liquid A and liquid B are separated from the outlet 3234a of the separation and extraction unit 3228a. Unnecessary substances in the second reaction to which the liquid C is added are discharged out of the system from the outlet 3234b of the separation and extraction unit 3228b. Furthermore, a mixing unit 3140c for mixing the liquid extracted from the separation / extraction unit 3228b and the fourth liquid D is provided. The D solution can be a reaction terminator or other raw material solution. An inline yield evaluator 3226 may be provided on the downstream side of the mixing unit 3140c.
[0445] 図 68 (a)には、図 67の各部を積層化した構成が示されている。液体は下方へ流れ る。混合部 3140a、反応部 3142a、分離抽出部 3228a、混合部 3140b、反応部 31 42b,分離抽出部 3228b、および混合部 3140cは、温度調整ケース 3146にそれぞ れ収容され、さらにボノレト 3194、ナット 3195、スぺーサ 3196によって所定の間隔を おいて積層化されてレ、る。各部間の液の移動は連絡通路 3200 (図 55 (b)参照)を介 して行われる。各部の間には空気を介在させ、空気の断熱性を利用して他の部の熱 影響を受けないようにして、温度制御の精度を向上させている。図 68 (b)に示すよう に、各温度調整ケース 3146の周りを気泡を含んだクリーンなシリコン部材 3236等の 断熱材で覆うのが好ましレ、。  FIG. 68 (a) shows a configuration in which the respective parts in FIG. 67 are laminated. The liquid flows downward. The mixing unit 3140a, the reaction unit 3142a, the separation / extraction unit 3228a, the mixing unit 3140b, the reaction unit 31 42b, the separation / extraction unit 3228b, and the mixing unit 3140c are accommodated in the temperature adjustment case 3146, respectively, and the Bonoleto 3194 and the nut 3195 The spacers 3196 are stacked at a predetermined interval. The movement of the liquid between each part is performed through the communication passage 3200 (see Fig. 55 (b)). Air is interposed between each part, and the heat insulation of the air is used so that it is not affected by the heat of other parts, thereby improving the accuracy of temperature control. As shown in FIG. 68 (b), it is preferable to cover each temperature adjustment case 3146 with a heat insulating material such as a clean silicon member 3236 containing bubbles.
[0446] この流体反応装置に導入される流体は液体、気体であり、回収される物質は液体、 気体、固体またはこれらの混合体である。導入物質が粉体などの固体の場合は原料 貯留部 3101に粉体溶解器を設置することも可能である。図 69は、 2つの原料液のう ち、一方が粉体を溶解した溶液、他方は元々液体の場合の原料貯留部 3101の構 成例である。原料の粉体と溶媒は粉体溶解器 3240の原料導入口 3242から導入さ れる。この例では、原料粉体をヒータ 3244による加熱と攪拌器 3246による攪拌によ つて溶解し、生成した原料液を、取出し口 3148に引き込まれた配管 3249より、ボン プ 3116A (こよって、?昆合音 ^3140および反応音 Β3142ίこ送り込むよう (こなってレ、る。  [0446] The fluid introduced into the fluid reaction apparatus is liquid or gas, and the substance to be recovered is liquid, gas, solid or a mixture thereof. When the introduced substance is a solid such as a powder, a powder dissolver can be installed in the raw material reservoir 3101. FIG. 69 shows a configuration example of the raw material reservoir 3101 in which one of the two raw material liquids is a solution in which powder is dissolved and the other is originally liquid. The raw material powder and solvent are introduced from the raw material inlet 3242 of the powder dissolver 3240. In this example, the raw material powder is dissolved by heating with the heater 3244 and stirring with the stirrer 3246, and the generated raw material liquid is pumped through the pipe 3249 drawn into the take-out port 3148 through the pump 3116A (thus,? Send the sound ^ 3140 and the reaction sound Β3142ί.
[0447] このように、本発明に係る流量調整装置は、微小空間で流体を混合させ反応させる 流体反応装置(マイクロリアクタ)に好適に用いることができる。本発明は、今まで述べ た実施の形態に限定されるものではなぐまた図示例に限定されるものではなぐ本 発明の要旨を逸脱しなレ、範囲内におレ、て種々変更をカ卩ぇ得ることができる。  Thus, the flow rate adjusting device according to the present invention can be suitably used for a fluid reaction device (microreactor) that mixes and reacts fluids in a minute space. The present invention is not limited to the embodiments described so far and is not limited to the illustrated examples, and various modifications can be made without departing from the spirit of the present invention. Yeah I can get it.
[0448] 泡 I fgfcよび 量調  [0448] Foam I fgfc and volume control
本発明は、さらに、本発明の流体反応装置及び流体混合装置において使用するこ とができる流量調整装置にも関する。 The present invention is further used in the fluid reaction device and the fluid mixing device of the present invention. The present invention also relates to a flow rate adjusting device capable of performing
[0449] 上述した目的を達成するための本発明は、これに限定されるものではなレ、が、以下 の発明を包含する。  [0449] The present invention for achieving the above-mentioned object is not limited to this, but includes the following inventions.
[0450] (1) 流路を流れる流体を所定の温調位置において短時間温調する温調機構と、 前記流路の前記温調位置より下流側の温度測定位置に配置された少なくとも 1つの 主温度センサとを備え、前記主温度センサにより観測した温度測定位置における温 度変化に基づいて温調された流体の通過時を判断し、この判断結果に基づいて流 量を算出する流量測定装置におレ、て、前記流路の前記温調位置より上流側に副温 度センサを設置し、前記主温度センサの温度測定値を前記副温度センサの測定値 により補正することを特徴とする流量測定装置。  [0450] (1) A temperature adjustment mechanism for adjusting the temperature of the fluid flowing through the flow path for a short time at a predetermined temperature adjustment position, and at least one temperature measurement position downstream of the temperature adjustment position of the flow path. A flow rate measuring device for determining a passage time of a fluid whose temperature is adjusted based on a temperature change at a temperature measurement position observed by the main temperature sensor and calculating a flow rate based on the determination result The sub-temperature sensor is installed upstream of the temperature control position of the flow path, and the temperature measurement value of the main temperature sensor is corrected by the measurement value of the sub-temperature sensor. Flow measurement device.
[0451] (1)に記載の発明においては、流路の上流側に設置した副温度センサにより、流 体の移動に起因する温度変化を受けていない流路の温度が測定される。従って、主 温度センサの温度測定値を副温度センサの測定値により補正することにより、外乱の 影響を除いた流体の温度変化を検出することができる。従って、温調された流体の通 過時をより正確に判断し、この判断結果に基づいてより正確に流量を算出することが できる。  [0451] In the invention described in (1), the temperature of the flow path that has not been subjected to the temperature change due to the movement of the fluid is measured by the sub-temperature sensor installed on the upstream side of the flow path. Therefore, by correcting the temperature measurement value of the main temperature sensor with the measurement value of the sub temperature sensor, it is possible to detect the temperature change of the fluid excluding the influence of disturbance. Accordingly, it is possible to more accurately determine when the temperature-controlled fluid passes and to calculate the flow rate more accurately based on the determination result.
[0452] 副温度センサの配置個所は、主温度センサの測定位置における外乱 (例えば配管 を伝わる温調機構の熱)の影響を測定することができるような箇所であり、通常、温調 位置に対して主温度センサと対称の位置、あるいは曲線的配管であれば等距離の 位置である。従って、複数の主温度センサに対してそれぞれ副温度センサを設置す る場合には、それぞれに対応する位置に設置する。この位置は、現場の状況に応じ て正確に対称な位置とは限らないので、流量がゼロの時の等温点を探すようにしても よい。  [0452] The location of the sub temperature sensor is a place where the influence of disturbance at the measurement position of the main temperature sensor (for example, the heat of the temperature control mechanism transmitted through the piping) can be measured. On the other hand, it is symmetrical with the main temperature sensor, or equidistant in the case of curved piping. Therefore, when sub-temperature sensors are installed for a plurality of main temperature sensors, they are installed at positions corresponding to each. Since this position is not necessarily a symmetrical position according to the situation at the site, an isothermal point when the flow rate is zero may be searched.
[0453] 本発明によって流体の流量が測定される原理について図 73を参照して説明する。  The principle by which the flow rate of fluid is measured according to the present invention will be described with reference to FIG.
図 73 (a)において、縦軸は温度を表し、横軸は時間を表している。まず、温調機構に より流体に符号 HLで示すように熱負荷を与えて、所定の変化率で温度を上昇させる 。このとき、流体が流路内を流れていると、第 1の測定点 P1と第 2の測定点 P2では、 それぞれ Sl, S2のような温度変化が見られる。その内の配管を経由する熱伝導等に よる温度変化を sl、 s2とすると、実際の流体の温度変化はその差分、すなわち、図 7 3 (a)において細線を付した部分である。これは、図 73 (b)において、曲線 A Sl, Δ S2として示されている。曲線 A Sl , A S2のピークの部分は、温調位置 Phにおいて 温調を受けた液体の中心点を測温していると考えられるので、その時間差 A tは、流 体が Pl, P2間を移動する時間に相当すると考えられる。従って、流体の流量は以下 の式から求めることができる。 In FIG. 73 (a), the vertical axis represents temperature and the horizontal axis represents time. First, a thermal load is applied to the fluid as indicated by the symbol HL by the temperature control mechanism, and the temperature is increased at a predetermined rate of change. At this time, if the fluid is flowing in the flow path, temperature changes such as Sl and S2 are observed at the first measurement point P1 and the second measurement point P2, respectively. For heat conduction through the pipes If the temperature change due to this is sl and s2, the actual temperature change of the fluid is the difference, that is, the part marked with a thin line in Fig. 7 3 (a). This is shown as curve A Sl, ΔS2 in FIG. 73 (b). The peak parts of the curves A Sl and A S2 are considered to measure the center point of the temperature-controlled liquid at the temperature control position Ph. Therefore, the time difference At is between the Pl and P2 fluids. This is considered to correspond to the time for moving. Therefore, the fluid flow rate can be obtained from the following equation.
[0454] 流量 =温度測定点間の距離 (D) X流路断面積 ÷時間差 ( Δ t)  [0454] Flow rate = Distance between temperature measurement points (D) X channel cross-sectional area ÷ time difference (Δ t)
流体の比重、比熱、粘度が異なっても、流体の平均流速が同一の条件下では、上 流側の温度カーブと下流側の温度カーブとの時間差は流量のみに依存するので、 上記の流量の求め方は変わらない。例えば、図 72に示すように、流体の粘度が変わ つても、最大流速が変わるのみで平均流速(すなわち流量)は変わらない。したがつ て、 2つの測定点に現れる温度カーブの時間差を測定すれば、流体の物性の影響を 受けずに正確な流量測定が可能になる。  Even if the specific gravity, specific heat, and viscosity of the fluid are different, the time difference between the upstream temperature curve and the downstream temperature curve depends only on the flow rate under the same average flow velocity of the fluid. The way to ask does not change. For example, as shown in FIG. 72, even if the viscosity of the fluid changes, only the maximum flow rate changes and the average flow rate (ie, flow rate) does not change. Therefore, by measuring the time difference between the temperature curves that appear at the two measurement points, it is possible to accurately measure the flow rate without being affected by the physical properties of the fluid.
[0455] 流量が 0. 01〜: 10L/hさらには 0. 01〜2L/hと少ない場合では、流路の内径が 2 mm以下と小さぐレイカレズ数は小さくなるため流体の流れが層流となる。したがって 、流路内での流速分布を示すカーブに乱れが無くその形状が安定していることが温 度変化の時間差に基づく流量の測定を可能にしている。これにより種々の試薬を用 レ、た試験を行う場合であっても、事前に試薬の比熱、比重、および粘度などの物性 値を把握することが不要となり、単に目標とする流量を設定するだけで所望の流量を 得ること力 Sできる。  [0455] When the flow rate is as low as 0.01 to 10 L / h, or even as low as 0.01 to 2 L / h, the flow rate is laminar because the internal diameter of the flow path is as small as 2 mm or less. It becomes. Therefore, the curve indicating the flow velocity distribution in the flow path is not disturbed and its shape is stable, which makes it possible to measure the flow rate based on the time difference of temperature change. This makes it unnecessary to know the physical properties of the reagent, such as the specific heat, specific gravity, and viscosity in advance, even when using various reagents, and simply setting the target flow rate. The force S can be obtained with the desired flow rate.
[0456] 本発明に用いられる流体の例としては、試薬、有機溶剤、生化学物質などが挙げら れる。例えば、医薬品の開発段階においては、数多くの試薬を用いて、濃度、溶媒、 温度などの条件を様々に変化させて試験を行う、いわゆるスクリーニングが行われる 。このスクリーニングでは、試薬の物性に左右されず、正確な体積を測定することが 求められる。本発明によれば、試薬の種類によらず正確な試薬の体積 (流量)を求め ることができるので、好ましい開発環境を提供することができる。  [0456] Examples of the fluid used in the present invention include reagents, organic solvents, biochemical substances, and the like. For example, in the development stage of pharmaceuticals, so-called screening is performed in which a number of reagents are used and tests are performed with various conditions such as concentration, solvent, and temperature changed. This screening requires accurate volume measurement regardless of the physical properties of the reagent. According to the present invention, an accurate volume (flow rate) of a reagent can be obtained regardless of the type of reagent, and a preferable development environment can be provided.
[0457] 図 73に示した例では、 2つの温度カーブのピークが現れるときの時間差を測定して いる力 本発明はこれに限られなレ、。例えば、温度カーブの立ち上がり時の時間差を 求めてもよぐまた、ピークから所定時間だけずれた時点の時間差を求めてもよい。こ のように、本発明では、温度カーブ上の互いに対応する 2点間の時間差を測定する。 [0457] In the example shown in Fig. 73, the force measuring the time difference when the peaks of the two temperature curves appear. The present invention is not limited to this. For example, the time difference at the rise of the temperature curve Alternatively, a time difference at a time point deviated from the peak by a predetermined time may be obtained. Thus, in the present invention, the time difference between two points corresponding to each other on the temperature curve is measured.
[0458] (2) (1)に記載の発明において、前記補正は、前記主温度センサの測定値と前 記副温度センサの測定値の差を求めることにより行われることを特徴とする流量測定 装置。差を求める方法は、ブリッジ回路のように出力の差分を直接に求めるアナログ 式でも、測定信号をアナログ/デジタル変化した後に処理するデジタル式でもよい。  [0458] (2) In the invention described in (1), the correction is performed by obtaining a difference between a measurement value of the main temperature sensor and a measurement value of the sub temperature sensor. apparatus. The method for obtaining the difference may be an analog method for directly obtaining the output difference as in a bridge circuit, or a digital method for processing after changing the analog / digital measurement signal.
[0459] (3) (1)または(2)に記載の発明において、前記主温度センサを異なる温度測定 位置に少なくとも 2つ設け、これらの温度測定位置における通過時どうしの時間差に 基づいて流量を算出することを特徴とする流量測定装置。  [0459] (3) In the invention described in (1) or (2), at least two main temperature sensors are provided at different temperature measurement positions, and the flow rate is determined based on the time difference between the passages at these temperature measurement positions. A flow rate measuring device characterized by calculating.
[0460] (3)に記載の発明においては、第 1の測定点および第 2の測定点における流体の 温度変化を示す温度カーブ上の互いに対応する 2点間の時間差に基づいて流体の 流量を算出することができる。なお、副温度センサによる補正は、第 1の測定点およ び第 2の測定点の双方の主温度センサ測定値に対して行っても良いし、外乱の影響 の大きい方のみに行ってもよい。  [0460] In the invention described in (3), the flow rate of the fluid is determined based on the time difference between the two corresponding points on the temperature curve indicating the temperature change of the fluid at the first measurement point and the second measurement point. Can be calculated. Note that the correction by the sub-temperature sensor may be performed for the main temperature sensor measurement values at both the first measurement point and the second measurement point, or only for the one with the greater influence of the disturbance. Good.
[0461] (4) (1)または(2)に記載の発明において、前記温調機構が温調を行った時と、 温度測定位置における通過時との時間差に基づいて流量を算出することを特徴とす る流量測定装置。  [0461] (4) In the invention described in (1) or (2), calculating the flow rate based on a time difference between when the temperature adjustment mechanism performs temperature adjustment and when passing through the temperature measurement position. A characteristic flow measurement device.
[0462] (5) (1)ないし (4)のいずれかに記載の発明において、前記補正後の温度測定 値が極値に達した時点を温調流体の通過時と判断することを特徴とする流量測定装 置。温度測定値が極小値 (冷却の場合)または極大値 (加熱の場合)に達した時点は 、温調によって熱影響を受けた部分が通過する時点と考えられるからである。  [0462] (5) In the invention according to any one of (1) to (4), the time when the temperature measurement value after the correction reaches the extreme value is determined as the passage of the temperature-controlled fluid. Flow rate measuring device to be used. This is because the time point when the temperature measurement value reaches the minimum value (in the case of cooling) or the maximum value (in the case of heating) is considered to be the time when the portion affected by the temperature control passes.
[0463] (6) (1)ないし(5)のいずれかに記載の発明において、前記副温度センサは、前 記温調位置に対して前記温度測定位置とほぼ対称の位置に有ることを特徴とする流 量測定装置。  [0463] (6) In the invention according to any one of (1) to (5), the sub-temperature sensor is located substantially symmetrical to the temperature measurement position with respect to the temperature control position. Flow rate measuring device.
[0464] (7) (1)ないし(6)のいずれかに記載の発明において、前記副温度センサの位置 を、流路に沿って調整可能としてあることを特徴とする流量測定装置。  [0464] (7) The flow rate measuring device according to any one of (1) to (6), wherein the position of the sub temperature sensor is adjustable along the flow path.
[0465] (8) (1)ないし(7)のいずれかに記載の発明において、前記主温度センサまたは 副温度センサの測定値をアナログ/デジタル変換してデジタル回路に取り入れて処 理することを特徴とする流量測定装置。 [0465] (8) In the invention according to any one of (1) to (7), the measured value of the main temperature sensor or the sub temperature sensor is converted from analog to digital and incorporated into a digital circuit. A flow rate measuring device characterized by
[0466] (9) (1)ないし(8)のいずれかに記載の発明において、前記温調機構は、ベルチ ェ素子、ゼーベック素子、電磁波発生器、抵抗加熱線、サーミスタ、または白金抵抗 体を備えることを特徴とする流量測定装置。温調機構としては、加熱手段に限らず、 冷却手段を用いてもよい。  [0466] (9) In the invention according to any one of (1) to (8), the temperature adjustment mechanism includes a Bellecher element, a Seebeck element, an electromagnetic wave generator, a resistance heating wire, a thermistor, or a platinum resistor. A flow rate measuring device comprising: The temperature adjustment mechanism is not limited to the heating means, and a cooling means may be used.
[0467] (10) (1)ないし(9)のいずれかに記載の発明において、前記流路は、耐食性の ある材料から形成されていることを特徴とする流量測定装置。  [0467] (10) The flow rate measuring device according to any one of (1) to (9), wherein the flow path is made of a corrosion-resistant material.
[0468] (11) (10)に記載の発明において、前記材料は、ステンレス鋼、チタン、ポリエー テルエーテルケトン、ポリ四フッ化工チレン、またはポリクロ口トリフルォロエチレンであ ることを特徴とする流量測定装置。  [0468] (11) In the invention described in (10), the material is stainless steel, titanium, polyetheretherketone, polytetrafluoroethylene, or polytrifluoroethylene. Flow measurement device.
[0469] (12) (1)ないし(11)のいずれかに記載の流量測定装置と、前記流路の前記流 量測定装置より下流側部分に設けられた制御弁と、前記流量測定部により求められ た流量に基づいて、流体の流量が一定となるように前記制御弁を制御する制御部と を備えたことを特徴とする流量調整装置。  [0469] (12) By the flow rate measuring device according to any one of (1) to (11), a control valve provided in a downstream portion of the flow rate from the flow rate measuring device, and the flow rate measuring unit And a control unit that controls the control valve so that the flow rate of the fluid becomes constant based on the obtained flow rate.
[0470] (13) (12)に記載の発明において、前記制御弁は、流量を調整する弁と、前記弁 を駆動する駆動源とを有しており、該駆動源は、圧電素子、電磁石、サーボモータ、 またはステッピングモータを備えていることを特徴とする流量調整装置。本発明によ れば、応答性の良好な駆動源を用いることにより、流量測定部により測定された実流 量に基づいて速やかに弁を駆動させて流量を一定に保つことができる。  [0470] (13) In the invention described in (12), the control valve includes a valve for adjusting a flow rate and a drive source for driving the valve. The drive source includes a piezoelectric element and an electromagnet. , A servo motor, or a stepping motor. According to the present invention, by using a drive source with good responsiveness, it is possible to quickly drive the valve based on the actual flow rate measured by the flow rate measurement unit and keep the flow rate constant.
[0471] (14) (12)に記載の発明において、前記制御弁は、流量を調整する弁と、前記弁 を駆動する駆動源とを有しており、該駆動源は、複数の圧電素子が積層された構造 を有することを特徴とする流量調整装置。本発明によれば、高圧の流体が流れる場 合であっても、高圧や圧力変動の影響を受けることなく流量を一定に保つことができ る。  [0471] (14) In the invention described in (12), the control valve includes a valve for adjusting a flow rate and a drive source for driving the valve, and the drive source includes a plurality of piezoelectric elements. A flow rate adjusting device characterized by having a laminated structure. According to the present invention, even when a high-pressure fluid flows, the flow rate can be kept constant without being affected by high pressure or pressure fluctuation.
[0472] (15) (12)ないし(14)のいずれかに記載の発明において、前記制御弁を通過す る流体の圧力は IMPa〜: !OMPaであることを特徴とする流量測定装置。  [0472] (15) In the invention according to any one of (12) to (14), the pressure of the fluid passing through the control valve is IMPa to:! OMPa.
[0473] (16) (12)ないし(15)のいずれかに記載の発明において、前記制御弁を通過す る流体の流量は 0. 01〜: !OLZhであることを特徴とする流量測定装置。 [0474] (17) 流体を貯留する複数の容器と、流体を混合させる混合部と、混合した流体を 反応させる反応部と、(12)ないし(16)のいずれかに記載の流量調整装置とを備え たことを特徴とする流体反応装置。 [0473] (16) In the invention according to any one of (12) to (15), the flow rate of the fluid passing through the control valve is 0.01 to:! OLZh. . (17) A plurality of containers that store fluid, a mixing unit that mixes the fluid, a reaction unit that reacts the mixed fluid, and the flow control device according to any one of (12) to (16) A fluid reaction device characterized by comprising:
[0475] 以下、本発明の実施の形態に係る流量調整装置について図面を参照して説明す る。図 74は本発明の第 1の実施の形態に係る流量調整装置を示す模式図である。 図 74に示すように、本実施の形態の流量調整装置は、流路 4001を流れる液体 (流 体)の流量を測定する流量測定部 4010と、液体の流量を調整する制御弁 4020と、 流量測定部(流量測定装置) 4010により測定された流量に基づいて制御弁 4020を 制御する制御部 4030とから基本的に構成されている。 [0475] Hereinafter, a flow rate adjusting device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 74 is a schematic diagram showing the flow rate adjusting device according to the first embodiment of the present invention. As shown in FIG. 74 , the flow rate adjustment device of the present embodiment includes a flow rate measurement unit 4010 that measures the flow rate of the liquid (fluid) that flows through the flow path 4001, a control valve 4020 that adjusts the flow rate of the liquid, It basically comprises a control unit 4030 that controls the control valve 4020 based on the flow rate measured by the measurement unit (flow rate measuring device) 4010.
[0476] 流量測定部 4010は、流路 4001を流れる液体を所定の周期で加熱する温調機構 4002と、温調機構 4002の設置位置(温調位置 Ph)より下流側の第 1の測定点 Pml において液体の温度を測定する第 1の主温度センサ 4003と、第 1の測定点 Pmlより 下流側の第 2の測定点 Pm2において液体の温度を測定する第 2の主温度センサ 40 04とが設けられている。更にこれらの主温度センサとそれぞれ温調機構 4002に対し て対称な(等距離な)上流側の位置 Psl、 ps2に、それぞれ副温度センサ 4003a、 4a が設けられている。温調機構 4002と第 1の主温度センサ 4003の距離、および第 1の 主温度センサ 4003と第 2の主温度センサ 4004の距離 Dは特に限定されるものでは ないが、 0.5[mm]〜10[mm]が好ましレ、。温調機構 4002は流路 4001の壁部を取り囲 むように設けられており、流路 4001の壁部を介して液体を加熱する。この温調機構 4 002は温度制御部 4005に接続されており、最適な温度上昇率で液体を加熱するよ うになつている。なお、温調機構 4002としては、ペルチェ素子、ゼーベック素子、電 磁波発生器、抵抗加熱器などが好適に用いられる。また、温調機構 4002は、液体を 冷却することで液体に温度変化を与えるようにしてもよい。 [0476] The flow rate measuring unit 4010 includes a temperature control mechanism 4002 that heats the liquid flowing through the flow path 4001 at a predetermined cycle, and a first measurement point downstream of the installation position (temperature control position Ph) of the temperature control mechanism 4002 The first main temperature sensor 4003 that measures the temperature of the liquid at Pml and the second main temperature sensor 40 04 that measures the temperature of the liquid at the second measurement point Pm2 downstream from the first measurement point Pml Is provided. Furthermore, these primary temperature sensor and symmetrical (equidistant) to for each temperature adjustment mechanism 4002 upstream position Psl, the p s 2, respectively vice temperature sensor 4003a, 4a are provided. The distance D between the temperature control mechanism 4002 and the first main temperature sensor 4003 and the distance D between the first main temperature sensor 4003 and the second main temperature sensor 4004 are not particularly limited, but 0.5 [mm] to 10 [mm] is preferred. The temperature control mechanism 4002 is provided so as to surround the wall portion of the flow path 4001, and heats the liquid through the wall portion of the flow path 4001. This temperature control mechanism 4002 is connected to the temperature control unit 4005 so as to heat the liquid at an optimum rate of temperature increase. As the temperature control mechanism 4002, a Peltier element, Seebeck element, electromagnetic wave generator, resistance heater, or the like is preferably used. In addition, the temperature adjustment mechanism 4002 may change the temperature of the liquid by cooling the liquid.
[0477] 第 1の主温度センサ 4003と第 1の副温度センサ 4003aの出力は、第 1の差分検出 回路 8Aに入力され、同様に、第 2の主温度センサ 4004と第 2の副温度センサ 4004 aの出力は、第 2の差分検出回路 4008Bに入力されている。これらの差分検出回路 4 008A, 4008Bは、 f列えば図 75に示すようなブリッジ回路 4008Cによって構成され、 主温度センサ 4003, 4004と畐 IJ温度センサ 4003a, 4004a力、らの差分信号を、時間 差測定部 4009に出力する。時間差測定部 4009は、各差分信号の変化から、加熱 された液体が 2つの測定点 PI , P2を通過する時間をそれぞれ算出し、その差に基 づいて液体の流速、つまり流量を求める。 [0477] The outputs of the first main temperature sensor 4003 and the first sub temperature sensor 4003a are input to the first difference detection circuit 8A. Similarly, the second main temperature sensor 4004 and the second sub temperature sensor The output of 4004a is input to the second difference detection circuit 4008B. These differential detection circuits 4 008A and 4008B are constituted by a bridge circuit 4008C as shown in FIG. 75, if f columns, and the difference signals of the main temperature sensors 4003 and 4004 and the IJ temperature sensors 4003a and 4004a force, Output to the difference measurement unit 4009. The time difference measurement unit 4009 calculates the time for the heated liquid to pass through the two measurement points PI and P2 from the change of each difference signal, and obtains the liquid flow rate, that is, the flow rate based on the difference.
[0478] 装置の稼動の初期に主温度センサ 4003, 4004と畐 IJ温度センサ 4003a, 4004a の出力をバランスさせる必要が有る。これは、流路 4001に流体が流れていなレ、(流 速ゼロ)の状態で、差分出力がゼロとなるようにしなければならなレ、。これは、主温度 センサ 4003, 4004と畐 IJ温度センサ 4003a, 4004aを対称位置に酉己置した状態で、 ブリッジ回路 4008Cの抵抗 Rl, R2を調整して行なう方法と、ブリッジ回路 4008Cの 抵抗 Rl , R2は等しくしておき、主温度センサ 4003, 4004と畐 IJ温度センサ 4003a, 4004aの対称関係をずらせて調整する方法とが有る。現場の状況は複雑であり、い ずれの方法が正しいというものではなぐ状況に応じて適宜に選択し、あるいは両方 を組み合わせて行っても良い。  [0478] It is necessary to balance the outputs of the main temperature sensors 4003 and 4004 and the IJ temperature sensors 4003a and 4004a at the beginning of the operation of the equipment. This is because the fluid is not flowing in the flow path 4001, and the differential output must be zero in the state of (flow velocity zero). This is done by adjusting the resistances Rl and R2 of the bridge circuit 4008C with the main temperature sensors 4003 and 4004 and the IJ temperature sensors 4003a and 4004a placed in symmetrical positions, and the resistance Rl of the bridge circuit 4008C. , R2 are set equal, and the main temperature sensors 4003 and 4004 and the IJ temperature sensors 4003a and 4004a are adjusted by shifting the symmetrical relationship. The situation at the site is complex, and either method may not be correct, and it may be selected as appropriate according to the situation, or a combination of both.
[0479] なお、主温度センサ 4003, 4004と畐 IJ温度センサ 4003a, 4004aの差分を取り出 す方法としては、上記のようなブリッジ回路 4008Cを用いたアナログ的方法の他に、 各温度センサの温度信号をアナログ/デジタル変換してデジタル回路に取り入れ、 ソフトウェアで差分を算出する方法でもよい。この場合、ブリッジ回路を通さないで入 力しても良いし、ブリッジ回路通過後のピーク検出以降をデジタル処理しても良い。  [0479] In addition to the analog method using the bridge circuit 4008C as described above, the method for extracting the difference between the main temperature sensors 4003 and 4004 and the IJ temperature sensors 4003a and 4004a A method may be used in which the temperature signal is converted from analog to digital and incorporated into a digital circuit, and the difference is calculated by software. In this case, the input may be made without passing through the bridge circuit, or the digital signal may be processed after the peak detection after passing through the bridge circuit.
[0480] 流路 4001は基本的に密閉系であり、反応性の大きい、あるいは環境に対して有害 であったり危険な液体を扱う場合もあるので、開口部を形成することは好ましくない。 従って、この例では、温調機構 4002、第 1の主温度センサ 4003および第 2の主温 度センサ 4004は、いずれも流路 4001を構成する配管 4001Aの外面に取り付けら れている。それぞれの副温度センサも同様に流路 4001の外面に取り付けられている 。従って、これらの温度センサ 4003, 4003a, 4004, 4004aは、流路 4001の壁部 を介して液体の温度を測定するようになっている。なお、温度センサ 4003, 4003a, 4004, 4004aとしては、応答性に優れたサーミスタ式温度計や熱電対などが好適に 用いられる。もちろん、流路 4001の壁部に、温調機構 4002や温度センサ 4003, 40 03a, 4004, 4004aを してもょレヽ 0レヽずれの も、 ¾" する fiitセンサ 40 03, 4004と畐 IJ温度センサ 4003a, 4004aは同じ設置方法を採用することが好ましい [0481] 時間差測定部 4009により液体の流量が測定される原理は、図 73により説明した通 りである。すなわち、液体が流れている状態で温調機構 4002が図 73に示すようなパ ノレス負荷で液体を加熱すると、加熱された液体は下流側に流れ、第 1の測定点 Pml および第 2の測定点 Pm2をこの順に通過する。このとき、第 1の測定点 Pmlにおける 液体の温度は第 1の主温度センサ 4003により測定され、第 2の測定点 P2における 液体の温度は第 2の主温度センサ 4004により測定される。 [0480] Since the channel 4001 is basically a closed system and may handle liquids that are highly reactive or harmful to the environment or dangerous, it is not preferable to form an opening. Therefore, in this example, the temperature adjustment mechanism 4002, the first main temperature sensor 4003, and the second main temperature sensor 4004 are all attached to the outer surface of the pipe 4001A constituting the flow path 4001. Each sub temperature sensor is similarly attached to the outer surface of the flow path 4001. Therefore, these temperature sensors 4003, 4003a, 4004, 4004a measure the temperature of the liquid via the wall portion of the flow path 4001. As the temperature sensors 4003, 4003a, 4004, and 4004a, a thermistor type thermometer or a thermocouple having excellent responsiveness is preferably used. Of course, the wall of the channel 4001, temperature adjustment mechanism 4002 and temperature sensor 4003, 40 03a, 4004, also to Yo Rere 0 Rere displaced even a 4004a, FIIT sensor 40 for ¾ "03, 4004 and畐IJ Temperature Sensors 4003a and 4004a preferably use the same installation method [0481] The principle by which the flow rate of the liquid is measured by the time difference measuring unit 4009 is as described with reference to FIG. That is, when the temperature adjustment mechanism 4002 heats the liquid with a panoramic load as shown in FIG. 73 while the liquid is flowing, the heated liquid flows downstream, and the first measurement point Pml and the second measurement are performed. It passes through the point Pm2. At this time, the temperature of the liquid at the first measurement point Pml is measured by the first main temperature sensor 4003, and the temperature of the liquid at the second measurement point P2 is measured by the second main temperature sensor 4004.
[0482] ここで、これらの主温度センサ 4003, 4004は、流路の壁部の温度を測定している ので、温調機構 4002からの熱は壁部を通って流体に伝わり、更に下流側で再度壁 部を通して温度センサに伝わる。従って、温調機構 4002が与えた熱量が壁部を 2度 通過する間に、配管 4001 Aを通しての熱伝導や外部からの影響のために、温度検 出部の距離が離れた場合に純粋な流体の温度変化が検出しにくくなる。そこで、この 実施の形態では、各主温度センサ 4003, 4004について温調機構 4002に対して対 称な位置に副温度センサ 4003a, 4004aを配置し、周囲温度変化と管壁伝熱の影 響を測定する。そして、この畐 IJ温度センサ 4003a, 4004aと主温度センサ 4003, 40 04の温度信号の差分を取ることによって、周囲温度変化と管壁伝熱の影響をキャン セルした流体自体の温度変化を測定する。これによつて、流体に与える熱量を大きく しても、流体の温度変化自体を正確に検出することができるため、温度検出位置間 の距離を大きくし、広い流量範囲で正確な流量検出を行なうことができる。  [0482] Here, since these main temperature sensors 4003 and 4004 measure the temperature of the wall portion of the flow path, the heat from the temperature control mechanism 4002 is transferred to the fluid through the wall portion and further downstream. Then it is transmitted again to the temperature sensor through the wall. Therefore, while the amount of heat given by the temperature control mechanism 4002 passes through the wall twice, it is pure when the distance between the temperature detection parts is increased due to heat conduction through the pipe 4001 A and external influences. It becomes difficult to detect the temperature change of the fluid. Therefore, in this embodiment, the auxiliary temperature sensors 4003a and 4004a are arranged at positions opposite to the temperature control mechanism 4002 for the main temperature sensors 4003 and 4004, and the influence of ambient temperature change and tube wall heat transfer is measured. taking measurement. Then, by measuring the difference between the temperature signals of the IJ temperature sensors 4003a and 4004a and the main temperature sensors 4003 and 4004, the ambient temperature change and the temperature change of the fluid itself that has canceled the influence of tube wall heat transfer are measured. . As a result, even if the amount of heat applied to the fluid is increased, the temperature change of the fluid itself can be detected accurately, so the distance between the temperature detection positions is increased and accurate flow rate detection is performed over a wide flow rate range. be able to.
[0483] すなわち、第 1の主温度センサ 4003および副温度センサ 4003aの出力信号(図 7 3 (a)の S1および si)は差分検出回路 4008Aに入力されてそれらの差分信号(図 7 3 (b)の Δ S1)が出力され、第 2の温度センサ 4004および副温度センサ 4004aの出 力信号(図 73 (a)の S2および s2)は差分検出回路 4008Bに入力されてそれらの差 分信号(図 73 (b)の Δ S2)が出力され、これらの出力は連続的に時間差測定部 400 9に送られる。時間差測定部 4009は、これらの出力 A S1, A S2の変化を監視し、そ れらがピークに達した(変化率 =0の)時の時刻をそれぞれ記録し、その時間差 A tを 算出し、下記の式によって流量に換算する。  That is, the output signals of the first main temperature sensor 4003 and the sub temperature sensor 4003a (S1 and si in FIG. 7 3 (a)) are input to the difference detection circuit 4008A and the difference signals (FIG. 7 3 ( b) Δ S1) is output, and the output signals of the second temperature sensor 4004 and the sub temperature sensor 4004a (S2 and s2 in Fig. 73 (a)) are input to the difference detection circuit 4008B and their difference signals are output. (ΔS2 in FIG. 73 (b)) is output, and these outputs are continuously sent to the time difference measurement unit 4009. The time difference measurement unit 4009 monitors changes in these outputs A S1 and A S2, records the times when they reach the peak (rate of change = 0), and calculates the time difference At. The flow rate is converted by the following formula.
[0484] 流量 =温度測定点間の距離 (D) X流路の断面積 ÷時間差(A t) なお、図 73 (a)の測定時間差 Δ ΐは、従来の方法の場合を比較のために示しており 、主温度センサ 4003, 4004の温度測定値自体のピークの時間差を採用している。 [0484] Flow rate = Distance between temperature measurement points (D) X channel cross-sectional area ÷ time difference (A t) Note that the measurement time difference Δΐ in FIG. 73 (a) shows the case of the conventional method for comparison, and employs the time difference of the peak of the temperature measurement values of the main temperature sensors 4003 and 4004 themselves.
[0485] ここでは流体の流量を温度変化のピークの移動速度に基づいて求めている力 温 度変化曲線の対応する他の 2点間の時間差を求めてもよい。例えば、 2つの温度力 ーブの立ち上がり時の時間差を求めてもよい。  [0485] Here, the time difference between the other two corresponding points of the force-temperature change curve obtained by determining the fluid flow rate based on the moving speed of the peak of temperature change may be obtained. For example, the time difference between the rises of two temperature forces may be obtained.
[0486] 流量測定部 4010による上記のような流量算出の方法は、アナログ回路で製作して もデジタル処理で行っても構わなレ、。デジタル処理で行う場合は、温度センサ 4003 , 4003a, 4004, 4004aの信号をアナログ/デジタル変換して入力しても、差分検 出回路 4008A, 4008Bを通過した後の差分信号をアナログ/デジタル変換して入 力する方法でもよい。  [0486] The above flow rate calculation method by the flow rate measurement unit 4010 may be produced by an analog circuit or digitally. When digital processing is used, even if the signals from the temperature sensors 4003, 4003a, 4004, and 4004a are input after analog / digital conversion, the difference signals after passing through the difference detection circuits 4008A and 4008B are converted to analog / digital. You can also use the input method.
[0487] 図 74に示すように、制御弁 4020は流量測定部 4010の下流側に配置されている。  As shown in FIG. 74, the control valve 4020 is arranged on the downstream side of the flow rate measuring unit 4010.
この制御弁 4020は、液体の流れに対向するように配置されたピストン(弁) 4021と、 ピストン 4021を駆動する圧電素子 (駆動源) 4022とを備えている。圧電素子 (圧電ァ クチユエータ) 4022はピストン 4021の裏面に固定され、圧電素子 4022とピストン 40 21とは一体的に構成されている。ピストン 4021および圧電素子 4022はピストン室 4 023に収容されてレヽる。流路 4001のー咅は T字路となっており、ピストン 4021は、 T 字路に流れ込む液体がピストン 4021の前面にぶっかるように配置されている。圧電 素子 4022に電圧が印加されると圧電素子 4022が伸縮し、これによりピストン 4021 を液体の流れ方向に沿って移動させてピストン 4021の開度 αを調整する。  The control valve 4020 includes a piston (valve) 4021 disposed so as to oppose the liquid flow, and a piezoelectric element (drive source) 4022 for driving the piston 4021. The piezoelectric element (piezoelectric actuator) 4022 is fixed to the back surface of the piston 4021, and the piezoelectric element 4022 and the piston 4021 are integrally formed. The piston 4021 and the piezoelectric element 4022 are accommodated in the piston chamber 4023 and moved. The soot in the channel 4001 has a T-junction, and the piston 4021 is arranged so that the liquid flowing into the T-junction hits the front surface of the piston 4021. When a voltage is applied to the piezoelectric element 4022, the piezoelectric element 4022 expands and contracts, thereby moving the piston 4021 along the liquid flow direction to adjust the opening degree α of the piston 4021.
[0488] ピストン 4021の上流側には絞り部 4001aが設けられており、ここで流路 4001を絞 り込むことにより、ピストン 4021による正確な流量調整を可能としている。上述したピ ストン室 4023は有底円筒状に形成されており、このピストン室 4023は流路 4001の 外面に液密に固定されている。このような構成により、ピストン 4021と流路 4001との 隙間力 液体が漏れた場合でも、液体がピストン室 4023の内部に保持されるので、 液体の外部への漏洩が防止される。  [0488] A throttle 4001a is provided on the upstream side of the piston 4021. By narrowing the flow path 4001, the flow rate can be accurately adjusted by the piston 4021. The piston chamber 4023 described above is formed in a bottomed cylindrical shape, and the piston chamber 4023 is fixed to the outer surface of the flow path 4001 in a liquid-tight manner. With such a configuration, even when the gap force between the piston 4021 and the flow path 4001 leaks, the liquid is held inside the piston chamber 4023, so that leakage of the liquid to the outside is prevented.
[0489] 本実施の形態に係る流量調整装置を組み込んだマイクロリアクタでは、試薬どうし の反応により流量調整装置の下流側で反応生成物が生成される。この場合、反応生 成物の種類によっては、流量調整装置の下流側の液体の圧力が上昇し、流路 4001 力 液体が漏れるおそれがある。本実施の形態によれば、有底円筒状のピストン室 4 023により液体の外部への漏洩を防止することができるので、正確な流量調整が可 能となる。 [0489] In the microreactor incorporating the flow control device according to the present embodiment, a reaction product is generated on the downstream side of the flow control device by the reaction between the reagents. In this case, depending on the type of reaction product, the pressure of the liquid on the downstream side of the flow controller increases, and the flow path 4001 Force Liquid may leak. According to the present embodiment, leakage of liquid to the outside can be prevented by the bottomed cylindrical piston chamber 4023, so that accurate flow rate adjustment is possible.
[0490] 次に、制御部 4030について説明する。制御部 4030は、時間差測定部 4009に接 続された増幅器 4032と、流量を一定に保っためのピストン 4021の開度を決定する 比較部(PID制御部) 4033と、制御弁 4020の圧電素子 4022に印加する電圧を生 成するピストン駆動回路 4034とを備えている。増幅器 4032は、時間差測定部 4009 により算出された液体の流量 (実流量)を表す信号を増幅し、増幅後の信号 (実流量 )を比較部 4033に送る。比較部 4033には設定流量(目標値)が予め入力されており 、比較部 4033は、実流量と設定流量とを比較し、実流量を設定流量に一致させるた めのピストン 4021の開度を演算する。比較部 4033により演算されたピストン 4021の 開度はピストン駆動回路 4034により電圧に変換される。そして、この電圧が圧電素 子 4022に印カロされ、圧電素子 4022によりピストン 4021が駆動される。このようにし て、制御弁 4020を通過する液体の流量が常に一定となるように制御部 4030によつ て制御弁 4020が制御される。  Next, the control unit 4030 will be described. The control unit 4030 includes an amplifier 4032 connected to the time difference measurement unit 4009, a comparison unit (PID control unit) 4033 that determines the opening of the piston 4021 for keeping the flow rate constant, and a piezoelectric element 4022 of the control valve 4020. And a piston drive circuit 4034 for generating a voltage to be applied to. The amplifier 4032 amplifies the signal representing the liquid flow rate (actual flow rate) calculated by the time difference measurement unit 4009 and sends the amplified signal (actual flow rate) to the comparison unit 4033. The set flow rate (target value) is input in advance to the comparison unit 4033. The comparison unit 4033 compares the actual flow rate with the set flow rate, and determines the opening degree of the piston 4021 for matching the actual flow rate with the set flow rate. Calculate. The opening degree of the piston 4021 calculated by the comparison unit 4033 is converted into a voltage by the piston drive circuit 4034. This voltage is applied to the piezoelectric element 4022, and the piston 4021 is driven by the piezoelectric element 4022. In this way, the control valve 4020 is controlled by the control unit 4030 so that the flow rate of the liquid passing through the control valve 4020 is always constant.
[0491] 流量測定部 4010の測定結果を制御弁 4020の動作に速やかに反映させるために は、流量測定部 4010と制御弁 4020との間の流路 4001の距離はできるだけ短いこ とが好ましい。すなわち、第 2の主温度センサ 4004とピストン 4021との距離は、好ま しくは 10〜: 100mm、より好ましくは 10〜50mm、さらに好ましくは 10〜20mmであ る。また、制御弁 4020に用いられる駆動源(ァクチユエータ)には圧電素子のような 応答性の優れたものを用いることが好ましい。このようにすることで、流路 4001を流 れる流量の変動(脈動)を速やかに解消することができ、一定の流量を保つことがで きる。  [0491] In order to quickly reflect the measurement result of the flow measurement unit 4010 in the operation of the control valve 4020, the distance of the flow path 4001 between the flow measurement unit 4010 and the control valve 4020 is preferably as short as possible. That is, the distance between the second main temperature sensor 4004 and the piston 4021 is preferably 10 to 100 mm, more preferably 10 to 50 mm, and still more preferably 10 to 20 mm. In addition, it is preferable to use a drive source (actuator) used for the control valve 4020 having excellent responsiveness such as a piezoelectric element. In this way, fluctuations (pulsations) in the flow rate flowing through the flow path 4001 can be quickly eliminated, and a constant flow rate can be maintained.
[0492] この流量調整装置は、 2種類またはそれ以上の液体を反応させる流体反応装置( マイクロリアクタ)に好適に用いられる。一般に、液体を混合させる混合空間が小さい ほど、液体の混合が速やかに行われる。本実施の形態に係る流量調整装置の流路 4 001の内径は、好ましくは 0.:!〜 5mmであり、より好ましくは 0.:!〜 2mmであり、さら に好ましくは 0. 1〜: 1mmである。また、微少量のみを取り扱い範囲とする場合には、 最小径を 0. 02mmまでとすることも可能である。なお、流路の幅(内径)が小さくなる と、液体を高圧で移送することが必要となってくる。本実施の形態では、流量調整装 置の出口(制御弁 4020の下流側)における液体の圧力は IMPa〜: 10MPa、 2MPa 〜5MPa、または 3MPa〜4MPaである。 [0492] This flow control device is suitably used for a fluid reaction device (microreactor) that reacts two or more kinds of liquids. In general, the smaller the mixing space for mixing the liquid, the faster the liquid is mixed. The inner diameter of the flow path 4001 of the flow control device according to the present embodiment is preferably 0.:! To 5 mm, more preferably 0.:! To 2 mm, and further preferably 0.1 to: 1mm. Also, if you want to handle only a small amount, The minimum diameter can be up to 0.02 mm. If the width (inner diameter) of the flow path is reduced, it becomes necessary to transfer the liquid at a high pressure. In the present embodiment, the pressure of the liquid at the outlet of the flow rate adjusting device (downstream of the control valve 4020) is IMPa˜: 10 MPa, 2 MPa˜5 MPa, or 3 MPa˜4 MPa.
[0493] 取り扱う液体としては、試薬、有機溶媒、生化学物質などが挙げられる。したがって 、流路 4001を構成する材料としては、耐食性を有するものであることが好ましい。ま た、上述したように、第 1の主温度センサ 4003および第 2の主温度センサ 4は流路 4 001の壁部を介して液体の温度を測定するため、流路 4001を構成する材料は、熱 伝導性に優れ、—40〜: 150°Cの広い温度範囲に耐えるものが好ましい。さらに、流 路 4001を構成する材料は、液体の高圧に耐えうるものであることが好ましい。これら の点を考慮し、流路 4001を構成する材料の好ましい例として、 SUS316、 SUS304 、 Ti、石英ガラス、パイレックス(登録商標)ガラス等の硬質ガラス、 PEEK (polyethere therketone)、 PE ^polyethylene)、 PVC (polyvinylchlonde;、 PDMS (Polydimethylsii oxane)、 Si、 PTFE (polytetrafluoroethylene)、 PCTFE (Polychlorotrifluoroethylene) 、および PFA (perfluoroalkoxylalkane)などの樹脂が挙げられる。  [0493] Liquids to be handled include reagents, organic solvents, biochemical substances, and the like. Therefore, it is preferable that the material constituting the flow path 4001 has corrosion resistance. Further, as described above, the first main temperature sensor 4003 and the second main temperature sensor 4 measure the temperature of the liquid through the wall portion of the flow path 4001, so that the material constituting the flow path 4001 is It is preferable that it has excellent thermal conductivity and can withstand a wide temperature range of -40 to 150 ° C. Further, the material constituting the flow path 4001 is preferably one that can withstand the high pressure of the liquid. Considering these points, preferable examples of the material constituting the flow path 4001 include hard glass such as SUS316, SUS304, Ti, quartz glass, and Pyrex (registered trademark) glass, PEEK (polyethere therketone), PE ^ polyethylene), Examples include PVC (polyvinylchlonde;), PDMS (Polydimethylsiioxane), Si, PTFE (polytetrafluoroethylene), PCTFE (Polychlorotrifluoroethylene), and PFA (perfluoroalkoxylalkane).
[0494] ステンレス鋼または Tiを用いる場合は、流路 4001の壁部の肉厚は 0. 01〜0. lm mとすることが好ましぐ PEEK, PTFE, PCTFE, PFAなどの樹脂を用いる場合は 、流路 4001の壁部の肉厚は 0.:!〜 lmmとすることが好ましい。熱伝導性を考えると 、熱容量の小さい Tiを用いることが好ましい。樹脂を用いる場合は、第 1の主温度セ ンサ 4003および第 2の主温度センサ 4004が取り付けられる流路 4001の部位の肉 厚を局所的に薄くして熱伝導率を向上させることが好ましい。  [0494] When stainless steel or Ti is used, it is preferable that the wall thickness of the channel 4001 be 0.01 to 0.1 lm. When using a resin such as PEEK, PTFE, PCTFE, or PFA The wall thickness of the channel 4001 is preferably 0.:! To lmm. Considering thermal conductivity, it is preferable to use Ti with a small heat capacity. When resin is used, it is preferable to improve the thermal conductivity by locally reducing the thickness of the portion of the flow path 4001 to which the first main temperature sensor 4003 and the second main temperature sensor 4004 are attached.
