WO2005120728A1 - Fluid vibrating apparatus and method of driving the same - Google Patents

Fluid vibrating apparatus and method of driving the same Download PDF

Info

Publication number
WO2005120728A1
WO2005120728A1 PCT/JP2005/004968 JP2005004968W WO2005120728A1 WO 2005120728 A1 WO2005120728 A1 WO 2005120728A1 JP 2005004968 W JP2005004968 W JP 2005004968W WO 2005120728 A1 WO2005120728 A1 WO 2005120728A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
fluid
diaphragm
vibration device
polymer film
Prior art date
Application number
PCT/JP2005/004968
Other languages
French (fr)
Japanese (ja)
Inventor
Minoru Nakayama
Tetsuji Zama
Susumu Hara
Shingo Sewa
Original Assignee
Eamex Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eamex Corporation filed Critical Eamex Corporation
Publication of WO2005120728A1 publication Critical patent/WO2005120728A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/006Motors

Definitions

  • the present invention relates to a fluid vibration device that can be used for, for example, a cleaning device, a dissolution device, a chemical reaction device, a heat pipe, or a hobby.
  • Vibration of a fluid such as water for use in various applications is performed, for example, as in the case of an ultrasonic cleaning machine sold on the market. ,.
  • Patent document 1 Japanese Patent Application Laid-Open No. 9-166228
  • the above-described fluid vibration device has a complicated device configuration, is difficult to miniaturize, and uses a large amount of metal parts, so that it is difficult to reduce the weight.
  • Fluid vibration devices using motors are loud and not suitable for indoor or medical use.
  • a fluid vibration device that drives a piezoelectric element made of a ceramic material as a driving element.
  • ceramic piezoelectric elements can be miniaturized, they require a voltage converter to use a low-voltage power supply because they are driven at a high voltage of 100 V, which complicates the device configuration.
  • the use of a fluid vibration device driven by a high voltage is limited in terms of the configuration or application of the device in which the fluid vibration device is incorporated, and is inferior in industrial applicability.
  • An object of the present invention is to provide a fluid vibration device that can be reduced in size and can be lightweight. Another object of the present invention is to provide a fluid vibration device that can be driven at a low voltage of about several volts or less and can be driven with no force.
  • the present invention is a fluid vibration device provided with two or more fluid chambers, comprising a diaphragm constituting at least a part of each fluid chamber, wherein the diaphragm includes a conductive polymer film, and the two or more diaphragms are provided.
  • each diaphragm is provided with a fluid chamber on the opposite side of the closed space across the diaphragm, and each diaphragm is brought into contact with the conductive polymer film with the electrolyte solution.
  • the fluid vibration device includes:
  • the fluid vibration device of the present invention has the structure as described above, and the conductive polymer is driven by a chemical mechanism, so that the fluid vibration device can be driven at a low voltage.
  • the fluid vibration device is silent, and the device configuration is simple and the size can be easily reduced.
  • the fluid vibration device hardly uses metal parts, the weight can be easily reduced.
  • FIG. 1 is a cross-sectional view of a first embodiment of a fluid vibration device of the present invention.
  • FIG. 2 is a sectional view of a second embodiment of the fluid vibration device of the present invention.
  • FIG. 3 is a front view of an embodiment of the diaphragm unit.
  • FIG. 4 is a sectional view taken along line AA of the diaphragm unit in FIG. 3.
  • FIG. 5 is a partially enlarged view of the diaphragm unit shown in FIG. 4, taken along the line AA.
  • FIG. 6 is a perspective view of one embodiment of a fluid vibration device using a diaphragm unit.
  • FIG. 7 is a sectional view taken along line BB of the fluid vibration device of FIG. 6.
  • FIG. 8 is a partially enlarged cross-sectional view near the suction port in the cross-sectional view of FIG. 7.
  • FIG. 9 is a partially enlarged cross-sectional view near the suction port in the cross-sectional view of FIG. 7.
  • FIG. 10 is a conceptual diagram of one embodiment of an application device using the fluid vibration device of the present invention. Explanation of symbols
  • FIG. 1 is a sectional view of a first embodiment of the fluid vibration device of the present invention.
  • the fluid vibration device 1 which is the fluid vibration device of the present invention is a fluid vibration device including diaphragms 3 and 4 made of conductive polymer inside a coin-shaped casing 2 having an internal space.
  • the diaphragm 3 and the diaphragm 4 are disc-shaped conductive polymer films, the circumference of which is fixed to the wall surface 5, and connected to each other via the connection member 6 at the center.
  • the two diaphragms 3 and 4 are installed in a state where tension is applied in the direction of the membrane surface, respectively, and have a substantially conical shape.
  • the diaphragm 3 forms the housing 2 and the first fluid chamber 7, and the diaphragm 4 forms the housing 2 and the second fluid chamber 8.
  • the space 9 inside the fluid vibration device 1 is formed by being partitioned by the diaphragm 3 and the diaphragm 4 formed of a film-shaped conductive polymer film and the housing 2. By filling the space 9 with the electrolyte, the diaphragms 3 and 4 come into contact with the electrolyte.
  • the conductive polymer film of the diaphragm 3 and the conductive polymer film of the diaphragm 4 are connected to a power source via leads 10 and 10 ', respectively.
  • the support salt of the electrolytic solution contains ferron, a negative voltage is applied to the conductive polymer film of the diaphragm 4, and a positive voltage is applied to the conductive polymer film of the diaphragm 3.
  • Diaphragm 4 contracts, diaphragm 3 expands, fluid chamber 9 widens, and fluid chamber 8 narrows.
  • a positive voltage is applied to the conductive polymer film of the diaphragm 4 and a negative voltage is applied to the conductive polymer film of the diaphragm 3
  • the diaphragm 3 contracts, the diaphragm 4 expands, and the fluid chamber 7 becomes narrower and fluid chamber 8 becomes wider.
  • the two conductive polymer films which are diaphragms, perform an expansion and contraction movement with one of the conductive polymer films serving as a working electrode and the other serving as a counter electrode. Due to such a movement of the diaphragm, one diaphragm contracts and discharges the fluid in the fluid chamber formed by the one diaphragm. The volume of the fluid chamber formed by the fluid vibration device is expanded, and the fluid vibration device 1 functions as a twin fluid vibration device.
  • the fluid vibration device 1 has a port 11 '.
  • each fluid chamber has one port, but a plurality of ports may be provided.
  • suction and discharge of the ports provided in the same pump chamber have the same cycle.
  • FIG. 1 when the diaphragm 4 contracts, the fluid in the fluid chamber 8 is discharged to the outside through the port 11.
  • the diaphragm 3 is expanded by the contraction of the diaphragm 4, and the fluid is sucked into the fluid chamber 7 through the port 11.
  • a member for mounting a suction pipe, a discharge pipe, or the like may be appropriately mounted near the port.
  • FIG. 2 is a cross-sectional view of the fluid vibration device of the second embodiment of the present invention when no connecting member is used for the fluid vibration device of FIG.
  • the fluid vibration device 1 ′ includes diaphragms 3 ′ and 4 ′ that constitute at least a part of a fluid chamber, and the diaphragm is a closed space formed of a conductive polymer film and faces the diaphragms 3 ′ and 4 ′.
  • the space 9 ' is filled with the electrolyte.
  • Each diaphragm has fluid chambers 7 'and 8' on opposite sides of the closed space with respect to the diaphragm.
  • Each diaphragm is in contact with the electrolytic solution in the space 9 ′ because it is a conductive polymer film.
  • each of the above-mentioned diaphragms is made of a conductive polymer film.
  • the conductive polymer film is made of a diaphragm. It may be a laminate in which a conductive polymer film that may be included as a part of the layer is one layer.
  • a film-shaped conductive polymer molded product can be used as the conductive polymer film.
  • the fluid vibration device 1 ′ includes two fluid chambers and applies a voltage to the diaphragms 3 ′ and 4 ′ made of a conductive polymer film! Then, it is in a state of being driven as a fluid vibration device.
  • a voltage to one diaphragm 3 'and a reverse voltage to the other diaphragm 4' By applying a voltage to one diaphragm 3 'and a reverse voltage to the other diaphragm 4', the diaphragm 4 'contracts and the diaphragm 3' To stretch.
  • the volume of the fluid chamber 8 ' is reduced by the contraction of the diaphragm 4', and the fluid in the fluid chamber is discharged. Further, the volume of the fluid chamber 7 'is increased by the expansion of the diaphragm 3', and the fluid is sucked into the fluid chamber.
  • the driving of one diaphragm and the driving of the other diaphragm have opposite phases in one suction-discharge cycle. It becomes.
  • the polarity of the voltage applied to each conductive polymer film alternately to positive and negative
  • the expansion and contraction of the diaphragm are performed alternately, and suction and discharge are performed alternately in each fluid chamber.
  • Continuously driving the fluid vibration device 1 ′ The same applies to the device 1, except that the polarity of the applied voltage to each conductive polymer film is alternately applied by applying the polarity of the applied voltage to each conductive polymer film alternately. Can be done.
  • the fluid vibration device 1 'of Fig. 2 is different from the fluid vibration device 1 of Fig. 1 in that it does not include a connecting member for connecting the two diaphragms, and the two diaphragms are not connected.
  • the diaphragm 4 ' which is a conductive polymer film
  • the diaphragm 4' contracts. Due to the contraction movement, the volume of the fluid chamber 8 'is reduced.
  • the space 9 ′ provided on the opposite side of the fluid chamber 8 ′ with the diaphragm 4 ′ therebetween is a closed space, the contraction movement is performed via the electrolyte filled in the space 9 ′.
  • the volume of the fluid chamber 7 ' can be increased by pulling the expanding diaphragm 3'.
  • the fluid vibration device in FIG. 2 has two fluid chambers.
  • Force The fluid vibration device of the present invention may include two or more fluid chambers.
  • Each of the diaphragms forming a part of the fluid chamber has a conductive polymer film, and when a voltage is applied to each conductive polymer film, each conductive polymer film acts as an electrode, and Causes expansion and contraction.
  • the conductive polymer film included in the diaphragm constituting one fluid chamber is used as a counter electrode to the conductive polymer film included in the other fluid chamber via the electrolyte in the closed space when a voltage is applied. If possible, the positional relationship between the diaphragms is not particularly limited.
  • the closed space is formed so that a large number of diaphragms form a polyhedron, and the closed space is filled with an electrolytic solution, and the conductive polymer film contained in one or more diaphragms becomes conductive in other diaphragms. It can also be used as a counter electrode of the conductive polymer film.
  • the fluid vibration device is arranged so that the positional relationship between one diaphragm and the other diaphragm is arranged so that the diaphragms face each other via the electrolytic solution. Is also preferable because the driving is smooth.
  • the pair of diaphragms are not connected. If there is a connection between the diaphragms, as shown in Fig. 1,
  • the cross section has a substantially triangular pyramid shape, and the cross section of the diaphragm at the time of discharge has an arc shape. Therefore, when the connection is made between the diaphragms, the shape of the diaphragm changes greatly at the moment when the suction and the discharge are switched, and a time lag occurs at the time of the switching. In order to prevent this time lag, it is preferable that a connection be made between the diaphragms.
  • the lack of connection between the diaphragms makes the shape of the diaphragm in suction similar to that in discharge as shown in FIG. 2, and prevents time lag when switching between suction and discharge. Further, since the fluid vibration device having no connection between the diaphragms has no connecting member, it is easy to manufacture a small fluid vibration device such as a fluid vibration device having a circular shape with a diaphragm outer diameter of 10 ⁇ , and the U, which is preferable because the conductive polymer film functioning as an element for expansion also expands and contracts.
  • the frequency of the vibration is not particularly limited as long as the fluid vibrates when the fluid is sucked and discharged in each fluid chamber.
  • the vibration frequency of the fluid by the fluid vibrating device is, for example, a force that can be from 1000 Hz to 0.1 Hz, preferably from 100 Hz to 0.01 Hz, and more preferably from 10 Hz to 0.1 Hz.
  • the force applied to the fluid from each fluid chamber is not particularly limited, but the discharge pressure of the fluid in each fluid chamber is preferably 200 kPa or less.
  • the discharge pressure is 5-100 kPa, and more preferably 10-40 kPa.
  • the discharge amount of the fluid in each fluid chamber is more preferably 50 to 100 mm 3 , which is preferably 2000 mL, preferably in one cycle, that is, in one discharge.
  • the fluid vibration device of the present invention can use a liquid or a gas for which the fluid used is not particularly limited.
  • the liquid may be water or a good organic liquid, or may be a mixed solvent such as a mixture of water and alcohol.
  • the gas may be air or an inert gas.
  • the fluid is preferable because it has a low explosive property, such as rapid volume expansion caused by vibration, and can easily secure safety.
  • the fluid vibration device in Fig. 1 uses a diaphragm in which only a conductive polymer film has a force. Is shown.
  • the fluid vibration device of the present invention may have a laminated structure that is not limited to a diaphragm in which only a conductive polymer film has a force.
  • the diaphragm may have a structure including a nonwoven fabric that can function as a protective layer on a conductive polymer film.
  • the diaphragm has a high conductivity which is good even if a conductive polymer film through which the electrolyte can pass is provided by forming a hole on the conductive polymer film through which the electrolyte does not pass. It is also possible to provide a layer having elasticity such as a nonwoven fabric and a solid electrolyte layer having elasticity, such as a nonwoven fabric, between molecular membranes.
  • the conductive polymer film is not particularly limited in the composition of the conductive polymer, and a known conductive polymer can be used.
  • the conductive polymer film can be formed according to the performance of the diaphragm such as the discharge pressure and the discharge amount.
  • the composition of the conductive polymer can be appropriately selected. More specifically, polypyrrole can be used as the conductive high molecular monomer, and a known ion can be used as the dopant. Further, as a supporting electrolyte in an electrolyte for driving the fluid vibration device, a known supporting electrolyte can be used.
  • a force of 5 Mpa can be generated in the film surface direction of the conductive polymer film.
  • a fluid vibrating device using a viscous polypropylene film for a diaphragm can generate a discharge pressure of 20 kPa for one fluid chamber.
  • a circular conductive polymer film having a diameter of 40 mm and a thickness of 40 m is used as each diaphragm, and expands and contracts by 0.9% per 0.5 second in the film surface direction. By doing so, a discharge rate of 72 ml Zs per second can be generated. Further, a desired discharge pressure can be obtained by laminating the conductive polymer films.
