WO2006016600A1 - Tartaric acid derivative and high-molecular weight crosslinked matter synthesized by using the derivative - Google Patents

Tartaric acid derivative and high-molecular weight crosslinked matter synthesized by using the derivative Download PDF

Info

Publication number
WO2006016600A1
WO2006016600A1 PCT/JP2005/014636 JP2005014636W WO2006016600A1 WO 2006016600 A1 WO2006016600 A1 WO 2006016600A1 JP 2005014636 W JP2005014636 W JP 2005014636W WO 2006016600 A1 WO2006016600 A1 WO 2006016600A1
Authority
WO
WIPO (PCT)
Prior art keywords
tartaric acid
acid derivative
water
soluble
derivative
Prior art date
Application number
PCT/JP2005/014636
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsushi Taguchi
Hisatoshi Kobayashi
Junzo Tanaka
Hirofumi Saito
Hirokatsu Aoki
Original Assignee
National Institute For Materials Science
Furuuchi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science, Furuuchi Chemical Corporation filed Critical National Institute For Materials Science
Priority to JP2006531678A priority Critical patent/JPWO2006016600A1/en
Publication of WO2006016600A1 publication Critical patent/WO2006016600A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide

Definitions

  • the present invention comprises a tartaric acid derivative in which the carboxyl group of tartaric acid or a derivative thereof is modified with an electron-withdrawing group, a polymer crosslinked product synthesized from the tartaric acid derivative, the tartaric acid derivative and a biodegradable polymer.
  • the present invention relates to a two-component biodegradable and absorbable adhesive medical material.
  • Patent Documents 1 and 2 have developed a low-molecular-weight biological derivative in which at least one carboxyl group of citrate, which is a tricarboxylic acid existing in the citrate circuit, is modified with an electron-withdrawing group (Patent Document 3, Non-Patent Document 3). References 1-3).
  • Patent Document 4 a method for producing an intermolecular cross-linked protein using al force nicnic acid disuccinimide is known (Patent Document 4).
  • Patent Document 1 Japanese Patent Laid-Open No. 9103479
  • Patent Document 2 JP-A-11 239610
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-99562
  • Patent Document 4 JP-A-61-69759
  • Non-Patent Document 1 Polymer Preprints, Japan 2002, Vol.51, No.14,3728
  • Non-Patent Document 2 Polymer Preprints, Japan 2003, Vol.52, No.14,4147
  • Non-Patent Document 3 Polymer Preprints, Japan 2003, Vol.52, No.14,4140
  • Cross-linking agents and condensing agents that have been used so far for medical devices are mainly artificially synthesized non-natural products that are not metabolized in vivo and show toxicity to the living body. thing Has been pointed out. For this reason, the usage and usage are limited when used in the medical field. Furthermore, until now, there has been no biotissue adhesive that has strong tissue adhesion and low residual toxicity of the crosslinking agent or degradation product. In addition, conventional hemostatic agents, vascular embolizers, sealants, or aneurysm sealants are sufficient to easily remove the applied partial force against vascular occlusion, hemostasis, air leak, aneurysm sealing, etc. There was no one with adhesive strength.
  • a water-soluble tartaric acid derivative obtained by modifying tartaric acid, which is a dicarboxylic acid having a hydroxyl group, with an electron-attracting group, and a biodegradable polymer by using the tartaric acid derivative are used.
  • a cross-linked polymer synthesized by cross-linking, a two-component biodegradable absorbable adhesive medical material composed of the tartaric acid derivative and a biodegradable polymer are used.
  • the present invention crosslinks a biodegradable polymer using a dicarboxylic acid derivative obtained by modifying two carboxyl groups of tartaric acid, which is a dicarboxylic acid, with an electron-attracting group, and the obtained tartaric acid derivative.
  • the present invention provides an organic solvent solution or aqueous solution of a biodegradable polymer, a buffer solution, or a water organic solvent mixed solution as an adhesive component, and two carboxyl groups of tartaric acid that is a dicarboxylic acid are electron-withdrawing.
  • the electron-withdrawing group to be used includes one or a combination of two or more of succinimidyl, sulfosuccinimidyl, maleimidyl, phthalimidyl, imidazolyl, nitrophenol, Outlookyl, and derivatives thereof. It is done.
  • biodegradable polymer used in the crosslinked polymer or biodegradable absorbable adhesive medical material can be a protein, glycosaminodarlican, chitosan, polyamino acid, polyalcohol, or a combination of two or more thereof.
  • glycosaminodarlicans include chondroitin sulfate, dermatan sulfate, hyaluronic acid, heparan sulfate, heparin, keratan sulfate, or one or a combination of two or more of these derivatives. These glycosaminodaricans do not depend on the molecular weight and the organism from which they are derived.
  • Proteins include collagen (depending on several tens of types), atelocollagen (not depending on several tens of types), alkali-treated collagen (not depending on several tens of types), gelatin Selected from the group consisting of macromolecules having amino groups such as keratin, hemoglobin, casein, globulin, fibrinogen, albumin derived from human blood, recombinant albumin, albumin fragment, and chemically modified albumin. A combination of one or more of the qualities can be mentioned.
  • biodegradable polymers used in the preparation of biodegradable bioabsorbable adhesive medical materials composed of a crosslinked polymer, a water-soluble tartaric acid derivative and a biodegradable polymer.
  • examples include chitosan (deacetylation degree, regardless of molecular weight), polyamino acid (amino acid type, regardless of molecular weight), and polyalcohol (type, regardless of molecular weight).
  • the biodegradable polymer Solvents for dissolving include buffers prepared by one or a combination of two or more of hydrochloride, sulfate, nitrate, phosphate, carbonate and borate.
  • the tartaric acid derivative in which the carboxyl group of tartaric acid or its derivative is modified with an electron-withdrawing group is more water-soluble than the low molecular weight biological derivatives and alkanedioic acid disuccinimide previously developed by the present inventors.
  • Biodegradable under the condition of aqueous solution using a buffer solution when obtaining a biodegradable bioadhesive adhesive medical material composed of a crosslinked polymer and the tartaric acid derivative and a biodegradable polymer molecule. The reaction proceeds uniformly with the aqueous polymer solution and the reaction time is shortened.
  • the low molecule used as a starting material of the water-soluble tartaric acid derivative of the present invention is tartaric acid or a derivative thereof, for example, a hydroxyl group (-OH) in tartaric acid is converted to a sulfate group (-OSO Na) or a carboxylic acid.
  • Soluble tartaric acid derivatives have two carboxyl groups in tartaric acid or its derivatives, e.g., electron-withdrawing groups such as succinimidyl, sulfosuccinimidyl, maleimidyl, phthalimidyl, imidazolyl, nitrophenol, toresyl or their derivatives.
  • a synthetic reaction is carried out with one or a combination of two or more, and an active ester is introduced.
  • the water-soluble tartaric acid derivative of the present invention can be obtained by the following synthesis reaction.
  • Tartaric acid or a derivative thereof is added to about 0.001 to 10% by weight, more preferably about 1 to 3% by weight with respect to 100% by weight of the organic solvent, and a condensing agent such as 1-ethyl 3- (3- Dimethylaminopropyl) carbodiimide (EDC) or dicyclohexylcarbodiimide (DCC) is added in an amount of about 0.001 to 20% by weight, more preferably about 5 to 15% by weight, based on 100% by weight of the solvent.
  • a condensing agent such as 1-ethyl 3- (3- Dimethylaminopropyl) carbodiimide (EDC) or dicyclohexylcarbodiimide (DCC)