[0495] 図 76は制御弁の他の構成例を示す拡大図である。上述したように、ピストン 4021 を駆動する駆動源には高圧の液体に抗してピストン 4021を駆動させることが要求さ れる。図 76に示す構成例では、駆動力を増すために、 2つの圧電素子 4022を積層 させている。このような構成により、液体が高圧の場合であっても、ピストン 4021の開 度ひを正確に調整することができ、流量を一定に保つことができる。なお、必要に応 じて 3つ以上の圧電素子を積層させてもよい。  FIG. 76 is an enlarged view showing another configuration example of the control valve. As described above, the drive source that drives the piston 4021 is required to drive the piston 4021 against high-pressure liquid. In the configuration example shown in FIG. 76, two piezoelectric elements 4022 are stacked in order to increase the driving force. With such a configuration, even when the liquid is at a high pressure, the opening angle of the piston 4021 can be accurately adjusted, and the flow rate can be kept constant. If necessary, three or more piezoelectric elements may be laminated.
[0496] 図 77は、この発明の第 2の実施の形態を示すもので、先の実施の形態を簡略化し たものである。なお、特に説明しない本実施の形態の構成は、上述した第 1の実施の 形態の構成と同じであるので、その重複する説明を省略する。 FIG. 77 shows a second embodiment of the present invention, which simplifies the previous embodiment. It is a thing. Note that the configuration of the present embodiment that is not particularly described is the same as the configuration of the first embodiment described above, and thus redundant description thereof is omitted.
[0497] ここでは、第 1の主温度センサ 4003に対応する副温度センサ 4003aのみを設置し 、第 2の主温度センサ 4004については、対応する副温度センサを設けていなレ、。第 1の主温度センサ 4003および副温度センサ 4003aの処理は第 1の差分検出回路 4 008Aを介して時間差測定部 4009に入力され、第 2の副温度センサの出力はその まま時間差測定部 4009に入力されている。従って、時間差測定部 4009は、第 1の 温度測定位置 Pmlについては、差分(図 78に示す Δ S1の温度曲線)を基にピーク を判断する力 第 2の温度測定位置 Pm2については、主温度センサ 4004の測定値 力 ピークを判断する。  Here, only the sub temperature sensor 4003a corresponding to the first main temperature sensor 4003 is installed, and the corresponding sub temperature sensor is not provided for the second main temperature sensor 4004. The processing of the first main temperature sensor 4003 and the sub temperature sensor 4003a is input to the time difference measurement unit 4009 via the first difference detection circuit 4008A, and the output of the second sub temperature sensor is directly input to the time difference measurement unit 4009. Have been entered. Therefore, the time difference measuring unit 4009 has the power to judge the peak based on the difference (temperature curve of ΔS1 shown in FIG. 78) for the first temperature measurement position Pml. For the second temperature measurement position Pm2, the main temperature Sensor 4004 measured force Determine peak.
[0498] これは、温調位置 Phから距離が離れることによって、配管 4001A等の熱は外部に 逃げて、測定値への影響が少なくなるからである。また、第 2の温度測定位置 Pm2で は、流体からの温度信号も小さくなるため、差分を取らない方が信号を検出し易くな るという点も考慮している。  [0498] This is because as the distance from the temperature control position Ph increases, the heat of the pipe 4001A and the like escapes to the outside, and the influence on the measured value is reduced. In addition, since the temperature signal from the fluid is small at the second temperature measurement position Pm2, it is considered that the signal is easier to detect if the difference is not taken.
[0499] このようにすることで、必要とする検出精度を確保しつつ、 1つの温度センサと差分 検出回路とを省いて、構成を簡略化し、コストを低下させること力 Sできる。また、流量 測定部 4010の全長や、配管 4001Aの直線部の長さを小さくすることができるので、 装置寸法の縮小化や、装置の設計の自由度の増加等を図ることができる。  [0499] By doing so, it is possible to save one temperature sensor and the difference detection circuit while ensuring the necessary detection accuracy, simplify the configuration, and reduce the cost. In addition, since the total length of the flow rate measuring unit 4010 and the length of the straight line portion of the pipe 4001A can be reduced, the size of the device can be reduced and the degree of freedom in designing the device can be increased.
[0500] 次に、本発明の第 3の実施の形態について図 79を参照して説明する。図 79は本 発明の第 3の実施の形態に係る流量調整装置を示す模式図である。図 79に示すよう に、本実施の形態では、第 1の主温度センサ 4003、第 1の副温度センサ 4003aおよ び第 1の差分検出回路 4008Aが省かれており、流量測定部 4010は、第 2の主温度 センサ 4004、第 2の副温度センサ 4004aおよび第 2の差分検出回路 4008B力 時 間差測定部 4009に接続されて構成されている。本実施の形態では、第 1の測定点 P mlは温調機構 4002の位置 Phと重なる。  [0500] Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 79 is a schematic diagram showing a flow rate adjusting device according to a third embodiment of the present invention. As shown in FIG. 79, in the present embodiment, the first main temperature sensor 4003, the first sub temperature sensor 4003a, and the first difference detection circuit 4008A are omitted, and the flow rate measurement unit 4010 The second main temperature sensor 4004, the second sub temperature sensor 4004a, and the second difference detection circuit 4008B force time difference measurement unit 4009 are connected to each other. In the present embodiment, the first measurement point P ml overlaps with the position Ph of the temperature adjustment mechanism 4002.
[0501] ここで、本実施の形態の流量測定部 4010により流量が測定される原理について図 80を参照して説明する。流路 4001を流れる液体は温調機構 4002による熱負荷パ ノレス HLを受けて加熱され、昇温し始める。加熱パルスは矩形波、三角波、サイン波 等が適宜に使用される。なお、熱負荷パルス HLの負荷時間は、 0. 001秒から 100 秒、好ましくは、 0. 01秒力ら 10秒であり、更に好ましくは、 0. 1秒から 1秒である。カロ 熱された液体は流路 4001を流れ、やがて第 2の測定点 P2を通過する。このとき、第 2の温度センサ 4004と第 1の側温度センサ 4004aの差分により温度カーブ Δ S2が 検出される。そして、時間差測定部 4009によりそのピークが判定され、熱負荷パルス HLの代表点の時間との時間差 A tが求められ、上述した式により液体の流量が算出 される。なお、熱負荷パルス HLの代表点は、この例ではパルスの後端側の点を採用 しているが、流体の温度上昇に対応する適当な点を、実験的に求めて採用すればよ レ、。 [0501] Here, the principle of how the flow rate is measured by the flow rate measurement unit 4010 of the present embodiment will be described with reference to FIG. The liquid flowing in the channel 4001 is heated by the thermal load panelless HL by the temperature control mechanism 4002 and starts to rise in temperature. Heating pulses are rectangular, triangular, and sine waves Etc. are used as appropriate. The loading time of the thermal load pulse HL is from 0.001 to 100 seconds, preferably from 0.01 second to 10 seconds, and more preferably from 0.1 to 1 second. Caro The heated liquid flows through the channel 4001 and eventually passes through the second measurement point P2. At this time, the temperature curve ΔS2 is detected by the difference between the second temperature sensor 4004 and the first side temperature sensor 4004a. Then, the peak is determined by the time difference measuring unit 4009, the time difference At from the time of the representative point of the thermal load pulse HL is obtained, and the flow rate of the liquid is calculated by the above formula. In this example, the point at the rear end of the pulse is used as the representative point of the thermal load pulse HL. However, an appropriate point corresponding to the temperature rise of the fluid can be obtained experimentally and used. ,.
[0502] 図 79に示すように、本実施の形態の制御弁 4020では、ピストン 4021に代えて円 柱状のスプール 4024が用いられている。このスプーノレ 4024は流路 4001の丁字路 に配置されており、その先端は流路 4001に摺動可能に嵌め込まれている。スプール 4024の端部には磁性体(例えば鉄心) 4025が取り付けられており、磁性体 4025の 周囲には電磁石 4026が配置されている。電磁石 4026と流路 4001との間にはシー ル部材 4027が配置されており、このシール部材 4027により液体の漏洩が防止され ている。磁性体 4025は電磁石 4026により形成された電磁力により駆動され、これに よりスプール 4024がその軸方向に沿って移動する。なお、このような構成を有する制 御弁 4020は、ソレノイドバルブ(電磁弁)と呼ばれている。  As shown in FIG. 79, in the control valve 4020 of the present embodiment, a columnar spool 4024 is used instead of the piston 4021. The spunole 4024 is disposed in the clog path of the flow path 4001, and its tip is slidably fitted in the flow path 4001. A magnetic body (for example, an iron core) 4025 is attached to the end of the spool 4024, and an electromagnet 4026 is disposed around the magnetic body 4025. A seal member 4027 is disposed between the electromagnet 4026 and the flow path 4001, and liquid leakage is prevented by the seal member 4027. The magnetic body 4025 is driven by the electromagnetic force formed by the electromagnet 4026, whereby the spool 4024 moves along its axial direction. Note that the control valve 4020 having such a configuration is called a solenoid valve (solenoid valve).
[0503] 図 81は図 79に示すスプールの斜視図である。図 81に示すように、スプーノレ 4024 の側面には、斜めに延びる溝 4024aが形成されている。溝 4024aは三角形状の断 面を有しており、その断面の大きさは軸方向位置に応じて変化する。すなわち、溝 40 24aの断面はスプール 4024の先端において最も大きぐ断面位置が反対側端部に 向力、うにしたがって徐々に小さくなる。液体はこの溝 4024aを通って流れるので、ス プール 4024を軸方向に移動させることにより流量を調整することができる。この場合 、スプール(弁) 4024の開度ひは、流路 4001から突出した溝 4024aの長さによって 表すことができる。  FIG. 81 is a perspective view of the spool shown in FIG. 79. As shown in FIG. 81, an obliquely extending groove 4024a is formed on the side surface of the spunole 4024. The groove 4024a has a triangular cross-section, and the size of the cross section changes according to the axial position. That is, the cross-section of the groove 4024a gradually decreases as the cross-sectional position that is the largest at the tip of the spool 4024 is directed toward the opposite end. Since the liquid flows through the groove 4024a, the flow rate can be adjusted by moving the spool 4024 in the axial direction. In this case, the opening degree of the spool (valve) 4024 can be expressed by the length of the groove 4024a protruding from the flow path 4001.
[0504] 本実施の形態の制御部 4030は、ピストン駆動回路に代えて、スプール駆動回路 4 035を備えてレ、る。このスプール駆動回路 4035は、比較部 4033により演算されたス プール 4024の開度を電流に変換し、この電流が電磁石 4026に供給されることでス プール 4024が移動する。このようにして、制御弁 4020を通過する液体の流量が常 に一定となるように制御部 4030によって制御弁 4020が制御される。なお、液体が高 圧であっても正確に流量を一定とするために、大きな電磁力を発生させることができ る電磁石を用いることが好ましレ、。 [0504] The control unit 4030 of this embodiment includes a spool drive circuit 4035 instead of the piston drive circuit. The spool drive circuit 4035 is a spool calculated by the comparison unit 4033. The opening degree of the pool 4024 is converted into current, and this current is supplied to the electromagnet 4026, so that the spool 4024 moves. In this way, the control valve 4020 is controlled by the control unit 4030 so that the flow rate of the liquid passing through the control valve 4020 is always constant. Note that it is preferable to use an electromagnet that can generate a large electromagnetic force in order to maintain a constant flow rate even when the liquid is at a high pressure.
[0505] 次に、本発明の第 4の実施の形態について図 82を参照して説明する。図 82は本 発明の第 4の実施の形態に係る流量調整装置を示す模式図である。なお、特に説明 しない本実施の形態の構成は、上述した第 1の実施の形態の構成と同じであるので 、その重複する説明を省略する。  [0505] Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 82 is a schematic diagram showing a flow rate adjusting device according to a fourth embodiment of the present invention. Since the configuration of the present embodiment not specifically described is the same as the configuration of the first embodiment described above, the redundant description thereof is omitted.
[0506] 図 82に示すように、本実施の形態の制御弁 4020は、ピストン 4021に代えて逆三 角錐形状のポペット 4041を備えている。このポペット 4041は、流路 4001の丁字路に 位置しており、その先端が液体の流れに対向するように配置されている。ポペット 40 41にはシャフト 4042がー体的に固定されており、このシャフト 4042は有底円筒状の シャフトガイド 4043に嵌合されている。シャフトガイド 4043の外周面には歯車 4044 力 s設けられており、この歯車 4044は、サーボモータ 4045に連結された歯車 4046と 嚙み合っている。シャフト 4042は、キーやキー溝などの回転防止機構(図示せず)に より回転しないように構成されている。なお、ポペット 4041、シャフト 4042、およびシ ャフトガイド 4043とは同軸上に整列されている。 As shown in FIG. 82, the control valve 4020 of the present embodiment includes an inverted triangular pyramid-shaped poppet 4041 instead of the piston 4021. The poppet 4041 is located on the clog path of the flow path 4001, and is arranged so that the tip thereof faces the liquid flow. A shaft 4042 is physically fixed to the poppet 40 41, and this shaft 4042 is fitted to a bottomed cylindrical shaft guide 4043. A gear 4044 force s is provided on the outer peripheral surface of the shaft guide 4043, and the gear 4044 meshes with a gear 4046 connected to a servo motor 4045. The shaft 4042 is configured not to rotate by a rotation prevention mechanism (not shown) such as a key or a key groove. Note that the poppet 4041, the shaft 4042, and the shaft guide 4043 are aligned on the same axis.
[0507] シャフトガイド 4043と流路 4001との間にはシール部材 4047力 S配置されており、液 体が流路 4001から漏洩してしまうことが防止されている。シャフト 4042の外周面に は雄ねじ 4042aが形成され、シャフトガイド 4043の内周面には、雄ねじ 4042aに嚙 み合う雌ねじ(図示せず)が形成されている。このような構成により、サーボモータ 404 5によりシャフトガイド 4043を回転させると、ポペット 4041が T字路の開口部に対して 垂直方向に移動し、これによりポペット(弁) 4041の開度ひが調整される。なお、サー ボモータの代わりにステッピングモータを使用してもよい。  [0507] A seal member 4047 force S is disposed between the shaft guide 4043 and the flow path 4001, and the liquid is prevented from leaking from the flow path 4001. A male screw 4042a is formed on the outer peripheral surface of the shaft 4042, and a female screw (not shown) that fits the male screw 4042a is formed on the inner peripheral surface of the shaft guide 4043. With this configuration, when the shaft guide 4043 is rotated by the servo motor 4045, the poppet 4041 moves in the vertical direction with respect to the opening of the T-junction, thereby adjusting the opening angle of the poppet (valve) 4041. Is done. A stepping motor may be used instead of the servo motor.
[0508] 本実施の形態の制御部 4030は、ピストン駆動回路に代えて、ポペット駆動回路 40 48を備えている。このポペット駆動回路 4048は、比較部 4033により演算されたポぺ ット 4041の開度を電流に変換し、この電流がサーボモータ 4045に供給されることで ポペット 4041が移動する。このようにして、第 1の実施の形態と同様に、制御弁 4020 を通過する液体の流量が常に一定となるように制御部 4030によって制御弁 4020が 制御される。なお、液体が高圧であっても正確に流量を一定とするために、大きなト ルクを発生させることができるサーボモータまたはステッピングモータを用いることが 好ましい。 The control unit 4030 according to the present embodiment includes a poppet drive circuit 40 48 instead of the piston drive circuit. The poppet drive circuit 4048 converts the opening of the poppet 4041 calculated by the comparison unit 4033 into a current, and this current is supplied to the servo motor 4045. Poppet 4041 moves. In this way, similarly to the first embodiment, the control valve 4020 is controlled by the control unit 4030 so that the flow rate of the liquid passing through the control valve 4020 is always constant. Note that it is preferable to use a servo motor or a stepping motor capable of generating a large torque in order to make the flow rate accurately constant even when the liquid is high pressure.
[0509] なお、上述した実施の形態は、必要に応じて組み合わせることができる。例えば、 第 2の実施の形態に係る環境温度制御機構 4011を第 3および第 4の実施の形態に 組み込んでもよい。また、上述した実施の形態に係る流量調整装置は、液体のみな らず気体の流量を測定し、かつ制御することもできる。  [0509] The above-described embodiments can be combined as necessary. For example, the environmental temperature control mechanism 4011 according to the second embodiment may be incorporated in the third and fourth embodiments. In addition, the flow rate adjusting device according to the above-described embodiment can measure and control not only liquid but also gas flow rate.
[0510] 次に、上述した本発明の一実施の形態に係る流量調整装置を組み込んだ流体反 応装置(マイクロリアクタ)について説明する。図 83ないし図 85 (b)は本発明の一実 施の形態に係る流量調整装置を組み込んだ流体反応装置の全体構成を示す図で ある。なお、以下に述べる流体反応装置は、 2種類またはそれ以上の液体を混合し、 反応させるために用いられる装置である。  [0510] Next, a fluid reaction device (microreactor) incorporating the above-described flow rate adjustment device according to an embodiment of the present invention will be described. FIG. 83 to FIG. 85 (b) are diagrams showing the overall configuration of a fluid reaction device incorporating a flow rate control device according to an embodiment of the present invention. The fluid reaction apparatus described below is an apparatus used for mixing and reacting two or more kinds of liquids.
[0511] 図 83,図 84,図 85 (a) ,および図 85 (b)に示すように、流体反応装置は、全体が 1 つの設置スペースに設置されてパッケージィ匕されている。この構成例では、この設置 スペースは長方形であり、長手方向に沿って 4つの領域に区画される。すなわち、一 端側の第 1の領域は、原料液を貯留する複数の貯留容器 4110 (図 83では 2つの貯 留容器 4110A, 4110Bのみを示す)が設置された原料貯留部 4101であり、それに 隣接する第 2の領域は、貯留容器 4110の原料液を移送するポンプ 4116A, 4116B などが設置された配液部 4102となっている。第 2の領域に隣接する第 3の領域は、 原料液を混同させる混合部(混合チップ) 4140および混合された原料液を反応させ る反応部(反応チップ) 4142を有する処理部 4103となっている。他端側の第 4の領 域は、処理の結果得られた生成物を導出して貯留する生成物貯留部(回収容器設 置スペース) 4104である。  [0511] As shown in Fig. 83, Fig. 84, Fig. 85 (a), and Fig. 85 (b), the fluid reaction device is entirely installed in one installation space and packaged. In this configuration example, the installation space is rectangular and is divided into four areas along the longitudinal direction. That is, the first region on the one end side is a raw material storage section 4101 in which a plurality of storage containers 4110 (only two storage containers 4110A and 4110B are shown in FIG. 83) for storing the raw material liquid are installed. The adjacent second region is a liquid distribution unit 4102 in which pumps 4116A and 4116B for transferring the raw material liquid in the storage container 4110 are installed. A third region adjacent to the second region is a processing unit 4103 having a mixing unit (mixing chip) 4140 for mixing the raw material liquid and a reaction unit (reaction chip) 4142 for reacting the mixed raw material liquid. Yes. The fourth region on the other end side is a product storage part (collection container installation space) 4104 for deriving and storing the product obtained as a result of the treatment.
[0512] また、この流体反応装置は、各部の動作の制御を行うコンピュータである動作制御 部 4106と、温度調整ケース 4146に熱媒体を流して処理部 4103の温度調整を行う 熱媒体コントローラ 4107を備えている。また、動作制御部 4106には、図 83に示すよ うに、液体の流量と温度をモニタできる流量モニタ 4270および温度モニタ 4272が搭 載されている。なお、この構成例では、動作制御部 4106と熱媒体コントローラ 4107 は流体反応装置と別置きになっているが、勿論一体でも良い。図 84に示すように、第 2〜第 4の領域の床下部分には配管 4001A室 4105が形成され、ここには混合部 41 40および反応部 4142へ加熱又は冷却用の熱媒体を送るための配管 4001Aが設 けられている。 [0512] In addition, this fluid reaction device includes an operation control unit 4106, which is a computer that controls the operation of each unit, and a heat medium controller 4107 that adjusts the temperature of the processing unit 4103 by flowing a heat medium through the temperature adjustment case 4146. I have. Also, the operation control unit 4106 is shown in FIG. In addition, a flow rate monitor 4270 and a temperature monitor 4272 that can monitor the flow rate and temperature of the liquid are installed. In this configuration example, the operation control unit 4106 and the heat medium controller 4107 are provided separately from the fluid reaction device, but may of course be integrated. As shown in FIG. 84, a pipe 4001A chamber 4105 is formed in the lower floor portion of the second to fourth regions, where a heating medium for heating or cooling is sent to the mixing unit 4140 and the reaction unit 4142. Pipe 4001A is installed.
[0513] このように、上流側から下流側へと各部を配置することによって液体の流れを円滑 にし、かつ装置全体をコンパクトにまとめることができる。この構成例では、各部の配 列を直線状にしたが、例えば、全体が正方形に近レ、スペースであれば、各部を液体 の流れがループを形成するように構成してもよレ、。  [0513] In this way, by arranging the respective parts from the upstream side to the downstream side, the flow of the liquid can be made smooth and the entire apparatus can be compactly integrated. In this configuration example, the arrangement of each part is linear, but for example, if the whole is close to a square, and if it is a space, each part may be configured so that the liquid flow forms a loop.
[0514] 図 84において、符号 4250は装置下部に設けられた液溜めパンであり、符号 4252 は液溜めパン 4250上に設置された漏液センサを示す。またこの装置例では、配液 咅 4102、処理咅 B4103、生成物貝宁留咅 B4104は隔壁 4254, 4256により区画されて おり、各部にはカバー 4258, 4260, 4262が取り付けられて装置外部とこれらを隔 離している。  In FIG. 84, reference numeral 4250 denotes a liquid storage pan provided at the lower part of the apparatus, and reference numeral 4252 denotes a liquid leakage sensor installed on the liquid storage pan 4250. In this device example, the distribution bottle 4102, the treatment bottle B4103, and the product shellfish retainer B4104 are partitioned by partition walls 4254 and 4256, and covers 4258, 4260, and 4262 are attached to each part, and these parts are connected to the outside of the apparatus. Are separated.
[0515] 符号 4264は排気ポートであり、図示しない排気ファンに接続されている。そして、 装置内の圧力を装置外より負とすることで装置内の有毒ガスが外部に漏出することを 防いでいる。  [0515] Reference numeral 4264 denotes an exhaust port, which is connected to an exhaust fan (not shown). And by making the pressure inside the device negative from outside the device, toxic gas inside the device is prevented from leaking outside.
[0516] 図 83に示す原料貯留部 4101には、 2つの貯留容器 4110A, 4110Bが設置され ているが、必要に応じて 3つまたはそれ以上の貯留容器を使用してもよい。例えば、 同じ液体を 2つの貯留容器に収容し、これらを交互に切り換えて用いることにより、処 理を継続的に行うことができる。なお、原料貯留部 4101に、ライン洗浄用のアセトン などの有機溶剤、塩酸、純水などが入った洗浄液容器 4112や、パージ用の窒素ガ スが封入された圧力源 4114を設けてもよい。また、廃液容器 4136を原料貯留部 41 01に置いてもよい。  [0516] In the raw material storage unit 4101 shown in Fig. 83, two storage containers 4110A and 4110B are installed, but three or more storage containers may be used as necessary. For example, by storing the same liquid in two storage containers and using them alternately, the processing can be performed continuously. Note that the raw material storage unit 4101 may be provided with a cleaning liquid container 4112 containing an organic solvent such as acetone for line cleaning, hydrochloric acid, pure water, or the like, or a pressure source 4114 filled with a purge nitrogen gas. Further, the waste liquid container 4136 may be placed in the raw material storage unit 4101.
[0517] 配液部(導入部) 4102には、貯留容器 4110A, 4110Bに輸送管 4121A, 4121 Bを介して接続されたポンプ 4116A, 4116Bが設置されている。図 83におけるポン プ 4116A, 4116Bには遠心式ポンプが使用されている。また、配液部 4102は、ポ ンプ 4116A, 4116Bの下流側に配置された流量調整装置 300A, 300B、リリーフ 弁 4122A, 4122B,圧力測定センサ 4124A, 4124B,流路切換弁 4126A, 4126 B、および逆洗ポンプ 4130を有している。流路切換弁 4126A, 4126Bは、輸送管 4 121A, 4121Bの他に、洗浄液容器 4112や、圧力源 4114にそれぞれ接続されて いる。逆洗ポンプ 4130は、混合部 4140や反応部 4142の流路内が生成物によって 閉塞した場合に用いられる。逆洗ポンプ 4130は洗浄液を貯留する洗浄液容器 411 2に接続され、さらに流路切換弁 4132を介して反応部 4142の出口に接続される。 逆洗ポンプ 4130により移送される洗浄液は通常の流れと逆に流れる。すなわち、洗 浄液は、反応部 4142の出口力も混合部 4140の入口に向かって流れ、流路切換弁 4126A, 4126Bを経て廃液口 4134から図示しない配管 4001Aを通って廃液貯留 容器 4136に入れられる。 [0517] The liquid distribution section (introduction section) 4102 is provided with pumps 4116A and 4116B connected to the storage containers 4110A and 4110B via transport pipes 4121A and 4121B. Centrifugal pumps are used for pumps 4116A and 4116B in Fig. 83. The liquid distribution unit 4102 is Flow control devices 300A and 300B, relief valves 4122A and 4122B, pressure measurement sensors 4124A and 4124B, flow path switching valves 4126A and 4126B, and a backwash pump 4130 disposed downstream of the pumps 4116A and 4116B . The flow path switching valves 4126A and 4126B are connected to the cleaning liquid container 4112 and the pressure source 4114 in addition to the transport pipes 4121A and 4121B, respectively. The backwash pump 4130 is used when the flow path of the mixing unit 4140 or the reaction unit 4142 is blocked by the product. The backwash pump 4130 is connected to the cleaning liquid container 4112 for storing the cleaning liquid, and is further connected to the outlet of the reaction unit 4142 via the flow path switching valve 4132. The cleaning liquid transferred by the backwash pump 4130 flows in the opposite direction to the normal flow. That is, the cleaning liquid also flows toward the inlet of the mixing unit 4140 as the outlet force of the reaction unit 4142, and enters the waste liquid storage container 4136 from the waste liquid port 4134 through the pipe 4001A (not shown) through the flow path switching valves 4126A and 4126B. .
[0518] 逆洗ポンプ 4130は吐出圧力が高ぐ洗浄液に脈動を起こさせて生成物を除去す ることが可能なように 1本ピストン型のポンプが好ましい。洗浄液としては、有機溶剤、 塩酸、硝酸、りん酸、有機酸、純水などが好適に用いられる。有機溶剤の例としては 、アセトン、エタノール、メタノールなどが挙げられる。図 83に示す導入口 4240は、 外部から純水や水素水を導入する場合に設けられたもので、洗浄液容器 4112内の 洗浄液の代わりに洗浄に使用できる。  [0518] The backwash pump 4130 is preferably a single-piston pump so that the washing liquid having a high discharge pressure can cause pulsation to remove the product. As the cleaning liquid, an organic solvent, hydrochloric acid, nitric acid, phosphoric acid, organic acid, pure water or the like is preferably used. Examples of the organic solvent include acetone, ethanol, methanol and the like. An inlet 4240 shown in FIG. 83 is provided when pure water or hydrogen water is introduced from the outside, and can be used for cleaning instead of the cleaning liquid in the cleaning liquid container 4112.
[0519] 図 86は、原料液の予備加熱 (予備温度調整)と混合を行うための混合部 4140を示 すもので、 3枚の薄板状の基材である上板 4144a、中板 4144b、下板 4144cが接合 されて全厚さ 5mmの混合部 4140が形成されている。なお、以下に説明する流路は いずれも中板 4144bの表面に形成された溝である。上板 4144aを貫通して形成され た 2つの流入ポート 4147A, 4147Bは、中板 4144bの上面に形成されたそれぞれ 2 つの予備加熱流路 4148A, 4148Bに連通する。これらの予備加熱流路 4148A, 4 148Bはそれぞれ途中で分岐しかつそれぞれ拡大し、再度合流する。さらに、予備加 熱流路 4148A, 4148Bはそれぞれ出口流路 4150A, 4150Bに連通し、これらの出 ロ流路 4150A, 4150Bは合流き 4152に通じてレヽる。出口流路 4150Aは、中板 41 44bの上面に、出口流路 4150Bは中板 4144bの下面に形成されている。  [0519] Fig. 86 shows a mixing unit 4140 for preheating (preliminary temperature adjustment) and mixing of the raw material liquid. The upper plate 4144a, the middle plate 4144b, which are three thin plate-like substrates, The lower plate 4144c is joined to form a mixed portion 4140 having a total thickness of 5 mm. Note that the flow paths described below are all grooves formed on the surface of the intermediate plate 4144b. The two inflow ports 4147A and 4147B formed through the upper plate 4144a communicate with the two preheating channels 4148A and 4148B formed on the upper surface of the middle plate 4144b, respectively. These preheating channels 4148A and 4148B each branch in the middle and expand, and merge again. Further, the preliminary heating channels 4148A and 4148B communicate with the outlet channels 4150A and 4150B, respectively, and these outlet channels 4150A and 4150B communicate with the junction 4152. The outlet channel 4150A is formed on the upper surface of the middle plate 4144b, and the outlet channel 4150B is formed on the lower surface of the middle plate 4144b.
[0520] 図 87は図 86に示す合流部の拡大図である。図 87に示すように、合流部 4152は、 出口流路 4150A, 4150Bに通じる円弧状の溝として中板 4144bの上下面にそれぞ れ形成されたヘッダ咅 4155と、このヘッダ咅 B4154, 4155力ら円弧の中心に 向力つて延びる複数の分 ί夜流路 4156, 4157と、これらの分夜流路 4156, 4157力 S 合流する合流空間 4158とを有している。分液流路 4156, 4157と合流空間 4158は 中板 4144bの上面に形成され、分液流路 4156, 4157は交互に配置されている。下 面側のヘッダ部 4155と分液流路 4157とは、中板 4144bを貫通する連絡孔 4157a により連通している。合流空間 4158は、下流側に向けて幅が徐々に小さくなるように 形成され、中板 4144bおよび下板 4144cを貫通して形成された流出ポート 4160に 連通している。 [0520] FIG. 87 is an enlarged view of the junction shown in FIG. As shown in FIG. 87, the junction 4152 The header 咅 4155 formed on the upper and lower surfaces of the middle plate 4144b as arc-shaped grooves communicating with the outlet flow paths 4150A and 4150B, respectively, and the header 分 B4154 and 4155, and a plurality of components extending toward the center of the arc. The night passages 4156 and 4157 and the separation passages 4156 and 4157 have a joining space 4158 where they merge. The separation flow paths 4156 and 4157 and the merge space 4158 are formed on the upper surface of the intermediate plate 4144b, and the separation flow paths 4156 and 4157 are alternately arranged. The header section 4155 on the lower surface side and the separation channel 4157 communicate with each other through a communication hole 4157a that penetrates the intermediate plate 4144b. The merge space 4158 is formed so that the width gradually decreases toward the downstream side, and communicates with an outflow port 4160 formed through the middle plate 4144b and the lower plate 4144c.
[0521] 図 87に示す例では、合流空間 4158の入口側の開口面 4159において分液流路 4 156が 5本、分液流路 4157が 4本、交互に配置されている。分液流路 4156, 4157 力 それぞれ流出した 2種類の液体は、合流空間 4158内で縞状の流れを形成しつ つ下流側に流れ、合流空間 4158の流路幅が徐々に縮小するに従い、強制的に両 液が混合される。この例では、合流空間 4158の流路幅は最終的に 40 μ πιに達する 。加工技術精度を上げれば、流路幅を 10 / mにすることも可能である。  [0521] In the example shown in FIG. 87, five separation channels 4156 and four separation channels 4157 are alternately arranged on the opening surface 4159 on the inlet side of the merge space 4158. Separation flow path 4156, 4157 Force The two kinds of liquid that flowed out respectively flow downstream while forming a striped flow in the merge space 4158, and as the flow path width of the merge space 4158 gradually decreases, Both liquids are forcibly mixed. In this example, the flow path width of the merge space 4158 finally reaches 40 μπι. If the processing technology accuracy is increased, the channel width can be reduced to 10 / m.
[0522] 図 88 (a)は図 83に示す反応部を示す平面図、図 88 (b)は図 88 (a)に示す反応部 の断面図である。この例では、 2枚の基材 4144d, 4144eが接合されて厚さ 5mmの 反応部 4142が構成されている。この反応部 4142では、反応流路 4162が蛇行して おり、長い流路を効率的に提供している。反応流路 4162は、入口ポート 4164およ び出口ポート 4165にそれぞれつな力 Sる連絡咅 B4162a, 4162cと、連絡咅 B4162a, 4 162cに連通する蛇行咅 B分 4162bとを有しており、連絡咅 B4162a, 4162cの幅は狭 ぐ蛇行部分 4162bの幅が広く形成されている。したがって、出入口部分では液体が 急速に流れ、副生成物の付着を防止しており、蛇行部分 4162bでは緩やかに流れ て、加熱と反応の時間を長く取ることができるようになつている。  88 (a) is a plan view showing the reaction part shown in FIG. 83, and FIG. 88 (b) is a cross-sectional view of the reaction part shown in FIG. 88 (a). In this example, two base materials 4144d and 4144e are joined to form a reaction portion 4142 having a thickness of 5 mm. In the reaction section 4142, the reaction flow path 4162 meanders, and a long flow path is efficiently provided. The reaction flow path 4162 has connecting rods B4162a and 4162c connected to the inlet port 4164 and the outlet port 4165, respectively, and a meandering rod B portion 4162b communicating with the connecting rods B4162a and 4162c. The width of the meandering part 4162b, which is narrower than the width of the contact B4162a, 4162c, is formed. Accordingly, the liquid flows rapidly at the entrance and exit portions to prevent the adhesion of by-products, and flows slowly at the meandering portion 4162b so that the heating and reaction time can be increased.
[0523] 図 89 (a)および図 89 (b)に示すのは、反応流路の幅が除々に小さくなる部分 416 3aと除々に大きくなる部分 4163bを持つ反応部の他の構成例である。この反応部 4 142aには、基材 4144d, 4144eの間に、幅寸法が最大 aから最小 bの範囲で増減す る反応流路 4163が形成されている。幅寸法の増減に合わせ、深さを増減させてもよ レ、。 [0523] FIGS. 89 (a) and 89 (b) show another configuration example of the reaction section having the portion 416 3a where the width of the reaction channel gradually decreases and the portion 4163b where the width of the reaction channel gradually increases. . In the reaction section 4 142a, a reaction channel 4163 is formed between the base materials 4144d and 4144e, the width dimension of which increases or decreases in the range of maximum a to minimum b. You can increase or decrease the depth as the width dimension increases or decreases. Les.
[0524] この例では、反応流路 4163の断面積が一定になるよう深さが最大 cから最小 dの範 囲で変化するようになってレ、る。  [0524] In this example, the depth changes from the maximum c to the minimum d so that the cross-sectional area of the reaction channel 4163 is constant.
[0525] 図 89 (c)は、反応流路の他の構成例を示す横断面図である。この反応部 4142bで は、反応流路 4163cは、その幅 eが深さはり大きい扁平形状を有しており、熱触媒か らの熱の伝達方向(矢印で表示)に交差する広い伝熱面を有するので、反応流路 41 63c内の液体に熱の伝達が有効に行われる。なお、合流空間 4158や反応流路 416 2, 4163に、適当な触媒を配置することは反応を促進するために有効である。このよ うな触媒は反応の種類に応じて選択される。配置の仕方は、例えば、流路の内面に 塗布したり、後述するような流路の障害物として配置することができる。  [0525] FIG. 89 (c) is a cross-sectional view showing another configuration example of the reaction channel. In this reaction section 4142b, the reaction flow path 4163c has a flat shape with a large width e and a large heat transfer surface intersecting the direction of heat transfer from the thermal catalyst (indicated by an arrow). Therefore, heat is effectively transferred to the liquid in the reaction channel 41 63c. In order to promote the reaction, it is effective to dispose an appropriate catalyst in the merge space 4158 and the reaction channels 4162 and 4163. Such a catalyst is selected according to the type of reaction. For example, it can be applied to the inner surface of the flow path, or can be disposed as an obstacle to the flow path as described later.
[0526] 混合部 4140および反応部 4142の少なくとも流路を形成する素材としては、例えば 、 SUS316、 SUS304、 Ti、石英ガラス、パイレックス(登録商標)ガラス等の硬質ガ フス、 PEEK、polyetheretherketone八 PE (polyethylene)、 PVC (polyvinylchlonae) ^ PDM¾ (polydimethylsiloxane)、 Si、 PTFE polytetrafluoroethylene)、 PCTFE (Poly chlorotrifluoroethylene)、および PFA (perfluoroalkoxylalkane)の内力、ら、耐薬品性、 耐圧性、熱伝導性、耐熱性等を考慮して、好ましいものを選択する。混合部 4140お よび反応部 4142の接液部の材質は、表面からの溶出が少なく表面触媒修飾が可能 で、ある程度の耐薬品性を持ち、— 40〜150°Cの広い温度範囲に耐えるものが望ま しい。  [0526] The material forming at least the flow path of the mixing unit 4140 and the reaction unit 4142 includes, for example, SUS316, SUS304, Ti, quartz glass, Pyrex (registered trademark) glass or other hard gauze, PEEK, polyetheretherketone 8 PE ( polyethylene, PVC (polyvinylchlonae) ^ PDM¾ (polydimethylsiloxane), Si, PTFE polytetrafluoroethylene), PCTFE (Poly chlorotrifluoroethylene), and PFA (perfluoroalkoxylalkane) A preferable one is selected in consideration. The material of the wetted part of the mixing part 4140 and the reaction part 4142 has little elution from the surface, can be modified with a surface catalyst, has a certain degree of chemical resistance, and can withstand a wide temperature range of 40 to 150 ° C Is desirable.
[0527] 図 90は、混合部および反応部の温度を調整する温度調整ケースの構成を示す斜 視図である。なお、以下の説明では、反応部 4142の温度を調整する温度調整ケー ス 4146についてのみ述べる力 混合部 4140のための温度調整ケース 4146も同様 の構成を有しており、その重複する説明を省略する。温度調整ケース 4146は、内部 に反応部 4142を収容する空間 4170が形成されたケース本体 4172と該空間 4170 を覆う蓋部 4174とを備えており、これらの内面には、平行に延びる複数の熱媒体流 路を構成する溝 4176が形成されている。ケース本体 4172には、溝 4176に連通す る給液路 4178と排液路 4180 (図 83参照)が形成され、これらの給液路 4178と排液 路 4180はそれぞれ熱媒体コントローラ 4107に接続されている。給液路 4178は、蓋 部 4174の溝 4176に開口 4179を介して連通し、排液路 4180も蓋部 4174の溝 417 6に図示しない開口を介して連通している。この例では、溝 4176を流れる熱媒体は 反応部 4142の表裏面に直接接触し、反応部 4142は温度調整ケース 4146に完全 に収容された状態で加熱 (または冷却)される。 [0527] FIG. 90 is a perspective view showing a configuration of a temperature adjustment case for adjusting the temperatures of the mixing section and the reaction section. Note that, in the following description, only the temperature adjustment case 4146 for adjusting the temperature of the reaction unit 4142 is described. The temperature adjustment case 4146 for the mixing unit 4140 has the same configuration, and redundant description thereof is omitted. To do. The temperature adjustment case 4146 includes a case main body 4172 in which a space 4170 for accommodating the reaction portion 4142 is formed, and a lid portion 4174 that covers the space 4170. Grooves 4176 constituting the medium flow path are formed. A liquid supply path 4178 and a drainage path 4180 (see FIG. 83) communicating with the groove 4176 are formed in the case body 4172. These liquid supply path 4178 and the drainage path 4180 are connected to the heat medium controller 4107, respectively. ing. Supply line 4178 has a lid The drainage channel 4180 communicates with the groove 4176 of the portion 4174 through the opening 4179, and the drainage channel 4180 communicates with the groove 4176 of the lid portion 4174 through an opening (not shown). In this example, the heat medium flowing through the groove 4176 is in direct contact with the front and back surfaces of the reaction unit 4142, and the reaction unit 4142 is heated (or cooled) while being completely accommodated in the temperature adjustment case 4146.
[0528] 図示しないが、熱媒体コントローラ 4107には、熱媒体の温度を制御する制御機構 と熱媒体を移送するポンプが内蔵されている。図 83に示すように、熱媒体は熱交換 器 4182を通過後、混合部 4140および反応部 4142の温度調整ケース 4146に供給 されるようになつている。熱交換器 4182は例えば冷却用の巿水の量を変えることで 混合部 4140および反応部 4142に供給される熱媒体の温度を独立に変えられるよう になっている。 [0528] Although not shown, the heat medium controller 4107 includes a control mechanism for controlling the temperature of the heat medium and a pump for transferring the heat medium. As shown in FIG. 83, the heat medium passes through the heat exchanger 4182 and is then supplied to the temperature adjustment case 4146 of the mixing unit 4140 and the reaction unit 4142. The heat exchanger 4182 can change the temperature of the heat medium supplied to the mixing unit 4140 and the reaction unit 4142 independently, for example, by changing the amount of brine for cooling.
[0529] 図 91 (a)ないし図 91 (d)には、温度調整ケース 4146の他の例が示されており、ここ では、熱媒体流路 4192はケース本体 4172と蓋部 4174のそれぞれの内部に形成さ れている。給液路 4178は、図 91 (c)に示すように、給液配管 4001A4188の先端が 挿入された二重管の構成となっており、細い連通路 4190を介して熱媒体流路 4192 に連通している。排液側も同様の構成である。図 91 (b)に示すように、混合部 4140 を収容する温度調整ケース 4146と反応部 4142を収容する温度調整ケース 4146と は、ボルト 4194、ナット 4195およびスぺーサ 4196を介して積層して結合されている  [0529] FIGS. 91 (a) to 91 (d) show another example of the temperature adjustment case 4146. Here, the heat medium flow path 4192 is provided for each of the case main body 4172 and the lid portion 4174. It is formed inside. As shown in FIG. 91 (c), the liquid supply path 4178 has a double pipe structure in which the tip of the liquid supply pipe 4001A4188 is inserted, and communicates with the heat medium flow path 4192 through a narrow communication path 4190. is doing. The drainage side has the same configuration. As shown in FIG. 91 (b), the temperature adjustment case 4146 that accommodates the mixing portion 4140 and the temperature adjustment case 4146 that accommodates the reaction portion 4142 are laminated via bolts 4194, nuts 4195, and a spacer 4196. Combined
[0530] 図 91 (b)には、温度調整ケース 4146に収容された混合部 4140および反応部 41 42への液体の供給 ·排出の経路が示されている。すなわち、それぞれの液体は、温 度調整ケース 4146を貫通して形成された流通路 4198を介して混合部 4140へ流出 入する。また、混合部 4140と反応部 4142との間の液体の流通は、温度調整ケース 4146の流通路 4198を連絡する連絡通路 4200を介して行う。図 91 (d)には、反応 部 4142の液の流入部と流出部の構造が説明されている。液の流れを下方向へ向か わせるために、通常は混合部 4140および反応部 4142の液の入口は上面に、出口 は下面にそれぞれ形成する。 [0530] FIG. 91 (b) shows a path for supplying and discharging the liquid to and from the mixing unit 4140 and the reaction unit 4142 accommodated in the temperature adjustment case 4146. That is, each liquid flows into and out of the mixing unit 4140 through the flow passage 4198 formed through the temperature adjustment case 4146. In addition, the liquid is circulated between the mixing unit 4140 and the reaction unit 4142 through a communication passage 4200 that communicates with the flow passage 4198 of the temperature adjustment case 4146. FIG. 91 (d) illustrates the structure of the liquid inflow and outflow of the reaction unit 4142. In order to direct the liquid flow downward, the liquid inlet of the mixing unit 4140 and the reaction unit 4142 is usually formed on the upper surface and the outlet is formed on the lower surface.
[0531] 図 83に示すように、反応部 4142の流出口 4202は、回収酉己管 4001A4204を介し て生成物貯留部 4104に接続されている。生成物貯留部 4104には、冷却用の熱交 換器 4206、流路切換弁 4132の下流側に回収容器 4208が設けられている。回収容 器 4208が置かれる生成物貯留部 4104は、他の領域から温度等の影響を受けない ように、また生成物から発生する可能性のある有毒ガスが外部に漏洩しないように隔 離されている。 [0531] As shown in FIG. 83, the outlet 4202 of the reaction unit 4142 is connected to the product storage unit 4104 via the recovery self-tube 4001A4204. The product reservoir 4104 has a heat exchanger for cooling. A recovery container 4208 is provided on the downstream side of the exchanger 4206 and the flow path switching valve 4132. The product reservoir 4104 where the recycle container 4208 is placed is isolated so as not to be affected by temperature, etc. from other areas, and to prevent toxic gases that may be generated from the product from leaking outside. ing.
[0532] 図 92は、生成物貯留部 4104の他の構成例を示すもので、複数の回収容器 4208 が回転テーブル 4212上に設置されている。この例では、回収容器 4208は 2個であ り、回転テーブル 4212を移動させるァクチユエータ 4214は 4180度回転型ロータリ ーァクチユエータである。勿論、回収容器 4208の数ゃァクチユエータ 4214の種類 は適宜に選択可能である。図 83に示す動作制御部 4106は、回収容器 4208の液面 を検知する液面検知センサ 421 lbからの信号により、回収容器 4208の交換時期を 判断し、流路切換弁 4132 (図 83参照)により液流を止め、回収口 4210の下流に設 けた光学的流体検知センサ 421 laにより液流の停止を確認して、ァクチユエータ 42 14を作動させて他の回収容器 4208を回収口 4210の下方に移動させる。  FIG. 92 shows another configuration example of the product storage unit 4104, and a plurality of recovery containers 4208 are installed on the turntable 4212. In this example, there are two collection containers 4208, and an actuator 4214 for moving the rotary table 4212 is a 4180-degree rotary rotary actuator. Of course, the number of the recovery container 4208 and the type of the actuator 4214 can be selected as appropriate. The operation control unit 4106 shown in FIG. 83 determines the replacement timing of the recovery container 4208 based on a signal from the liquid level detection sensor 421 lb for detecting the liquid level of the recovery container 4208, and the flow path switching valve 4132 (see FIG. 83). The liquid flow is stopped by the optical fluid detection sensor 421 la installed downstream of the recovery port 4210, and the stop of the liquid flow is confirmed, and the actuator 42 14 is operated to move the other recovery container 4208 below the recovery port 4210. Move.
[0533] 次に、上記のように構成された流体反応装置により、薬液等の液体 (原料液)を反 応させる工程について説明する。なお、流体反応装置の動作は基本的に動作制御 部 4106によって自動制御される。まず、原料貯留部 4101において、原料液を貯留 した貯留容器 4110A, 4110Bに用意しておく。熱媒体コントローラ 4107により熱媒 体の温度を設定し、熱交換器 4182を通過させる巿水の量を調整して各熱媒体の温 度をそれぞれ調整し、混合部 4140および反応部 4142の温度調整ケース 4146へ 熱媒体を流通させてこれらを所定の温度に維持する。熱媒体の温度は、温度調整ケ ース 4146の入口に設けた温度センサ 4216, 4218により測定される。  [0533] Next, a process of reacting a liquid (raw material solution) such as a chemical solution with the fluid reaction apparatus configured as described above will be described. The operation of the fluid reaction apparatus is basically automatically controlled by the operation control unit 4106. First, in the raw material storage unit 4101, the storage containers 4110 A and 4110 B storing the raw material liquid are prepared. The temperature of the heat medium is set by the heat medium controller 4107, and the temperature of each heat medium is adjusted by adjusting the amount of brine passing through the heat exchanger 4182, and the temperature of the mixing unit 4140 and reaction unit 4142 is adjusted. Heat medium is passed through case 4146 to maintain them at a predetermined temperature. The temperature of the heat medium is measured by temperature sensors 4216 and 4218 provided at the inlet of the temperature adjustment case 4146.
[0534] この例では、原料液を処理部 4103に供給する前に、混合部 4140および反応部 4 142内の流路に純水等の洗浄液を流して予め洗浄する。流路を洗浄している間、洗 浄液の温度を混合部 4140の出口の温度センサ 4220および反応部 4142の出口の 温度センサ 4222で測定し、洗浄液の温度を熱媒体コントローラ 4107にフィードバッ クする。このようにして、混合部 4140および反応部 4142を所定の温度に調整する。  [0534] In this example, before supplying the raw material liquid to the processing unit 4103, a cleaning liquid such as pure water is supplied to the flow paths in the mixing unit 4140 and the reaction unit 4142 to perform pre-cleaning. While cleaning the flow path, the temperature of the cleaning solution is measured by the temperature sensor 4220 at the outlet of the mixing unit 4140 and the temperature sensor 4222 at the outlet of the reaction unit 4142, and the temperature of the cleaning solution is fed back to the heat medium controller 4107. To do. In this way, the mixing unit 4140 and the reaction unit 4142 are adjusted to a predetermined temperature.
[0535] 混合部 4140および反応部 4142の温度が調整され、流路の洗浄を終えてから、流 路切換弁 4132を切り換え、ポンプ 4116A, 4116Bを駆動して、貯留容器 4110A, 4110B内の原料液をそれぞれ移送する。原料液は、流量調整装置 4300A, 4300 Bにより所定の流量に調整され、その後、混合部 4140、反応部 4142、流出口 4202 、回収口 4210を経て回収容器 4208に至る。なお、流路切換弁 4132はァクチユエ ータにより作動する自動弁としており、この動作は自動運転も可能である。 [0535] After the temperature of the mixing unit 4140 and the reaction unit 4142 is adjusted and the cleaning of the flow path is completed, the flow path switching valve 4132 is switched and the pumps 4116A, 4116B are driven to store the storage containers 4110A, The raw material liquid in 4110B is transferred. The raw material liquid is adjusted to a predetermined flow rate by the flow rate adjusting devices 4300A and 4300B, and then reaches the recovery container 4208 via the mixing unit 4140, the reaction unit 4142, the outlet 4202 and the recovery port 4210. Note that the flow path switching valve 4132 is an automatic valve that is actuated by an actuator, and this operation can also be performed automatically.
[0536] 混合部 4140においては、原料液は予備加熱流路 4148A, 4148B (図 86参照)に おいて所定の温度に加熱された後、合流部 4152において合流し、混合する。その 際、各液は、図 87に示すように、ヘッダ部 4154, 4155力ら分液流路 4156, 4157 を経由して合流空間 4158に流入する。合流空間 4158の断面は下流へ向かうに従 ぃ徐々に減少するので、マイクロサイズの流れが規則的に混在し、フィックの法則に 貝 IJつて迅速に混合する。その状態で、所定の温度に維持された反応部 4142の反応 流路 4162に流入すると、反応は、物質移動や熱伝導の制約を受けずに迅速に進行 する。したがって、量産手段として充分実用的であるとともに、反応速度の早い爆発 性の反応でも低温下で行う必要がなくなる。また、この例では、反応流路 4162の幅 が合流空間 4158の幅に比べて充分広く形成されているので、反応速度が遅い場合 でも充分な時間をかけて行うことができ、高レ、収率を得ることができる。  In mixing unit 4140, the raw material liquids are heated to a predetermined temperature in preheating channels 4148A and 4148B (see FIG. 86), and then merged and mixed in merging unit 4152. At that time, as shown in FIG. 87, each liquid flows into the merge space 4158 via the liquid separation channels 4156 and 4157 from the header portions 4154 and 4155. Since the cross section of the confluence space 4158 gradually decreases as it goes downstream, the micro-sized flows are mixed regularly, and the shell IJ is quickly mixed according to Fick's law. In that state, when it flows into the reaction channel 4162 of the reaction unit 4142 maintained at a predetermined temperature, the reaction proceeds rapidly without being restricted by mass transfer or heat conduction. Therefore, it is sufficiently practical as a mass production means, and it is not necessary to carry out explosive reactions with a high reaction rate at low temperatures. In this example, the width of the reaction channel 4162 is sufficiently wide compared to the width of the merge space 4158, so that even when the reaction rate is low, the reaction can be performed for a long time, resulting in a high level of yield. Rate can be obtained.