  • a conductive polymer film having an elongation percentage due to electrolytic expansion and contraction per 0.5 second of 0.5% or more when a voltage of IV is applied is 0% in the film surface direction. It is preferable because expansion and contraction of 0.9% or more can be performed per 5 seconds, and a large discharge amount can be easily obtained.
  • Conductive polymer membranes with an elongation of 0.5% or more due to electrolytic expansion / contraction per 0.5 second are manufactured by electropolymerization of conductive polymers that have elasticity due to electrochemical oxidation / reduction.
  • the method for producing a molecule wherein the electrolytic polymerization method comprises the steps of: ether bond, ester bond, carbonate bond, hydroxyl group, nitro group, sulfone group and -tolyl group. At least one organic compound containing at least one bond or a functional group and an electrolyte containing Z or halogenated hydrocarbon as a solvent are used, and the trifluoromethanesulfonate ion and Z or a central atom are contained in the electrolyte. It can be easily obtained by a method for producing a conductive polymer containing an ion containing a plurality of fluorine atoms.
  • the method for producing a conductive polymer using an electrolytic polymerization method as the conductive polymer film wherein the electrolytic polymerization method uses the above trifluoromethanesulfonate ion and Z or Instead of an ion containing a plurality of fluorine atoms with respect to the central atom, the chemical formula (1)
  • n and m are arbitrary integers.
  • Examples of the organic compound contained as a solvent in the electrolytic polymerization method include 1,2-dimethoxetane, 1,2-dietoxetane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane (the above, an organic compound containing an ether bond), ⁇ Petit-mouth ratatone, ethyl acetate, ⁇ -butyl acetate, 1-butyl acetate, 1,2-diacetoxetane, 3-methyl-2-oxazolidinone, methyl benzoate, ethyl benzoate, butyl benzoate, phthalic acid Diethyl (above, an organic compound containing an ester bond), propylene carbonate, ethylene carbonate, dimethinolecarbonate, ethynolecarbonate, methinoolethionolecarbonate (above, an organic compound containing a carbonate bond), ethylene glycol, Butanol, 1-hex
  • the organic compound containing a hydroxyl group is not particularly limited, but is preferably a polyhydric alcohol or a monohydric alcohol having 4 or more carbon atoms because of its good elasticity.
  • the organic compound may include two or more of an ether bond, an ester bond, a carbonate bond, a hydroxyl group, a nitro group, a sulfone group, and a -tolyl group.
  • the above bond! / May be an organic compound containing a functional group in any combination.
  • the organic compound When the organic compound is used as a solvent for an electrolytic solution by mixing two or more of the organic compounds, an organic compound having an ether bond, an organic compound having an ester bond, an organic compound having a carbonate bond, Among the organic compounds containing a hydroxyl group, the organic compounds containing a nitro group, the organic compounds containing a sulfone group, and the organic compounds containing a nitrile group, a combination of an organic compound having excellent extension and an organic compound having excellent contraction. Therefore, it is intended to improve the expansion / contraction ratio of the conductive polymer obtained by the electrolytic polymerization per 1 cycle of oxidation reduction.
  • the halogenated hydrocarbon contained as a solvent in the electrolytic solution is a hydrocarbon in which at least one hydrogen in the hydrocarbon is substituted with a halogen atom.
  • a hydrocarbon in which at least one hydrogen in the hydrocarbon is substituted with a halogen atom there is no particular limitation as long as it can stably exist as a liquid under polymerization conditions.
  • halogenated hydrocarbon examples include dichloromethane and dichloroethane.
  • the halogenated hydrocarbon only one kind can be used as a solvent in the electrolytic solution, but two or more kinds can be used in combination.
  • the halogenated hydrocarbon may be used as a mixture with the above organic compound, and a mixed solvent with the organic solvent may be used as a solvent in the electrolytic solution.
  • the electrolytic solution used in the electrolytic polymerization method includes an organic compound to be electrolytically polymerized (for example, pyrrole) and trifluoromethanesulfonic acid ion and Z or a central atom. And a plurality of fluorine atoms.
  • trifluoromethanesulfonic acid ions and aions containing a plurality of fluorine atoms with respect to Z or a central atom are incorporated into the conductive polymer.
  • the content of the trifluoromethanesulfonate ion and the arnone containing a plurality of fluorine atoms with respect to Z or the central atom in the electrolytic solution is not particularly limited, but the content of 0.1 to 0.5% in the electrolytic solution is not limited. 1-30% by weight is preferred 1-15% by weight is more preferred Yes.
  • Trifluoromethanesulfonic acid ion is a compound represented by the chemical formula CFSO-.
  • an ion containing a plurality of fluorine atoms with respect to the central atom has a structure in which a plurality of fluorine atoms are bonded to a central atom such as boron, phosphorus, antimony, and arsenic. Contains a plurality of fluorine atoms bonded to the central atom.
  • Examples of the aone containing a plurality of fluorine atoms with respect to the central atom are not particularly limited, and include tetrafluorophosphate ion (BF-), hexafluorophosphate ion (PF-), and hexafluoroantimony.
  • Acid ions (SbF-) and hexafluorofluoric acid ions (AsF-) can be exemplified.
  • CF SO-, BF- and PF- are preferable in consideration of safety to human body.
  • Mu-on is good even if one kind of a-one is used, and several kinds of a-one can be used in the electrolyte at the same time.
  • An ion containing a plurality of fluorine atoms with respect to the central atom may be simultaneously used in the electrolytic solution.
  • the perfluoroalkylsulfonylimide ion contained as an a-one has a sulfon group bonded to a nitrogen atom which is the center of the a-one, and further has two perfluoro groups as substituents. It has a low alkyl group.
  • This perfluoroalkyl sulfol is represented by C F SO, and other perfluoroalkyl sulfol groups are represented by C F SO.
  • n and m are arbitrary integers of 1 or more, respectively, and n and m may be the same integer, or n and m may be different integers.
  • trifluoromethyl group pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, pendecafluoropentyl group, tridecafluoro hexyl group, pentadecafluoro heptyl group, heptadecaful And octyl group.
  • perfluoroalkylsulfonimide salt examples include bistrifluoromethylsulfonamide salt, bis (pentafluoroethylsulfolyl) imide salt, and bis (heptadecafluorooctylsulfoimide) salt.
  • -R imide salts can be used.
  • the perfluoroalkylsulfonylimide ion of the above chemical formula (1) can form a salt with a cation, and is added as a perfluoroalkylsulfonylimide salt to the electrolytic solution in the electrolytic polymerization method. Being, even good.
  • Perfluoroalkylsulfonimide and salt The cation to be formed may be composed of one element such as U + or may be composed of a plurality of elements. The cation is not particularly limited as long as it can form a perfluoroalkylsulfonylimide ion as a monovalent cation and can be dissociated in an electrolytic solution.
  • the fluid in the fluid chamber which does not need to have the laminated structure of the conductive polymer film layer and the other layers on the entire surface of the diaphragm
  • a conductive polymer film having a space near the center of the shape may be used as long as it has a layer that does not transmit light.
  • a plurality of diaphragms may be provided in parallel on the same surface. Further, in the fluid vibration device, the diaphragm may be provided in a stacked state in the fluid vibration device.
  • a diaphragm unit having a plurality of diaphragms in parallel on the same surface may be formed. Further, in the fluid vibration device of the present invention, a plurality of the diaphragm units may be provided in parallel, or a plurality of the diaphragm units may be provided in a stack.
  • FIG. 3 is a front view of an embodiment of the diaphragm unit.
  • the diaphragm unit 31 includes a metal frame 32 having a large number of conductive polymer films 33 formed in the openings of the circular holes. The same shape 32 ′ is also provided on the back side of the metal frame 32.
  • the metal frame 32 has a tab 34 for voltage application. The tab portion is similarly formed on the metal frame 32 '.
  • a conductive polymer film is formed so as to cover the opening of the hole 33.
  • FIG. 4 is a sectional view of the diaphragm unit taken along line AA of FIG.
  • FIG. 5 is a partially enlarged view of the sectional view of FIG.
  • the conductive polymer film 332 formed in the opening of the circular hole of the metal frame 32 is the conductive polymer film 332 formed in the opening of the circular hole of the metal frame 32 ′.
  • the insulator 35 facing each other so that the convex portions face each other. It can be driven to expand and contract like the diaphragm of FIG. 1 or FIG. 2 described above.
  • the porous body 36 between the metal frame 32 and the metal frame 32 ', it is possible to form an interval between the metal frames, and the conductive polymer films 332, 332 'Can be maintained in an arc-shaped cross section.
  • a voltage is applied to each diaphragm in each metal frame.
  • an electrolytic solution is preferably sealed between the conductive polymer film 332 and the conductive polymer film 332 ′.
  • the presence of the electrolyte between the conductive polymer films causes the conductive polymer films 332, 332 'to be in a relationship between the working electrode and the counter electrode, facilitating expansion and contraction driving as shown in FIG. 1 or FIG.
  • the insulator is disposed in each hole to prevent the conductive polymer film 332 and the conductive polymer film 332 ′ from directly contacting each other. If it does not contact the conductive polymer film 332 ', it may not be disposed.
  • the method of forming the conductive polymer film formed on the metal frames 32 and 32 ' is not particularly limited.
  • a metal frame as a working electrode, applying a back plate to the metal frame, and performing electrolytic polymerization in a state in which the holes of the metal frame are closed with the back plate, the holes of the metal frame are formed.
  • the conductive polymer film covering the surface can be easily formed.
  • the conductive polymer film formed by such an electrolytic polymerization method is a film covering the entire surface of the metal frame, but in the hole, the conductive polymer film as a diaphragm is circular.
  • a large discharge pressure can be obtained by the expansion and contraction of the conductive polymer film formed in each hole, and the force required by multiple fluid vibration devices can be increased. Since the diaphragms are formed in parallel, the diaphragm using the diaphragm unit can discharge a large flow rate.
  • FIG. 6 is a perspective view of a fluid vibration device using the diaphragm unit according to an embodiment.
  • FIG. 7 is a BB cross-sectional view of the fluid vibration device of FIG.
  • FIG. 8 is a partially enlarged cross-sectional view near the port 64 in the cross-sectional view of FIG.
  • FIG. 9 is a partially enlarged cross-sectional view near the port 65 in the cross-sectional view of FIG.
  • the fluid vibration device 61 has a housing formed by a lid 62 and a bottom 63.
  • the diaphragm unit is housed inside the housing.
  • the lid is provided with two ports 64 and two ports 65 respectively.
  • terminals 66, 66 for voltage application are also provided in the fluid vibration device 61 so that they can be connected to an external power supply.
  • the fluid vibration device 61 is configured so that the fluid force sucked into the fluid vibration device from the port 64 is discharged from the port 64.
  • the fluid vibration device 61 is configured so that the fluid sucked into the fluid vibration device from the port 65 is discharged from the port 65.
  • the fluid vibration device 61 is provided with three diaphragm units. As shown in FIG. 8, the three diaphragm units 67, 68, 69 are provided with an interval, and flow paths 70, 71, 72, 73 are formed.
  • the channel 70 and the channel 72 are provided with seals 74 and 75 at the end on the port 64 side so that the fluid in the channel 70 and the channel 72 does not flow through the port 64.
  • the flow passage 71 and the flow passage 73 are provided with seals 76 and 77 at the ends on the port 65 side, and the fluid in the flow passage 71 and the flow passage 73 flows from the port 65 through the port 65. It is not allowed to flow.
  • the flow path 71 and the flow path 73 communicate with two ports 64.
  • the flow path 70 and the flow path 72 communicate with two ports 65.
  • the upper diaphragm of the diaphragm units 67 and 69 and the lower diaphragm of the diaphragm unit 68 contract, so that the space between the lid 62 and the diaphragm unit 67, Fluid existing in the space between the diaphragm units 68 and 69 passes through 70 and 72 and can be discharged from the two ports 65.
  • the upper diaphragm of the diaphragm units 67 and 69 and the lower diaphragm of the diaphragm unit 68 extend, and the fluid is sucked in from the two ports 65 and partially passes through the flow passage 70.
  • the air can flow into the space between the lid 62 and the diaphragm unit 67, and the rest can flow into the space between the diaphragm units 68 and 69 through 72.
  • the fluid existing in the space between the diaphragm unit 67 and the diaphragm unit 68 and in the space between the bottom body 63 and the diaphragm unit 69 passes through 71 and 73, and the two It can be discharged from port 64.
  • the conductive polymer membranes facing each other are in an extended state. It is driven so that the contraction and the contraction are in opposite phases.
  • the diaphragm unit 68 and the diaphragm unit 69 in the diaphragm unit 68 and the diaphragm unit 69.
  • the conductive polymer films facing each other are driven such that the expansion and contraction are in opposite phases.
  • the expansion and contraction of the conductive polymer film of each diaphragm unit can be caused as described above by applying a voltage to the metal frame of each diaphragm unit. Further, in the above embodiment, the force provided with two ports 64 and two ports 65 respectively is provided.
  • the fluid vibration device of the present invention may be provided one by one, and may be provided by two or more. ,.
  • the conductive polymer film included in the diaphragm forming a part of the fluid chamber is adjusted by applying a voltage to the conductive polymer film in each fluid chamber.
  • Periodic force can be applied to the fluid by periodically expanding and contracting the membrane.
  • the fluid vibration device of the present invention can vibrate the vibration.
  • the vibration in the present application is a periodic vibration, and includes not only a small vibration but also a large vibration.
  • FIG. 10 is a conceptual diagram of an embodiment of an application device using the fluid vibration device of FIG.
  • the fluid in the flow path 81 is vibrated by the suction and discharge of the fluid in the fluid chamber 7 ′, and the fluid in the flow path 82 is excited by the suction and discharge of the fluid in the fluid chamber 8 ′.
  • the fluid inside is vibrated, and the vibrated body 83 is vibrated by the vibrated fluid.
  • the fluid vibration device of the present invention can be used, for example, in the manner described above. Effect can be given.
  • the fluid vibration device of the present invention includes, for example, a fluid vibration device used for a cleaning device, a fluid vibration device used for a dissolution device, and a chemical reaction device. It can be used as a fluid vibration device for applying vibration or thermal energy to generate a reaction in a device, a fluid vibration device used for supplying heat pipe fluid, or a fluid vibration device used for hobby applications.