  • reaction temperature 0 to: L00 ° C., more preferably 10 to 30 ° C., reaction time 1 to 48 hours, more preferably 1 to 3 hours.
  • the acid derivative and reaction by-product DCC urea precipitate is added in an amount of about 0.001 to about LO weight%, more preferably about 3 to 8 weight% with respect to 100 weight% of the solvent.
  • reaction temperature 0 to: L00 ° C., more preferably 10 to 30 ° C., reaction time 1 to 48 hours, more preferably 1 to 3 hours.
  • the tartaric acid derivative is isolated by filtering DCC urea as a reaction by-product through a glass filter. After the filtrate is distilled off under reduced pressure, the resulting residue is purified by washing with an organic solvent such as n-hexane and filtering.
  • Exceeding the above reaction conditions is inappropriate because the carboxyl group in tartaric acid cannot be modified with N-hydroxysuccinimide, which is an electron-absorbing I-group.
  • a water-soluble tartaric acid derivative represented by the following structural formula is obtained.
  • This water-soluble tartaric acid derivative is useful as a crosslinking agent, a curing agent for medical adhesives, and a fixing agent such as a pig valve (Carpentier-Edowards valve: CE valve).
  • the cross-linking reaction between the water-soluble tartaric acid derivative of the present invention and the biodegradable polymer has a concentration of the tartaric acid derivative of about 0.1 to 50% by weight of the biodegradable polymer in the solvent.
  • the reaction is carried out at about 01% to 50% by weight, preferably about 10 to 50 ° C.
  • Exceeding the above reaction conditions is unsuitable because the reaction rate becomes slow, the crosslinking density of the resulting crosslinked product becomes low, and a crosslinked product may not be obtained. It is preferable to dissolve the tartaric acid derivative in the above-mentioned solvent and mix them as a solution having an appropriate concentration so that the concentration is within the above-mentioned concentration range in order to cause a uniform reaction.
  • a dimethyl sulfoxide solution or a buffer solution having a combination force of one or more of hydrochloride, sulfate, nitrate, phosphate, carbonate and borate, or the buffer solution-dimethyl sulfoxide A mixed solution or the like can be used.
  • crosslinked product having a structure as shown in FIG. 1 is obtained.
  • This crosslinked product is a hyde mouth gel having a water content of about 80 to 99% by weight.
  • This crosslinked product can be used for medical adhesives, hemostatic agents, vascular embolization agents, aneurysm sealing agents, and the like.
  • the polymer crosslinked product produced as described above is applied to any one of a bioadhesive, a hemostatic agent, a vascular embolization agent, and an aneurysm sealant, the crosslinking reaction is directly performed on the affected part. .
  • a crosslinking reaction it is suitably used as an anti-adhesion agent, a scaffold material for tissue regeneration, and a drug carrier.
  • the cross-linking reaction between the water-soluble tartaric acid derivative of the present invention and the biodegradable polymer used in the biodegradable and absorbable adhesive medical material is performed by the concentration of the biodegradable polymer in the solvent of 0.1 to 50% by weight.
  • the concentration of the tartaric acid derivative is about 0.01% to 50% by weight, preferably 10%. React at about 50 ° C. If the reaction conditions are not met, the adhesion time becomes longer and the adhesion strength also becomes weaker. It is preferable that the tartaric acid derivative is also dissolved in the solvent and mixed as a solution having an appropriate concentration so that the concentration is within the above-mentioned concentration range in order to allow the two components to react uniformly.
  • Examples of the solvent include a dimethyl sulfoxide solution or a buffer solution having a combination force of one or more of hydrochloride, sulfate, nitrate, phosphate, carbonate and borate, or the buffer solution-dimethylsulfoxide.
  • a mixed solution or the like can be used.
  • the structure of the interface between the biological tissue and the adhesive obtained by the above reaction is such that the tartaric acid derivative undergoes a crosslinking reaction with the biopolymer in the biological tissue and the biodegradable polymer in the adhesive. Adhere by.
  • DCC Dicyclohexylcarbodiimide
  • THF tetrahydrofuran
  • succinimide was added to 100% by weight of the solvent, and the mixture was stirred for 1 hour, and then stirred at room temperature for 2 hours.
  • a mixed solution of DCC urea and a tartaric acid derivative was obtained.
  • TAD synthesized in Example 1 a polymer bridge of alkali-treated collagen (A 3 ⁇ 41) A bridge body was synthesized. 0. Dissolve TAD100 1 in 1M phosphate buffer solution (pH 7.0). 1 concentration 2.5 wZv% phosphate buffer solution (0.1 ⁇ , ⁇ ⁇ 7.0) was added in 4 ⁇ / ⁇ 1 and stirred. The final concentration of TAD was added to 20, 50, 100, and 150 mM. Thereafter, the mixture was allowed to stand at 37 ° C for 30 minutes, and the presence or absence of collagen cross-linked body formation was confirmed. The results are shown in Table 1.
  • TAD human serum albumin
  • a crosslinked polymer of human serum albumin (HSA) was synthesized.
  • 0.1. TAD 100 1 was dissolved in 1M phosphate buffer solution (pH 7.0), and added to phosphate buffer solution (0.1M, pH 7.0) 4OO ⁇ with HSA concentration of 45w Zv% and stirred.
  • the final concentration of TAD was 100, 150, 200 mM.
  • the mixture was allowed to stand at 37 ° C for 30 minutes, and the presence or absence of HSA crosslinked product formation was confirmed.
  • Table 2 From the results in Table 2, it was confirmed that 0.1M phosphate buffer solution, that is, gelation of biopolymers under aqueous solution conditions.
  • a biological tissue adhesive was prepared as follows. Albumin derived from human serum (A1653 manufactured by Sigma Aldrich Japan Co., Ltd.) was dissolved in 0.1 M sodium phosphate buffer (pH 7.0) to a concentration of 45% by weight. To this albumin solution 4001, 100 M / l of a 0.1 M phosphate buffer solution (pH 7.0) of TAD as a curing component was added and stirred for several seconds at 25 ° C. The TAD concentration with respect to the final volume (500 ul) was adjusted to lOOmM, 150mM, 200mM, and 250mM.
  • Collagen casing (made by Nitta Gelatin Co., Ltd., composition: collagen 44%, cellulose 18%, glycerin 15%, vegetable oil 3%, carboxymethylcellulose 2%) as an adherend for measuring the adhesive strength to living tissue Used to measure the adhesive strength. Apply 50 folds of the mixed solution before hardening to a 10 mm x 10 mm area of a collagen casing (width 10 mm x length 25 mm), and place an equal-sized collagen casing on the bonding surface. Superimposed. Further, a 50 g weight was placed on the adhesive surface and allowed to stand at 37 ° C for 1 hour. The adhesive strength was measured with a tensile tester (TA-XT2i manufactured by Eihiro Seiki Co., Ltd.). Measurement conditions were 25 ° C and a measurement speed of 2 mm / s. The results are shown in Table 3. From the results in Table 3, it was confirmed that the adhesive strength became stronger depending on the TAD concentration.
  • TAD concentration a tensile tester
  • the water-soluble tartaric acid derivative of the present invention is useful as a cross-linking agent for medical materials such as bioadhesives, hemostatic agents, vascular embolic agents, and aneurysm sealants.
  • medical materials such as bioadhesives, hemostatic agents, vascular embolic agents, and aneurysm sealants.
  • a biodegradable polymer once used after cross-linking reaction with a biodegradable polymer, it can also be used as an anti-adhesive agent, a scaffold material for tissue regeneration, and a drug carrier.
  • FIG. 1 is a schematic view showing the structure of a crosslinked product of the present invention.
  • FIG. 2 is a schematic diagram showing a structure of an interface between a biological tissue and an adhesive when the biological tissue adhesive of the present invention is used.