[0537] 得られた生成物は、反応流路 4162の流出口 4202力ら回収配管 4001A4204を 経由して熱交換器 4206に送られ、ここで冷去 Pされて、回収口 4210より回収容器 42 08に流入する。貯留容器 4110A, 4110B力 S空になったり、回収容器 4208が満杯 になったら、動作制御部 4106によりポンプ 4116A, 4116Bの運転を停止させて処 理を終了させる。この場合、貯留容器 4110A, 4110Bの他に、追加の貯留容器を原 料貯留部 4101に予め用意しておけば、流路切換弁 4126A, 4126Bを切り換えるこ とにより、運転を停止させることなく連続的な処理が可能である。なお、反応に時間が 掛カ、る場合には、混合部 4140および反応部 4142内に液を一定時間閉じ込めてバ ツチ運転することも可能である。流路切換弁 4126A、 4126Bも自動弁であるのでこ れらの動作は自動運転も可能である。  [0537] The obtained product is sent to the heat exchanger 4206 via the recovery pipe 4001A4204 from the outlet 4202 of the reaction flow path 4162, where it is cooled and P is collected from the recovery port 4210. Inflow into 08. When the storage containers 4110A, 4110B force S becomes empty or the collection container 4208 is full, the operation control unit 4106 stops the operation of the pumps 4116A, 4116B and ends the processing. In this case, in addition to the storage containers 4110A and 4110B, if an additional storage container is prepared in the raw material storage unit 4101 in advance, the operation can be continued without stopping by switching the flow path switching valves 4126A and 4126B. Processing is possible. When the reaction takes time, it is possible to perform a batch operation by confining the liquid in the mixing unit 4140 and the reaction unit 4142 for a certain period of time. Since the flow path switching valves 4126A and 4126B are also automatic valves, these operations can be automatically operated.
[0538] バッチ運転の方法は、ポンプ 4116A, 4116Bを一時停止してもよいし、流路切換 弁 4126A, 4126Bを切り換えて、処理部 4103への液体の流入を停止させてもよい 。これにより、液体の反応時間が長い場合でも反応流路 4162の長さを長くする必要 がなくなる。バッチ運転の際は、合流空間 4158および/または反応流路 4162に液 体が充満されたことを検知する充満検知手段を用いて運転制御を行うことが好ましい 。これは、例えば、図 92に示すような光学的流体検知センサが用いられる。これによ り、合流空間 4158および Zまたは反応流路 4162に液体が充満されたと判断した時 点で、ポンプ 4116A, 41 16Bを停止させまたは第 1の流路切換弁を切換え、液体を 反応終結時間に適応する一定時間合流空間 4158および Zまたは反応流路 4162 に滞留させておく。 [0538] In the batch operation method, the pumps 4116A and 4116B may be temporarily stopped, or the flow path switching valves 4126A and 4126B may be switched to stop the inflow of liquid into the processing unit 4103. This makes it necessary to increase the length of the reaction channel 4162 even when the liquid reaction time is long. Disappears. In batch operation, it is preferable to perform operation control using a fullness detection means for detecting that the confluence space 4158 and / or the reaction flow path 4162 is full of liquid. For example, an optical fluid detection sensor as shown in FIG. 92 is used. As a result, when it is determined that the merge space 4158 and Z or the reaction flow path 4162 are full of liquid, the pumps 4116A and 4116B are stopped or the first flow path switching valve is switched to terminate the liquid reaction. It stays in the confluence space 4158 and Z or the reaction flow path 4162 for a certain period of time.
[0539] なお、本発明に係る流量調整装置 4300A, 4300Bによれば、液体の流量を正確 に測定することができるので、測定された流量と液体の供給時間力 液体の供給量 を求めることができる。したがって、動作制御部 4106は液体の供給量に基づいて生 成物の生成量を調整することができ、また流体反応装置の動作を制御することができ る。例えば、液体の供給量が所定の値に達したときに動作制御部 4106がポンプ 41 16A, 4116Bの運転を停止させる、または流路切換弁 4126A, 4126Bを切り換える ようにしてもよい。このように、本発明に係る流量調整装置を流体反応装置に組み込 むことにより、動作制御部 4106は液体の供給量に基づいて流体反応装置の各部の 動作を制御することができる。  [0539] It should be noted that according to the flow rate adjustment devices 4300A and 4300B according to the present invention, the flow rate of the liquid can be accurately measured, so that the measured flow rate and the liquid supply time force can be obtained. it can. Therefore, the operation control unit 4106 can adjust the production amount of the product based on the supply amount of the liquid, and can control the operation of the fluid reaction device. For example, the operation control unit 4106 may stop the operation of the pumps 4116A and 4116B or switch the flow path switching valves 4126A and 4126B when the liquid supply amount reaches a predetermined value. As described above, by incorporating the flow control device according to the present invention into the fluid reaction device, the operation control unit 4106 can control the operation of each part of the fluid reaction device based on the supply amount of the liquid.
[0540] 図 93 (a)および図 93 (b)は、混合部 4140における合流部の他の構成例を示すも のである。この合流部 4152aは、 Y字状の合流空間 4158aに、障害物 4224を一定 間隔 aで所定の距離 Lに亘つて配置したものである。この例では、直径 50 /i m以下で ある柱状の障害物 4224を、合流点力 L = 5mmに亘つて配置した。図 93 (b)に示 すように、各障害物 4224は隣接するものが流れ方向にピッチの半分だけずれるよう に、千鳥状に配置されている。これによつて液体 Aおよび液体 Bの界面 4125が蛇行 するので 2つの液体の界面面積 (接触面積)を大きくすることができる。図 94に示す 合流部 4152bでは、合流空間 4158bの中央部に一列の障害物 4224を流れ方向に 沿って千鳥状に配置したもので、同様に界面面積を大きくすることができる。これは、 狭い合流空間 4158bで採用するのに好適である。  FIG. 93 (a) and FIG. 93 (b) show another configuration example of the merging section in the mixing section 4140. The junction 4152a is configured by disposing an obstacle 4224 over a predetermined distance L at a constant interval a in a Y-shaped junction space 4158a. In this example, a columnar obstacle 4224 having a diameter of 50 / im or less was arranged over a confluence point L = 5 mm. As shown in FIG. 93 (b), the obstacles 4224 are arranged in a staggered pattern so that adjacent ones are displaced by half the pitch in the flow direction. As a result, the interface 4125 between the liquid A and the liquid B meanders, so that the interface area (contact area) between the two liquids can be increased. In the junction 4152b shown in FIG. 94, a row of obstacles 4224 are arranged in a zigzag along the flow direction at the center of the junction space 4158b, and the interface area can be similarly increased. This is suitable for use in the narrow merge space 4158b.
[0541] 図 95は、流体反応装置の処理部 4103の他の構成例を示すものである。これは、 図 83の処理部 4103におレヽて、混合部 4140と反応部 4142との組み合わせをそれ ぞれ有する 2系統 Rl , R2設け、さらに配液部 4102の流路切換弁 4126A, 4126B を用いて 2種類の原料液をいずれの系統 Rl , R2にも供給可能にしたものである。こ のように、 2系統を用いることで、必要に応じて処理量を増やすことができる力 その 他にも種々の使用方法が有る。例えば、反応生成物が固体粒子を析出しやすぐ配 管 4001A途中で詰まりやすい場合などでは、一方の系統を予備として使用する。ま た、流路切換弁 4126A, 4126Bで移送ラインを交互に切り換えて、上述したバッチ 運転を連続的に行うことができる。勿論、 3系統以上の移送ラインを適宜に並列して 設けることができる。この場合も流路切換弁 4126A, 4126Bは自動操作が可能であ る。 FIG. 95 shows another configuration example of the processing unit 4103 of the fluid reaction device. This is because the processing unit 4103 in FIG. Each of the two systems Rl and R2 is provided, and two kinds of raw material liquids can be supplied to any system Rl and R2 using the flow path switching valves 4126A and 4126B of the liquid distribution unit 4102. In this way, the use of two systems has the ability to increase the amount of processing as needed, and various other methods of use. For example, if the reaction product precipitates solid particles or is easily clogged in the middle of pipe 4001A, one system is used as a spare. In addition, the above-described batch operation can be continuously performed by alternately switching the transfer lines by the flow path switching valves 4126A and 4126B. Of course, three or more transfer lines can be provided in parallel as appropriate. Also in this case, the channel switching valves 4126A and 4126B can be automatically operated.
[0542] 図 96は、処理部 4103において反応部を複数直列に配置した例を示す。この例で は、 1つの混合部 4140と 3つの反応部 4142a, 4142b, 4142cが直列に接続されて おり、それぞれに温度センサ 4220, 4222a, 4222b, 4222c力 S設けられてレヽる。こ の例では、反応の段階に応じて反応部 4142a, 4142b, 4142cを独立して温度制 御することが可能となっている。この構成は、生化学反応のように反応時間と反応温 度を大胆に且つ瞬時に変化させたい反応に適している。たとえば反応部 4142aでは 100°Cで反応させ、反応部 4142bでは— 20°Cで反応させるというような反応もこのシ ステムでは可能になる。  [0542] Fig. 96 shows an example in which a plurality of reaction units are arranged in series in the processing unit 4103. In this example, one mixing unit 4140 and three reaction units 4142a, 4142b, 4142c are connected in series, and temperature sensors 4220, 4222a, 4222b, 4222c are provided with forces S, respectively. In this example, it is possible to independently control the temperature of the reaction sections 4142a, 4142b, and 4142c according to the stage of the reaction. This configuration is suitable for reactions that require bold and instantaneous changes in reaction time and reaction temperature, such as biochemical reactions. For example, the reaction at 4 ° C in the reaction part 4142a and at -20 ° C in the reaction part 4142b is possible with this system.
[0543] 図 97は、処理部 4103において混合部を複数設けた例である。この構成例では、 A 液と B液を混合し反応させる第 1の混合部 4140および反応部 4142が設けられ、この 反応部 4142の下流側に第 2の混合部 4140aが設けられている。この混合部 4140a ではポンプ 4116Cから輸送された第 3の原料液または反応剤である C液が A液と B 液と合流し、混合する。これらの 2つの混合部 4140, 4140aと 1つの反応部 4142の 温度は個別に制御される。なお、 C液は反応停止剤でもよい。  FIG. 97 shows an example in which a plurality of mixing units are provided in the processing unit 4103. In this configuration example, a first mixing unit 4140 and a reaction unit 4142 for mixing and reacting liquid A and liquid B are provided, and a second mixing unit 4140a is provided downstream of the reaction unit 4142. In the mixing unit 4140a, the third raw material liquid or the C liquid which is the reactant transported from the pump 4116C is merged with the A liquid and the B liquid. The temperatures of these two mixing sections 4140, 4140a and one reaction section 4142 are individually controlled. Liquid C may be a reaction terminator.
[0544] この構成例では、インライン収率評価器 4226が第 2の混合部 4140aの流出口 420 2に直接接続されている。これにより、化学反応の結果の収率をリアルタイムで確認で き、直ぐにプロセスパラメータへフィードバックすることが可能となる。インライン収率評 価器 4226としては、被測定物を分離せずに測定可能な方法として赤外分光、近赤 外分光、紫外吸光等の方法がある。 [0545] この構成例では、さらに、反応生成物の中から不要な物質と必要な物質を分離する 分離抽出部 4228が第 2の混合部 4140aの下流側に設けられている。図示するよう に、分離抽出部 4228は、 Y字形の分離流路 4234を有している。第 2の混合部 4140 aからの液体は分離流路 4234により 2つの流れに分岐され、 1つは物質内の疎水性 分子のみを通過させる疎水性壁面 4230から形成された流路に、他方は物質内の親 水性分子のみを通過させる親水性壁面 4232から形成された流路に流れ込む。分離 した物質は、それぞれ回収酉己管 4001A4204, 4204aを介して回収容器 4208, 42 08aに回収される。分離抽出部 4228としては、その他に、疎水性物質だけを吸着可 能な膜やポーラスフリットを使用することも考えられる。 In this configuration example, the inline yield evaluator 4226 is directly connected to the outlet 4202 of the second mixing unit 4140a. As a result, the yield of the chemical reaction results can be confirmed in real time and can be immediately fed back to the process parameters. The in-line yield evaluator 4226 includes methods such as infrared spectroscopy, near infrared spectroscopy, and ultraviolet absorption as methods that can be measured without separating the object to be measured. [0545] In this configuration example, a separation / extraction unit 4228 for separating an unnecessary substance and a necessary substance from reaction products is further provided on the downstream side of the second mixing unit 4140a. As shown in the figure, the separation / extraction section 4228 has a Y-shaped separation channel 4234. The liquid from the second mixing section 4140a is branched into two flows by the separation channel 4234, one in the channel formed by the hydrophobic wall 4230 that allows only the hydrophobic molecules in the substance to pass through, and the other in the channel It flows into the flow path formed from the hydrophilic wall 4232 that allows only the hydrophilic molecules in the substance to pass through. The separated substances are collected in collection containers 4208 and 4408a through collection pipes 4001A4204 and 4204a, respectively. As the separation / extraction unit 4228, it is also possible to use a membrane or a porous frit that can adsorb only a hydrophobic substance.
[0546] 図 98は、混合 ·反応と分離抽出を繰り返して連続処理するための構成例である。す なわち、 A液と B液を処理する混合部 4140a、反応部 4142a、および分離抽出部 42 28aが上流側に配置され、分離抽出部 4228aから抽出された液体と C液を処理する 混合部 4140b、反応部 4142b、および分離抽出部 4228bが下流側に配置されてい る。 A液と B液が反応した後の不要物質は分離抽出部 4228aの排出口 4234aから系 外に出され、 C液を加えた第 2の反応における不要物質は分離抽出部 4228bの排 出口 4234bから系外に出される。さらに、分離抽出部 4228bから抽出された液体と 第 4の液である D液を混合させる混合部 4140cが設けられている。なお、 D液は反応 停止剤でもよぐ他の原料溶液でも良レ、。混合部 4140cの下流側にインライン収率 評価器 4226を設けても良い。  [0546] FIG. 98 shows a configuration example for continuous processing by repeating mixing and reaction and separation and extraction. That is, the mixing unit 4140a, the reaction unit 4142a, and the separation / extraction unit 4228a for processing the A liquid and the B liquid are arranged upstream, and the liquid extracted from the separation / extraction unit 4228a and the C liquid are processed. 4140b, reaction unit 4142b, and separation / extraction unit 4228b are arranged on the downstream side. Unnecessary substances after reaction of liquid A and liquid B are discharged from the outlet 4234a of the separation / extraction unit 4228a, and unnecessary substances in the second reaction with addition of liquid C are discharged from the outlet 4234b of the separation / extraction unit 4228b. Be taken out of the system. Further, a mixing unit 4140c is provided for mixing the liquid extracted from the separation / extraction unit 4228b and the fourth liquid D. The D solution can be a reaction terminator or other raw material solution. An inline yield evaluator 4226 may be provided on the downstream side of the mixing unit 4140c.
[0547] 図 99 (a)には、図 98の各部を積層化した構成が示されている。液体は下方へ流れ る。混合部 4140a、反応部 4142a、分離抽出部 4228a、混合部 4140b、反応部 41 42b,分離抽出部 4228b、および混合部 4140cは、温度調整ケース 4146にそれぞ れ収容され、さらにボノレト 4194、ナット 4195、スぺーサ 4196によって所定の間隔を ぉレヽて積層化されてレ、る。各部間の液の移動は連絡通路 4200 (図 86 (b)参照)を介 して行われる。各部の間には空気を介在させ、空気の断熱性を利用して他の部の熱 影響を受けないようにして、温度制御の精度を向上させている。図 99 (b)に示すよう に、各温度調整ケース 4146の周りを気泡を含んだクリーンなシリコン部材 4236等の 断熱材で覆うのが好ましい。 [0548] この流体反応装置に導入される流体は液体、気体であり、回収される物質は液体、 気体、固体またはこれらの混合体である。導入物質が粉体などの固体の場合は原料 貯留部 4101に粉体溶解器を設置することも可能である。図 100は、 2つの原料液の うち、一方が粉体を溶解した溶液、他方は元々液体の場合の原料貯留部 4101の構 成例である。原料の粉体と溶媒は粉体溶解器 4240の原料導入口 4242から導入さ れる。この例では、原料粉体をヒータ 4244による加熱と攪拌器 4246による攪拌によ つて溶解し、生成した原料液を、取出し口 4148に引き込まれた配管 4001A4249よ り、ポンプ 4116Aによって、混合部 4140および反応部 4142に送り込むようになって いる。 FIG. 99 (a) shows a configuration in which the respective parts in FIG. 98 are stacked. The liquid flows downward. The mixing unit 4140a, the reaction unit 4142a, the separation / extraction unit 4228a, the mixing unit 4140b, the reaction unit 41 42b, the separation / extraction unit 4228b, and the mixing unit 4140c are accommodated in a temperature adjustment case 4146, respectively, and a Bonoleto 4194 and a nut 4195. The spacers 4196 are stacked at predetermined intervals by the spacer 4196. The movement of the liquid between each part is performed through the communication passage 4200 (see Fig. 86 (b)). Air is interposed between each part, and the heat insulation of the air is used so that it is not affected by the heat of other parts, improving the accuracy of temperature control. As shown in FIG. 99 (b), it is preferable to cover each temperature adjustment case 4146 with a heat insulating material such as a clean silicon member 4236 containing bubbles. [0548] The fluid introduced into the fluid reaction apparatus is liquid or gas, and the substance to be recovered is liquid, gas, solid or a mixture thereof. When the introduced substance is a solid such as a powder, a powder dissolver can be installed in the raw material reservoir 4101. FIG. 100 shows a configuration example of the raw material reservoir 4101 when one of the two raw material liquids is a solution in which powder is dissolved and the other is originally liquid. The raw material powder and solvent are introduced from the raw material inlet 4242 of the powder dissolver 4240. In this example, the raw material powder is dissolved by heating by the heater 4244 and stirring by the stirrer 4246, and the generated raw material liquid is mixed by the pump 4116A from the pipe 4001A4249 by the pump 4116A and the mixing unit 4140 and It is sent to the reaction unit 4142.
[0549] このように、本発明に係る流量調整装置は、微小空間で流体を混合させ反応させる 流体反応装置(マイクロリアクタ)に好適に用いることができる。本発明は、今まで述べ た実施の形態に限定されるものではなぐまた図示例に限定されるものではなぐ本 発明の要旨を逸脱しなレ、範囲内におレ、て種々変更をカ卩ぇ得ることができる。  Thus, the flow rate adjusting device according to the present invention can be suitably used for a fluid reaction device (microreactor) that mixes and reacts fluids in a minute space. The present invention is not limited to the embodiments described so far and is not limited to the illustrated examples, and various modifications can be made without departing from the spirit of the present invention. Yeah I can get it.
[0550] プランジャポンプ装置  [0550] Plunger pump device
本発明は、さらに、本発明の流体反応装置及び流体混合装置において使用するこ とができるプランジャポンプ装置にも関する。  The present invention further relates to a plunger pump device that can be used in the fluid reaction device and the fluid mixing device of the present invention.
[0551] 上述した目的を達成するための本発明は、これに限定されるものではなレ、が、以下 の発明を包含する。  [0551] The present invention for achieving the above-mentioned object is not limited to this, but includes the following inventions.
[0552] (1) プランジャポンプ装置であって、一対のプランジャポンプを並列に接続したプ ランジャポンプ装置にぉレ、て、前記各プランジャポンプのプランジャをそれぞれが交 互に前進するように連動させるカム機構と、前記各プランジャをその後退時に前記力 ム機構に向けて押圧する流体圧装置と、前記流体圧装置の動作を前記プランジャの 動作サイクルに応じて制御する制御部とを有することを特徴とするプランジャポンプ 装置。  [0552] (1) Plunger pump device, which is connected to a plunger pump device in which a pair of plunger pumps are connected in parallel, and interlocks so that the plungers of the plunger pumps move forward alternately. A fluid pressure device that presses each plunger toward the force mechanism when retracted, and a control unit that controls the operation of the fluid pressure device according to the operation cycle of the plunger. Plunger pump device characterized.
[0553] (1)に記載の発明においては、カム機構が各プランジャポンプのプランジャを交互 に前進させ、一方、流体圧装置が各プランジャをカム機構に向けて押圧するので、プ ランジャはカム機構で位置決めされつつ前後進し、ポンプ動作を行う。流体圧装置の 動作は、制御部によってプランジャの動作サイクルに応じて制御されるので、カム機 構との不必要な干渉を排除することができる。 [0553] In the invention described in (1), the cam mechanism advances the plunger of each plunger pump alternately, while the fluid pressure device presses each plunger toward the cam mechanism. It moves forward and backward while being positioned in order to perform pump operation. The operation of the fluid pressure device is controlled by the control unit according to the operation cycle of the plunger. Unnecessary interference with the structure can be eliminated.
[0554] (2) (1)に記載の発明において、前記制御部は、各プランジャの前進時において 、前記流体圧装置による押圧を停止させることを特徴とするプランジャポンプ装置。  (2) In the invention described in (1), the control unit stops the pressing by the fluid pressure device when each plunger moves forward.
[0555] (2)に記載の発明においては、各プランジャの前進時において、カム機構と流体圧 装置との不必要な干渉が排除される。  [0555] In the invention described in (2), unnecessary interference between the cam mechanism and the fluid pressure device is eliminated when each plunger advances.
[0556] (3) (1)又は(2)に記載の発明において、前記一対のプランジャポンプはそれぞ れ吐出動作の初期と終期において増速過程と減速過程をそれぞれ行い、一方の増 速過程と他方の減速過程が互いに重なるようにタイミングが設定されていることを特 徴とするプランジャポンプ装置。  [0556] (3) In the invention described in (1) or (2), the pair of plunger pumps respectively perform a speed increasing process and a speed reducing process at an initial stage and an end stage of the discharge operation, respectively, and one speed increasing process The plunger pump device is characterized in that the timing is set so that the other deceleration process and the other deceleration process overlap each other.
[0557] (3)に記載の発明においては、一対のプランジャポンプの吐出量の総和が一定に 維持される。  [0557] In the invention described in (3), the sum of the discharge amounts of the pair of plunger pumps is kept constant.
[0558] (4) (1)〜(3)のいずれかに記載の発明において、前記各プランジャポンプは、 前進と後退の間に一定の停止過程を行なうことを特徴とするプランジャポンプ装置。  [0558] (4) In the invention according to any one of (1) to (3), each of the plunger pumps performs a fixed stopping process between forward movement and backward movement.
[0559] (4)に記載の発明においては、各プランジャポンプが前進と後退の間に一定の停 止過程を行なうので、各プランジャポンプにおける流れや弁の動作が安定してから次 の動作が始められる。  [0559] In the invention described in (4), since each plunger pump performs a certain stopping process between forward and backward movements, the next operation is performed after the flow and valve operation in each plunger pump is stabilized. You can start.
[0560] 以下、図面を参照してこの発明の実施の形態を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0561] 図 101は、この発明の実施の形態の 2連式のプランジャポンプ装置を示す図であり 、例えば、マイクロリアクタに薬液を連続的に定流量で吐出する目的で使用される。こ のプランジャポンプ装置は、同一構造の一対のプランジャポンプ 5010力 構成され てレヽる。各プランジャポンプ 5010は、シリンダ 5012と、シリンダ 5012内を摺動可言 に設けられたプランジャ 5014と、これらを往復移動させる駆動手段とを有している。 シリンダ 5012の内部には、この空間を 2つに分割する隔壁 5016が設けられており、 ここでは、一方(この図では右側)をポンプ空間 5018、他方(この図では左側)をァク チユエータ空間 5020と称する。  FIG. 101 is a diagram showing a dual plunger pump apparatus according to an embodiment of the present invention. For example, it is used for the purpose of continuously discharging a chemical solution at a constant flow rate into a microreactor. This plunger pump device is composed of a pair of plunger pumps 5010 having the same structure. Each plunger pump 5010 has a cylinder 5012, a plunger 5014 slidably provided in the cylinder 5012, and drive means for reciprocating these. Inside the cylinder 5012, there is a partition wall 5016 that divides this space into two parts. Here, one (right side in this figure) is the pump space 5018 and the other (left side in this figure) is the actuator space. Called 5020.
[0562] 各プランジャ 5014は、ポンプ空間 5018に配置された円板状のピストン 5022と、こ れに連結されたロッド 5024により構成され、ロッド 5024は、隔壁 5016およびァクチ ユエータ空間 5020の端部壁 5020aを揷通して、シリンダ 5012の外部へ突出してい る。ポンプ空間 5018は、ピストン 5022によって端部側のポンプ室 5026と隔壁 5016 側のバッファ室 5028に区画され、ピストン 5022とシリンダ 5012の内壁との間にはシ 一ノレ構造力 S設けられてレヽる。ポンプ室 5026の端部壁 5026aには、 P土出ポート 5030 および吸込ポート 5032とが設けられ、これらはそれぞれ逆止弁 5034, 5036を介し て吐出ライン 5038および流体タンク 5040につながる供給ライン 5042に接続されて いる。これにより、薬液等の流体は、プランジャ 5014の後退動作(図 101において右 への移動)によって吸込ポート 5032からポンプ室 5026に吸い込まれ、プランジャ 50 14の前進動作(図 101において左への移動)によって吐出ポート 5030から吐出され るようになっている。プランジャ 5014をはじめとする接液部の材質は、腐食性や浸食 性の薬液を扱う場合には、それに対応することができることが好ましぐ例えば、サフ アイャ、ルビー、ァノレミナ、セラミック、 SUS、ハステロイ、チタン等を適宜に用いる。 [0562] Each plunger 5014 is composed of a disk-like piston 5022 disposed in the pump space 5018 and a rod 5024 connected thereto, and the rod 5024 is an end wall of the partition wall 5016 and the actuator space 5020. 5050a is protruded outside the cylinder 5012 The The pump space 5018 is partitioned by a piston 5022 into a pump chamber 5026 on the end side and a buffer chamber 5028 on the partition wall 5016 side, and a single structural force S is provided between the piston 5022 and the inner wall of the cylinder 5012. . The end wall 5026a of the pump chamber 5026 is provided with a P discharge port 5030 and a suction port 5032, which are connected to a discharge line 5038 and a supply line 5042 connected to a fluid tank 5040 via check valves 5034 and 5036, respectively. It is connected. Thereby, fluid such as a chemical solution is sucked into the pump chamber 5026 from the suction port 5032 by the backward movement of the plunger 5014 (moving to the right in FIG. 101), and the forward movement of the plunger 5014 (moving to the left in FIG. 101). Is discharged from the discharge port 5030. It is preferable that the material of the wetted parts such as the plunger 5014 can handle corrosive or erosive chemicals. Titanium or the like is appropriately used.
[0563] このプランジャポンプ装置には、 2種類の駆動手段が設けられている。第 1の駆動 手段は、シリンダ 5012の外側に設けられたカム機構 5050であり、各プランジャボン プ 5010のプランジャ 5014を交互に前進させるように連動させる。このカム機構 505 0は、カムシャフト 5052を一定速度で回転させる駆動モータ 5054と、カムシャフト 50 52に一体に設置された一対の板カム 5056と、各プランジャ 5014のロッド 5024の外 端部に設けられたローラ(カムフォロワ) 5058とから構成されている。板カム 5056は 所定形状の外形を有しており、回転に伴ってローラ 5058との接触位置が変化するこ とにより、ロッド 5024が所定の変位パターンで往復動作するようになっている。  [0563] This plunger pump device is provided with two types of driving means. The first driving means is a cam mechanism 5050 provided on the outside of the cylinder 5012 and interlocks so that the plungers 5014 of the plunger pumps 5010 are alternately advanced. This cam mechanism 5050 is provided at the outer end of a rod 5024 of a drive motor 5054 that rotates the camshaft 5052 at a constant speed, a pair of plate cams 5056 that are integrally installed on the camshaft 5052, and each plunger 5014. Roller (cam follower) 5058. The plate cam 5056 has an outer shape of a predetermined shape, and the rod 5024 reciprocates in a predetermined displacement pattern by changing the contact position with the roller 5058 as it rotates.
[0564] 第 2の駆動手段は、シリンダ 5012のァクチユエータ空間 5020に形成された流体圧 装置 5060 (エアシリンダ)である。すなわち、各ロッド 5024の中央部には圧力板 506 2が設けられ、圧力板 5062と隔壁 5016の間に圧力空気室 5064を形成している。圧 力空気室 5064には、圧力空気導入用のポート 5066が設けられ、これはソレノイド弁 である空気制御弁 5068を介して圧力空気源 5070とドレン 5072に切り換え可能に 接続されている。圧力板 5062とァクチユエータ空間 5020の端部壁 5020aとの間の 空間は、端部壁近傍の開口 5074を介して外部空間に通じている。また、バッファ室 5 028は、隔壁 5016近傍のポート 5076および空気制御弁 5068を介してドレン 5072 に通じており、万一ピストン 5022とシリンダ 5012内壁の隙間から流体がリークした場 合でも外部に流出しないようになっている。 [0564] The second drive means is a fluid pressure device 5060 (air cylinder) formed in the actuator space 5020 of the cylinder 5012. That is, a pressure plate 5062 is provided at the center of each rod 5024, and a pressure air chamber 5064 is formed between the pressure plate 5062 and the partition wall 5016. The pressurized air chamber 5064 is provided with a port 5066 for introducing pressurized air, which is connected to a pressurized air source 5070 and a drain 5072 through an air control valve 5068 which is a solenoid valve. A space between the pressure plate 5062 and the end wall 5020a of the actuator space 5020 communicates with the external space through an opening 5074 near the end wall. The buffer chamber 5028 is connected to the drain 5072 via the port 5076 near the partition wall 5016 and the air control valve 5068, and should the fluid leak from the gap between the piston 5022 and the inner wall of the cylinder 5012. Even if it is, it will not leak out.
[0565] 空気制御弁 5068は、ソレノイドが非励磁の状態の第 1の切換位置では、図 101に おいて上側のプランジャポンプ 5010について示すように、圧力空気室 5064および バッファ空間のいずれもドレン 5072に接続され、プランジャ 5014はニュートラルの状 態となる。一方、ソレノイドが励磁状態の第 2の切換位置では、図 101において下側 のプランジャポンプ 5010について示すように、圧力空気室 5064が圧力空気源 507 0に接続され、ノ ッファ空間はドレン 5072に接続された状態となる。従って、プランジ ャ 5014はポンプ室 5026を拡大する方向に(図 101において左方向に)押される。こ のように、ピストン 5022と圧力空気室 5064、ソレノイド弁、および加圧空気源によつ て、一方向のみ動作するエアシリンダ 5060が構成されている。圧力空気源 5070の 空気圧は例えば 3〜5kgん m2程度に設定する。  [0565] In the first switching position where the solenoid is de-energized, the air control valve 5068 has a drain 5072 for both the pressure air chamber 5064 and the buffer space, as shown for the upper plunger pump 5010 in FIG. And the plunger 5014 is in the neutral state. On the other hand, in the second switching position in which the solenoid is energized, as shown for the lower plunger pump 5010 in FIG. 101, the pressure air chamber 5064 is connected to the pressure air source 5070, and the nother space is connected to the drain 5072. It will be in the state. Accordingly, the plunger 5014 is pushed in the direction of enlarging the pump chamber 5026 (leftward in FIG. 101). In this manner, the air cylinder 5060 that operates only in one direction is constituted by the piston 5022, the pressure air chamber 5064, the solenoid valve, and the pressurized air source. The air pressure of the pressure air source 5070 is set to about 3 to 5 kgm2, for example.
[0566] これらの 2つの駆動手段を連動させて制御するために、制御部 5080が設けられて いる。カムシャフト 5052にはエンコーダが設けら、その出力は制御部 5080に入力さ れている。これによりカムシャフト 5052の回転位置情報、すなわち各プランジャ 5014 の往復動作位置情報が制御部 5080に入力されるようになっている。制御部 5080は 、このエンコーダ 5082により与えられるプランジャ 5014の往復動作位置情報に基づ いて、空気制御弁 5068のソレノイドのオンオフを切り換え、エアシリンダ 5060の動作 を制御する。  [0566] A control unit 5080 is provided to control these two drive units in conjunction with each other. The camshaft 5052 is provided with an encoder, and its output is input to the control unit 5080. Accordingly, the rotational position information of the camshaft 5052, that is, the reciprocating position information of each plunger 5014 is input to the control unit 5080. The control unit 5080 controls the operation of the air cylinder 5060 by switching on and off the solenoid of the air control valve 5068 based on the reciprocating position information of the plunger 5014 given by the encoder 5082.
[0567] 以下、上記のように構成されたプランジャポンプ装置の動作について説明する。  [0567] Hereinafter, the operation of the plunger pump device configured as described above will be described.
[0568] まず、 1つのプランジャポンプ 5010の動作について説明する。図 102において線 A は、カムシャフト 5052を一定回転速度で回転させた場合のプランジャ 5014の速度 線図であり、横軸はカムシャフト 5052の回転角度を、縦軸はプランジャ 5014の速度 ( +は前進方向、—は後退方向)をそれぞれ示す。吐出量はプランジャ 5014の速度 に比例するので、縦軸は吐出量をも表す。また、横軸は時間軸でもある。線 Bはカム 機構 5050によるプランジャ 5014の押圧状態を、線 Cはエアシリンダ 5060のオンォ フを、線 Dはポンプ室 5026の容積変化を、それぞれ表す。 First, the operation of one plunger pump 5010 will be described. In FIG. 102, line A is a speed diagram of the plunger 5014 when the camshaft 5052 is rotated at a constant rotational speed. Forward direction,-indicates backward direction). Since the discharge amount is proportional to the speed of the plunger 5014, the vertical axis also represents the discharge amount. The horizontal axis is also the time axis. Line B represents the pressing state of the plunger 5014 by the cam mechanism 5050, line C represents the on-off state of the air cylinder 5060, and line D represents the volume change of the pump chamber 5026.
[0569] 回転角度 0〜: 15度の範囲において、板カム 5056の当接面は一定の加速度で所 定の値(定常吐出速度)まで速度を上昇させつつ前進し、以降は 15〜180度の範囲 においてその定常吐出速度で前進する。この間、空気制御弁 5068は非励磁の状態 の第 1の切換位置にあるので、プランジャ 5014はニュートラルであり、プランジャ 501 4には線 Bに示すように板カム 5056からの力だけが作用し、プランジャ 5014は、線 A に示すように前進して吐出動作を行う。さらに回転角度 180〜195度の範囲におい て、プランジャ 5014は一定の比率で 0まで速度を低下させた後、回転角度 195〜21 0度の範囲において速度は 0となり吐出動作は停止される。 [0569] In the range of rotation angle 0 to: 15 degrees, the contact surface of the plate cam 5056 advances at a constant acceleration while increasing the speed to a predetermined value (steady discharge speed), and thereafter 15 to 180 degrees Range At the steady discharge speed. During this time, since the air control valve 5068 is in the first switching position in the non-excited state, the plunger 5014 is neutral, and only the force from the plate cam 5056 acts on the plunger 5014 as shown by the line B. Plunger 5014 moves forward as shown by line A to perform a discharge operation. Furthermore, in the range of 180 to 195 degrees of rotation angle, the plunger 5014 reduces the speed to 0 at a constant ratio, and then the speed becomes 0 in the range of 195 to 210 degrees of rotation angle and the discharge operation is stopped.
[0570] 回転角度 0〜210度の間においては、線 Cに示すように、プランジャ 5014はニュー トラルであり、カム機構 5050はプランジャ 5014がポンプ動作を行うだけの仕事をす れば良い。上記のように、吐出動作において増速過程(回転角度 0〜: 15度)と減速過 程(回転角度 180〜: 195度)がちょうど 180度ずれている。また、吐出の全工程は回 転角度 0〜: 195度の範囲で行われる。  [0570] When the rotation angle is between 0 and 210 degrees, as indicated by line C, the plunger 5014 is neutral, and the cam mechanism 5050 only needs to perform the work for the plunger 5014 to perform the pump operation. As described above, the acceleration process (rotation angle 0 to 15 degrees) and the deceleration process (rotation angle 180 to 195 degrees) are exactly 180 degrees shifted in the discharge operation. Further, the entire discharge process is performed within a rotation angle range of 0 to 195 degrees.
[0571] 次に、回転角度 210〜225度の範囲において、板カム 5056の当接面は一定の加 速度で所定の値(定常吸込速度)まで速度を上昇させつつ後退する。一方、ェンコ ーダ 5082が回転角度 210度を検出した時に、制御部 5080は空気制御弁 5068の ソレノイドを励磁し、空気制御弁 5068は第 2の切換位置となって、圧力空気室 5064 に圧力空気が送られる。この結果、エアシリンダ 5060が作動状態となって、プランジ ャ 5014をカム機構 5050に向けて押圧し、後退する板カム 5056に追随させて移動さ せる。エアシリンダ 5060の圧力はプランジャ 5014が流体の吸込動作を行うのに充 分な値に設定されているので、プランジャ 5014により吸込動作が行われる。カム機 構 5050の剛性やモータ 5054の駆動力はエアシリンダ 5060による押圧力に耐えら れるように設定されており、プランジャ 5014後退時におけるカム機構 5050の位置決 め機能が損なわれることはない。  [0571] Next, in the range of a rotation angle of 210 to 225 degrees, the contact surface of the plate cam 5056 moves backward at a constant acceleration while increasing the speed to a predetermined value (steady suction speed). On the other hand, when the encoder 5082 detects a rotation angle of 210 degrees, the control unit 5080 excites the solenoid of the air control valve 5068, and the air control valve 5068 becomes the second switching position, and the pressure air chamber 5064 is pressurized. Air is sent. As a result, the air cylinder 5060 is activated, the plunger 5014 is pressed toward the cam mechanism 5050, and is moved following the retreating plate cam 5056. Since the pressure of the air cylinder 5060 is set to a value sufficient for the plunger 5014 to perform the fluid suction operation, the plunger 5014 performs the suction operation. The rigidity of the cam mechanism 5050 and the driving force of the motor 5054 are set to withstand the pressing force of the air cylinder 5060, and the positioning function of the cam mechanism 5050 when the plunger 5014 is retracted is not impaired.
[0572] 以降、回転角度 225〜330度の範囲においてプランジャ 5014は定常吸込速度で 後退して吐出動作を行う。さらに回転角度 330〜345度の範囲において、プランジャ 5014は一定の比率で 0まで速度を低下させた後、回転角度 345〜360度の範囲に おいて速度が 0となり、吸込動作は停止される。図 101から明らかなように、吸込の時 間の方が吐出の時間より短いので、定常吸込速度は定常吐出速度より大きくなる。  [0572] Thereafter, the plunger 5014 moves backward at the steady suction speed to perform the discharge operation within the rotation angle range of 225 to 330 degrees. Further, in the range of rotation angles 330 to 345 degrees, the plunger 5014 reduces the speed to 0 at a constant rate, and then the speed becomes 0 in the range of rotation angles 345 to 360 degrees, and the suction operation is stopped. As is clear from FIG. 101, since the suction time is shorter than the discharge time, the steady suction speed is larger than the steady discharge speed.
[0573] 上記の工程において、吐出動作の後(回転角度 195〜210度の範囲)と吸込動作 の後(回転角度 330〜345度の範囲)にそれぞれ停止過程を設けている。従って、吐 出ポート 5030又は吸込ポート 5032の逆止弁 5034, 5036の閉動作が確実に行わ れてから、あるいはこの部分での流れが落ち着いてから次の吸込又は吐出の動作が 始まるので、逆止弁 5034, 5036からの逆流等による脈動が防止される。 [0573] In the above process, after the discharge operation (rotation angle in the range of 195 to 210 degrees) and the suction operation A stop process is provided after each (rotation angle in the range of 330 to 345 degrees). Therefore, after the check valve 5034, 5036 of the discharge port 5030 or the suction port 5032 is securely closed, or after the flow has settled in this portion, the next suction or discharge operation starts. Pulsation due to backflow from the stop valves 5034 and 5036 is prevented.
[0574] 次に、プランジャポンプ装置の全体の動作を、図 103を参照して説明する。なお、 図 103においては、各過程の比率は誇張されている。また、過程の説明は実線で示 したプランジャポンプ 5010についてされている。  Next, the overall operation of the plunger pump device will be described with reference to FIG. In FIG. 103, the ratio of each process is exaggerated. The process is described for the plunger pump 5010 indicated by the solid line.
[0575] 2つのプランジャポンプ 5010は、共通のカムシャフト 5052に位相が 180度異なるよ うに取り付けられた 2つの板カム 5056により駆動されている。つまり、これらの動作は 位相が 180度異なっている。プランジャポンプ装置全体の吐出量は並列接続された 各プランジャポンプ 5010の和となって、図 103の 2点鎖線で表される。先に説明した ように、吐出動作において増速過程(回転角度 0〜: 15度)と減速過程(回転角度 180 〜195度)がちょうど 180度ずれており、これらにおける増速率と減速率が等しいので 、これらのプランジャポンプ 5010の吐出量の和は一定となり、動作の切り換えの際に 脈動が生じなレ、ようになってレ、る。  [0575] The two plunger pumps 5010 are driven by two plate cams 5056 attached to a common cam shaft 5052 so as to be 180 degrees out of phase. In other words, these operations are 180 degrees out of phase. The discharge amount of the entire plunger pump device is the sum of the plunger pumps 5010 connected in parallel, and is represented by a two-dot chain line in FIG. As explained earlier, in the discharge operation, the speed increasing process (rotation angle 0 to 15 degrees) and the deceleration process (rotating angle 180 to 195 degrees) are exactly 180 degrees, and the speed increasing rate and the speed reducing rate are the same. Therefore, the sum of the discharge amounts of these plunger pumps 5010 is constant, and pulsation does not occur when the operation is switched.
[0576] さらに、このプランジャポンプ装置では、プランジャ 5014が常にカム機構 5050に接 触しているので、板カム 5056の当接面によってプランジャ 5014が確実に位置決め される。従って、吐出量が高い精度で制御され、この点でも、脈動を抑制することがで きる。  Further, in this plunger pump device, since the plunger 5014 is always in contact with the cam mechanism 5050, the plunger 5014 is reliably positioned by the contact surface of the plate cam 5056. Therefore, the discharge amount is controlled with high accuracy, and pulsation can be suppressed in this respect as well.
[0577] また、カム機構 5050に対してプランジャ 5014を押しつけるために、オンオフ動作 が可能な第 2の駆動手段を用いているので、カム機構 5050による前進動作の際に はこれをオフにすることで、カム機構 5050の負荷を減らすことができる。従って、カム 機構 5050の駆動装置であるモータ 5054等のァクチユエータのコストを低減させると ともに、これらの部材の当接部における摩擦を軽減して、長寿命を可能としている。  [0577] Since the second drive means that can be turned on / off is used to press the plunger 5014 against the cam mechanism 5050, the cam mechanism 5050 must be turned off during forward movement. Thus, the load on the cam mechanism 5050 can be reduced. Therefore, the cost of the actuator such as the motor 5054 which is the driving device of the cam mechanism 5050 is reduced, and the friction at the contact portion of these members is reduced, thereby enabling a long life.
[0578] 図 104は、この発明の他の実施の形態を示すもので、カム機構 5050Aが板カム 50 56ではなく端面カム 5056Aを用いたものである。これの動作は、基本的に前述した 実施の形態と同様なので、説明を省略する。  FIG. 104 shows another embodiment of the present invention, in which the cam mechanism 5050A uses an end face cam 5056A instead of the plate cam 5056A. Since this operation is basically the same as that of the above-described embodiment, description thereof is omitted.
[0579] 以上、本発明を具体例を挙げながら詳細に説明してきたが、本発明は上記内容に 限定されるものではなぐ本発明の趣旨を逸脱しない限りにおいてあらゆる変形や変 更が可能である。例えば、流体圧装置の作動源としては、圧力空気ではなぐ圧力液 体でもよい。 [0579] As described above, the present invention has been described in detail with specific examples. All modifications and changes can be made without departing from the spirit of the present invention without being limited thereto. For example, the operating source of the fluid pressure device may be a pressure liquid rather than pressurized air.
[0580] プランジャポンプ装置  [0580] Plunger pump device
本発明は、さらに、本発明の流体反応装置及び流体混合装置において使用するこ とができるプランジャポンプ装置にも関する。  The present invention further relates to a plunger pump device that can be used in the fluid reaction device and the fluid mixing device of the present invention.
[0581] 上述した目的を達成するための本発明は、これに限定されるものではなレ、が、以下 の発明を包含する。 [0581] The present invention for achieving the above-mentioned object is not limited to this, but includes the following inventions.
[0582] (1) プランジャポンプ装置であって、それぞれ個別の駆動装置を有し、液体源とマ イク口リアクタ流路間において並列に接続された一対のプランジャポンプと、前記マイ クロリアクタ流路内に設置された流量計と、前記一対のプランジャポンプを交互に一 定の所定送り速度で吐出動作させる制御部を備え、前記制御部は、前記プランジャ ポンプが吐出動作しているときの前記流量計の測定値に基づいて、所定のタイミング で前記送り速度を調整することを特徴とするプランジャポンプ装置。  [0582] (1) Plunger pump device, each having a separate drive device, and a pair of plunger pumps connected in parallel between a liquid source and a microphone port reactor channel, and the microreactor channel And a control unit that alternately discharges the pair of plunger pumps at a constant predetermined feed rate, and the control unit is configured to discharge the flow rate when the plunger pump is discharging. A plunger pump device that adjusts the feed rate at a predetermined timing based on a measured value of the meter.
[0583] (1)に記載の発明においては、プランジャポンプが吐出動作しているときの流量計 の測定値に基づいて、所定のタイミングで送り速度が調整されるので、複雑な制御手 段を用いることなぐプランジャポンプの吐出量の精度を維持することができる。流量 計による測定値は、所定の時間の平均値として求めることが望ましい。プランジャボン プを個別に調整するようにしてもよぐその場合には測定も個別に行うこととする。  [0583] In the invention described in (1), since the feed rate is adjusted at a predetermined timing based on the measured value of the flow meter when the plunger pump is in discharge operation, a complicated control means is required. The accuracy of the discharge amount of the plunger pump that is not used can be maintained. It is desirable to obtain the measured value by the flow meter as an average value for a predetermined time. Plunger pumps may be adjusted individually. In that case, measurements shall be made individually.
[0584] (2) (1)に記載の発明において、前記マイクロリアクタ流路内に設置された圧力セ ンサを備え、前記制御部は、前記圧力センサの出力値に基づいて前記送り速度を微 調整することを特徴とするプランジャポンプ装置。  [0584] (2) In the invention described in (1), a pressure sensor provided in the microreactor flow path is provided, and the control unit finely adjusts the feed rate based on an output value of the pressure sensor. A plunger pump device characterized by:
[0585] (2)に記載の発明においては、マイクロリアクタ流路内に設置された圧力センサの 出力値に基づいて送り速度が微調整されるので、種々の原因による脈動が抑制され る。  [0585] In the invention described in (2), since the feed rate is finely adjusted based on the output value of the pressure sensor installed in the microreactor flow path, pulsation due to various causes is suppressed.
[0586] (3) (1)又は(2)に記載の発明において、前記制御部は、前記一対のプランジャ ポンプを、それぞれが吐出動作の初期と終期において増速過程と減速過程を行い、 一方の増速過程と他方の減速過程が互いに重なるようにして流量を一定のまま切換 制御することを特徴とするプランジャポンプ装置。 [0586] (3) In the invention described in (1) or (2), the control unit performs a speed increasing process and a speed decreasing process in the pair of plunger pumps, respectively, at an initial stage and an end stage of a discharge operation. The flow rate remains constant so that the speed increasing process and the other speed reducing process overlap each other Plunger pump device characterized by controlling.
[0587] (3)に記載の発明においては、一方のプランジャポンプから他方のプランジャポン プへの移行が、流量を一定としたまま行われる。  [0587] In the invention described in (3), the transition from one plunger pump to the other plunger pump is performed while the flow rate is kept constant.
[0588] (4) (3)に記載の発明において、前記切換制御時には、前記送り速度の微調整 を一方のプランジャポンプについてのみ行うことを特徴とするプランジャポンプ装置。 [0588] (4) In the invention described in (3), the plunger pump device is characterized in that the feed speed is finely adjusted only for one plunger pump during the switching control.
[0589] (5) (1)〜(4)のいずれかに記載の発明において、前記制御部は、前記プランジ ャポンプが前進と後退の間に一定の停止過程を行うように制御することを特徴とする プランジャポンプ装置。 [0589] (5) In the invention according to any one of (1) to (4), the control unit performs control so that the plunger pump performs a fixed stop process between forward and backward movements. A plunger pump device.
[0590] (5)に記載の発明においては、各プランジャポンプが前進と後退の間に一定の停 止過程を行うので、各プランジャポンプにおける流れや弁の動作が安定してから次の 動作が始められる。  [0590] In the invention described in (5), each plunger pump performs a fixed stopping process between forward and backward movements, so that the next operation is performed after the flow and valve operation in each plunger pump stabilizes. You can start.
[0591] (6) (1)〜(5)のいずれかに記載の発明において、前記プランジャポンプのプラン ジャの位置を検出する位置センサを備え、前記制御部はこの位置センサの出力に基 づいて送り速度を制御することを特徴とするプランジャポンプ装置。  [0591] (6) In the invention according to any one of (1) to (5), a position sensor for detecting a position of the plunger pump plunger is provided, and the control unit is based on an output of the position sensor. A plunger pump device for controlling the feed rate.
[0592] 以下、図面を参照してこの発明の実施の形態を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0593] 図 106は、この発明の実施の形態の 2連式のプランジャポンプ装置を示す図であり 、例えば、マイクロリアクタに薬液を連続的に定流量で吐出する目的で使用される。こ のプランジャポンプ装置 6001は、同一構造の一対のプランジャポンプ 6010力 構 成されてレヽる。各プランジャポンプ 6010は、シリンダ 6012と、シリンダ 6012内を措動 可能に設けられたプランジャ 6014と、これらを往復移動させる駆動装置 6019と、各 部を制御する制御部 6028とを有している。  [0593] Fig. 106 is a diagram showing a dual plunger pump apparatus according to an embodiment of the present invention. For example, it is used for the purpose of continuously discharging a chemical solution into a microreactor at a constant flow rate. This plunger pump device 6001 is configured by a pair of plunger pumps 6010 having the same structure. Each plunger pump 6010 has a cylinder 6012, a plunger 6014 provided so as to be operable in the cylinder 6012, a drive device 6019 for reciprocating them, and a control unit 6028 for controlling each part.
[0594] 各プランジャ 6014は、円板状のピストン 6016と、これに連結されたロッド 6018によ り構成され、端部化への間にポンプ室 6017を形成している。ロッド 6018は、端部壁 を揷通して駆動装置 6019に連結されている。駆動装置 6019は、この実施の形態で は、モータ 6020により回転馬区動される送りねじ 6022と、これに螺合するナット 6024 を有しており、ナット 6024はロッド 7018の端部に固定されている。送りねじ 6022とナ ット 6024の間にはボール(ベアリング)が介在しており、ボールねじと呼ばれる円滑か つ高精度の直動機構が構成されている。また、ナット 6024の位置を検出するリニアス ケール (位置センサ) 6026が設けられ、その出力は制御部 6028に送られている。制 御部 6028はこの出力に基づいてモータ 6020の回転をフィードバック制御し、プラン ジャ 6014の位置や送り速度を正確に制御することができる。 [0594] Each plunger 6014 is constituted by a disk-shaped piston 6016 and a rod 6018 coupled thereto, and a pump chamber 6017 is formed between the end portions. The rod 6018 is connected to the driving device 6019 through the end wall. In this embodiment, the driving device 6019 has a feed screw 6022 that is rotated by a motor 6020 and a nut 6024 that is screwed to the feed screw 6022. The nut 6024 is fixed to the end of the rod 7018. ing. A ball (bearing) is interposed between the feed screw 6022 and the nut 6024, and a smooth and highly accurate linear motion mechanism called a ball screw is configured. Also, a linear screw that detects the position of nut 6024 A scale (position sensor) 6026 is provided, and its output is sent to the controller 6028. Based on this output, the control unit 6028 can feedback control the rotation of the motor 6020 and accurately control the position and feed rate of the plunger 6014.
[0595] ピストン 6016とシリンダ 6012の内壁との間にはシール構造が設けられている。ポン プ室 6017の端部壁には、吐出ポート 6030および吸込ポート 6032とが設けられ、こ れらはそれぞれ逆止弁 6034を介して吐出ライン 6036又は流体タンク 6038につな 力 ¾供給ライン 40に接続されている。これにより、薬液等の流体は、プランジャ 6014 の後退動作(図 106において左への移動)によって吸込ポート 6032からポンプ室に 吸い込まれ、プランジャ 6014の前進動作(図 106において右への移動)によって吐 出ポート 6030から吐出されるようになっている。プランジャ 6014をはじめとする接液 部の材質は、腐食性や浸食性の薬液を扱う場合には、それに対応することができるこ と力 S好ましく、例えば、サフアイャ、ルビー、ァノレミナ、セラミック、 SUS、ハステロイ、チ タン等を適宜に用いる。 [0595] A seal structure is provided between the piston 6016 and the inner wall of the cylinder 6012. The end wall of the pump chamber 6017 is provided with a discharge port 6030 and a suction port 6032, which are connected to a discharge line 6036 or a fluid tank 6038 via a check valve 6034, respectively. It is connected to the. As a result, fluid such as a chemical solution is sucked into the pump chamber from the suction port 6032 by the backward movement of the plunger 6014 (moving to the left in FIG. 106) and discharged by the forward movement of the plunger 6014 (moving to the right in FIG. 106). It is discharged from the outlet port 6030. The material of the wetted parts including the plunger 6014 should be able to cope with corrosive or erosive chemicals. For example, Safaya, Ruby, Anolemina, Ceramic, SUS, Use Hastelloy, titanium, etc. as appropriate.