Abstract

A fluid vibrating apparatus and a method of driving the apparatus. The apparatus (1) having two or more fluid chambers comprises diaphragms (3) and (4) forming at least a part of the fluid chambers (7) and (8). The diaphragms (3) and (4) contain conductive high molecular membranes, and an electrolyte is filled in a closed space (9) facing the two or more diaphragms (3) and (4). The diaphragms (3) and (4) comprise the fluid chambers on the opposite sides of the closed space (9) through the diaphragms (3) and (4), and contain the conductive high molecular membrane so as to come into contact with the electrolyte.

Description

明 細 書  Specification
流体振動装置及びその駆動方法  Fluid vibration device and driving method thereof
技術分野  Technical field
[0001] 本発明は、例えば、洗浄装置、溶解装置、化学反応装置、ヒートパイプ、またはホビ 一用途に用いることができる流体振動装置に関する。  The present invention relates to a fluid vibration device that can be used for, for example, a cleaning device, a dissolution device, a chemical reaction device, a heat pipe, or a hobby.
背景技術  Background art
[0002] 水などの流体を加振させて各種用途に用いることは、例えば超音波洗浄機が巿販 されて 、るように、超音波を用いて行うことは枚挙に 、とまがな!、。  [0002] Vibration of a fluid such as water for use in various applications is performed, for example, as in the case of an ultrasonic cleaning machine sold on the market. ,.
[0003] さらに、特定の用途に用いるために機械的なァクチユエーシヨンにより流体に振動 を加えための流体振動装置も種々の検討が為されている(例えば、特許文献 1)。  [0003] Furthermore, various studies have been made on a fluid vibration device for applying vibration to a fluid by a mechanical actuation for use in a specific application (for example, Patent Document 1).
[0004] 特許文献 1 :特開平 9 166228号公報  Patent document 1: Japanese Patent Application Laid-Open No. 9-166228
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかし、上記の流体振動装置は、装置構成が複雑であり、小型化が難しぐまた金 属部品を多量に用いるために、軽量ィ匕が難しい。また、モーターを用いた流体振動 装置は、音が大きくて、室内用途や医療用の用途には適していない。  [0005] However, the above-described fluid vibration device has a complicated device configuration, is difficult to miniaturize, and uses a large amount of metal parts, so that it is difficult to reduce the weight. Fluid vibration devices using motors are loud and not suitable for indoor or medical use.
[0006] 例えば、セラミックス材料力 なる圧電素子を駆動用素子として駆動させる流体振 動装置を用いることも可能である。しかし、セラミックス製の圧電素子は、小型化が可 能であるが、 100Vもの高電圧で駆動するために、低電圧の電源を用いるには電圧 変換装置が必要で、装置構成が複雑になる。高電圧で駆動する流体振動装置は、 該流体振動装置が組み込まれる装置の構成上若しくは用途上、使用が限定され、産 業上の利用性に劣る。  [0006] For example, it is also possible to use a fluid vibration device that drives a piezoelectric element made of a ceramic material as a driving element. However, although ceramic piezoelectric elements can be miniaturized, they require a voltage converter to use a low-voltage power supply because they are driven at a high voltage of 100 V, which complicates the device configuration. The use of a fluid vibration device driven by a high voltage is limited in terms of the configuration or application of the device in which the fluid vibration device is incorporated, and is inferior in industrial applicability.
[0007] 本発明の目的は、小型化が可能であり、軽量ィ匕が可能な流体振動装置を提供する ことである。また、数 V程度以下の低電圧で駆動し、し力も無音で駆動することができ る流体振動装置を提供することでもある。  [0007] An object of the present invention is to provide a fluid vibration device that can be reduced in size and can be lightweight. Another object of the present invention is to provide a fluid vibration device that can be driven at a low voltage of about several volts or less and can be driven with no force.
課題を解決するための手段  Means for solving the problem
[0008] そこで、本発明者らは、鋭意検討の結果、以下の発明により上記課題を解決できる ことを見出した。 [0008] The inventors of the present invention have made intensive studies and as a result, the following problems can be solved by the following invention. I found that.
[0009] 本発明は、流体室を 2以上備えた流体振動装置であって、各流体室の少なくとも一 部を構成するダイヤフラムを備え、該ダイヤフラムが導電性高分子膜を含み、 2以上 のダイヤフラムが面する閉空間に電解液が満たされ、各ダイヤフラムがダイヤフラムを 挟んで該閉空間の反対側に流体室をそれぞれ備え、各ダイヤフラムが導電性高分 子膜を該電解液に接するようにそれぞれ含む流体振動装置である。  [0009] The present invention is a fluid vibration device provided with two or more fluid chambers, comprising a diaphragm constituting at least a part of each fluid chamber, wherein the diaphragm includes a conductive polymer film, and the two or more diaphragms are provided. Are filled with an electrolyte solution, each diaphragm is provided with a fluid chamber on the opposite side of the closed space across the diaphragm, and each diaphragm is brought into contact with the conductive polymer film with the electrolyte solution. The fluid vibration device includes:
発明の効果  The invention's effect
[0010] 本発明の流体振動装置は、上記のような構造であり、導電性高分子が化学的なメ 力ニズムにより駆動するので、流体振動装置の駆動が低電圧で駆動が可能である。 しかも、前記流体振動装置は、無音であって、さらに、装置構成も簡単で小型化も容 易である。しかも、前記流体振動装置は、金属部品をほとんど使用していないので、 軽量化も容易である。  [0010] The fluid vibration device of the present invention has the structure as described above, and the conductive polymer is driven by a chemical mechanism, so that the fluid vibration device can be driven at a low voltage. In addition, the fluid vibration device is silent, and the device configuration is simple and the size can be easily reduced. Moreover, since the fluid vibration device hardly uses metal parts, the weight can be easily reduced.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]本発明の流体振動装置の第一の実施態様例の断面図。  FIG. 1 is a cross-sectional view of a first embodiment of a fluid vibration device of the present invention.
[図 2]本発明の流体振動装置の第二の実施態様例の断面図。  FIG. 2 is a sectional view of a second embodiment of the fluid vibration device of the present invention.
[図 3]ダイヤフラムユニットの一実施態様例の正面図。  FIG. 3 is a front view of an embodiment of the diaphragm unit.
[図 4]図 3のダイヤフラムユニットの A— A断面図。  FIG. 4 is a sectional view taken along line AA of the diaphragm unit in FIG. 3.
[図 5]図 4のダイヤフラムユニットの A— A断面図における部分拡大図。  FIG. 5 is a partially enlarged view of the diaphragm unit shown in FIG. 4, taken along the line AA.
[図 6]ダイヤフラムユニットを用いた流体振動装置の一実施態様例における斜視図。  FIG. 6 is a perspective view of one embodiment of a fluid vibration device using a diaphragm unit.
[図 7]図 6の流体振動装置における B— B断面図。  FIG. 7 is a sectional view taken along line BB of the fluid vibration device of FIG. 6.
[図 8]図 7の断面図における吸入口付近における部分拡大断面図。  FIG. 8 is a partially enlarged cross-sectional view near the suction port in the cross-sectional view of FIG. 7.
[図 9]図 7の断面図における吸入口付近における部分拡大断面図。  FIG. 9 is a partially enlarged cross-sectional view near the suction port in the cross-sectional view of FIG. 7.
[図 10]本発明の流体振動装置を用いた応用用途装置の一実施態様例の概念図。 符号の説明  FIG. 10 is a conceptual diagram of one embodiment of an application device using the fluid vibration device of the present invention. Explanation of symbols
[0012] 1、 1 ' 流体振動装置 [0012] 1, 1 'fluid vibration device
2、 2' 筐体  2, 2 'housing
3、 3' ダイヤフラム  3, 3 'diaphragm
4、 4, ダイヤフラム 5、 5 ' 壁面 4, 4, diaphragm 5, 5 'wall
6 接続部材  6 Connection members
7、 7' 第 1流体室  7, 7 '1st fluid chamber
8、 8 ' 第 2流体室  8, 8 'second fluid chamber
9、 9 ' 空間部  9, 9 'space
10、 10, リード  10, 10, lead
11、 11 ' 吸入口  11, 11 'inlet
31 ダイヤフラムユニット  31 Diaphragm unit
32、 32 ' 金属枠体  32, 32 'metal frame
33 孔  33 holes
332、 332 導電性高分子膜  332, 332 Conductive polymer film
34 多孔質体  34 Porous body
61 流体振動装置  61 Fluid vibration device
62 蓋体  62 Lid
63 底体  63 bottom
64、 64' ポー卜 64, 64 'port
o5、 D5 ポ ~~卜 o5, D5 Po ~~
66、 66 端子  66, 66 terminals
67、 68、 69 ダイヤフラムユニット  67, 68, 69 diaphragm unit
70、 71 流路 70, 71 channel
72, 73 流路  72, 73 channels
74、 75 シーノレ体  74, 75
76、 77 シーノレ体  76, 77
81 流路  81 channels
82 流路  82 channels
83 被加振体  83 Excited body
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、図を用いて説明するが、本願発明はこれらの実施態様に限定されるものでは ない。 Hereinafter, description will be made with reference to the drawings, but the present invention is not limited to these embodiments. Absent.
[0014] 図 1は、本発明の流体振動装置の第一の実施態様例の断面図である。本発明の流 体振動装置である流体振動装置 1は、内部空間を有するコイン状の筐体 2の内側に 、導電性高分子力 なるダイヤフラム 3、 4を備えた流体振動装置である。ダイヤフラ ム 3とダイヤフラム 4とは、円盤状の導電性高分子膜であり、その円周部が壁面 5に固 定され、中央部分において接続部材 6を介して互いに接続されている。 2つのダイヤ フラム 3、 4は、それぞれ膜面方向に張力が力かる状態で設置され、略円錐状を形成 している。ダイヤフラム 3は筐体 2と第 1流体室 7を形成し、ダイヤフラム 4は、筐体 2と 第 2流体室 8を形成している。流体振動装置 1の内部にある空間部 9は、膜状の導電 性高分子膜により形成されたダイヤフラム 3とダイヤフラム 4並びに筐体 2により仕切ら れて、形成されている。空間部 9に電解液を満たすことにより、ダイヤフラム 3、 4は電 解液と接する。ダイヤフラム 3の導電性高分子膜とダイヤフラム 4の導電性高分子膜と にそれぞれリード 10、 10'を介して電源に接続される。例えば、前記電解液の支持塩 にァ-オンを含み、ダイヤフラム 4の導電性高分子膜にマイナスの電圧を印加し、ダ ィャフラム 3の導電性高分子膜にプラスの電圧を印加することで、ダイヤフラム 4が収 縮し、ダイヤフラム 3が伸張し、流体室 9が広くなり、流体室 8が狭くなる。逆に、ダイヤ フラム 4の導電性高分子膜にプラスの電圧を印加し、ダイヤフラム 3の導電性高分子 膜にマイナスの電圧を印加すると、ダイヤフラム 3が収縮してダイヤフラム 4が伸張し、 流体室 7が狭くなり、流体室 8が広くなる。つまり、ダイヤフラムである二つの導電性高 分子膜は、一方の導電性高分子膜が作用極となり、他方が対極となって、伸縮運動 をする。このようなダイヤフラムの運動により、一のダイヤフラムが収縮して一のダイヤ フラムが構成する流体室内の流体を吐出すると同時に、一のダイヤフラムが収縮する 力で他のダイヤフラムが伸張して、他のダイヤフラムが構成する流体室の容積が拡張 し、流体振動装置 1はツインの流体振動装置として機能する。  FIG. 1 is a sectional view of a first embodiment of the fluid vibration device of the present invention. The fluid vibration device 1 which is the fluid vibration device of the present invention is a fluid vibration device including diaphragms 3 and 4 made of conductive polymer inside a coin-shaped casing 2 having an internal space. The diaphragm 3 and the diaphragm 4 are disc-shaped conductive polymer films, the circumference of which is fixed to the wall surface 5, and connected to each other via the connection member 6 at the center. The two diaphragms 3 and 4 are installed in a state where tension is applied in the direction of the membrane surface, respectively, and have a substantially conical shape. The diaphragm 3 forms the housing 2 and the first fluid chamber 7, and the diaphragm 4 forms the housing 2 and the second fluid chamber 8. The space 9 inside the fluid vibration device 1 is formed by being partitioned by the diaphragm 3 and the diaphragm 4 formed of a film-shaped conductive polymer film and the housing 2. By filling the space 9 with the electrolyte, the diaphragms 3 and 4 come into contact with the electrolyte. The conductive polymer film of the diaphragm 3 and the conductive polymer film of the diaphragm 4 are connected to a power source via leads 10 and 10 ', respectively. For example, the support salt of the electrolytic solution contains ferron, a negative voltage is applied to the conductive polymer film of the diaphragm 4, and a positive voltage is applied to the conductive polymer film of the diaphragm 3. Diaphragm 4 contracts, diaphragm 3 expands, fluid chamber 9 widens, and fluid chamber 8 narrows. Conversely, when a positive voltage is applied to the conductive polymer film of the diaphragm 4 and a negative voltage is applied to the conductive polymer film of the diaphragm 3, the diaphragm 3 contracts, the diaphragm 4 expands, and the fluid chamber 7 becomes narrower and fluid chamber 8 becomes wider. In other words, the two conductive polymer films, which are diaphragms, perform an expansion and contraction movement with one of the conductive polymer films serving as a working electrode and the other serving as a counter electrode. Due to such a movement of the diaphragm, one diaphragm contracts and discharges the fluid in the fluid chamber formed by the one diaphragm. The volume of the fluid chamber formed by the fluid vibration device is expanded, and the fluid vibration device 1 functions as a twin fluid vibration device.