Abstract

Because of being not natural but artificially synthesized substances, adhesives for biological use and crosslinking agents and condensing agents having been employed in treating medical devices such as cardiac valves exhibit toxicity without being metabolized in vivo. To dissolve them, organic solvents are needed. Thus, it has been required to develop a water-soluble crosslinking agent having a high biocompatibility. A water-soluble tartaric acid derivative obtained by modifying a carboxyl group of tartaric acid and its derivative having a hydroxyl group in molecule with an electron-withdrawing group such as succinimidyl, sulfosuccinimidyl, maleimidyl, phthalimidyl, imidazolyl, nitrophenyl or tresyl or a combination of two or more thereof, and a high-molecular weight crosslinked matter obtained by using this tartaric acid derivative.

Description

明 細 書  Specification
酒石酸誘導体及び該誘導体により合成された高分子架橋体  Tartaric acid derivative and crosslinked polymer synthesized by the derivative
技術分野  Technical field
[0001] 本発明は、酒石酸又はその誘導体のカルボキシル基を電子吸引性基により修飾し た酒石酸誘導体と該酒石酸誘導体により合成された高分子架橋体および該酒石酸 誘導体と生分解性高分子から構成される二成分系の生体内分解吸収性粘着性医用 材料に関する。  [0001] The present invention comprises a tartaric acid derivative in which the carboxyl group of tartaric acid or a derivative thereof is modified with an electron-withdrawing group, a polymer crosslinked product synthesized from the tartaric acid derivative, the tartaric acid derivative and a biodegradable polymer. The present invention relates to a two-component biodegradable and absorbable adhesive medical material.
背景技術  Background art
[0002] これまで、生体用組織接着剤や生体由来の物質を用いた医療用デバイスには、人 ェ的に化学合成されたダルタルアルデヒドなどのアルデヒドを有する架橋剤や 1 ェ チル一 3— (3—ジメチルァミノプロピル)カルポジイミドなどの縮合剤等が用!ヽられて いた (例えば、特許文献 1、 2)。本発明者らは、クェン酸回路内に存在するトリカルボ ン酸であるクェン酸のカルボキシル基を電子吸引性基によって少なくとも 1つ以上修 飾した生体低分子誘導体を開発した (特許文献 3、非特許文献 1〜3)。なお、アル力 ンニ酸ジスクシンイミドによる分子間架橋タンパク質の生成方法が知られて 、る(特許 文献 4)。  [0002] So far, medical devices using biological tissue adhesives or biological materials have been used in human-chemically synthesized aldehyde-containing cross-linking agents such as dartal aldehyde or 1-ethyl 3- Uses condensing agents such as (3-dimethylaminopropyl) carposimide! (For example, Patent Documents 1 and 2). The present inventors have developed a low-molecular-weight biological derivative in which at least one carboxyl group of citrate, which is a tricarboxylic acid existing in the citrate circuit, is modified with an electron-withdrawing group (Patent Document 3, Non-Patent Document 3). References 1-3). In addition, a method for producing an intermolecular cross-linked protein using al force nicnic acid disuccinimide is known (Patent Document 4).
[0003] 特許文献 1 :特開平 9 103479号公報  Patent Document 1: Japanese Patent Laid-Open No. 9103479
特許文献 2:特開平 11 239610号公報  Patent Document 2: JP-A-11 239610
特許文献 3:特開 2004— 99562号公報  Patent Document 3: Japanese Patent Laid-Open No. 2004-99562
特許文献 4:特開昭 61— 69759号公報  Patent Document 4: JP-A-61-69759
非特許文献 1 : Polymer Preprints, Japan 2002, Vol.51, No.14,3728  Non-Patent Document 1: Polymer Preprints, Japan 2002, Vol.51, No.14,3728
非特許文献 2 : Polymer Preprints, Japan 2003, Vol.52, No.14,4147  Non-Patent Document 2: Polymer Preprints, Japan 2003, Vol.52, No.14,4147
非特許文献 3 : Polymer Preprints, Japan 2003, Vol.52, No.14,4140  Non-Patent Document 3: Polymer Preprints, Japan 2003, Vol.52, No.14,4140
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] これまで医療用デバイスの処置等に用いられている架橋剤や縮合剤は、主に人工 的に合成された非天然物であり、生体内で代謝されず生体に対して毒性を示すこと が指摘されている。そのため、医療現場で用いる際には用途や使用量が制限されて いる。さらに、これまで、強固な組織接着力を持ち、残留した架橋剤又は分解生成物 の生体毒性が低い生体用組織接着剤は存在しなかった。また、血管の閉塞、止血、 エアーリーク、動脈瘤の封止などに対し、従来の止血剤、血管塞栓剤、シーラントま たは動脈瘤の封止剤は、塗布部分力も剥離し易ぐ十分な接着強度を持ったものが 存在しなカゝつた。 [0004] Cross-linking agents and condensing agents that have been used so far for medical devices are mainly artificially synthesized non-natural products that are not metabolized in vivo and show toxicity to the living body. thing Has been pointed out. For this reason, the usage and usage are limited when used in the medical field. Furthermore, until now, there has been no biotissue adhesive that has strong tissue adhesion and low residual toxicity of the crosslinking agent or degradation product. In addition, conventional hemostatic agents, vascular embolizers, sealants, or aneurysm sealants are sufficient to easily remove the applied partial force against vascular occlusion, hemostasis, air leak, aneurysm sealing, etc. There was no one with adhesive strength.
[0005] また、本発明者らが開発した生体低分子誘導体及び特許文献 4に開示されて ヽる アルカン二酸ジスクシンイミドは、水に対する溶解性が低いため、架橋体を合成する には有機溶媒であるジメチルスルホキシドなどを用いることが課題として挙げられる。 そのため、生体親和性が高ぐ生体内で代謝'排泄される水溶性架橋剤の開発が求 められている。  [0005] Further, since the alkanedioic acid disuccinimide disclosed in the low-molecular-weight biological derivative developed by the present inventors and Patent Document 4 has low solubility in water, an organic solvent is used for synthesizing a crosslinked product. The use of dimethyl sulfoxide, which is Therefore, development of a water-soluble cross-linking agent that is metabolized and excreted in a living body having high biocompatibility is desired.
課題を解決するための手段  Means for solving the problem
[0006] このような課題を解決するため、本発明では、水酸基を持つジカルボン酸である酒 石酸を電子吸引性基により修飾した水溶性酒石酸誘導体および該酒石酸誘導体に より生分解性高分子を架橋することにより合成された高分子架橋体、該酒石酸誘導 体と生分解性高分子から構成される二成分系の生体内分解吸収性粘着性医用材料 を開発した。 In order to solve such problems, in the present invention, a water-soluble tartaric acid derivative obtained by modifying tartaric acid, which is a dicarboxylic acid having a hydroxyl group, with an electron-attracting group, and a biodegradable polymer by using the tartaric acid derivative are used. We have developed a cross-linked polymer synthesized by cross-linking, a two-component biodegradable absorbable adhesive medical material composed of the tartaric acid derivative and a biodegradable polymer.