[0596] 図 107に示すように、 2つのプランジャポンプ 6010の吐出ポート 6030は合流し、マ イク口リアクタ 6002の原料受入ポート 6042に接続される。このマイクロリアクタ 6002 では、 2つの原料受入ポート 6042が設けられ、これらは導入流路 6044を経由して混 合 ·反応部 50において合流する。導入流路 6044には、それぞれ流量計 6046と圧 力センサ 6048が設けられており、これらの出力は制御部 6028に入力され、後述す るような制御に用いられる。なお、図 107では制御部 6028は各プランジャポンプ装 置 6001ごとに設けられている力 もちろん 1つの制御部 6028を共有するようにしても よレ、。また、これらの制御部 6028を例えばマイクロリアクタ 6002の制御装置と連結し て統合制御するようにしてもょレ、。  As shown in FIG. 107, the discharge ports 6030 of the two plunger pumps 6010 merge and are connected to the raw material receiving port 6042 of the mic port reactor 6002. This microreactor 6002 is provided with two raw material receiving ports 6042, which are joined at the mixing / reaction section 50 via the introduction flow path 6044. The introduction channel 6044 is provided with a flow meter 6046 and a pressure sensor 6048, respectively, and these outputs are input to the control unit 6028 and used for control as described later. In FIG. 107, the control unit 6028 is a force provided for each plunger pump device 6001. Of course, one control unit 6028 may be shared. In addition, these control units 6028 may be integrated with the control device of the microreactor 6002, for example.
[0597] 以下、このような構成のプランジャポンプ装置 6001の動作を説明する。制御部 602 8は、プランジャポンプ 6010を、 2つの制御方法、すなわち予め決められたパターン に沿って制御するパターン制御と、センサの測定値に基づいて制御するフィードバッ ク制御を組み合わせて用いる。これらはいずれもプランジャ 6014の送り速度を制御 するものであるが、基本的にはパターン制御が主であり、フィードバック制御は従であ る。これについて概念的に説明すると、全体の制御関数 Fは、時間 tの関数であるパ ターン制御関数 Fl (t)と、測定圧力 pの関数であるフィードバック制御関数 F2 (p)に よって、 [0597] Hereinafter, the operation of the plunger pump device 6001 having such a configuration will be described. The control unit 6028 uses a combination of two control methods, that is, pattern control for controlling the plunger pump 6010 along a predetermined pattern, and feedback control for controlling the plunger pump 6010 based on the measured value of the sensor. Each of these controls the feed speed of the plunger 6014, but basically the pattern control is the main and the feedback control is the sub. To explain this conceptually, the overall control function F is a function of time t. By the turn control function Fl (t) and the feedback control function F2 (p), which is a function of the measured pressure p,
F = Fl (t) [l + F2 (p) ] (式 1)  F = Fl (t) [l + F2 (p)] (Equation 1)
で表される。すなわち、圧力変動が無い場合には F = F1 (t)のパターン制御のみで あり、圧力変動がある場合にはそれが F2 (p)の比率で変動する。 F2 (p)がどの程度 の寄与をするかは、その関数の設定の仕方により決められるが、例えば、最大で 10 %程度とするのが好ましい。  It is represented by That is, when there is no pressure fluctuation, only pattern control of F = F1 (t) is performed, and when there is pressure fluctuation, it fluctuates at a ratio of F2 (p). How much F2 (p) contributes is determined by how the function is set, for example, it is preferably about 10% at maximum.
[0598] 図 108及び図 109は、パターン制御について説明するものである。図 108は個々 のプランジャポンプ 6010の動作を示すもので、線 Aは、プランジャ 6014が 1往復す る際の速度線図である。横軸は時間を 1周期を 360度として表し、縦軸はプランジャ 6 014の速度(+は前進方向、—は後退方向)をそれぞれ示す。吐出量はプランジャ 6 014の速度に比例するので、縦軸は吐出量をも表す。また、線 Bはポンプ室 6017の 容積変化を表す。図 109は、 2つのプランジャポンプ 6010が位相を 180度ずらせた 状態で動作してレ、る状態を示す。  108 and 109 explain pattern control. FIG. 108 shows the operation of each plunger pump 6010, and line A is a velocity diagram when the plunger 6014 reciprocates once. The horizontal axis represents time as 360 degrees per cycle, and the vertical axis represents the speed of the plunger 6 014 (+ is the forward direction,-is the reverse direction). Since the discharge amount is proportional to the speed of the plunger 6014, the vertical axis also represents the discharge amount. Line B represents the volume change of the pump chamber 6017. FIG. 109 shows a state where the two plunger pumps 6010 are operating with the phase shifted by 180 degrees.
[0599] これらの図から分かるように、 2つのプランジャポンプ 6010は吐出過程の初期と終 期において、一方は増速過程、他方は減速過程を行うように重複動作している。これ により、この切換過程では総流量が一定となるように制御されつつ、吐出動作を行う プランジャポンプ 6010が切り換えられる。また、各プランジャポンプ 6010の吐出動 作の後と吸込動作の後にそれぞれ短時間の停止過程が設けられている。従って、吐 出ポート 6030又は吸込ポート 6032の逆止弁 6034, 6036の閉動作が確実に行わ れてから、あるいはこの部分での流れが落ち着いてから次の吸込又は吐出の動作が 始まるので、逆止弁 6034, 6036からの逆流等による脈動が防止される。  [0599] As can be seen from these figures, the two plunger pumps 6010 overlap each other in the initial stage and the final stage of the discharge process so that one performs the speed increasing process and the other performs the speed reducing process. Thereby, in this switching process, the plunger pump 6010 that performs the discharge operation is switched while the total flow rate is controlled to be constant. In addition, a short stop process is provided after each plunger pump 6010 discharge operation and suction operation. Therefore, after the check valve 6034, 6036 of the discharge port 6030 or the suction port 6032 is securely closed, or after the flow has settled in this portion, the next suction or discharge operation starts. Pulsation due to backflow from stop valves 6034 and 6036 is prevented.
[0600] このパターン制御では、吐出時の定常送り速度 Vcは必要な吐出量及び次の式に 基づレヽ  [0600] In this pattern control, the steady feed speed Vc during discharge is determined based on the required discharge amount and the following formula.
て決められ、これにより当初のパターン関数 P (t)が設定される。  This sets the initial pattern function P (t).
[0601] 流量 L =プランジャ 6014断面積 S Xプランジャ 6014送り速度 V (式 2) [0601] Flow rate L = Plunger 6014 cross section S X Plunger 6014 Feed rate V (Formula 2)
しかしながら、実機では計算と異なる場合が有り、使用による経時変化も有る。そこ で、この設定値を実測値によって調整する作業を行う。これは、定常的に行うのでは なぐ適当なタイミングと頻度で行う。定常的にフィードバック制御しても、流量センサ の応答速度が低いので効果が無ぐプランジャ 6014の特性からして、適時の調整で 充分と考えられるからである。タイミングと頻度は任意である力 例えば、始動時に行 う、一定の稼動時間経過ごとに行う、あるいはこれらを組み合わせる等が挙げられる。 However, the actual machine may differ from the calculation and may change with time. Therefore, work to adjust this set value with the actual measurement value is performed. This is not always done Perform at the appropriate timing and frequency. This is because even if the feedback control is performed constantly, the response speed of the flow sensor is low, so the effect of the plunger 6014 is ineffective. Forces with arbitrary timing and frequency For example, it is performed at the start, performed every certain operating time, or a combination thereof.
[0602] この調整過程について、図 110のフロー図と、図 111の各測定値の変化を示すダラ フを参照して説明する。なお、図 111 (a)は、マイクロリアクタ 6002流路に設置した流 量計 6046の測定値の変化の一例を、(b)は圧力センサ 6048の出力値の変化の一 例を、 (c)はプランジャ 6014の送り速度の変化の一例をそれぞれ示すものである。  [0602] This adjustment process will be described with reference to the flowchart of FIG. 110 and the diagram of FIG. 111 showing the change of each measured value. Fig. 111 (a) shows an example of the change in the measured value of the flow meter 6046 installed in the microreactor 6002 flow path, (b) shows an example of the change in the output value of the pressure sensor 6048, and (c) shows Examples of changes in the feed rate of the plunger 6014 are shown.
[0603] まず、制御部 6028は、調整作業のタイミングかどうかを判断する(ステップ 1)。これ は、例えば、始動時にその指令信号の有無を検出する、あるいはタイマーから所定 時間稼動したことを知らせる信号の有無を検出することにより行う。そのタイミングであ れば、  [0603] First, the control unit 6028 determines whether it is the timing of the adjustment work (step 1). This is performed, for example, by detecting the presence or absence of the command signal at the time of starting, or by detecting the presence or absence of a signal notifying that the timer has been operated for a predetermined time. At that time,
まず第 1のプランジャポンプ 6010のみが吐出動作をしている時の流量を測定する( ステップ 2)。ここでは、ある時点での瞬間的流量ではなぐ所定の時間の平均流量を 算出する。 1つのサイクルでなぐ幾つかのサイクルにおける 1つのポンプの流量の平 均値を用いるようにしてもょレ、。  First, measure the flow rate when only the first plunger pump 6010 is discharging (step 2). Here, the average flow rate for a given time is calculated rather than the instantaneous flow rate at a certain point in time. Use the average value of the flow rate of one pump in several cycles in one cycle.
[0604] 次に、測定した流量と規定流量の差 を算出し、これが事前に設定した許容上限 値より大きいかどうかを判断する (ステップ 3)。図 111 (a)に示すように、設定した上限 値より大きい場合には、それに対する送り速度の調整量を算出し (ステップ 4)、算出 値に [0604] Next, the difference between the measured flow rate and the specified flow rate is calculated, and it is determined whether or not this is larger than the preset allowable upper limit value (step 3). As shown in Fig. 111 (a), if the set upper limit value is exceeded, the feed rate adjustment amount is calculated (step 4), and the calculated value is calculated.
基づいて調整を行う(ステップ 5)。調整量 Δνの算出は、式 2に基づく以下の式を用 いる。  Make adjustments based on this (step 5). The following formula based on Equation 2 is used to calculate the adjustment amount Δν.
[0605] 送り速度調整量 Δν=流量差 A LZプランジャ断面積 S (式 3)  [0605] Feed rate adjustment amount Δν = Flow rate difference A LZ Plunger cross section S (Formula 3)
ステップ 3におレ、て Δ Lが許容上限値より小さレ、場合には調整を行わなレ、。次に、 第 2のポンプにっレ、て同じように測定なレ、し調整動作を行レ、(ステップ 6〜ステップ 9) 、調整作業を終了する。このようにして新たな定常送り速度 Vcが決められ、これに沿 つて切換過程の勾配等を調整した新たなパターン関数 P (t)が決定される。これによ り、実機での正確な流量出力が簡単な制御手法で達成される。 [0606] この実施の形態では、プランジャポンプ 6010ごとに調整を行っているので、 2つの プランジャポンプ 6010や流路の特性に差が有る場合でも、常に流量変動が無い送 液を行うことができる。なお、プランジャポンプ 6010ごとに差が無い場合には 2つを同 じパターン関数で制御するようにしてもよレ、。この場合は、ステップ 6〜ステップ 9は省 略する。ステップ 2において、 2つのポンプの吐出動作の流量を測定し、これを平均し て測定値とするのが好ましレ、。 In step 3, ∆L is smaller than the allowable upper limit value. Next, the second pump performs the same measurement and adjustment operation (Step 6 to Step 9), and the adjustment operation is completed. In this way, a new steady feed speed Vc is determined, and along with this, a new pattern function P (t) is determined by adjusting the gradient of the switching process. As a result, accurate flow rate output in the actual machine can be achieved with a simple control method. In this embodiment, since adjustment is performed for each plunger pump 6010, even when there is a difference in the characteristics of the two plunger pumps 6010 and the flow path, it is possible to always perform liquid supply with no flow rate fluctuation. . If there is no difference for each plunger pump 6010, the two may be controlled by the same pattern function. In this case, step 6 to step 9 are omitted. In step 2, it is preferable to measure the flow rate of the discharge operation of the two pumps and average this to obtain the measured value.
[0607] 次に、マイクロリアクタ 6002の流路に設置した圧力センサ 6048の測定値に基づい て送り速度をフィードバック制御する場合を、図 111及び図 112を参照して説明する 。これは、送り速度全体の制御関数を、以下に再掲する式 1のように設定して行う。  Next, the case where the feed rate is feedback controlled based on the measurement value of the pressure sensor 6048 installed in the flow path of the microreactor 6002 will be described with reference to FIGS. 111 and 112. This is done by setting the overall feed rate control function as shown in Equation 1 below.
[0608] F = Fl (t) [l + F2 (p) ] (式 1)  [0608] F = Fl (t) [l + F2 (p)] (Formula 1)
F (p)の実際の形は、例えば、実験と理論的な解析を併用して PID制御の係数を求 めることにより得られる。  The actual form of F (p) can be obtained, for example, by finding the PID control coefficient using a combination of experiments and theoretical analysis.
[0609] 圧力は流路の長さや形状などで変わるが、一定の流量が保たれていれば圧力は 一定になる。このため、圧力の変化は流路内流量変動を表すから、これをフィードバ ック制御すれば流量変動を抑えることができる。また、圧力センサ 6048の応答は一 般的な流量計 6046と比べて、速くかつ高精度であるため、流量の変動を抑えるには 好適である。なお、 2つのポンプが動作する切換過程では、各ポンプの制御関数に おいて、 P (t)の部分は一方が増加し、他方が減少することで総流量が維持される点 が異なるが、フィードバック制御の意味は同じである。  [0609] The pressure varies depending on the length and shape of the flow path, but the pressure is constant if a constant flow rate is maintained. For this reason, the change in pressure represents the flow rate fluctuation in the flow path, and if this is feedback controlled, the flow rate fluctuation can be suppressed. In addition, the response of the pressure sensor 6048 is faster and more accurate than the general flow meter 6046, so it is suitable for suppressing fluctuations in the flow rate. In the switching process in which two pumps operate, the total flow rate is maintained by increasing one part of P (t) and decreasing the other in the control function of each pump. The meaning of feedback control is the same.
[0610] この実施の形態のプランジャポンプ装置 6001では、プランジャ 6014の送りカ 力 二カルな誤差によりずれたり、流体内に気体が混入したり、チェック弁動作が不安定 になったりした場合などに生ずる脈動を打ち消すように吐出量をコントロールすること が出来る。例えば、図 111 (b)においてケース 1は定常送り中の圧力変動を、ケース 6 002は定常送り中の圧力変動を、それぞれ示すが、これを検出して送り速度を同図( c)のようにフィードバック制御することで、圧力変動は抑制され、吐出量の変動も同図 (a)に示すように抑制される。  [0610] In the plunger pump device 6001 of this embodiment, the feed force of the plunger 6014 is shifted due to a double error, gas is mixed into the fluid, or the check valve operation becomes unstable. The discharge rate can be controlled so as to cancel out the generated pulsation. For example, in Fig. 111 (b), Case 1 shows the pressure fluctuation during steady feeding, and Case 6 002 shows the pressure fluctuation during steady feeding. By performing feedback control, the pressure fluctuation is suppressed, and the fluctuation of the discharge amount is also suppressed as shown in FIG.
[0611] なお、上記の実施の形態においては、図 112 (a)に示すように、 1台が吐出を行う 定常吐出過程時、及び 2台が吐出を行う切換過程時のいずれにおいても、常時圧力 センサ 6048によるフィードバック制御を行うようにした力 2つのプランジャに同じ制 御を同時に行うと制御が不安定になる等の不具合が起きる場合が有る。そこで、図 1 12 (b)に示すように、切換過程においては、一方のポンプのみに圧力フィードバック 制御を行うようにしてもよレ、。この例では、切換過程において増速過程にあるポンプ について圧力フィードバック制御を行っている力 逆でもよレ、。また、図 112 (c)に示 すように、吐出量の多い方のポンプのみに圧力フィードバック制御を行うようにしても よい。 [0611] In the above embodiment, as shown in Fig. 112 (a), both in the steady discharge process in which one unit performs discharge and in the switching process in which two units perform discharge, pressure Force to perform feedback control with sensor 6048 If the same control is simultaneously applied to two plungers, there may be problems such as unstable control. Therefore, as shown in Fig. 1 12 (b), in the switching process, pressure feedback control may be performed only on one of the pumps. In this example, the force that performs pressure feedback control for the pump that is in the speed increasing process in the switching process may be reversed. Further, as shown in FIG. 112 (c), pressure feedback control may be performed only for the pump having the larger discharge amount.
[0612] 次に、上述した本発明の一実施形態に係る流量調整装置を組み込んだ流体反応 装置(マイクロリアクタ 6002)について説明する。図 113ないし図 115 (b)は本発明の 一実施形態に係る流量調整装置を組み込んだ流体反応装置の全体構成を示す図 である。なお、以下に述べる流体反応装置は、 2種類またはそれ以上の液体を混合 し、反応させるために用いられる装置である。  [0612] Next, a fluid reaction device (microreactor 6002) incorporating the above-described flow rate control device according to an embodiment of the present invention will be described. FIG. 113 to FIG. 115 (b) are diagrams showing an overall configuration of a fluid reaction apparatus incorporating a flow rate adjusting device according to an embodiment of the present invention. The fluid reaction apparatus described below is an apparatus used for mixing and reacting two or more liquids.
[0613] 図 113,図 114,図 115 (a) ,および図 115 (b)に示すように、流体反応装置は、全 体が 1つの設置スペースに設置されてパッケージ化されている。この構成例では、こ の設置スペースは長方形であり、長手方向に沿って 4つの領域に区画される。すなわ ち、一端側の第 1の領域は、原料液を貯留する複数の貯留容器 6110 (図 113では 2 つの貯留容器 6110A, 6110Bのみを示す)が設置された原料貯留部 6101であり、 それに隣接する第 2の領域は、貯留容器 6110の原料液を移送する 2連式プランジャ ポンプ 6001A, 6001Bが設置された配液部 6102となっている。第 2の領域に隣接 する第 3の領域は、原料液を混同させる混合部(混合チップ) 6140および混合された 原料液を反応させる反応部(反応チップ) 6142を有する処理部 6103となっている。 他端側の第 4の領域は、処理の結果得られた生成物を導出して貯留する生成物貯 留部(回収容器設置スペース) 6104である。  [0613] As shown in FIG. 113, FIG. 114, FIG. 115 (a), and FIG. 115 (b), the fluid reaction apparatus is entirely installed in one installation space and packaged. In this configuration example, this installation space is rectangular and is divided into four areas along the longitudinal direction. In other words, the first region on one end side is a raw material storage section 6101 in which a plurality of storage containers 6110 for storing the raw material liquid (only two storage containers 6110A and 6110B are shown in FIG. 113) are installed. The adjacent second region is a liquid distribution section 6102 in which double plunger pumps 6001A and 6001B for transferring the raw material liquid in the storage container 6110 are installed. The third region adjacent to the second region is a processing unit 6103 having a mixing unit (mixing chip) 6140 for mixing the raw material liquid and a reaction unit (reaction chip) 6142 for reacting the mixed raw material liquid. . The fourth region on the other end side is a product storage section (collection container installation space) 6104 for deriving and storing the product obtained as a result of the treatment.
[0614] また、この流体反応装置は、各部の動作の制御を行うコンピュータである動作制御 部 6106と、温度調整ケース 6146に熱媒体を流して処理部 6103の温度調整を行う 熱媒体コントローラ 6107を備えている。また、動作制御部 6106には、図 113に示す ように、液体の流量と温度をモニタできる流量モニタ 6270および温度モニタ 6272が 搭載されている。なお、この構成例では、動作制御部 6106と熱媒体コントローラ 610 7は流体反応装置と別置きになっているが、勿論一体でも良い。図 114に示すように 、第 2〜第 4の領域の床下部分には配管室 6105が形成され、ここには混合部 6140 および反応部 6142へ加熱又は冷却用の熱媒体を送るための配管が設けられている [0614] The fluid reaction device further includes an operation control unit 6106, which is a computer that controls the operation of each unit, and a heat medium controller 6107 that adjusts the temperature of the processing unit 6103 by flowing a heat medium through the temperature adjustment case 6146. I have. In addition, as shown in FIG. 113, the operation control unit 6106 is equipped with a flow rate monitor 6270 and a temperature monitor 6272 that can monitor the flow rate and temperature of the liquid. In this configuration example, the operation control unit 6106 and the heat medium controller 610 7 is separate from the fluid reaction device, but may of course be integrated. As shown in FIG. 114, a piping chamber 6105 is formed in the lower floor portion of the second to fourth regions, and piping for sending a heating medium for heating or cooling to the mixing unit 6140 and the reaction unit 6142 is provided here. Is provided
[0615] このように、上流側から下流側へと各部を配置することによって液体の流れを円滑 にし、かつ装置全体をコンパクトにまとめることができる。この構成例では、各部の配 列を直線状にしたが、例えば、全体が正方形に近レ、スペースであれば、各部を液体 の流れがループを形成するように構成してもよレ、。 [0615] In this way, by arranging the respective parts from the upstream side to the downstream side, the flow of the liquid can be made smooth and the entire apparatus can be compactly integrated. In this configuration example, the arrangement of each part is linear, but for example, if the whole is close to a square, and if it is a space, each part may be configured so that the liquid flow forms a loop.
[0616] 図 114において、符号 6250は装置下部に設けられた液溜めパンであり、符号 625 2は液溜めパン 6250上に設置された漏液センサを示す。またこの装置例では、配液 部 6102、処理部 6103、生成物貝宁留部 6104は隔壁 6254, 6256により区画されて おり、各部にはカバー 6258, 6260, 6262が取り付けられて装置外部とこれらを隔 離している。符号 6264は排気ポートであり、図示しない排気ファンに接続されている 。そして、装置内の圧力を装置外より負とすることで装置内の有毒ガスが外部に漏出 することを防いでいる。  In FIG. 114, reference numeral 6250 denotes a liquid reservoir pan provided at the lower part of the apparatus, and reference numeral 6252 denotes a liquid leakage sensor installed on the liquid reservoir pan 6250. In this apparatus example, the liquid distribution section 6102, the processing section 6103, and the product shellfish retaining section 6104 are partitioned by partition walls 6254 and 6256, and covers 6258, 6260, and 6262 are attached to the respective sections, and these parts are connected to the outside of the apparatus. Are separated. Reference numeral 6264 denotes an exhaust port, which is connected to an exhaust fan (not shown). And by making the pressure inside the device negative from outside the device, toxic gas inside the device is prevented from leaking outside.
[0617] 図 113に示す原料貯留部 6101には、 2つの貯留容器 6110A, 6110Bが設置され ているが、必要に応じて 3つまたはそれ以上の貯留容器を使用してもよい。例えば、 同じ液体を 2つの貯留容器に収容し、これらを交互に切り換えて用いることにより、処 理を継続的に行うことができる。なお、原料貯留部 6101に、ライン洗浄用のアセトン などの有機溶剤、塩酸、純水などが入った洗浄液容器 6112や、パージ用の窒素ガ スが封入された圧力源 6114を設けてもよい。また、廃液容器 6136を原料貯留部 61 01に置いてもよい。  [0617] Although two storage containers 6110A and 6110B are installed in the raw material storage unit 6101 shown in FIG. 113, three or more storage containers may be used as necessary. For example, by storing the same liquid in two storage containers and using them alternately, the processing can be performed continuously. Note that the raw material reservoir 6101 may be provided with a cleaning liquid container 6112 containing an organic solvent such as acetone for line cleaning, hydrochloric acid, pure water, or a pressure source 6114 in which nitrogen gas for purging is sealed. Further, the waste liquid container 6136 may be placed in the raw material reservoir 6101.
[0618] 配液部(導入部) 6102には、貯留容器 6110A, 6110Bに輸送管 6121A, 6121 Bを介して接続されたポンプ 6001A, 6001Bが設置されている。また、配液部 6102 は、プランジャポンプ 6001 A, 6001Bの下流側に配置された流量調整装置 6300A , 6300B、リリーフ弁 6122A, 6122B、圧力測定センサ 6124A, 6124B、流路切換 弁 6126A, 6126B、および逆洗ポンプ 6130を有してレヽる。流路切換弁 6126A, 61 26Bは、輸送管 6121A, 6121Bの他に、洗浄液容器 6112や、圧力源 6114にそれ ぞれ接続されている。逆洗ポンプ 6130は、混合部 6140や反応部 6142の流路内が 生成物によって閉塞した場合に用いられる。逆洗ポンプ 6130は洗浄液を貯留する 洗浄液容器 6112に接続され、さらに流路切換弁 6132を介して反応部 6142の出口 に接続される。逆洗ポンプ 6130により移送される洗浄液は通常の流れと逆に流れる 。すなわち、洗浄液は、反応部 6142の出口力も混合部 6140の入口に向かって流れ 、流路切換弁 6126A, 6126Bを経て廃液口 6134から図示しない配管を通って廃 液貯留容器 6136に入れられる。 [0618] In the liquid distribution section (introduction section) 6102, pumps 6001A and 6001B connected to the storage containers 6110A and 6110B via transport pipes 6121A and 6121B are installed. The liquid distribution unit 6102 includes flow rate adjusting devices 6300A and 6300B arranged on the downstream side of the plunger pumps 6001A and 6001B, relief valves 6122A and 6122B, pressure measurement sensors 6124A and 6124B, flow path switching valves 6126A and 6126B, and It has a backwash pump 6130. In addition to the transport pipes 6121A and 6121B, the flow path switching valves 6126A and 61 26B are connected to the cleaning liquid container 6112 and the pressure source 6114. Each is connected. The backwash pump 6130 is used when the flow path of the mixing unit 6140 or the reaction unit 6142 is blocked by a product. The backwash pump 6130 is connected to a cleaning liquid container 6112 for storing the cleaning liquid, and is further connected to the outlet of the reaction unit 6142 via a flow path switching valve 6132. The cleaning liquid transferred by the backwash pump 6130 flows in the opposite direction to the normal flow. That is, the cleaning liquid also flows toward the inlet of the mixing unit 6140 as the outlet force of the reaction unit 6142, and enters the waste liquid storage container 6136 from the waste liquid port 6134 through the pipe not shown through the flow path switching valves 6126A and 6126B.
[0619] 逆洗ポンプ 6130は吐出圧力が高ぐ洗浄液に脈動を起こさせて生成物を除去す ることが可能なように 1本ピストン 16型のポンプが好ましい。洗浄液としては、有機溶 剤、塩酸、硝酸、りん酸、有機酸、純水などが好適に用いられる。有機溶剤の例とし ては、アセトン、エタノール、メタノールなどが挙げられる。図 113に示す導入口 6240 は、外部から純水や水素水を導入する場合に設けられたもので、洗浄液容器 6112 内の洗浄液の代わりに洗浄に使用できる。  [0619] The backwash pump 6130 is preferably a single-piston 16-type pump so that the washing liquid having a high discharge pressure can cause pulsation to remove the product. As the cleaning liquid, an organic solvent, hydrochloric acid, nitric acid, phosphoric acid, organic acid, pure water and the like are preferably used. Examples of organic solvents include acetone, ethanol, methanol and the like. An introduction port 6240 shown in FIG. 113 is provided when pure water or hydrogen water is introduced from the outside, and can be used for cleaning instead of the cleaning liquid in the cleaning liquid container 6112.
[0620] 図 116は、原料液の予備加熱(予備温度調整)と混合を行うための混合部 6140を 示すもので、 3枚の薄板状の基材である上板 6144a、中板 6144b、下板 6144cが接 合されて全厚さ 5mmの混合部 6140が形成されている。なお、以下に説明する流路 はいずれも中板 6144bの表面に形成された溝である。上板 6144aを貫通して形成さ れた 2つの流入ポート 6147A, 6147Bは、中板 6144bの上面に形成されたそれぞ れ 2つの予備加熱流路 6148A, 6148Bに連通する。これらの予備加熱流路 6148A , 6148Bはそれぞれ途中で分岐しかつそれぞれ拡大し、再度合流する。さらに、予 備加熱流路 6148A, 6148Bはそれぞれ出口流路 6150A, 6150Bに連通し、これ らの出口流路 6150A, 6150Bは合流咅 B6152に通じてレヽる。出口流路 6150Aは、 中板 6144bの上面に、出口流路 6150Bは中板 6144bの下面に形成されている。  [0620] Fig. 116 shows a mixing unit 6140 for preheating (preliminary temperature adjustment) and mixing of the raw material liquid. The upper plate 6144a, the middle plate 6144b, which are three thin plate-like substrates, The plate 6144c is joined to form a mixing portion 6140 having a total thickness of 5 mm. Note that the flow paths described below are all grooves formed on the surface of the intermediate plate 6144b. The two inflow ports 6147A and 6147B formed through the upper plate 6144a communicate with the two preheating channels 6148A and 6148B formed on the upper surface of the middle plate 6144b, respectively. These preheating channels 6148A and 6148B each branch in the middle, expand, and merge again. Further, the preliminary heating channels 6148A and 6148B communicate with the outlet channels 6150A and 6150B, respectively, and these outlet channels 6150A and 6150B communicate with the junction B6152. The outlet channel 6150A is formed on the upper surface of the middle plate 6144b, and the outlet channel 6150B is formed on the lower surface of the middle plate 6144b.
[0621] 図 117は図 116に示す合流部の拡大図である。図 117に示すように、合流部 6152 は、出口流路 6150A, 6150Bに通じる円弧状の溝として中板 6144bの上下面にそ れぞれ形成されたヘッダ部 6154, 6155と、このヘッダ部 6154, 6155力ら円弧の中 、に向力つて延びる複数の分 f夜流路 6156, 6157と、これらの分夜流路 6156, 615 7が合流する合流空間 6158とを有している。分液流路 6156, 6157と合流空間 615 8は中板 6144bの上面に形成され、分液流路 6156, 6157は交互に配置されている 。下面側のヘッダ部 6155と分液流路 6157とは、中板 6144bを貫通する連絡孔 615 7aにより連通している。合流空間 6158は、下流側に向けて幅が徐々に小さくなるよう に形成され、中板 6144bおよび下板 6144cを貫通して形成された流出ポート 6160 に連通している。 FIG. 117 is an enlarged view of the junction shown in FIG. As shown in FIG. 117, the merging portion 6152 has header portions 6154 and 6155 formed on the upper and lower surfaces of the middle plate 6144b as arc-shaped grooves communicating with the outlet flow paths 6150A and 6150B, respectively, and the header portion 6154. , 6155 force and a plurality of minute night passages 6156, 6157 extending in the direction toward the arc, and a merge space 6158 where these minute passages 6156, 6157 merge. Separation channel 6156, 6157 and merge space 615 8 is formed on the upper surface of the intermediate plate 6144b, and the separation flow paths 6156 and 6157 are alternately arranged. The header portion 6155 on the lower surface side and the liquid separation channel 6157 communicate with each other through a communication hole 615 7a penetrating the intermediate plate 6144b. The merge space 6158 is formed so that the width gradually decreases toward the downstream side, and communicates with an outflow port 6160 formed through the middle plate 6144b and the lower plate 6144c.
[0622] 図 117に示す例では、合流空間 6158の入口側の開口面 6159におレ、て分液流路 6156力 本、分液流路 6157が 4本、交互に配置されている。分液流路 6156, 615 7からそれぞれ流出した 2種類の液体は、合流空間 6158内で縞状の流れを形成し つつ下流側に流れ、合流空間 6158の流路幅が徐々に縮小するに従レ、、強制的に 両液が混合される。この例では、合流空間 6158の流路幅は最終的に 40 z mに達す る。加工技術精度を上げれば、流路幅を 10 x mにすることも可能である。  In the example shown in FIG. 117, the liquid separation channel 6156 and the four separation channels 6157 are alternately arranged on the opening 6159 on the inlet side of the merge space 6158. The two types of liquid flowing out from the separation flow paths 6156 and 6157 flow downstream while forming a striped flow in the merge space 6158, and the flow path width of the merge space 6158 gradually decreases. Both liquids are forcibly mixed. In this example, the flow path width of the merge space 6158 finally reaches 40 zm. If the processing technology accuracy is increased, the channel width can be reduced to 10 x m.
[0623] 図 118 (a)は図 113に示す反応部を示す平面図、図 118 (b)は図 118 (a)に示す 反応部の断面図である。この例では、 2枚の基材 6144d, 6144eが接合されて厚さ 5 mmの反応部 6142が構成されている。この反応部 6142では、反応流路 6162が蛇 行しており、長い流路を効率的に提供している。反応流路 6162は、入口ポート 6164 および出口ポート 6165にそれぞれつな力 Sる連絡咅 6162a, 6162cと、連絡咅 6162 a, 6162cに連通する蛇行咅 B分 6162bとを有しており、連絡咅 B6162a, 6162cの幅 は狭く、蛇行部分 6162bの幅が広く形成されている。したがって、出入口部分では液 体が急速に流れ、副生成物の付着を防止しており、蛇行部分 6162bでは緩やかに 流れて、加熱と反応の時間を長く取ることができるようになつている。  118 (a) is a plan view showing the reaction part shown in FIG. 113, and FIG. 118 (b) is a cross-sectional view of the reaction part shown in FIG. 118 (a). In this example, two base materials 6144d and 6144e are joined to form a reaction portion 6142 having a thickness of 5 mm. In the reaction unit 6142, the reaction channel 6162 meanders, and a long channel is efficiently provided. The reaction channel 6162 has connecting rods 6162a and 6162c connected to the inlet port 6164 and the outlet port 6165, respectively, and a meander rod B 6162b communicating with the connecting rods 6162a and 6162c. The widths of B6162a and 6162c are narrow, and the width of the meandering portion 6162b is wide. Therefore, the liquid rapidly flows at the inlet / outlet portion to prevent adhesion of by-products, and flows slowly at the meandering portion 6162b, so that the heating and reaction time can be increased.
[0624] 図 119 (a)および図 119 (b)に示すのは、反応流路の幅が除々に小さくなる部分 6 163aと除々に大きくなる部分 6163bを持つ反応部の他の構成例である。この反応 部 6142aには、基材 6144d, 6144eの間に、幅寸法が最大 aから最小 bの範囲で増 減する反応流路 6163が形成されている。幅寸法の増減に合わせ、深さを増減させ てもよレ、。この例では、反応流路 6163の断面積が一定になるよう深さが最大 cから最 小 dの範囲で変化するようになってレ、る。  [0624] FIG. 119 (a) and FIG. 119 (b) show another configuration example of the reaction section having the portion 6 163a in which the width of the reaction channel gradually decreases and the portion 6163b in which the width gradually increases. . In the reaction section 6142a, a reaction flow path 6163 is formed between the base materials 6144d and 6144e so that the width dimension increases and decreases in the range of maximum a to minimum b. You can increase or decrease the depth as the width dimension increases or decreases. In this example, the depth changes from the maximum c to the minimum d so that the cross-sectional area of the reaction channel 6163 is constant.
[0625] 図 119 (c)は、反応流路の他の構成例を示す横断面図である。この反応部 6142b では、反応流路 6163cは、その幅 eが深さはり大きい扁平形状を有しており、熱触媒 力 の熱の伝達方向(矢印で表示)に交差する広い伝熱面を有するので、反応流路FIG. 119 (c) is a cross-sectional view showing another configuration example of the reaction channel. In the reaction section 6142b, the reaction flow path 6163c has a flat shape with a large width e and a deep thermal catalyst. Because it has a wide heat transfer surface that intersects the direction of heat transfer of heat (indicated by arrows), the reaction channel
6163c内の液体に熱の伝達が有効に行われる。なお、合流空間 6158や反応流路 6 162, 6163に、適当な触媒を配置することは反応を促進するために有効である。こ のような触媒は反応の種類に応じて選択される。配置の仕方は、例えば、流路の内 面に塗布したり、後述するような流路の障害物として配置することができる。 Heat is effectively transferred to the liquid in 6163c. In addition, it is effective in order to accelerate | stimulate reaction to arrange | position an appropriate catalyst in the confluence | merging space 6158 and reaction flow path 6162, 6163. Such a catalyst is selected according to the type of reaction. The arrangement can be performed, for example, by applying to the inner surface of the flow path or as an obstacle of the flow path as will be described later.
[0626] 混合部 6140および反応部 6142の少なくとも流路を形成する素材としては、例えば 、 SUS316、 SUS304、 Ti、石英ガラス、パイレックス(登録商標)ガラス等の硬質ガ フス、 EEK (polyetheretherketone) Λ PE (polyethylene)、 PVC (polyvinylchlonde)、 PDMS (Polydimethylsiloxane)、 Si、 PTFE (polytetrafluoroethylene)、 PCTFE (Poly ChloroTriFluoroEthylene)の内から、耐薬品性、耐圧性、熱伝導性、耐熱性等を考 慮して、好ましいものを選択する。混合部 6140および反応部 6142の接液部の材質 は、表面からの溶出が少なく表面触媒修飾が可能で、ある程度の耐薬品性を持ち、 — 40〜150°Cの広い温度範囲に耐えるものが望ましい。 [0626] As a material for forming at least the flow path of the mixing unit 6140 and the reaction unit 6142, for example, SUS316, SUS304, Ti, quartz glass, Pyrex (registered trademark) glass or the like, EEK (polyetheretherketone) Λ PE Considering chemical resistance, pressure resistance, thermal conductivity, heat resistance, etc. from (polyethylene), PVC (polyvinylchlonde), PDMS (Polydimethylsiloxane), Si, PTFE (polytetrafluoroethylene), PCTFE (Poly ChloroTriFluoroEthylene) Choose the preferred one. The material of the wetted part of the mixing part 6140 and the reaction part 6142 has little elution from the surface, can be modified with a surface catalyst, has some chemical resistance, and can withstand a wide temperature range of 40 to 150 ° C. desirable.
[0627] 図 120は、混合部および反応部の温度を調整する温度調整ケースの構成を示す 斜視図である。なお、以下の説明では、反応部 6142の温度を調整する温度調整ケ ース 6146についてのみ述べる力 混合部 6140のための温度調整ケース 6146も同 様の構成を有しており、その重複する説明を省略する。温度調整ケース 6146は、内 部に反応部 6142を収容する空間 6170が形成されたケース本体 6172と該空間 617 0を覆う蓋部 6174とを備えており、これらの内面には、平行に延びる複数の熱媒体 流路を構成する溝 6176が形成されている。ケース本体 6172には、溝 6176に連通 する給液路 6178と排液路 6180 (図 113参照)が形成され、これらの給液路 6178と 排液路 6180はそれぞれ熱媒体コントローラ 6107に接続されてレ、る。給液路 6178 は、蓋部 6174の溝 6176に開口 6179を介して連通し、排液路 6180も蓋部 6174の 溝 6176に図示しない開口を介して連通している。この例では、溝 6176を流れる熱 媒体は反応部 6142の表裏面に直接接触し、反応部 6142は温度調整ケース 6146 に完全に収容された状態で加熱ほたは冷却)される。  FIG. 120 is a perspective view showing a configuration of a temperature adjustment case for adjusting the temperatures of the mixing unit and the reaction unit. Note that, in the following description, only the temperature adjustment case 6146 for adjusting the temperature of the reaction unit 6142 will be described. The temperature adjustment case 6146 for the mixing unit 6140 has the same configuration, and its overlapping description. Is omitted. The temperature adjustment case 6146 includes a case main body 6172 in which a space 6170 for accommodating the reaction portion 6142 is formed, and a lid portion 6174 that covers the space 6170. A groove 6176 constituting the heat medium flow path is formed. A liquid supply path 6178 and a drainage path 6180 (see FIG. 113) communicating with the groove 6176 are formed in the case body 6172. These liquid supply path 6178 and drainage path 6180 are connected to the heat medium controller 6107, respectively. Les. The liquid supply path 6178 communicates with the groove 6176 of the lid 6174 via the opening 6179, and the drainage path 6180 communicates with the groove 6176 of the lid 6174 via an opening (not shown). In this example, the heat medium flowing through the groove 6176 directly contacts the front and back surfaces of the reaction unit 6142, and the reaction unit 6142 is heated and cooled while completely accommodated in the temperature adjustment case 6146.
[0628] 図示しないが、熱媒体コントローラ 6107には、熱媒体の温度を制御する制御機構 と熱媒体を移送するポンプが内蔵されている。図 113に示すように、熱媒体は熱交換 器 6182を通過後、混合部 6140および反応部 6142の温度調整ケース 6146に供給 されるようになつている。熱交換器 6182は例えば冷却用の巿水の量を変えることで 混合部 6140および反応部 6142に供給される熱媒体の温度を独立に変えられるよう になっている。 [0628] Although not shown, the heat medium controller 6107 includes a control mechanism for controlling the temperature of the heat medium and a pump for transferring the heat medium. As shown in Figure 113, the heat medium is heat exchange After passing through the vessel 6182, it is supplied to the temperature adjustment case 6146 of the mixing unit 6140 and the reaction unit 6142. The heat exchanger 6182 can change the temperature of the heat medium supplied to the mixing unit 6140 and the reaction unit 6142 independently by changing the amount of brine for cooling, for example.
[0629] 図 121 (a)ないし図 121 (d)には、温度調整ケース 6146の他の例が示されており、 ここでは、熱媒体流路 6192はケース本体 6172と蓋部 6174のそれぞれの内部に形 成されている。給液路 6178は、図 121 (c)に示すように、給液配管 6188の先端が揷 入された二重管の構成となつており、細レ、連通路 6190を介して熱媒体流路 6192に 連通している。排液側も同様の構成である。図 121 (b)に示すように、混合部 6140を 収容する温度調整ケース 6146と反応部 6142を収容する温度調整ケース 6146とは 、ボノレト 6194、ナット 6195およびスぺーサ 6196を介して積層して結合されている。  FIGS. 121 (a) to 121 (d) show another example of the temperature adjustment case 6146. Here, the heat medium flow path 6192 is provided for each of the case body 6172 and the lid portion 6174. It is formed inside. As shown in FIG. 121 (c), the liquid supply path 6178 has a double pipe configuration in which the tip of the liquid supply pipe 6188 is inserted. It communicates with 6192. The drainage side has the same configuration. As shown in FIG. 121 (b), the temperature adjustment case 6146 that accommodates the mixing portion 6140 and the temperature adjustment case 6146 that accommodates the reaction portion 6142 are laminated via Bonoleto 6194, nut 6195, and spacer 6196. Are combined.
[0630] 図 121 (b)には、温度調整ケース 6146に収容された混合部 6140および反応部 6 142への液体の供給.排出の経路が示されている。すなわち、それぞれの液体は、 温度調整ケース 6146を貫通して形成された流通路 6198を介して混合部 6140へ流 出入する。また、混合部 6140と反応部 6142との間の液体の流通は、温度調整ケー ス 6146の流通路 6198を連絡する連絡通路 6200を介して行う。図 121 (d)には、反 応部 6142の液の流入部と流出部の構造が説明されている。液の流れを下方向へ向 かわせるために、通常は混合部 6140および反応部 6142の液の入口は上面に、出 口は下面にそれぞれ形成する。  [0630] FIG. 121 (b) shows the supply and discharge paths of the liquid to and from the mixing unit 6140 and the reaction unit 6142 accommodated in the temperature adjustment case 6146. That is, each liquid flows into and out of the mixing unit 6140 through the flow passage 6198 formed through the temperature adjustment case 6146. In addition, the liquid is circulated between the mixing unit 6140 and the reaction unit 6142 through a communication passage 6200 that communicates with the flow passage 6198 of the temperature adjustment case 6146. FIG. 121 (d) illustrates the structure of the inflow portion and the outflow portion of the liquid in the reaction portion 6142. In order to direct the liquid flow downward, the liquid inlet of the mixing unit 6140 and the reaction unit 6142 is normally formed on the upper surface and the outlet is formed on the lower surface.
[0631] 図 113に示すように、反応部 6142の流出口 6202は、回収配管 6204を介して生 成物貯留部 6104に接続されている。生成物貯留部 6104には、冷却用の熱交換器 6206、流路切換弁 6132の下流側に回収容器 6208が設けられている。回収容器 6 208が置かれる生成物貯留部 6104は、他の領域から温度等の影響を受けないよう に、また生成物から発生する可能性のある有毒ガスが外部に漏洩しないように隔離さ れている。  [0631] As shown in FIG. 113, the outlet 6202 of the reaction unit 6142 is connected to the product storage unit 6104 via a recovery pipe 6204. The product storage unit 6104 is provided with a recovery container 6208 on the downstream side of the heat exchanger 6206 for cooling and the flow path switching valve 6132. The product reservoir 6104 where the recovery container 6 208 is placed is isolated so that it is not affected by temperature, etc. from other areas, and toxic gases that may be generated from the product are not leaked to the outside. ing.
[0632] 図 122は、生成物貯留部 6104の他の構成例を示すもので、複数の回収容器 620 8が回転テーブル 6212上に設置されている。この例では、回収容器 6208は 2個で あり、回転テーブル 6212を移動させるァクチユエータ 6214は 180度回転型ロータリ ーァクチユエータである。勿論、回収容器 6208の数ゃァクチユエータ 6214の種類 は適宜に選択可能である。図 113に示す動作制御部 6106は、回収容器 6208の液 面を検知する液面検知センサ 621 lbからの信号により、回収容器 6208の交換時期 を判断し、流路切換弁 6132 (図 113参照)により液流を止め、回収口 6210の下流に 設けた光学的流体検知センサ 621 laにより液流の停止を確認して、ァクチユエータ 6 214を作動させて他の回収容器 6208を回収口 6210の下方に移動させる。 FIG. 122 shows another configuration example of the product storage unit 6104, and a plurality of collection containers 6208 are installed on the rotary table 6212. In this example, there are two collection containers 6208, and an actuator 6214 for moving the rotary table 6212 is a 180-degree rotary rotary. It is a feature user. Of course, the number of recovery containers 6208 and the type of the actuator 6214 can be selected as appropriate. The operation control unit 6106 shown in FIG. 113 determines the replacement timing of the recovery container 6208 based on a signal from the liquid level detection sensor 621 lb that detects the liquid level of the recovery container 6208, and the flow path switching valve 6132 (see FIG. 113). Stop the liquid flow with the optical fluid detection sensor 621 la provided downstream of the recovery port 6210, confirm the stop of the liquid flow, operate the actuator 6 214 to move the other recovery container 6208 below the recovery port 6210. Move.
[0633] 次に、上記のように構成された流体反応装置により、薬液等の液体 (原料液)を反 応させる工程について説明する。なお、流体反応装置の動作は基本的に動作制御 部 6106によって自動制御される。まず、原料貯留部 6101において、原料液を貯留 した貯留容器 6110A, 6110Bに用意しておく。熱媒体コントローラ 6107により熱媒 体の温度を設定し、熱交換器 6182を通過させる巿水の量を調整して各熱媒体の温 度をそれぞれ調整し、混合部 6140および反応部 6142の温度調整ケース 6146へ 熱媒体を流通させてこれらを所定の温度に維持する。熱媒体の温度は、温度調整ケ ース 6146の入口に設けた温度センサ 6216, 6218により測定される。  Next, a process of reacting a liquid (raw material liquid) such as a chemical liquid with the fluid reaction apparatus configured as described above will be described. The operation of the fluid reaction apparatus is basically automatically controlled by the operation control unit 6106. First, in the raw material storage unit 6101, the storage containers 6110 A and 6110 B storing the raw material liquid are prepared. The temperature of the heat medium is set by the heat medium controller 6107, and the temperature of each heat medium is adjusted by adjusting the amount of brine passing through the heat exchanger 6182, and the temperature of the mixing unit 6140 and reaction unit 6142 is adjusted. Heat medium is passed through case 6146 to maintain them at a predetermined temperature. The temperature of the heat medium is measured by temperature sensors 6216 and 6218 provided at the inlet of the temperature adjustment case 6146.
[0634] この例では、原料液を処理部 6103に供給する前に、混合部 6140および反応部 6 142内の流路に純水等の洗浄液を流して予め洗浄する。流路を洗浄している間、洗 浄液の温度を混合部 6140の出口の温度センサ 6220および反応部 6142の出口の 温度センサ 6222で測定し、洗浄液の温度を熱媒体コントローラ 6107にフィードバッ クする。このようにして、混合部 6140および反応部 6142を所定の温度に調整する。  [0634] In this example, before supplying the raw material liquid to the processing unit 6103, a cleaning liquid such as pure water is supplied to the flow paths in the mixing unit 6140 and the reaction unit 6142 to perform pre-cleaning. While cleaning the flow path, the temperature of the cleaning solution is measured by the temperature sensor 6220 at the outlet of the mixing unit 6140 and the temperature sensor 6222 at the outlet of the reaction unit 6142, and the temperature of the cleaning solution is fed back to the heat medium controller 6107. To do. In this way, the mixing unit 6140 and the reaction unit 6142 are adjusted to a predetermined temperature.
[0635] 混合部 6140および反応部 6142の温度が調整され、流路の洗浄を終えてから、流 路切換弁 6132を切り換え、プランジャポンプ 6001A, 6001Bを駆動して、貯留容器 6110A, 6110B内の原料液をそれぞれ移送する。原料液は、流量調整装置 6300 A, 6300Bにより所定の流量に調整され、その後、混合部 6140、反応部 6142、流 出口 6202、回収口 6210を経て回収容器 6208(こ至る。なお、流路切換弁 6132ίま ァクチユエータにより作動する自動弁としており、この動作は自動運転も可能である。  [0635] After the temperature of the mixing unit 6140 and the reaction unit 6142 is adjusted and the cleaning of the flow path is completed, the flow path switching valve 6132 is switched, and the plunger pumps 6001A and 6001B are driven, and the storage containers 6110A and 6110B Each raw material liquid is transferred. The raw material liquid is adjusted to a predetermined flow rate by the flow rate adjusting devices 6300 A and 6300B, and then passes through the mixing unit 6140, the reaction unit 6142, the outlet port 6202, and the recovery port 6210 (this is the flow path switching). The valve 6132ί is an automatic valve that is actuated by an actuator, and this operation can also be operated automatically.
[0636] 混合部 6140においては、原料液は予備加熱流路 6148A, 6148B (図 116参照) において所定の温度に加熱された後、合流部 6152において合流し、混合する。そ の際、各 f夜 fま、図 117に示すように、ヘッダ咅 6155力、ら分 f夜流路 6156, 61 57を経由して合流空間 6158に流入する。合流空間 6158の断面は下流へ向かうに 従い徐々に減少するので、マイクロサイズの流れが規則的に混在し、フィックの法則 に則って迅速に混合する。その状態で、所定の温度に維持された反応部 6142の反 応流路 6162に流入すると、反応は、物質移動や熱伝導の制約を受けずに迅速に進 行する。したがって、量産手段として充分実用的であるとともに、反応速度の早い爆 発性の反応でも低温下で行う必要がなくなる。また、この例では、反応流路 6162の 幅が合流空間 6158の幅に比べて充分広く形成されているので、反応速度が遅い場 合でも充分な時間をかけて行うことができ、高レ、収率を得ることができる。 In mixing unit 6140, the raw material liquids are heated to a predetermined temperature in preheating channels 6148A and 6148B (see FIG. 116), and then merged and mixed in merging unit 6152. At that time, each f night f, as shown in Fig. 117, header 咅 6155 force, etc. f night flow path 6156, 61 It flows into the merge space 6158 via 57. Since the cross section of the merge space 6158 gradually decreases as it goes downstream, micro-sized flows are mixed regularly and mixed rapidly according to Fick's law. In that state, when it flows into the reaction flow path 6162 of the reaction section 6142 maintained at a predetermined temperature, the reaction proceeds rapidly without being restricted by mass transfer or heat conduction. Therefore, it is sufficiently practical as a mass production means, and it is not necessary to carry out explosive reactions with a fast reaction rate at low temperatures. Further, in this example, the width of the reaction channel 6162 is sufficiently wide compared to the width of the merge space 6158, so that even when the reaction rate is low, the reaction can be performed over a sufficient amount of time. Yields can be obtained.