[0015] 図 1の流体振動装置 1は、ポート 11を備えている。また、流体振動装置 1は、ポート 11 'を備えている。図 1においては、各流体室にはポートが一つずつ付いているが、 複数付いていてもよい。各流体室にポートが複数付いている場合には、同一ポンプ 室に付いているポートのそれぞれは、吸入と吐出とが同じ周期となる。 [0016] 図 1においては、ダイヤフラム 4が収縮することで、流体室 8内の流体は、ポート 11, を通り、外部へ吐出される。流体室 8内の流体が吐出されるのと同時に、ダイヤフラム 4の収縮によってダイヤフラム 3が伸張され、流体がポート 11を通って流体室 7内に 吸入される。また、ポートの付近に、吸入用管や吐出用管等を装着するための部材 を適宜取付けても良い。 The fluid vibration device 1 shown in FIG. The fluid vibration device 1 has a port 11 '. In FIG. 1, each fluid chamber has one port, but a plurality of ports may be provided. When a plurality of ports are provided in each fluid chamber, suction and discharge of the ports provided in the same pump chamber have the same cycle. In FIG. 1, when the diaphragm 4 contracts, the fluid in the fluid chamber 8 is discharged to the outside through the port 11. At the same time as the fluid in the fluid chamber 8 is discharged, the diaphragm 3 is expanded by the contraction of the diaphragm 4, and the fluid is sucked into the fluid chamber 7 through the port 11. In addition, a member for mounting a suction pipe, a discharge pipe, or the like may be appropriately mounted near the port.
[0017] 図 2は、本発明の流体振動装置の第二の実施態様例において、図 1の流体振動装 置について接続部材を用いない場合における断面図である。流体振動装置 1 'は、 流体室の少なくとも一部を構成するダイヤフラム 3'、 4'を備え、該ダイヤフラムが導 電性高分子膜からなり、ダイヤフラム 3'、 4'が面する閉空間である空間部 9'に電解 液が満たされている。各ダイヤフラムがダイヤフラムを挟んで該閉空間の反対側にそ れぞれ流体室 7'、 8'を備えている。各ダイヤフラムは、導電性高分子膜であることか ら、空間部 9'の電解液に接している。前記の各ダイヤフラムは、導電性高分子膜から なるが、図 1の流体振動装置と同様に、導電性高分子の電解伸縮作用によりダイヤ フラムが駆動するのであれば、導電性高分子膜がダイヤフラムの一部として含まれて いてもよぐ導電性高分子膜を 1の層とする積層体であっても良い。前記導電性高分 子膜は、膜状の導電性高分子成型品を用いることができる。  FIG. 2 is a cross-sectional view of the fluid vibration device of the second embodiment of the present invention when no connecting member is used for the fluid vibration device of FIG. The fluid vibration device 1 ′ includes diaphragms 3 ′ and 4 ′ that constitute at least a part of a fluid chamber, and the diaphragm is a closed space formed of a conductive polymer film and faces the diaphragms 3 ′ and 4 ′. The space 9 'is filled with the electrolyte. Each diaphragm has fluid chambers 7 'and 8' on opposite sides of the closed space with respect to the diaphragm. Each diaphragm is in contact with the electrolytic solution in the space 9 ′ because it is a conductive polymer film. Each of the above-mentioned diaphragms is made of a conductive polymer film. As in the case of the fluid vibration device of FIG. 1, if the diaphragm is driven by the electrolytic expansion and contraction of the conductive polymer, the conductive polymer film is made of a diaphragm. It may be a laminate in which a conductive polymer film that may be included as a part of the layer is one layer. As the conductive polymer film, a film-shaped conductive polymer molded product can be used.
[0018] 図 2において、流体振動装置 1 'は、 2つの流体室を備え、導電性高分子膜からなる ダイヤフラム 3'、 4'に電圧を印力!]して、流体振動装置として駆動させている状態であ る。一方のダイヤフラムであるダイヤフラム 3'に電圧を印加し、他方のダイヤフラムで あるダイヤフラム 4'に対してダイヤフラム 3'と逆電圧を印加することにより、ダイヤフラ ム 4'が収縮して、ダイヤフラム 3'が伸張する。ダイヤフラム 4'が収縮することにより流 体室 8'の容積が縮小して該流体室内の流体が吐出される。また、ダイヤフラム 3'が 伸張することで流体室 7'の容積が増大して、該流体室内に流体が吸引される。一方 の導電性高分子膜を作用極とした場合に他方の導電性高分子膜が対極となることで 、一方のダイヤフラムの駆動と他方のダイヤフラムの駆動とが吸入一吐出周期におけ る逆位相となる。それぞれの導電性高分子膜の印加電圧の極性を正負交互に印加 することで、ダイヤフラムの伸張と収縮とが交互に行われて、各流体室で吸入と吐出 とが交互に行われる。流体振動装置 1 'を連続的に駆動することは、図 1の流体振動 装置 1についても同様であるが、各導電性高分子膜に対する印加電圧の極性を正負 交互に印加することにより、各導電性高分子膜に対する印加電圧の極性を周期的に 正負交互に印加することで、行うことができる。 In FIG. 2, the fluid vibration device 1 ′ includes two fluid chambers and applies a voltage to the diaphragms 3 ′ and 4 ′ made of a conductive polymer film! Then, it is in a state of being driven as a fluid vibration device. By applying a voltage to one diaphragm 3 'and a reverse voltage to the other diaphragm 4', the diaphragm 4 'contracts and the diaphragm 3' To stretch. The volume of the fluid chamber 8 'is reduced by the contraction of the diaphragm 4', and the fluid in the fluid chamber is discharged. Further, the volume of the fluid chamber 7 'is increased by the expansion of the diaphragm 3', and the fluid is sucked into the fluid chamber. When one conductive polymer film is used as a working electrode and the other conductive polymer film is used as a counter electrode, the driving of one diaphragm and the driving of the other diaphragm have opposite phases in one suction-discharge cycle. It becomes. By applying the polarity of the voltage applied to each conductive polymer film alternately to positive and negative, the expansion and contraction of the diaphragm are performed alternately, and suction and discharge are performed alternately in each fluid chamber. Continuously driving the fluid vibration device 1 ′ The same applies to the device 1, except that the polarity of the applied voltage to each conductive polymer film is alternately applied by applying the polarity of the applied voltage to each conductive polymer film alternately. Can be done.
[0019] 図 2の流体振動装置 1 'は、図 1の流体振動装置 1と比べて、 2つのダイヤフラムを接 続するための接続部材を備えておらず、 2つのダイヤフラムが接続されていない。導 電性高分子膜であるダイヤフラム 4'に電圧を印加することで、ダイヤフラム 4'は、収 縮運動をする。前記収縮運動により流体室 8'の容積は縮小する。また、ダイヤフラム 4'を挟んで流体室 8'の反対側に設けられた空間部 9'が閉じた空間であることから、 前記収縮運動は、空間部 9'に満たされた電解液を介して、伸張するダイヤフラム 3' を引張って、流体室 7'の容積を増大させることができる。  [0019] The fluid vibration device 1 'of Fig. 2 is different from the fluid vibration device 1 of Fig. 1 in that it does not include a connecting member for connecting the two diaphragms, and the two diaphragms are not connected. When a voltage is applied to the diaphragm 4 ', which is a conductive polymer film, the diaphragm 4' contracts. Due to the contraction movement, the volume of the fluid chamber 8 'is reduced. Further, since the space 9 ′ provided on the opposite side of the fluid chamber 8 ′ with the diaphragm 4 ′ therebetween is a closed space, the contraction movement is performed via the electrolyte filled in the space 9 ′. The volume of the fluid chamber 7 'can be increased by pulling the expanding diaphragm 3'.
[0020] 図 2における流体振動装置は、流体室を 2つの場合である力 本発明の流体振動 装置は 2以上の流体室を備えたものであってもよ 、。流体室の一部を構成するダイヤ フラムがそれぞれ導電性高分子膜を備え、各導電性高分子膜が電圧が印加されるこ とにより、各導電性高分子膜は電極として作用して、電解伸縮を生じる。一の流体室 を構成するダイヤフラムに含まれる導電性高分子膜が、電圧印加により、他の流体室 に含まれる導電性高分子膜を、前記閉空間内の電解液を介して対極とすることがで きれば、ダイヤフラム間の位置関係は、特に限定されるものではない。例えば、多数 のダイヤフラムが多面体を形成するように前記閉空間を形成し、該閉空間に電解液 を満たして、 1以上のダイヤフラムに含まれる導電性高分子膜が他のダイヤフラム〖こ 含まれる導電性高分子膜の対極となるようにすることもできる。特に、前記流体振動 装置は、一方のダイヤフラムと他方のダイヤフラムとの位置関係力 前記ダイヤフラム が電解液を介して対向するように配置され、この対を 1対以上有することが、エネルギ 一ロスが少なぐ駆動もスムースであることから、好ましい。対の一方のダイヤフラムと 他方のダイヤフラムとが互いに吸入一吐出周期における逆位相となるように連続的に 駆動させることで、収縮するダイヤフラムが同一の対の伸張するダイヤフラムを引張る ことが、容易となる。  The fluid vibration device in FIG. 2 has two fluid chambers. Force The fluid vibration device of the present invention may include two or more fluid chambers. Each of the diaphragms forming a part of the fluid chamber has a conductive polymer film, and when a voltage is applied to each conductive polymer film, each conductive polymer film acts as an electrode, and Causes expansion and contraction. The conductive polymer film included in the diaphragm constituting one fluid chamber is used as a counter electrode to the conductive polymer film included in the other fluid chamber via the electrolyte in the closed space when a voltage is applied. If possible, the positional relationship between the diaphragms is not particularly limited. For example, the closed space is formed so that a large number of diaphragms form a polyhedron, and the closed space is filled with an electrolytic solution, and the conductive polymer film contained in one or more diaphragms becomes conductive in other diaphragms. It can also be used as a counter electrode of the conductive polymer film. In particular, the fluid vibration device is arranged so that the positional relationship between one diaphragm and the other diaphragm is arranged so that the diaphragms face each other via the electrolytic solution. Is also preferable because the driving is smooth. By continuously driving one diaphragm of the pair and the other diaphragm so that they have opposite phases in one suction-discharge cycle, it becomes easy for the contracting diaphragm to pull the same pair of expanding diaphragms. .
[0021] 図 2の実施態様例においては、対のダイヤフラム同士が接続されていない。ダイヤ フラム間で接続がされている場合には、図 1のように、吸入時におけるダイヤフラムの 断面が略三角錐状となり、吐出時におけるダイヤフラムの断面が円弧状となる。従つ て、ダイヤフラム間で接続がされている場合には、吸入と吐出が切り替わる瞬間に、 ダイヤフラムの形状が大きく変化して、切り替え時にタイムラグが生じてしまう。このタ ィムラグを防止するためには、ダイヤフラム間で接続がされて ヽな 、ことが好まし 、。 ダイヤフラム間で接続がされていないことは、図 2のように、吸引におけるダイヤフラム 形状と吐出におけるダイヤフラム形状とが同様となり、吸入と吐出と切り替え時のタイ ムラグを防止できる。さらに、ダイヤフラム間で接続がされていない前記流体振動装 置は、接続部材が無いので、ダイヤフラム外径 10 φの円形である流体振動装置等の 小型流体振動装置を製造することが容易となり、駆動用素子として機能する導電性 高分子膜が伸縮することができる部分も増大するために、好ま U、。 In the embodiment of FIG. 2, the pair of diaphragms are not connected. If there is a connection between the diaphragms, as shown in Fig. 1, The cross section has a substantially triangular pyramid shape, and the cross section of the diaphragm at the time of discharge has an arc shape. Therefore, when the connection is made between the diaphragms, the shape of the diaphragm changes greatly at the moment when the suction and the discharge are switched, and a time lag occurs at the time of the switching. In order to prevent this time lag, it is preferable that a connection be made between the diaphragms. The lack of connection between the diaphragms makes the shape of the diaphragm in suction similar to that in discharge as shown in FIG. 2, and prevents time lag when switching between suction and discharge. Further, since the fluid vibration device having no connection between the diaphragms has no connecting member, it is easy to manufacture a small fluid vibration device such as a fluid vibration device having a circular shape with a diaphragm outer diameter of 10φ, and the U, which is preferable because the conductive polymer film functioning as an element for expansion also expands and contracts.
[0022] 本発明の流体振動装置は、各流体室において流体の吸入及び吐出が行われて、 流体が振動すれば、その振動の周波数が特に限定されるものではない。前記流体 振動装置による流体の振動周波数は、例えば、 1000Hzから 0. ΟΟΙΗζまでとするこ とができる力 好ましくは lOOHzから 0. 01Hzであり、より好ましくは 10Hzから 0. 1H zである。 In the fluid vibration device of the present invention, the frequency of the vibration is not particularly limited as long as the fluid vibrates when the fluid is sucked and discharged in each fluid chamber. The vibration frequency of the fluid by the fluid vibrating device is, for example, a force that can be from 1000 Hz to 0.1 Hz, preferably from 100 Hz to 0.01 Hz, and more preferably from 10 Hz to 0.1 Hz.