[0007] すなわち、本発明は、ジカルボン酸である酒石酸の 2つのカルボキシル基を電子吸 引性基により修飾したジカルボン酸誘導体、及び得られた酒石酸誘導体を用いて生 分解性高分子を架橋することにより調製された高分子架橋体である。  That is, the present invention crosslinks a biodegradable polymer using a dicarboxylic acid derivative obtained by modifying two carboxyl groups of tartaric acid, which is a dicarboxylic acid, with an electron-attracting group, and the obtained tartaric acid derivative. Is a crosslinked polymer prepared by
[0008] また、本発明は、生分解性高分子の有機溶媒溶液若しくは水溶液、緩衝液、又は 水 有機溶媒混合溶液を接着成分とし、ジカルボン酸である酒石酸の 2つのカルボ キシル基を電子吸引性基により修飾した酒石酸誘導体を硬化成分とすることを特徴 とする二成分系の生体内分解吸収性粘着性医用材料である。  [0008] In addition, the present invention provides an organic solvent solution or aqueous solution of a biodegradable polymer, a buffer solution, or a water organic solvent mixed solution as an adhesive component, and two carboxyl groups of tartaric acid that is a dicarboxylic acid are electron-withdrawing. A two-component biodegradable absorbable adhesive medical material characterized in that a tartaric acid derivative modified with a group is used as a curing component.
[0009] また、用いる電子吸引性基には、スクシンィミジル、スルホスクシンィミジル、マレイミ ジル、フタルイミジル、イミダゾールイル、ニトロフエ-ル、トレジル又はこれらの誘導体 の 1種又は 2種以上の組み合わせが挙げられる。  [0009] The electron-withdrawing group to be used includes one or a combination of two or more of succinimidyl, sulfosuccinimidyl, maleimidyl, phthalimidyl, imidazolyl, nitrophenol, trezyl, and derivatives thereof. It is done.
[0010] また、高分子架橋体又は生体内分解吸収性粘着性医用材料に用いる生分解性高 分子は、タンパク質、グリコサミノダリカン、キトサン、ポリアミノ酸、ポリアルコール、又 はこれらの 2つ又はそれ以上の組み合わせが挙げられる。 [0010] Further, the biodegradable polymer used in the crosslinked polymer or biodegradable absorbable adhesive medical material The molecule can be a protein, glycosaminodarlican, chitosan, polyamino acid, polyalcohol, or a combination of two or more thereof.
[0011] また、グリコサミノダリカンには、コンドロイチン硫酸、デルマタン硫酸、ヒアルロン酸、 へパラン硫酸、へパリン、ケラタン硫酸、又はこれらの誘導体の 1種又は 2種以上の組 み合わせが挙げられる。これらのグリコサミノダリカンは、分子量及び由来する生物に よらない。 [0011] The glycosaminodarlicans include chondroitin sulfate, dermatan sulfate, hyaluronic acid, heparan sulfate, heparin, keratan sulfate, or one or a combination of two or more of these derivatives. These glycosaminodaricans do not depend on the molecular weight and the organism from which they are derived.
[0012] また、タンパク質は、コラーゲン (数 10種類のタイプによらな 、)、ァテロコラーゲン( 数 10種類のタイプによらない)、アルカリ処理コラーゲン (数 10種類のタイプによらな い)、ゼラチン、ケラチン、ヘモグロビン、カゼイン、グロブリン、フイブリノ一ゲン、ヒト血 液由来アルブミン、遺伝子組み換えアルブミン、アルブミンフラグメント、及び化学的 に改変されたアルブミン等アミノ基を有する高分子が含まれる群より選択されるタンパ ク質の 1種又は 2種以上の組み合わせが挙げられる。  [0012] Proteins include collagen (depending on several tens of types), atelocollagen (not depending on several tens of types), alkali-treated collagen (not depending on several tens of types), gelatin Selected from the group consisting of macromolecules having amino groups such as keratin, hemoglobin, casein, globulin, fibrinogen, albumin derived from human blood, recombinant albumin, albumin fragment, and chemically modified albumin. A combination of one or more of the qualities can be mentioned.
[0013] また、高分子架橋体、水溶性酒石酸誘導体と生分解性高分子から構成される二成 分系の生体内分解吸収性粘着性医用材料の調製に用いるその他の生分解性高分 子としてキトサン (脱ァセチル化度、分子量によらない)、ポリアミノ酸 (アミノ酸の種類 、分子量によらない)、ポリアルコール (種類、分子量によらない)が挙げられる。  [0013] In addition, other biodegradable polymers used in the preparation of biodegradable bioabsorbable adhesive medical materials composed of a crosslinked polymer, a water-soluble tartaric acid derivative and a biodegradable polymer. Examples include chitosan (deacetylation degree, regardless of molecular weight), polyamino acid (amino acid type, regardless of molecular weight), and polyalcohol (type, regardless of molecular weight).
[0014] また、高分子架橋体、水溶性酒石酸誘導体と生分解性高分子から構成される二成 分系の生体内分解吸収性粘着性医用材料を調製する際に、生分解性高分子を溶 解するための溶媒には、塩酸塩、硫酸塩、硝酸塩、リン酸塩、炭酸塩、ホウ酸塩の 1 種又は 2種以上の組み合わせにより調製された緩衝液が挙げられる。  [0014] In preparing a bicomponent biodegradable absorbent adhesive medical material composed of a crosslinked polymer, a water-soluble tartaric acid derivative and a biodegradable polymer, the biodegradable polymer Solvents for dissolving include buffers prepared by one or a combination of two or more of hydrochloride, sulfate, nitrate, phosphate, carbonate and borate.
発明の効果  The invention's effect
[0015] 酒石酸又はその誘導体のカルボキシル基を電子吸引性基により修飾した酒石酸誘 導体は、本発明者らが先に開発した生体低分子誘導体及びアルカン二酸ジスクシン イミドと比較して水溶性であり、高分子架橋体および該酒石酸誘導体と生分解性高 分子カゝら構成される二成分系の生体内分解吸収性粘着性医用材料を得る際に、緩 衝液を用いる水溶液条件下にて生分解性高分子水溶液と均一に反応が進み、反応 時間が短くなる。  [0015] The tartaric acid derivative in which the carboxyl group of tartaric acid or its derivative is modified with an electron-withdrawing group is more water-soluble than the low molecular weight biological derivatives and alkanedioic acid disuccinimide previously developed by the present inventors. Biodegradable under the condition of aqueous solution using a buffer solution when obtaining a biodegradable bioadhesive adhesive medical material composed of a crosslinked polymer and the tartaric acid derivative and a biodegradable polymer molecule. The reaction proceeds uniformly with the aqueous polymer solution and the reaction time is shortened.
発明を実施するための最良の形態 [0016] 本発明の水溶性酒石酸誘導体の出発物質として使用する低分子は、酒石酸又は その誘導体、例えば、酒石酸中の水酸基 (-OH)を硫酸基 (-OSO Na)あるいはカル BEST MODE FOR CARRYING OUT THE INVENTION [0016] The low molecule used as a starting material of the water-soluble tartaric acid derivative of the present invention is tartaric acid or a derivative thereof, for example, a hydroxyl group (-OH) in tartaric acid is converted to a sulfate group (-OSO Na) or a carboxylic acid.