[0637] 得られた生成物は、反応流路 6162の流出口 202から回収配管 6204を経由して 熱交換器 6206に送られ、ここで冷去 Pされて、回収口 6210より回収容器 6208に流入 する。貯留容器 6110A, 6110Bが空になったり、回収容器 6208が満杯になったら、 動作制御部 6106によりプランジャポンプ 6001A, 6001Bの運転を停止させて処理 を終了させる。この場合、貯留容器 6110A, 6110Bの他に、追加の貯留容器を原料 貯留部 6101に予め用意しておけば、流路切換弁 6126A, 6126Bを切り換えること により、運転を停止させることなく連続的な処理が可能である。なお、反応に時間が 掛カる場合には、混合部 6140および反応部 6142内に液を一定時間閉じ込めてバ ツチ運転することも可能である。流路切換弁 6126A、 6126Bも自動弁であるのでこ れらの動作は自動運転も可能である。  [0637] The obtained product is sent from the outlet 202 of the reaction flow path 6162 to the heat exchanger 6206 via the recovery pipe 6204, where it is cooled and P is discharged to the recovery container 6208 from the recovery port 6210. Inflow. When the storage containers 6110A and 6110B are emptied or the collection container 6208 is full, the operation control unit 6106 stops the operation of the plunger pumps 6001A and 6001B and ends the processing. In this case, in addition to the storage containers 6110A and 6110B, if an additional storage container is prepared in the raw material storage unit 6101 in advance, the flow switching valves 6126A and 6126B can be switched continuously without stopping the operation. Processing is possible. When the reaction takes time, it is possible to perform a batch operation by confining the liquid in the mixing unit 6140 and the reaction unit 6142 for a certain period of time. Since the flow path switching valves 6126A and 6126B are also automatic valves, these operations can be automatically operated.
[0638] バッチ運転の方法は、プランジャポンプ 6001A, 6001Bを一時停止してもよいし、 流路切換弁 6126A, 6126Bを切り換えて、処理部 6103への液体の流入を停止さ せてもよレ、。これにより、液体の反応時間が長い場合でも反応流路 6162の長さを長 くする必要がなくなる。バッチ運転の際は、合流空間 6158および Zまたは反応流路 6162に液体が充満されたことを検知する充満検知手段を用いて運転制御を行うこと が好ましい。これは、例えば、図 122に示すような光学的流体検知センサが用いられ る。これにより、合流空間 6158および/または反応流路 6162に液体が充満されたと 判断した時点で、プランジャポンプ 6001A, 6001Bを停止させまたは第 1の流路切 換弁を切り換え、液体を反応終結時間に適応する一定時間合流空間 6158および/ または反応流路 6162に滞留させておく。 [0639] 図 123 (a)および図 123 (b)は、混合部 6140における合流部の他の構成例を示す ものである。この合流部 6152aは、 Y字状の合流空間 6158aに、障害物 6224を一 定間隔 aで所定の距離 Lに亘つて配置したものである。この例では、直径 50 /i m以下 である柱状の障害物 6224を、合流点から L = 5mmに亘つて配置した。図 123 (b)に 示すように、各障害物 6224は隣接するものが流れ方向にピッチの半分だけずれるよ うに、千鳥状に配置されている。これによつて液体 Aおよび液体 Bの界面 6125が蛇 行するので 2つの液体の界面面積 (接触面積)を大きくすることができる。図 19に示 す合流部 6152bでは、合流空間 6158bの中央部に一列の障害物 6224を流れ方向 に沿って千鳥状に配置したもので、同様に界面面積を大きくすることができる。これ は、狭い合流空間 6158bで採用するのに好適である。 [0638] As a method of batch operation, the plunger pumps 6001A and 6001B may be temporarily stopped, or the flow switching valves 6126A and 6126B may be switched to stop the flow of liquid into the processing unit 6103. ,. This eliminates the need to increase the length of the reaction channel 6162 even when the liquid reaction time is long. During batch operation, it is preferable to perform operation control using a fullness detection means for detecting that the confluence space 6158 and Z or the reaction flow path 6162 are filled with liquid. For example, an optical fluid detection sensor as shown in FIG. 122 is used. As a result, when it is determined that the merge space 6158 and / or the reaction flow path 6162 is filled with liquid, the plunger pumps 6001A and 6001B are stopped or the first flow path switching valve is switched to adapt the liquid to the reaction end time. It is allowed to stay in the merge space 6158 and / or the reaction channel 6162 for a certain time. [0639] FIGS. 123 (a) and 123 (b) show another configuration example of the merging section in the mixing section 6140. FIG. The junction 6152a is configured by disposing an obstacle 6224 over a predetermined distance L at a constant interval a in a Y-shaped junction space 6158a. In this example, a columnar obstacle 6224 having a diameter of 50 / im or less was arranged from the junction to L = 5 mm. As shown in FIG. 123 (b), the obstacles 6224 are arranged in a staggered manner so that adjacent ones are displaced by half the pitch in the flow direction. As a result, the interface 6125 between the liquid A and the liquid B meanders, so that the interface area (contact area) between the two liquids can be increased. In the junction 6152b shown in FIG. 19, a row of obstacles 6224 are arranged in a zigzag along the flow direction in the center of the junction space 6158b, and the interface area can be similarly increased. This is suitable for use in the narrow merge space 6158b.
[0640] 図 125は、流体反応装置の処理部 6103の他の構成例を示すものである。これは、 図 113の処理部 6103におレ、て、混合部 6140と反応部 6142との組み合わせをそれ ぞれ有する 2系統 Rl , R2設け、さらに配液部 6102の流路切換弁 6126A, 6126B を用いて 2種類の原料液をいずれの系統 Rl , R2にも供給可能にしたものである。こ のように、 2系統を用いることで、必要に応じて処理量を増やすことができる力 その 他にも種々の使用方法が有る。例えば、反応生成物が固体粒子を析出しやすぐ配 管途中で詰まりやすい場合などでは、一方の系統を予備として使用する。また、流路 切換弁 6126A, 6126Bで移送ラインを交互に切り換えて、上述したバッチ運転を連 続的に行うことができる。勿論、 3系統以上の移送ラインを適宜に並列して設けること ができる。この場合も流路切換弁 6126A, 6126Bは自動操作が可能である。  FIG. 125 shows another configuration example of the processing unit 6103 of the fluid reaction device. This is because the processing unit 6103 in FIG. 113 has two systems Rl and R2 each having a combination of the mixing unit 6140 and the reaction unit 6142, and further, the flow path switching valves 6126A and 6126B of the liquid distribution unit 6102. This makes it possible to supply two types of raw material liquids to either system Rl or R2. In this way, the use of two systems has the ability to increase the amount of processing as needed, and various other methods of use. For example, if the reaction product precipitates solid particles or is easily clogged in the middle of piping, use one system as a backup. Further, the batch operation described above can be continuously performed by alternately switching the transfer lines by the flow path switching valves 6126A and 6126B. Of course, three or more transfer lines can be provided in parallel as appropriate. Also in this case, the flow path switching valves 6126A and 6126B can be automatically operated.
[0641] 図 126は、処理部 6103において反応部を複数直列に配置した例を示す。この例 では、 1つの混合部 6140と 3つの反応部 6142a, 6142b, 6142cが直列に接続され ており、それぞれに温度センサ 6220, 6222a, 6222b, 6222c力 S設けられてレヽる。 この例では、反応の段階に応じて反応部 6142a, 6142b, 6142cを独立して温度制 御することが可能となっている。この構成は、生化学反応のように反応時間と反応温 度を大胆に且つ瞬時に変化させたい反応に適している。たとえば反応部 6142aでは 100°Cで反応させ、反応部 6142bでは _ 20°Cで反応させるというような反応もこのシ ステムでは可能になる。 [0642] 図 127は、処理部 6103において混合部を複数設けた例である。この構成例では、 A液と B液を混合し反応させる第 1の混合部 6140および反応部 6142が設けられ、こ の反応部 6142の下流側に第 2の混合部 6140aが設けられている。この混合部 614 Oaではプランジャポンプ 6116Cから輸送された第 3の原料液または反応剤である C 液が A液と B液と合流し、混合する。これらの 2つの混合部 6140, 6140aと 1つの反 応部 6142の温度は個別に制御される。なお、 C液は反応停止剤でもよい。 FIG. 126 shows an example in which a plurality of reaction units are arranged in series in the processing unit 6103. In this example, one mixing unit 6140 and three reaction units 6142a, 6142b, 6142c are connected in series, and temperature sensors 6220, 6222a, 6222b, 6222c are provided with a force S, respectively. In this example, the temperature of the reaction units 6142a, 6142b, 6142c can be controlled independently according to the stage of the reaction. This configuration is suitable for reactions that require bold and instantaneous changes in reaction time and reaction temperature, such as biochemical reactions. For example, a reaction such as reacting at 100 ° C in the reaction unit 6142a and reacting at _20 ° C in the reaction unit 6142b is possible with this system. FIG. 127 shows an example in which a plurality of mixing units are provided in the processing unit 6103. In this configuration example, a first mixing unit 6140 and a reaction unit 6142 for mixing and reacting liquid A and liquid B are provided, and a second mixing unit 6140a is provided on the downstream side of the reaction unit 6142. In this mixing unit 614 Oa, the third raw material liquid or the C liquid which is the reactant transported from the plunger pump 6116C is merged with the A liquid and the B liquid. The temperatures of these two mixing sections 6140 and 6140a and one reaction section 6142 are individually controlled. Liquid C may be a reaction terminator.
[0643] この構成例では、インライン収率評価器 226が第 2の混合部 6140aの流出口 6202 に直接接続されている。これにより、化学反応の結果の収率をリアルタイムで確認で き、直ぐにプロセスパラメータへフィードバックすることが可能となる。インライン収率評 価器 6226としては、被測定物を分離せずに測定可能な方法として赤外分光、近赤 外分光、紫外吸光等の方法がある。  [0643] In this configuration example, the in-line yield evaluator 226 is directly connected to the outlet 6202 of the second mixing unit 6140a. As a result, the yield of the chemical reaction results can be confirmed in real time and can be immediately fed back to the process parameters. As an in-line yield evaluator 6226, there are methods such as infrared spectroscopy, near infrared spectroscopy, and ultraviolet absorption as methods that can be measured without separating the object to be measured.
[0644] この構成例では、さらに、反応生成物の中から不要な物質と必要な物質を分離する 分離抽出部 6228が第 2の混合部 6140aの下流側に設けられている。図示するよう に、分離抽出部 6228は、 Y字形の分離流路 6234を有している。第 2の混合部 6140 aからの液体は分離流路 6234により 2つの流れに分岐され、 1つは物質内の疎水性 分子のみを通過させる疎水性壁面 6230から形成された流路に、他方は物質内の親 水性分子のみを通過させる親水性壁面 6232から形成された流路に流れ込む。分離 した物質は、それぞれ回収酉己管 6204, 6204aを介して回収容器 6208, 6208aに 回収される。分離抽出部 6228としては、その他に、疎水性物質だけを吸着可能な膜 やポーラスフリットを使用することも考えられる。  [0644] In this configuration example, a separation / extraction unit 6228 is further provided on the downstream side of the second mixing unit 6140a for separating unnecessary substances and necessary substances from the reaction product. As shown in the figure, the separation / extraction section 6228 has a Y-shaped separation channel 6234. The liquid from the second mixing section 6140a is branched into two flows by the separation channel 6234, one in the channel formed by the hydrophobic wall 6230 that allows only the hydrophobic molecules in the substance to pass through, and the other in the channel It flows into the flow path formed from the hydrophilic wall 6232 that allows only hydrophilic molecules in the substance to pass through. The separated substances are collected in collection containers 6208 and 6208a through collection pipes 6204 and 6204a, respectively. As the separation / extraction unit 6228, it is possible to use a membrane or a porous frit that can adsorb only a hydrophobic substance.
[0645] 図 128は、混合 ·反応と分離抽出を繰り返して連続処理するための構成例である。  [0645] Fig. 128 shows a configuration example for continuous processing by repeating mixing and reaction and separation and extraction.
すなわち、 A液と B液を処理する混合部 6140a、反応部 6142a、および分離抽出部 6228aが上流側に配置され、分離抽出部 6228aから抽出された液体と C液を処理 する混合部 6140b、反応部 6142b、および分離抽出部 6228bが下流側に配置され ている。 A液と B液が反応した後の不要物質は分離抽出部 6228aの排出口 6234a から系外に出され、 C液をカ卩えた第 2の反応における不要物質は分離抽出部 6228b の排出口 6234bから系外に出される。さらに、分離抽出部 6228bから抽出された液 体と第 4の液である D液を混合させる混合部 6140cが設けられている。なお、 D液は 反応停止剤でもよぐ他の原料溶液でも良い。混合部 6140cの下流側にインライン 収率評価器 6226を設けても良い。 That is, the mixing unit 6140a for treating the liquid A and the liquid B, the reaction unit 6142a, and the separation / extraction unit 6228a are arranged on the upstream side, and the mixing unit 6140b for treating the liquid extracted from the separation / extraction unit 6228a and the liquid C The part 6142b and the separation / extraction part 6228b are arranged on the downstream side. Unnecessary substances after the reaction of liquid A and liquid B are discharged from the outlet 6234a of the separation / extraction section 6228a, and unnecessary substances in the second reaction containing liquid C are discharged from the outlet 6234b of the separation / extraction section 6228b. Is taken out of the system. Further, a mixing unit 6140c is provided for mixing the liquid extracted from the separation / extraction unit 6228b and the fourth liquid D. D liquid is Other raw material solutions may be used instead of reaction terminators. An inline yield evaluator 6226 may be provided downstream of the mixing unit 6140c.
[0646] 図 129 (a)には、図 23の各部を積層化した構成が示されている。液体は下方へ流 れる。混合部 6140a、反応部 6142a、分離抽出部 6228a、混合部 6140b、反応部 6 142b,分離抽出部 6228b、および混合部 6140cは、温度調整ケース 6146にそれ ぞれ収容され、さらにボノレト 6194、ナット 6195、スぺーサ 6196によって所定の間隔 をおいて積層化されている。各部間の液の移動は連絡通路 6200 (図 1 16 (b)参照) を介して行われる。各部の間には空気を介在させ、空気の断熱性を利用して他の部 の熱影響を受けないようにして、温度制御の精度を向上させている。図 129 (b)に示 すように、各温度調整ケース 6146の周りを気泡を含んだクリーンなシリコン部材 623 6等の断熱材で覆うのが好ましい。  [0646] FIG. 129 (a) shows a configuration in which the respective parts in FIG. 23 are laminated. The liquid flows downward. The mixing unit 6140a, the reaction unit 6142a, the separation / extraction unit 6228a, the mixing unit 6140b, the reaction unit 6 142b, the separation / extraction unit 6228b, and the mixing unit 6140c are accommodated in the temperature adjustment case 6146, respectively, and the Bonoleto 6194 and the nut 6195 The spacers 6196 are stacked at a predetermined interval. The movement of the liquid between each part is performed through the communication passage 6200 (see Fig. 116 (b)). Air is interposed between each part, and the thermal insulation of the air is used so that it is not affected by the heat of other parts, improving the accuracy of temperature control. As shown in FIG. 129 (b), it is preferable to cover each temperature adjustment case 6146 with a heat insulating material such as a clean silicon member 623 6 containing bubbles.
[0647] この流体反応装置に導入される流体は液体、気体であり、回収される物質は液体、 気体、固体またはこれらの混合体である。導入物質が粉体などの固体の場合は原料 貯留部 6101に粉体溶解器を設置することも可能である。図 130は、 2つの原料液の うち、一方が粉体を溶解した溶液、他方は元々液体の場合の原料貯留部 6101の構 成例である。原料の粉体と溶媒は粉体溶解器 6240の原料導入口 6242から導入さ れる。この例では、原料粉体をヒータ 6244による加熱と攪拌器 246による攪拌によつ て溶解し、生成した原料液を、取出し口 6148に引き込まれた配管 6249より、プラン ジャポンプ 6116Aによって、混合部 6140および反応部 6142に送り込むようになつ ている。  [0647] The fluid introduced into the fluid reaction apparatus is liquid or gas, and the substance to be recovered is liquid, gas, solid or a mixture thereof. When the introduced substance is a solid such as powder, a powder dissolver can be installed in the raw material reservoir 6101. FIG. 130 shows a configuration example of the raw material reservoir 6101 when one of the two raw material liquids is a solution in which powder is dissolved and the other is originally liquid. The raw material powder and solvent are introduced from the raw material inlet 6242 of the powder dissolver 6240. In this example, the raw material powder is dissolved by heating by the heater 6244 and stirring by the stirrer 246, and the generated raw material liquid is mixed by the plunger 6116A from the pipe 6249 drawn into the outlet 6148 by the mixing unit 6140. And is sent to the reaction unit 6142.
[0648] マルチ分光装置  [0648] Multi-spectrometer
本発明は、さらに、本発明の流体反応装置及び流体混合装置において使用するこ とができるマルチ分光分析装置にも関する。  The present invention further relates to a multispectral analysis apparatus that can be used in the fluid reaction apparatus and the fluid mixing apparatus of the present invention.
[0649] 上述した目的を達成するための本発明は、これに限定されるものではなレ、が、以下 の発明を包含する。  [0649] The present invention for achieving the above-mentioned object is not limited to this, but includes the following inventions.
[0650] (1) マルチ分光分析装置であって、医薬品製薬製造ラインおよび医薬品開発段 階の有機合成反応結果を評価するためのマルチ分光分析装置であって、複数の波 長の異なる光源を有する光源部と、被測定液を流通させるフローセルを構成するケ 一シングと、上記フローセルにおいて被測定液に近接する複数の発光部と受光部と 、受光部から得られた各波長の分光を個々に行う分光器を有する分光部と、分光器 で得られた被測定液の分光情報を演算制御して出力する制御部とを具備したことを 特徴とするマルチ分光分析装置。 [0650] (1) A multispectral analyzer for evaluating organic synthesis reaction results in a pharmaceutical / pharmaceutical production line and a pharmaceutical development stage, and having a plurality of light sources having different wavelengths. A light source unit and a cell constituting a flow cell for circulating the liquid to be measured A plurality of light-emitting units and light-receiving units that are close to the liquid to be measured in the flow cell, a spectroscopic unit that individually performs spectroscopy of each wavelength obtained from the light-receiving unit, and a spectroscope A multispectral analysis apparatus comprising: a control unit that arithmetically controls and outputs spectral information of a liquid to be measured.
[0651] (1)に記載の発明においては、光源部から波長領域の異なる複数の光を発光させ 、これを異なる分光器で受光して、被測定液を通過した各波長の分光が個々に行わ れる。このような複数の分析情報を組み合わせることにより、精度の高い、漏れの無い 分析が行われる。  [0651] In the invention described in (1), a plurality of light beams having different wavelength regions are emitted from the light source unit, received by different spectrometers, and each wavelength spectrum that has passed through the liquid to be measured is individually measured. Done. Combining such multiple pieces of analysis information enables highly accurate and leak-free analysis.
[0652] (2) (1)に記載の発明において、前記光源部は、紫外光、可視光、近赤外光、赤 外光、遠赤外光のうち、少なくとも 2つ以上の波長領域をカバーする光源を有するこ とを特徴とするマルチ分光分析装置。  [0652] (2) In the invention described in (1), the light source unit has at least two wavelength regions of ultraviolet light, visible light, near infrared light, infrared light, and far infrared light. A multispectral analysis apparatus characterized by having a light source for covering.
[0653] (2)に記載の発明においては、光源部からの、紫外光、可視光、近赤外光、赤外光 、遠赤外光のうち、少なくとも 2つ以上の波長領域をカバーする光源を組み合わせて 用いることにより、処理対象や目的に応じた分析情報を得ることができる。  [0653] In the invention described in (2), at least two wavelength regions of the ultraviolet light, visible light, near infrared light, infrared light, and far infrared light from the light source unit are covered. By using a combination of light sources, it is possible to obtain analysis information according to the processing target and purpose.
[0654] (3) (1)又は(2)に記載の発明において、前記フローセルが複数形成され、各フ ローセルに発光部と受光部がそれぞれ配置されていることを特徴とするマルチ分光 分析装置。  [0654] (3) In the invention described in (1) or (2), a plurality of flow cells are formed, and a light emitting unit and a light receiving unit are arranged in each flow cell, respectively. .
[0655] (4) (1)〜(3)のいずれかに記載の発明において、前記ケーシングは、仕切によ つて内部に複数のフローセルを形成するように構成されていることを特徴とするマル チ分光分析装置。  [0655] (4) In the invention according to any one of (1) to (3), the casing is configured to form a plurality of flow cells therein by a partition. HI spectroscopic analyzer.
[0656] (5) (1)〜(4)のいずれかに記載の発明において、前記ケーシングは、内部に 1 つのフローセルを形成するように構成され、複数の前記ケーシングが基板上に着脱 自在に取り付け可能となっていることを特徴とするマルチ分光分析装置。  [0656] (5) In the invention according to any one of (1) to (4), the casing is configured to form one flow cell therein, and a plurality of the casings are detachably mounted on the substrate. A multispectral analyzer characterized in that it can be attached.
[0657] (6) 可視領域から近赤外領域の光源を一つの光源で兼用し、異なる受光部に導 くように構成したことを特徴とする(1)〜(5)のレ、ずれかに記載のマルチ分光分析装 置。  [0657] (6) One of the light sources in the visible region to the near infrared region is used as a single light source, and the light is guided to different light receiving sections. The multispectral analysis apparatus described in 1.
[0658] (7) (1)〜(6)のいずれかに記載の発明において、前記発光部と受光部間の距 離を調整可能であることを特徴とするマルチ分光分析装置。 [0659] (8) 反応領域の下流側に、(1)〜(7)のいずれかに記載のマルチ分光分析装置 を有することを特徴とするマイクロリアクタ。 [0658] (7) The multispectral analyzer according to any one of (1) to (6), wherein a distance between the light emitting unit and the light receiving unit can be adjusted. [0659] (8) A microreactor comprising the multispectral analyzer according to any one of (1) to (7) on the downstream side of a reaction region.
[0660] 以下、図面を参照してこの発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0661] 図 131は、この発明の一実施の形態のマルチ分光分析装置 7001を模式的に示す もので、例えば、例えば、一対の基板によって構成されるケーシング 7010の中に構 成されている。この分光分析装置 7001は、後述する図 140に示すように、マイクロリ ァクタの下流側部分を構成する部材の一部に組み込まれ、使用される。  FIG. 131 schematically shows a multispectral analysis apparatus 7001 according to an embodiment of the present invention. For example, the multispectral analysis apparatus 7001 is configured in a casing 7010 constituted by a pair of substrates. As shown in FIG. 140 described later, the spectroscopic analyzer 7001 is used by being incorporated into a part of a member constituting the downstream portion of the microreactor.
[0662] ケーシング 7010には、マイクロリアクタの下流側の流路 (反応生成物が流れる流路 ) 7012につながる複数のフローセル 7014が形成されている。フローセル 7014は全 体として矩形平板状の内部空間 7016を複数の仕切 7018で区画することにより形成 され、その両側には発光部 7020と受光部 7022とが対向して配置されている。この実 施の形態では、複数のフローセル 7014を一つのケーシング 7010内の内部空間 70 16に収めることにより寸法を小さくすることができ、また流量のばらつきを抑制して分 析精度を向上させることが可能になる。フローセル 7014内の流路は、できるだけ滞 流や通過抵抗が無いような形状とするのが好ましい。  [0662] In the casing 7010, a plurality of flow cells 7014 connected to a flow path (flow path through which a reaction product flows) 7012 on the downstream side of the microreactor are formed. The flow cell 7014 is formed by partitioning an internal space 7016 having a rectangular flat plate shape as a whole by a plurality of partitions 7018, and a light emitting unit 7020 and a light receiving unit 7022 are arranged opposite to each other. In this embodiment, the dimensions can be reduced by accommodating a plurality of flow cells 7014 in the internal space 7016 in one casing 7010, and the analysis accuracy can be improved by suppressing variations in flow rate. It becomes possible. It is preferable that the flow path in the flow cell 7014 be shaped so as not to cause stagnant flow or resistance to passage.
[0663] ケーシング 7010を構成する材料は、熱伝導性に優れ、 40〜: 150°Cの広い温度 範囲に耐えるものが好ましい。さらに、フローセル 7014の流路を構成する材料は、液 体の高圧に耐えうるものであることが好ましい。これらの点を考慮し、流路を構成する 材料の好ましい例として、 SUS316、 SUS304、 Ti、石英ガラス、パイレックス(登録 商標)ガラス等の硬質ガラス、 PEEK (polyetheretherketone)、 PE (polyethylene)、 P VC (poiyvmylchlonde)、 PDM¾ (Polydimethylsiloxane)、; 、 PTFE (polytetrafluoro ethylene)、 PCTFE (Polychlorotrifluoroethylene)、および PFA (perfluoroalkoxylalka ne)などの樹脂が挙げられる。  [0663] The material constituting the casing 7010 is preferably one that has excellent thermal conductivity and can withstand a wide temperature range of 40 to 150 ° C. Further, the material constituting the flow path of the flow cell 7014 is preferably one that can withstand the high pressure of the liquid. Considering these points, preferable examples of the material constituting the flow path include hard glass such as SUS316, SUS304, Ti, quartz glass, Pyrex (registered trademark) glass, PEEK (polyetheretherketone), PE (polyethylene), P VC (Poiyvmylchlonde), PDM¾ (Polydimethylsiloxane), PTFE (polytetrafluoroethylene), PCTFE (Polychlorotrifluoroethylene), and PFA (perfluoroalkoxylalkane).
[0664] 異なる波長域の光を出力する複数の光源 7024a〜7024gを有する光源部 7024 が、フローセル 7014の近傍の所定箇所に設置されており、それぞれの出力光は光 ファイバ 7026によって発光部 7020に導かれている。この実施の形態では、紫外光 を出力する光源 7024aは重水素ランプであり、可視光から近赤外光を出力する光源 7024b〜7024eはノヽロゲンランプであり、赤外光はニクロム赤外光源 7024fである。 可視光から近赤外光までを 1個のハロゲンランプで賄ってもよい。このようにすること で装置の大きさがよりコンパクトにすることができる。 [0664] A light source unit 7024 having a plurality of light sources 7024a to 7024g that outputs light in different wavelength ranges is installed at a predetermined location in the vicinity of the flow cell 7014. Led. In this embodiment, the light source 7024a that outputs ultraviolet light is a deuterium lamp, the light sources 7024b to 7024e that output near infrared light from visible light are neurogen lamps, and the infrared light is a nichrome infrared light source 7024f. is there. One halogen lamp may cover from visible light to near infrared light. By doing so, the size of the apparatus can be made more compact.
[0665] 受光部 7022は光ファイバ 7026によって、フローセル 7014の近傍に設置された分 光器 7028a〜7028gを有する分光部 7028に結合されてレ、る。分光器 7028a〜70 28gは、例えば、 CCD素子によって構成され、それぞれが受光した光を波長帯域ご とに分けて強度を測定することができるようになつている。この実施の形態では 7個の 分光器 7028a〜7028gを設置しており、各分光器 7028a〜7028gの分担する波長 範囲は、 200〜400nm (紫外分光器 7028a)、 400〜700nm (可視光分光器 7028b)、 7 00〜1000nm (第 1近赤外分光器 7028c)、 1000〜1700nm (第 2近赤外分光器 7028d )、 1700〜2200nm (第 3近赤外分光器 7028e)、 2200〜25000nm (赤外分光器 7028f )及び波長 25000nmを超える波長領域 (遠赤外分光器 7028g)のようになってレ、る。こ れらの組合せは測定物質によってはすべて網羅する必要はなぐ 2つ以上の適宜の 数の組合せであればょレ、。  [0665] The light receiving unit 7022 is coupled to the spectroscopic unit 7028 having the spectrometers 7028a to 7028g installed in the vicinity of the flow cell 7014 by the optical fiber 7026. The spectroscopes 7028a to 7028g are constituted by, for example, CCD elements, and can measure the intensity by dividing the light received by each of the wavelength bands. In this embodiment, seven spectrometers 7028a to 7028g are installed, and the wavelength range shared by each spectrometer 7028a to 7028g is 200 to 400 nm (ultraviolet spectrometer 7028a), 400 to 700 nm (visible light spectrometer) 7028b), 7 00-1000 nm (first near infrared spectrometer 7028c), 1000-1700 nm (second near infrared spectrometer 7028d), 1700-2200 nm (third near infrared spectrometer 7028e), 2200-25000 nm ( Infrared spectrometer 7028f) and wavelength region exceeding 25000nm (far infrared spectrometer 7028g). It is not necessary to cover all of these combinations depending on the substance to be measured.
[0666] この実施の形態では発光部 7020と受光部 7022の間の光路は流体の流れ方向に 形成されており、流路幅に関係なく所定の光路長に合わせて設定することができる。 また、各区分流路ごとの光路長の調整は、発光部 7020と受光部 7022の突出長さを 変えることにより行うことができる。たとえば紫外分光器 7028aでは、通常サンプル液 を希釈してオフラインで分析するが、インライン測定では、濃度が濃い状態のままの 測定となるので、不要な反応を回避するために光路長を短くして測定する(たとえば 1 mm以下)。また、近赤外分光器 7028c〜7028eでは比較的感度が弱いため光路 長は長めにしておく(5〜: 10mm)。後述するように、吸収波長の幅の広い複数の成分 を瞬時に同時に測定するには、各波長域の得失に合わせてフローセル 7014の形状 •寸法を設定することが必要である。  In this embodiment, the optical path between the light emitting section 7020 and the light receiving section 7022 is formed in the fluid flow direction, and can be set according to a predetermined optical path length regardless of the flow path width. In addition, the adjustment of the optical path length for each section flow path can be performed by changing the protruding lengths of the light emitting unit 7020 and the light receiving unit 7022. For example, in the UV spectrometer 7028a, the sample solution is usually diluted and analyzed offline, but in-line measurement is performed with the concentration remaining high, so the optical path length is shortened to avoid unnecessary reactions. Measure (eg 1 mm or less). The near-infrared spectrometers 7028c to 7028e have relatively low sensitivity, so the optical path length is long (5 to 10 mm). As will be described later, in order to instantaneously simultaneously measure multiple components with a wide absorption wavelength, it is necessary to set the shape and dimensions of the flow cell 7014 according to the pros and cons of each wavelength region.
[0667] 各分光器 7028a〜7028gからは、事前に設定された波長領域毎の受光強度が出 力され、 AD変換器 7030を介して制御部 7032に入力される。制御部 7032は、この データと、事前に入力された各光源 7024a〜7024gの波長領域毎の強度分布デー タに基づいて透過率(吸収率)を算出し、さらにこれを基に、 目的とする反応生成物( 正規の製品)の生成量と、反応副生成物の生成量を求め、その結果としてさらに、収 率や転化率、及び副次的に溶媒濃度も求める。 [0667] From each of the spectrometers 7028a to 7028g, light reception intensity for each preset wavelength region is output and input to the control unit 7032 via the AD converter 7030. The control unit 7032 calculates the transmittance (absorption rate) based on this data and the intensity distribution data for each wavelength region of each of the light sources 7024a to 7024g input in advance. The amount of reaction product (regular product) produced and the amount of reaction by-product produced are determined, and as a result, The rate, conversion, and secondary solvent concentration are also determined.
[0668] 反応生成物と反応副生成物は、実験段階でなければ事前に絞り込まれているので 、生成が予定される成分に対応した波長吸収に備えた光源 7024a〜7024gと分光 器 7028a〜7028gの組合せを用いればよい。この場合、反応副生成物が複数有つ て、生成する可能性が低いものでも、例えば FDA (米国食品医薬品局)の GMP (適 正製造基準)をクリアするためには設置することが望ましレ、。  [0668] The reaction products and reaction by-products are narrowed down in advance unless they are experimental, so light sources 7024a to 7024g and spectrometers 7028a to 7028g are prepared for wavelength absorption corresponding to the components to be generated. A combination of these may be used. In this case, even if there are multiple reaction by-products and they are unlikely to be produced, it is desirable to install them to satisfy, for example, FDA (US Food and Drug Administration) GMP (Applicable Manufacturing Standards). Les.
[0669] 一方、医薬品の開発段階では、試薬の種類や濃度、温度、流速など条件を種々振 つて、いわゆるスクリーニングと言われる可能性のある反応を見つける作業がある。こ のように、どのような反応生成物が生じるか予測ができない場合には、任意の生成物 を検出可能なように、予め全波長領域の光源 7024a〜7024gと分光器 7028a〜70 28gを設置しておき、データが蓄積されてから、不要なものを外したり、適当なものと 入れ替える等の措置を行う。  [0669] On the other hand, in the development stage of pharmaceuticals, there is an operation of finding a reaction that may be referred to as so-called screening by changing various conditions such as reagent type, concentration, temperature, and flow rate. In this way, when it is impossible to predict what kind of reaction product will be generated, light sources 7024a to 7024g and spectrometers 7028a to 7028g are installed in advance so that any product can be detected. In addition, after data is accumulated, take measures such as removing unnecessary ones or replacing them with appropriate ones.
[0670] 制御部 7032は、反応生成物や反応副生成物の生成量、収率や転化率等のデー タをディスプレイ 7034に表示し、記憶装置 7036へ記憶するとともに、これらのデータ が予め設定した閾値を超えた場合に警報装置 7038により警報を発生し、さらに閾値 を超えた場合には処理を自動的に中止する等の処置を執る。さらに、上記のようなデ ータと反応条件の相関関係を事前に求めておき、検出データに基づいてマイクロリア クタの反応条件、例えば反応温度、流量、圧力等を制御するようにしてもよい。  [0670] The control unit 7032 displays the data such as the production amount, yield and conversion rate of the reaction product and reaction by-product on the display 7034 and stores them in the storage device 7036. These data are set in advance. When the specified threshold value is exceeded, an alarm is issued by the alarm device 7038, and when the threshold value is exceeded, the processing is automatically stopped. Further, the correlation between the above data and reaction conditions may be obtained in advance, and the reaction conditions of the microreactor, for example, reaction temperature, flow rate, pressure, etc. may be controlled based on the detection data. .
[0671] 一般に、単一の光源を用いる分光分析装置 7001では、光はある波長領域に集中 して分布するので、周辺領域における感度は低下する。このマルチ分光分析装置 70 01では、複数の波長域の異なる光源 7024a〜7024gと分光器 7028a〜7028gを 設けているので、広い波長領域に渡って正確なデータを得ることができる。以下、各 分光器 7028a〜7028gの特徴と、それに基づく組合せの方法を、表 131を参照しつ つ説明する。表 131は、それぞれの官能基、分子等の吸収スペクトル波長を例示す る。  [0671] In general, in the spectroscopic analyzer 7001 using a single light source, the light is concentrated and distributed in a certain wavelength region, so the sensitivity in the peripheral region decreases. In this multispectral analyzer 7001, since a plurality of light sources 7024a to 7024g and spectroscopes 7028a to 7028g having different wavelength ranges are provided, accurate data can be obtained over a wide wavelength range. The characteristics of each of the spectrometers 7028a to 7028g and the combination method based on them will be described below with reference to Table 131. Table 131 exemplifies the absorption spectrum wavelength of each functional group, molecule, and the like.
[0672] [表 1]
Figure imgf000147_0001
[0672] [Table 1]
Figure imgf000147_0001
単位: π m  Unit: π m
[0673] 紫外分光器 7028aは、全成分の吸収スペクトル傾向を読み、収率変化や不純物量 変化を検知するのに適している。赤外分光器 7028fは、個々の物質の多くの有機官 能基に対応可能であるが、強度が強すぎて妨害物質が出る場合が有る。その場合は 近赤外分光器 7028c 7028eを代用する。また、溶媒が水の場合には、赤外分光 器 7028fでは水が妨害物質になる場合がある。可視光分光器 7028bは、クロロフィ ルゃカロチンなど有色物質を検出するのに好適である。この実施の形態において、 3 つの近赤外分 [0673] The ultraviolet spectrometer 7028a is suitable for reading the absorption spectrum trends of all components and detecting changes in yield and impurity amount. Infrared spectrometer 7028f can cope with many organic functional groups of individual substances, but the intensity is too strong and may cause interference substances. In that case, substitute near-infrared spectrometer 7028c 7028e. In addition, when the solvent is water, water may be an interfering substance in the infrared spectrometer 7028f. The visible light spectrometer 7028b is suitable for detecting a colored substance such as chlorophyll carotene. In this embodiment, three near infrared components
光器 7028c 7028eを使い分けしている理由は、近赤外の領域 700 2200nmの範 囲で測定能力の弱い部分を作らず、たとえば反応によって共役系が長くなつたり、結 合の微妙な変化によるピークの小さなシフトを、精度良く読み取るためある。  The reason for using different types of optical instruments 7028c 7028e is that, in the near infrared region 700 2200 nm, the weak measurement capability is not created.For example, the conjugated system becomes longer due to the reaction or the peak due to subtle changes in the bond. This is to accurately read a small shift of.
[0674] 以下、さらに具体的な反応について、図 132を参照して説明する。図 132 (a)の反 応は、溶媒ピリジン中で行われるオ リアクション反応で、マイクロ流路効果に基 づいて正反応が行われればモノべンゾィルレゾノレシノールが生じる力 s、マイクロ流路 中の濃度のアンバランスが生じるとさらに反応が進んで副反応であるジベンゾィルレ ゾルシノールが生じる。ベンゼン環、 CO OH、などの官能基の生成を吸収域を測定 することにより求めて、モノ体とジ体の比を検出することができる。ベンゼン環は赤外 分光器 7028fで測定可能であるが、溶媒ピリジンがバックグランドとして検出される可 能性が有り、測定不能、またはピークが重なり合って判別しにくい場合も有る。その場 合は、近赤外分光器 7028c〜7028eを用いればよい。 [0674] Hereinafter, a more specific reaction will be described with reference to FIG. The reaction in Fig. 132 (a) is an o-reaction reaction carried out in the solvent pyridine. If a positive reaction is carried out based on the micro-channel effect, the force s , which produces monobenzoylrezonoresinol, If the concentration in the flow path becomes unbalanced, the reaction proceeds further and dibenzoylresorcinol, a side reaction, is generated. The formation of functional groups such as benzene rings and COOH can be determined by measuring the absorption region, and the ratio of mono- and di-forms can be detected. The benzene ring can be measured with an infrared spectrometer 7028f, but the solvent pyridine can be detected as a background. In some cases, there is performance, measurement is impossible, or peaks overlap and are difficult to distinguish. In that case, a near infrared spectrometer 7028c to 7028e may be used.
[0675] なお、上記の場合、ベンゾィル基の個数が 1個と 2個の場合で吸収強度の差が充 分に出るような特定の波長領域力 例えば近赤外分光器 7028c〜7028eまたは赤 外分光器 7028fの領域に存在する場合には、これを選択すればよい。この場合も、 反応系全体液の吸収スペクトルは紫外分光器 7028aで監視し、反応の変化があつ た場合は警報を発したり、処理を停止する等の処置を執る。  [0675] In the above case, a specific wavelength region force such that the difference in absorption intensity is sufficient when the number of benzoyl groups is 1 and 2, such as near-infrared spectrometers 7028c to 7028e or infrared If it exists in the region of the spectroscope 7028f, this may be selected. In this case as well, the absorption spectrum of the entire reaction system liquid is monitored with an ultraviolet spectrometer 7028a, and if there is a change in the reaction, an alarm is issued or the process is stopped.
[0676] 図 132 (b)の反応は、ベンジルフェニールァラニンをメタノール中で水素ガスと反応 させ、還元してフヱニールァラニンメチルエステルを生じさせる。これは、保護基の接 触水素による脱保護反応であって、 Pd触媒が使用される。 NH2と NHの比を読めば 、反応率が分かる。強度のある NH2は近赤外分光器 7028c〜7028eで、弱い NH は赤外分光器 7028fで読むことが可能であり、妨害物質のオーバーラップ次第で近 赤外分光器 7028c〜7028eと赤外分光器 7028fを使い分けすることが可能である。 もちろん、両成分を個別にそれぞれの波長域で測定してもよい。この場合も、全体液 の吸収スペクトルは紫外分光器 7028aで監視し、反応の変化があった場合は、警報 を発したり、処理を停止する等の処置を執る。  [0676] In the reaction shown in Fig. 132 (b), benzylphenylalanine is reacted with hydrogen gas in methanol and reduced to form phenylalanin methyl ester. This is a deprotection reaction of the protecting group by catalytic hydrogen, and a Pd catalyst is used. If you read the ratio of NH2 and NH, you can see the reaction rate. Intense NH2 can be read by near-infrared spectrometers 7028c to 7028e, and weak NH can be read by infrared spectrometer 7028f. Depending on the overlap of interfering substances, near-infrared spectrometers 7028c to 7028e and infrared spectroscopy It is possible to use 7028f properly. Of course, both components may be measured individually in their respective wavelength ranges. In this case as well, the absorption spectrum of the whole solution is monitored by the UV spectrometer 7028a. If there is a change in the reaction, an alarm is issued or the process is stopped.
[0677] 図 132 (c)の反応は、ポリペプチド合成の一工程で、グリシン無水物に水が加わり、 塩酸が触媒になってグリシルグリシンに変わる加水分解反応である。生成物中に水 が存在する反応であるので、水が吸収妨害しやすい赤外分光器 7028fを避け、近赤 外分光器 7028c〜7028e領域の弱い感度でかつ水の影響を受けない領域を使用 して測定すればよい。  [0677] The reaction shown in Fig. 132 (c) is a hydrolysis reaction in which water is added to glycine anhydride and hydrochloric acid is used as a catalyst to turn into glycylglycine in one step of polypeptide synthesis. Since the reaction is the presence of water in the product, avoid the infrared spectrometer 7028f, which tends to interfere with absorption of water, and use the near-infrared spectrometer 7028c to 7028e area that is weakly sensitive and unaffected by water. And measure.
[0678] 図 133は、図 131の実施の形態の変形例を示すもので、フローセル 7014をケーシ ング 7010内に個別に形成し、流体流路を各フローセル 7014に分岐して導くようにし たものである。これにより、各フローセル 7014が他のフローセル 7014の影響を受け ず、流路抵抗も少ないので流体の流れがより均一になる。また、図示するように、フロ 一セル 7014への分岐流路 7040には流量調整弁 7042を個別に設置することにより 、各分光器 7028a〜7028gの特性に合わせて適当な流量に調整することができる。  FIG. 133 shows a modification of the embodiment of FIG. 131, in which the flow cell 7014 is individually formed in the casing 7010, and the fluid flow path is branched and guided to each flow cell 7014. It is. As a result, each flow cell 7014 is not affected by the other flow cells 7014 and the flow resistance is low, so that the fluid flow becomes more uniform. In addition, as shown in the figure, a flow rate adjusting valve 7042 is individually installed in the branch flow path 7040 to the flow cell 7014, so that it can be adjusted to an appropriate flow rate according to the characteristics of each spectrometer 7028a to 7028g. it can.
[0679] 図 134は、同じく図 131の実施の形態の変形例を示すもので、フローセル 7014を ケーシング 7010内に個別に形成している力 各分岐流路 7040に開閉弁 7044が設 置されている。これにより、必要な波長のフローセル 7014の開閉弁 7044のみを開と し、不要なフローセル 7014の開閉弁 7044を閉じることで、余分な流路抵抗の発生 を防止している。また、図 135の実施の形態は、各フローセル 7014を直列につなげ たものである。この実施の形態では、分流の必要がないので流路抵抗さえ配慮すれ ば扱レ、やすいとレ、う利点が有る。 [0679] FIG. 134 shows a modification of the embodiment of FIG. 131, and shows a flow cell 7014. Force formed individually in the casing 7010 Each branch flow path 7040 is provided with an on-off valve 7044. As a result, only the opening / closing valve 7044 of the flow cell 7014 of the required wavelength is opened, and the unnecessary opening / closing valve 7044 of the flow cell 7014 is closed, thereby preventing the occurrence of excessive flow path resistance. In the embodiment of FIG. 135, the flow cells 7014 are connected in series. In this embodiment, since there is no need for diversion, there is an advantage that it is easy to handle and easy to handle as long as the flow path resistance is taken into consideration.
[0680] 図 136は、他の実施の形態のマルチ分光分析装置 7001の構造を示すもので、内 部に 1つのフローセル 7014を構成するケーシング 7046が基板 7047上に複数配置 されている。各ケーシング 7046はたとえば石英ガラスのような透明な素材で形成され 、内部に流路 7048が形成され、この流路 7048は側面で開口して継手部 7050とな つてレヽる。ケーシング 7046内には、流路 7048を挟んで発光き 7020と受光咅 B7022 が置かれ、これらは光ファイバ 7026により外部の光源と分光器(図示略)に連結され ている。 FIG. 136 shows the structure of a multispectral analysis apparatus 7001 according to another embodiment. A plurality of casings 7046 constituting one flow cell 7014 are arranged on a substrate 7047 inside. Each casing 7046 is formed of a transparent material such as quartz glass, for example, and has a flow path 7048 formed therein. The flow path 7048 opens on the side surface and forms a joint portion 7050. In the casing 7046, a light emitting unit 7020 and a light receiving unit B7022 are placed with a flow path 7048 interposed therebetween, and these are connected to an external light source and a spectroscope (not shown) by an optical fiber 7026.
[0681] この場合は流路 7048の幅が光が横断する光路長になる。継手部 7050はマイクロ リアクタ等と配管により接続する。ケーシング 7046の材料は耐薬品性を持った PCTF E、 PTFE、 PEEKでもよく、この場合の発光部 7020、受光部 7022は直接接液せぬよ う石英で保護される。この実施の形態では、流路 7048への接続は継手部 7050を介 して行うので、接続は自由に変更することができる。各フローセル 7014への流体の 流れは並列分流でもよぐ直列でもよぐフローセル 7014個々に開閉弁 7044を設け 選択的に流しても良い。  [0681] In this case, the width of the flow path 7048 is the optical path length that the light traverses. Joint 7050 is connected to a microreactor etc. by piping. The material of the casing 7046 may be PCTF E, PTFE, or PEEK with chemical resistance. In this case, the light emitting part 7020 and the light receiving part 7022 are protected by quartz so that they do not come into direct contact with liquid. In this embodiment, since the connection to the flow path 7048 is made via the joint portion 7050, the connection can be freely changed. The flow of fluid to each flow cell 7014 may be either a parallel shunt or series, and an on-off valve 7044 may be provided for each flow cell 7014 to selectively flow.
[0682] 図 137は、図 136の変形例を示すもので、光路長を短く設定するために、発光部 7 020と受光部 7022を流路 7048中に突出させているものである。この場合フローセ ル 7014内の滞流ゃ流路抵抗を少なくするために、流路 7048を徐々に拡径するテ ーパ部 7049aを形成している。  FIG. 137 shows a modification of FIG. 136, in which the light emitting section 7020 and the light receiving section 7022 are projected into the flow path 7048 in order to set the optical path length short. In this case, in order to reduce the flow resistance in the flow cell 7014, a taper portion 7049a for gradually expanding the diameter of the flow path 7048 is formed.
[0683] 図 138は、図 136の変形例を示すもので、基板 7047上に複数配置された各ケー シング 7046において、光路長を自由に調整することが可能になっている。フローセ ル 7014中の流路 7048を挟んで発光ケース 7052と受光ケース 7054を対向させて 配置されている。発光ケース 7052、受光ケース 7054とも石英で作られ、発光ケース 7052内には発光部 7020力 受光ケース 7054内には受光部 7022が取り付けられ る。発光ケース 7052、受光ケース 7054の外形は少なくとも一方がねじになっており 、ケース 7046の外面に取り付けられた固定ナット 7056に螺合されている。これにより 、光路長の長さを自在に調節することが可能である。片側固定で反対側調整しても いいし、両側とも調整可能にしてもよい。これによつて、各波長域の感度、分子濃度、 溶媒物質の情報力 個別に現場で自在に調節することが可能になる。インラインで 一般に濃度の高い液を分析するので、光路長は、オフラインの場合より短くし、 10mm 〜0.5mm、好ましくは 5mm〜0.1mmに設定する。 [0683] FIG. 138 shows a modification of FIG. 136, in which a plurality of cases 7046 arranged on the substrate 7047 can freely adjust the optical path length. The light emitting case 7052 and the light receiving case 7054 are arranged to face each other across the flow path 7048 in the flow cell 7014. Both the light emitting case 7052 and the light receiving case 7054 are made of quartz. In 7052, a light emitting unit 7020 is installed. In the light receiving case 7054, a light receiving unit 7022 is attached. At least one of the outer shapes of the light emitting case 7052 and the light receiving case 7054 is a screw, and is screwed into a fixing nut 7056 attached to the outer surface of the case 7046. This makes it possible to freely adjust the length of the optical path length. The other side may be adjusted by fixing one side, or both sides may be adjustable. This makes it possible to individually adjust the sensitivity, molecular concentration, and information power of solvent substances in each wavelength range on site. Since liquids with high concentrations are generally analyzed in-line, the optical path length is set to be shorter than that in the off-line and set to 10 mm to 0.5 mm, preferably 5 mm to 0.1 mm.
[0684] 図 139 (a)は、この発明のマルチ分光分析装置 7001の用い方の実施の形態を示 すもので、マイクロリアクタの混合 ·反応部 7058の下流側に、反応の継続を停止させ るために急冷を行うマイクロタエンチ部 7060を設置したものである。マイクロタエンチ 部 7060は、例えば、水冷ジャケット構造とすることができる。この実施の形態では、混 合'反応部 7058とマイクロタエンチ部 7060の間にマルチ分光分析装置 7001を設 置することにより、反応の進行度合いを確認した上でマイクロタエンチを行うことで、 目 的とする製品を安定に製造することができる。  FIG. 139 (a) shows an embodiment of how to use the multispectral analyzer 7001 of the present invention, and the continuation of the reaction is stopped downstream of the mixing / reaction unit 7058 of the microreactor. For this purpose, a micro Taenti part 7060 is installed for rapid cooling. The micro Taenti part 7060 can have, for example, a water cooling jacket structure. In this embodiment, by installing a multi-spectral analyzer 7001 between the mixing / reaction unit 7058 and the microtalent unit 7060, by confirming the progress of the reaction and performing microtaenty, The target product can be manufactured stably.
[0685] 図 139 (b)は、この発明のマルチ分光分析装置 7001の用い方の他の実施の形態 を示すもので、マイクロリアクタの混合.反応部 7058の下流側に、マルチ分光分析装 置 7001を設置し、さらにその下流側に 3方切換弁 7062を設置している。 3方切換弁 7062はマルチ分光分析装置 7001からのラインを通常の製品貯蔵ライン 7064と、予 備タンク 7066につながる予備ライン 7068に選択的に接続するように切り換えるもの である。マルチ分光分析装置 7001の出力信号は制御部 7032に送られ、制御部 70 32が成分に異常が有ると判断した場合には、 3方切換弁 7062を予備タンク 7066側 に切り換える。これにより、異常成分が製品貯蔵ライン 7064に混入するのを防止する こと力 Sできる。  FIG. 139 (b) shows another embodiment of how to use the multispectral analysis apparatus 7001 of the present invention. In the mixing of the microreactor, downstream of the reaction section 7058, the multispectral analysis apparatus 7001 And a three-way selector valve 7062 on the downstream side. The three-way selector valve 7062 switches the line from the multispectral analyzer 7001 selectively to the normal product storage line 7064 and the spare line 7068 connected to the spare tank 7066. The output signal of the multispectral analyzer 7001 is sent to the control unit 7032, and when the control unit 7032 determines that the component is abnormal, the three-way selector valve 7062 is switched to the spare tank 7066 side. As a result, it is possible to prevent abnormal components from entering the product storage line 7064.
[0686] 次に、上述した本発明の一実施形態に係るマルチ分光分析装置を組み込んだ流 体反応装置(マイクロリアクタ)について説明する。図 140ないし図 142 (b)は本発明 の一実施形態に係る流量調整装置を組み込んだ流体反応装置の全体構成を示す 図である。なお、以下に述べる流体反応装置は、 2種類またはそれ以上の液体を混 合し、反応させるために用いられる装置である。 [0686] Next, a fluid reaction apparatus (microreactor) incorporating the above-described multispectral analysis apparatus according to an embodiment of the present invention will be described. FIG. 140 to FIG. 142 (b) are views showing the entire configuration of a fluid reaction apparatus incorporating a flow rate adjusting device according to an embodiment of the present invention. The fluid reaction device described below mixes two or more types of liquids. It is an apparatus used for combining and reacting.