[0023] 本発明の流体振動装置は、各流体室から流体に与えられる力が特に限定されるも のではないが、各流体室における流体の吐出圧が 200kPa以下となることが好ましく 、前記流体振動装置が小型の用途に用いられる場合には前記吐出圧が 5— lOOkP aであり、特に 10— 40kPaであることがより好ましい。また、各流体室における流体の 吐出量は、 1周期における吐出、すなわち 1回の吐出における吐出量は、 2000mL であることが好ましぐ 50— 100mm3であることがより好ましい。 In the fluid vibration device of the present invention, the force applied to the fluid from each fluid chamber is not particularly limited, but the discharge pressure of the fluid in each fluid chamber is preferably 200 kPa or less. When the vibrating device is used for small applications, the discharge pressure is 5-100 kPa, and more preferably 10-40 kPa. The discharge amount of the fluid in each fluid chamber is more preferably 50 to 100 mm 3 , which is preferably 2000 mL, preferably in one cycle, that is, in one discharge.
[0024] 本発明の流体振動装置は、用いられる流体が特に限定されるものではなぐ液体ま たは気体を用いることができる。前記液体は、水でも良ぐ有機の液体であってもよく 、水とアルコールとの混合物のような混合溶媒であってもよい。前記気体は、空気で あってもよぐ不活性ガスであっても良い。前記流体は、加振により急激な体積膨張を 生じるなどのな 、、爆発性が低!、流体であることが容易に安全性を確保することがで きるので好ましい。  [0024] The fluid vibration device of the present invention can use a liquid or a gas for which the fluid used is not particularly limited. The liquid may be water or a good organic liquid, or may be a mixed solvent such as a mixture of water and alcohol. The gas may be air or an inert gas. The fluid is preferable because it has a low explosive property, such as rapid volume expansion caused by vibration, and can easily secure safety.
[0025] 図 1における流体振動装置は、導電性高分子膜のみ力もなるダイヤフラムの場合を 示している。しかし、本発明の流体振動装置は、導電性高分子膜のみ力もなるダイヤ フラムに限定されるものではなぐ積層構造を有することもできる。例えば、前記ダイ ャフラムは、導電性高分子膜上に保護層として機能しうる不織布を備えた構造とする こともできる。また、前記ダイヤフラムは、電解液が通過することのない導電性高分子 膜上に、孔を有することにより電解液が通過することのできる導電性高分子膜を積層 させても良ぐ導電性高分子膜間に更に不織布のような電解液が浸透することができ る伸縮性を有する層や伸縮性の固体電解質層を備えて ヽても良 ヽ。 [0025] The fluid vibration device in Fig. 1 uses a diaphragm in which only a conductive polymer film has a force. Is shown. However, the fluid vibration device of the present invention may have a laminated structure that is not limited to a diaphragm in which only a conductive polymer film has a force. For example, the diaphragm may have a structure including a nonwoven fabric that can function as a protective layer on a conductive polymer film. In addition, the diaphragm has a high conductivity which is good even if a conductive polymer film through which the electrolyte can pass is provided by forming a hole on the conductive polymer film through which the electrolyte does not pass. It is also possible to provide a layer having elasticity such as a nonwoven fabric and a solid electrolyte layer having elasticity, such as a nonwoven fabric, between molecular membranes.
[0026] 前記導電性高分子膜は、導電性高分子の組成が特に限定されるものではなく公知 の導電性高分子を用いることができ、吐出圧や吐出量等のダイヤフラムの性能に応 じて、導電性高分子の組成を適宜選択することができる。より具体的には、導電性高 分子の単量体としては、ポリピロールを用いること力 ドーパントとして、ドーパントィォ ンとしては公知のァ-オンを用いることができる。また、前記流体振動装置を駆動す るための電解液中の支持電解質も、公知の支持電解質を用いることができる。  [0026] The conductive polymer film is not particularly limited in the composition of the conductive polymer, and a known conductive polymer can be used. The conductive polymer film can be formed according to the performance of the diaphragm such as the discharge pressure and the discharge amount. Thus, the composition of the conductive polymer can be appropriately selected. More specifically, polypyrrole can be used as the conductive high molecular monomer, and a known ion can be used as the dopant. Further, as a supporting electrolyte in an electrolyte for driving the fluid vibration device, a known supporting electrolyte can be used.
[0027] 上述の導電性高分子膜については、例えば、導電性高分子膜に IV、 200mAで 電圧印加することで、導電性高分子膜の膜面方向に 5Mpaの力を発生することがで きるポリピロ一ル膜をダイヤフラムに用いた流体振動装置は、 1つの流体室について 20kPaの吐出圧を発生することができる。また、図 1の実施態様例の流体振動装置 では、各ダイヤフラムとして直径 40mm、厚さ 40 mの円形導電性高分子膜を用い 、膜面方向に 0. 5秒当たり 0. 9%の伸縮を行うことにより、 1秒当たりの吐出量 72ml Zsを発生することができる。また、導電性高分子膜の積層により所望の吐出圧を得 ることがでさる。 Regarding the above-mentioned conductive polymer film, for example, by applying a voltage of IV or 200 mA to the conductive polymer film, a force of 5 Mpa can be generated in the film surface direction of the conductive polymer film. A fluid vibrating device using a viscous polypropylene film for a diaphragm can generate a discharge pressure of 20 kPa for one fluid chamber. Further, in the fluid vibration device according to the embodiment shown in FIG. 1, a circular conductive polymer film having a diameter of 40 mm and a thickness of 40 m is used as each diaphragm, and expands and contracts by 0.9% per 0.5 second in the film surface direction. By doing so, a discharge rate of 72 ml Zs per second can be generated. Further, a desired discharge pressure can be obtained by laminating the conductive polymer films.
[0028] 特に、前記導電性高分子膜としては、 0. 5秒あたりの電解伸縮による伸び率が IV の電圧印加で 0. 5%以上である導電性高分子膜が、膜面方向に 0. 5秒当たり 0. 9 %以上の伸縮を行うことでき、大きな吐出量を容易に得ることができるので好ま 、。 0. 5秒あたりの電解伸縮による伸び率が 0. 5%以上である導電性高分子膜は、電気 化学的酸化還元による伸縮性を有する導電性高分子を電解重合法により製造する 導電性高分子の製造方法であって、前記電解重合法が、エーテル結合、エステル結 合、カーボネート結合、ヒドロキシル基、ニトロ基、スルホン基及び-トリル基のうち少 なくとも lつ以上の結合あるいは官能基を含む有機化合物及び Z又はハロゲンィ匕炭 化水素を溶媒として含む電解液を用い、前記電解液中にトリフルォロメタンスルホン 酸イオン及び Zまたは中心原子に対してフッ素原子を複数含むァ-オンを含む導電 性高分子の製造方法により容易に得ることができる。また、前記導電性高分子膜とし ては、電解重合法を用いた導電性高分子の製造方法であって、該電解重合法が、ァ ユオンとして、上記のトリフルォロメタンスルホン酸イオン及び Zまたは中心原子に対 してフッ素原子を複数含むァ-オンの替りに、化学式(1) [0028] In particular, as the conductive polymer film, a conductive polymer film having an elongation percentage due to electrolytic expansion and contraction per 0.5 second of 0.5% or more when a voltage of IV is applied is 0% in the film surface direction. It is preferable because expansion and contraction of 0.9% or more can be performed per 5 seconds, and a large discharge amount can be easily obtained. Conductive polymer membranes with an elongation of 0.5% or more due to electrolytic expansion / contraction per 0.5 second are manufactured by electropolymerization of conductive polymers that have elasticity due to electrochemical oxidation / reduction. The method for producing a molecule, wherein the electrolytic polymerization method comprises the steps of: ether bond, ester bond, carbonate bond, hydroxyl group, nitro group, sulfone group and -tolyl group. At least one organic compound containing at least one bond or a functional group and an electrolyte containing Z or halogenated hydrocarbon as a solvent are used, and the trifluoromethanesulfonate ion and Z or a central atom are contained in the electrolyte. It can be easily obtained by a method for producing a conductive polymer containing an ion containing a plurality of fluorine atoms. Further, the method for producing a conductive polymer using an electrolytic polymerization method as the conductive polymer film, wherein the electrolytic polymerization method uses the above trifluoromethanesulfonate ion and Z or Instead of an ion containing a plurality of fluorine atoms with respect to the central atom, the chemical formula (1)
(C F SO ) (C F SO ) N— (1)  (C F SO) (C F SO) N— (1)
n (2n+ l) 2 m (2m+ l) 2  n (2n + l) 2 m (2m + l) 2
(ここで、 n及び mは任意の整数。 )  (Here, n and m are arbitrary integers.)
で表されるパーフルォロアルキルスルホ二ルイミドイオンを含む電解液を用いた導電 性高分子の製造方法により容易に得ることができる。 Can be easily obtained by a method for producing a conductive polymer using an electrolytic solution containing a perfluoroalkylsulfonylimide ion represented by
前記電解重合法における溶媒として含まれる前記有機化合物としては、 1, 2—ジメ トキシェタン、 1, 2—ジエトキシェタン、テトラヒドロフラン、 2—メチルテトラヒドロフラン、 1, 4 ジォキサン (以上、エーテル結合を含む有機化合物)、 γ プチ口ラタトン、酢 酸ェチル、酢酸 η-ブチル、酢酸- 1-ブチル、 1, 2 ジァセトキシェタン、 3—メチルー 2— ォキサゾリジノン、安息香酸メチル、安息香酸ェチル、安息香酸ブチル、フタル酸ジ ェチル (以上、エステル結合を含む有機化合物)、プロピレンカーボネート、エチレン カーボネート、ジメチノレカーボネート、ジェチノレカーボネート、メチノレエチノレカーボネ ート(以上、カーボネート結合を含む有機化合物)、エチレングリコール、ブタノール、 1一へキサノール、シクロへキサノール、 1一才クタノール、 1ーデカノール、 1ードデカノ ール、 1一才クタデカノール (以上、ヒドロキシル基を含む有機化合物)、ニトロメタン、 ニトロベンゼン(以上、ニトロ基を含む有機化合物)、スルホラン、ジメチルスルホン( 以上、スルホン基を含む有機化合物)、及びァセトニトリル、ブチ口-トリル、ベンゾ- トリル (以上、二トリル基を含む有機化合物)を例示することができる。なお、ヒドロキシ ル基を含む有機化合物は、特に限定されるものではないが、多価アルコール及び炭 素数 4以上の 1価アルコールであること力 伸縮率が良いために好ましい。なお、前 記有機化合物は、前記の例示以外にも、分子中にエーテル結合、エステル結合、力 ーボネート結合、ヒドロキシル基、ニトロ基、スルホン基及び-トリル基のうち、 2っ以 上の結合ある!/、は官能基を任意の組合わせで含む有機化合物であってもよ 、。 Examples of the organic compound contained as a solvent in the electrolytic polymerization method include 1,2-dimethoxetane, 1,2-dietoxetane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane (the above, an organic compound containing an ether bond), γ Petit-mouth ratatone, ethyl acetate, η-butyl acetate, 1-butyl acetate, 1,2-diacetoxetane, 3-methyl-2-oxazolidinone, methyl benzoate, ethyl benzoate, butyl benzoate, phthalic acid Diethyl (above, an organic compound containing an ester bond), propylene carbonate, ethylene carbonate, dimethinolecarbonate, ethynolecarbonate, methinoolethionolecarbonate (above, an organic compound containing a carbonate bond), ethylene glycol, Butanol, 1-hexanol, cyclohexano 1-year-old ketanol, 1-decanol, 1-dodecanol, 1-year-old kutadecanol (above, organic compound containing hydroxyl group), nitromethane, nitrobenzene (above, organic compound containing nitro group), sulfolane, dimethyl sulfone ( As described above, organic compounds containing a sulfone group), and acetonitrile, butymouth-tolyl, and benzo-tolyl (these are organic compounds containing a nitrile group) can be exemplified. The organic compound containing a hydroxyl group is not particularly limited, but is preferably a polyhydric alcohol or a monohydric alcohol having 4 or more carbon atoms because of its good elasticity. In addition, in addition to the above examples, the organic compound may include two or more of an ether bond, an ester bond, a carbonate bond, a hydroxyl group, a nitro group, a sulfone group, and a -tolyl group. The above bond! /, May be an organic compound containing a functional group in any combination.
[0030] 前記有機化合物は、前記有機化合物を 2種以上混合して電解液の溶媒に用いる 場合には、エーテル結合を含む有機化合物、エステル結合を含む有機化合物、力 ーボネート結合を含む有機化合物、ヒドロキシル基を含む有機化合物、ニトロ基を含 む有機化合物、スルホン基を含む有機化合物、及び二トリル基を含む有機化合物の うち、伸張に優れた有機化合物と収縮に優れた有機化合物とを組合わせて、電解重 合により得られた導電性高分子の 1酸ィ匕還元サイクル当たりの伸縮率の向上を図るこ とちでさる。  When the organic compound is used as a solvent for an electrolytic solution by mixing two or more of the organic compounds, an organic compound having an ether bond, an organic compound having an ester bond, an organic compound having a carbonate bond, Among the organic compounds containing a hydroxyl group, the organic compounds containing a nitro group, the organic compounds containing a sulfone group, and the organic compounds containing a nitrile group, a combination of an organic compound having excellent extension and an organic compound having excellent contraction. Therefore, it is intended to improve the expansion / contraction ratio of the conductive polymer obtained by the electrolytic polymerization per 1 cycle of oxidation reduction.
[0031] また、前記の導電性高分子の製造方法において電解液に溶媒として含まれるハロ ゲンィ匕炭化水素は、炭化水素中の水素が少なくとも 1つ以上ハロゲン原子に置換さ れたもので、電解重合条件で液体として安定に存在することができるものであれば、 特に限定されるものではない。  [0031] In the method for producing a conductive polymer, the halogenated hydrocarbon contained as a solvent in the electrolytic solution is a hydrocarbon in which at least one hydrogen in the hydrocarbon is substituted with a halogen atom. There is no particular limitation as long as it can stably exist as a liquid under polymerization conditions.