3  Three
ボキシメチル基 (-〇CH C〇〇Na)などに化学修飾したものである。また、本発明の水  It is chemically modified to a boxymethyl group (-〇CH C000Na). The water of the present invention
2  2
溶性酒石酸誘導体は、酒石酸又はその誘導体の 2個のカルボキシル基を電子吸引 性基、例えば、スクシンィミジル、スルホスクシンィミジル、マレイミジル、フタルイミジ ル、イミダゾールイル、ニトロフエ-ル、トレジル又はこれらの誘導体の 1種又は 2種以 上の組み合わせと合成反応させ、活性エステルを導入したものである。  Soluble tartaric acid derivatives have two carboxyl groups in tartaric acid or its derivatives, e.g., electron-withdrawing groups such as succinimidyl, sulfosuccinimidyl, maleimidyl, phthalimidyl, imidazolyl, nitrophenol, toresyl or their derivatives. A synthetic reaction is carried out with one or a combination of two or more, and an active ester is introduced.
[0017] 本発明の水溶性酒石酸誘導体は、下記の合成反応により得ることができる。有機溶 媒 100重量%に対して、酒石酸又はその誘導体を 0. 001〜10重量%程度、より好 ましくは、 1〜3重量%程度加え、縮合剤、例えば、 1ーェチルー 3—(3—ジメチルァ ミノプロピル)カルボジイミド(EDC)、又は、ジシクロへキシルカルボジイミド(DCC)を 該溶媒 100重量%に対して 0. 001〜20重量%程度、より好ましくは、 5〜15重量% 程度をカ卩え、その存在下で電子吸引性基となる分子、例えば、 N—ヒドロキシスクシン イミドを該溶媒 100重量%に対して 0. 001〜: LO重量%程度、より好ましくは、 3〜8 重量%程度を加え、反応温度 0〜: L00°C、より好ましくは、 10〜30°C、反応時間 1〜 48時間、より好ましくは、 1〜3時間の適宜の条件を選択し、反応させることにより酒 石酸誘導体と反応副生成物である DCCゥレアが沈殿生成する。  [0017] The water-soluble tartaric acid derivative of the present invention can be obtained by the following synthesis reaction. Tartaric acid or a derivative thereof is added to about 0.001 to 10% by weight, more preferably about 1 to 3% by weight with respect to 100% by weight of the organic solvent, and a condensing agent such as 1-ethyl 3- (3- Dimethylaminopropyl) carbodiimide (EDC) or dicyclohexylcarbodiimide (DCC) is added in an amount of about 0.001 to 20% by weight, more preferably about 5 to 15% by weight, based on 100% by weight of the solvent. In the presence thereof, a molecule that becomes an electron-withdrawing group, for example, N-hydroxysuccinimide is added in an amount of about 0.001 to about LO weight%, more preferably about 3 to 8 weight% with respect to 100 weight% of the solvent. In addition, reaction temperature 0 to: L00 ° C., more preferably 10 to 30 ° C., reaction time 1 to 48 hours, more preferably 1 to 3 hours. The acid derivative and reaction by-product DCC urea precipitate.
[0018] その後、反応副生成物である DCCウレァをガラスろ過フィルタ一にて濾過すること によって酒石酸誘導体を単離する。ろ液を減圧留去した後、得られた残渣を n-へキ サン等の有機溶媒で洗净、ろ過することによって、精製を行う。上記の反応条件を外 れると、酒石酸中のカルボキシル基を電子吸弓 I性基である N-ヒドロキシスクシンイミド などで修飾することができなくなるので不適当である。この反応によって下記の構造 式で示される水溶性の酒石酸誘導体が得られる。この水溶性酒石酸誘導体は、架橋 剤、医療用接着剤の硬化剤、ブタ弁(Carpentier- Edowards valve : CE弁)などの固定 剤などに有用である。  [0018] Thereafter, the tartaric acid derivative is isolated by filtering DCC urea as a reaction by-product through a glass filter. After the filtrate is distilled off under reduced pressure, the resulting residue is purified by washing with an organic solvent such as n-hexane and filtering. Exceeding the above reaction conditions is inappropriate because the carboxyl group in tartaric acid cannot be modified with N-hydroxysuccinimide, which is an electron-absorbing I-group. By this reaction, a water-soluble tartaric acid derivative represented by the following structural formula is obtained. This water-soluble tartaric acid derivative is useful as a crosslinking agent, a curing agent for medical adhesives, and a fixing agent such as a pig valve (Carpentier-Edowards valve: CE valve).
[0019] [化 1]
Figure imgf000007_0001
[0019] [Chemical 1]
Figure imgf000007_0001
[0020] 本発明の水溶性酒石酸誘導体と生分解性高分子との架橋反応は、溶媒中の生分 解性高分子の濃度 0. 1〜50重量%程度に対し、該酒石酸誘導体の濃度 0. 01% 〜50重量%程度とし、好ましくは、 10〜50°C程度で反応させる。上記反応条件を外 れると反応速度が遅くなり、得られる架橋体の架橋密度が低くなり、架橋体が得られ ない場合もあるので不適当である。なお、両者の配合に際しては、均一に反応させる ため、該酒石酸誘導体も上記溶媒に溶解し、双方を上記濃度範囲となるように適宜 濃度の溶液として混合するのが好まし 、。 [0020] The cross-linking reaction between the water-soluble tartaric acid derivative of the present invention and the biodegradable polymer has a concentration of the tartaric acid derivative of about 0.1 to 50% by weight of the biodegradable polymer in the solvent. The reaction is carried out at about 01% to 50% by weight, preferably about 10 to 50 ° C. Exceeding the above reaction conditions is unsuitable because the reaction rate becomes slow, the crosslinking density of the resulting crosslinked product becomes low, and a crosslinked product may not be obtained. It is preferable to dissolve the tartaric acid derivative in the above-mentioned solvent and mix them as a solution having an appropriate concentration so that the concentration is within the above-mentioned concentration range in order to cause a uniform reaction.
[0021] 溶媒としては、ジメチルスルホキシド溶液若しくは塩酸塩、硫酸塩、硝酸塩、リン酸 塩、炭酸塩、ホウ酸塩の 1種又は 2種以上の組み合わせ力 なる緩衝溶液又は該緩 衝溶液 -ジメチルスルホキシド混合溶液等を用いることができる。  [0021] As the solvent, a dimethyl sulfoxide solution or a buffer solution having a combination force of one or more of hydrochloride, sulfate, nitrate, phosphate, carbonate and borate, or the buffer solution-dimethyl sulfoxide A mixed solution or the like can be used.
[0022] この反応によって、図 1に示すような構造の架橋体が得られる。この架橋体は、含水 率が約 80〜99重量%のハイド口ゲルである。含水率が低くなると強度が強ぐ架橋密 度が高くなるため、接着剤等への有用性が向上する。この架橋体は、医療用接着剤 、止血剤、血管塞栓剤、動脈瘤封止剤などに使用できる。  [0022] By this reaction, a crosslinked product having a structure as shown in FIG. 1 is obtained. This crosslinked product is a hyde mouth gel having a water content of about 80 to 99% by weight. When the moisture content is lowered, the strength is increased and the crosslink density is increased, so that the usefulness to an adhesive is improved. This crosslinked product can be used for medical adhesives, hemostatic agents, vascular embolization agents, aneurysm sealing agents, and the like.
[0023] 以上のようにして生成する高分子架橋体は、生体用接着剤、止血剤、血管塞栓剤 、動脈瘤の封止剤のいずれかに適用する場合は、架橋反応を直接患部で行う。また 、一旦架橋反応させた後用いることにより、癒着防止剤、組織再生用足場材料、薬物 担体として好適に用いられる。  [0023] When the polymer crosslinked product produced as described above is applied to any one of a bioadhesive, a hemostatic agent, a vascular embolization agent, and an aneurysm sealant, the crosslinking reaction is directly performed on the affected part. . In addition, once used after a crosslinking reaction, it is suitably used as an anti-adhesion agent, a scaffold material for tissue regeneration, and a drug carrier.
[0024] 生体内分解吸収性粘着性医用材料に用いる本発明の水溶性酒石酸誘導体と生 分解性高分子との架橋反応は、溶媒中の生分解性高分子の濃度 0. 1〜50重量% 程度に対し、該酒石酸誘導体の濃度 0. 01%〜50重量%程度とし、好ましくは、 10 50°C程度で反応させる。上記反応条件を外れると接着時間が長くなり、さらに接 着強度も弱くなる。なお、両者の配合に際しては、均一に反応させるため、該酒石酸 誘導体も上記溶媒に溶解し、双方を上記濃度範囲となるように適宜濃度の溶液とし て混合するのが好ましい。 [0024] The cross-linking reaction between the water-soluble tartaric acid derivative of the present invention and the biodegradable polymer used in the biodegradable and absorbable adhesive medical material is performed by the concentration of the biodegradable polymer in the solvent of 0.1 to 50% by weight. The concentration of the tartaric acid derivative is about 0.01% to 50% by weight, preferably 10%. React at about 50 ° C. If the reaction conditions are not met, the adhesion time becomes longer and the adhesion strength also becomes weaker. It is preferable that the tartaric acid derivative is also dissolved in the solvent and mixed as a solution having an appropriate concentration so that the concentration is within the above-mentioned concentration range in order to allow the two components to react uniformly.
[0025] 溶媒としては、ジメチルスルホキシド溶液若しくは塩酸塩、硫酸塩、硝酸塩、リン酸 塩、炭酸塩、ホウ酸塩の 1種又は 2種以上の組み合わせ力 なる緩衝溶液又は該緩 衝溶液—ジメチルスルホキシド混合溶液等を用いることができる。上記反応によって 得られる生体組織と接着剤の界面の構造は、図 2に示すように、該酒石酸誘導体が 生体組織内の生体高分子および接着剤中の生分解性高分子と架橋反応をすること により、接着する。 [0025] Examples of the solvent include a dimethyl sulfoxide solution or a buffer solution having a combination force of one or more of hydrochloride, sulfate, nitrate, phosphate, carbonate and borate, or the buffer solution-dimethylsulfoxide. A mixed solution or the like can be used. As shown in FIG. 2, the structure of the interface between the biological tissue and the adhesive obtained by the above reaction is such that the tartaric acid derivative undergoes a crosslinking reaction with the biopolymer in the biological tissue and the biodegradable polymer in the adhesive. Adhere by.
実施例 1  Example 1
[0026] 以下、本発明について実施例を挙げて詳細に説明をする。  Hereinafter, the present invention will be described in detail with reference to examples.
<酒石酸誘導体の合成 >  <Synthesis of tartaric acid derivatives>
酒石酸をテトラヒドロフラン (THF)溶媒 100重量%に対して、 5重量%加えた溶液に 対し、ジシクロへキシルカルボジイミド (DCC)を溶媒 100重量%に対して 14重量% 加え、その存在下で N—ヒドロキシスクシンイミドを溶媒 100重量%に対して 8重量% を加え、 1時間攪拌し、その後、室温にて 2時間攪拌を行った。これにより DCCゥレア と酒石酸誘導体の混合溶液が得られた。  Dicyclohexylcarbodiimide (DCC) is added in an amount of 14% by weight with respect to 100% by weight of a solvent in which 5% by weight of tartaric acid is added to 100% by weight of a tetrahydrofuran (THF) solvent. 8% by weight of succinimide was added to 100% by weight of the solvent, and the mixture was stirred for 1 hour, and then stirred at room temperature for 2 hours. As a result, a mixed solution of DCC urea and a tartaric acid derivative was obtained.
[0027] 続いて、析出した DCCウレァをガラスろ過フィルタ一にて取り除き、反応系の溶媒 である THFを減圧留去した。得られた残渣を n キサン、 2—プロパノールにより洗 浄、濾過することによって精製を行い、酒石酸の 2つのカルボキシル基力 N—ヒドロ キシスクシンイミドに修飾された酒石酸誘導体 (TAD)を合成した。酒石酸の 2つの力 ルボキシル基が完全に N-ヒドロキシスクシンイミドによって置換されたことを 1H— NM Rにより確認した。合成した TADは、水に対し、 0. 1 50重量%の濃度で溶解する ことが可能であった。  [0027] Subsequently, the precipitated DCC urea was removed with a glass filtration filter, and THF as a solvent in the reaction system was distilled off under reduced pressure. The resulting residue was purified by washing with n-xane and 2-propanol and filtered to synthesize tartaric acid derivative (TAD) modified with two carboxyl group N-hydroxysuccinimides of tartaric acid. It was confirmed by 1H—NMR that the two forces of tartaric acid were completely replaced by N-hydroxysuccinimide. The synthesized TAD could be dissolved in water at a concentration of 0.150% by weight.
実施例 2  Example 2
[0028] <コラーゲン架橋体の合成 > <0028> <Synthesis of cross-linked collagen>
実施例 1にて合成した TADを用いて、アルカリ処理コラーゲン (A ¾1)の高分子架 橋体を合成した。 0. 1Mリン酸緩衝溶液 (pH7.0)に TAD100 1を溶解し、 Α :。1濃度 2. 5wZv%のリン酸緩衝溶液(0.1Μ,ρΗ7.0) 4ΟΟ /ζ 1中に添カ卩し、攪拌した。 TADの 最終濃度は、 20, 50, 100, 150mMになるように加えた。その後、 37°Cで 30分間 静置し、コラーゲン架橋体生成の有無を確認した。結果を表 1に示す。表 1の結果か ら、 0. 1Mリン酸緩衝溶液、すなわち水溶液条件下におけるコラーゲン架橋体の生 成が確認された。含水率が低くなると強度が強ぐ架橋密度が高くなるため、接着剤 等への有用性が向上する。 Using TAD synthesized in Example 1, a polymer bridge of alkali-treated collagen (A ¾1) A bridge body was synthesized. 0. Dissolve TAD100 1 in 1M phosphate buffer solution (pH 7.0). 1 concentration 2.5 wZv% phosphate buffer solution (0.1 Μ, ρ Η 7.0) was added in 4 ΟΟ / ζ 1 and stirred. The final concentration of TAD was added to 20, 50, 100, and 150 mM. Thereafter, the mixture was allowed to stand at 37 ° C for 30 minutes, and the presence or absence of collagen cross-linked body formation was confirmed. The results are shown in Table 1. From the results in Table 1, it was confirmed that a 0.1 M phosphate buffer solution, that is, the formation of a cross-linked collagen under aqueous solution conditions. When the moisture content is lowered, the strength is increased and the crosslink density is increased, so that the usefulness to an adhesive and the like is improved.
[0029] [表 1] [0029] [Table 1]
Figure imgf000009_0001
実施例 3
Figure imgf000009_0001
Example 3
[0030] <アルブミン架橋体の合成 >  <0030> <Synthesis of albumin cross-linked product>
実施例 1にて合成した TADを用いて、ヒト血清アルブミン (HSA)の高分子架橋体を 合成した。 0. 1Mリン酸緩衝溶液 (pH7.0)に TAD 100 1を溶解し、 HSA濃度 45w Zv%のリン酸緩衝溶液(0.1M,pH7.0) 4OO 冲に添カ卩し、攪拌した。 TADの最終 濃度は、 100, 150, 200mMになるように加えた。その後、 37°Cで 30分間静置し、 HSA架橋体生成の有無を確認した。結果を表 2に示す。表 2の結果から、 0. 1Mリン 酸緩衝溶液、すなわち水溶液条件下における生体高分子のゲル化が確認された。  Using the TAD synthesized in Example 1, a crosslinked polymer of human serum albumin (HSA) was synthesized. 0.1. TAD 100 1 was dissolved in 1M phosphate buffer solution (pH 7.0), and added to phosphate buffer solution (0.1M, pH 7.0) 4OO 冲 with HSA concentration of 45w Zv% and stirred. The final concentration of TAD was 100, 150, 200 mM. Thereafter, the mixture was allowed to stand at 37 ° C for 30 minutes, and the presence or absence of HSA crosslinked product formation was confirmed. The results are shown in Table 2. From the results in Table 2, it was confirmed that 0.1M phosphate buffer solution, that is, gelation of biopolymers under aqueous solution conditions.
[0031] [表 2] 酒石酸誘導体濃度. (mM) アルブミン架橋体の含水率(重量0 /o) [0031] [Table 2] Tartaric acid derivative concentration. (MM) Moisture content of crosslinked albumin (weight 0 / o)
100 76 100 76
150 76 150 76
200 78 実施例 4 200 78 Example 4
[0032] く生体組織接着剤の調製 > [0032] Preparation of biological tissue adhesive>
生体組織接着剤を下記のようにして調製した。ヒト血清由来のアルブミン (シグマァ ルドリッチジャパン (株)製 A1653)を 0. 1Mリン酸ナトリウム緩衝液 (pH7.0)に 45重量 %となるように溶解した。このアルブミン溶液 400 1に対し、硬化成分として TADの 0 . 1Mリン酸緩衝溶液 (pH7.0)を 100 /z l加え、 25°Cで数秒攪拌した。最終体積 (500ul )に対する TAD濃度は、 lOOmM, 150mM, 200mM, 250mMとなるように調製し た。  A biological tissue adhesive was prepared as follows. Albumin derived from human serum (A1653 manufactured by Sigma Aldrich Japan Co., Ltd.) was dissolved in 0.1 M sodium phosphate buffer (pH 7.0) to a concentration of 45% by weight. To this albumin solution 4001, 100 M / l of a 0.1 M phosphate buffer solution (pH 7.0) of TAD as a curing component was added and stirred for several seconds at 25 ° C. The TAD concentration with respect to the final volume (500 ul) was adjusted to lOOmM, 150mM, 200mM, and 250mM.
[0033] く生体組織接着剤の接着強度測定〉  [0033] Measurement of adhesive strength of biological tissue adhesives>
生体組織に対する接着強度測定用の被接着物としてコラーゲンケーシング (新田 ゼラチン (株)製、組成:コラーゲン 44%、セルロース 18%、グリセリン 15%、植物性油 脂 3%、カルボキシメチルセルロース 2%)を用いて接着強度を測定した。コラーゲン ケーシング(幅 10mm X長さ 25mm)の 10mm X 10mmの領域に厚さが均一になるよう に硬化前の混合溶液を 50 藤布し、同等の大きさのコラーゲンケーシングをその接 着面上に重ね合わせた。さらに、その接着面上に 50gの錘をのせ、 37°Cで 1時間放 置した。接着強度は、引っ張り試験機 (英弘精機 (株)製 TA- XT2i)により測定した。 測定条件は 25°C、測定スピード 2mm/sで行った。結果を表 3に示す。表 3の結果か ら、 TAD濃度依存的に接着強度が強くなることが確認された。  Collagen casing (made by Nitta Gelatin Co., Ltd., composition: collagen 44%, cellulose 18%, glycerin 15%, vegetable oil 3%, carboxymethylcellulose 2%) as an adherend for measuring the adhesive strength to living tissue Used to measure the adhesive strength. Apply 50 folds of the mixed solution before hardening to a 10 mm x 10 mm area of a collagen casing (width 10 mm x length 25 mm), and place an equal-sized collagen casing on the bonding surface. Superimposed. Further, a 50 g weight was placed on the adhesive surface and allowed to stand at 37 ° C for 1 hour. The adhesive strength was measured with a tensile tester (TA-XT2i manufactured by Eihiro Seiki Co., Ltd.). Measurement conditions were 25 ° C and a measurement speed of 2 mm / s. The results are shown in Table 3. From the results in Table 3, it was confirmed that the adhesive strength became stronger depending on the TAD concentration.
[0034] [表 3]  [0034] [Table 3]
TAD濃度(mM) 接着強度 (gZcm2) TAD concentration (mM) Adhesive strength (gZcm 2 )
1 00 1 77. 6  1 00 1 77. 6
1 50 356. 2  1 50 356. 2
200 676. 8  200 676. 8
250 660. 7 [0035] また、市販されて!、る生体用組織接着剤であるフイブリン系接着剤 (藤沢薬品工業 社製、商品名 ボルヒール)とシァノアクリレート系接着剤 (ETHICON社製、商品名 ダーマボンド)を用い、同様に接着強度を測定した。結果を表 4に示す。表 4の結果 から、 TAD系接着剤は、シァノアクリレート系接着剤には及ばないものの、フイブリン 系接着剤と比較して 10倍以上接着強度が高いことが確認された。 250 660. 7 [0035] In addition, a fibrin-based adhesive (product name: Bolheel, manufactured by Fujisawa Pharmaceutical Co., Ltd.) and a cyanacrylate-based adhesive (product name: Dermabond, manufactured by ETHICON), which are tissue adhesives for living bodies, are commercially available. In the same manner, the adhesive strength was measured. The results are shown in Table 4. From the results in Table 4, it was confirmed that TAD adhesives are 10 times higher in adhesive strength than fibrin adhesives, although they are not as good as cyanoacrylate adhesives.
[0036] [表 4]
Figure imgf000011_0001
[0036] [Table 4]
Figure imgf000011_0001
産業上の利用可能性  Industrial applicability
[0037] 本発明の水溶性酒石酸誘導体は、生体用接着剤、止血剤、血管塞栓剤、動脈瘤 の封止剤などの医用材料の架橋剤として有用である。また、一旦、生分解性高分子 と架橋反応させた後用いることにより、癒着防止剤、組織再生用足場材料、薬物担体 としても用いられる。  [0037] The water-soluble tartaric acid derivative of the present invention is useful as a cross-linking agent for medical materials such as bioadhesives, hemostatic agents, vascular embolic agents, and aneurysm sealants. In addition, once used after cross-linking reaction with a biodegradable polymer, it can also be used as an anti-adhesive agent, a scaffold material for tissue regeneration, and a drug carrier.
図面の簡単な説明  Brief Description of Drawings
[0038] [図 1]本発明の架橋体の構造を示す模式図である。 FIG. 1 is a schematic view showing the structure of a crosslinked product of the present invention.
[図 2]本発明の生体用組織接着剤を用いた場合の生体組織と接着剤の界面の構造 を示す模式図である。  FIG. 2 is a schematic diagram showing a structure of an interface between a biological tissue and an adhesive when the biological tissue adhesive of the present invention is used.

Claims

請求の範囲 The scope of the claims
[1] 酒石酸又はその誘導体の 2つのカルボキシル基を電子吸引性基であるスクシンイミ ジル、スルホスクシンィミジル、マレイミジル、フタルイミジル、イミダゾールイル、ニトロ フエニル、トレジル又はこれらの誘導体の 1種又は 2種以上の組み合わせによって修 飾したことを特徴とする水溶性酒石酸誘導体。  [1] One or two of succinimidyl, sulfosuccinimidyl, maleimidyl, phthalimidyl, imidazolyl, nitrophenyl, tresyl or their derivatives, which are two electron-withdrawing groups of tartaric acid or its derivatives A water-soluble tartaric acid derivative characterized by being modified by the above combination.
[2] 請求項 1記載の水溶性酒石酸誘導体を用いて架橋された生分解性高分子力 なる ことを特徴とする水溶性高分子架橋体。  [2] A cross-linked water-soluble polymer, characterized in that the biodegradable polymer power is crosslinked using the water-soluble tartaric acid derivative according to claim 1.
[3] 請求項 1記載の水溶性酒石酸誘導体を硬化成分とし、ジメチルスルホキシド溶液若 しくは塩酸塩、硫酸塩、硝酸塩、リン酸塩、炭酸塩、ホウ酸塩の 1種又は 2種以上の 組み合わせからなる緩衝溶液又は該緩衝溶液とジメチルスルホキシドの混合溶液、 力 なる溶媒に溶解した生分解性高分子を接着成分とすることを特徴とする二成分 系の生体内分解吸収性粘着性医用材料。  [3] The water-soluble tartaric acid derivative according to claim 1 as a curing component, and a dimethyl sulfoxide solution or a combination of one or more of hydrochloride, sulfate, nitrate, phosphate, carbonate, borate A two-component biodegradable absorbable adhesive medical material characterized by comprising as an adhesive component a buffer solution comprising the above, a mixed solution of the buffer solution and dimethyl sulfoxide, or a biodegradable polymer dissolved in a powerful solvent.
[4] 請求項 3記載の二成分系生体内分解吸収性粘着性医用材料力 なることを特徴と する軟組織と軟組織、軟組織と硬組織、又は硬組織と硬組織を接着する生体用組織 接着剤。  [4] Soft tissue and soft tissue, soft tissue and hard tissue, or biological tissue that bonds hard tissue and hard tissue, characterized in that the two-component biodegradable absorbable adhesive medical material force according to claim 3 .
[5] 請求項 3記載の二成分系生体内分解吸収性粘着性医用材料力 なることを特徴と する止血剤、血管塞栓剤、シーラント、又は動脈瘤の封止剤。  [5] A hemostatic agent, a vascular embolization agent, a sealant, or an aneurysm sealant, characterized in that the two-component biodegradable and absorbable adhesive medical material according to claim 3 is used.
[6] 請求項 1記載の水溶性酒石酸誘導体を用いて、ジメチルスルホキシド溶液若しくは 塩酸塩、硫酸塩、硝酸塩、リン酸塩、炭酸塩、ホウ酸塩の 1種又は 2種以上の組み合 わせからなる緩衝溶液又は該緩衝溶液 ジメチルスルホキシド混合溶液中にお!ヽて 生分解性高分子を架橋することを特徴とする高分子架橋体の合成法。  [6] Using the water-soluble tartaric acid derivative according to claim 1, from a dimethyl sulfoxide solution or one or a combination of two or more of hydrochloride, sulfate, nitrate, phosphate, carbonate and borate. A method for synthesizing a polymer crosslinked product comprising cross-linking a biodegradable polymer in a buffer solution or a mixed solution of dimethyl sulfoxide.
PCT/JP2005/014636 2004-08-10 2005-08-10 Tartaric acid derivative and high-molecular weight crosslinked matter synthesized by using the derivative WO2006016600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006531678A JPWO2006016600A1 (en) 2004-08-10 2005-08-10 Tartaric acid derivative and cross-linked polymer synthesized by the derivative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-233869 2004-08-10
JP2004233869 2004-08-10

Publications (1)

Publication Number Publication Date
WO2006016600A1 true WO2006016600A1 (en) 2006-02-16

Family

ID=35839369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014636 WO2006016600A1 (en) 2004-08-10 2005-08-10 Tartaric acid derivative and high-molecular weight crosslinked matter synthesized by using the derivative

Country Status (2)

Country Link
JP (1) JPWO2006016600A1 (en)
WO (1) WO2006016600A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060621A1 (en) * 2007-11-08 2009-05-14 Fujifilm Corporation Medical composition for preventing post-surgical adhesion
WO2012077776A1 (en) * 2010-12-09 2012-06-14 東レ株式会社 Biodegradable particles, vascular occlusion material, and method for producing biodegradable particles
CN103442742A (en) * 2011-03-30 2013-12-11 东丽株式会社 Biodegradable particle, vascular embolization material and method for producing biodegradable particles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101380A (en) * 1975-06-12 1978-07-18 Research Products Rehovot Ltd. Process for the cross-linking of proteins
JPH02180903A (en) * 1988-12-29 1990-07-13 Nippon Oil & Fats Co Ltd Crosslinked chitosan
JP2004099562A (en) * 2002-09-11 2004-04-02 National Institute For Materials Science Low-molecular derivative of biomolecule
JP2004261222A (en) * 2003-02-13 2004-09-24 National Institute For Materials Science Intravital decomposing and absorbing adhesive material for medical use
JP2005168949A (en) * 2003-12-15 2005-06-30 National Institute For Materials Science In-vivo decomposing and absorbing adhesive material for medical use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101380A (en) * 1975-06-12 1978-07-18 Research Products Rehovot Ltd. Process for the cross-linking of proteins
JPH02180903A (en) * 1988-12-29 1990-07-13 Nippon Oil & Fats Co Ltd Crosslinked chitosan
JP2004099562A (en) * 2002-09-11 2004-04-02 National Institute For Materials Science Low-molecular derivative of biomolecule
JP2004261222A (en) * 2003-02-13 2004-09-24 National Institute For Materials Science Intravital decomposing and absorbing adhesive material for medical use
JP2005168949A (en) * 2003-12-15 2005-06-30 National Institute For Materials Science In-vivo decomposing and absorbing adhesive material for medical use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060621A1 (en) * 2007-11-08 2009-05-14 Fujifilm Corporation Medical composition for preventing post-surgical adhesion
WO2012077776A1 (en) * 2010-12-09 2012-06-14 東レ株式会社 Biodegradable particles, vascular occlusion material, and method for producing biodegradable particles
US9353217B2 (en) 2010-12-09 2016-05-31 Toray Industries, Inc. Biodegradable particles, vascular occlusion material, and method for producing biodegradable particles
CN103442742A (en) * 2011-03-30 2013-12-11 东丽株式会社 Biodegradable particle, vascular embolization material and method for producing biodegradable particles

Also Published As

Publication number Publication date
JPWO2006016600A1 (en) 2008-07-31

Similar Documents

Publication Publication Date Title
Iwata et al. A novel surgical glue composed of gelatin and N-hydroxysuccinimide activated poly (L-glutamic acid):: Part 1. Synthesis of activated poly (L-glutamic acid) and its gelation with gelatin
TWI436793B (en) Rapidly acting dry sealant and methods for use and manufacture
JP4638817B2 (en) Crosslinkable polysaccharide derivative, method for producing the same, crosslinkable polysaccharide composition, and medical treatment material
JPH07163650A (en) Novel surgical adhesive composition
EP3524634B1 (en) Biocompatible hydrogel and method for producing same
EP2398512B1 (en) Kit comprising a functionalized adhesive medical gel
JP4585743B2 (en) Biodegradable absorbable adhesive medical material
JP2003508564A (en) Composition forming an interpenetrating polymer network for use as a high strength medical sealant
KR20070051297A (en) Tissue-adhesive materials
JP2002541923A (en) Rapidly gelling biocompatible polymer composition
JP2004174277A (en) Anti-adhesive film and composition for medical use
JP2019216755A (en) Hemostatic material
CN109912791A (en) A kind of carboxylated PEG derivative, the hydrogel based on the PEG derivative and their preparation method and application
KR20130093769A (en) &amp;gamma;-POLYGLUTAMIC ACID HAVING CATECHOL GROUP, PREPARATION METHOD THEREOF AND TISSUE ADHESIVES COMPRISING THE SAME
WO2006016600A1 (en) Tartaric acid derivative and high-molecular weight crosslinked matter synthesized by using the derivative
WO2004024686A1 (en) Biological low-molecular weight derivatives
KR20130135104A (en) Compounds of catechol grafted copolymers and its appication for hemostatic and anti-adhesive materials
CN114907580A (en) Degradable two-component hydrogel and preparation method and application thereof
JP6367979B2 (en) Surgical sealant
Hsu et al. The properties of gelatin–poly (γ-glutamic acid) hydrogels as biological glues
WO2006016599A1 (en) In vivo degradable/absorbable pressure-sensitive adhesive medical material comprising albumin and low-molecular bioderivative
JP4669919B2 (en) Medical composition
JP2005075815A (en) Hemostatic tissue-repairing material
JP4844806B2 (en) Solid-liquid mixed type two-component biodegradable absorbable adhesive medical material
CN102206409A (en) Hydrogel forming covalent cross-linking rapidly under mild conditions and preparation method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531678

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 05780266

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5780266

Country of ref document: EP