[0687] 図 140,図 141,図 142 (a) ,および図 142 (b)に示すように、流体反応装置は、全 体が 1つの設置スペースに設置されてパッケージ化されている。この構成例では、こ の設置スペースは長方形であり、長手方向に沿って 4つの領域に区画される。  As shown in FIG. 140, FIG. 141, FIG. 142 (a), and FIG. 142 (b), the fluid reaction apparatus is entirely installed in one installation space and packaged. In this configuration example, this installation space is rectangular and is divided into four areas along the longitudinal direction.
[0688] すなわち、一端側の第 1の領域は、原料液を貯留する複数の貯留容器 7110 (図 1 40では 2つの貯留容器 7110A, 7110Bのみを示す)が設置された原料貯留部 710 1であり、それに隣接する第 2の領域は、貯留容器 7110の原料液を移送するポンプ 7116A, 7116Bなどが設置された配液部 7102となっている。第 2の領域に隣接す る第 3の領域は、原料液を混同させる混合部(混合チップ) 7140および混合された原 料液を反応させる反応部(反応チップ) 7142を有する処理部 7103となっている。他 端側の第 4の領域は、処理の結果得られた生成物を導出して貯留する生成物貯留 部(回収容器設置スペース) 7104である。  [0688] That is, the first region on one end side is a raw material storage section 710 1 in which a plurality of storage containers 7110 for storing the raw material liquid (only two storage containers 7110A and 7110B are shown in FIG. 140) are installed. There is a second region adjacent to the liquid distribution unit 7102 in which pumps 7116A and 7116B for transferring the raw material liquid in the storage container 7110 are installed. The third region adjacent to the second region is a processing unit 7103 having a mixing unit (mixing chip) 7140 for mixing the raw material liquid and a reaction unit (reaction chip) 7142 for reacting the mixed raw material liquid. ing. A fourth region on the other end side is a product storage section (collection container installation space) 7104 for deriving and storing the product obtained as a result of the processing.
[0689] また、この流体反応装置は、各部の動作の制御を行うコンピュータである動作制御 部 7106と、温度調整ケース 7146に熱媒体を流して処理部 7103の温度調整を行う 熱媒体コントローラ 7107を備えている。また、動作制御部 7106には、図 140に示す ように、液体の流量と温度をモニタできる流量モニタ 7270および温度モニタ 7272が 搭載されている。なお、この構成例では、動作制御部 7106と熱媒体コントローラ 710 7は流体反応装置と別置きになっているが、勿論一体でも良い。図 141に示すように 、第 2〜第 4の領域の床下部分には配管室 7105が形成され、ここには混合部 7140 および反応部 7142へ加熱又は冷却用の熱媒体を送るための配管が設けられている 。動作制御部 7106とマルチ分光分析装置 7001の制御部 7032は別になつているが 、勿論一体でも良い。  [0689] Further, this fluid reaction device includes an operation control unit 7106, which is a computer that controls the operation of each unit, and a heat medium controller 7107 that adjusts the temperature of the processing unit 7103 by flowing a heat medium through the temperature adjustment case 7146. I have. Further, as shown in FIG. 140, the operation control unit 7106 is equipped with a flow rate monitor 7270 and a temperature monitor 7272 that can monitor the flow rate and temperature of the liquid. In this configuration example, the operation control unit 7106 and the heat medium controller 710 7 are provided separately from the fluid reaction device, but may of course be integrated. As shown in FIG. 141, a piping chamber 7105 is formed in the lower floor portion of the second to fourth regions, where piping for sending a heating medium for heating or cooling to the mixing unit 7140 and the reaction unit 7142 is formed. Is provided. The operation control unit 7106 and the control unit 7032 of the multi-spectral analyzer 7001 are separate, but may be integrated as a matter of course.
[0690] このように、上流側から下流側へと各部を配置することによって液体の流れを円滑 にし、かつ装置全体をコンパクトにまとめることができる。この構成例では、各部の配 列を直線状にしたが、例えば、全体が正方形に近レ、スペースであれば、各部を液体 の流れがループを形成するように構成してもよレ、。  [0690] As described above, by arranging the respective parts from the upstream side to the downstream side, the flow of the liquid can be made smooth, and the entire apparatus can be made compact. In this configuration example, the arrangement of each part is linear, but for example, if the whole is close to a square, and if it is a space, each part may be configured so that the liquid flow forms a loop.
[0691] 図 141において、符号 7250は装置下部に設けられた液溜めパンであり、符号 725 2は液溜めパン 7250上に設置された漏液センサを示す。またこの装置例では、配液 咅 7102、処理咅 B7103、生成物貝宁留咅 は隔壁 7254, 7256により区画されて おり、各部にはカバー 7258, 7260, 7262が取り付けられて装置外部とこれらを隔 離している。符号 7264は排気ポートであり、図示しない排気ファンに接続されている 。そして、装置内の圧力を装置外より負とすることで装置内の有毒ガスが外部に漏出 することを防いでいる。 In FIG. 141, reference numeral 7250 denotes a liquid reservoir pan provided at the lower part of the apparatus, and reference numeral 7252 denotes a liquid leakage sensor installed on the liquid reservoir pan 7250. Also, in this device example, liquid distribution 咅 7102, treatment 咅 B7103, and product shellfish retainer are partitioned by partition walls 7254, 7256, and covers 7258, 7260, 7262 are attached to each part to separate them from the outside of the device. Reference numeral 7264 denotes an exhaust port, which is connected to an exhaust fan (not shown). And by making the pressure inside the device negative from outside the device, toxic gas inside the device is prevented from leaking outside.
[0692] 図 140に示す原料貯留部 7101には、 2つの貯留容器 7110A, 7110Bが設置され ているが、必要に応じて 3つまたはそれ以上の貯留容器を使用してもよい。例えば、 同じ液体を 2つの貯留容器に収容し、これらを交互に切り換えて用いることにより、処 理を継続的に行うことができる。なお、原料貯留部 7101に、ライン洗浄用のアセトン などの有機溶剤、塩酸、純水などが入った洗浄液容器 7112や、パージ用の窒素ガ スが封入された圧力源 7114を設けてもよい。また、廃液容器 7136を原料貯留部 71 01に置いてもよい。  [0692] In the raw material storage unit 7101 shown in Fig. 140, two storage containers 7110A and 7110B are installed, but three or more storage containers may be used as necessary. For example, by storing the same liquid in two storage containers and using them alternately, the processing can be performed continuously. Note that the raw material storage unit 7101 may be provided with a cleaning liquid container 7112 containing an organic solvent such as acetone for line cleaning, hydrochloric acid, pure water, or the like, or a pressure source 7114 filled with a purge nitrogen gas. Further, the waste liquid container 7136 may be placed in the raw material storage unit 7101.
[0693] 酉己 ί夜部(導入部) 7102には、貝宁留容器 7110A, 7110Bに輸送管 7121A, 7121 Βを介して接続されたポンプ 7116A, 7116Bが設置されている。図 140におけるポ ンプ 7116A, 7116Bには遠心式ポンプが使用されている。また、配液部 7102は、 ポンプ 7116A, 7116Bの下流側に配置された流量調整装置 7300Α, 7300Β、リリ ーフ弁 7122A, 7122B、圧力測定センサ 7124A, 7124B、流路切換弁 7126A, 7 126Β、および逆洗ポンプ 7130を有してレヽる。流路切換弁 7126A, 7126Bは、輸 送管 7121A, 7121Bの他に、洗浄液容器 7112や、圧力源 7114にそれぞれ接続さ れている。逆洗ポンプ 7130は、混合部 7140や反応部 7142の流路内が生成物によ つて閉塞した場合に用いられる。逆洗ポンプ 7130は洗浄液を貯留する洗浄液容器 7112に接続され、さらに流路切換弁 7132を介して反応部 7142の出口に接続され る。逆洗ポンプ 7130により移送される洗浄液は通常の流れと逆に流れる。すなわち 、洗浄液は、反応部 7142の出口力も混合部 7140の入口に向かって流れ、流路切 換弁 7126A, 7126Bを経て廃液口 7134から図示しない配管を通って廃液貯留容 器 7136に入れられる。  [0693] In the night section (introduction section) 7102, pumps 7116A and 7116B connected to shellfish container 7110A and 7110B via transport pipes 7121A and 7121 are installed. Centrifugal pumps are used for pumps 7116A and 7116B in FIG. In addition, the liquid distribution unit 7102 includes flow control devices 7300Α and 7300Β disposed on the downstream side of the pumps 7116A and 7116B, relief valves 7122A and 7122B, pressure measurement sensors 7124A and 7124B, flow path switching valves 7126A and 7126Β, And a backwash pump 7130. The flow path switching valves 7126A and 7126B are connected to the cleaning liquid container 7112 and the pressure source 7114 in addition to the transport pipes 7121A and 7121B, respectively. The backwash pump 7130 is used when the flow path of the mixing unit 7140 or the reaction unit 7142 is blocked by a product. The backwash pump 7130 is connected to a cleaning liquid container 7112 for storing cleaning liquid, and is further connected to an outlet of the reaction unit 7142 via a flow path switching valve 7132. The cleaning liquid transferred by the backwash pump 7130 flows in the opposite direction to the normal flow. That is, the cleaning liquid also flows toward the inlet of the mixing unit 7140 with the outlet force of the reaction unit 7142, and enters the waste liquid storage container 7136 through the flow path switching valves 7126A and 7126B from the waste liquid port 7134 through a pipe (not shown).
[0694] 逆洗ポンプ 7130は吐出圧力が高ぐ洗浄液に脈動を起こさせて生成物を除去す ることが可能なように 1本ピストン 16型のポンプが好ましい。洗浄液としては、有機溶 剤、塩酸、硝酸、りん酸、有機酸、純水などが好適に用いられる。有機溶剤の例とし ては、アセトン、エタノール、メタノールなどが挙げられる。図 140に示す導入口 7240 は、外部から純水や水素水を導入する場合に設けられたもので、洗浄液容器 7112 内の洗浄液の代わりに洗浄に使用できる。 [0694] The backwash pump 7130 is preferably a single-piston 16-type pump so that the washing liquid having a high discharge pressure can cause pulsation to remove the product. The cleaning solution is organic An agent, hydrochloric acid, nitric acid, phosphoric acid, organic acid, pure water and the like are preferably used. Examples of organic solvents include acetone, ethanol, methanol and the like. An introduction port 7240 shown in FIG. 140 is provided when pure water or hydrogen water is introduced from the outside, and can be used for cleaning instead of the cleaning liquid in the cleaning liquid container 7112.
[0695] 図 143は、原料液の予備加熱(予備温度調整)と混合を行うための混合部 7140を 示すもので、 3枚の薄板状の基材である上板 7144a、中板 7144b、下板 7144cが接 合されて全厚さ 5mmの混合部 7140が形成されている。なお、以下に説明する流路 はいずれも中板 7144bの表面に形成された溝である。上板 7144aを貫通して形成さ れた 2つの流入ポート 7147A, 7147Bは、中板 7144bの上面に形成されたそれぞ れ 2つの予備加熱流路 7148A, 7148Bに連通する。これらの予備加熱流路 7148A , 7148Bはそれぞれ途中で分岐しかつそれぞれ拡大し、再度合流する。さらに、予 備加熱流路 7148A, 7148Bはそれぞれ出口流路 7150A, 7150Bに連通し、これ らの出口流路 7150A, 7150Bは合流咅 に通じてレヽる。出口流路 7150Aは、 中板 7144bの上面に、出口流路 7150Bは中板 7144bの下面に形成されている。  [0695] Fig. 143 shows a mixing unit 7140 for preheating (preliminary temperature adjustment) and mixing of the raw material liquid. The upper plate 7144a, the middle plate 7144b, which are three thin plate-like substrates, The plate 7144c is joined to form a mixing portion 7140 having a total thickness of 5 mm. Note that the flow paths described below are all grooves formed on the surface of the intermediate plate 7144b. The two inflow ports 7147A and 7147B formed through the upper plate 7144a communicate with the two preheating channels 7148A and 7148B formed on the upper surface of the middle plate 7144b, respectively. These preheating flow paths 7148A and 7148B each branch in the middle, expand, and merge again. Further, the preliminary heating channels 7148A and 7148B communicate with the outlet channels 7150A and 7150B, respectively, and these outlet channels 7150A and 7150B lead to the junction. The outlet channel 7150A is formed on the upper surface of the middle plate 7144b, and the outlet channel 7150B is formed on the lower surface of the middle plate 7144b.
[0696] 図 144は図 143に示す合流部の拡大図である。図 144に示すように、合流部 7152 は、出口流路 7150A, 7150Bに通じる円弧状の溝として中板 7144bの上下面にそ れぞれ形成されたヘッダ咅 7155と、このヘッダ咅 7154, 7155力ら円弧の中 、に向力つて延びる複数の分夜流路 7156, 7157と、これらの分 ί夜流路 7156, 715 7が合流する合流空間 7158とを有している。分液流路 7156, 7157と合流空間 715 8は中板 7144bの上面に形成され、分液流路 7156, 7157は交互に配置されている 。下面側のヘッダ部 7155と分液流路 7157とは、中板 7144bを貫通する連絡孔 715 7aにより連通している。合流空間 7158は、下流側に向けて幅が徐々に小さくなるよう に形成され、中板 7144bおよび下板 7144cを貫通して形成された流出ポート 7160 に連通している。  FIG. 144 is an enlarged view of the merge portion shown in FIG. As shown in FIG. 144, the joining portion 7152 includes a header rod 7155 formed on the upper and lower surfaces of the middle plate 7144b as arc-shaped grooves communicating with the outlet channels 7150A and 7150B, and the header rods 7154 and 7155. A plurality of branch night passages 7156, 7157 extending in the direction of the force and the arc, and a confluence space 7158 in which the separation night passages 7156, 7157 merge. The separation flow paths 7156 and 7157 and the merge space 715 8 are formed on the upper surface of the intermediate plate 7144b, and the separation flow paths 7156 and 7157 are alternately arranged. The header portion 7155 on the lower surface side and the liquid separation flow path 7157 communicate with each other through a communication hole 715 7a penetrating the intermediate plate 7144b. The merge space 7158 is formed so that the width gradually decreases toward the downstream side, and communicates with an outflow port 7160 formed through the middle plate 7144b and the lower plate 7144c.
[0697] 図 144に示す例では、合流空間 7158の入口側の開口面 7159において分液流路 7156力 本、分液流路 7157が 4本、交互に配置されている。分液流路 7156, 715 7からそれぞれ流出した 2種類の液体は、合流空間 7158内で縞状の流れを形成し つつ下流側に流れ、合流空間 7158の流路幅が徐々に縮小するに従レ、、強制的に 両液が混合される。この例では、合流空間 7158の流路幅は最終的に 40 /i mに達す る。加工技術精度を上げれば、流路幅を 10 μ ΐηにすることも可能である。 [0697] In the example shown in Fig. 144, four separation liquid channels 7156 and four liquid separation channels 7157 are alternately arranged on the opening 7159 on the inlet side of the merge space 7158. The two types of liquids flowing out from the separation flow paths 7156 and 715 7 flow downstream while forming a striped flow in the merge space 7158, and the flow path width of the merge space 7158 gradually decreases. Les, to force Both liquids are mixed. In this example, the flow path width of the confluence space 7158 finally reaches 40 / im. If the processing technology accuracy is increased, the channel width can be reduced to 10 μΐη.
[0698] 図 145 (a)は図 140に示す反応部を示す平面図、図 145 (b)は図 145 (a)に示す 反応部の断面図である。この例では、 2枚の基材 7144d, 7144eが接合されて厚さ 5 mmの反応部 7142が構成されている。この反応部 7142では、反応流路 7162が蛇 行しており、長い流路を効率的に提供している。反応流路 7162は、入口ポート 7164 および出口ポート 7165にそれぞれつな力 Sる連絡き 7162a, 7162cと、連絡き 7162 a, 7162cに連通する蛇行咅 B分 7162bとを有しており、連絡咅 B7162a, 7162cの幅 は狭ぐ蛇行部分 7162bの幅が広く形成されている。したがって、出入口部分では液 体が急速に流れ、副生成物の付着を防止しており、蛇行部分 7162bでは緩やかに 流れて、加熱と反応の時間を長く取ることができるようになつている。  145 (a) is a plan view showing the reaction section shown in FIG. 140, and FIG. 145 (b) is a cross-sectional view of the reaction section shown in FIG. 145 (a). In this example, two base materials 7144d and 7144e are joined to form a reaction portion 7142 having a thickness of 5 mm. In this reaction part 7142, the reaction flow path 7162 meanders, and provides a long flow path efficiently. The reaction channel 7162 has contacts 7162a and 7162c connected to the inlet port 7164 and the outlet port 7165, respectively, and a meander rod B portion 7162b communicating with the contacts 7162a and 7162c. B7162a and 7162c have a narrower meandering portion 7162b and a wider width. Therefore, the liquid rapidly flows at the inlet / outlet portion to prevent adhesion of by-products, and flows slowly at the meandering portion 7162b, so that the heating and reaction time can be increased.
[0699] 図 146 (a)および図 146 (b)に示すのは、反応流路の幅が除々に小さくなる部分 7 163aと除々に大きくなる部分 7163bを持つ反応部の他の構成例である。この反応 部 7142aには、基材 7144d, 7144eの間に、幅寸法が最大 aから最小 bの範囲で増 減する反応流路 7163が形成されている。幅寸法の増減に合わせ、深さを増減させ てもよレ、。この例では、反応流路 7163の断面積が一定になるよう深さが最大 cから最 小 dの範囲で変化するようになってレ、る。  [0699] FIGS. 146 (a) and 146 (b) show other examples of the reaction section having a portion 7163a where the width of the reaction channel gradually decreases and a portion 7163b where the width of the reaction channel gradually increases. . In the reaction section 7142a, a reaction flow path 7163 is formed between the base materials 7144d and 7144e so that the width dimension increases and decreases in the range of maximum a to minimum b. You can increase or decrease the depth as the width dimension increases or decreases. In this example, the depth changes from the maximum c to the minimum d so that the cross-sectional area of the reaction channel 7163 is constant.
[0700] 図 146 (c)は、反応流路の他の構成例を示す横断面図である。この反応部 7142b では、反応流路 7163cは、その幅 eが深さはり大きい扁平形状を有しており、熱触媒 力 の熱の伝達方向(矢印で表示)に交差する広い伝熱面を有するので、反応流路 7163c内の液体に熱の伝達が有効に行われる。なお、合流空間 7158や反応流路 7 162, 7163に、適当な触媒を配置することは反応を促進するために有効である。こ のような触媒は反応の種類に応じて選択される。配置の仕方は、例えば、流路の内 面に塗布したり、後述するような流路の障害物として配置することができる。  [0700] FIG. 146 (c) is a cross-sectional view showing another configuration example of the reaction channel. In this reaction section 7142b, the reaction flow path 7163c has a flat shape with a large width e and a large heat transfer surface intersecting the heat transfer direction (indicated by an arrow) of the thermal catalytic force. Therefore, heat is effectively transferred to the liquid in the reaction channel 7163c. In order to promote the reaction, it is effective to dispose an appropriate catalyst in the merge space 7158 and the reaction flow channels 7 162 and 7163. Such a catalyst is selected according to the type of reaction. The arrangement can be performed, for example, by applying to the inner surface of the flow path or as an obstacle of the flow path as will be described later.
[0701] 混合部 7140および反応部 7142の少なくとも流路を形成する素材としては、例えば 、 SUS316、 SUS304、 Ti、石英ガラス、パイレックス(登録商標)ガラス等の硬質ガ フス、 EEK (polyetheretherketone) Λ PE (polyethylene)、 PVC (polyvinylchlonde)、 PDMS (Polydimethylsiloxane)、 Si、 PTFE (polytetrafluoroethylene)、 PCTFE (Poly ChloroTriFluoroEthylene)の内から、耐薬品性、耐圧性、熱伝導性、耐熱性等を考 慮して、好ましいものを選択する。混合部 7140および反応部 7142の接液部の材質 は、表面からの溶出が少なく表面触媒修飾が可能で、ある程度の耐薬品性を持ち、 _40〜150°Cの広い温度範囲に耐えるものが望ましい。 [0701] The material forming at least the flow path of the mixing unit 7140 and the reaction unit 7142 is, for example, SUS316, SUS304, Ti, quartz glass, Pyrex (registered trademark) glass or other hard gauze, EEK (polyetheretherketone) Λ PE (polyethylene), PVC (polyvinylchlonde), PDMS (Polydimethylsiloxane), Si, PTFE (polytetrafluoroethylene), PCTFE (Poly ChloroTriFluoroEthylene) is preferably selected in consideration of chemical resistance, pressure resistance, thermal conductivity, heat resistance, and the like. The material of the wetted part of the mixing part 7140 and the reaction part 7142 should be able to be surface-catalyzed with little elution from the surface, have a certain degree of chemical resistance, and withstand a wide temperature range of _40 to 150 ° C .
[0702] 図 147は、混合部および反応部の温度を調整する温度調整ケースの構成を示す 斜視図である。なお、以下の説明では、反応部 7142の温度を調整する温度調整ケ ース 7146についてのみ述べる力 混合部 7140のための温度調整ケース 7146も同 様の構成を有しており、その重複する説明を省略する。温度調整ケース 7146は、内 部に反応部 7142を収容する空間 7170が形成されたケース本体 7172と該空間 717 0を覆う蓋部 7174とを備えており、これらの内面には、平行に延びる複数の熱媒体 流路を構成する溝 7176が形成されている。ケース本体 7172には、溝 7176に連通 する給液路 7178と排液路 7180 (図 140参照)が形成され、これらの給液路 7178と 排液路 7180はそれぞれ熱媒体コントローラ 7107に接続されている。給液路 7178 は、蓋部 7174の溝 7176に開口 7179を介して連通し、排液路 7180も蓋部 7174の 溝 7176に図示しない開口を介して連通している。この例では、溝 7176を流れる熱 媒体は反応部 7142の表裏面に直接接触し、反応部 7142は温度調整ケース 7146 に完全に収容された状態で加熱ほたは冷却)される。  [0702] FIG. 147 is a perspective view showing a configuration of a temperature adjustment case for adjusting the temperatures of the mixing section and the reaction section. Note that, in the following description, only the temperature adjustment case 7146 for adjusting the temperature of the reaction unit 7142 is described. The temperature adjustment case 7146 for the mixing unit 7140 has the same configuration, and redundant description thereof. Is omitted. The temperature adjustment case 7146 includes a case main body 7172 in which a space 7170 for accommodating the reaction portion 7142 is formed, and a lid portion 7174 that covers the space 7170. Grooves 7176 constituting the heat medium flow path are formed. A liquid supply path 7178 and a drainage path 7180 (see FIG. 140) communicating with the groove 7176 are formed in the case body 7172, and the liquid supply path 7178 and the drainage path 7180 are connected to the heat medium controller 7107, respectively. Yes. The liquid supply passage 7178 communicates with the groove 7176 of the lid portion 7174 through the opening 7179, and the drainage passage 7180 communicates with the groove 7176 of the lid portion 7174 through an opening (not shown). In this example, the heat medium flowing through the groove 7176 directly contacts the front and back surfaces of the reaction unit 7142, and the reaction unit 7142 is heated and cooled while being completely accommodated in the temperature adjustment case 7146.
[0703] 図示しないが、熱媒体コントローラ 7107には、熱媒体の温度を制御する制御機構 と熱媒体を移送するポンプが内蔵されている。図 140に示すように、熱媒体は熱交換 器 7182を通過後、混合部 7140および反応部 7142の温度調整ケース 7146に供給 されるようになつている。熱交換器 7182は例えば冷却用の巿水の量を変えることで 混合部 7140および反応部 7142に供給される熱媒体の温度を独立に変えられるよう になっている。  [0703] Although not shown, the heat medium controller 7107 incorporates a control mechanism for controlling the temperature of the heat medium and a pump for transferring the heat medium. As shown in FIG. 140, the heat medium passes through the heat exchanger 7182 and is then supplied to the temperature adjustment case 7146 of the mixing unit 7140 and the reaction unit 7142. The heat exchanger 7182 can change the temperature of the heat medium supplied to the mixing unit 7140 and the reaction unit 7142 independently, for example, by changing the amount of cooling water for cooling.
[0704] 図 148 (a)ないし図 148 (d)には、温度調整ケース 7146の他の例が示されており、 ここでは、熱媒体流路 7192はケース本体 7172と蓋部 7174のそれぞれの内部に形 成されている。給液路 7178は、図 148 (c)に示すように、給液配管 7188の先端が揷 入された二重管の構成となつており、細レ、連通路 7190を介して熱媒体流路 7192に 連通している。排液側も同様の構成である。図 148 (b)に示すように、混合部 7140を 収容する温度調整ケース 7146と反応部 7142を収容する温度調整ケース 7146とは 、ボノレト 7194、ナット 7195およびスぺーサ 7196を介して積層して結合されてレ、る。 FIGS. 148 (a) to 148 (d) show another example of the temperature adjustment case 7146. Here, the heat medium flow path 7192 is provided for each of the case body 7172 and the lid portion 7174. It is formed inside. As shown in FIG. 148 (c), the liquid supply path 7178 has a double pipe structure in which the tip of the liquid supply pipe 7188 is inserted. It communicates with 7192. The drainage side has the same configuration. As shown in Fig. 148 (b), the mixing unit 7140 The temperature adjustment case 7146 to be accommodated and the temperature adjustment case 7146 to accommodate the reaction portion 7142 are laminated and connected via a Bonole 7194, a nut 7195 and a spacer 7196.
[0705] 図 148 (b)には、温度調整ケース 7146に収容された混合部 7140および反応部 7 142への液体の供給 '排出の経路が示されている。すなわち、それぞれの液体は、 温度調整ケース 7146を貫通して形成された流通路 7198を介して混合部 7140へ流 出入する。また、混合部 7140と反応部 7142との間の液体の流通は、温度調整ケー ス 7146の流通路 7198を連絡する連絡通路 200を介して行う。図 148 (d)には、反 応部 7142の液の流入部と流出部の構造が説明されている。液の流れを下方向へ向 かわせるために、通常は混合部 7140および反応部 7142の液の入口は上面に、出 口は下面にそれぞれ形成する。  [0705] FIG. 148 (b) shows a path for supplying and discharging the liquid to the mixing unit 7140 and the reaction unit 7142 accommodated in the temperature adjustment case 7146. That is, each liquid flows into and out of the mixing unit 7140 through the flow passage 7198 formed through the temperature adjustment case 7146. In addition, the liquid is circulated between the mixing unit 7140 and the reaction unit 7142 via a communication passage 200 that communicates with the flow passage 7198 of the temperature adjustment case 7146. FIG. 148 (d) illustrates the structure of the liquid inflow and outflow of the reaction section 7142. In order to direct the flow of the liquid downward, the liquid inlet of the mixing unit 7140 and the reaction unit 7142 is normally formed on the upper surface and the outlet is formed on the lower surface.
[0706] 図 140に示すように、反応部 7142の流出口 202は、回収配管 204を介して生成物 貯留部 7104に接続されている。生成物貯留部 7104には、冷却用の熱交換器 720 6、流路切換弁 7132の下流側に回収容器 7208が設けられている。回収容器 7208 が置かれる生成物貯留部 7104は、他の領域から温度等の影響を受けないように、ま た生成物から発生する可能性のある有毒ガスが外部に漏洩しないように隔離されて いる。  As shown in FIG. 140, the outlet 202 of the reaction unit 7142 is connected to the product storage unit 7104 via the recovery pipe 204. The product storage unit 7104 is provided with a recovery container 7208 on the downstream side of the heat exchanger 7206 for cooling and the flow path switching valve 7132. The product reservoir 7104 where the recovery container 7208 is placed is isolated so as not to be affected by temperature, etc. from other areas, and to prevent toxic gases that may be generated from the product from leaking outside. Yes.
[0707] 図 149は、生成物貯留部 7104の他の構成例を示すもので、複数の回収容器 720 8が回転テーブル 7212上に設置されている。この例では、回収容器 7208は 2個で あり、回転テーブル 7212を移動させるァクチユエータ 7214は 180度回転型ロータリ ーァクチユエータである。勿論、回収容器 7208の数ゃァクチユエータ 7214の種類 は適宜に選択可能である。図 140に示す動作制御部 7106は、回収容器 7208の液 面を検知する液面検知センサ 721 lbからの信号により、回収容器 7208の交換時期 を判断し、流路切換弁 7132 (図 140参照)により液流を止め、回収口 7210の下流に 設けた光学的流体検知センサ 721 laにより液流の停止を確認して、ァクチユエータ 7 214を作動させて他の回収容器 7208を回収口 7210の下方に移動させる。  FIG. 149 shows another configuration example of the product storage unit 7104, and a plurality of recovery containers 7208 are installed on the turntable 7212. In this example, there are two collection containers 7208, and an actuator 7214 for moving the rotary table 7212 is a 180-degree rotary rotary actuator. Of course, the number of the recovery container 7208 and the type of the activator 7214 can be appropriately selected. The operation control unit 7106 shown in FIG. 140 determines the replacement timing of the recovery container 7208 based on the signal from the liquid level detection sensor 721 lb that detects the liquid level of the recovery container 7208, and the flow path switching valve 7132 (see FIG. 140). The liquid flow is stopped by the optical fluid detection sensor 721 la provided downstream of the recovery port 7210, and the stop of the liquid flow is confirmed, and the actuator 7 214 is operated to move the other recovery container 7208 below the recovery port 7210. Move.
[0708] 次に、上記のように構成された流体反応装置により、薬液等の液体 (原料液)を反 応させる工程について説明する。なお、流体反応装置の動作は基本的に動作制御 部 7106によって自動制御される。まず、原料貯留部 7101において、原料液を貯留 した貯留容器 7110A, 7110Bに用意しておく。熱媒体コントローラ 7107により熱媒 体の温度を設定し、熱交換器 7182を通過させる巿水の量を調整して各熱媒体の温 度をそれぞれ調整し、混合部 7140および反応部 7142の温度調整ケース 7146へ 熱媒体を流通させてこれらを所定の温度に維持する。熱媒体の温度は、温度調整ケ ース 7146の入口に設けた温度センサ 7216, 7218により測定される。 [0708] Next, a process of reacting a liquid (raw material liquid) such as a chemical solution with the fluid reaction apparatus configured as described above will be described. The operation of the fluid reaction apparatus is basically automatically controlled by the operation control unit 7106. First, in the raw material storage unit 7101, the raw material liquid is stored. Prepare in storage containers 7110A and 7110B. The temperature of the heat medium is set by the heat medium controller 7107, and the temperature of each heat medium is adjusted by adjusting the amount of brine passing through the heat exchanger 7182, and the temperature of the mixing unit 7140 and reaction unit 7142 is adjusted. Heat medium is passed through case 7146 to maintain them at a predetermined temperature. The temperature of the heat medium is measured by temperature sensors 7216 and 7218 provided at the inlet of the temperature adjustment case 7146.
[0709] この例では、原料液を処理部 7103に供給する前に、混合部 7140および反応部 7 142内の流路に純水等の洗浄液を流して予め洗浄する。流路を洗浄している間、洗 浄液の温度を混合部 7140の出口の温度センサ 7220および反応部 7142の出口の 温度センサ 7222で測定し、洗浄液の温度を熱媒体コントローラ 7107にフィードバッ クする。このようにして、混合部 7140および反応部 7142を所定の温度に調整する。  [0709] In this example, before supplying the raw material liquid to the processing unit 7103, a cleaning liquid such as pure water is supplied to the flow paths in the mixing unit 7140 and the reaction unit 7142 to perform pre-cleaning. While cleaning the flow path, the temperature of the cleaning solution is measured by the temperature sensor 7220 at the outlet of the mixing unit 7140 and the temperature sensor 7222 at the outlet of the reaction unit 7142, and the temperature of the cleaning solution is fed back to the heat medium controller 7107. To do. In this way, the mixing unit 7140 and the reaction unit 7142 are adjusted to a predetermined temperature.
[0710] 混合部 7140および反応部 7142の温度が調整され、流路の洗浄を終えてから、流 路切換弁 7132を切り換え、ポンプ 7116A, 7116Bを駆動して、貯留容器 7110A, 7110B内の原料液をそれぞれ移送する。原料液は、流量調整装置 7300A, 7300 Bにより所定の流量に調整され、その後、混合部 7140、反応部 7142、流出口 7202 、回収口 7210を経て回収容器 7208に至る。なお、流路切換弁 7132はァクチユエ ータにより作動する自動弁としており、この動作は自動運転も可能である。  [0710] After the temperature of the mixing section 7140 and the reaction section 7142 is adjusted and the cleaning of the flow path is completed, the flow path switching valve 7132 is switched and the pumps 7116A and 7116B are driven to start the raw materials in the storage containers 7110A and 7110B. Each liquid is transferred. The raw material liquid is adjusted to a predetermined flow rate by the flow rate adjusting devices 7300A and 7300B, and then reaches the recovery container 7208 via the mixing unit 7140, the reaction unit 7142, the outlet 7202, and the recovery port 7210. Note that the flow path switching valve 7132 is an automatic valve that is operated by an actuator, and this operation can also be performed automatically.
[0711] 混合部 7140においては、原料液は予備加熱流路 7148A, 7148B (図 143参照) において所定の温度に加熱された後、合流部 7152において合流し、混合する。そ の際、各液は、図 144に示すように、ヘッダ部 7154, 7155力ら分液流路 7156, 71 57を経由して合流空間 7158に流入する。合流空間 7158の断面は下流へ向力 に 従い徐々に減少するので、マイクロサイズの流れが規則的に混在し、フィックの法則 に則って迅速に混合する。その状態で、所定の温度に維持された反応部 7142の反 応流路 7162に流入すると、反応は、物質移動や熱伝導の制約を受けずに迅速に進 行する。したがって、量産手段として充分実用的であるとともに、反応速度の早い爆 発性の反応でも低温下で行う必要がなくなる。また、この例では、反応流路 7162の 幅が合流空間 7158の幅に比べて充分広く形成されているので、反応速度が遅い場 合でも充分な時間をかけて行うことができ、高レ、収率を得ることができる。  [0711] In the mixing unit 7140, the raw material liquids are heated to a predetermined temperature in the preheating channels 7148A and 7148B (see FIG. 143), and then merged and mixed in the merging unit 7152. At that time, as shown in FIG. 144, each liquid flows into the merge space 7158 via the liquid separation flow paths 7156 and 7157 from the header portions 7154 and 7155. Since the cross section of the confluence space 7158 gradually decreases in the downstream direction, the micro-sized flows are mixed regularly and mixed rapidly according to Fick's law. In that state, when it flows into the reaction flow path 7162 of the reaction section 7142 maintained at a predetermined temperature, the reaction proceeds rapidly without being restricted by mass transfer or heat conduction. Therefore, it is sufficiently practical as a mass production means, and it is not necessary to carry out explosive reactions with a fast reaction rate at low temperatures. In this example, since the width of the reaction flow path 7162 is sufficiently wide compared to the width of the merge space 7158, even when the reaction rate is low, the reaction can be performed over a sufficient amount of time. Yields can be obtained.
[0712] 得られた生成物は、反応流路 7162の流出口 7202から回収配管 7204を経由して マルチ分光分析装置 7001に送られ、光源部 7024から波長領域の異なる複数の光 を異なる分光部 28で受光して、被測定液を通過した各波長の分光が行われ、その 結果に基づいてその含有成分が測定され、さらにその結果に基づいて、記述したよう な種々の措置が執られる。 [0712] The obtained product passes from the outlet 7202 of the reaction channel 7162 via the recovery pipe 7204. The multispectral analyzer 7001 receives a plurality of light beams having different wavelength regions from the light source unit 7024 and receives the light at different spectral units 28, and the spectrum of each wavelength that has passed through the liquid to be measured is performed. The constituents are measured, and based on the results, various measures are taken as described.
[0713] マルチ分光分析装置 7001を通過した処理液体は、熱交換器 7206に送られ、ここ で冷却されて、回収口 7210より回収容器 7208に流入する。貯留容器 7110A, 711 0Bが空になったり、回収容器 7208が満杯になったら、動作制御部 7106によりボン プ 7116A, 7116Bの運転を停止させて処理を終了させる。この場合、貯留容器 711 OA, 7110Bの他に、追加の貯留容器を原料貯留部 7101に予め用意しておけば、 流路切換弁 7126A, 7126Bを切り換えることにより、運転を停止させることなく連続 的な処理が可能である。なお、反応に時間が掛かる場合には、混合部 7140および 反応部 7142内に液を一定時間閉じ込めてバッチ運転することも可能である。流路切 換弁 7126A、 7126Bも自動弁であるのでこれらの動作は自動運転も可能である。  [0713] The processing liquid that has passed through the multi-spectral analyzer 7001 is sent to the heat exchanger 7206, where it is cooled and flows into the recovery container 7208 through the recovery port 7210. When the storage containers 7110A and 7110B are empty or the recovery container 7208 is full, the operation control unit 7106 stops the operation of the pumps 7116A and 7116B and ends the process. In this case, in addition to the storage containers 711 OA and 7110B, if an additional storage container is prepared in the raw material storage unit 7101 in advance, the operation can be continuously performed without stopping the operation by switching the flow path switching valves 7126A and 7126B. Processing is possible. If the reaction takes a long time, the liquid can be confined in the mixing unit 7140 and the reaction unit 7142 for a certain period of time to perform batch operation. Since the flow path switching valves 7126A and 7126B are also automatic valves, these operations can be automatically operated.
[0714] バッチ運転の方法は、ポンプ 7116A, 7116Bを一時停止してもよいし、流路切換 弁 7126A, 7126Bを切り換えて、処理部 7103への液体の流入を停止させてもよい 。これにより、液体の反応時間が長い場合でも反応流路 7162の長さを長くする必要 がなくなる。バッチ運転の際は、合流空間 7158および/または反応流路 7162に液 体が充満されたことを検知する充満検知手段を用いて運転制御を行うことが好ましい 。これは、例えば、図 149に示すような光学的流体検知センサが用いられる。これに より、合流空間 7158および/または反応流路 7162に液体が充満されたと判断した 時点で、ポンプ 7116A, 7116Bを停止させまたは第 1の流路切換弁を切換え、液体 を反応終結時間に適応する一定時間合流空間 7158および/または反応流路 716 2に滞留させておく。  [0714] In the batch operation method, the pumps 7116A and 7116B may be temporarily stopped, or the flow switching valves 7126A and 7126B may be switched to stop the inflow of liquid into the processing unit 7103. This eliminates the need to increase the length of the reaction channel 7162 even when the liquid reaction time is long. In batch operation, it is preferable to perform operation control using a fullness detection means for detecting that the merge space 7158 and / or the reaction flow path 7162 is full of liquid. For example, an optical fluid detection sensor as shown in FIG. 149 is used. As a result, when it is determined that the merge space 7158 and / or the reaction flow path 7162 is full of liquid, the pumps 7116A and 7116B are stopped or the first flow path switching valve is switched to adapt the liquid to the reaction end time. It is made to stay in the merge space 7158 and / or the reaction flow path 716 2 for a certain time.
[0715] 図 150 (a)および図 150 (b)は、混合部 7140における合流部の他の構成例を示す ものである。この合流部 7152aは、 Y字状の合流空間 7158aに、障害物 7224を一 定間隔 aで所定の距離 Lに亘つて配置したものである。この例では、直径 50 z m以下 である柱状の障害物 7224を、合流点から L = 5mmに亘つて配置した。図 150 (b)に 示すように、各障害物 7224は隣接するものが流れ方向にピッチの半分だけずれるよ うに、千鳥状に配置されている。これによつて液体 Aおよび液体 Bの界面 7125が蛇 行するので 2つの液体の界面面積 (接触面積)を大きくすることができる。図 151に示 す合流部 7152bでは、合流空間 7158bの中央部に一列の障害物 7224を流れ方向 に沿って千鳥状に配置したもので、同様に界面面積を大きくすることができる。これ は、狭い合流空間 7158bで採用するのに好適である。 [0715] FIGS. 150 (a) and 150 (b) show another configuration example of the merging section in the mixing section 7140. FIG. The junction 7152a is configured by disposing an obstacle 7224 in a Y-shaped junction space 7158a over a predetermined distance L at a constant interval a. In this example, a columnar obstacle 7224 having a diameter of 50 zm or less was arranged from the junction to L = 5 mm. As shown in Fig. 150 (b), each obstacle 7224 is displaced by half the pitch in the flow direction. It is arranged in a zigzag pattern. As a result, the interface 7125 between the liquid A and the liquid B meanders, so that the interface area (contact area) between the two liquids can be increased. In the junction 7152b shown in FIG. 151, a row of obstacles 7224 are arranged in a zigzag along the flow direction at the center of the junction space 7158b, and the interface area can be similarly increased. This is suitable for use in a narrow merge space 7158b.
[0716] 図 152は、流体反応装置の処理部 7103の他の構成例を示すものである。これは、 図 10の処理部 7103において、混合部 7140と反応部 7142との組み合わせをそれ ぞれ有する 2系統 Rl , R2設け、さらに配液部 7102の流路切換弁 7126A, 7126B を用いて 2種類の原料液をいずれの系統 Rl , R2にも供給可能にしたものである。こ のように、 2系統を用いることで、必要に応じて処理量を増やすことができる力 S、その 他にも種々の使用方法が有る。例えば、反応生成物が固体粒子を析出しやすぐ配 管途中で詰まりやすい場合などでは、一方の系統を予備として使用する。また、流路 切換弁 7126A, 7126Bで移送ラインを交互に切り換えて、上述したバッチ運転を連 続的に行うことができる。勿論、 3系統以上の移送ラインを適宜に並列して設けること ができる。この場合も流路切換弁 7126A, 7126Bは自動操作が可能である。  FIG. 152 shows another configuration example of the processing unit 7103 of the fluid reaction device. This is because the processing unit 7103 in FIG. 10 is provided with two systems Rl and R2 each having a combination of the mixing unit 7140 and the reaction unit 7142, and further using the flow path switching valves 7126A and 7126B of the liquid distribution unit 7102. Various types of raw material liquids can be supplied to any of the systems Rl and R2. In this way, using two systems, there is a force S that can increase the amount of processing as needed, and there are various other usage methods. For example, if the reaction product precipitates solid particles or is easily clogged in the middle of piping, use one system as a backup. Further, the batch operation described above can be continuously performed by alternately switching the transfer lines by the flow path switching valves 7126A and 7126B. Of course, three or more transfer lines can be provided in parallel as appropriate. Also in this case, the channel switching valves 7126A and 7126B can be automatically operated.
[0717] 図 153は、処理部 7103において反応部を複数直列に配置した例を示す。この例 では、 1つの混合部 7140と 3つの反応部 7142a, 7142b, 7142cが直列に接続され ており、それぞれに温度センサ 7220, 7222a, 7222b, 7222c力 S設けられてレヽる。 この例では、反応の段階に応じて反応部 7142a, 7142b, 7142cを独立して温度制 御することが可能となっている。この構成は、生化学反応のように反応時間と反応温 度を大胆に且つ瞬時に変化させたい反応に適している。たとえば反応部 7142aでは 100°Cで反応させ、反応部 7142bでは _ 20°Cで反応させるというような反応もこのシ ステムでは可能になる。  FIG. 153 shows an example in which a plurality of reaction units are arranged in series in the processing unit 7103. In this example, one mixing unit 7140 and three reaction units 7142a, 7142b, and 7142c are connected in series, and temperature sensors 7220, 7222a, 7222b, and 7222c force S are provided to the respective units. In this example, the temperature of the reaction units 7142a, 7142b, 7142c can be controlled independently according to the stage of the reaction. This configuration is suitable for reactions that require bold and instantaneous changes in reaction time and reaction temperature, such as biochemical reactions. For example, a reaction such as reacting at 100 ° C in the reaction unit 7142a and reacting at _20 ° C in the reaction unit 7142b is possible with this system.
[0718] 図 154は、処理部 7103において混合部を複数設けた例である。この構成例では、 A液と B液を混合し反応させる第 1の混合部 7140および反応部 7142が設けられ、こ の反応部 7142の下流側に第 2の混合部 7140aが設けられている。この混合部 714 0aではポンプ 7116Cから輸送された第 3の原料液または反応剤である C液が A液と B液と合流し、混合する。これらの 2つの混合部 7140, 7140aと 1つの反応部 7142 の温度は個別に制御される。なお、 C液は反応停止剤でもよい。 FIG. 154 shows an example in which a plurality of mixing units are provided in the processing unit 7103. In this configuration example, a first mixing unit 7140 and a reaction unit 7142 for mixing and reacting liquid A and liquid B are provided, and a second mixing unit 7140a is provided on the downstream side of the reaction unit 7142. In this mixing section 7120a, the third raw material liquid or the C liquid which is the reactant transported from the pump 7116C is merged with the A liquid and the B liquid. These two mixing parts 7140, 7140a and one reaction part 7142 The temperature of each is controlled individually. Liquid C may be a reaction terminator.
[0719] この構成例では、インライン収率評価器 7226が第 2の混合部 7140aの流出口 720 2に直接接続されている。これにより、化学反応の結果の収率をリアルタイムで確認で き、直ぐにプロセスパラメータへフィードバックすることが可能となる。インライン収率評 価器 7226としては、被測定物を分離せずに測定可能な方法として赤外分光、近赤 外分光、紫外吸光等の方法がある。  [0719] In this configuration example, the in-line yield evaluator 7226 is directly connected to the outlet 720 2 of the second mixing unit 7140a. As a result, the yield of the chemical reaction results can be confirmed in real time and can be immediately fed back to the process parameters. The in-line yield evaluator 7226 includes methods such as infrared spectroscopy, near infrared spectroscopy, and ultraviolet absorption as methods that can be measured without separating the object to be measured.
[0720] この構成例では、さらに、反応生成物の中から不要な物質と必要な物質を分離する 分離抽出部 7228が第 2の混合部 7140aの下流側に設けられている。図示するよう に、分離抽出部 7228は、 Y字形の分離流路 7234を有している。第 2の混合部 7140 aからの液体は分離流路 7234により 2つの流れに分岐され、 1つは物質内の疎水性 分子のみを通過させる疎水性壁面 7230から形成された流路に、他方は物質内の親 水性分子のみを通過させる親水性壁面 7232から形成された流路に流れ込む。分離 した物質は、それぞれ回収酉己管 7204, 7204aを介して回収容器 7208, 7208aに 回収される。分離抽出部 7228としては、その他に、疎水性物質だけを吸着可能な膜 やポーラスフリットを使用することも考えられる。  [0720] In this configuration example, a separation / extraction unit 7228 for separating unnecessary substances and necessary substances from the reaction product is further provided on the downstream side of the second mixing unit 7140a. As shown in the figure, the separation / extraction section 7228 has a Y-shaped separation flow path 7234. The liquid from the second mixing part 7140a is branched into two flows by a separation channel 7234, one is a channel formed from a hydrophobic wall 7230 that allows only hydrophobic molecules in the substance to pass through, and the other is It flows into the flow path formed from the hydrophilic wall 7232 that allows only hydrophilic molecules in the substance to pass through. The separated substances are collected in collection containers 7208 and 7208a through collection pipes 7204 and 7204a, respectively. As the separation and extraction unit 7228, it is also possible to use a membrane or a porous frit that can adsorb only a hydrophobic substance.
[0721] 図 155は、混合 ·反応と分離抽出を繰り返して連続処理するための構成例である。  [0721] FIG. 155 shows a configuration example for continuous processing by repeating mixing and reaction and separation and extraction.
すなわち、 A液と B液を処理する混合部 7140a、反応部 7142a、および分離抽出部 7228aが上流側に配置され、分離抽出部 7228aから抽出された液体と C液を処理 する混合部 7140b、反応部 7142b、および分離抽出部 7228bが下流側に配置され ている。 A液と B液が反応した後の不要物質は分離抽出部 7228aの排出口 7234a から系外に出され、 C液をカ卩えた第 2の反応における不要物質は分離抽出部 7228b の排出口 7234bから系外に出される。さらに、分離抽出部 7228bから抽出された液 体と第 4の液である D液を混合させる混合部 7140cが設けられている。なお、 D液は 反応停止剤でもよぐ他の原料溶液でも良い。混合部 7140cの下流側にインライン 収率評価器 7226を設けても良い。  That is, a mixing unit 7140a that processes liquid A and liquid B, a reaction unit 7142a, and a separation / extraction unit 7228a are arranged on the upstream side, and a mixing unit 7140b that processes liquid extracted from the separation / extraction unit 7228a and liquid C and reaction The part 7142b and the separation / extraction part 7228b are arranged on the downstream side. Unnecessary substances after the reaction of liquid A and liquid B are discharged out of the system from the outlet 7234a of the separation and extraction unit 7228a, and unnecessary substances in the second reaction containing liquid C are discharged from the outlet 7234b of the separation and extraction unit 7228b. Is taken out of the system. Further, a mixing unit 7140c is provided for mixing the liquid extracted from the separation / extraction unit 7228b and the fourth liquid D. Liquid D may be a reaction stopper or other raw material solution. An inline yield evaluator 7226 may be provided on the downstream side of the mixing unit 7140c.
[0722] 図 156 (a)には、図 155の各部を積層化した構成が示されている。液体は下方へ流 れる。混合部 7140a、反応部 7142a、分離抽出部 7228a、混合部 7140b、反応部 7 142b,分離抽出部 7228b、および混合部 7140cは、温度調整ケース 7146にそれ ぞれ収容され、さらにボノレト 7194、ナット 7195、スぺーサ 7196によって所定の間隔 をおレ、て積層化されてレ、る。各部間の液の移動は連絡通路 7200 (図 143 (b)参照) を介して行われる。各部の間には空気を介在させ、空気の断熱性を利用して他の部 の熱影響を受けないようにして、温度制御の精度を向上させている。図 156 (b)に示 すように、各温度調整ケース 7146の周りを気泡を含んだクリーンなシリコン部材 723 6等の断熱材で覆うのが好ましい。 FIG. 156 (a) shows a configuration in which the respective parts in FIG. 155 are stacked. The liquid flows downward. The mixing unit 7140a, the reaction unit 7142a, the separation / extraction unit 7228a, the mixing unit 7140b, the reaction unit 7 142b, the separation / extraction unit 7228b, and the mixing unit 7140c are connected to the temperature adjustment case 7146. Each of them is accommodated and further laminated by a Bonole 7194, a nut 7195, and a spacer 7196 at predetermined intervals. The movement of the liquid between each part is performed through the communication passage 7200 (see Fig. 143 (b)). Air is interposed between each part, and the thermal insulation of the air is used so that it is not affected by the heat of other parts, improving the accuracy of temperature control. As shown in FIG. 156 (b), it is preferable to cover each temperature adjustment case 7146 with a heat insulating material such as a clean silicon member 723 6 containing bubbles.
この流体反応装置に導入される流体は液体、気体であり、回収される物質は液体、 気体、固体またはこれらの混合体である。導入物質が粉体などの固体の場合は原料 貯留部 7101に粉体溶解器を設置することも可能である。図 157は、 2つの原料液の うち、一方が粉体を溶解した溶液、他方は元々液体の場合の原料貯留部 7101の構 成例である。原料の粉体と溶媒は粉体溶解器 7240の原料導入口 7242から導入さ れる。この例では、原料粉体をヒータ 7244による加熱と攪拌器 7246による攪拌によ つて溶解し、生成した原料液を、取出し口 7148に引き込まれた配管 7249より、ボン プ 7116Aによって、混合部 7140および反応部 7142に送り込むようになつている。  The fluid introduced into the fluid reaction apparatus is liquid or gas, and the substance to be recovered is liquid, gas, solid or a mixture thereof. When the introduced substance is a solid such as a powder, a powder dissolver can be installed in the raw material reservoir 7101. FIG. 157 is a configuration example of the raw material reservoir 7101 in which one of the two raw material liquids is a solution in which powder is dissolved and the other is originally liquid. The raw material powder and solvent are introduced from the raw material inlet 7242 of the powder dissolver 7240. In this example, the raw material powder is dissolved by heating by the heater 7244 and stirring by the stirrer 7246, and the generated raw material liquid is mixed by the pump 7116A from the pipe 7249 drawn into the takeout port 7148 by the mixing unit 7140 and It is designed to be sent to the reaction unit 7142.

Claims

請求の範囲 The scope of the claims
[1] 複数の流体をマイクロ反応空間を有する反応流路に導入して反応させる流体反応 装置において、  [1] In a fluid reaction device in which a plurality of fluids are introduced into a reaction channel having a micro reaction space and reacted.
反応に使用する流体を個々に導入する導入部と、  An introduction part for individually introducing the fluid used for the reaction;
流体を合流させて混合する混合流路と、  A mixing channel for combining and mixing fluids;
流体を複数の輸送管を介して前記混合流路に向けて輸送する流体輸送手段と、 流体の流量を制御する流量制御手段と、  Fluid transporting means for transporting fluid toward the mixing channel via a plurality of transport pipes, flow rate control means for controlling the flow rate of the fluid,
前記反応流路の温度を制御する温度制御手段と、  Temperature control means for controlling the temperature of the reaction channel;
反応後の物質を回収口より導出する導出部と、  A deriving unit for deriving the substance after the reaction from the recovery port;
これらの動作を制御する動作制御手段と  Operation control means for controlling these operations;
を備えたことを特徴とする流体反応装置。  A fluid reaction apparatus comprising:
[2] 平板状の混合基板をさらに備える流体反応装置であって、ここで、前記流体を合流 させて混合する前記混合流路が該平板状の混合基板に設けられている、請求項 1に 記載の流体反応装置。  [2] The fluid reaction apparatus further comprising a flat plate-like mixed substrate, wherein the mixing flow path for combining and mixing the fluids is provided in the flat plate-like mixed substrate. The fluid reaction apparatus as described.
[3] 反応に使用する流体を個々に溜めておく貯留容器を設置する設置スペースが設け られていることを特徴とする請求項 2に記載の流体反応装置。  [3] The fluid reaction apparatus according to [2], wherein an installation space is provided in which a storage container for individually storing the fluid used for the reaction is provided.
[4] 反応後の物質を前記導出部より回収する回収容器を複数個設置可能な設置スぺ ースが設けられていることを特徴とする請求項 2または請求項 3に記載の流体反応装 置。 [4] The fluid reaction device according to claim 2 or 3, wherein an installation space is provided in which a plurality of recovery containers for recovering the substance after the reaction from the outlet part can be installed. Place.
[5] 前記マイクロ反応空間には、流路幅 500 μ m以下の流路が存在することを特徴とす る請求項 2〜請求項 4のいずれか 1項に記載の流体反応装置。  [5] The fluid reaction device according to any one of [2] to [4], wherein a channel having a channel width of 500 μm or less exists in the micro reaction space.
[6] 導入される流体は気体または液体であり、反応後の物質は気体または液体または 固体のいずれか、またはそれらの混合体で、導入される流体が連続的な流れである ことを特徴とする請求項 2〜請求項 5のいずれか 1項に記載の流体反応装置。  [6] The introduced fluid is a gas or a liquid, and the substance after the reaction is either a gas, a liquid, a solid, or a mixture thereof, and the introduced fluid is a continuous flow. The fluid reaction device according to any one of claims 2 to 5.
[7] 前記流体輸送手段は圧力発生手段または電気的誘電力相互作用手段を有するこ とを特徴とする請求項 2〜請求項 6のいずれか 1項に記載の流体反応装置。  7. The fluid reaction apparatus according to any one of claims 2 to 6, wherein the fluid transport means includes pressure generation means or electrical dielectric force interaction means.
[8] 前記流体輸送手段が、一対のプランジャポンプを並列に接続したプランジャポンプ 装置であって、 前記各プランジャポンプのプランジャをそれぞれが交互に前進するように連動させ るカム機構と、 [8] The fluid transport means is a plunger pump device in which a pair of plunger pumps are connected in parallel, A cam mechanism that interlocks the plungers of the plunger pumps so that they move forward alternately;
前記各プランジャをその後退時に前記カム機構に向けて押圧する流体圧装置と、 前記流体圧装置の動作を前記プランジャの動作サイクルに応じて制御する制御部 と  A fluid pressure device that presses each plunger toward the cam mechanism when retracted, and a control unit that controls the operation of the fluid pressure device according to the operation cycle of the plunger;
を有することを特徴とするプランジャポンプ装置である、請求項 2〜請求項 7のレ、ずれ 力、 1項に記載の流体反応装置。  The fluid reaction device according to claim 2, wherein the fluid reaction device is a plunger pump device characterized by comprising:
[9] 前記プランジャポンプ装置の制御部は、各プランジャの前進時において、前記流体 圧装置による押圧を停止させることを特徴とする請求項 8に記載の流体反応装置。 9. The fluid reaction device according to claim 8, wherein the control unit of the plunger pump device stops the pressing by the fluid pressure device when each plunger moves forward.
[10] 前記一対のプランジャポンプはそれぞれ吐出動作の初期と終期において増速過程 と減速過程をそれぞれ行レ、、一方の増速過程と他方の減速過程が互いに重なるよう にタイミングが設定されていることを特徴とする請求項 8に記載の流体反応装置。 [10] The pair of plunger pumps are set so that the speed increasing process and the speed reducing process are respectively performed at the initial stage and the end of the discharge operation, and one speed increasing process and the other speed reducing process overlap each other. 9. The fluid reaction apparatus according to claim 8, wherein
[11] 前記各プランジャポンプは、前進と後退の間に一定の停止過程を行なうことを特徴 とする請求項 8に記載の流体反応装置。 11. The fluid reaction device according to claim 8, wherein each of the plunger pumps performs a fixed stop process between forward movement and backward movement.
[12] 前記流体輸送手段が、プランジャポンプ装置であって [12] The fluid transport means is a plunger pump device,
それぞれ個別の駆動装置を有し、液体源とマイクロリアクタ流路間において並列に 接続された一対のプランジャポンプと、  A pair of plunger pumps each having a separate drive and connected in parallel between the liquid source and the microreactor flow path;
前記マイクロリアクタ流路内に設置された流量計と、  A flow meter installed in the microreactor channel;
前記一対のプランジャポンプを交互に一定の所定送り速度で吐出動作させる制御 部を備え、  A control unit that alternately discharges the pair of plunger pumps at a constant predetermined feed rate;
前記制御部は、前記プランジャポンプが吐出動作してレ、るときの前記流量計の測 定値に基づレ、て、所定のタイミングで前記送り速度を調整することを特徴とするプラン ジャポンプ装置である、請求項 2〜請求項 7のレ、ずれか 1項に記載の流体反応装置。  In the plunger pump device, the control unit adjusts the feed speed at a predetermined timing based on a measured value of the flow meter when the plunger pump discharges. The fluid reaction apparatus according to claim 1, wherein the fluid reaction apparatus is any one of claims 2 to 7.
[13] 前記プランジャポンプ装置が、 [13] The plunger pump device comprises:
前記マイクロリアクタ流路内に設置された圧力センサを備え、  A pressure sensor installed in the microreactor channel;
前記制御部は、前記圧力センサの出力値に基づいて前記送り速度を微調整するこ とを特徴とする、請求項 12に記載の流体反応装置。  13. The fluid reaction device according to claim 12, wherein the control unit finely adjusts the feed rate based on an output value of the pressure sensor.
[14] 前記プランジャポンプ装置の前記制御部は、前記一対のプランジャポンプを、それ ぞれが吐出動作の初期と終期において増速過程と減速過程を行い、一方の増速過 程と他方の減速過程が互いに重なるようにして流量を一定のまま切換制御することを 特徴とする、請求項 12または請求項 13に記載の流体反応装置。 [14] The control unit of the plunger pump device includes the pair of plunger pumps. Each is characterized by performing an acceleration process and a deceleration process at the beginning and end of the discharge operation, and switching control with a constant flow rate so that one acceleration process and the other deceleration process overlap each other. The fluid reaction device according to claim 12 or claim 13.
[15] 前記切換制御時には、前記送り速度の微調整を一方のプランジャポンプについて のみ行うことを特徴とする請求項 14に記載の流体反応装置。 15. The fluid reaction device according to claim 14, wherein during the switching control, the feed rate is finely adjusted only for one plunger pump.
[16] 前記プランジャポンプ装置の前記制御部は、前記プランジャポンプが前進と後退の 間に一定の停止過程を行うように制御することを特徴とする請求項 12〜請求項 15の いずれか 1項に記載の流体反応装置。 [16] The control unit according to any one of claims 12 to 15, wherein the control unit of the plunger pump device controls the plunger pump to perform a certain stopping process between the forward movement and the backward movement. The fluid reaction apparatus according to 1.
[17] 前記プランジャポンプ装置力 S、前記プランジャポンプのプランジャの位置を検出す る位置センサを備え、前記制御部はこの位置センサの出力に基づいて送り速度を制 御することを特徴とする、請求項 12〜請求項 16のいずれ力 4項に記載の流体反応 装置。 [17] The plunger pump device force S and a position sensor that detects the position of the plunger of the plunger pump are provided, and the control unit controls the feed rate based on the output of the position sensor. The fluid reaction device according to any one of claims 12 to 16, wherein the force is 4.
[18] 前記流量制御手段は通過流体の体積を測定するセンサ部と、センサ部の測定情 報を基に流体が通過する通過面積をコントロールする通過量コントロール部を有して いることを特徴とする請求項 2〜請求項 17のいずれか 1項に記載の流体反応装置。  [18] The flow rate control means includes a sensor unit for measuring a volume of the fluid passing therethrough, and a passage amount control unit for controlling a passage area through which the fluid passes based on measurement information of the sensor unit. The fluid reaction device according to any one of claims 2 to 17, wherein:
[19] 前記流量制御手段が、流路を流れる流体の流量を調整する流量調整装置であつ て、  [19] The flow rate control means is a flow rate adjustment device that adjusts the flow rate of the fluid flowing through the flow path,
前記流路を流れる流体を加熱または冷却する温調機構と、  A temperature control mechanism for heating or cooling the fluid flowing through the flow path;
前記流路の第 1の測定点における流体の温度が変化する時刻と、前記第 1の測定 点よりも下流側の第 2の測定点における流体の温度が変化する時刻との時間差から 前記流路内を流れる流体の流量を算出する流量測定部と、  From the time difference between the time at which the fluid temperature at the first measurement point of the flow path changes and the time at which the fluid temperature at the second measurement point downstream of the first measurement point changes, the flow path A flow rate measurement unit for calculating the flow rate of the fluid flowing in the interior,
前記第 2の測定点を通過する流体の温度を測定する下流側温度センサと、 前記下流側温度センサの下流側に設けられた制御弁と、  A downstream temperature sensor that measures the temperature of the fluid passing through the second measurement point, and a control valve provided on the downstream side of the downstream temperature sensor;
前記流量測定部により求められた流量に基づいて、流体の流量が一定となるように 前記制御弁を制御する制御部とを備えたことを特徴とする流量調整装置である、請 求項 2〜請求項 18のいずれか 1項に記載の流体反応装置。  A control unit that controls the control valve so that the flow rate of the fluid becomes constant based on the flow rate obtained by the flow rate measurement unit. The fluid reaction device according to claim 18.
[20] 前記流量調整装置の前記流量測定部は、前記第 1の測定点および前記第 2の測 定点における流体の温度変化を示す温度カーブ上の互いに対応する 2点間の時間 差に基づいて流体の流量を算出することを特徴とする、請求項 19に記載の流体反 応装置。 [20] The flow rate measurement unit of the flow rate adjusting device may include a time between two points corresponding to each other on a temperature curve indicating a temperature change of the fluid at the first measurement point and the second measurement point. 20. The fluid reaction device according to claim 19, wherein the fluid flow rate is calculated based on the difference.
[21] 前記第 1の測定点を通過する流体の温度を測定する上流側温度センサをさらに設 けたことを特徴とする、請求項 19または請求項 20に記載の流体反応装置。  21. The fluid reaction device according to claim 19 or 20, further comprising an upstream temperature sensor for measuring a temperature of the fluid passing through the first measurement point.
[22] 前記流量調整装置の前記上流側温度センサは、前記流路を流れる流体に接触す るセンサホルダと、前記流路に近い位置まで前記センサホルダの内部に揷入された サーミスタとを備えることを特徴とする、請求項 21に記載の流体反応装置。  [22] The upstream temperature sensor of the flow rate adjusting device includes a sensor holder that contacts a fluid flowing through the flow path, and a thermistor inserted into the sensor holder to a position close to the flow path. The fluid reaction device according to claim 21, wherein
[23] 前記流量調整装置の前記下流側温度センサは、前記流路を流れる流体に接触す るセンサホルダと、前記流路に近い位置まで前記センサホルダの内部に揷入された サーミスタとを備えることを特徴とする、請求項 19〜請求項 22のいずれ力 4項に記載 の流体反応装置。  [23] The downstream temperature sensor of the flow rate adjusting device includes a sensor holder that contacts a fluid flowing through the flow path, and a thermistor inserted into the sensor holder to a position close to the flow path. The fluid reaction device according to any one of claims 19 to 22, wherein the fluid reaction device is characterized in that:
[24] 少なくとも前記第 1の測定点と前記第 2の測定点とを含む空間の温度を一定に保つ 環境温度制御機構をさらに設けたことを特徴とする、請求項 19〜請求項 23のいず れか 1項に記載の流体反応装置。  24. An environment temperature control mechanism for maintaining a constant temperature in a space including at least the first measurement point and the second measurement point is further provided. The fluid reaction device according to any one of claims 1 to 4.
[25] 前記流量調整装置の前記温調機構は、ペルチェ素子、ゼーベック素子、電磁波発 生器、または抵抗加熱線を備えることを特徴とする、請求項 19〜請求項 24のいずれ 力 1項に記載の流体反応装置。 [25] The force 1 according to any one of claims 19 to 24, wherein the temperature adjustment mechanism of the flow rate adjusting device includes a Peltier element, a Seebeck element, an electromagnetic wave generator, or a resistance heating wire. The fluid reaction apparatus as described.
[26] 前記流量調整装置の前記温調機構は、前記流路を構成する孔が形成された円筒 部と前記円筒部に熱を伝える伝熱部とを有する構造体と、前記構造体の伝熱部を加 熱または冷却する温調部材とを備えることを特徴とする、請求項 19〜請求項 25のい ずれか 1項に記載の流体反応装置。 [26] The temperature control mechanism of the flow rate adjusting device includes a structure having a cylindrical part in which holes forming the flow path are formed, a heat transfer part that transfers heat to the cylindrical part, and a transfer of the structure. 26. The fluid reaction device according to any one of claims 19 to 25, further comprising a temperature control member that heats or cools the heat section.
[27] 前記流量調整装置の前記制御弁は、流量を調整する弁と、前記弁を駆動する駆動 源とを有しており、該駆動源は、圧電素子、電磁石、サーボモータ、またはステツピン グモータを備えていることを特徴とする、請求項 19〜請求項 26のいずれか 1項に記 載の流体反応装置。 [27] The control valve of the flow rate adjusting device includes a valve that adjusts the flow rate and a drive source that drives the valve, and the drive source is a piezoelectric element, an electromagnet, a servo motor, or a stepping motor. 27. The fluid reaction device according to any one of claims 19 to 26, comprising:
[28] 前記流量調整装置の前記制御弁は、流量を調整する弁と、前記弁を駆動する駆動 源とを有しており、該駆動源は、複数の圧電素子が積層された構造を有することを特 徴とする、請求項 19〜請求項 27のいずれか 1項に記載の流体反応装置。 [28] The control valve of the flow rate adjusting device has a valve for adjusting the flow rate and a drive source for driving the valve, and the drive source has a structure in which a plurality of piezoelectric elements are stacked. The fluid reaction device according to any one of claims 19 to 27, characterized in that:
[29] 前記制御弁を通過する流体の圧力は IMPa〜: !OMPaであることを特徴とする、請 求項 19〜請求項 28のいずれか 1項に記載の流体反応装置。 [29] The fluid reaction device according to any one of claims 19 to 28, wherein the pressure of the fluid passing through the control valve is IMPa˜:! OMPa.
[30] 前記制御弁を通過する流体の流量は 0. 01〜: 10L/hであることを特徴とする、請 求項 19〜請求項 29のいずれか 1項に記載の流体反応装置。 [30] The fluid reaction device according to any one of claims 19 to 29, wherein a flow rate of the fluid passing through the control valve is 0.01 to 10 L / h.
[31] 前記流量調整装置の前記流路は、耐食性のある材料から形成されていることを特 徴とする、請求項 19〜請求項 30のいずれか 1項に記載の流体反応装置。 [31] The fluid reaction device according to any one of [19] to [30], wherein the flow path of the flow control device is formed of a corrosion-resistant material.
[32] 前記流量調整装置の前記材料は、ステンレス鋼、チタン、ポリエーテルエーテルケ トン、ポリ四フッ化工チレン、またはポリクロ口トリフルォロエチレンであることを特徴と する、請求項 19〜請求項 31のいずれか 1項に記載の流体反応装置。 [32] The material of the flow control device is stainless steel, titanium, polyether ether ketone, polytetrafluoroethylene, or polychloroethylene trifluoroethylene. 31. The fluid reaction device according to any one of 31.
[33] 前記流量制御手段が、 [33] The flow rate control means comprises:
流路を流れる流体を所定の温調位置において短時間温調する温調機構と、 前記流路の前記温調位置より下流側の温度測定位置に配置された少なくとも 1つ の主温度センサとを備える流量測定装置であって、  A temperature adjustment mechanism for adjusting the temperature of the fluid flowing through the flow path for a short time at a predetermined temperature adjustment position, and at least one main temperature sensor disposed at a temperature measurement position downstream of the temperature adjustment position of the flow path. A flow measuring device comprising:
前記主温度センサにより観測した温度測定位置における温度変化に基づいて温調 された流体の通過時を判断し、この判断結果に基づいて流量を算出する流量測定 装置において、  In a flow rate measuring device that determines when a temperature-controlled fluid passes based on a temperature change at a temperature measurement position observed by the main temperature sensor, and calculates a flow rate based on the determination result.
前記流路の前記温調位置より上流側に位置に副温度センサを設置し、 当該主温度センサの温度測定値を前記副温度センサの測定値により補正すること を特徴とする流量測定装置である、請求項 2〜請求項 18のいずれか 1項に記載の流 体反応装置。  A flow rate measuring device comprising: a sub temperature sensor installed at a position upstream of the temperature control position of the flow path; and a temperature measurement value of the main temperature sensor is corrected by a measurement value of the sub temperature sensor. The fluid reactor according to any one of claims 2 to 18.
[34] 前記流量測定装置の前記補正は、前記主温度センサの測定値と前記副温度セン サの測定値の差を求めることにより行われることを特徴とする、請求項 33に記載の流 体反応装置。  34. The fluid according to claim 33, wherein the correction of the flow rate measuring device is performed by obtaining a difference between a measurement value of the main temperature sensor and a measurement value of the sub temperature sensor. Reactor.
[35] 前記主温度センサを異なる温度測定位置に少なくとも 2つ設け、これらの温度測定 位置における通過の時間差に基づいて流量を算出することを特徴とする、請求項 33 または請求項 34に記載の流体反応装置。  [35] The at least two main temperature sensors are provided at different temperature measurement positions, and the flow rate is calculated based on a time difference of passage at these temperature measurement positions. Fluid reaction device.
[36] 前記温調機構が温調を行った時と、前記温度測定位置における通過時との時間差 に基づいて流量を算出することを特徴とする、請求項 33または請求項 34に記載の 流体反応装置。 [36] The flow rate according to claim 33 or 34, wherein the flow rate is calculated based on a time difference between when the temperature adjustment mechanism performs temperature adjustment and when the temperature adjustment mechanism passes at the temperature measurement position. Fluid reaction device.
[37] 前記補正後の温度測定値が極値に達した時点を温調流体の通過時と判断すること を特徴とする、請求項 33〜請求項 36のいずれか 1項に記載の流体反応装置。  [37] The fluid reaction according to any one of claims 33 to 36, wherein the time point at which the corrected temperature measurement value reaches the extreme value is determined as the passage of the temperature-controlled fluid. apparatus.
[38] 前記流量測定装置の前記副温度センサは、前記温調位置に対して前記温度測定 位置とほぼ対称の位置に有ることを特徴とする、請求項 33〜請求項 37のいずれか 1 項に記載の流体反応装置。 [38] The sub-temperature sensor of the flow rate measuring device according to any one of claims 33 to 37, wherein the sub-temperature sensor is substantially symmetrical to the temperature measuring position with respect to the temperature control position. The fluid reaction apparatus according to 1.
[39] 前記副温度センサの位置を、流路に沿って調整可能としてあることを特徴とする、 請求項 33〜請求項 38のいずれか 1項に記載の流体反応装置。 [39] The fluid reaction device according to any one of claims 33 to 38, wherein the position of the sub-temperature sensor is adjustable along the flow path.
[40] 前記主温度センサまたは副温度センサの測定値をアナログ/デジタル変換してデ ジタル回路に取り入れて処理することを特徴とする、請求項 33〜請求項 39のいずれ 力、 1項に記載の流体反応装置。 [40] The force according to any one of claims 33 to 39, wherein the measured value of the main temperature sensor or the sub temperature sensor is converted into an analog / digital signal and processed in a digital circuit. Fluid reaction device.
[41] 前記流量測定装置の前記温調機構は、ペルチェ素子、ゼーベック素子、電磁波発 生器、抵抗加熱線、サーミスタ、または白金抵抗体を備えることを特徴とする、請求項[41] The temperature control mechanism of the flow rate measuring device includes a Peltier element, a Seebeck element, an electromagnetic wave generator, a resistance heating wire, a thermistor, or a platinum resistor.
33〜請求項 40のいずれか 1項に記載の流体反応装置。 The fluid reaction device according to any one of claims 33 to 40.
[42] 前記混合基板が複数設けられていることを特徴とする請求項 2〜請求項 41のいず れか 1項に記載の流体反応装置。 [42] The fluid reaction device according to any one of [2] to [41], wherein a plurality of the mixed substrates are provided.
[43] 混合後の流体の反応を進行させるために、前記反応流路を前記混合基板とは別に 設けた反応基板に形成したことを特徴とする請求項 2〜請求項 42のいずれ力 1項に 記載の流体反応装置。 [43] The force according to any one of claims 2 to 42, wherein the reaction channel is formed on a reaction substrate provided separately from the mixing substrate in order to advance the reaction of the fluid after mixing. The fluid reaction device described in 1.
[44] 前記反応基板が複数設けられていることを特徴とする請求項 43に記載の流体反応 装置。  44. The fluid reaction apparatus according to claim 43, wherein a plurality of the reaction substrates are provided.
[45] 前記流体輸送手段と前記混合基板の間に第 1の流路選択切換弁を、前記混合基 板と物質回収口の間に第 2の流路選択切換弁を具備したことを特徴としたことを特徴 とする請求項 2〜請求項 44のいずれか 1項に記載の流体反応装置。  [45] The first flow path selection switching valve is provided between the fluid transport means and the mixing substrate, and the second flow path selection switching valve is provided between the mixing substrate and the substance recovery port. The fluid reaction device according to any one of claims 2 to 44, wherein the fluid reaction device is characterized in that:
[46] 前記第 1の流路選択切換弁と第 2の流路選択切換弁は電気動作または空気圧動 作により作動する自動弁であることを特徴とする請求項 45に記載の流体反応装置。  46. The fluid reaction device according to claim 45, wherein the first flow path selection switching valve and the second flow path selection switching valve are automatic valves that are operated by an electric operation or a pneumatic operation.
[47] 混合流路に導入された流体が混合された後、混合流路または Zおよび反応流路に 流体が充満されたことを判断する充満検知手段を具備し、充満された時点で流体の 輸送手段を停止させまたは流路選択切換弁を切換え、流体を反応終結時間に適応 する一定時間混合流路または/および反応流路に滞留させておく制御が可能なこと を特徴とする請求項 2〜請求項 46のいずれか 1項に記載の流体反応装置。 [47] After the fluid introduced into the mixing channel is mixed, it is provided with a fullness detecting means for judging that the mixing channel or Z and the reaction channel are filled with the fluid. 3. The control can be performed such that the transportation means is stopped or the flow path selection switching valve is switched, and the fluid is retained in the mixing flow path and / or the reaction flow path for a predetermined time to adapt to the reaction end time. The fluid reaction device according to any one of claims 46 to 46.
[48] 前記充満検知手段は、物質回収口から出始めた流体を検知する流体有無センサ、 または、混合反応後の輸送管内の流体の有無を検知する流体有無センサであること を特徴とする請求項 47に記載の流体反応装置。 [48] The fullness detection means may be a fluid presence sensor that detects a fluid that has started to exit from the substance recovery port, or a fluid presence sensor that detects the presence or absence of fluid in the transport pipe after the mixing reaction. Item 48. The fluid reaction device according to Item 47.
[49] 前記混合流路と前記反応流路には個別に温度測定センサが設けられ、個別に温 度制御が可能であることが特徴とすることを特徴とする請求項 2〜請求項 48のいず れか 1項に記載の流体反応装置。 [49] The method according to any one of [2] to [48], wherein a temperature measuring sensor is provided separately for each of the mixing channel and the reaction channel, and the temperature can be individually controlled. The fluid reaction device according to any one of the preceding items.
[50] 前記混合基板と前記反応基板の少なくとも一部を積層させて配置させることを特徴 とする請求項 2〜請求項 49のいずれか 1項に記載の流体反応装置。 [50] The fluid reaction device according to any one of [2] to [49], wherein at least a part of the mixed substrate and the reaction substrate are stacked and arranged.
[51] 流路選択切換弁を切り換えて、混合流路、反応流路内の通常の流れの方向とは逆 方向に流体を送り込む逆洗手段を具備したことを特徴とする請求項 2〜請求項 50の いずれか 1項に記載の流体反応装置。 [51] The present invention further comprises backwashing means for switching the flow path selection switching valve to feed the fluid in the direction opposite to the normal flow direction in the mixing flow path and the reaction flow path. Item 51. The fluid reaction device according to any one of Items 50.
[52] 前記逆洗手段は、圧送手段として 1本ピストンポンプを有することが特徴であること を特徴とする請求項 51に記載の流体反応装置。 [52] The fluid reaction apparatus according to [51], wherein the backwashing means has a single piston pump as the pressure feeding means.
[53] 前記第 1の流路選択切換弁には窒素ガス供給ライン、純水供給ライン、有機溶剤 供給ライン、酸供給ライン、水素水供給ライン、およびオゾン水供給ラインのいずれか[53] The first channel selection switching valve may be any one of a nitrogen gas supply line, a pure water supply line, an organic solvent supply line, an acid supply line, a hydrogen water supply line, and an ozone water supply line.
1または複数に接続されていることを特徴とする請求項 45〜請求項 52のいずれか 1 項に記載の流体反応装置。 53. The fluid reaction device according to any one of claims 45 to 52, wherein the fluid reaction device is connected to one or more.
[54] 前記第 2の流路選択切換弁には窒素ガス供給ライン、純水供給ライン、有機溶剤 供給ライン、酸供給ライン、水素水供給ライン、およびオゾン水供給ラインのいずれか[54] The second flow path selection switching valve is one of a nitrogen gas supply line, a pure water supply line, an organic solvent supply line, an acid supply line, a hydrogen water supply line, and an ozone water supply line.
1または複数に接続されていることを特徴とする請求項 45〜請求項 53のいずれか 1 項に記載の流体反応装置。 54. The fluid reaction device according to any one of claims 45 to 53, wherein the fluid reaction device is connected to one or more.
[55] 前記導出部の設置スペースには、 2個以上の回収容器を保持可能なテーブルと、 テーブル移動機構とを設けたことを特徴とする請求項 4〜請求項 54のいずれ力、 1項 に記載の流体反応装置。 [55] The force according to any one of claims 4 to 54, wherein the installation space of the lead-out portion is provided with a table capable of holding two or more collection containers and a table moving mechanism. The fluid reaction apparatus according to 1.
[56] 前記テーブル移動機構は回転機構または往復機構であることを特徴とする請求項 55に記載の流体反応装置。 56. The table moving mechanism is a rotating mechanism or a reciprocating mechanism. 56. The fluid reaction device according to 55.
[57] 反応後の物質の収率を測定する収率測定手段が具備されていることを特徴とする 請求項 2〜請求項 56のいずれか 1項に記載の流体反応装置。 [57] The fluid reaction device according to any one of [2] to [56], further comprising a yield measuring unit for measuring the yield of the substance after the reaction.
[58] 収率測定手段が紫外吸光、赤外分光、近赤外分光であることを特徴とする請求項[58] The yield measuring means is ultraviolet absorption, infrared spectroscopy, or near infrared spectroscopy.
57に記載の流体反応装置。 58. The fluid reaction device according to 57.
[59] 前記収率測定手段が、 [59] The yield measuring means comprises:
複数の波長の異なる光源を有する光源部と、  A light source unit having a plurality of light sources having different wavelengths;
被測定液を流通させるフローセルを構成するケーシングと、  A casing constituting a flow cell for circulating the liquid to be measured;
上記フローセルにおいて被測定液に近接する複数の発光部と受光部と、 受光部から得られた各波長の分光を個々に行う分光器を有する分光部と、 分光器で得られた被測定液の分光情報を演算制御して出力する制御部と を具備したことを特徴とするマルチ分光分析装置である、請求項 57に記載の流体反 応装置。  In the flow cell, a plurality of light emitting units and light receiving units that are close to the liquid to be measured, a spectroscopic unit that individually performs spectroscopy of each wavelength obtained from the light receiving unit, and a liquid to be measured obtained by the spectroscope 58. The fluid reaction device according to claim 57, further comprising: a control unit that arithmetically controls and outputs spectral information.
[60] 前記マルチ分光分析装置の上記光源部は、紫外光、可視光、近赤外光、赤外光、 遠赤外光のうち、少なくとも 2つ以上の波長領域をカバーする光源を有することを特 徴とする請求項 59に記載の流体反応装置。  [60] The light source section of the multispectral analyzer has a light source that covers at least two wavelength regions of ultraviolet light, visible light, near infrared light, infrared light, and far infrared light. 60. A fluid reaction device according to claim 59, characterized in that
[61] 前記マルチ分光分析装置の前記フローセルが複数形成され、各フローセルに発光 部と受光部がそれぞれ配置されていることを特徴とする請求項 59または請求項 60に 記載の流体反応装置。 [61] The fluid reaction device according to [59] or [60], wherein a plurality of the flow cells of the multispectral analyzer are formed, and a light emitting portion and a light receiving portion are respectively arranged in each flow cell.
[62] 前記マルチ分光分析装置の前記ケーシングは、仕切によって内部に複数のフロー セルを形成するように構成されていることを特徴とする請求項 59〜請求項 61のいず れか 1項に記載の流体反応装置。  [62] In any one of claims 59 to 61, wherein the casing of the multispectral analyzer is configured to form a plurality of flow cells therein by a partition. The fluid reaction apparatus as described.
[63] 前記マルチ分光分析装置の前記ケーシングは、内部に 1つのフローセルを形成す るように構成され、複数の前記ケーシングが基板上に着脱自在に取り付け可能となつ ていることを特徴とする請求項 59〜請求項 62のいずれ力、 1項に記載の流体反応装 置。  [63] The casing of the multispectral analyzer is configured to form one flow cell therein, and a plurality of the casings can be detachably mounted on a substrate. Item 63. The fluid reaction device according to any one of Items 59 to 62.
[64] 可視領域から近赤外領域の光源を一つの光源で兼用し、異なる受光部に導くよう に構成したことを特徴とする請求項 59〜請求項 63のいずれ力、 1項に記載の流体反 応装置。 [64] The force according to any one of claims 59 to 63, wherein the light source from the visible region to the near-infrared region is shared by a single light source and guided to different light receiving parts. Fluid anti Applicable equipment.
[65] 前記発光部と受光部間の距離を調整可能であることを特徴とする請求項 59〜請求 項 64のレ、ずれか 1項に記載の流体反応装置。  [65] The fluid reaction device according to any one of [59] to [64], wherein a distance between the light emitting unit and the light receiving unit is adjustable.
[66] 反応領域の下流側に、分光分析装置を有することを特徴とする、請求項 59〜請求 項 65のいずれか 1項に記載の流体反応装置。 [66] The fluid reaction device according to any one of claims 59 to 65, further comprising a spectroscopic analysis device downstream of the reaction region.
[67] 複数の流体をマイクロ反応空間を含む流路において反応させる流体反応装置に用 レ、られる流体混合装置であって、 [67] A fluid mixing device used in a fluid reaction device for reacting a plurality of fluids in a flow path including a micro reaction space,
複数の平板状の基材を接合し、複数の流体をそれぞれのヘッダ空間から合流空間 に連続的に供給して混合させるように構成され、  A plurality of flat base materials are joined, and a plurality of fluids are continuously supplied from each header space to the merge space to be mixed,
各流体の前記ヘッダ空間を前記基材の異なる表面に設け、前記各ヘッダ空間と前 記合流空間とを連通するそれぞれ複数の分液流路を、異なるヘッダ空間からの分液 流路が前記合流空間の流入部において交互に開口するように形成したことを特徴と する流体混合装置。  The header spaces of the respective fluids are provided on different surfaces of the base material, and a plurality of liquid separation channels communicating the header spaces and the merge space are respectively connected to the separate flow channels from different header spaces. A fluid mixing device characterized by being formed so as to open alternately at the inflow portion of the space.
[68] 前記各ヘッダ空間は、前記異なる表面において同心の円弧状に形成され、前記合 流空間はこれらの円弧のほぼ中心上に配置されていることを特徴とする請求項 67に 記載の流体混合装置。  68. The fluid according to claim 67, wherein each of the header spaces is formed in a concentric arc shape on the different surfaces, and the confluence space is disposed substantially on the center of these arcs. Mixing equipment.
[69] 前記ヘッダ空間は前記基材のそれぞれ表裏面に形成され、前記合流空間は前記 基材の一方の表面に形成され、他方の表面上のヘッダ空間と連通する分液流路は 前記基材を貫通して設けられていることを特徴とする請求項 67または請求項 68に記 載の流体混合装置。  [69] The header space is formed on each of the front and back surfaces of the base material, the merge space is formed on one surface of the base material, and the liquid separation channel communicating with the header space on the other surface is the base 69. The fluid mixing apparatus according to claim 67, wherein the fluid mixing apparatus is provided so as to penetrate the material.
[70] 前記各ヘッダ空間と前記合流空間とを連通する前記複数の分液流路は互いに平 行に延びて形成されていることを特徴とする請求項 67または請求項 69に記載の流 体混合装置。  [70] The fluid according to claim 67 or 69, wherein the plurality of liquid separation channels communicating the header space and the merge space are formed to extend in parallel with each other. Mixing equipment.
[71] 複数の流体をマイクロ反応空間を含む流路において反応させる流体反応装置に用 レ、られる流体混合装置であって、  [71] A fluid mixing device used in a fluid reaction device for reacting a plurality of fluids in a flow path including a micro reaction space,
複数の平板状の基材を接合し、複数の流体をそれぞれのヘッダ空間から合流空間 に連続的に供給して混合させるように構成され、  A plurality of flat base materials are joined, and a plurality of fluids are continuously supplied from each header space to the merge space to be mixed,
前記ヘッダ空間を前記基材の表面に沿って設け、前記合流空間を流体が前記基 材の板厚方向に流れるように設け、前記ヘッダ空間と前記合流空間とを連通するそ れぞれ複数の分液流路を、異なるヘッダ空間からの分液流路が前記合流空間の流 入部において交互に開口するように形成したことを特徴とする流体混合装置。 The header space is provided along the surface of the base material, and the merging space is formed in the fluid by the base A plurality of liquid separation channels that communicate with the header space and the merge space are provided to flow in the plate thickness direction of the material, and the liquid separation channels from different header spaces are inflow portions of the merge space. And a fluid mixing device formed so as to open alternately.
[72] 前記ヘッダ空間が前記基材の表面において前記合流空間の両側に設けられ、異 なるヘッダ空間からの分液流路どうしが前記合流空間の流入部において互いにずれ た位置に開口していることを特徴とする請求項 71に記載の流体混合装置。  [72] The header spaces are provided on both sides of the merge space on the surface of the base material, and the liquid separation channels from different header spaces are opened at positions shifted from each other in the inflow portion of the merge space. 72. The fluid mixing apparatus according to claim 71.
[73] 各流体の前記ヘッダ空間を前記基材の異なる表面に設け、分液流路の少なくとも 一方は前記基材を貫通して設けられ、異なるヘッダ空間からの分液流路どうしが前 記合流空間の対向する側において相対向するように、かつ前記合流空間の同じ側 におレ、て交互に隣接するように形成されてレ、ることを特徴とする請求項 71に記載の 流体混合装置。  [73] The header space of each fluid is provided on a different surface of the base material, and at least one of the separation flow paths is provided through the base material, and the separation flow paths from the different header spaces are provided as described above. 72. The fluid mixing according to claim 71, wherein the fluid mixing is formed so as to face each other on opposite sides of the merge space and alternately adjacent to each other on the same side of the merge space. apparatus.
[74] 前記合流空間は、流体が前記基材の板厚方向に流れた後に、該基材の面に沿つ て流れるように屈曲して形成されていることを特徴とする請求項 71〜請求項 73のい ずれか 1項に記載の流体混合装置。  74. The joining space is formed by bending so that fluid flows along the surface of the base material after the fluid flows in the plate thickness direction of the base material. 74. The fluid mixing apparatus according to any one of claims 73.
[75] 複数の流体を平板状の基材に形成された 500 β m以下の流路幅部分を含む空間 に連続的に供給して混合させる混合流路を有し、 [75] having a mixing channel for continuously supplying and mixing a plurality of fluids to a space including a channel width portion of 500 βm or less formed on a flat substrate;
前記複数の流体の合流点から流れに沿って 5mm以上の長さに渡って直径 50 μ m 以下の柱状の障害物が等間隔に配置されていることを特徴とする流体混合装置。  A fluid mixing apparatus, wherein columnar obstacles having a diameter of 50 μm or less are arranged at equal intervals over a length of 5 mm or more along a flow from a confluence of the plurality of fluids.
[76] 前記柱状の障害物は複数列の柱が列の間隔をずらして流れ方向に交互配置され たことことを特徴とする請求項 75に記載の流体混合装置。 [76] The fluid mixing apparatus according to [75], wherein the columnar obstacle is formed by alternately arranging a plurality of columns in the flow direction at different intervals.
[77] 前記柱状の障害物は複数で流れ方向に千鳥状に配置されていることを特徴とする 請求項 75または請求項 76に記載の流体混合装置。 77. The fluid mixing apparatus according to claim 75 or 76, wherein a plurality of the columnar obstacles are arranged in a staggered manner in the flow direction.
[78] 合流後において、流路の幅が徐々に小さくなる部分と徐々に大きくなる部分を持つ ことを特徴とする請求項 67〜請求項 77のいずれか 1項に記載の流体混合装置。 [78] The fluid mixing device according to any one of [67] to [77], wherein the fluid mixing device has a portion in which the width of the flow path gradually decreases and a portion in which the width gradually increases after the merge.
[79] 合流後において、流路の幅寸法と深さ寸法が交互に縮小、拡大を繰り返すことを特 徴とする請求項 67〜請求項 78のいずれか 1項に記載の流体混合装置。 [79] The fluid mixing apparatus according to any one of [67] to [78], wherein the width dimension and the depth dimension of the flow path are alternately reduced and enlarged after the merge.
[80] 合流後において、流路の幅方向寸法が深さ方向寸法よりも大きい扁平状部分を有 することを特徴とする請求項 67〜請求項 79のいずれ力、 1項に記載の流体混合装置 [80] The fluid mixing according to any one of claims 67 to 79, wherein the fluid mixing has a flat portion whose width direction dimension is larger than the depth direction dimension after the merge. apparatus
[81] 流路を形成する部材が、 SUS316, SUS304、 Ti、石英ガラス、パイレックスガラス(登 録商標)等の硬質ガラス、 PEEK (polyetheretherketone)、 PE (polyethylene)、 PVC (polyvinylchloride)、 PDMS (polydimethylsiloxane)、 si、 PTFE (polytetrafluoroethy lene)、 PCTFE (polychlorotrifluoroethylene)、および PFA (perfluoroalkoxylalkane) の内の 1または複数を含むこと特徴とすることを特徴とする請求項 67〜請求項 80の いずれか 1項に記載の流体混合装置。 [81] The members forming the flow path are SUS316, SUS304, Ti, quartz glass, Pyrex glass (registered trademark) and other hard glass, PEEK (polyetheretherketone), PE (polyethylene), PVC (polyvinylchloride), PDMS (polydimethylsiloxane) ), Si, PTFE (polytetrafluoroethy lene), PCTFE (polychlorotrifluoroethylene), and one or more of PFA (perfluoroalkoxylalkane), characterized in that any one of claims 67 to 80 The fluid mixing device as described.
[82] 流路の内壁の一部またはすベての材質が、 Au、 Ag、 Pt、 Pd、 Ni、 Cu、 Ru、 Zr、 Ta、 N bまたはこれらの金属を含む化合物であることを特徴とする請求項 67〜請求項 80の いずれか 1項に記載の流体混合装置。  [82] The material of all or part of the inner wall of the channel is Au, Ag, Pt, Pd, Ni, Cu, Ru, Zr, Ta, Nb or a compound containing these metals The fluid mixing device according to any one of claims 67 to 80.
[83] 前記基材は、少なくとも 1辺の大きさが 150mmを越える寸法の矩形であることを特 徴とする請求項 67〜請求項 82のいずれか 1項に記載の流体混合装置。  [83] The fluid mixing apparatus according to any one of [67] to [82], wherein the base material is a rectangle having a dimension of at least one side exceeding 150 mm.
[84] 流体の複数導入口と混合後の単一流体の出口は前記基板の反対側の面に存在 することを特徴とする請求項 67〜請求項 83のいずれ力 1項に記載の流体混合装置  84. The fluid mixing according to any one of claims 67 to 83, wherein the plurality of fluid inlets and the outlet of the single fluid after mixing are present on the opposite surface of the substrate. Equipment
[85] 混合反応基板を同一基板内に、流体の温度を反応温度に向けて上昇、または下 降させる予備温度調整部を具備したことを特徴とする請求項 67〜請求項 84のいず れか 1項に記載の流体混合装置。 [85] The method according to any one of claims 67 to 84, further comprising: a preliminary temperature adjustment unit configured to raise or lower the temperature of the fluid toward the reaction temperature in the same substrate. The fluid mixing device according to claim 1.
[86] 前記混合流路が、第 1の流体源に連通する第 1の流路と、第 2の流体源に連通する 第 2の流路とがそれぞれ内部に複数形成されたマ二ホールド部と、 [86] A manifold section in which the mixing flow path has a plurality of first flow paths communicating with the first fluid source and a plurality of second flow paths communicating with the second fluid source, respectively. When,
該マニホールド部に隣接する合流空間とを有しており、  A confluence space adjacent to the manifold portion,
前記マ二ホールド部は前記合流空間に面する開口端面を有し、  The manifold portion has an open end surface facing the merge space,
前記第 1の流路と第 2の流路の開口は、前記開口端面において交互に隣接するよ うに立体的に配置されてレ、ることを特徴とする、請求項 1に記載の流体反応装置。  2. The fluid reaction apparatus according to claim 1, wherein the openings of the first flow path and the second flow path are three-dimensionally arranged so as to be alternately adjacent to each other at the opening end face. .
[87] 前記マ二ホールド部は、前記第 1の流路と第 2の流路を構成する溝が交互に形成さ れた板状のエレメントを積層することにより、前記開口端面においてこれら第一の流 路と第二の流路が千鳥状に配置されていることを特徴とする請求項 85に記載の流体 反応装置。 [87] The manifold section is formed by laminating plate-like elements in which grooves forming the first flow path and the second flow path are alternately formed, so that the first end of the opening is provided on the opening end surface. 86. The fluid reaction apparatus according to claim 85, wherein the first flow path and the second flow path are arranged in a staggered manner.
[88] 前記第 1の流路と第 2の流路の前記開口の断面における最大幅寸法が 3000 / m以 下であることを特徴とする請求項 86または請求項 87に記載の流体反応装置。 [88] The fluid reaction device according to claim 86 or 87, wherein a maximum width dimension in a section of the opening of the first flow path and the second flow path is 3000 / m or less. .
[89] 前記合流空間またはその下流側に、前記第 1の流路と第 2の流路からの流れ混合 を迂回させる混合促進物体が設けられていることを特徴とする請求項 86〜請求項 88 のいずれか 1項に記載の流体反応装置。 [89] The mixing promotion object for bypassing the flow mixing from the first flow path and the second flow path is provided in the merge space or the downstream side thereof. 90. The fluid reaction device according to any one of 88.
[90] 前記混合促進物体の表面に、触媒作用を有する物質を設けたことを特徴とする請 求項 89に記載の流体反応装置。 [90] The fluid reaction device according to claim 89, wherein a substance having a catalytic action is provided on a surface of the mixing promoting object.
[91] 前記混合促進物体の代表寸法が、該混合促進物体の直前における前記第 1の流 路と第 2の流路からの個々の流れの最小幅寸法の 0.1倍から 10倍の範囲内にあること を特徴とする請求項 89または請求項 90に記載の流体反応装置。 [91] The representative dimension of the mixing promoting object is within a range of 0.1 to 10 times the minimum width dimension of the individual flows from the first flow path and the second flow path immediately before the mixing promoting object. 91. The fluid reaction apparatus according to claim 89 or claim 90, wherein the fluid reaction apparatus is provided.
[92] 前記合流空間の下流側に、流路断面が徐々に減少する絞り部または流体レンズが 設けられていることを特徴とする請求項 86〜請求項 91のいずれ力、 1項に記載の流体 反応装置。 [92] The force according to any one of [86] to [91], wherein a throttle part or a fluid lens in which the flow path cross section gradually decreases is provided downstream of the merge space. Fluid reaction device.
[93] 前記第 1の流路と第 2の流路からの個々の流れの仮想断面の最小幅が、前記絞り 部または流体レンズの下流側部分において 500 /i m以下になっていることを特徴とす る請求項 92に記載の流体反応装置。  [93] The minimum width of the virtual cross section of each flow from the first flow path and the second flow path is 500 / im or less in the downstream portion of the throttle portion or the fluid lens. 93. The fluid reaction device according to claim 92.
[94] 前記開口端面と前記絞り部または流体レンズとは、ほぼ相似な流路断面を有するこ とを特徴とする請求項 92または請求項 93に記載の流体反応装置。 [94] The fluid reaction device according to claim 92 or 93, wherein the opening end surface and the throttle portion or the fluid lens have substantially similar flow path cross sections.
[95] 複数の前記マ二ホールド部が、前記合流空間においてそれぞれの開口端面を対 向させるように配置されていることを特徴とする請求項 86〜請求項 94のいずれか 1 項に記載の流体反応装置。 [95] The plurality of manifold holding portions are arranged so as to face the respective opening end faces in the merging space. Fluid reaction device.
[96] 前記第 1の流路、第 2の流路、前記合流空間および Zまたはその下流側を流れる 流体を加熱または冷却する熱交換器を設けたことを特徴とする請求項 86〜請求項 9[96] The heat exchanger for heating or cooling the first flow path, the second flow path, the merge space, and the fluid flowing in Z or its downstream side is provided. 9
5のレ、ずれか 1項に記載の流体反応装置。 5. The fluid reaction device according to item 1, wherein:
[97] 前記熱交換器は、被加熱流体流路および/または熱媒体流路を構成する溝が形 成された板状のエレメントを積層することにより構成されていることを特徴とする請求 項 96に記載の流体反応装置。 [97] The heat exchanger is configured by stacking plate-like elements in which grooves forming the heated fluid flow path and / or the heat medium flow path are formed. 96. The fluid reaction device according to 96.
[98] 前記合流空間の下流側を流れる流体を加熱または冷却する熱交換器の被加熱流 体流路を合成反応時間調整用のディレイループとし、ディレイループパターンの変更 または積層枚数の変更により熱交換内の滞留時間を調整可能となっていることを特 徴とする請求項 96または請求項 97に記載の流体反応装置。 [98] Heated flow of a heat exchanger that heats or cools a fluid flowing downstream of the merge space The body flow path is a delay loop for adjusting the synthesis reaction time, and the residence time in the heat exchange can be adjusted by changing the delay loop pattern or the number of stacked layers. 97. The fluid reaction device according to 97.
[99] 前記熱交換器の熱媒体として、被加熱流体に混入しても被加熱流体を汚染しない 流体を用いることを特徴とする請求項 96〜請求項 98のいずれか 1項に記載の流体 反応装置。 [99] The fluid according to any one of claims 96 to 98, wherein as the heat medium of the heat exchanger, a fluid that does not contaminate the heated fluid even if mixed into the heated fluid is used. Reactor.
[100] 前記混合基板として、請求項 67〜請求項 85のいずれかの流体混合装置を用いる ことを特徴とする請求項 2〜請求項 66のいずれか 1項に記載の流体反応装置。  [100] The fluid reaction device according to any one of claims 2 to 66, wherein the fluid mixing device according to any one of claims 67 to 85 is used as the mixing substrate.
[101] 前記反応基板の流路を形成する周囲部材は SUS316、 SUS304, Ti、石英ガラス、パ ィレックスガラス(登録商標)等の硬質ガラス、 PEEK、 PE、 PVC、 PDMS、 Si、 PTFE、 P CTFEの内の 1または複数を含むこと特徴とすることを特徴とする請求項 2〜請求項 6 6、請求項 100のいずれか 1項に記載の流体反応装置。  [101] The peripheral members forming the flow path of the reaction substrate are hard glass such as SUS316, SUS304, Ti, quartz glass, Pyrex glass (registered trademark), PEEK, PE, PVC, PDMS, Si, PTFE, P 101. The fluid reaction device according to any one of claims 2 to 66 and claim 100, wherein one or more of CTFE are included.
[102] 前記反応基板の流路の内壁の一部またはすベての材質力 SAu、 Ag、 Pt、 Pd、 Ni、 Cu 、 Ru、 Zr、 Ta、 Nbの内の 1または複数またはこれらの金属を含む化合物であることを 特徴とする請求項 2〜請求項 66、請求項 100、および請求項 101のいずれ力 1項に 記載の流体反応装置。  [102] Material force of part or all of inner wall of flow path of reaction substrate One or more of SAu, Ag, Pt, Pd, Ni, Cu, Ru, Zr, Ta, Nb or a metal thereof 102. The fluid reaction device according to any one of claims 2 to 66, claim 100, and claim 101, wherein the fluid reaction device is a compound containing:
[103] 前記混合基板および/または反応基板が、熱媒体流路を有する温度調整ケース 内に収容されていることを特徴とする請求項 2〜請求項 66、および請求項 100〜請 求項 102のいずれか 1項に記載の流体反応装置。  [103] The mixed substrate and / or the reaction substrate are accommodated in a temperature adjustment case having a heat medium flow path, and the claim 102 to the claim 66, and the claim 100 to the claim 102. The fluid reaction device according to any one of the above.
[104] 前記該熱媒体流体流路内に温度測定手段が設けられていることを特徴とする請求 項 103に記載の流体反応装置。 104. The fluid reaction apparatus according to claim 103, wherein temperature measuring means is provided in the heat medium fluid flow path.
[105] 前記熱媒体流路は、前記混合基板および/または反応基板の表裏面に沿った複 数の分岐流路を有することを特徴とする請求項 102または請求項 103に記載の流体 反応装置。 [105] The fluid reaction device according to claim 102 or 103, wherein the heat medium passage has a plurality of branch passages along front and back surfaces of the mixed substrate and / or reaction substrate. .
[106] 前記温度調整ケースはケース本体と蓋部を有し、前記熱媒体流路はこれらを連絡 するように形成されていることを特徴とする請求項 103〜請求項 105のいずれ力、 1項 に記載の流体反応装置。  [106] The force according to any one of claims 103 to 105, wherein the temperature adjustment case has a case main body and a lid, and the heat medium flow path is formed so as to communicate with each other. The fluid reaction device according to Item.
[107] 熱流体が流入する前記ケース本体の第 1のヘッダに設けられた複数の絞り穴が前 記蓋部の第 2のヘッダと直結し、第 2のヘッダには前記混合基板および/または反応 基板の表裏面に平行な流れを形成する複数の分岐流路へと直結する第 2の絞り穴 が設けられていることを特徴とする請求項 106に記載の流体反応装置。 [107] A plurality of throttle holes provided in the first header of the case body into which the thermal fluid flows A second throttle hole that is directly connected to the second header of the lid, and that is directly connected to a plurality of branch channels that form a flow parallel to the front and back surfaces of the mixed substrate and / or reaction substrate in the second header. 107. The fluid reaction device according to claim 106, wherein the fluid reaction device is provided.
[108] 前記温度調整ケースの材料は Ti、 Al、 SUS304、 SUS316のいずれかであることを特 徴とする請求項 48〜請求項 107のいずれか 1項に記載の流体反応装置。 [108] The fluid reaction device according to any one of claims 48 to 107, wherein a material of the temperature adjustment case is any one of Ti, Al, SUS304, and SUS316.
[109] 前記温度制御手段は、前記混合基板または反応基板を囲い込み混合流体の温度 を調整する温度調整媒体保持機構と、保持機構に保持された温度調整媒体と、温 度測定センサと、温度調整媒体と混合反応流体の間の伝熱量を調整する伝熱量調 整手段を備えたことを特徴とする請求項 2〜請求項 66、および請求項 100〜請求項[109] The temperature control means surrounds the mixed substrate or the reaction substrate to adjust a temperature of the mixed fluid, a temperature adjusting medium holding mechanism, a temperature adjusting medium held by the holding mechanism, a temperature measuring sensor, and a temperature adjusting A heat transfer amount adjusting means for adjusting a heat transfer amount between the medium and the mixed reaction fluid is provided, wherein the heat transfer amount adjusting means is provided.
108のいずれか 1項に記載の流体反応装置。 109. The fluid reaction device according to any one of 108.
[110] 前記温度調整媒体として、シリコンオイル、フッ素オイル、アルコール、液体窒素、 電気抵抗熱線、ペルチェ素子のいずれ力 4または複数が用いられることを特徴とする 請求項 109に記載の流体反応装置。 110. The fluid reaction apparatus according to claim 109, wherein any one or more of silicon oil, fluorine oil, alcohol, liquid nitrogen, electric resistance heating wire, and Peltier element is used as the temperature adjusting medium.
[111] 前記伝熱量調整手段はポンプ流量調整、流量調整弁、電気量のいずれかであるこ とを特徴とする請求項 109または請求項 110に記載の流体反応装置。 [111] The fluid reaction device according to claim 109 or 110, wherein the heat transfer amount adjusting means is any one of a pump flow rate adjustment, a flow rate adjustment valve, and an electric quantity.
[112] 前記温度調整媒体保持機構を断熱部材で覆う構造にしたことを特徴とする請求項 [112] The temperature adjusting medium holding mechanism is structured to be covered with a heat insulating member.
109〜請求項 111のレ、ずれか 1項に記載の流体反応装置。  109. The fluid reaction apparatus according to claim 1, wherein:
[113] 前記断熱部材はシリコンゴムであることを特徴とする請求項 112に記載の流体反応 装置。 113. The fluid reaction apparatus according to claim 112, wherein the heat insulating member is silicon rubber.
[114] 反応後物質中の必要物質と不要物質を分別する分離抽出手段を具備したことを特 徴とする請求項 2〜請求項 66、および請求項 100〜請求項 113のいずれか 1項に記 載の流体反応装置。  [114] The method according to any one of claims 2 to 66, and any one of claims 100 to 113, characterized in that it comprises means for separating and extracting necessary substances and unnecessary substances in the substances after the reaction. The fluid reaction apparatus as described.
[115] 粉体原料を液化溶解するための粉体溶解器を具備したことを特徴とする請求項 2 〜請求項 66、および請求項 100〜請求項 114のいずれか 1項に記載の流体反応装 置。  [115] The fluid reaction according to any one of claims 2 to 66 and claim 100 to claim 114, comprising a powder dissolver for liquefying and dissolving the powder raw material. Equipment.
[116] 流体反応装置内の一部または全域を装置外と隔離し、装置外の圧力より負の圧力 としたことを特徴とする請求項 2〜請求項 66、および請求項 100〜請求項 115のい ずれか 1項に記載の流体反応装置。 [116] A part or all of the inside of the fluid reaction apparatus is isolated from the outside of the apparatus so that the pressure is more negative than the pressure outside the apparatus, and the pressure is outside the apparatus. The fluid reaction device according to any one of 1 to 3.
[117] 流体反応装置の下部において漏れた液を貯める液貯めパンと、漏れた液を検知す る漏液センサとを具備したことを特徴とする請求項 2〜請求項 66、請求項 100〜請 求項 116のレ、ずれか 1項に記載の流体反応装置。 [117] A liquid storage pan for storing liquid leaked at a lower part of the fluid reaction device, and a liquid leakage sensor for detecting the liquid leaked are provided. The fluid reaction device according to claim 116, wherein:
[118] 前記動作制御手段には、流体の流量と反応温度を表示する表示機構が具備され ていることを特徴とする請求項 2〜請求項 66、請求項 100〜請求項 117のいずれか[118] The operation control means includes a display mechanism for displaying the flow rate of the fluid and the reaction temperature, and any one of claims 2 to 66 and 100 to 117.
1項に記載の流体反応装置。 The fluid reaction apparatus according to item 1.
PCT/JP2005/019327 2004-10-20 2005-10-20 Fluid reactor WO2006043642A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006543071A JPWO2006043642A1 (en) 2004-10-20 2005-10-20 Fluid reaction device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004-305912 2004-10-20
JP2004305912 2004-10-20
JP2005153892 2005-05-26
JP2005-153892 2005-05-26
JP2005223926 2005-08-02
JP2005-223926 2005-08-02
JP2005234524 2005-08-12
JP2005-234524 2005-08-12

Publications (1)

Publication Number Publication Date
WO2006043642A1 true WO2006043642A1 (en) 2006-04-27

Family

ID=36203058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019327 WO2006043642A1 (en) 2004-10-20 2005-10-20 Fluid reactor

Country Status (2)

Country Link
JP (1) JPWO2006043642A1 (en)
WO (1) WO2006043642A1 (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051789A (en) * 2006-07-28 2008-03-06 Toray Eng Co Ltd Mounting structure for temperature sensor to flow path forming body
JP2008268107A (en) * 2007-04-24 2008-11-06 Yokogawa Electric Corp Sensor unit and microreactor system
JP2009000592A (en) * 2007-06-19 2009-01-08 Hitachi Ltd Reactor and reaction system
JP2009502525A (en) * 2005-07-25 2009-01-29 シーメンス アクチエンゲゼルシヤフト Microfluidic system
JP2010075914A (en) * 2008-08-25 2010-04-08 National Institute Of Advanced Industrial Science & Technology High temperature-high pressure micro mixing device
JP2013167641A (en) * 2007-07-13 2013-08-29 Handylab Inc Device and method for performing nucleic acid amplification in micro fluid cartridge
JP2014147930A (en) * 2007-07-11 2014-08-21 Corning Inc Process-intensifying micro fluid device
US9347586B2 (en) 2007-07-13 2016-05-24 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US9480983B2 (en) 2011-09-30 2016-11-01 Becton, Dickinson And Company Unitized reagent strip
US9528142B2 (en) 2001-02-14 2016-12-27 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
US9670528B2 (en) 2003-07-31 2017-06-06 Handylab, Inc. Processing particle-containing samples
US9677121B2 (en) 2001-03-28 2017-06-13 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
WO2017111119A1 (en) * 2015-12-25 2017-06-29 ウシオケミックス株式会社 Microreactor
US9707561B2 (en) 2013-11-21 2017-07-18 Randox Laboratories Ltd. Assay fluid delivery system
US9765389B2 (en) 2011-04-15 2017-09-19 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US9802199B2 (en) 2006-03-24 2017-10-31 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US9815057B2 (en) 2006-11-14 2017-11-14 Handylab, Inc. Microfluidic cartridge and method of making same
JPWO2016199791A1 (en) * 2015-06-08 2018-05-24 株式会社Ihi Reactor
JP2018094457A (en) * 2016-12-08 2018-06-21 株式会社Ihi Reactor
US10065185B2 (en) 2007-07-13 2018-09-04 Handylab, Inc. Microfluidic cartridge
US10071376B2 (en) 2007-07-13 2018-09-11 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10100302B2 (en) 2007-07-13 2018-10-16 Handylab, Inc. Polynucleotide capture materials, and methods of using same
USD831843S1 (en) 2011-09-30 2018-10-23 Becton, Dickinson And Company Single piece reagent holder
US10179910B2 (en) 2007-07-13 2019-01-15 Handylab, Inc. Rack for sample tubes and reagent holders
US10220392B2 (en) 2013-03-15 2019-03-05 Becton, Dickinson And Company Process tube and carrier tray
WO2019049547A1 (en) 2017-09-06 2019-03-14 株式会社日立製作所 Microreactor system
US10364456B2 (en) 2004-05-03 2019-07-30 Handylab, Inc. Method for processing polynucleotide-containing samples
CN110461464A (en) * 2017-03-31 2019-11-15 株式会社Ihi Annealing device
US10571935B2 (en) 2001-03-28 2020-02-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US10799862B2 (en) 2006-03-24 2020-10-13 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US10822644B2 (en) 2012-02-03 2020-11-03 Becton, Dickinson And Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
WO2021192573A1 (en) 2020-03-24 2021-09-30 株式会社日立プラントサービス Microreactor system
CN114341341A (en) * 2019-08-29 2022-04-12 发那科株式会社 Cell manufacturing apparatus and method for manufacturing same
US11433397B2 (en) 2013-03-15 2022-09-06 Becton, Dickinson And Company Process tube and carrier tray
JP2022541658A (en) * 2019-08-05 2022-09-26 アカデミア シニカ Microreactor and usage
US11453906B2 (en) 2011-11-04 2022-09-27 Handylab, Inc. Multiplexed diagnostic detection apparatus and methods
WO2023171250A1 (en) * 2022-03-08 2023-09-14 株式会社日立プラントサービス Production system and production method for flavan oligomer
WO2023173761A1 (en) * 2022-03-14 2023-09-21 湖北文理学院 Solution blending and sub-packaging device
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US11865544B2 (en) 2013-03-15 2024-01-09 Becton, Dickinson And Company Process tube and carrier tray

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047839A (en) * 2001-08-06 2003-02-18 Yamatake Corp Micro reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047839A (en) * 2001-08-06 2003-02-18 Yamatake Corp Micro reactor

Cited By (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9528142B2 (en) 2001-02-14 2016-12-27 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US10619191B2 (en) 2001-03-28 2020-04-14 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US10571935B2 (en) 2001-03-28 2020-02-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US9677121B2 (en) 2001-03-28 2017-06-13 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US10351901B2 (en) 2001-03-28 2019-07-16 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US9670528B2 (en) 2003-07-31 2017-06-06 Handylab, Inc. Processing particle-containing samples
US10731201B2 (en) 2003-07-31 2020-08-04 Handylab, Inc. Processing particle-containing samples
US10865437B2 (en) 2003-07-31 2020-12-15 Handylab, Inc. Processing particle-containing samples
US11078523B2 (en) 2003-07-31 2021-08-03 Handylab, Inc. Processing particle-containing samples
US10364456B2 (en) 2004-05-03 2019-07-30 Handylab, Inc. Method for processing polynucleotide-containing samples
US10604788B2 (en) 2004-05-03 2020-03-31 Handylab, Inc. System for processing polynucleotide-containing samples
US10443088B1 (en) 2004-05-03 2019-10-15 Handylab, Inc. Method for processing polynucleotide-containing samples
US11441171B2 (en) 2004-05-03 2022-09-13 Handylab, Inc. Method for processing polynucleotide-containing samples
US10494663B1 (en) 2004-05-03 2019-12-03 Handylab, Inc. Method for processing polynucleotide-containing samples
JP4931922B2 (en) * 2005-07-25 2012-05-16 シーメンス アクチエンゲゼルシヤフト Microfluidic system
JP2009502525A (en) * 2005-07-25 2009-01-29 シーメンス アクチエンゲゼルシヤフト Microfluidic system
US11141734B2 (en) 2006-03-24 2021-10-12 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US10843188B2 (en) 2006-03-24 2020-11-24 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US9802199B2 (en) 2006-03-24 2017-10-31 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10821436B2 (en) 2006-03-24 2020-11-03 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US10821446B1 (en) 2006-03-24 2020-11-03 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10799862B2 (en) 2006-03-24 2020-10-13 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US10857535B2 (en) 2006-03-24 2020-12-08 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US11959126B2 (en) 2006-03-24 2024-04-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US10695764B2 (en) 2006-03-24 2020-06-30 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10913061B2 (en) 2006-03-24 2021-02-09 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US11085069B2 (en) 2006-03-24 2021-08-10 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11142785B2 (en) 2006-03-24 2021-10-12 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11666903B2 (en) 2006-03-24 2023-06-06 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
JP2008051789A (en) * 2006-07-28 2008-03-06 Toray Eng Co Ltd Mounting structure for temperature sensor to flow path forming body
US10710069B2 (en) 2006-11-14 2020-07-14 Handylab, Inc. Microfluidic valve and method of making same
US9815057B2 (en) 2006-11-14 2017-11-14 Handylab, Inc. Microfluidic cartridge and method of making same
JP2008268107A (en) * 2007-04-24 2008-11-06 Yokogawa Electric Corp Sensor unit and microreactor system
JP2009000592A (en) * 2007-06-19 2009-01-08 Hitachi Ltd Reactor and reaction system
JP2020114585A (en) * 2007-07-11 2020-07-30 コーニング インコーポレイテッド Process intensified microfluidic device
JP2014147930A (en) * 2007-07-11 2014-08-21 Corning Inc Process-intensifying micro fluid device
JP2018051553A (en) * 2007-07-11 2018-04-05 コーニング インコーポレイテッド Process-intensifying micro fluid device
JP7049381B2 (en) 2007-07-11 2022-04-06 コーニング インコーポレイテッド Process-enhanced microfluidic equipment
US11266987B2 (en) 2007-07-13 2022-03-08 Handylab, Inc. Microfluidic cartridge
US11254927B2 (en) 2007-07-13 2022-02-22 Handylab, Inc. Polynucleotide capture materials, and systems using same
US10100302B2 (en) 2007-07-13 2018-10-16 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US10590410B2 (en) 2007-07-13 2020-03-17 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US11549959B2 (en) 2007-07-13 2023-01-10 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US11466263B2 (en) 2007-07-13 2022-10-11 Handylab, Inc. Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly
US10071376B2 (en) 2007-07-13 2018-09-11 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10625262B2 (en) 2007-07-13 2020-04-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10625261B2 (en) 2007-07-13 2020-04-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10632466B1 (en) 2007-07-13 2020-04-28 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10065185B2 (en) 2007-07-13 2018-09-04 Handylab, Inc. Microfluidic cartridge
JP2013167641A (en) * 2007-07-13 2013-08-29 Handylab Inc Device and method for performing nucleic acid amplification in micro fluid cartridge
US10717085B2 (en) 2007-07-13 2020-07-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10875022B2 (en) 2007-07-13 2020-12-29 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US11845081B2 (en) 2007-07-13 2023-12-19 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US11060082B2 (en) 2007-07-13 2021-07-13 Handy Lab, Inc. Polynucleotide capture materials, and systems using same
US10139012B2 (en) 2007-07-13 2018-11-27 Handylab, Inc. Integrated heater and magnetic separator
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
US10179910B2 (en) 2007-07-13 2019-01-15 Handylab, Inc. Rack for sample tubes and reagent holders
US9347586B2 (en) 2007-07-13 2016-05-24 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
JP2016000054A (en) * 2007-07-13 2016-01-07 ハンディーラブ インコーポレイテッド Diagnostic apparatus
US10844368B2 (en) 2007-07-13 2020-11-24 Handylab, Inc. Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly
US10234474B2 (en) 2007-07-13 2019-03-19 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
JP2010075914A (en) * 2008-08-25 2010-04-08 National Institute Of Advanced Industrial Science & Technology High temperature-high pressure micro mixing device
US9765389B2 (en) 2011-04-15 2017-09-19 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US10781482B2 (en) 2011-04-15 2020-09-22 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US11788127B2 (en) 2011-04-15 2023-10-17 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
USD905269S1 (en) 2011-09-30 2020-12-15 Becton, Dickinson And Company Single piece reagent holder
US9480983B2 (en) 2011-09-30 2016-11-01 Becton, Dickinson And Company Unitized reagent strip
USD831843S1 (en) 2011-09-30 2018-10-23 Becton, Dickinson And Company Single piece reagent holder
US10076754B2 (en) 2011-09-30 2018-09-18 Becton, Dickinson And Company Unitized reagent strip
US11453906B2 (en) 2011-11-04 2022-09-27 Handylab, Inc. Multiplexed diagnostic detection apparatus and methods
US10822644B2 (en) 2012-02-03 2020-11-03 Becton, Dickinson And Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests
US10220392B2 (en) 2013-03-15 2019-03-05 Becton, Dickinson And Company Process tube and carrier tray
US11865544B2 (en) 2013-03-15 2024-01-09 Becton, Dickinson And Company Process tube and carrier tray
US11433397B2 (en) 2013-03-15 2022-09-06 Becton, Dickinson And Company Process tube and carrier tray
US9707561B2 (en) 2013-11-21 2017-07-18 Randox Laboratories Ltd. Assay fluid delivery system
JPWO2016199791A1 (en) * 2015-06-08 2018-05-24 株式会社Ihi Reactor
US10926235B2 (en) 2015-06-08 2021-02-23 Ihi Corporation Reactor
US10603649B2 (en) 2015-06-08 2020-03-31 Ihi Corporation Reactor
US10512889B2 (en) 2015-12-25 2019-12-24 Ushio Chemix Corporation Microreactor
JPWO2017111119A1 (en) * 2015-12-25 2017-12-28 ウシオケミックス株式会社 Microreactor
WO2017111119A1 (en) * 2015-12-25 2017-06-29 ウシオケミックス株式会社 Microreactor
EP3395436A4 (en) * 2015-12-25 2019-11-20 Ushio Chemix Corporation Microreactor
JP2018094457A (en) * 2016-12-08 2018-06-21 株式会社Ihi Reactor
EP3603793A4 (en) * 2017-03-31 2020-12-23 IHI Corporation Heat treatment device
US11378343B2 (en) 2017-03-31 2022-07-05 Ihi Corporation Heat treatment device
CN110461464A (en) * 2017-03-31 2019-11-15 株式会社Ihi Annealing device
CN110461464B (en) * 2017-03-31 2021-12-24 株式会社Ihi Heat treatment apparatus
WO2019049547A1 (en) 2017-09-06 2019-03-14 株式会社日立製作所 Microreactor system
US10987649B2 (en) 2017-09-06 2021-04-27 Hitachi Plant Services Co., Ltd. Microreactor system
JP7237240B2 (en) 2019-08-05 2023-03-10 アカデミア シニカ Microreactor and usage
JP2022541658A (en) * 2019-08-05 2022-09-26 アカデミア シニカ Microreactor and usage
JP7391339B2 (en) 2019-08-29 2023-12-05 ファナック株式会社 Cell manufacturing device and its manufacturing method
CN114341341A (en) * 2019-08-29 2022-04-12 发那科株式会社 Cell manufacturing apparatus and method for manufacturing same
WO2021192573A1 (en) 2020-03-24 2021-09-30 株式会社日立プラントサービス Microreactor system
US11857941B2 (en) 2020-03-24 2024-01-02 Hitachi Plant Services Co., Ltd. Microreactor system
WO2023171250A1 (en) * 2022-03-08 2023-09-14 株式会社日立プラントサービス Production system and production method for flavan oligomer
WO2023173761A1 (en) * 2022-03-14 2023-09-21 湖北文理学院 Solution blending and sub-packaging device

Also Published As

Publication number Publication date
JPWO2006043642A1 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
WO2006043642A1 (en) Fluid reactor
US5580523A (en) Integrated chemical synthesizers
US5534328A (en) Integrated chemical processing apparatus and processes for the preparation thereof
EP1123734B1 (en) Miniaturized reaction apparatus
CN100371065C (en) Microreactor
Kikutani et al. Glass microchip with three-dimensional microchannel network for 2× 2 parallel synthesis
EP0688242B1 (en) Integrated chemical processing apparatus and processes for the preparation thereof
JP5394743B2 (en) Multi-purpose flow module and method of use
CN101102835B (en) Microreactor
JP2007113433A (en) Plunger pump system
WO2001068257A1 (en) Microreactor
JP2010046634A (en) Reactor and reaction plant
JP4613062B2 (en) Fluid reactor
EP1391237A2 (en) Fine channel device, desksize chemical plant and fine particle producing apparatus employing them
US20050025677A1 (en) Microreactor system
JPWO2006030952A1 (en) Fluid mixer
KR20100127805A (en) Injector assemblies and microreactors incorporating the same
EP1762298B1 (en) Two-solution microreactor having sector-shaped grooves
JP2007113432A (en) Plunger pump device
JP3888275B2 (en) Micro mixer
EP1336432A2 (en) A microreactor
JP5211426B2 (en) Microreactor system
JP2005224764A (en) Reaction process using microreactor, and microreactor
Gaertner et al. Polymer based microfluidic devices: examples for fluidic interfaces and standardization concepts
Thomas III Design and implementation of an automated reconfigurable modular flow chemistry synthesis platform

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006543071

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05795876

Country of ref document: EP

Kind code of ref document: A1