[0032] 前記ハロゲン化炭化水素としては、例えば、ジクロロメタン、ジクロロェタンを挙げる ことができる。前記ハロゲン化炭化水素は、 1種類のみを前記電解液中の溶媒として 用いることもできるが、 2種以上併用することもできる。また、前記ハロゲン化炭化水素 は、上記の有機化合物との混合として用いてもよぐ該有機溶媒との混合溶媒を前記 電解液中の溶媒として用いることもできる。  [0032] Examples of the halogenated hydrocarbon include dichloromethane and dichloroethane. As the halogenated hydrocarbon, only one kind can be used as a solvent in the electrolytic solution, but two or more kinds can be used in combination. The halogenated hydrocarbon may be used as a mixture with the above organic compound, and a mixed solvent with the organic solvent may be used as a solvent in the electrolytic solution.
[0033] 前記の導電性高分子の製造方法において、電解重合法に用いられる電解液には 、電解重合される有機化合物(例えば、ピロール)およびトリフルォロメタンスルホン酸 イオン及び Zまたは中心原子に対してフッ素原子を複数含むァ-オンを含む。この 電解液を用いて電解重合を行うことにより、電解伸縮において 1酸ィ匕還元サイクル当 たりの伸縮率及び Zまたは特定時間あたりの変位率が優れた導電性高分子を得るこ とができる。上記電解重合により、トリフルォロメタンスルホン酸イオン及び Zまたは中 心原子に対してフッ素原子を複数含むァ-オンが導電性高分子に取り込まれること になる。  [0033] In the above-described method for producing a conductive polymer, the electrolytic solution used in the electrolytic polymerization method includes an organic compound to be electrolytically polymerized (for example, pyrrole) and trifluoromethanesulfonic acid ion and Z or a central atom. And a plurality of fluorine atoms. By conducting electrolytic polymerization using this electrolytic solution, it is possible to obtain a conductive polymer having an excellent expansion / contraction rate per one oxidation reduction cycle and excellent Z or displacement rate per specific time in electrolytic expansion and contraction. By the above-mentioned electrolytic polymerization, trifluoromethanesulfonic acid ions and aions containing a plurality of fluorine atoms with respect to Z or a central atom are incorporated into the conductive polymer.
[0034] 前記トリフルォロメタンスルホン酸イオン及び Zまたは中心原子に対してフッ素原子 を複数含むァ-オンは、電解液中の含有量が特に限定されるものではないが、電解 液中に 0. 1— 30重量%含まれるのが好ましぐ 1一 15重量%含まれるのがより好まし い。 [0034] The content of the trifluoromethanesulfonate ion and the arnone containing a plurality of fluorine atoms with respect to Z or the central atom in the electrolytic solution is not particularly limited, but the content of 0.1 to 0.5% in the electrolytic solution is not limited. 1-30% by weight is preferred 1-15% by weight is more preferred Yes.
[0035] トリフルォロメタンスルホン酸イオンは、化学式 CF SO—で表される化合物である。  [0035] Trifluoromethanesulfonic acid ion is a compound represented by the chemical formula CFSO-.
3 3  3 3
また、中心原子に対してフッ素原子を複数含むァ-オンは、ホウ素、リン、アンチモン 及びヒ素等の中心原子に複数のフッ素原子が結合をした構造を有し、ァ-オンの分 子中に中心原子に対して結合するフッ素原子を複数含む。中心原子に対してフッ素 原子を複数含むァ-オンとしては、特に限定されるものではないが、テトラフルォロホ ゥ酸イオン(BF―)、へキサフルォロリン酸イオン(PF―)、へキサフルォロアンチモン  In addition, an ion containing a plurality of fluorine atoms with respect to the central atom has a structure in which a plurality of fluorine atoms are bonded to a central atom such as boron, phosphorus, antimony, and arsenic. Contains a plurality of fluorine atoms bonded to the central atom. Examples of the aone containing a plurality of fluorine atoms with respect to the central atom are not particularly limited, and include tetrafluorophosphate ion (BF-), hexafluorophosphate ion (PF-), and hexafluoroantimony.
4 6  4 6
酸イオン(SbF―)、及びへキサフルォロヒ酸イオン (AsF―)を例示することができる。  Acid ions (SbF-) and hexafluorofluoric acid ions (AsF-) can be exemplified.
6 6  6 6
なかでも、 CF SO―、 BF—及び PF—が人体等に対する安全性を考慮すると好ましく  Among them, CF SO-, BF- and PF- are preferable in consideration of safety to human body.
3 3 4 6  3 3 4 6
、 CF SO—及び BF—がより好ましい。前記の中心原子に対してフッ素原子を複数含 , CF SO— and BF— are more preferred. Including multiple fluorine atoms with respect to the central atom
3 3 4 3 3 4
むァ-オンは、 1種類のァ-オンを用いても良ぐ複数種のァ-オンを同時に電解液 中に用いても良ぐさら〖こは、トリフルォロメタンスルホン酸イオンと複数種の中心原子 に対しフッ素原子を複数含むァ-オンとを同時に電解液中に用いても良 、。  Mu-on is good even if one kind of a-one is used, and several kinds of a-one can be used in the electrolyte at the same time. An ion containing a plurality of fluorine atoms with respect to the central atom may be simultaneously used in the electrolytic solution.
[0036] また、ァ-オンとして含まれる前記パーフルォロアルキルスルホ二ルイミドイオンは、 ァ-オン中心である窒素原子にスルホ-ル基が結合し、さらに、置換基である 2つの パーフルォロアルキル基を有している。このパーフルォロアルキルスルホ -ルは C F SOで表され、他のパーフルォロアルキルスルホ -ル基は、 C F SOで表 [0036] Further, the perfluoroalkylsulfonylimide ion contained as an a-one has a sulfon group bonded to a nitrogen atom which is the center of the a-one, and further has two perfluoro groups as substituents. It has a low alkyl group. This perfluoroalkyl sulfol is represented by C F SO, and other perfluoroalkyl sulfol groups are represented by C F SO.
2n+ l) 2 m (2m+ l) 2 される。前記の nおよび mは、それぞれ 1以上の任意の整数であり、 nと mとが同じ整 数であってもよぐ nと mとが異なる整数であっても良い。例えばトリフルォロメチル基、 ペンタフルォロェチル基、ヘプタフルォロプロピル基、ノナフルォロブチル基、ゥンデ カフルォロペンチル基、トリデカフルォ口へキシル基、ペンタデカフルォ口へプチル基 、ヘプタデカフルォロォクチル基などを挙げることができる。前記パーフルォロアルキ ルスルホ-ルイミド塩としては、例えば、ビストリフルォロメチルスルホ-ルアミド塩、ビ ス(ペンタフルォロェチルスルホ -ル)イミド塩、ビス(ヘプタデカフルォロォクチルス ルホ -ル)イミド塩を用いることができる。 2n + l) 2 m (2m + l) 2 The aforementioned n and m are arbitrary integers of 1 or more, respectively, and n and m may be the same integer, or n and m may be different integers. For example, trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, pendecafluoropentyl group, tridecafluoro hexyl group, pentadecafluoro heptyl group, heptadecaful And octyl group. Examples of the perfluoroalkylsulfonimide salt include bistrifluoromethylsulfonamide salt, bis (pentafluoroethylsulfolyl) imide salt, and bis (heptadecafluorooctylsulfoimide) salt. -R) imide salts can be used.
[0037] 上記化学式(1)のパーフルォロアルキルスルホ二ルイミドイオンは、カチオンと塩を 形成することができ、パーフルォロアルキルスルホ二ルイミド塩として電解重合法にお ける電解液中に加えられて 、ても良 、。パーフルォロアルキルスルホ-ルイミドと塩を 形成するカチオンは、 U+の様に 1つの元素から構成されていてもよぐ複数の元素よ り構成されていても良い。前記カチオンは、 1価の陽イオンとしてパーフルォロアルキ ルスルホニルイミドイオンを形成することができ、電解液中で解離することができるも のであれば、特に限定されるものではない。 [0037] The perfluoroalkylsulfonylimide ion of the above chemical formula (1) can form a salt with a cation, and is added as a perfluoroalkylsulfonylimide salt to the electrolytic solution in the electrolytic polymerization method. Being, even good. Perfluoroalkylsulfonimide and salt The cation to be formed may be composed of one element such as U + or may be composed of a plurality of elements. The cation is not particularly limited as long as it can form a perfluoroalkylsulfonylimide ion as a monovalent cation and can be dissociated in an electrolytic solution.
[0038] また、ダイヤフラムが複層構造を有する場合にぉ 、て、ダイヤフラムの全面に導電 性高分子膜の層と他の層との積層構造を有している必要が無ぐ流体室内の流体を 透過することのない層を有していれば、形状の中心付近に空間部を備えた導電性高 分子膜でも良い。  In addition, when the diaphragm has a multilayer structure, the fluid in the fluid chamber which does not need to have the laminated structure of the conductive polymer film layer and the other layers on the entire surface of the diaphragm A conductive polymer film having a space near the center of the shape may be used as long as it has a layer that does not transmit light.
[0039] また、本発明の流体振動装置は、ダイヤフラムを同一面上に並列で複数設けても 良い。また前記流体振動装置は、ダイヤフラムを流体振動装置内に積み重ね状に設 置しても良い。前記のようにダイヤフラムを流体振動装置内に複数設ける際には、ダ ィャフラムを同一面上に並列で複数備えたダイヤフラムユニットを形成しても良い。ま た、本発明の流体振動装置においては、前記ダイヤフラムユニットを並列に複数備え ること、または前記ダイヤフラムユニットを積み重ね状に複数備えても良い。  [0039] In the fluid vibration device of the present invention, a plurality of diaphragms may be provided in parallel on the same surface. Further, in the fluid vibration device, the diaphragm may be provided in a stacked state in the fluid vibration device. When a plurality of diaphragms are provided in the fluid vibration device as described above, a diaphragm unit having a plurality of diaphragms in parallel on the same surface may be formed. Further, in the fluid vibration device of the present invention, a plurality of the diaphragm units may be provided in parallel, or a plurality of the diaphragm units may be provided in a stack.
[0040] 図 3は、前記ダイヤフラムユニットの一実施態様例の正面図である。ダイヤフラムュ ニット 31は、円形孔の開口部に形成された導電性高分子膜 33を多数備えた金属枠 体 32を備えている。また、金属枠体 32の裏側にも同一形状の 32'を備えている。金 属枠体 32には電圧印加用のタブ部 34が形成されている。金属枠体 32'も、同様に タブ部が形成されている。また、孔 33には、導電性高分子膜が孔 33の開口部を覆う ように形成されている。図 4は、図 3のダイヤフラムユニットの A-A断面図である。図 5 は、図 4の断面図における部分拡大図である。  FIG. 3 is a front view of an embodiment of the diaphragm unit. The diaphragm unit 31 includes a metal frame 32 having a large number of conductive polymer films 33 formed in the openings of the circular holes. The same shape 32 ′ is also provided on the back side of the metal frame 32. The metal frame 32 has a tab 34 for voltage application. The tab portion is similarly formed on the metal frame 32 '. In the hole 33, a conductive polymer film is formed so as to cover the opening of the hole 33. FIG. 4 is a sectional view of the diaphragm unit taken along line AA of FIG. FIG. 5 is a partially enlarged view of the sectional view of FIG.
[0041] 図 5において、金属枠体 32の円形孔の開口部に形成された導電性高分子膜 332 は、金属枠体 32'の円形孔の開口部に形成された導電性高分子膜 332'と絶縁体 3 5を介して、凸部が向かい合うように対面している。上述した図 1または図 2のダイヤフ ラムの様に伸縮駆動することができる。また、金属枠体 32と金属枠体 32'との間に多 孔質体 36を配置することにより、金属枠体間に間隔を形成することが可能となり、導 電性高分子膜 332、 332'を断面円弧状に維持することができる。また、前記金属枠 体 32、 32'に電圧を印加することにより、各金属枠体における各ダイヤフラムに電圧 を印加することができるので、複数のダイヤフラムの駆動を容易に制御することができ る。なお、導電性高分子膜 332と導電性高分子膜 332'との間には電解液が封入さ れていることが好ましい。前記電解液が導電性高分子膜間に存在することにより、導 電性高分子膜 332、 332'が作用電極と対極との関係となり、図 1または図 2に示した ような伸縮駆動を容易にすることができる。また、前記絶縁体は、導電性高分子膜 33 2と導電性高分子膜 332'とが直接に接することを防止するために、各孔にそれぞれ 配置されているが、導電性高分子膜 332と導電性高分子膜 332'とが接しなければ、 配置されてなくても良い。 In FIG. 5, the conductive polymer film 332 formed in the opening of the circular hole of the metal frame 32 is the conductive polymer film 332 formed in the opening of the circular hole of the metal frame 32 ′. And the insulator 35 facing each other so that the convex portions face each other. It can be driven to expand and contract like the diaphragm of FIG. 1 or FIG. 2 described above. Further, by arranging the porous body 36 between the metal frame 32 and the metal frame 32 ', it is possible to form an interval between the metal frames, and the conductive polymer films 332, 332 'Can be maintained in an arc-shaped cross section. Further, by applying a voltage to the metal frames 32 and 32 ', a voltage is applied to each diaphragm in each metal frame. , It is possible to easily control the driving of the plurality of diaphragms. Note that an electrolytic solution is preferably sealed between the conductive polymer film 332 and the conductive polymer film 332 ′. The presence of the electrolyte between the conductive polymer films causes the conductive polymer films 332, 332 'to be in a relationship between the working electrode and the counter electrode, facilitating expansion and contraction driving as shown in FIG. 1 or FIG. Can be The insulator is disposed in each hole to prevent the conductive polymer film 332 and the conductive polymer film 332 ′ from directly contacting each other. If it does not contact the conductive polymer film 332 ', it may not be disposed.
[0042] 金属枠体 32, 32'に形成された導電性高分子膜は、特に形成方法が限定されるも のではない。例えば、金属枠体を作用電極とし、該金属枠体に背板を当てて、該金 属枠体の孔を該背板で塞いだ状態で電解重合をすることにより、該金属枠体の孔を 覆う導電性高分子膜は、容易に形成することができる。このような電解重合方法によ り形成された導電性高分子膜は、前記金属枠体を一面に覆う膜となるが、孔におい ては、ダイヤフラムとしての導電性高分子膜は円形となる。同一のスペース内に多数 の小さなダイヤフラムを形成できるので、各孔に形成された導電性高分子膜が伸縮 駆動することにより、大きな吐出圧を得ることができ、し力も、複数の流体振動装置が 並列に形成されるので、前記ダイヤフラムユニットを用いたダイヤフラムは、大きな流 量を吐出することもできる。  [0042] The method of forming the conductive polymer film formed on the metal frames 32 and 32 'is not particularly limited. For example, by using a metal frame as a working electrode, applying a back plate to the metal frame, and performing electrolytic polymerization in a state in which the holes of the metal frame are closed with the back plate, the holes of the metal frame are formed. The conductive polymer film covering the surface can be easily formed. The conductive polymer film formed by such an electrolytic polymerization method is a film covering the entire surface of the metal frame, but in the hole, the conductive polymer film as a diaphragm is circular. Since a large number of small diaphragms can be formed in the same space, a large discharge pressure can be obtained by the expansion and contraction of the conductive polymer film formed in each hole, and the force required by multiple fluid vibration devices can be increased. Since the diaphragms are formed in parallel, the diaphragm using the diaphragm unit can discharge a large flow rate.
[0043] 図 6は、前記ダイヤフラムユニットを用いた流体振動装置の一実施態様例における 斜視図である。図 7は、図 6の流体振動装置における B— B断面図である。図 8は、図 7の断面図におけるポート 64付近における部分拡大断面図である。図 9は図 7の断 面図におけるポート 65付近の部分拡大断面図である。  FIG. 6 is a perspective view of a fluid vibration device using the diaphragm unit according to an embodiment. FIG. 7 is a BB cross-sectional view of the fluid vibration device of FIG. FIG. 8 is a partially enlarged cross-sectional view near the port 64 in the cross-sectional view of FIG. FIG. 9 is a partially enlarged cross-sectional view near the port 65 in the cross-sectional view of FIG.
[0044] 図 6において、流体振動装置 61は、蓋体 62と底体 63により筐体が形成されている 。その筐体内部に、前記ダイヤフラムユニットが収納されている。前記蓋体には、ポー ト 64とポート 65とがそれぞれ 2つ設けられている。また、電圧印加用の端子 66、 66, も、外部電源と接続できるように、流体振動装置 61に備えている。流体振動装置 61 においては、ポート 64から流体振動装置内に吸入された流体力 ポート 64から吐出 されるように、流体振動装置 61が構成されている。また、流体振動装置 61において は、ポート 65から流体振動装置内に吸入された流体がポート 65から吐出されるよう に、流体振動装置 61が構成されている。 In FIG. 6, the fluid vibration device 61 has a housing formed by a lid 62 and a bottom 63. The diaphragm unit is housed inside the housing. The lid is provided with two ports 64 and two ports 65 respectively. In addition, terminals 66, 66 for voltage application are also provided in the fluid vibration device 61 so that they can be connected to an external power supply. In the fluid vibration device 61, the fluid vibration device 61 is configured so that the fluid force sucked into the fluid vibration device from the port 64 is discharged from the port 64. In the fluid vibration device 61, The fluid vibration device 61 is configured so that the fluid sucked into the fluid vibration device from the port 65 is discharged from the port 65.
[0045] 図 7の B— B断面図に示すように、流体振動装置 61には、 3つのダイヤフラムユニット が備えられている。図 8に示すように、 3つのダイヤフラムユニット 67、 68、 69は、間 隔が設けられ、流路 70、 71、 72、 73が形成されている。流路 70と流路 72は、ポート 64側の端部にシール体 74、 75が設けられて、流路 70と流路 72の流体がポート 64 力も流れないようにされている。また、図 9に示すように、流路 71と流路 73は、ポート 6 5側の端部にシール体 76、 77が設けられて、流路 71と流路 73の流体がポート 65か ら流れないようにされている。流路 71と流路 73とは、 2つのポート 64と通じている。同 様に、流路 70と流路 72とは、 2つのポート 65と通じている。  As shown in the BB cross-sectional view of FIG. 7, the fluid vibration device 61 is provided with three diaphragm units. As shown in FIG. 8, the three diaphragm units 67, 68, 69 are provided with an interval, and flow paths 70, 71, 72, 73 are formed. The channel 70 and the channel 72 are provided with seals 74 and 75 at the end on the port 64 side so that the fluid in the channel 70 and the channel 72 does not flow through the port 64. Further, as shown in FIG. 9, the flow passage 71 and the flow passage 73 are provided with seals 76 and 77 at the ends on the port 65 side, and the fluid in the flow passage 71 and the flow passage 73 flows from the port 65 through the port 65. It is not allowed to flow. The flow path 71 and the flow path 73 communicate with two ports 64. Similarly, the flow path 70 and the flow path 72 communicate with two ports 65.
[0046] 図 8及び図 9において、ダイヤフラムユニット 67及び 69の図下側のダイヤフラム並 びにダイヤフラムユニット 68の図上側のダイヤフラムが伸張して、流体は、ポート 64 力も吸入されて、一部が流路 71を通ってダイヤフラムユニット 67とダイヤフラムュ-ッ ト 68との間の空間に流入し、残りが流路 73を通って底体 63とダイヤフラムユニット 69 との間の空間に流入することができる。また、この流入と同時に、ダイヤフラムユニット 67及び 69の図上側のダイヤフラム、並びにダイヤフラムユニット 68の図下側のダイ ャフラムが収縮することにより、蓋体 62とダイヤフラムユニット 67との間の空間、並び にダイヤフラムユニット 68と 69との間の空間に存在する流体が 70、 72を通り、 2つの ポート 65から吐出することができる。同様にして、ダイヤフラムユニット 67及び 69の図 上側のダイヤフラム、並びにダイヤフラムユニット 68の図下側のダイヤフラムが伸張し て、流体は、 2つのポート 65から吸入されて、一部が流路 70を通って蓋体 62とダイヤ フラムユニット 67との間の空間に流入し、残りが 72を通ってダイヤフラムユニット 68と 69との間の空間に流入することができる。また、ポート 65からの吸入と同時に、ダイヤ フラムユニット 67とダイヤフラムユニット 68との間の空間、並びに底体 63とダイヤフラ ムユニット 69との間の空間に存在する流体が 71、 73を通り、 2つのポート 64から吐出 することができる。  In FIGS. 8 and 9, the lower diaphragm of the diaphragm units 67 and 69 and the upper diaphragm of the diaphragm unit 68 expand, and the fluid is also sucked into the port 64 and partially flows. Through the passage 71, it can flow into the space between the diaphragm unit 67 and the diaphragm cut 68, and the rest can flow through the flow passage 73 into the space between the bottom body 63 and the diaphragm unit 69. Simultaneously with this inflow, the upper diaphragm of the diaphragm units 67 and 69 and the lower diaphragm of the diaphragm unit 68 contract, so that the space between the lid 62 and the diaphragm unit 67, Fluid existing in the space between the diaphragm units 68 and 69 passes through 70 and 72 and can be discharged from the two ports 65. Similarly, the upper diaphragm of the diaphragm units 67 and 69 and the lower diaphragm of the diaphragm unit 68 extend, and the fluid is sucked in from the two ports 65 and partially passes through the flow passage 70. Thus, the air can flow into the space between the lid 62 and the diaphragm unit 67, and the rest can flow into the space between the diaphragm units 68 and 69 through 72. Simultaneously with the suction from the port 65, the fluid existing in the space between the diaphragm unit 67 and the diaphragm unit 68 and in the space between the bottom body 63 and the diaphragm unit 69 passes through 71 and 73, and the two It can be discharged from port 64.
[0047] つまり、図 7— 9に例示した流体振動装置の実施態様例では、ダイヤフラムユニット 67とダイヤフラムユニット 68とにおいて、互いに対面する導電性高分子膜は、伸張と 収縮とが、逆位相となるように駆動される。同様に、ダイヤフラムユニット 68とダイヤフ ラムユニット 69とにおいても。互いに対面する導電性高分子膜は、伸張と収縮とが、 逆位相となるように駆動される。このような導電性高分子膜の駆動により、ポート 64及 びポート 65は、それぞれ吸入と吐出とを 1サイクルとし、周期的に吸入と吐出とが繰り 返されて、流体振動装置 61が流体を加振することができる。なお、各ダイヤフラムュ ニットの導電性高分子膜の伸張と収縮とは、各ダイヤフラムユニットの金属枠体に電 圧を印加することにより、上述のように生じることができる。また、前記実施態様例では 、ポート 64及びポート 65をそれぞれ 2つ備えていた力 本発明の流体振動装置は、 それぞれ 1つずつ備えて 、ても良ぐそれぞれ 2つ以上備えて 、ても良 、。 That is, in the embodiment of the fluid vibration device illustrated in FIGS. 7-9, in the diaphragm unit 67 and the diaphragm unit 68, the conductive polymer membranes facing each other are in an extended state. It is driven so that the contraction and the contraction are in opposite phases. Similarly, in the diaphragm unit 68 and the diaphragm unit 69. The conductive polymer films facing each other are driven such that the expansion and contraction are in opposite phases. By driving such a conductive polymer film, the ports 64 and 65 make suction and discharge one cycle, respectively, and the suction and discharge are repeated periodically, and the fluid vibration device 61 pumps the fluid. Can be excited. The expansion and contraction of the conductive polymer film of each diaphragm unit can be caused as described above by applying a voltage to the metal frame of each diaphragm unit. Further, in the above embodiment, the force provided with two ports 64 and two ports 65 respectively is provided. The fluid vibration device of the present invention may be provided one by one, and may be provided by two or more. ,.
[0048] 上述のように、本発明の流体振動装置は、流体室の一部を形成するダイヤフラムに 含まれる導電性高分子膜について、電圧印加を調節することにより各流体室の導電 性高分子膜を周期的に伸縮運動をさせることで、流体に周期的な力を与えることが できる。これにより、本発明の流体振動装置は、振動を振動させることができる。なお 、本願における振動とは、周期的に振れ動くことであり、小刻みな振動のみならず大 きな振れの運動をも含むものである。 As described above, in the fluid vibration device of the present invention, the conductive polymer film included in the diaphragm forming a part of the fluid chamber is adjusted by applying a voltage to the conductive polymer film in each fluid chamber. Periodic force can be applied to the fluid by periodically expanding and contracting the membrane. Thereby, the fluid vibration device of the present invention can vibrate the vibration. Note that the vibration in the present application is a periodic vibration, and includes not only a small vibration but also a large vibration.
[0049] 本発明の流体振動装置は、各流体室における導電性高分子膜に電圧印加によつ て流体を高速若しくは低速の往復運動をさせることで流体を加振させて、その加振流 体により、前記流体振動装置が取付けられる装置の目的とする効果を発揮することが できる。例えば図 10は、図 2の流体振動装置を用いた応用用途装置の一実施態様 例の概念図である。図 10においては、流体室 7'で流体の吸入及び吐出が行われる ことで流路 81内の流体が加振され、流体室 8'で流体の吸入及び吐出が行われるこ とで流路 82内の流体が加振され、加振された流体により被加振体 83に振動が与え られる。 [0049] The fluid vibration device of the present invention excites the fluid by causing the fluid to reciprocate at a high or low speed by applying a voltage to the conductive polymer film in each fluid chamber. The intended effect of the device to which the fluid vibration device is attached can be exhibited by the body. For example, FIG. 10 is a conceptual diagram of an embodiment of an application device using the fluid vibration device of FIG. In FIG. 10, the fluid in the flow path 81 is vibrated by the suction and discharge of the fluid in the fluid chamber 7 ′, and the fluid in the flow path 82 is excited by the suction and discharge of the fluid in the fluid chamber 8 ′. The fluid inside is vibrated, and the vibrated body 83 is vibrated by the vibrated fluid.
産業上の利用可能性  Industrial applicability
[0050] 本発明の流体振動装置は、例えば上記のようにして、用いることができるのである 力 加振流体により被加振体を振動させるだけではなぐ加振流体によってその他の 熱的や力学的な効果を与えることができる。本発明の前記流体振動装置は、例えば 、洗浄装置に用いる流体振動装置、溶解装置に用いる流体振動装置、化学反応装 置における反応を生じるために振動若しくは熱エネルギーを与えるための流体振動 装置、ヒートパイプの流体の供給に用いる流体振動装置、またはホビー用途として用 V、る流体振動装置として用いることができる。 [0050] The fluid vibration device of the present invention can be used, for example, in the manner described above. Effect can be given. The fluid vibration device of the present invention includes, for example, a fluid vibration device used for a cleaning device, a fluid vibration device used for a dissolution device, and a chemical reaction device. It can be used as a fluid vibration device for applying vibration or thermal energy to generate a reaction in a device, a fluid vibration device used for supplying heat pipe fluid, or a fluid vibration device used for hobby applications.

Claims

請求の範囲 The scope of the claims
[1] 流体室を 2以上備えた流体振動装置であって、  [1] A fluid vibration device having two or more fluid chambers,
各流体室の少なくとも一部を構成するダイヤフラムを備え、  A diaphragm that constitutes at least a part of each fluid chamber,
該ダイヤフラムが導電性高分子膜を含み、  The diaphragm includes a conductive polymer film,
2以上のダイヤフラムが面する閉空間に電解液が満たされ、  An electrolyte is filled in a closed space where two or more diaphragms face,
各ダイヤフラムがダイヤフラムを挟んで該閉空間の反対側に流体室をそれぞれ備え 、各ダイヤフラムが導電性高分子膜を該電解液に接するようにそれぞれ含む流体振 動装置。  A fluid vibration device in which each diaphragm has a fluid chamber on the opposite side of the closed space across the diaphragm, and each diaphragm includes a conductive polymer film so as to be in contact with the electrolyte.
[2] 互いに対向するように配置した対のダイヤフラムを 1以上備え、対のダイヤフラム同士 が接続されて 、な 、請求の範囲第 1項に記載の流体振動装置。  [2] The fluid vibration device according to claim 1, further comprising at least one pair of diaphragms arranged to face each other, wherein the pair of diaphragms are connected to each other.
[3] 前記導電性高分子膜が IVの電圧印加により、 0. 5秒当たりの伸び率が 0. 5%以上 の導電性高分子を含む請求の範囲第 1項に記載の流体振動装置。  3. The fluid vibration device according to claim 1, wherein the conductive polymer film contains a conductive polymer having an elongation rate of 0.5% or more per 0.5 seconds when an IV voltage is applied.
[4] 前記導電性高分子膜が、電解重合法による導電性高分子の製造方法により得られ た導電性高分子を含み、前記電解重合法が、エーテル結合、エステル結合、カーボ ネート結合、ヒドロキシル基、ニトロ基、スルホン基及び-トリル基のうち少なくとも 1つ 以上の結合あるいは官能基を含む有機化合物及び Z又はハロゲン化炭化水素を溶 媒として含む電解液を用い、前記電解液中にトリフルォロメタンスルホン酸イオン及 び Zまたは中心原子に対してフッ素原子を複数含むァ-オンを含む導電性高分子 の製造方法により得られた前記導電性高分子を含む請求の範囲第 1項に記載の流 体振動装置。  [4] The conductive polymer film contains a conductive polymer obtained by a method for producing a conductive polymer by an electrolytic polymerization method, and the electrolytic polymerization method comprises an ether bond, an ester bond, a carbonate bond, Using an organic solution containing at least one bond or a functional group of at least one of a group, a nitro group, a sulfone group and a -tolyl group and a solvent containing Z or a halogenated hydrocarbon as a solvent; 2. The conductive polymer according to claim 1, wherein the conductive polymer is obtained by a method for producing a conductive polymer containing methanesulfonic acid ion and an ion containing a plurality of fluorine atoms with respect to Z or a central atom. Fluid vibration device.
[5] 前記導電性高分子膜が、電解重合法を用いた導電性高分子の製造方法であって 、該電解重合法が、ァ-オンとして、上記のトリフルォロメタンスルホン酸イオン及び [5] The conductive polymer film is a method for producing a conductive polymer using an electrolytic polymerization method, wherein the electrolytic polymerization method comprises, as an ion, the above trifluoromethanesulfonic acid ion and
Zまたは中心原子に対してフッ素原子を複数含むァニオンの替りに、化学式(1)Instead of an anion containing a plurality of fluorine atoms with respect to Z or a central atom, a chemical formula (1)
(C F SO ) (C F SO ) N— (1) (C F SO) (C F SO) N— (1)
n (2n+ l) 2 m (2m+ l) 2  n (2n + l) 2 m (2m + l) 2
(ここで、 n及び mは任意の整数。 )  (Here, n and m are arbitrary integers.)
で表されるパーフルォロアルキルスルホ二ルイミドイオンを含む電解液を用いた導電 性高分子の製造方法により得られた前記導電性高分子を含む請求の範囲第 1項に 記載の流体振動装置。 The fluid vibration device according to claim 1, comprising the conductive polymer obtained by a method for producing a conductive polymer using an electrolytic solution containing a perfluoroalkylsulfonylimide ion represented by:
[6] 各流体室に、流体の吸入及び吐出をするためのポートを備えた請求の範囲第 1項 に記載の流体振動装置。 6. The fluid vibration device according to claim 1, wherein each fluid chamber is provided with a port for sucking and discharging a fluid.
[7] 流体振動装置の駆動方法であって、 [7] A method of driving a fluid vibration device, comprising:
前記流体振動装置は、  The fluid vibration device,
流体室が 2以上設けられ、  Two or more fluid chambers are provided,
各流体室の少なくとも一部がダイヤフラムで構成され、  At least a part of each fluid chamber is constituted by a diaphragm,
該ダイヤフラムが導電性高分子膜を含み、  The diaphragm includes a conductive polymer film,
2以上のダイヤフラムが面する閉空間に電解液が満たされ、  An electrolyte is filled in a closed space where two or more diaphragms face,
各ダイヤフラムがダイヤフラムを挟んで該閉空間の反対側に流体室をそれぞれ備 え、  Each diaphragm has a fluid chamber on the opposite side of the closed space across the diaphragm,
各ダイヤフラムが導電性高分子膜を該電解液に接するようにそれぞれ含む流体振 動装置であり、  A fluid vibration device in which each diaphragm includes a conductive polymer film so as to be in contact with the electrolytic solution,
一方のダイヤフラムの駆動と他方のダイヤフラムの駆動とが吸入一吐出周期における 逆位相となるように、一方の導電性高分子膜に印加される電圧の逆電圧が他方の導 電性高分子膜に印加されるように電圧を印加し、  The reverse voltage of the voltage applied to one conductive polymer film is applied to the other conductive polymer film so that the driving of one diaphragm and the driving of the other diaphragm are in opposite phases in one suction-discharge cycle. Apply a voltage to be applied,
それぞれの印加電圧の極性を正負交互に印加することで連続的に駆動させる 流体振動装置の駆動方法。  A method for driving a fluid vibration device in which the polarity of each applied voltage is applied alternately to drive the fluid continuously.
[8] 電圧を印加することにより前記導電性高分子膜が収縮運動をして一方の流体室の容 積を縮小し、該収縮運動が該電圧と逆極性の電圧を印加することにより伸張する導 電性高分子膜を、電解液を介して、引張ることにより、他方の流体室の容積を増大さ せる請求の範囲第 7項に記載の流体振動装置の駆動方法。 [8] By applying a voltage, the conductive polymer film contracts to reduce the volume of one of the fluid chambers, and the contracting motion expands by applying a voltage having a polarity opposite to the voltage. 8. The method for driving a fluid vibration device according to claim 7, wherein the volume of the other fluid chamber is increased by pulling the conductive polymer film through the electrolytic solution.
[9] 前記ダイヤフラムが電解液を介して対向するように配置された対を一対以上有し、対 の一方のダイヤフラムと他方のダイヤフラムとが吸入一吐出周期における逆位相とな るように連続的に駆動させる請求の範囲第 7項に記載の流体振動装置の駆動方法。 [9] The diaphragm has at least one pair of pairs arranged so as to face each other with the electrolyte interposed therebetween, and one of the pair of the diaphragms and the other of the pair are continuously arranged so as to have opposite phases in one suction-discharge cycle. 8. The driving method of a fluid vibration device according to claim 7, wherein the driving is performed in the following manner.
PCT/JP2005/004968 2004-03-22 2005-03-18 Fluid vibrating apparatus and method of driving the same WO2005120728A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004081976A JP4507242B2 (en) 2004-03-22 2004-03-22 Fluid vibration device and driving method thereof
JP2004-081976 2004-03-22

Publications (1)

Publication Number Publication Date
WO2005120728A1 true WO2005120728A1 (en) 2005-12-22

Family

ID=35093789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004968 WO2005120728A1 (en) 2004-03-22 2005-03-18 Fluid vibrating apparatus and method of driving the same

Country Status (2)

Country Link
JP (1) JP4507242B2 (en)
WO (1) WO2005120728A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8062007B2 (en) 2008-07-08 2011-11-22 Panasonic Corporation Fluid transporting device using conductive polymer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557551U (en) * 1992-01-09 1993-07-30 東陶機器株式会社 Linear actuator
JPH09293913A (en) * 1996-04-25 1997-11-11 Casio Comput Co Ltd Functionable polymer device
JPH09302246A (en) * 1996-05-20 1997-11-25 Casio Comput Co Ltd Functional polymer element and its production
JPH09312984A (en) * 1996-05-21 1997-12-02 Casio Comput Co Ltd Functional polymer element and method for manufacturing it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557551U (en) * 1992-01-09 1993-07-30 東陶機器株式会社 Linear actuator
JPH09293913A (en) * 1996-04-25 1997-11-11 Casio Comput Co Ltd Functionable polymer device
JPH09302246A (en) * 1996-05-20 1997-11-25 Casio Comput Co Ltd Functional polymer element and its production
JPH09312984A (en) * 1996-05-21 1997-12-02 Casio Comput Co Ltd Functional polymer element and method for manufacturing it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8062007B2 (en) 2008-07-08 2011-11-22 Panasonic Corporation Fluid transporting device using conductive polymer

Also Published As

Publication number Publication date
JP2005269842A (en) 2005-09-29
JP4507242B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
US7931824B2 (en) Surfactants and polymerizable surfactants based on room-temperature ionic liquids that form lyotropic liquid crystal phases with water and room-temperature ionic liquids
EP1916237B1 (en) Compound containing fluorosulfonyl group, process for producing the same, and polymer thereof
CN1179127C (en) Multiple-cavity piezoelectric film driven pump
US9199201B2 (en) Self contained electroosmotic pump and method of making thereof
FI108204B (en) A film for converting energies
CN101568728A (en) Piezoelectric micro-blower
US9103331B2 (en) Electro-osmotic pump
JP4619690B2 (en) Diaphragm pump containing conductive polymer and driving method thereof
JP4691703B2 (en) Actuator element and manufacturing method thereof
WO2005120728A1 (en) Fluid vibrating apparatus and method of driving the same
CN2580141Y (en) Multiple cavity piezoelectric membrane driving pump
JP2010160952A (en) Conductive thin film including carbon nanotube, polymerizable ion liquid and ion liquid, and actuator element
CN102822252A (en) High surface area polymer actuator with gas mitigating components
JP2008252958A (en) Actuator and electrode for use in the actuator
CN1249899C (en) Mini type electroosmosis pump
US10535891B2 (en) Two-electron redox catholyte for redox flow batteries
JP2004035868A (en) Ionic rubber or elastomer
JP5247321B2 (en) Optically driven actuator, manufacturing method thereof, and power transmission system
JP2006185646A (en) Dye-sensitized solar cell
JP2007262195A (en) Optically driven type polymer actuator, method for producing optically driven type polymer actuator, polyfunctional monomer and polymer
JP6108446B2 (en) Device and method for transporting liquid in a microchannel
JP3131644B2 (en) Polymer and method for producing the same
JP2011144692A (en) Fluid transport device using conductive high polymer
JP5113002B2 (en) Electroacoustic transducer
Ma et al. Resonantly driven piezoelectric micropump with PDMS check valves and compressible space

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase