WO2005119742A1 - Exposure apparatus, exposure method, and device producing method - Google Patents

Exposure apparatus, exposure method, and device producing method Download PDF

Info

Publication number
WO2005119742A1
WO2005119742A1 PCT/JP2005/010217 JP2005010217W WO2005119742A1 WO 2005119742 A1 WO2005119742 A1 WO 2005119742A1 JP 2005010217 W JP2005010217 W JP 2005010217W WO 2005119742 A1 WO2005119742 A1 WO 2005119742A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
space
substrate
exposure apparatus
exposure
Prior art date
Application number
PCT/JP2005/010217
Other languages
French (fr)
Japanese (ja)
Inventor
Yasufumi Nishii
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to EP05745697A priority Critical patent/EP1768169B9/en
Priority to KR1020067022069A priority patent/KR101264936B1/en
Priority to US11/628,482 priority patent/US20070216889A1/en
Priority to CN2005800159214A priority patent/CN1954408B/en
Publication of WO2005119742A1 publication Critical patent/WO2005119742A1/en
Priority to IL179826A priority patent/IL179826A0/en
Priority to US11/645,639 priority patent/US20070103661A1/en
Priority to US11/802,061 priority patent/US20070222958A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70916Pollution mitigation, i.e. mitigating effect of contamination or debris, e.g. foil traps

Definitions

  • the present invention relates to an exposure apparatus that exposes a substrate, an exposure method, and a device manufacturing method.
  • Semiconductor devices and liquid crystal display devices are manufactured by a so-called photolithography technique in which a pattern formed on a mask is transferred onto a photosensitive substrate.
  • An exposure apparatus used in the photolithography process has a mask stage for supporting a mask and a substrate stage for supporting a substrate, and sequentially moves the mask stage and the substrate stage to project a pattern of the mask through a projection optical system. Transfer to the substrate.
  • further improvement in the resolution of the projection optical system has been desired in order to cope with higher integration of device patterns.
  • the resolution of the projection optical system increases as the exposure wavelength used decreases and as the numerical aperture of the projection optical system increases. Therefore, the exposure wavelength used in the exposure apparatus is becoming shorter year by year, and the numerical aperture of the projection optical system is also increasing.
  • the mainstream exposure wavelength is 248 nm of KrF excimer laser, and 193 nm of short wavelength ArF excimer laser is being put to practical use.
  • the depth of focus (DOF) is as important as the resolution.
  • the resolution and the depth of focus ⁇ are respectively expressed by the following equations.
  • is the exposure wavelength
  • is the numerical aperture of the projection optical system
  • k is the process coefficient
  • a liquid immersion method disclosed in International Publication No. 99-49504 has been proposed.
  • This immersion method The space between the image plane side end surface (lower surface) of the projection optical system and the substrate surface is filled with a liquid such as water or an organic solvent to form an immersion area, and the wavelength of the exposure light in the liquid is By using the fact that 1 Zn (n is the refractive index of liquid, which is usually about 1.2 to 1.6), the resolution is improved and the depth of focus is increased about n times.
  • the liquid in the liquid immersion area may be contaminated by impurities or the like generated from the substrate, for example, in the liquid in the liquid immersion area. is there. Then, the liquid in the contaminated liquid immersion area may contaminate the optical element that comes into contact with the liquid in the contaminated liquid immersion area among the plurality of elements (optical elements) constituting the projection optical system. is there.
  • the optical element is contaminated, inconveniences such as a decrease in the light transmittance of the optical element and a distribution of the light transmittance occur, and the exposure accuracy and the measurement accuracy via the projection optical system are deteriorated.
  • the present invention has been made in view of such circumstances, and provides an exposure apparatus, an exposure method, and a device manufacturing method using the exposure apparatus and the exposure method, which can prevent deterioration of exposure accuracy and measurement accuracy.
  • the purpose is to:
  • the present invention employs the following configuration corresponding to Figs. 1 to 8 shown in the embodiment.
  • the reference numerals in parentheses attached to each element are merely examples of the element, and do not limit each element.
  • an exposure apparatus that irradiates a substrate (P) with exposure light (EL) to expose the substrate (P), a plurality of elements (2A to 2G) ), And of the plurality of elements (2A to 2G), the first element (2G) closest to the image plane of the projection optical system (PL) and the projection optical system (PL)
  • the liquid (LQ1) of (K1) forms an immersion area (AR2) that partially covers the surface of the substrate ( ⁇ ), and the first space (K1) Exposing the substrate (P) by irradiating the substrate (P) with exposure light (EL) through the liquid (LQ1) and the liquid (LQ2) in the second space (K2).
  • Equipment (EX) is provided.
  • the substrate by filling the first and second spaces on the one surface side and the other surface side of the first element with liquid, the substrate can be favorably exposed while a large image-side numerical aperture is secured. can do. Further, for example, when the liquid filled in the first space comes into contact with the substrate, there is a high possibility that one surface of the first element is contaminated, but the first element can be configured to be easily replaceable. Therefore, if only the contaminated first element is replaced with a clean element, exposure and measurement via the projection optical system including the clean first element and the liquid can be favorably performed.
  • the first element in the present invention may be a transparent member having no refracting power (for example, a parallel plane plate).
  • the transparent member disposed closest to the image plane may be an image forming member of the projection optical system. Even if it does not contribute to the performance at all, the transparent member is regarded as the first element.
  • the first element in the present invention is supported in a state of being substantially stationary with respect to the optical axis of the projection optical system. Are also considered “substantially stationary”.
  • an exposure apparatus for exposing a substrate (P) by irradiating the substrate (P) with exposure light (EL), and exposing the substrate (P) to a plurality of elements (2A to 2G).
  • a projection optical system (PL) provided on one surface (2S) side of the first element (2G) closest to the image plane of the projection optical system (PL) among the plurality of elements (2A to 2G).
  • the liquid (LQ) is supplied from one of the first space (K1) and the second space (K2), and the first space (K1) is connected to the first space (K1) through the connection hole (74).
  • a liquid supply mechanism (30) for filling the second space (K2) with the liquid (LQ) is provided, and the substrate (P) is supplied through the liquid (LQ) in the first space (K1) and the second space (K2).
  • An exposure apparatus (EX) characterized in that the substrate (P) is exposed by irradiating the substrate (P) with exposure light (EL).
  • the liquid supply mechanism supplies the liquid to one of the first space on one surface side of the first element and the second space on the other surface side, so that the first and the second via the connection hole.
  • Each of the second spaces can be easily filled with liquid.
  • the one side and the other side of the first element By filling each of the first and second spaces with the liquid, the substrate can be favorably exposed while a large image-side numerical aperture is secured.
  • the liquid filled in the first space comes into contact with the substrate, there is a high possibility that one surface of the first element is contaminated, but the first element may be configured to be easily replaced. Since only the contaminated first element can be replaced with a clean element, exposure and measurement via the projection optical system having the clean first element and liquid can be performed satisfactorily. .
  • the first element in the present invention may be a non-refractive transparent member (for example, a plane-parallel plate).
  • the transparent member disposed closest to the image plane may be an image forming member of the projection optical system. Even if it does not contribute to the performance at all, the transparent member is regarded as the first element.
  • the substrate (P) is irradiated with exposure light (EL) via a projection optical system (PL) including a plurality of elements (2A to 2G) to An exposure method for exposing a liquid (LQ1) to a first space (K1) on a light emission side of a first element (2G) closest to an image plane of the projection optical system (PL) among the plurality of elements. ), Supplying the liquid (LQ2) to the second space (K2) on the light incident side of the first element and separated from the first space (K1), and supplying the liquid in the first space.
  • the substrate is exposed by irradiating the substrate with exposure light, and the second space (K2 ), The supply of the liquid (LQ2) to the second space while the liquid is filled with the liquid is stopped.
  • the liquid is brought into the first space on the light emission side and the second space on the light incidence side of the first element, and is passed through the liquid in those spaces. Since the substrate is exposed by irradiating the exposure light, the substrate can be exposed with a large image-side numerical aperture secured. Further, by making the first element a detachable element, even if the first element is contaminated with the liquid in the first space, it can be easily cleaned or replaced. In addition, while the substrate is being exposed, the supply of the liquid to the second space is stopped. Vibration due to the supply of the liquid to the space is suppressed, and the substrate can be exposed with desired accuracy.
  • the first space and the second space are filled with the liquid (LQ) by supplying the liquid to one of the second space (K2) which is circulated to the first space and is formed on the other surface side, and
  • the liquid (LQ1) in the space (K1) forms a liquid immersion area (AR2) that partially covers the surface of the substrate (P), and the substrate is exposed to light through the liquid (LQ) in the first and second spaces.
  • An exposure method is provided, which comprises exposing the substrate to light.
  • the liquid is supplied to only one of the spaces and only one of the spaces is supplied.
  • the liquid can be recovered from the wastewater. Therefore, the equipment required for liquid supply and liquid recovery can be simplified, and vibrations that may affect the exposure operation can be suppressed.
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of an exposure apparatus of the present invention.
  • FIG. 2 is an enlarged view of a main part of FIG. 1.
  • FIG. 3 is a view of the nozzle member as viewed from below.
  • FIG. 4 is an enlarged view of a main part showing a second embodiment of the exposure apparatus of the present invention.
  • FIG. 5 is an enlarged view of a main part showing a third embodiment of the exposure apparatus of the present invention.
  • FIG. 6 is a schematic perspective view of a nozzle member.
  • FIG. 7 is an enlarged view of a main part showing a fourth embodiment of the exposure apparatus of the present invention.
  • FIG. 8 is a flowchart illustrating an example of a semiconductor device manufacturing process.
  • FIG. 9 is a view for explaining a liquid collecting operation in a first liquid collecting mechanism in an exposure apparatus according to a fifth embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of the exposure apparatus of the present invention.
  • the exposure apparatus EX includes a mask stage MST that supports a mask M, a substrate stage PST that supports a substrate P, and a mask M that is supported by the mask stage MST using an exposure light EL. Operation of the illumination optical system IL to illuminate, the projection optical system PL for projecting and exposing the pattern image of the mask M illuminated by the exposure light EL onto the substrate P supported by the substrate stage PST, and the operation of the entire exposure apparatus EX And a control device CONT that controls the entire system.
  • a control device CONT that controls the entire system.
  • the exposure apparatus EX of the present embodiment is an immersion exposure apparatus to which the immersion method is applied in order to substantially shorten the exposure wavelength to improve the resolution and substantially widen the depth of focus.
  • the first liquid supply mechanism 10 includes the lower surface 2S of the final optical element 2G closest to the image plane of the projection optical system PL and the substrate P among the plurality of optical elements 2 (2A to 2G) constituting the projection optical system PL.
  • the liquid LQ1 is supplied to the first space K1 formed between them.
  • the first liquid recovery mechanism 20 recovers the liquid LQ1 supplied to the first space K1.
  • the exposure apparatus EX includes a second liquid supply mechanism that supplies a liquid LQ2 to a second space K2 formed between the upper surface 2T of the final optical element 2G and the optical element 2F provided above the final optical element 2G. 30 and a second liquid recovery mechanism 60 that recovers the liquid LQ2 supplied to the second space K2.
  • the first space K1 and the second space K2 are independent spaces, and the second liquid supply mechanism 30 can supply the liquid to the second space K2 independently of the first liquid supply mechanism 10. Further, the second liquid recovery mechanism 60 can recover the liquid in the second space K2 independently of the first liquid recovery mechanism 20. It is.
  • the exposure apparatus EX supplies the liquid from the second liquid supply mechanism 30 at least while transferring the pattern image of the mask M onto the substrate P (while irradiating the substrate P with the exposure light EL).
  • the liquid LQ1 supplied from the first liquid supply mechanism 10 partially enlarges the projection area AR1 on the substrate P including the projection area AR1 of the projection optical system PL.
  • a liquid immersion area AR2 smaller than the substrate P is locally formed.
  • the exposing device EX fills the first space K1 between the final optical element 2G closest to the image plane of the projection optical system PL and the surface of the substrate P arranged on the image plane side with the liquid LQ1.
  • the local immersion method that covers a part of the surface of the substrate P with the immersion area AR2 is adopted, and the projection optical system PL, the liquid LQ2 in the second space K2 on the upper surface 2T side of the final optical element 2G, and the final optical element 2G
  • the pattern of the mask M is projected and exposed on the substrate P by irradiating the substrate P with exposure light EL passing through the mask M via the liquid LQ1 in the first space K1 on the lower surface 2S side.
  • nozzle members constituting a part of the first and second liquid supply mechanisms 10, 20 and the first and second liquid recovery mechanisms 30, 60 are provided.
  • (A road forming member) 70 is disposed.
  • the nozzle member 70 is an annular member provided to surround the lower part of the lens barrel PK above the substrate P (substrate stage PST).
  • scanning is performed by exposing the pattern formed on the mask M to the substrate P while synchronously moving the mask M and the substrate P in directions different from each other (reverse direction) in the scanning direction.
  • a mold exposure apparatus a so-called scanning stepper
  • the direction that coincides with the optical axis AX of the projection optical system PL is the Z-axis direction
  • the direction of synchronous movement (scanning direction) between the mask M and the substrate P in a plane perpendicular to the Z-axis direction is the X-axis direction
  • the direction perpendicular to the Z-axis direction and the X-axis direction (non-scanning direction) is the Y-axis direction.
  • the directions of rotation (tilt) around the X axis, Y axis, and Z axis are the ⁇ , 0 ⁇ , and 0 ⁇ directions, respectively.
  • the illumination optical system IL illuminates the mask ⁇ supported by the mask stage MST with the exposure light EL.
  • the illumination light system IL is used to make the illuminance of the exposure light source and the luminous flux emitted from the exposure light source uniform.
  • a predetermined illumination area on the mask M is illuminated by the illumination optical system IL with exposure light EL having a uniform illuminance distribution.
  • Exposure light EL that is emitted is, for example, a bright line (g-line, h-line, i-line) that also emits a mercury lamp power, or a deep ultraviolet light (DUV light) such as a KrF excimer laser light (wavelength 248 nm) And vacuum ultraviolet light (VUV) such as ArF excimer laser light (wavelength 193 nm) and F laser light (wavelength 157 nm).
  • DUV light deep ultraviolet light
  • KrF excimer laser light wavelength 248 nm
  • VUV vacuum ultraviolet light
  • ArF excimer laser light wavelength 193 nm
  • F laser light wavelength 157 nm
  • ArF excimer laser light is used.
  • the same pure water is used for the liquid LQ1 filling the first space K1 and the liquid LQ2 filling the second space K2.
  • Pure water transmits not only ArF excimer laser light but also far ultraviolet light (DUV light) such as emission lines (g-line, h-line, i-line) and KrF excimer laser light (wavelength: 248 nm), which emits the power of a mercury lamp. It is possible.
  • DUV light far ultraviolet light
  • the mask stage MST is movable while holding the mask M.
  • the mask M is fixed by vacuum suction (or electrostatic suction).
  • the mask stage MST can be two-dimensionally moved in a plane perpendicular to the optical axis AX of the projection optical system PL, that is, in the XY plane, and can be slightly rotated in the ⁇ Z direction by a mask stage driving device MSTD including a linear motor and the like.
  • the mask stage MST is movable at a designated scanning speed in the X-axis direction, and is moved in the X-axis direction such that the entire surface of the mask M can cross at least the optical axis AX of the projection optical system PL. Has a stroke.
  • a movable mirror 41 that moves together with the mask stage MST is provided on the mask stage MST. Further, a laser interferometer 42 is provided at a position facing the movable mirror 41. The two-dimensional position of the mask M on the mask stage MST and the rotation angle in the ⁇ Z direction (including the rotation angles in the ⁇ X and ⁇ Y directions in some cases) are measured in real time by the laser interferometer 42 and measured. The result is output to the control unit CONT.
  • the control device CONT controls the position of the mask M supported by the mask stage MST by driving the mask stage driving device MSTD based on the measurement result of the laser interferometer 42.
  • the projection optical system PL projects and exposes the pattern of the mask M onto the substrate P at a predetermined projection magnification 13.
  • the projection optical system PL is composed of a plurality of optical elements 2 (2A to 2G) including an optical element 2F close to the image plane next to the final optical element 2G and the final optical element 2G provided at the tip of the substrate P side. Have been. Multiple optical elements 2A to 2G are almost stationary with respect to optical axis AX It is supported by the lens barrel PK in this state.
  • the projection optical system PL is a reduction system with a projection magnification j8 of, for example, 1Z4, 1/5, or 1Z8.
  • the projection optical system PL may be either a unity magnification system or a magnification system.
  • the projection optical system PL may be any one of a catadioptric system including a refractive element and a reflective element, a dioptric system not including a reflective element, and a reflective system not including a refractive element.
  • the substrate stage PST can move while holding the substrate P via the substrate holder PH, can move two-dimensionally in the XY plane, and can minutely rotate in the ⁇ Z direction. Further, the substrate stage PST can move in the Z-axis direction, the ⁇ X direction, and the ⁇ Y direction.
  • the substrate P is held on the substrate holder PH by, for example, vacuum suction.
  • the substrate stage PST is driven by a substrate stage driving device PSTD such as a linear motor controlled by a control device CONT.
  • a movable mirror 43 that moves with respect to the projection optical system PL together with the substrate stage PST is provided on the substrate stage PST.
  • a laser interferometer 44 is provided at a position facing the movable mirror 43. The two-dimensional position and the rotation angle of the substrate P on the substrate stage PST are measured in real time by the laser interferometer 44.
  • the exposure apparatus EX includes a focus for detecting positional information on the surface of the substrate P supported by the substrate stage PST as disclosed in, for example, Japanese Patent Application Laid-Open No. 8-37149. 'Equipped with leveling detection system.
  • the focus / leveling detection system can detect the position information of the surface of the substrate P in the Z-axis direction and the tilt information of the substrate P in the ⁇ X and ⁇ Y directions with or without the liquid LQ1 in the first space K1. To detect. In the case of a focus leveling detection system that detects surface information on the substrate P surface without passing through the liquid LQ1, even if the surface information on the substrate P surface is detected at a position away from the projection optical system PL Yo! / ⁇ .
  • An exposure apparatus that detects surface information on the surface of the substrate P at a position distant from the projection optical system PL is disclosed in, for example, U.S. Patent No. 6,674,510. To the extent permitted by law, the contents of this document will be incorporated herein by reference.
  • the measurement result of the laser interferometer 44 is output to the control device CONT.
  • the light reception result of the focus / repeat detection system is also output to the controller CONT.
  • the controller CONT controls the substrate stage drive PSTD based on the detection result of the focus leveling detection system. By driving and controlling the focus position and the tilt angle of the substrate P to align the surface of the substrate P with the image plane of the projection optical system PL, based on the measurement result of the laser interferometer 44, the X-axis direction and the Performs positioning in the Y-axis direction.
  • a concave portion 50 is provided on the substrate stage PST, and a substrate holder PH for holding the substrate P is disposed in the concave portion 50.
  • the upper surface 51 of the substrate stage PST other than the concave portion 50 has a flat surface (flat portion) which is almost the same height (level) as the surface of the substrate P held by the substrate holder PH.
  • the upper surface of movable mirror 43 is also provided substantially flush with upper surface 51 of substrate stage PST.
  • the upper surface 51 which is almost flush with the surface of the substrate P, is provided around the substrate P. Therefore, even when the edge region of the substrate P is subjected to immersion exposure, there is no step outside the edge of the substrate P.
  • the liquid LQ can be satisfactorily formed by holding the liquid LQ on the image plane side of the PL. Note that as long as the liquid LQ1 can be held in the first space K1, there may be a small step between the surface of the substrate P and the upper surface 51 of the substrate stage PST. In addition, there is a gap of about 0.1 to 2 mm between the edge portion of the substrate P and the flat surface (upper surface) 51 provided around the substrate P. The liquid is placed in the gap due to the surface tension of the liquid LQ. The liquid LQ can be held under the projection optical system PL by the upper surface 51 even when exposing the vicinity of the periphery of the substrate P where the LQ hardly flows.
  • the upper surface 51 can be made liquid-repellent.
  • a liquid-repellent material such as a fluororesin material such as polytetrafluoroethylene, an acrylic resin material, or a silicon-based resin material is applied to the upper surface 51, or the liquid-repellent material is applied.
  • Liquid repelling treatment such as attaching a thin film made of
  • the region of the liquid repellent material may be the entire upper surface 51, or may be only a part of the region requiring liquid repellency.
  • the exposure apparatus EX includes a lens barrel base 5 that supports the projection optical system PL, a lens barrel base 5 and a mask It has a main column 1 that supports the Ttage MST.
  • the main column 1 is set on a base 9 provided on the floor!
  • the substrate stage PST is supported on the base 9!
  • the main column 1 has an upper step 7 and a lower step 8 projecting inward.
  • the illumination optical system IL is supported by a support frame 3 fixed on the upper part of the main column 1.
  • the mask base 4 is supported on the upper step 7 of the main column 1 via a vibration isolator 46. Openings MK1 and MK2 are formed in the center of the mask stage MST and the mask base 4, respectively, to pass the pattern image of the mask M.
  • a plurality of gas bearings (air bearings) 45 which are non-contact bearings, are provided on the lower surface of the mask stage MST.
  • the mask stage MST is supported in a non-contact manner on the upper surface (guide surface) of the mask surface plate 4 by an air bearing 45, and can be moved two-dimensionally in the XY plane by the mask stage driving device MSTD and can be micro-rotated in the Z direction. It is.
  • a flange PF is provided on the outer periphery of the barrel PK holding the projection optical system PL, and the projection optical system PL is supported by the barrel base 5 via the flange PF.
  • An anti-vibration device 47 including an air mount is provided between the lens barrel base 5 and the lower step 8 of the main column 1, and the lens barrel base 5 supporting the projection optical system PL is a main column. It is supported by the lower step 8 of 1 via a vibration isolator 47.
  • the vibration isolator 47 vibrates the lens barrel base 5 and the main column 1 so that the vibration force of the main column 1 is not transmitted to the lens barrel base 5 that supports the projection optical system PL.
  • a plurality of gas bearings (air bearings) 48 which are non-contact bearings, are provided on the lower surface of the substrate stage PST.
  • the base plate 6 is supported on the base 9 via a vibration isolator 49 including an air mount and the like.
  • the substrate stage PST is supported in a non-contact manner on the upper surface (guide surface) of the substrate surface plate 6 by an air bearing 48, and can be moved two-dimensionally in the XY plane by the substrate stage driving device PS TD and minute in the ⁇ Z direction. It is rotatable.
  • the vibration isolator 49 prevents the vibration force of the base 9 (floor surface) and the main column 1 from being transmitted to the substrate plate 6 that supports the substrate stage PST in a non-contact manner. 9 (floor surface) is separated by vibration!
  • the nozzle member 70 is supported on the lower step 8 of the main column 1 via the connecting member 52.
  • the connecting member 52 is fixed to the lower step 8 of the main column 1, and the nozzle member 70 is fixed to the connecting member 52.
  • the lower step 8 of the main column 1 supports the projection optical system PL via the vibration isolator 47 and the barrel base 5, and the nozzle member 70 is connected to the lower step supporting the projection optical system PL. It is supported by 8, and has a configuration.
  • the main column 1 supporting the nozzle member 70 via the connecting member 52 and the barrel base 5 supporting the barrel PK of the projection optical system PL via the flange PF. Are separated from each other by vibration through a vibration isolator 47. Therefore, the vibration generated in the nozzle member 70 is prevented from being transmitted to the projection optical system PL.
  • the main column 1 supporting the nozzle member 70 via the connecting member 52 and the substrate table 6 supporting the substrate stage PST are vibrated and separated via the vibration isolator 49. ing. Therefore, the vibration force generated by the nozzle member 70 is prevented from being transmitted to the substrate stage PST via the main column 1 and the base 9.
  • the main column 1 supporting the nozzle member 70 via the connecting member 52 and the mask base 4 supporting the mask stage MST are vibratingly separated via a vibration isolator 46. . Therefore, the vibration generated in the nozzle member 70 is prevented from being transmitted to the mask stage MST via the main column 1.
  • the first liquid supply mechanism 10 supplies the liquid LQ1 to the first space K1 formed on the lower surface 2S side (light emission side) of the final optical element 2G of the projection optical system PL.
  • the first liquid supply mechanism 10 includes a first liquid supply unit 11 that can send out the liquid LQ1, and a supply pipe 13 that connects one end of the first liquid supply unit 11 to the first liquid supply unit 11.
  • the first liquid supply unit 11 includes a tank that stores the liquid LQ1, a temperature controller that adjusts the temperature of the liquid LQ1 to be supplied, a filter device that removes foreign matter in the liquid LQ1, a pressure pump, and the like.
  • the liquid supply mechanism 10 supplies the liquid LQ1 onto the substrate P.
  • the first liquid recovery mechanism 20 recovers the liquid LQ1 supplied to the first space K1 formed on the lower surface 2S side of the final optical element 2G.
  • the first liquid recovery mechanism 20 includes a first liquid recovery unit 21 that can recover the liquid LQ1, and a recovery pipe 23 that connects one end of the first liquid recovery unit 21 to the first liquid recovery unit 21.
  • the first liquid recovery unit 21 includes, for example, a vacuum system (suction device) such as a vacuum pump, a gas-liquid separator that separates the recovered liquid LQ1 from gas, and a tank that stores the recovered liquid LQ1. I have. At least a part of the vacuum system, gas-liquid separator, tank, etc.
  • the first liquid recovery mechanism 20 recovers a predetermined amount of the liquid LQ1 on the substrate P supplied from the first liquid supply mechanism 10.
  • the second liquid supply mechanism 30 supplies the liquid LQ2 to the second space K2 formed on the upper surface 2T side of the final optical element 2G of the projection optical system PL.
  • the second liquid supply mechanism 30 includes a second liquid supply unit 31 that can send out the liquid LQ2, and a supply pipe 33 that connects one end of the second liquid supply unit 31 to the second liquid supply unit 31.
  • the second liquid supply unit 31 includes a tank that stores the liquid LQ2, a temperature controller that adjusts the temperature of the liquid LQ2 to be supplied, a filter device that removes foreign substances in the liquid LQ2, a pressure pump, and the like.
  • the tanks of the first liquid supply unit 11 and the second liquid supply unit 31 and at least some of the pressurizing pumps do not necessarily have to be provided with the exposure apparatus EX. It can be substituted.
  • the second liquid recovery mechanism 60 recovers the liquid LQ2 supplied to the second space K2 formed on the upper surface 2S side of the final optical element 2G.
  • the second liquid recovery mechanism 60 includes a second liquid recovery unit 61 that can recover the liquid LQ2, and a recovery pipe 63 that connects one end of the second liquid recovery unit 61 to the second liquid recovery unit 61.
  • the second liquid recovery unit 61 includes, for example, a vacuum system (suction device) such as a vacuum pump, a gas-liquid separator that separates the recovered liquid LQ2 from the gas, and a tank that stores the recovered liquid LQ2.
  • a vacuum system suction device
  • the gas-liquid separator that separates the recovered liquid LQ2 from the gas
  • a tank that stores the recovered liquid LQ2.
  • at least a part of the vacuum system, the gas-liquid separator, the tank, and the like may not be provided in the exposure apparatus EX, and equipment such as a factory where the exposure apparatus EX is disposed may be used.
  • FIG. 2 is a sectional view showing the image plane side of the projection optical system PL and the vicinity of the nozzle member 70
  • FIG. 3 is a view of the nozzle member 70 as viewed from below.
  • the T-side second space K2 is a space independent of each other, and the flow of liquid between the first space K1 and the second space # 2 is blocked.
  • the first space K1 is a space between the last optical element 2G and the substrate ⁇ , and the immersion area AR2 of the liquid LQ1 is formed in the first space K1.
  • the first space is open in a direction parallel to the substrate, that is, its periphery is open. Therefore, the interface of the liquid LQ1 held between the nozzle member 70 and the substrate is in contact with the surrounding gas.
  • the second space # 2 is a part of the internal space of the lens barrel ⁇ , and is a space between the upper surface 2 ⁇ of the final optical element 2G and the lower surface 2U of the optical element 2F disposed above it.
  • the second space ⁇ 2 is in a direction parallel to the substrate, that is, a force whose periphery is closed by the wall surface of the barrel ⁇ .
  • a part of the upper surface of the liquid LQ2 in the second space ⁇ 2 is optically connected to the barrel ⁇ ⁇ . It is in contact with the gas in the gap between element 2F.
  • the area of the upper surface 2 ⁇ of the final optical element 2G is substantially the same as the area of the lower surface 2U of the optical element 2F opposed to the upper surface 2 ⁇ , or is smaller than the area of the lower surface 2U.
  • the final optical element 2 G can be easily attached to and detached from the lens barrel. That is, the last optical element 2G is provided so as to be exchangeable. In particular, when attaching and detaching the final optical element 2G, do not detach other optical elements in the lens barrel ⁇ ⁇ , and do not affect the optical characteristics of other optical elements or the projection optical system.
  • the element 2G can be mounted on the lens barrel ⁇ . For example, the lens barrel ⁇ is separated into a first holding member that holds the optical element 2F and a second holding member that holds the final optical element 2G, and the second holding member is attached to the first holding member using a screw or the like. With the fixing structure, the second optical member 2G can be easily replaced by removing the second holding member.
  • the nozzle member 70 is disposed near the lower end of the projection optical system PL, and is an annular member provided so as to surround the lens barrel PK above the substrate P (substrate stage PST). .
  • the nozzle member 70 constitutes a part of each of the first liquid supply mechanism 10 and the first liquid recovery mechanism 20.
  • the nozzle member 70 has a hole 70H at the center thereof in which the projection optical system PL (barrel PK) can be arranged.
  • the projection of the projection optical system PL The area AR1 is set in a rectangular shape whose longitudinal direction is the Y-axis direction (non-scanning direction).
  • a concave portion 78 having a longitudinal direction in the ⁇ axis direction is formed on the lower surface 70 78 of the nozzle member 70 opposed to the substrate ⁇ .
  • the hole 70H in which the projection optical system PL (barrel ⁇ ) can be arranged is formed inside the recess 78.
  • a surface 78A substantially parallel to the XY plane and facing the substrate P supported by the substrate stage PST (hereinafter referred to as a cavity surface 78A).
  • the recess 78 has an inner side surface 79.
  • the inner side surface 79 is provided so as to be substantially orthogonal to the surface of the substrate P supported by the substrate stage PST.
  • the substrate stage PST supports the substrate P such that the surface of the substrate P and the XY plane are substantially parallel.
  • a first supply port 12 (12 A, 12 B) constituting a part of the first liquid supply mechanism 10 is provided on an inner side surface 79 of the concave portion 78.
  • two first supply ports 12 (12A, 12B) are provided and provided on both sides in the X-axis direction with the optical element 2 (projection area AR1) of the projection optical system PL interposed therebetween. Tepuru.
  • Each of the first supply ports 12A and 12B transfers the liquid LQ1 sent from the first liquid supply unit 11 substantially parallel to the surface of the substrate P arranged on the image plane side of the projection optical system PL, that is, substantially parallel to the XY plane. (Horizontally).
  • a first recovery port 22 constituting a part of the first liquid recovery mechanism 20 is provided outside the recess 78 with reference to the projection area AR1 of the projection optical system PL. I have.
  • the first recovery port 22 is provided outside the first supply ports 12A and 12B of the first liquid supply mechanism 10 with respect to the projection area AR1 of the projection optical system PL on the lower surface 70A of the nozzle member 70 facing the substrate P, That is, the first supply ports 12A and 12B are located farther from the projection area AR1.
  • the first recovery port 22 is connected to the projection area AR1 and the first supply ports 12A and 12B. It is formed annularly so as to surround it.
  • first recovery port 22 is provided with a porous body 22P.
  • the porous body 22P will be described in an embodiment described later with reference to FIG.
  • the first recovery port 22 may not be provided in an annular shape so as to surround the projection area AR1 and the first supply ports 12A and 12B, and may be provided discretely, for example. That is, the number, arrangement, shape, and the like of the first collection ports 22 are not limited to those described above, and may be any structure that can collect the liquid LQ1 so that the liquid LQ1 does not leak.
  • the nozzle member 70 supported by the lower step 8 of the main column 1 via the connecting member 52 is separated from the projection optical system PL (barrel PK). That is, a gap is provided between the inner side surface 70K of the hole 70H of the nozzle member 70 and the side surface PKS of the lens barrel PK. This gap is provided for vibratingly separating the projection optical system PL and the nozzle member 70. Thus, the vibration generated by the nozzle member 70 is prevented from being transmitted to the projection optical system PL. Further, as described above, the main column 1 (the lower step portion 8) and the lens barrel base 5 are vibratedly separated via the vibration isolator 47. Therefore, the vibration force generated by the nozzle member 70 is prevented from being transmitted to the projection optical system PL via the main column ⁇ and the barrel base 5.
  • the other end of the supply pipe 13 is connected to one end of a first supply passage 14 formed inside the nozzle member 70.
  • the other end of the first supply flow path 14 of the nozzle member 70 is connected to the first supply port 12 formed on the inner side surface 79 of the recess 78 of the nozzle member 70.
  • the first supply channel 14 formed inside the nozzle member 70 is branched from the middle so that the other end can be connected to each of the plurality (two) of supply ports 12 (12A, 12B). are doing.
  • the vicinity of the first supply port 12 is an inclined surface that gradually expands toward the first supply port 12.
  • the supply port 12 is formed in a trumpet shape.
  • the liquid supply operation of the first liquid supply unit 11 is controlled by the control device CONT.
  • the control device CONT sends out the liquid LQ1 from the first liquid supply unit 11 of the first liquid supply mechanism 10.
  • the liquid LQ1 sent from the first liquid supply unit 11 flows through the supply pipe 13, and then flows into one end of the first supply flow path 14 formed inside the nozzle member 70. Then, the liquid LQ1 that has flowed into one end of the first supply flow path 14 has branched midway. Thereafter, the plurality of (two) first supply ports 12A and 12B formed in the inner side surface 79 of the nozzle member 70 are supplied to the first space K1 between the final optical element 2G and the substrate P.
  • the liquid LQ1 supplied from the first supply port 12 is blown out substantially in parallel with the surface of the substrate P, for example, the liquid LQ1 is directed downward from above the surface of the substrate P.
  • the force exerted on the substrate P by the supplied liquid LQ 1 can be reduced as compared with the configuration in which the liquid LQ 1 is supplied to the substrate P. Therefore, it is possible to prevent inconvenience such as deformation of the substrate P and the substrate stage PST due to the supply of the liquid LQ1.
  • substrate P and substrate stage due to the supply of the liquid LQ1.
  • the other end of the recovery pipe 23 is connected to one end of a manifold flow path 24 M that forms a part of the first recovery flow path 24 formed inside the nozzle member 70.
  • the other end of the manifold flow path 24M is formed in an annular shape in plan view so as to correspond to the first recovery port 22, and a part of the first recovery flow path 24 connected to the first recovery port 22. Connect to a part of the annular flow path 24K that constitutes! /
  • the liquid recovery operation of the first liquid recovery unit 21 is controlled by the controller CONT.
  • the control device CONT drives the first liquid recovery unit 21 of the first liquid recovery mechanism 20 to recover the liquid LQ1.
  • the liquid LQ1 on the substrate P moves vertically upward (+) to the annular flow path 24K via the first recovery port 22 provided above the substrate P. Z direction).
  • the liquid LQ1 that has flowed into the annular flow path 24K in the + Z direction flows through the march flow path 24M after being collected in the march flow path 24M. Thereafter, the liquid is sucked and collected by the first liquid collecting part 21 through the collecting pipe 23.
  • the inner surface PKL of the lens barrel PK is provided with a second supply port 32 constituting a part of the second liquid supply mechanism 30.
  • the second supply port 32 is formed near the second space K2 on the inner side surface PKL of the lens barrel PK, and is provided on the + X side with respect to the optical axis AX of the projection optical system PL.
  • the second supply port 32 blows out the liquid LQ2 sent from the second liquid supply unit 31 substantially parallel to the upper surface 2T of the final optical element 2G, that is, substantially parallel to the XY plane (in the lateral direction). Since the second supply port 32 blows out the liquid LQ2 substantially in parallel with the upper surface 2T of the final optical element 2G, the force exerted on the optical elements 2G, 2F, etc. by the supplied liquid LQ2 can be reduced. Therefore, the liquid If the optical elements 2G, 2F, etc. are deformed or displaced due to the supply of the body LQ2, it is possible to prevent occurrence of a trouble.
  • a second recovery port 62 that constitutes a part of the second liquid recovery mechanism 60 is provided at a predetermined position with respect to the second supply port 32.
  • the second recovery port 62 is formed near the second space K2 on the inner side surface PKL of the lens barrel PK, and is provided on the ⁇ X side with respect to the optical axis AX of the projection optical system PL. That is, the second supply port 32 and the second recovery port 62 face each other.
  • each of the second supply port 32 and the second recovery port 62 is formed in a slit shape.
  • the second supply port 32 and the second recovery port 62 may be formed in any shape such as a substantially circular shape, an elliptical shape, and a rectangular shape.
  • the second supply port 32 and the second recovery port 62 have substantially the same size as each other, but may have different sizes.
  • the second supply port 32 may be formed in a trumpet shape, like the first supply port 12 described above.
  • the other end of the supply pipe 33 is connected to one end of a second supply channel 34 formed inside the lens barrel PK.
  • the other end of the second supply channel 34 of the lens barrel PK is connected to a second supply port 32 formed on the inner surface PKL of the lens barrel PK.
  • the other end of the collection tube 63 is connected to one end of a second collection channel 64 formed inside the lens barrel PK.
  • the other end of the second recovery channel 64 is connected to a second recovery port 62 formed on the inner surface PKL of the lens barrel PK.
  • the liquid recovery operation of the second liquid recovery unit 61 is controlled by the controller CONT.
  • the control device CONT drives the second liquid recovery unit 61 of the second liquid recovery mechanism 60 to recover the liquid LQ2.
  • the liquid LQ 2 in the second space K2 flows into the second recovery flow path 64 through the second recovery port 62, and then flows through the recovery pipe 63.
  • the liquid is sucked and collected by the second liquid collecting part 61.
  • the number and arrangement of the second supply port 32 and the second recovery port are not limited to those described above, and the optical path of the exposure light EL between the optical element 2F and the optical element 2G is filled with the second liquid LQ2. Any structure is acceptable.
  • the flow paths 34 and 64 are formed inside the lens barrel PK.
  • a through hole is provided in a part of the lens barrel PK, You may let it pass.
  • the supply pipe 33 and the recovery pipe 63 are provided with a supply path and a recovery path inside the nozzle member 70 instead of the force supply pipe 33 and the recovery pipe 63 provided separately from the nozzle member 70. It may be provided to connect to each of the flow paths 34 and 64 formed inside the lens barrel PK.
  • the lower surface 2U of the optical element 2F held by the lens barrel PK is formed in a planar shape, and is substantially parallel to the upper surface 2T of the final optical element 2G.
  • the upper surface 2W of the optical element 2F is formed to be convex toward the object surface side (mask M side) and has a positive refractive index. Thereby, the reflection loss of the light (exposure light EL) incident on the upper surface 2W is reduced, and a large image-side numerical aperture of the projection optical system PL is secured.
  • the optical element 2F having a refractive index (lens function) is firmly fixed to the barrel PK in a well-positioned state.
  • the liquid LQ2 filled in the second space K2 contacts the lower surface 2U of the optical element 2F and the upper surface 2T of the final optical element 2G, and the liquid LQ1 of the first space K1 contacts the lower surface 2S of the final optical element 2G.
  • at least the optical elements 2F and 2G are formed of quartz. Quartz has a high affinity for the liquids LQ1 and LQ2, which are water.Therefore, the liquid LQ1 and LQ2 are applied to almost all surfaces of the lower surface 2U of the optical element 2F, which is the liquid contact surface, and the upper surface 2T and the lower surface 2S of the final optical element 2G. Can be in close contact.
  • the liquids LQ1 and LQ2 are brought into close contact with the liquid contact surfaces 2S, 2T and 2U of the optical elements 2F and 2G, and the optical path between the optical element 2F and the final optical element 2G, and the optical path between the final optical element 2G and the substrate P
  • the light path between the liquid and the liquid LQ1 and LQ2 can be reliably filled.
  • quartz is a material having a large refractive index
  • the size of the optical element 2F and the like can be reduced, and the entire projection optical system PL and the entire exposure apparatus EX can be made compact.
  • UK has water resistance, for example, even when pure water is used as the liquid LQ1 and LQ2 as in this embodiment, it is not necessary to provide a protective film on the liquid contact surfaces 2S, 2T, 2U, etc. Which has lj points,
  • At least one of the optical elements 2F and 2G may be fluorite having a high affinity for water. In this case, it is desirable to form a protective film on the liquid contact surface of the fluorite to prevent dissolution in water.
  • the optical elements 2A to 2E may be formed of fluorite and the optical elements 2F and 2G may be formed of quartz, or all of the optical elements 2A to 2G may be formed of quartz (or fluorite). Good.
  • MgF, Al 2 O, SiO, etc. are applied to the liquid contact surfaces 2S, 2T, 2U of the optical elements 2F, 2G.
  • a hydrophilicity (lyophilicity) treatment such as adhesion may be performed to further enhance the affinity with the liquid LQ1 and LQ2.
  • the lyophilic treatment is performed by forming a thin film with a substance having a highly polar molecular structure such as alcohol.
  • the liquid contact surfaces 2S, 2T, and 2U of the optical elements 2F and 2G can be provided with hydrophilicity. That is, when water is used as the liquids LQ1 and LQ2, it is desirable to provide a liquid having a large polar molecular structure such as an OH group on the liquid contact surfaces 2S, 2T, and 2U.
  • a seal member such as an O-ring or a V-ring may be arranged between the side surface 2FK of the optical element 2F and the inner surface PKL of the lens barrel PK. Further, a seal member such as an O-ring or a V-ring may be disposed between the side surface PKS of the lens barrel PK and the inner surface 70K of the nozzle member 70.
  • the control device CONT When exposing the substrate P, the control device CONT supplies the liquid LQ2 from the second liquid supply mechanism 30 to the second space K2.
  • the controller CONT controls the second liquid supply mechanism while optimally controlling the amount of liquid LQ2 supplied per unit time by the second liquid supply mechanism 30 and the amount of liquid LQ2 recovered per unit time by the second liquid recovery mechanism 60.
  • the liquid LQ2 is supplied and recovered by the 30 and the second liquid recovery mechanism 60, and at least the optical path of the exposure light EL in the second space K2 is filled with the liquid LQ2.
  • the second liquid The supply amount of the liquid LQ2 per unit time by the supply mechanism 30 may be gradually increased.
  • the control device CONT moves the substrate stage PST holding the substrate P under the projection optical system PL, that is, to the exposure position. Then, in a state where the substrate stage PST and the final optical element 2G of the projection optical system PL face each other, the control device CONT controls the supply amount of the liquid LQ 1 per unit time by the first liquid supply mechanism 10 and the first liquid
  • the liquid LQ1 is supplied and recovered by the first liquid supply mechanism 10 and the first liquid recovery mechanism 20 while optimally controlling the amount of liquid LQ1 recovered per unit time by the recovery mechanism 20.
  • the liquid immersion area AR2 of the liquid LQ1 is formed at least on the optical path of the exposure light EL, and the optical path of the exposure light EL is filled with the liquid LQ1.
  • a substrate alignment system as disclosed in JP-A-4-65603 and a substrate alignment system as disclosed in JP-A-7-176468 are disclosed. Reference member with fiducial marks measured by various mask alignment systems Measuring member).
  • an optical measurement unit for example, an illuminance non-uniformity sensor as disclosed in JP-A-57-117238, for example, as disclosed in JP-A-2002-14005.
  • an aerial image measurement sensor and an irradiation amount sensor (illuminance sensor) as disclosed in, for example, JP-A-11-16816.
  • the control unit CONT performs mark measurement on the reference material, various measurement operations using the optical measurement unit, and detection of marks on the substrate P using the substrate alignment system before performing exposure processing on the substrate P. Based on the measurement result, alignment processing of the substrate P and adjustment (calibration) processing of the imaging characteristics of the projection optical system PL are performed. For example, when performing a measurement operation using the optical measurement unit, the control device CONT moves the substrate stage PST in the XY direction to move the substrate stage PST relative to the liquid immersion area AR2 of the liquid LQ1. Move, place the liquid immersion area AR2 of liquid LQ1 on the optical measurement unit, and perform the measurement operation via liquid LQ1 and liquid LQ2 in that state.
  • various measurement operations using the reference member light measurement unit may be performed before the substrate P to be exposed is loaded on the substrate stage PST.
  • the detection of the alignment mark on the substrate P by the substrate alignment system may be performed before forming the liquid immersion area AR2 of the liquid LQ1 on the image plane side of the projection optical system PL.
  • the control device CONT concurrently supplies the liquid LQ1 onto the substrate P by the first liquid supply mechanism 10 and, on the substrate P by the first liquid recovery mechanism 20, While collecting the liquid LQ1 and moving the substrate stage PST supporting the substrate P in the X-axis direction (scanning direction), the pattern image of the mask M is projected onto the projection optical system PL and the liquid LQ2 in the second space K2. , And the liquid LQl in the first space K1 (ie, the liquid in the liquid immersion area AR2) is projected and exposed on the substrate P.
  • the exposure apparatus EX projects and exposes the pattern image of the mask M onto the substrate P while moving the mask M and the substrate P in the X-axis direction (scanning direction).
  • a part of the pattern image of the mask M is projected into the projection area AR1 through the projection optical system PL and the liquids LQ1 and LQ2 in the first and second spaces Kl and ⁇ 2, and the mask M is moved in the X direction (or In synchronization with the movement at the velocity V in the + X direction, the substrate P moves in the + X direction (or -X direction) with respect to the projection area AR1 at the velocity ⁇ ⁇ ⁇ ( ⁇ is the projection magnification).
  • the final optical element 2G made of a plane-parallel plate is disposed below the optical element 2F having a lens function, but the lower optical element 2G has a lower surface 2S side and an upper optical surface 2T side.
  • the liquids LQ1 and LQ2 in the first and second spaces Kl and ⁇ 2, respectively the reflection loss at the lower surface 2U of the optical element 2F and the upper surface 2T of the final optical element 2G is reduced, and the projection optical system PL has a large size.
  • the substrate P can be favorably exposed while maintaining the image-side numerical aperture.
  • Exposure may be performed in a state where the liquid LQ2 is stored in the second space K2 without supplying and recovering the liquid LQ2 to and from the second space K2, but the temperature of the liquid LQ2 changes due to irradiation of the exposure light EL.
  • the imaging characteristics of the projection optical system PL via the liquid may fluctuate. Therefore, the temperature change of the liquid LQ2 in the second space K2 is suppressed by constantly supplying the liquid LQ2 whose temperature has been adjusted from the second liquid supply mechanism 30 and recovering the liquid LQ2 by the second liquid recovery mechanism 60. be able to.
  • the liquid LQ1 in the first space K1 is always fresh (cleaned) by constantly supplying and recovering the liquid LQ1 by the first liquid supply mechanism 10 and the first liquid recovery mechanism 20. Na) Replaced with liquid LQ1.
  • the temperature change of the liquid LQ1 in the first space K1 (that is, the liquid LQ1 in the liquid immersion area AR2 on the substrate P) can be suppressed.
  • bacteria e.g., nocteria
  • the cleanliness level is reduced.
  • the exposure is performed in a state where the liquid LQ2 is stored in the second space # 2.
  • the liquid LQ2 in the second space # 2 may be replaced for each predetermined number of substrates to be processed.
  • the supply and recovery of the liquid LQ2 by the second liquid supply mechanism 30 and the second liquid recovery mechanism 60 are stopped during the exposure of the exposure light EL (for example, during the exposure of the substrate ⁇ ). Vibration and displacement of the optical element 2F due to the supply (flow of the liquid LQ2) are prevented, and exposure of the substrate and various measurement operations using the above-described optical measurement unit can be executed with high accuracy.
  • the control device CONT stops the supply of the liquid LQ1 by the first liquid supply mechanism 10 and uses the first liquid recovery mechanism 20 or the like to supply the liquid LQ1 ( Collect all the liquid LQ1) in the first space K1. Further, the control device CONT collects the liquid LQ1 droplets and the like remaining on the substrate P and the substrate stage PST by using the first recovery port 22 of the first liquid recovery mechanism 20 and the like. On the other hand, even after the exposure of the substrate P is completed, the controller CONT continues to supply and recover the liquid LQ2 of the second liquid supply mechanism 30 and the second liquid recovery mechanism 60, and supplies the liquid LQ2 to the second space K2. Keep flowing.
  • the cleanliness of the second space K2 is deteriorated, and the adhesion traces (so-called “so-called”) on the liquid contact surfaces 2U and 2T of the optical elements 2F and 2G due to the vaporization (drying) of the liquid LQ2. Inconvenience such as when a watermark is formed can be prevented.
  • the control device CONT moves the substrate stage PST supporting the substrate P to the unload position and unloads it.
  • a predetermined member having a flat surface is arranged on the image plane side of the projection optical system PL.
  • the space (first space) between the predetermined member and the projection optical system PL may be continuously filled with the liquid LQ1.
  • impurities such as foreign matter caused by a photosensitive agent (photoresist), which also generates a force on the substrate P, are mixed into the liquid LQ1 in the liquid immersion area AR2 (first space K1).
  • Liquid LQ1 may be contaminated. Since the liquid LQ1 in the immersion area AR2 also contacts the lower surface 2S of the final optical element 2G, the contaminated liquid LQ1 may contaminate the lower surface 2S of the final optical element 2.
  • impurities floating in the air are projected It may adhere to the lower surface 2S of the final optical element 2G exposed on the image plane side of the optical system PL.
  • the contaminated final optical element By replacing only 2G with a clean final optical element 2G, it is possible to prevent deterioration of exposure accuracy and measurement accuracy via the projection optical system PL due to contamination of the optical element.
  • the clean liquid LQ2 is always kept flowing in the second space K2, so that the liquid LQ2 in the second space K2 does not contact the substrate P. Since the second space K2 is a substantially closed space surrounded by the optical elements 2F and 2G and the lens barrel PK, impurities floating in the air are difficult to be mixed into the liquid LQ2 in the second space K2. Impurities hardly adhere to the element 2F.
  • the first space K1 on the lower surface 2T side and the second space K2 on the upper surface 2S side of the final optical element 2G are independent spaces, and each of the first space K1 and the second space K2 is Since the exposure was performed by filling the liquids LQl and LQ2, the exposure light EL that passed through the mask M was applied to a part of the lower surface 2U of the optical element 2F, a part of the upper surface 2T of the final optical element 2G, and the final optical element. It is possible to favorably reach the substrate P through a part of the lower surface 2S of the device 2G.
  • the possibility of contamination is high!
  • the last optical element 2G By making the last optical element 2G easily replaceable, it is possible to perform good exposure using the projection optical system PL having the clean last optical element 2G.
  • a configuration in which the liquid in the liquid immersion area AR 2 is brought into contact with the optical element 2F without providing the final optical element 2G composed of a plane-parallel plate can also be considered. It is necessary to increase the effective diameter of the element, and the optical element 2F must be enlarged.
  • various measuring devices such as the nozzle member 70 as described above and an alignment system (not shown) are arranged. Workability is low and difficult.
  • the optical element 2F has a refractive index (lens function)
  • the optical element 2F is mirrored with high positioning accuracy in order to maintain the optical characteristics (imaging characteristics) of the entire projection optical system PL.
  • a relatively small parallel plane plate is provided as the last optical element 2G, and the last optical element 2G is replaced. Therefore, the replacement work can be easily performed with good workability, and the projection optical system can be easily replaced.
  • the optical characteristics of PL can be maintained.
  • the first and second liquids LQ1 and LQ2 can be supplied and recovered independently to the first space K1 on the lower surface 2S side and the second space K2 on the upper surface 2T side of the final optical element 2G.
  • the exposure light EL emitted from the illumination optical system IL is projected while maintaining the cleanliness of the liquids LQ1 and LQ2. It is possible to favorably reach the substrate P arranged on the image plane side of the optical system PL.
  • the liquid LQ2 is filled in the second space K2 so that the liquid LQ2 wets almost all of the lower surface 2U of the optical element 2F and the upper surface 2T of the final optical element 2G. It is sufficient that a part of the second space K2 is filled so as to be arranged on the optical path of the exposure light EL. In other words, the second space K2 only needs to be partially filled with the liquid LQ2. Similarly, the first space K1 is also required to be partially filled with the liquid LQ1.
  • the mechanism for locally forming the liquid immersion area AR 2 on the substrate P includes a first liquid supply mechanism 10 and a first liquid recovery mechanism 20.
  • the mechanism is not limited to the (nozzle member 70), and various types of mechanisms can be used.
  • the mechanisms disclosed in European Patent Application Publication No. EP1420298 (A2) and U.S. Patent Publication No. 2004Z0207824 may be used, as long as the laws of the country designated or selected in this international application permit. , The contents of this publication are incorporated herein by reference.
  • a characteristic part of the present embodiment is that a connection hole 74 that connects the first space K1 and the second space K2 is provided.
  • a plurality of connection holes 74 are provided at predetermined intervals in the circumferential direction on the lower surface of the lens barrel PK. Each of the connection holes 74 is provided with a porous body 74P.
  • the first liquid supply mechanism (10) including the first supply port that directly supplies the liquid to the first space K1 is not provided.
  • a second liquid recovery mechanism (60) including a second recovery port for directly recovering the liquid in the second space K2 is also provided.
  • the exposure apparatus EX in the present embodiment includes a second liquid supply mechanism 30 for supplying the liquid LQ to the second space K2, and a first liquid recovery mechanism for recovering the liquid LQ in the first space K1 (the liquid immersion area AR2). 20.
  • a seal member 100 that prevents the liquid LQ in the first space K 1 from entering the gap between the side surface of the lens barrel PK and the nozzle member 70 is provided. It is provided. It is preferable that the seal member 100 is also formed of a member such as rubber or silicon which has a flexible appearance and prevents vibration of the nozzle member 70 from being transmitted to the lens barrel PK. Note that, as described in the first embodiment, the seal member 100 may be omitted, for example, by making the side surface of the lens barrel PK and the inner surface 70T of the nozzle member 70 liquid-repellent, It is possible to prevent the liquid LQ1 in the first space K1 from entering and the gas from entering the liquid LQ in the first space K1.
  • the control device CONT supplies the liquid LQ to the second space K2 using the second liquid supply mechanism 30.
  • the liquid LQ supplied to the second space K2 is also supplied to the first space K1 via the connection hole 74.
  • the second liquid supply mechanism 30 supplies the liquid LQ from the second space K2, and also allows the liquid LQ to flow into the first space K1 via the connection hole 74, thereby connecting the first space K1 and the second space K2. Fill with liquid LQ.
  • the liquid LQ supplied to the first space K1 through the connection hole 74 forms an immersion area AR2 on the substrate P, and the liquid LQ in the immersion area AR2 is used as the first recovery port of the first liquid supply mechanism 20.
  • the control device CONT emits the exposure light EL onto the substrate P via the liquid LQ in the first space K1 and the second space K2.
  • the substrate P is exposed by irradiation.
  • the liquid LQ may be supplied to the first space K1 by using the first liquid supply mechanism 10 together.
  • connection hole 74 By connecting the first space K1 and the second space K2 through the connection hole 74, the configuration of the device can be simplified.
  • the liquid LQ filled in the first space K1 is The first space Kl and the second space K2 may be filled with the liquid LQ by flowing into the second space K2 through the connection hole 74.
  • the liquid LQ in contact with the substrate ⁇ is filled in the second space ⁇ 2, so if, for example, a chemical filter or the like is arranged in the connection hole 74, the second space ⁇ 2 will be placed from above the substrate ⁇ ⁇ .
  • the liquid LQ containing the generated impurities is not filled.
  • a characteristic part of the present embodiment is that the last optical element 2 G is supported by the nozzle member 70. That is, the last optical element 2G is supported separately from the other optical elements 2A to 2F constituting the projection optical system PL.
  • the optical element 2F is exposed from the lens barrel PK.
  • the optical elements 2A to 2G constituting the projection optical system PL are supported by a lens barrel PK.
  • the final optical element 2G is supported by the nozzle member 70 via the connecting member 72.
  • the nozzle member 70 which is an annular member, is disposed near the optical elements 2F and 2G at the tip of the projection optical system PL, and surrounds the optical elements 2F and 2G above the substrate P (substrate stage PST). It is provided as follows. That is, the optical elements 2F and 2G are arranged inside the hole 70H of the nozzle member 70. The hole 70H is formed inside the recess 78
  • the last optical element 2 G is held on the cavity surface 78 A of the nozzle member 70 via the connecting member 72.
  • the connecting member 72 is fixed to the cavity surface 78A of the nozzle member 70, and the final optical element 2G is fixed to the connecting member 72.
  • the final optical element 2G held by the nozzle member 70 via the connecting member 72 and the optical elements 2A to 2F held by the barrel PK are separated, and the upper surface 2T of the final optical element 2G and the optical element 2F are separated.
  • a second space 2K is formed between the second space 2K and the lower surface 2U.
  • the last optical element 2G is configured to be supported by the nozzle member 70 via the connecting member 72 in a state where it is separated from the other optical elements 2A to 2F held by the barrel PK.
  • the lower surface 72A of the connecting member 72 and the lower surface 2S of the final optical element 2G, which is also held by the connecting member 72 and has a plane parallel plate force, are substantially flush with each other.
  • Final light supported by connecting member 72 The upper surface 2T and the lower surface 2S of the element 2G are almost parallel to the XY plane.
  • the connection between the connection member 72 and the cavity surface 78 °, the connection between the last optical element 2G and the connection member 72, and the like are sealed.
  • the connecting member 72 is a substantially plate-shaped member, and has no holes or the like. In other words, the first space K1 on the lower surface 2S side of the final optical element 2G and the second space ⁇ 2 on the upper surface 2 ⁇ are independent spaces, and the liquid between the first space K1 and the second space 2 ⁇ Distribution has been blocked.
  • the final optical element 2 G can be easily attached to and detached from the connecting member 72. That is, the last optical element 2G is provided so as to be exchangeable.
  • the connecting member 72 may be attached to the nozzle member 70 (cavity surface 78 mm) so that it can be detached (replaceable) or the nozzle member 70 can be replaced. It may be.
  • the first supply port 12 (12A) constituting a part of the first liquid supply mechanism 10 is provided on the inner side surface 79 inside the concave portion 78 of the lower surface 70 ⁇ of the nozzle member 70. , 12B) are provided. Further, on the lower surface 70 ⁇ of the nozzle member 70, outside the concave portion 78 with reference to the projection area A R1 of the projection optical system PL, as in the first embodiment, a part of the first liquid recovery mechanism 20 is formed. 1 A collection port 22 is provided.
  • the nozzle member 70 supported by the lower step 8 of the main column 1 via the connecting member 52 is separated from the projection optical system PL (optical element 2F). That is, a gap is provided between the inner side surface 70K of the hole 70H of the nozzle member 70 and the side surface 2FK of the optical element 2F, and also between the lens barrel PK holding the optical element 2F and the nozzle member 70. A gap is provided. These gaps are provided for vibratingly separating the projection optical system PL (optical elements 2A to 2F) and the nozzle member 70. This prevents the vibration force generated by the nozzle member 70 from being transmitted to the projection optical system PL.
  • the main column 1 (the lower step portion 8) and the lens barrel base 5 are vibratedly separated via the vibration isolator 47. Therefore, the vibration generated by the nozzle member 70 is prevented from being transmitted to the projection optical system PL via the main column 1 and the barrel base 5.
  • a second supply port 32 constituting a part of the second liquid supply mechanism 30 is provided on the inner side surface 70K of the nozzle member 70.
  • the second supply port 32 is connected to the liquid supplied from the second liquid supply unit 31.
  • LQ2 is blown out substantially parallel to the upper surface 2T of the final optical element 2G, that is, substantially parallel (horizontally) to the ⁇ plane. Since the second supply port 32 blows out the liquid LQ2 substantially in parallel with the upper surface 2 ⁇ of the final optical element 2G, the force exerted on the optical element 2G by the supplied liquid LQ2 can be reduced. Therefore, it is possible to prevent inconvenience such as deformation or displacement of the optical element 2G, the connecting member 72, or the optical element 2F due to the supply of the liquid LQ2.
  • a second recovery port 62 constituting a part of the second liquid recovery mechanism 60 is provided at a predetermined position with respect to the second supply port 32 on the inner side surface 70 # of the nozzle member 70.
  • the second recovery port 62 is provided above the second supply port 32.
  • FIG. 6 is a schematic perspective view showing the nozzle member 70.
  • a plurality of second supply ports 32 are provided on the inner side surface 70 ⁇ of the nozzle member 70.
  • the second supply ports 32 are provided at substantially equal intervals in the circumferential direction on the inner side surface 70 °.
  • a plurality of second recovery ports 62 are provided on the inner side surface 70 ⁇ of the nozzle member 70, and in the present embodiment, the second recovery ports 62 are substantially circumferentially above the second supply ports 32. They are provided at equal intervals.
  • the second supply port 32 and the second recovery port 62 are formed in a substantially circular shape, but may be formed in an arbitrary shape such as an elliptical shape, a rectangular shape, and a slit shape. Good.
  • the second supply port 32 and the second recovery port 62 have substantially the same size as each other, but may have different sizes.
  • the second supply port 32 may be arranged above the second recovery port 62.
  • the optical axis ⁇ of the projection optical system PL is sandwiched between the inner surface 70 °.
  • the arrangement can be arbitrarily set, for example, by providing a second supply port 32 on the + ⁇ side and a second recovery port 62 on the ⁇ X side. That is, also in the present embodiment, the number, arrangement, shape, and the like of the second supply port 32 and the second recovery port 62 are not limited to the structures shown in FIGS. Any structure may be used as long as the optical path of the exposure light EL during the period is filled with the second liquid LQ.
  • the second supply port 32 and the second recovery port 62 may be formed on the inner surface PKL of the lens barrel PK in the arrangement shown in FIG. Yo, As shown in FIG. 5, the other end of the supply pipe 33 is connected to one end of a second supply channel 34 formed inside the nozzle member 70. On the other hand, the other end of the second supply channel 34 of the nozzle member 70 is connected to a second supply port 32 formed on the inner side surface 70K of the nozzle member 70.
  • the second supply flow path 34 formed inside the nozzle member 70 also has an intermediate force branched so that the other end can be connected to each of the plurality of second supply ports 32.
  • the second supply port 32 may be formed in a trumpet shape, similarly to the first supply port 12.
  • the liquid supply operation of the second liquid supply unit 31 is controlled by the control device CONT.
  • the control device CONT sends out the liquid LQ2 from the second liquid supply unit 31 of the second liquid supply mechanism 30
  • the liquid LQ2 sent from the second liquid supply unit 31 flows through the supply pipe 33, and then flows through the nozzle. It flows into one end of the second supply channel 34 formed inside the member 70.
  • the liquid LQ2 that has flowed into one end of the second supply flow path 34 is branched on the way, and then, through a plurality of second supply ports 32 formed on the inner surface 70K of the nozzle member 70, the optical element 2F and the final optical element. It is supplied to the second space K2 between 2G.
  • the other end of the recovery pipe 63 is connected to a part of the second recovery flow path 44 formed inside the nozzle member 70.
  • the other end of the second recovery channel 44 is connected to a second recovery port 62 formed on the inner side surface 70K of the nozzle member 70.
  • the second recovery channel 64 formed inside the nozzle member 70 branches off from the middle so that the other end can be connected to each of the plurality of second recovery ports 62.
  • the liquid recovery operation of the second liquid recovery unit 61 is controlled by the controller CONT.
  • the control device CONT drives the second liquid recovery unit 61 of the second liquid recovery mechanism 60 to recover the liquid LQ2.
  • the liquid LQ 2 in the second space K2 flows into the second recovery flow path 64 through the second recovery port 62, and then flows through the recovery pipe 63.
  • the liquid is sucked and collected by the second liquid collecting part 61.
  • each of the inner side surface 70K of the nozzle member 70 and the side surface 2FK of the optical element 2F is subjected to a liquid repelling treatment and has liquid repellency.
  • the liquid LQ2 in the second space ⁇ 2 enters the gap formed by the inner surface 70 ⁇ and the side surface 2FK. Is prevented, and the gas in the gap is mixed as bubbles in the liquid LQ2 in the second space # 2. Is prevented from being present.
  • the final optical element 2G and the other optical elements 2A to 2F are separated and supported, and the first space K1 on the lower surface 2T side and the second space on the upper surface 2S side of the final optical element 2G.
  • K2 is made an independent space, and the first space K1 and the second space K2 are exposed by filling the liquids LQ1 and LQ2, respectively, so that the exposure light EL that has passed through the mask M reaches the substrate P well. It can be done.
  • the nozzle member 70 can be brought closer to the optical elements 2F and 2G, and the degree of freedom in designing the device can be improved, for example, the device can be compact.
  • the first supply port 12 and the first recovery port 22 formed in the nozzle member 70 can be brought closer to the projection area AR1. Therefore, the size of the liquid immersion area AR2 can be reduced. Therefore, it is not necessary to increase the size of the substrate stage PST or increase the moving stroke of the substrate stage PST according to the size of the liquid immersion area AR2, so that the apparatus can be compact.
  • the nozzle member 70 is a member having a supply port 12 and a recovery port 22 for supplying and recovering the liquid in the liquid immersion area AR2 (first space K1).
  • the nozzle member 70 also moves the substrate P (substrate stage PST). Since the nozzle member 70 receives the shearing force of the liquid in the liquid immersion area AR2 with the movement, the nozzle member 70 is likely to generate vibration. However, in the present embodiment, since the optical element 2G held by the nozzle member 70 is a parallel flat plate, the influence of the vibration of the nozzle member 70 on the exposure and measurement accuracy can be suppressed.
  • the vibration generated by the nozzle member 70 is reduced by providing an anti-vibration mechanism between the nozzle member 70 and the final optical element 2G. Transmission to the final optical element 2G can be prevented. Also in this embodiment, as in the first embodiment, while the exposure light EL is emitted, the supply and recovery of the liquid LQ2 of the second liquid supply mechanism 30 and the second liquid recovery mechanism 60 are continued, Liquid LQ in the second space K2 Keep filling with 2. By doing so, similarly to the above, it is possible to suppress the deterioration of the cleanliness of the liquid LQ2 in the second space K2 and the temperature change.
  • the supply and recovery of the liquid LQ2 of the second liquid supply mechanism 30 and the second liquid recovery mechanism 60 are stopped while the second space K2 is filled with the liquid LQ2. May be.
  • the vibration and displacement of the optical element 2F due to the supply of the liquid LQ2 (the flow of the liquid LQ2) can be prevented, and the exposure of the substrate P and various measurement operations using the above-described optical measurement unit can be performed with high accuracy.
  • connection hole 74 that connects the first space K1 and the second space K2 is provided in the connection member 72.
  • a plurality of connection holes 74 are provided in the connection member 72 at predetermined intervals in the circumferential direction.
  • Each of the connection holes 74 is provided with a porous body 74P.
  • the first liquid supply mechanism (10) including the first supply port for directly supplying the liquid to the first space K1 is not provided.
  • a second liquid recovery mechanism (60) including a second recovery port for directly recovering the liquid in the second space K2 is also provided.
  • the exposure apparatus EX in the present embodiment includes a second liquid supply mechanism 30 that supplies the liquid LQ to the second space K2, and a first liquid recovery mechanism that collects the liquid LQ in the first space K1 (the liquid immersion area AR2). It has 20.
  • the control device CONT supplies the liquid LQ to the second space K2 using the second liquid supply mechanism 20.
  • the liquid LQ supplied to the second space K2 is also supplied to the first space K1 via the connection hole 74.
  • the second liquid supply mechanism 30 supplies the liquid LQ from the second space K2 and allows the liquid LQ to flow also into the first space K1 through the connection hole 74, thereby connecting the first space K1 with the first space K1.
  • the second space K2 is filled with the liquid LQ.
  • the liquid LQ supplied to the first space K1 through the connection hole 74 forms an immersion area AR2 on the substrate P, and the liquid LQ in the immersion area AR2 is used as the first recovery port of the first liquid supply mechanism 20. Collected from 22.
  • the control device CONT issues the exposure light EL onto the substrate P via the liquid LQ in the first space K1 and the second space K2. To expose the substrate P.
  • the configuration of the device can be simplified.
  • the liquid LQ filled in the first space K1 is caused to flow into the second space ⁇ 2 through the connection hole 74, whereby The first space K1 and the second space ⁇ 2 may be filled with the liquid LQ.
  • the final optical element 2G is supported by the nozzle member 70 having the liquid flow path for the first space Kl and the second space # 2.
  • the final optical element 2G may be supported by the nozzle member 70 having a liquid flow path for one of the first space K1 and the second space # 2.
  • the final optical element 2G may be supported by a nozzle member having only a supply port for supplying a liquid to at least one of the first space K1 and the second space, or at least one of the first space K1 and the second space.
  • the final optical element 2G may be supported by a nozzle member having only a recovery port for recovering the liquid.
  • the final optical element 2G is supported by the nozzle member 70.
  • the present invention is not limited to this, and the final optical element 2G may be formed of a member different from the lens barrel and the nozzle member 70.
  • the element 2G may be supported.
  • the configuration in which the final optical element 2G used in the third and fourth embodiments is supported by the nozzle member 70 is also adopted in an immersion exposure method in which only the first space K1 is filled with a liquid. Can be used.
  • the projection optical system PL is adjusted so as to have a predetermined imaging characteristic including the final optical element 2 G, which is a parallel flat plate having no refractive power. If the final optical element 2G does not affect the imaging characteristics at all, adjust so that the imaging characteristics of the projection optical system PL will have the predetermined imaging characteristics except for the final optical element 2G. May be.
  • the last optical element 2G is a parallel flat plate having no refractive power, but may be an optical element having refractive power. That is, the upper surface 2T of the final optical element 2G may have a curvature. In this case, in order to facilitate replacement of the final optical element 2G, the curvature of the upper surface 2T of the final optical element 2G is preferably as small as possible.
  • the liquid LQ1 in the first space K1 is thicker than the liquid LQ2 in the second space K2.
  • the liquid LQ2 in the second space K2 may be thicker than or the same as the liquid LQ1 in the first space K1.
  • the thickness of the final optical element 2G in the Z-axis direction is smaller than the liquid LQ1 in the first space K1 and the liquid LQ2 in the second space K2.
  • the final optical element 2G may be thickest. That is, the liquid LQ1 in the first space K1, the liquid LQ2 in the second space K2, and the thickness in the Z-axis direction of the final optical element 2G are projected onto the substrate P via the liquid LQ1, LQ2, and the final optical element 2G. What is necessary is just to determine suitably so that the imaging state of the pattern to be performed may be optimized.
  • the thickness of the liquid LQ1 and the liquid LQ2 on the optical axis AX can be 5 mm or less, and the thickness of the final optical element 2G can be 3 to 12 mm.
  • the final optical element 2G is supported in a state of being substantially stationary with respect to the optical axis AX of the projection optical system PL.
  • it may be supported so that it can move minutely.
  • an actuator is placed on the support of the last optical element 2G, and the position (X-axis direction, Y-axis direction, Z-axis direction) and inclination ( ⁇ ⁇ direction, 0 Y direction) of the last optical element 2G are automatically set. May be adjusted.
  • the position and inclination of the nozzle member are adjusted to adjust the position of the final optical element 2G. And you can adjust Z or tilt.
  • the position (X-axis direction, Y-axis direction, Z-axis direction) and inclination ( ⁇ X direction, ⁇ Y direction) of the final optical element 2G are measured.
  • a measuring instrument such as an interferometer may be further provided. It is desirable that this measuring instrument can measure the position and inclination with respect to the optical elements 2A to 2F. By installing such a measuring instrument, the position and inclination of the final optical element 2G can be easily known, and if used together with the above-described actuator, the position and inclination of the final optical element 2G can be accurately determined. Can be adjusted.
  • the final optical element 2G when the final optical element 2G is supported separately from the optical element 2F, the pressure applied to the final optical element 2G from the liquid LQ1 or the like Since the vibration is not directly transmitted to the optical elements 2A to 2F, the imaging characteristics of the projection optical system PL Deterioration can be suppressed.
  • the optical elements 2A to Pressure and vibration to 2F can be suppressed.
  • pure water was used for the liquids LQ1 and LQ2 in the present embodiment.
  • Pure water has the advantage that it can be easily obtained in large quantities at semiconductor manufacturing plants and the like, and that it has no adverse effect on the photoresist on the substrate P, optical elements (lenses), and the like.
  • pure water has no adverse effect on the environment and has an extremely low impurity content, so it is expected to have the effect of cleaning the surface of the substrate P and the surface of the optical element provided on the tip end of the projection optical system PL. it can .
  • the exposure apparatus may have an ultrapure water production unit.
  • the refractive index n of pure water (water) with respect to the exposure light EL having a wavelength of about 193 nm is said to be about 1.44, and the ArF excimer laser light (wavelength 193 nm) is used as the light source of the exposure light EL.
  • the wavelength is shortened to lZn, that is, about 134 nm, and a high resolution is obtained.
  • the depth of focus is expanded to about n times, that is, about 1.44 times as compared with that in the air, when it is sufficient to secure the same depth of focus as that used in air, projection The numerical aperture of the optical system PL can be further increased, and this also improves the resolution.
  • the same pure water is supplied as the liquids LQ1 and LQ2, but pure water (liquid LQ1) supplied to the first space and the second space are supplied.
  • the quality may be different from that of the pure water (liquid LQ2) supplied to the tank.
  • the quality of pure water includes, for example, set temperature, temperature uniformity, temperature stability, specific resistance, TOC (total organic carbon) value, dissolved gas concentration (dissolved oxygen, dissolved nitrogen), and the like.
  • the quality of pure water supplied to the first space K1, which is closer to the image plane of the projection optical system PL may be higher than the pure water supplied to the second space K2.
  • liquid LQ1 filling the first space K1 and the liquid LQ2 filling the second space K2 may be different types.
  • those having a different refractive index and Z or transmittance for the exposure light EL can be used.
  • the second space K2 can be filled with a predetermined liquid other than pure water such as a fluorine-based oil. Oil, bacteria, etc. Since the bacteria have a low probability of breeding and are liquid, the cleanliness of the flow path through which the second space K2 and the liquid LQ2 (fluorine-based oil) flow can be maintained.
  • Both liquids LQ1 and LQ2 may be liquids other than water.
  • the light source of the exposure light EL is an F laser
  • this F laser light does not pass through water, so the liquid LQ1, LQ
  • PFPE perfluoropolyether
  • fluorine that can transmit F laser light
  • the portion that comes into contact with the liquids LQ1 and LQ2 is subjected to lyophilic treatment by forming a thin film with a substance having a molecular structure of small polarity including fluorine, for example.
  • liquids LQ1 and LQ2 other liquids that are transparent to the exposure light EL and have a refractive index as high as possible and are stable against the photoresist applied to the surface of the projection optical system PL and the substrate P ( It is also possible to use, for example, cedar oil).
  • the surface treatment is performed according to the polarities of the liquids LQ1 and LQ2 to be used.
  • various fluids having a desired refractive index for example, a supercritical fluid or a gas having a high refractive index can be used.
  • the numerical aperture NA of the projection optical system may be 0.9 to 1.3.
  • the numerical aperture NA of the projection optical system is increased as described above, since the imaging performance may be deteriorated due to the polarization effect with the randomly polarized light which has been conventionally used as the exposure light, the polarized illumination may be used. It is desirable to use. In such a case, linearly polarized light is illuminated according to the longitudinal direction of the line pattern of the 'and' space pattern of the mask (reticle). From the pattern of the mask (reticle), the S-polarized component (TE-polarized component), It is preferable that a large amount of diffracted light having a polarization direction component along the longitudinal direction of the pattern is emitted.
  • the space between the projection optical system PL and the resist applied to the surface of the substrate P is filled with air (gas).
  • the transmittance of the diffracted light of the S-polarized light component (TE-polarized light component), which contributes to the improvement of contrast, on the resist surface is higher than that of the case where the numerical aperture NA of the projection optical system exceeds 1.0. Even in such a case, high imaging performance can be obtained. Further, it is more effective to appropriately combine a phase shift mask, such as an oblique incidence illumination method (particularly, a dipole illumination method) adapted to the longitudinal direction of the line pattern as disclosed in JP-A-6-188169.
  • the combination of linearly polarized illumination and dipole illumination is This is effective when the periodic direction of the 'and' space pattern is limited to one predetermined direction, or when the hole patterns are dense along the predetermined one direction.
  • the dipole is placed on the pupil plane of the illumination system.
  • the depth of focus (DOF) can be increased by about 150 nm compared to using randomly polarized light.
  • a fine line and space pattern for example, a line and space of about 25 to 50 nm
  • the mask M acts as a polarizing plate due to the wave guide effect, and the P polarization component which lowers the contrast. More diffracted light of the S-polarized light component (TE-polarized light component) than the diffracted light of the (TM-polarized light component) is emitted from the mask M force.
  • the numerical aperture NA of the projection optical system PL is as large as 0.9 to 1.3.
  • high resolution performance can be obtained.
  • the P polarization component (TM polarization component) is changed to the S polarization component (TE polarization component) by the Wire Grid effect.
  • an ArF excimer laser as the exposure light may be used as the exposure light, and a line 'and' space pattern larger than 25 nm may be formed on the substrate P using a projection optical system PL having a reduction ratio of about 1 Z4.
  • the S-polarized light component (TE-polarized light component) diffracted light is emitted more than the diffracted light of the P-polarized light component (TM-polarized light component) by the mask M force.
  • High resolution performance can be obtained even when is large, such as 0.9 to 1.3.
  • JP-A-6-53120 in which only linearly polarized light (S-polarized light) aligned with the longitudinal direction of the line pattern of the mask (reticle) is used, the optical axis is centered. Combination of the polarized illumination method and the oblique incidence illumination method that linearly polarizes in the tangential (circumferential) direction of the circle It is also effective. In particular, when a plurality of line patterns extending in different directions are mixed (only line patterns having different periodic directions are mixed with 'and' space patterns), the pattern of a mask (reticle) is formed only by a line pattern extending in one predetermined direction. As disclosed in Japanese Patent Application Laid-Open No.
  • a projection optical system can be obtained by using both a polarization illumination method for linearly polarized light in a tangential direction of a circle around the optical axis and an annular illumination method.
  • High imaging performance can be obtained even when the numerical aperture NA is large.
  • a polarization illumination method and a ring illumination method (a ring zone) in which a halftone phase shift mask (a pattern with a notch pitch of about 63 nm) having a transmittance of 6% is linearly polarized in the tangential direction of a circle centered on the optical axis.
  • the depth of focus (DOF) is 250 nm more than using randomly polarized light.
  • the substrate P in each of the above embodiments is not limited to a semiconductor wafer for manufacturing a semiconductor device, but may be a glass substrate for a display device, a ceramic wafer for a thin-film magnetic head, or a mask or a mask used in an exposure apparatus.
  • a reticle master synthetic quartz, silicon wafer, etc. is applied.
  • the exposure apparatus EX includes a step-and-scan type scanning exposure apparatus (scanning stepper) for scanning and exposing the pattern of the mask M by synchronously moving the mask M and the substrate P.
  • the present invention can also be applied to a step-and-repeat type projection exposure apparatus (stepper) in which the pattern of the mask M is exposed collectively while the substrate M and the substrate P are stationary, and the substrate P is sequentially moved stepwise.
  • a reduced image of the first pattern is projected with the first pattern and the substrate P almost stationary, and a projection optical system (for example, a refraction type that does not include a reflective element at 1Z8 reduction magnification).
  • the present invention can also be applied to an exposure apparatus that uses a projection optical system to perform simultaneous exposure on a substrate P. In this case, after that, while the second pattern and the substrate P are almost stationary, the reduced image of the second pattern is partially exposed on the substrate P at one time using the projection optical system so as to partially overlap the first pattern.
  • the present invention can also be applied to a stitch type batch exposure apparatus.
  • the present invention can also be applied to an exposure apparatus of the 'and' stitch method. Further, the present invention can be applied to an exposure apparatus having a measurement stage in which a member for measurement and a sensor are mounted separately from a stage for holding the substrate P.
  • An exposure apparatus equipped with a measurement stage is described in, for example, European Patent Publication No. 1,041,357, and as long as the laws of the country specified or selected in the international application permit this law, The contents of the above are used as part of the text.
  • the present invention is also applicable to a twin-stage type exposure apparatus.
  • the structure and exposure operation of a twin-stage type exposure apparatus are described in, for example, JP-A-10-163099 and JP-A-10-214783 (corresponding to US Pat. Nos. 6,341,007, 6,400,441, 6,549,269 and 6). , 590, 634), International Patent Publication No. 2000-505958 (corresponding US Pat. No. 5,969,441) or US Pat. No. 6,208,407, which are licensed under the laws of the country designated or selected in this international application. To the extent permitted, their disclosures are incorporated herein by reference.
  • the type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element for exposing a semiconductor element pattern onto a substrate P, but may be an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, It can be widely applied to an image pickup device (CCD), an exposure apparatus for manufacturing a reticle or a mask, and the like.
  • CCD image pickup device
  • a light-transmitting mask in which a predetermined light-shielding pattern (or a phase pattern “darkening pattern”) is formed on a light-transmitting substrate is used.
  • a predetermined light-shielding pattern or a phase pattern “darkening pattern”
  • an electronic mask for forming a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed is provided. May be used.
  • an exposure apparatus for forming a line-and-space pattern on a wafer W by forming interference fringes on the wafer W
  • the present invention can also be applied to
  • an exposure apparatus that locally fills the space between the projection optical system PL and the substrate P with liquid is employed, but the entire surface of the substrate to be exposed is covered with liquid.
  • the present invention is also applicable to an immersion exposure apparatus to be described.
  • the structure and exposure operation of an immersion exposure apparatus in which the entire surface of a substrate to be exposed is covered with a liquid are described in, for example, JP-A-6-124873, It is described in detail in Japanese Patent Application Laid-Open No. 10-303114, U.S. Pat. No. 5,825,043, and to the extent permitted by the laws of the country designated or selected in this international application, the contents of this document And incorporated as part of the text.
  • each stage PST, MST is such that a magnet cut in which magnets are arranged two-dimensionally and an armature unit in which coils are arranged two-dimensionally face each other, and each stage PST, MST is driven by electromagnetic force. May be used.
  • one of the magnet unit and the armature unit should be connected to the stages PST and MST, and the other of the magnet unit and the armature unit should be provided on the moving surface side of the stages PST and MST!
  • the reaction force generated by the movement of the substrate stage PST may be mechanically released to the floor (ground) using a frame member so as not to be transmitted to the projection optical system PL.
  • the method of dealing with this reaction force is disclosed in detail, for example, in US Pat. No. 5,528,118 (JP-A-8-166475), and is permitted by the laws of the country designated or selected in this international application. To the extent possible, the contents of this document are incorporated and incorporated herein as part of the text.
  • the reaction force generated by the movement of the mask stage MST may be mechanically released to the floor (ground) using a frame member so as not to be transmitted to the projection optical system PL.
  • the method of dealing with this reaction force is disclosed in detail, for example, in US Pat. No. 5,874,820 (Japanese Patent Application Laid-Open No. 8-330224), and is based on the laws of the country designated or selected in this international application. To the extent permitted, the disclosure of this document is incorporated herein by reference.
  • the exposure apparatus EX of the embodiment of the present invention controls various subsystems including the components described in the claims to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. So, it is manufactured by assembling. To ensure these various precisions, Before and after setting, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and electrical accuracy for various electrical systems Adjustments are made to achieve Various subsystems
  • the process of assembling the lithography system includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Needless to say, there is an assembling process for each subsystem before the assembling process into the exposure apparatus. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustments are made to ensure the various precisions of the exposure apparatus as a whole. It is desirable to manufacture the exposure apparatus in a clean room in which the temperature, cleanliness, etc. are controlled.
  • a microdevice such as a semiconductor device includes a step 201 of designing the function and performance of the microdevice, a step 202 of manufacturing a mask (reticle) based on the design step, and Step 203 of manufacturing a substrate as a base material, exposure processing step 204 of exposing a mask pattern to the substrate by the exposure apparatus EX of the above-described embodiment, device assembly step (including dicing step, bonding step, and package step) 205 It is manufactured through an inspection step 206 and the like.
  • the porous member 25 for example, a thin plate-shaped porous member (mesh member) having a large number of holes is formed. Can be used.
  • the porous member is formed of titanium.
  • the pressure in the space between the first hole 25Ha of the porous member 25 and the substrate P (the pressure on the lower surface of the porous member 25H) is Pa
  • the pressure in the flow passage space above the porous member 25 (the porous The pressure at the upper surface of the member 25) is Pb
  • the hole diameter (diameter) of the first and second holes 25Ha, 25Hb is d
  • the contact angle of the porous member 25 (inside the hole 25H) with the liquid LQ is Q
  • the liquid LQ Let ⁇ be the surface tension of
  • the first liquid recovery mechanism 20 is connected to the pressure Pa in the space below the porous member 25, the diameter d of the hole 25H, and the liquid LQ of the porous member 25 (the inner surface of the hole 25H).
  • the suction force of the first liquid recovery section 21 is controlled.
  • the pressure in the flow path space above the porous member 25 is adjusted so as to satisfy the above equation (3).
  • the pressure Pb satisfying the above equation (3) becomes larger.
  • the diameter d of the holes 25Ha and 25Hb, and the contact angle 0 (0 ⁇ 0 ⁇ 90 °) of the porous member 25 with the liquid LQ are desirably as small as possible.
  • the lower surface 2S of the final optical element 2G is opposed to the substrate P, and the lower surface
  • the first space K1 between the 2S and the substrate P is filled with the liquid LQ1, but the projection optical system PL and other members (for example, the upper surface 51 of the substrate stage PST) face each other. It goes without saying that the space between the system PL and other members can be filled with liquid.
  • an optical element that may be contaminated by immersion exposure can be easily and promptly replaced. Therefore, good exposure accuracy and measurement accuracy can be maintained. In addition, it is possible to suppress an increase in maintenance cost and a decrease in throughput of the exposure apparatus.

Abstract

An exposure apparatus has a projection optical system with optical elements. Liquid (LQ1) is placed in a first space (K1) on the lower surface (2S) side of an optical element (2G) closest to an image surface of the projection optical system, and liquid (LQ2) is placed in a second space (K2), independent of the first space (K1), on the upper surface (2T) side of the optical element (2G). Exposure light is emitted on a substrate (P) through the liquid (LQ1) in the first space (K1) and the liquid (LQ2) in the second space (K2) to expose the substrate (P). An optical element (2F) closest to the image surface next to the optical element (2G) is prevented from contamination from the liquid (LQ2).

Description

露光装置、露光方法及びデバイス製造方法  Exposure apparatus, exposure method, and device manufacturing method
技術分野  Technical field
[0001] 本発明は、基板を露光する露光装置、露光方法及びデバイス製造方法に関する。  The present invention relates to an exposure apparatus that exposes a substrate, an exposure method, and a device manufacturing method.
背景技術  Background art
[0002] 半導体デバイスや液晶表示デバイスは、マスク上に形成されたパターンを感光性の 基板上に転写する、いわゆるフォトリソグラフィの手法により製造される。このフォトリソ グラフイエ程で使用される露光装置は、マスクを支持するマスクステージと基板を支 持する基板ステージとを有し、マスクステージ及び基板ステージを逐次移動しながら マスクのパターンを投影光学系を介して基板に転写するものである。近年、デバイス ノターンのより一層の高集積ィ匕に対応するために投影光学系の更なる高解像度化 が望まれている。投影光学系の解像度は、使用する露光波長が短いほど、また投影 光学系の開口数が大きいほど高くなる。そのため、露光装置で使用される露光波長 は年々短波長化しており、投影光学系の開口数も増大している。そして、現在主流の 露光波長は KrFエキシマレーザの 248nmである力 更に短波長の ArFエキシマレ 一ザの 193nmも実用化されつつある。また、露光を行う際には、解像度と同様に焦 点深度 (DOF)も重要となる。解像度 及び焦点深度 δはそれぞれ以下の式で表 される。  [0002] Semiconductor devices and liquid crystal display devices are manufactured by a so-called photolithography technique in which a pattern formed on a mask is transferred onto a photosensitive substrate. An exposure apparatus used in the photolithography process has a mask stage for supporting a mask and a substrate stage for supporting a substrate, and sequentially moves the mask stage and the substrate stage to project a pattern of the mask through a projection optical system. Transfer to the substrate. In recent years, further improvement in the resolution of the projection optical system has been desired in order to cope with higher integration of device patterns. The resolution of the projection optical system increases as the exposure wavelength used decreases and as the numerical aperture of the projection optical system increases. Therefore, the exposure wavelength used in the exposure apparatus is becoming shorter year by year, and the numerical aperture of the projection optical system is also increasing. At present, the mainstream exposure wavelength is 248 nm of KrF excimer laser, and 193 nm of short wavelength ArF excimer laser is being put to practical use. When performing exposure, the depth of focus (DOF) is as important as the resolution. The resolution and the depth of focus δ are respectively expressed by the following equations.
[0003] R=k · λ /ΝΑ … (1)  [0003] R = k · λ / ΝΑ… (1)
δ = ±k - λ /ΝΑ2 δ = ± k-λ / ΝΑ 2
2 … (2)  twenty two)
ここで、 λは露光波長、 ΝΑは投影光学系の開口数、 k プロセス係数である。  Here, λ is the exposure wavelength, ΝΑ is the numerical aperture of the projection optical system, and k is the process coefficient.
1、 kは  1, k is
2  2
(1)式、(2)式より、解像度 Rを高めるために、露光波長えを短くして、開口数 NAを 大きくすると、焦点深度 δが狭くなることが分力る。  From Equations (1) and (2), it is clear that when the exposure wavelength is shortened and the numerical aperture NA is increased to increase the resolution R, the depth of focus δ becomes smaller.
[0004] 焦点深度 δが狭くなり過ぎると、投影光学系の像面に対して基板表面を合致させる ことが困難となり、露光動作時のフォーカスマージンが不足するおそれがある。そこで 、実質的に露光波長を短くして、且つ焦点深度を広くする方法として、例えば国際公 開第 99Ζ49504号公報に開示されている液浸法が提案されている。この液浸法は 、投影光学系の像面側端面 (下面)と基板表面との間を水や有機溶媒等の液体で満 たして液浸領域を形成し、液体中での露光光の波長が空気中の 1 Zn (nは液体の屈 折率で通常 1. 2〜1. 6程度)になることを利用して解像度を向上するとともに、焦点 深度を約 n倍に拡大するというものである。 If the depth of focus δ becomes too narrow, it becomes difficult to match the substrate surface with the image plane of the projection optical system, and the focus margin during the exposure operation may be insufficient. Therefore, as a method of substantially shortening the exposure wavelength and increasing the depth of focus, for example, a liquid immersion method disclosed in International Publication No. 99-49504 has been proposed. This immersion method The space between the image plane side end surface (lower surface) of the projection optical system and the substrate surface is filled with a liquid such as water or an organic solvent to form an immersion area, and the wavelength of the exposure light in the liquid is By using the fact that 1 Zn (n is the refractive index of liquid, which is usually about 1.2 to 1.6), the resolution is improved and the depth of focus is increased about n times.
[0005] ところで、基板上に液体の液浸領域を形成したとき、その液浸領域の液体中に例え ば基板上から発生した不純物等が混入して液浸領域の液体が汚染する可能性があ る。すると、その汚染された液浸領域の液体により、投影光学系を構成する複数のェ レメント (光学素子)のうち、その汚染された液浸領域の液体に接触する光学素子が 汚染する可能性がある。光学素子が汚染されると、その光学素子の光透過率が低下 したり光透過率に分布が生じる等の不都合が生じ、投影光学系を介した露光精度及 び計測精度の劣化を招く。 By the way, when a liquid immersion area is formed on a substrate, there is a possibility that the liquid in the liquid immersion area may be contaminated by impurities or the like generated from the substrate, for example, in the liquid in the liquid immersion area. is there. Then, the liquid in the contaminated liquid immersion area may contaminate the optical element that comes into contact with the liquid in the contaminated liquid immersion area among the plurality of elements (optical elements) constituting the projection optical system. is there. When the optical element is contaminated, inconveniences such as a decrease in the light transmittance of the optical element and a distribution of the light transmittance occur, and the exposure accuracy and the measurement accuracy via the projection optical system are deteriorated.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明はこのような事情に鑑みてなされたものであって、露光精度及び計測精度の 劣化を防止できる露光装置、露光方法並びにその露光装置及び露光方法を用いる デバイス製造方法を提供することを目的とする。 [0006] The present invention has been made in view of such circumstances, and provides an exposure apparatus, an exposure method, and a device manufacturing method using the exposure apparatus and the exposure method, which can prevent deterioration of exposure accuracy and measurement accuracy. The purpose is to:
課題を解決するための手段及び発明の効果  Means for Solving the Problems and Effects of the Invention
[0007] 上記の課題を解決するため、本発明は実施の形態に示す図 1〜図 8に対応付けし た以下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例 示に過ぎず、各要素を限定するものではない。 [0007] In order to solve the above-described problems, the present invention employs the following configuration corresponding to Figs. 1 to 8 shown in the embodiment. However, the reference numerals in parentheses attached to each element are merely examples of the element, and do not limit each element.
[0008] 本発明の第 1の態様に従えば、基板 (P)上に露光光 (EL)を照射して基板 (P)を露 光する露光装置 (EX)、複数のエレメント (2A〜2G)を備える投影光学系 (PL)と、複 数のエレメント(2A〜2G)のうち、投影光学系(PL)の像面に最も近 、第 1エレメント( 2G)を、投影光学系(PL)の光軸 (AX)に対してほぼ静止した状態で支持する支持 部材 (PK、 70)と、第 1エレメント(2G)の一面側に形成され、液体 (LQ1)で満たされ る第 1空間 (K1)と、第 1エレメント(2G)の他面側に、第 1空間 (K1)とは独立に形成 され、液体 (LQ2)で満たされる第 2空間 (Κ2)とを備え、第 1空間 (K1)の液体 (LQ1 )で基板 (Ρ)表面の一部を覆う液浸領域 (AR2)を形成するとともに、第 1空間 (K1) の液体 (LQ1)と第 2空間 (K2)の液体 (LQ2)とを介して、基板 (P)上に露光光 (EL) を照射して基板 (P)を露光することを特徴とする露光装置 (EX)が提供される。 According to a first aspect of the present invention, an exposure apparatus (EX) that irradiates a substrate (P) with exposure light (EL) to expose the substrate (P), a plurality of elements (2A to 2G) ), And of the plurality of elements (2A to 2G), the first element (2G) closest to the image plane of the projection optical system (PL) and the projection optical system (PL) A support member (PK, 70) for supporting the optical element (AX) substantially stationary with respect to the optical axis (AX) of the first element (2G), and a first space ( K1) and a second space (Κ2) formed on the other surface side of the first element (2G) independently of the first space (K1) and filled with the liquid (LQ2). The liquid (LQ1) of (K1) forms an immersion area (AR2) that partially covers the surface of the substrate (Ρ), and the first space (K1) Exposing the substrate (P) by irradiating the substrate (P) with exposure light (EL) through the liquid (LQ1) and the liquid (LQ2) in the second space (K2). Equipment (EX) is provided.
[0009] 本発明によれば、第 1エレメントの一面側及び他面側それぞれの第 1、第 2空間に 液体を満たすことで、大きな像側開口数を確保した状態で、基板を良好に露光する ことができる。また、例えば第 1空間に満たされた液体が基板と接触する場合には、 第 1エレメントの一面側が汚染する可能性が高くなるが、第 1エレメントを容易に交換 可能な構成とすることができるので、その汚染された第 1エレメントのみを清浄なエレ メントと交換すればよぐその清浄な第 1エレメントを備えた投影光学系及び液体を介 した露光及び計測を良好に行うことができる。 According to the present invention, by filling the first and second spaces on the one surface side and the other surface side of the first element with liquid, the substrate can be favorably exposed while a large image-side numerical aperture is secured. can do. Further, for example, when the liquid filled in the first space comes into contact with the substrate, there is a high possibility that one surface of the first element is contaminated, but the first element can be configured to be easily replaceable. Therefore, if only the contaminated first element is replaced with a clean element, exposure and measurement via the projection optical system including the clean first element and the liquid can be favorably performed.
[0010] なお、本発明における第 1エレメントは、無屈折力の透明部材 (例えば、平行平面 板)であってもよぐ例えば最も像面側に配置された透明部材が投影光学系の結像 性能に全く寄与しない場合にも、その透明部材を第 1エレメントとみなす。  Note that the first element in the present invention may be a transparent member having no refracting power (for example, a parallel plane plate). For example, the transparent member disposed closest to the image plane may be an image forming member of the projection optical system. Even if it does not contribute to the performance at all, the transparent member is regarded as the first element.
[0011] また、本発明における第 1エレメントは投影光学系の光軸に対してほぼ静止状態で 支持されているが、その位置や姿勢を調整するために微小移動可能に支持されてい る場合にも、 "ほぼ静止した状態に支持されている"とみなす。  [0011] Further, the first element in the present invention is supported in a state of being substantially stationary with respect to the optical axis of the projection optical system. Are also considered "substantially stationary".
[0012] 本発明の第 2の態様に従えば、基板 (P)上に露光光 (EL)を照射して基板 (P)を露 光する露光装置であって、複数のエレメント(2A〜2G)を備える投影光学系(PL)と 、複数のエレメント(2A〜2G)のうち、投影光学系(PL)の像面に最も近い第 1エレメ ント(2G)の一面(2S)側に形成される第 1空間 (K1)と、第 1エレメント(2G)の他面( 2T)側に形成される第 2空間 (K1)と、第 1空間 (K1)と第 2空間 (K2)とを連結する連 結孔 (74)と、第 1空間 (K1)と第 2空間 (K2)との一方から液体 (LQ)を供給し、連結 孔 (74)を介して第 1空間 (K1)と第 2空間 (K2)とを液体 (LQ)で満たすための液体 供給機構 (30)とを備え、第 1空間 (K1)及び第 2空間 (K2)の液体 (LQ)を介して、 基板 (P)上に露光光 (EL)を照射して基板 (P)を露光することを特徴とする露光装置 (EX)が提供される。  According to a second aspect of the present invention, there is provided an exposure apparatus for exposing a substrate (P) by irradiating the substrate (P) with exposure light (EL), and exposing the substrate (P) to a plurality of elements (2A to 2G). ), And a projection optical system (PL) provided on one surface (2S) side of the first element (2G) closest to the image plane of the projection optical system (PL) among the plurality of elements (2A to 2G). Connecting the first space (K1), the second space (K1) formed on the other surface (2T) side of the first element (2G), and the first space (K1) and the second space (K2) The liquid (LQ) is supplied from one of the first space (K1) and the second space (K2), and the first space (K1) is connected to the first space (K1) through the connection hole (74). A liquid supply mechanism (30) for filling the second space (K2) with the liquid (LQ) is provided, and the substrate (P) is supplied through the liquid (LQ) in the first space (K1) and the second space (K2). An exposure apparatus (EX) characterized in that the substrate (P) is exposed by irradiating the substrate (P) with exposure light (EL).
[0013] 本発明によれば、液体供給機構は、第 1エレメントの一面側の第 1空間及び他面側 の第 2空間の一方に液体を供給することで、連結孔を介して第 1、第 2空間のそれぞ れを液体で容易に満たすことができる。そして、第 1エレメントの一面側及び他面側そ れぞれの第 1、第 2空間に液体を満たすことで、大きな像側開口数を確保した状態で 、基板を良好に露光することができる。また、例えば第 1空間に満たされた液体が基 板と接触する場合には、第 1エレメントの一面側が汚染する可能性が高くなるが、第 1 エレメントを容易に交換可能な構成とすることができるので、その汚染された第 1エレ メントのみを清浄なエレメントと交換すればよぐその清浄な第 1エレメントを備えた投 影光学系及び液体を介した露光及び計測を良好に行うことができる。 [0013] According to the present invention, the liquid supply mechanism supplies the liquid to one of the first space on one surface side of the first element and the second space on the other surface side, so that the first and the second via the connection hole. Each of the second spaces can be easily filled with liquid. Then, the one side and the other side of the first element By filling each of the first and second spaces with the liquid, the substrate can be favorably exposed while a large image-side numerical aperture is secured. In addition, for example, when the liquid filled in the first space comes into contact with the substrate, there is a high possibility that one surface of the first element is contaminated, but the first element may be configured to be easily replaced. Since only the contaminated first element can be replaced with a clean element, exposure and measurement via the projection optical system having the clean first element and liquid can be performed satisfactorily. .
[0014] なお、本発明における第 1エレメントは、無屈折力の透明部材 (例えば、平行平面 板)であってもよぐ例えば最も像面側に配置された透明部材が投影光学系の結像 性能に全く寄与しない場合にも、その透明部材を第 1エレメントとみなす。  The first element in the present invention may be a non-refractive transparent member (for example, a plane-parallel plate). For example, the transparent member disposed closest to the image plane may be an image forming member of the projection optical system. Even if it does not contribute to the performance at all, the transparent member is regarded as the first element.
[0015] 本発明によれば、第 1及び第 2の態様に従う露光装置を用いることを特徴とするデ バイス製造方法が提供される。  According to the present invention, there is provided a device manufacturing method using the exposure apparatus according to the first and second aspects.
[0016] 本発明によれば、良好な露光精度及び計測精度を維持できるので、所望の性能を 有するデバイスを製造することができる。  According to the present invention, since good exposure accuracy and measurement accuracy can be maintained, a device having desired performance can be manufactured.
[0017] 本発明の第 3の態様に従えば、複数のエレメント(2A〜2G)を備える投影光学系( PL)を介して基板 (P)に露光光 (EL)を照射して前記基板を露光する露光方法であ つて、前記複数のエレメントのうち、前記投影光学系(PL)の像面に最も近い第 1エレ メント(2G)の光射出側の第 1空間 (K1)に液体 (LQ1)をもたらすことと、第 1エレメン トの光入射側で且つ第 1空間 (K1)とは隔離された第 2空間 (K2)に液体 (LQ2)を供 給することと、第 1空間の液体 (LQ1)と第 2空間の液体 (LQ2)とを介して前記基板に 露光光を照射して前記基板を露光することと、前記基板に露光光を照射している間、 第 2空間 (K2)を液体で満たした状態で、第 2空間への液体 (LQ2)の供給を停止す ることとを含む露光方法が提供される。  According to a third aspect of the present invention, the substrate (P) is irradiated with exposure light (EL) via a projection optical system (PL) including a plurality of elements (2A to 2G) to An exposure method for exposing a liquid (LQ1) to a first space (K1) on a light emission side of a first element (2G) closest to an image plane of the projection optical system (PL) among the plurality of elements. ), Supplying the liquid (LQ2) to the second space (K2) on the light incident side of the first element and separated from the first space (K1), and supplying the liquid in the first space. (LQ1) and the liquid (LQ2) in the second space, the substrate is exposed by irradiating the substrate with exposure light, and the second space (K2 ), The supply of the liquid (LQ2) to the second space while the liquid is filled with the liquid is stopped.
[0018] 本発明の第 3の態様の露光方法によれば、第 1エレメントの光射出側の第 1空間及 び光入射側の第 2空間に液体をもたらし、それらの空間の液体を介して露光光を照 射して基板を露光しているので、大きな像側開口数を確保した状態で、基板を露光 することができる。また、第 1エレメントを着脱可能なエレメントとすることにより、第 1空 間の液体により第 1エレメントが汚染された場合でも容易に洗浄または交換が可能と なる。また、基板を露光している間、第 2空間への液体の供給を停止するので、第 2 空間への液体の供給に起因する振動が抑制され、所望の精度で基板を露光するこ とがでさる。 According to the exposure method of the third aspect of the present invention, the liquid is brought into the first space on the light emission side and the second space on the light incidence side of the first element, and is passed through the liquid in those spaces. Since the substrate is exposed by irradiating the exposure light, the substrate can be exposed with a large image-side numerical aperture secured. Further, by making the first element a detachable element, even if the first element is contaminated with the liquid in the first space, it can be easily cleaned or replaced. In addition, while the substrate is being exposed, the supply of the liquid to the second space is stopped. Vibration due to the supply of the liquid to the space is suppressed, and the substrate can be exposed with desired accuracy.
[0019] 本発明の第 4の態様に従えば、複数のエレメント(2A〜2G)を備える投影光学系( PL)を介して基板 (P)に露光光 (EL)を照射して前記基板を露光する露光方法であ つて、前記複数のエレメント(2A〜2G)のうち、前記投影光学系の像面に最も近い第 1エレメント(2G)の一面側に形成される第 1空間 (K1)と、第 1空間と流通され且つ他 面側に形成される第 2空間 (K2)との一方の空間に液体を供給することによって第 1 空間と第 2空間を液体 (LQ)で満たすとともに、第 1空間 (K1)の液体 (LQ1)で基板 ( P)表面の一部を覆う液浸領域 (AR2)を形成し、第 1空間及び第 2空間の液体 (LQ) を介して基板に露光光を照射して前記基板を露光することを含む露光方法が提供さ れる。  According to a fourth aspect of the present invention, the substrate (P) is irradiated with exposure light (EL) via a projection optical system (PL) including a plurality of elements (2A to 2G) to An exposure method for exposing, comprising a first space (K1) formed on one surface side of a first element (2G) closest to an image plane of the projection optical system among the plurality of elements (2A to 2G). The first space and the second space are filled with the liquid (LQ) by supplying the liquid to one of the second space (K2) which is circulated to the first space and is formed on the other surface side, and The liquid (LQ1) in the space (K1) forms a liquid immersion area (AR2) that partially covers the surface of the substrate (P), and the substrate is exposed to light through the liquid (LQ) in the first and second spaces. An exposure method is provided, which comprises exposing the substrate to light.
[0020] 本発明の第 4の態様の露光方法によれば、第 1空間と第 2空間が流通されているの で、いずれか一方の空間だけに液体を供給し、いずれか一方の空間だけから液体を 回収すればよい。それゆえ、液体供給及び液体回収に必要な設備を簡略化すること ができるとともに、露光動作に影響を与える可能性のある振動を抑制することができる 図面の簡単な説明  [0020] According to the exposure method of the fourth aspect of the present invention, since the first space and the second space are circulated, the liquid is supplied to only one of the spaces and only one of the spaces is supplied. The liquid can be recovered from the wastewater. Therefore, the equipment required for liquid supply and liquid recovery can be simplified, and vibrations that may affect the exposure operation can be suppressed.
[0021] [図 1]本発明の露光装置の第 1実施形態を示す概略構成図である。 FIG. 1 is a schematic configuration diagram showing a first embodiment of an exposure apparatus of the present invention.
[図 2]図 1の要部拡大図である。  FIG. 2 is an enlarged view of a main part of FIG. 1.
[図 3]ノズル部材を下方力 見た図である。  FIG. 3 is a view of the nozzle member as viewed from below.
[図 4]本発明の露光装置の第 2実施形態を示す要部拡大図である。  FIG. 4 is an enlarged view of a main part showing a second embodiment of the exposure apparatus of the present invention.
[図 5]本発明の露光装置の第 3実施形態を示す要部拡大図である。  FIG. 5 is an enlarged view of a main part showing a third embodiment of the exposure apparatus of the present invention.
[図 6]ノズル部材の概略斜視図である。  FIG. 6 is a schematic perspective view of a nozzle member.
[図 7]本発明の露光装置の第 4実施形態を示す要部拡大図である。  FIG. 7 is an enlarged view of a main part showing a fourth embodiment of the exposure apparatus of the present invention.
[図 8]半導体デバイスの製造工程の一例を示すフローチャート図である。  FIG. 8 is a flowchart illustrating an example of a semiconductor device manufacturing process.
[図 9]本発明の第 5実施形態の露光装置における第 1液体回収機構における液体回 収動作を説明するための図である。  FIG. 9 is a view for explaining a liquid collecting operation in a first liquid collecting mechanism in an exposure apparatus according to a fifth embodiment of the present invention.
符号の説明 [0022] 2 (2A〜2G)…光学素子(エレメント)、 2S…下面、 2T…上面、 10· ··第 1液体供給 機構、 20· ··第 1液体回収機構、 30· ··第 2液体供給機構、 60· ··第 2液体回収機構、 7 0…ノズル部材 (流路形成部材)、 74· ··連結孔、 EL…露光光、 EX…露光装置、 K1 …第 1空間、 Κ2· ··第 2空間、 LQ (LQ1、 LQ2)…液体、 Ρ· ··基板、 PL…投影光学系 発明を実施する最良の実施形態 Explanation of reference numerals 2 (2A to 2G): optical element (element), 2S: lower surface, 2T: upper surface, 10 first liquid supply mechanism, 20 first liquid recovery mechanism, 30 second Liquid supply mechanism, 60 ··· Second liquid recovery mechanism, 70 ··· Nozzle member (flow path forming member), 74 ··· Connection hole, EL… Exposure light, EX… Exposure device, K1… First space, Κ2 ···· Second space, LQ (LQ1, LQ2)… Liquid, ···· Substrate, PL… Projection optical system BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、本発明の露光装置及び露光方法について図面を参照しながら説明するが、 本発明はこれに限定されな 、。  Hereinafter, an exposure apparatus and an exposure method of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
[0024] <第 1実施形態 >  <First Embodiment>
図 1は本発明の露光装置の第 1実施形態を示す概略構成図である。図 1にお ヽて 、露光装置 EXは、マスク Mを支持するマスクステージ MSTと、基板 Pを支持する基 板ステージ PSTと、マスクステージ MSTに支持されて!、るマスク Mを露光光 ELで照 明する照明光学系 ILと、露光光 ELで照明されたマスク Mのパターン像を基板ステー ジ PSTに支持されて ゝる基板 Pに投影露光する投影光学系 PLと、露光装置 EX全体 の動作を統括制御する制御装置 CONTとを備えている。  FIG. 1 is a schematic configuration diagram showing a first embodiment of the exposure apparatus of the present invention. In FIG. 1, the exposure apparatus EX includes a mask stage MST that supports a mask M, a substrate stage PST that supports a substrate P, and a mask M that is supported by the mask stage MST using an exposure light EL. Operation of the illumination optical system IL to illuminate, the projection optical system PL for projecting and exposing the pattern image of the mask M illuminated by the exposure light EL onto the substrate P supported by the substrate stage PST, and the operation of the entire exposure apparatus EX And a control device CONT that controls the entire system.
[0025] 本実施形態の露光装置 EXは、露光波長を実質的に短くして解像度を向上するとと もに焦点深度を実質的に広くするために液浸法を適用した液浸露光装置であって、 投影光学系 PLの像面側に液体 LQ1を供給する第 1液体供給機構 10と、投影光学 系 PLの像面側の液体 LQ1を回収する第 1液体回収機構 20とを備えている。第 1液 体供給機構 10は、投影光学系 PLを構成する複数の光学素子 2 (2A〜2G)のうち、 投影光学系 PLの像面に最も近い最終光学素子 2Gの下面 2Sと基板 Pとの間に形成 された第 1空間 K1に液体 LQ1を供給する。第 1液体回収機構 20は、第 1空間 K1〖こ 供給された液体 LQ1を回収する。  The exposure apparatus EX of the present embodiment is an immersion exposure apparatus to which the immersion method is applied in order to substantially shorten the exposure wavelength to improve the resolution and substantially widen the depth of focus. A first liquid supply mechanism 10 for supplying the liquid LQ1 to the image plane side of the projection optical system PL, and a first liquid recovery mechanism 20 for collecting the liquid LQ1 on the image plane side of the projection optical system PL. The first liquid supply mechanism 10 includes the lower surface 2S of the final optical element 2G closest to the image plane of the projection optical system PL and the substrate P among the plurality of optical elements 2 (2A to 2G) constituting the projection optical system PL. The liquid LQ1 is supplied to the first space K1 formed between them. The first liquid recovery mechanism 20 recovers the liquid LQ1 supplied to the first space K1.
[0026] また、露光装置 EXは、最終光学素子 2Gの上面 2Tとその上方に設けられた光学素 子 2Fとの間に形成された第 2空間 K2に液体 LQ2を供給する第 2液体供給機構 30と 、第 2空間 K2に供給された液体 LQ2を回収する第 2液体回収機構 60とを備えてい る。第 1空間 K1と第 2空間 K2とは独立した空間であり、第 2液体供給機構 30は、第 1 液体供給機構 10とは独立して第 2空間 K2へ液体を供給可能である。また、第 2液体 回収機構 60は、第 1液体回収機構 20とは独立して第 2空間 K2内の液体を回収可能 である。 Further, the exposure apparatus EX includes a second liquid supply mechanism that supplies a liquid LQ2 to a second space K2 formed between the upper surface 2T of the final optical element 2G and the optical element 2F provided above the final optical element 2G. 30 and a second liquid recovery mechanism 60 that recovers the liquid LQ2 supplied to the second space K2. The first space K1 and the second space K2 are independent spaces, and the second liquid supply mechanism 30 can supply the liquid to the second space K2 independently of the first liquid supply mechanism 10. Further, the second liquid recovery mechanism 60 can recover the liquid in the second space K2 independently of the first liquid recovery mechanism 20. It is.
[0027] 露光装置 EXは、少なくともマスク Mのパターン像を基板 P上に転写している間(基 板 P上に露光光 ELを照射している間)、第 2液体供給機構 30から供給した液体 LQ2 により第 2空間 K2を満たした状態で、第 1液体供給機構 10から供給した液体 LQ1に より投影光学系 PLの投影領域 AR1を含む基板 P上の一部に、投影領域 AR1よりも 大きく且つ基板 Pよりも小さい液浸領域 AR2を局所的に形成する。具体的には、露 光装置 EXは、投影光学系 PLの像面に最も近い最終光学素子 2Gとその像面側に 配置された基板 P表面との間の第 1空間 K1に液体 LQ1を満たし、基板 P表面の一部 を液浸領域 AR2で覆う局所液浸方式を採用し、投影光学系 PL、最終光学素子 2G の上面 2T側の第 2空間 K2の液体 LQ2、及び最終光学素子 2Gの下面 2S側の第 1 空間 K1の液体 LQ1を介して、マスク Mを通過した露光光 ELを基板 Pに照射すること によってマスク Mのパターンを基板 Pに投影露光する。  The exposure apparatus EX supplies the liquid from the second liquid supply mechanism 30 at least while transferring the pattern image of the mask M onto the substrate P (while irradiating the substrate P with the exposure light EL). In the state where the second space K2 is filled with the liquid LQ2, the liquid LQ1 supplied from the first liquid supply mechanism 10 partially enlarges the projection area AR1 on the substrate P including the projection area AR1 of the projection optical system PL. In addition, a liquid immersion area AR2 smaller than the substrate P is locally formed. Specifically, the exposing device EX fills the first space K1 between the final optical element 2G closest to the image plane of the projection optical system PL and the surface of the substrate P arranged on the image plane side with the liquid LQ1. The local immersion method that covers a part of the surface of the substrate P with the immersion area AR2 is adopted, and the projection optical system PL, the liquid LQ2 in the second space K2 on the upper surface 2T side of the final optical element 2G, and the final optical element 2G The pattern of the mask M is projected and exposed on the substrate P by irradiating the substrate P with exposure light EL passing through the mask M via the liquid LQ1 in the first space K1 on the lower surface 2S side.
[0028] また、投影光学系 PLの像面近傍には、第 1、第 2液体供給機構 10、 20、及び第 1、 第 2液体回収機構 30、 60の一部を構成するノズル部材 (流路形成部材) 70が配置さ れている。ノズル部材 70は、基板 P (基板ステージ PST)の上方において鏡筒 PKの 下部の周りを囲むように設けられた環状部材である。  [0028] Further, near the image plane of the projection optical system PL, nozzle members (flow members) constituting a part of the first and second liquid supply mechanisms 10, 20 and the first and second liquid recovery mechanisms 30, 60 are provided. (A road forming member) 70 is disposed. The nozzle member 70 is an annular member provided to surround the lower part of the lens barrel PK above the substrate P (substrate stage PST).
[0029] 本実施形態では、露光装置 EXとしてマスク Mと基板 Pとを走査方向における互 、 に異なる向き (逆方向)に同期移動しつつマスク Mに形成されたパターンを基板 Pに 露光する走査型露光装置 (所謂スキャニングステツパ)を使用する場合を例にして説 明する。以下の説明において、投影光学系 PLの光軸 AXと一致する方向を Z軸方向 、 Z軸方向に垂直な平面内でマスク Mと基板 Pとの同期移動方向(走査方向)を X軸 方向、 Z軸方向及び X軸方向に垂直な方向(非走査方向)を Y軸方向とする。また、 X 軸、 Y軸、及び Z軸まわりの回転 (傾斜)方向をそれぞれ、 Θ Χ、 0丫、及び0∑方向と する。  In the present embodiment, as the exposure apparatus EX, scanning is performed by exposing the pattern formed on the mask M to the substrate P while synchronously moving the mask M and the substrate P in directions different from each other (reverse direction) in the scanning direction. An example in which a mold exposure apparatus (a so-called scanning stepper) is used will be described. In the following description, the direction that coincides with the optical axis AX of the projection optical system PL is the Z-axis direction, the direction of synchronous movement (scanning direction) between the mask M and the substrate P in a plane perpendicular to the Z-axis direction is the X-axis direction, The direction perpendicular to the Z-axis direction and the X-axis direction (non-scanning direction) is the Y-axis direction. The directions of rotation (tilt) around the X axis, Y axis, and Z axis are the Θ, 0Θ, and 0∑ directions, respectively.
[0030] 照明光学系 ILは、マスクステージ MSTに支持されているマスク Μを露光光 ELで照 明するものであり、露光用光源、露光用光源から射出された光束の照度を均一化す るオプティカルインテグレータ、オプティカルインテグレータからの露光光 ELを集光 するコンデンサレンズ、リレーレンズ系、露光光 ELによるマスク Μ上の照明領域をスリ ット状に設定する可変視野絞り等を有している。マスク M上の所定の照明領域は照 明光学系 ILにより均一な照度分布の露光光 ELで照明される。照明光学系 IL力 射 出される露光光 ELとしては、例えば水銀ランプ力も射出される輝線 (g線、 h線、 i線) 及び KrFエキシマレーザ光(波長 248nm)等の遠紫外光(DUV光)や、 ArFエキシ マレーザ光(波長 193nm)及び Fレーザ光(波長 157nm)等の真空紫外光 (VUV [0030] The illumination optical system IL illuminates the mask 支持 supported by the mask stage MST with the exposure light EL. The illumination light system IL is used to make the illuminance of the exposure light source and the luminous flux emitted from the exposure light source uniform. Condenser lens for collecting the exposure light EL from the integrator and optical integrator, relay lens system, and the illumination area on the mask 露 光 It has a variable field stop and the like that are set in a slit shape. A predetermined illumination area on the mask M is illuminated by the illumination optical system IL with exposure light EL having a uniform illuminance distribution. Illumination optical system IL force Exposure light EL that is emitted is, for example, a bright line (g-line, h-line, i-line) that also emits a mercury lamp power, or a deep ultraviolet light (DUV light) such as a KrF excimer laser light (wavelength 248 nm) And vacuum ultraviolet light (VUV) such as ArF excimer laser light (wavelength 193 nm) and F laser light (wavelength 157 nm).
2  2
光)などが用いられる。本実施形態においては ArFエキシマレーザ光が用いられる。  Light) is used. In the present embodiment, ArF excimer laser light is used.
[0031] 本実施形態において、第 1空間 K1に満たされる液体 LQ1、及び第 2空間 K2に満 たされる液体 LQ2には同じ純水が用いられる。純水は ArFエキシマレーザ光のみな らず、例えば水銀ランプ力も射出される輝線 (g線、 h線、 i線)及び KrFエキシマレー ザ光 (波長 248nm)等の遠紫外光 (DUV光)も透過可能である。  In the present embodiment, the same pure water is used for the liquid LQ1 filling the first space K1 and the liquid LQ2 filling the second space K2. Pure water transmits not only ArF excimer laser light but also far ultraviolet light (DUV light) such as emission lines (g-line, h-line, i-line) and KrF excimer laser light (wavelength: 248 nm), which emits the power of a mercury lamp. It is possible.
[0032] マスクステージ MSTは、マスク Mを保持して移動可能であって、例えばマスク Mを 真空吸着(又は静電吸着)により固定している。マスクステージ MSTは、リニアモータ 等を含むマスクステージ駆動装置 MSTDにより、投影光学系 PLの光軸 AXに垂直な 平面内、すなわち XY平面内で 2次元移動可能及び θ Z方向に微少回転可能である 。そして、マスクステージ MSTは、 X軸方向に指定された走査速度で移動可能となつ ており、マスク Mの全面が少なくとも投影光学系 PLの光軸 AXを横切ることができる だけの X軸方向の移動ストロークを有している。  The mask stage MST is movable while holding the mask M. For example, the mask M is fixed by vacuum suction (or electrostatic suction). The mask stage MST can be two-dimensionally moved in a plane perpendicular to the optical axis AX of the projection optical system PL, that is, in the XY plane, and can be slightly rotated in the θZ direction by a mask stage driving device MSTD including a linear motor and the like. . The mask stage MST is movable at a designated scanning speed in the X-axis direction, and is moved in the X-axis direction such that the entire surface of the mask M can cross at least the optical axis AX of the projection optical system PL. Has a stroke.
[0033] マスクステージ MST上には、マスクステージ MSTと共に移動する移動鏡 41が設け られている。また、移動鏡 41に対向する位置にはレーザ干渉計 42が設けられている 。マスクステージ MST上のマスク Mの 2次元方向の位置、及び θ Z方向の回転角(場 合によっては Θ X、 θ Y方向の回転角も含む)はレーザ干渉計 42によりリアルタイム で計測され、計測結果は制御装置 CONTに出力される。制御装置 CONTは、レー ザ干渉計 42の計測結果に基づいてマスクステージ駆動装置 MSTDを駆動すること でマスクステージ MSTに支持されているマスク Mの位置を制御する。  [0033] A movable mirror 41 that moves together with the mask stage MST is provided on the mask stage MST. Further, a laser interferometer 42 is provided at a position facing the movable mirror 41. The two-dimensional position of the mask M on the mask stage MST and the rotation angle in the θZ direction (including the rotation angles in the ΘX and θY directions in some cases) are measured in real time by the laser interferometer 42 and measured. The result is output to the control unit CONT. The control device CONT controls the position of the mask M supported by the mask stage MST by driving the mask stage driving device MSTD based on the measurement result of the laser interferometer 42.
[0034] 投影光学系 PLは、マスク Mのパターンを所定の投影倍率 13で基板 Pに投影露光 する。投影光学系 PLは、基板 P側の先端部に設けられた最終光学素子 2G及び最 終光学素子 2Gに次いで像面に近い光学素子 2Fを含む複数の光学素子 2 (2A〜2 G)で構成されている。複数の光学素子 2A〜2Gは、光軸 AXに対してほぼ静止した 状態で鏡筒 PKに支持されている。本実施形態において、投影光学系 PLは、投影倍 率 j8が例えば 1Z4、 1/5,あるいは 1Z8の縮小系である。なお、投影光学系 PLは 等倍系及び拡大系のいずれでもよい。また、投影光学系 PLは、屈折素子と反射素 子とを含む反射屈折系、反射素子を含まない屈折系、屈折素子を含まない反射系の いずれであってもよい。 The projection optical system PL projects and exposes the pattern of the mask M onto the substrate P at a predetermined projection magnification 13. The projection optical system PL is composed of a plurality of optical elements 2 (2A to 2G) including an optical element 2F close to the image plane next to the final optical element 2G and the final optical element 2G provided at the tip of the substrate P side. Have been. Multiple optical elements 2A to 2G are almost stationary with respect to optical axis AX It is supported by the lens barrel PK in this state. In the present embodiment, the projection optical system PL is a reduction system with a projection magnification j8 of, for example, 1Z4, 1/5, or 1Z8. The projection optical system PL may be either a unity magnification system or a magnification system. The projection optical system PL may be any one of a catadioptric system including a refractive element and a reflective element, a dioptric system not including a reflective element, and a reflective system not including a refractive element.
[0035] 基板ステージ PSTは、基板 Pを基板ホルダ PHを介して保持して移動可能であって 、 XY平面内で 2次元移動可能及び θ Z方向に微小回転可能である。更に基板ステ ージ PSTは、 Z軸方向、 Θ X方向、及び Θ Y方向にも移動可能である。基板 Pは基板 ホルダ PHに例えば真空吸着等により保持されている。基板ステージ PSTは、制御装 置 CONTによって制御されるリニアモータ等の基板ステージ駆動装置 PSTDにより 駆動される。  The substrate stage PST can move while holding the substrate P via the substrate holder PH, can move two-dimensionally in the XY plane, and can minutely rotate in the θZ direction. Further, the substrate stage PST can move in the Z-axis direction, the ΘX direction, and the ΘY direction. The substrate P is held on the substrate holder PH by, for example, vacuum suction. The substrate stage PST is driven by a substrate stage driving device PSTD such as a linear motor controlled by a control device CONT.
[0036] 基板ステージ PST上には、基板ステージ PSTとともに投影光学系 PLに対して移動 する移動鏡 43が設けられている。また、移動鏡 43に対向する位置にはレーザ干渉 計 44が設けられている。基板ステージ PST上の基板 Pの 2次元方向の位置、及び回 転角はレーザ干渉計 44によりリアルタイムで計測される。また、不図示ではあるが、 露光装置 EXは、例えば特開平 8— 37149号公報に開示されているような、基板ステ ージ PSTに支持されている基板 Pの表面の位置情報を検出するフォーカス'レベリン グ検出系を備えている。フォーカス'レべリング検出系は、第 1空間 K1の液体 LQ1を 介して、又は介さずに、基板 P表面の Z軸方向の位置情報、及び基板 Pの Θ X及び Θ Y方向の傾斜情報を検出する。液体 LQ1を介さずに基板 P表面の面情報を検出す るフォーカス'レべリング検出系の場合、投影光学系 PLから離れた位置で基板 P表 面の面情報を検出するものであってもよ!/ヽ。投影光学系 PLから離れた位置で基板 P 表面の面情報を検出する露光装置は、例えば米国特許第 6, 674, 510号に開示さ れており、本国際出願で指定または選択された国の法令で許容される限りにおいて 、この文献の記載内容を援用して本文の記載の一部とする。  A movable mirror 43 that moves with respect to the projection optical system PL together with the substrate stage PST is provided on the substrate stage PST. A laser interferometer 44 is provided at a position facing the movable mirror 43. The two-dimensional position and the rotation angle of the substrate P on the substrate stage PST are measured in real time by the laser interferometer 44. Although not shown, the exposure apparatus EX includes a focus for detecting positional information on the surface of the substrate P supported by the substrate stage PST as disclosed in, for example, Japanese Patent Application Laid-Open No. 8-37149. 'Equipped with leveling detection system. The focus / leveling detection system can detect the position information of the surface of the substrate P in the Z-axis direction and the tilt information of the substrate P in the ΘX and ΘY directions with or without the liquid LQ1 in the first space K1. To detect. In the case of a focus leveling detection system that detects surface information on the substrate P surface without passing through the liquid LQ1, even if the surface information on the substrate P surface is detected at a position away from the projection optical system PL Yo! / ヽ. An exposure apparatus that detects surface information on the surface of the substrate P at a position distant from the projection optical system PL is disclosed in, for example, U.S. Patent No. 6,674,510. To the extent permitted by law, the contents of this document will be incorporated herein by reference.
[0037] レーザ干渉計 44の計測結果は制御装置 CONTに出力される。フォーカス'レペリ ング検出系の受光結果も制御装置 CONTに出力される。制御装置 CONTは、フォ 一カス'レべリング検出系の検出結果に基づいて、基板ステージ駆動装置 PSTDを 駆動し、基板 Pのフォーカス位置及び傾斜角を制御して基板 Pの表面を投影光学系 PLの像面に合わせ込むとともに、レーザ干渉計 44の計測結果に基づいて、基板 P の X軸方向及び Y軸方向における位置決めを行う。 [0037] The measurement result of the laser interferometer 44 is output to the control device CONT. The light reception result of the focus / repeat detection system is also output to the controller CONT. The controller CONT controls the substrate stage drive PSTD based on the detection result of the focus leveling detection system. By driving and controlling the focus position and the tilt angle of the substrate P to align the surface of the substrate P with the image plane of the projection optical system PL, based on the measurement result of the laser interferometer 44, the X-axis direction and the Performs positioning in the Y-axis direction.
[0038] 基板ステージ PST上には凹部 50が設けられており、基板 Pを保持するための基板 ホルダ PHは凹部 50に配置されている。そして、基板ステージ PSTのうち凹部 50以 外の上面 51は、基板ホルダ PHに保持された基板 Pの表面とほぼ同じ高さ(面一)に なるような平坦面 (平坦部)となっている。また本実施形態においては、移動鏡 43の 上面も、基板ステージ PSTの上面 51とほぼ面一に設けられている。基板 Pの周囲に 基板 P表面とほぼ面一の上面 51を設けたので、基板 Pのエッジ領域を液浸露光する ときにおいても、基板 Pのエッジ部の外側には段差が無ぐ投影光学系 PLの像面側 に液体 LQを保持して液浸領域 AR2を良好に形成することができる。なお、第 1空間 K1に液体 LQ 1を保持可能であれば、基板 P表面と基板ステージ PSTの上面 51との 間に小さい段差があってもよい。また、基板 Pのエッジ部とその基板 Pの周囲に設けら れた平坦面(上面) 51との間には 0. 1〜 2mm程度の隙間がある力 液体 LQの表面 張力によりその隙間に液体 LQが流れ込むことはほとんどなぐ基板 Pの周縁近傍を 露光する場合にも、上面 51により投影光学系 PLの下に液体 LQを保持することがで きる。 [0038] A concave portion 50 is provided on the substrate stage PST, and a substrate holder PH for holding the substrate P is disposed in the concave portion 50. The upper surface 51 of the substrate stage PST other than the concave portion 50 has a flat surface (flat portion) which is almost the same height (level) as the surface of the substrate P held by the substrate holder PH. . Further, in the present embodiment, the upper surface of movable mirror 43 is also provided substantially flush with upper surface 51 of substrate stage PST. The upper surface 51, which is almost flush with the surface of the substrate P, is provided around the substrate P. Therefore, even when the edge region of the substrate P is subjected to immersion exposure, there is no step outside the edge of the substrate P. The liquid LQ can be satisfactorily formed by holding the liquid LQ on the image plane side of the PL. Note that as long as the liquid LQ1 can be held in the first space K1, there may be a small step between the surface of the substrate P and the upper surface 51 of the substrate stage PST. In addition, there is a gap of about 0.1 to 2 mm between the edge portion of the substrate P and the flat surface (upper surface) 51 provided around the substrate P. The liquid is placed in the gap due to the surface tension of the liquid LQ. The liquid LQ can be held under the projection optical system PL by the upper surface 51 even when exposing the vicinity of the periphery of the substrate P where the LQ hardly flows.
[0039] また、上面 51を撥液性にすることにより、液浸露光中における基板 P外側(上面 51 外側)への液体 LQの流出を抑え、また液浸露光後においても液体 LQを円滑に回収 できて上面 51に液体 LQが残留する不都合を防止できる。基板ステージ PSTの上面 51を、例えばポリ四フッ化工チレン (テフロン (登録商標) )などの撥液性を有する材 料によって形成することで、上面 51を撥液性にすることができる。あるいは、上面 51 に対して、例えば、ポリ四フッ化工チレン等のフッ素系榭脂材料、アクリル系榭脂材 料、シリコン系榭脂材料等の撥液性材料を塗布、あるいは前記撥液性材料からなる 薄膜を貼付する等の撥液ィ匕処理を行ってもよい。また、撥液性材料の領域 (撥液ィ匕 処理領域)としては、上面 51全域であってもよいし、撥液性を必要とする一部の領域 のみであってもよい。  Further, by making the upper surface 51 lyophobic, outflow of the liquid LQ to the outside of the substrate P (outside of the upper surface 51) during immersion exposure is suppressed, and the liquid LQ is also smoothed after immersion exposure. The inconvenience that the liquid LQ can be collected and left on the upper surface 51 can be prevented. By forming the upper surface 51 of the substrate stage PST with a liquid-repellent material such as polytetrafluoroethylene (Teflon (registered trademark)), the upper surface 51 can be made liquid-repellent. Alternatively, a liquid-repellent material such as a fluororesin material such as polytetrafluoroethylene, an acrylic resin material, or a silicon-based resin material is applied to the upper surface 51, or the liquid-repellent material is applied. Liquid repelling treatment, such as attaching a thin film made of In addition, the region of the liquid repellent material (the liquid repellent treatment region) may be the entire upper surface 51, or may be only a part of the region requiring liquid repellency.
[0040] 露光装置 EXは、投影光学系 PLを支持する鏡筒定盤 5と、鏡筒定盤 5及びマスクス テージ MSTを支持するメインコラム 1とを備えている。メインコラム 1は、床面上に設け られたベース 9上に設置されて!、る。基板ステージ PSTはベース 9上に支持されて!ヽ る。メインコラム 1には、内側に向けて突出する上側段部 7及び下側段部 8が形成され ている。 The exposure apparatus EX includes a lens barrel base 5 that supports the projection optical system PL, a lens barrel base 5 and a mask It has a main column 1 that supports the Ttage MST. The main column 1 is set on a base 9 provided on the floor! The substrate stage PST is supported on the base 9! The main column 1 has an upper step 7 and a lower step 8 projecting inward.
[0041] 照明光学系 ILは、メインコラム 1の上部に固定された支持フレーム 3により支持され ている。メインコラム 1の上側段部 7には、防振装置 46を介してマスク定盤 4が支持さ れている。マスクステージ MST及びマスク定盤 4の中央部にはマスク Mのパターン像 を通過させる開口部 MK1、 MK2がそれぞれ形成されている。マスクステージ MST の下面には非接触軸受である気体軸受(エアベアリング) 45が複数設けられている。 マスクステージ MSTはエアベアリング 45によりマスク定盤 4の上面(ガイド面)に対し て非接触支持されており、マスクステージ駆動装置 MSTDにより XY平面内で 2次元 移動可能及び Θ Z方向に微小回転可能である。  The illumination optical system IL is supported by a support frame 3 fixed on the upper part of the main column 1. The mask base 4 is supported on the upper step 7 of the main column 1 via a vibration isolator 46. Openings MK1 and MK2 are formed in the center of the mask stage MST and the mask base 4, respectively, to pass the pattern image of the mask M. A plurality of gas bearings (air bearings) 45, which are non-contact bearings, are provided on the lower surface of the mask stage MST. The mask stage MST is supported in a non-contact manner on the upper surface (guide surface) of the mask surface plate 4 by an air bearing 45, and can be moved two-dimensionally in the XY plane by the mask stage driving device MSTD and can be micro-rotated in the Z direction. It is.
[0042] 投影光学系 PLを保持する鏡筒 PKの外周にはフランジ PFが設けられており、投影 光学系 PLはこのフランジ PFを介して鏡筒定盤 5に支持されている。鏡筒定盤 5とメイ ンコラム 1の下側段部 8との間にはエアマウントなどを含む防振装置 47が配置されて おり、投影光学系 PLを支持する鏡筒定盤 5はメインコラム 1の下側段部 8に防振装置 47を介して支持されている。この防振装置 47によって、メインコラム 1の振動力 投影 光学系 PLを支持する鏡筒定盤 5に伝わらないように、鏡筒定盤 5とメインコラム 1とが 振動的に分離されている。  [0042] A flange PF is provided on the outer periphery of the barrel PK holding the projection optical system PL, and the projection optical system PL is supported by the barrel base 5 via the flange PF. An anti-vibration device 47 including an air mount is provided between the lens barrel base 5 and the lower step 8 of the main column 1, and the lens barrel base 5 supporting the projection optical system PL is a main column. It is supported by the lower step 8 of 1 via a vibration isolator 47. The vibration isolator 47 vibrates the lens barrel base 5 and the main column 1 so that the vibration force of the main column 1 is not transmitted to the lens barrel base 5 that supports the projection optical system PL.
[0043] 基板ステージ PSTの下面には複数の非接触軸受である気体軸受(エアベアリング) 48が設けられている。また、ベース 9上には、エアマウント等を含む防振装置 49を介 して基板定盤 6が支持されている。基板ステージ PSTはエアベアリング 48により基板 定盤 6の上面 (ガイド面)に対して非接触支持されており、基板ステージ駆動装置 PS TDにより、 XY平面内で 2次元移動可能及び θ Z方向に微小回転可能である。この 防振装置 49によって、ベース 9 (床面)やメインコラム 1の振動力 基板ステージ PST を非接触支持する基板定盤 6に伝わらないように、基板定盤 6とメインコラム 1及びべ ース 9 (床面)とが振動的に分離されて!、る。  [0043] A plurality of gas bearings (air bearings) 48, which are non-contact bearings, are provided on the lower surface of the substrate stage PST. The base plate 6 is supported on the base 9 via a vibration isolator 49 including an air mount and the like. The substrate stage PST is supported in a non-contact manner on the upper surface (guide surface) of the substrate surface plate 6 by an air bearing 48, and can be moved two-dimensionally in the XY plane by the substrate stage driving device PS TD and minute in the θZ direction. It is rotatable. The vibration isolator 49 prevents the vibration force of the base 9 (floor surface) and the main column 1 from being transmitted to the substrate plate 6 that supports the substrate stage PST in a non-contact manner. 9 (floor surface) is separated by vibration!
[0044] ノズル部材 70は、メインコラム 1の下側段部 8に連結部材 52を介して支持されてい る。連結部材 52はメインコラム 1の下側段部 8に固定されており、その連結部材 52に ノズル部材 70が固定されている。メインコラム 1の下側段部 8は、防振装置 47及び鏡 筒定盤 5を介して投影光学系 PLを支持しており、ノズル部材 70は、投影光学系 PL を支持する下側段部 8に支持されて 、る構成となって 、る。 The nozzle member 70 is supported on the lower step 8 of the main column 1 via the connecting member 52. The The connecting member 52 is fixed to the lower step 8 of the main column 1, and the nozzle member 70 is fixed to the connecting member 52. The lower step 8 of the main column 1 supports the projection optical system PL via the vibration isolator 47 and the barrel base 5, and the nozzle member 70 is connected to the lower step supporting the projection optical system PL. It is supported by 8, and has a configuration.
[0045] そして、ノズル部材 70を連結部材 52を介して支持して 、るメインコラム 1と、投影光 学系 PLの鏡筒 PKをフランジ PFを介して支持して ヽる鏡筒定盤 5とは、防振装置 47 を介して振動的に分離されている。したがって、ノズル部材 70で発生した振動が投 影光学系 PLに伝達されることは防止されている。また、ノズル部材 70を連結部材 52 を介して支持して 、るメインコラム 1と、基板ステージ PSTを支持して 、る基板定盤 6 とは、防振装置 49を介して振動的に分離している。したがって、ノズル部材 70で発 生した振動力 メインコラム 1及びベース 9を介して基板ステージ PSTに伝達されるこ とが防止されている。また、ノズル部材 70を連結部材 52を介して支持しているメイン コラム 1と、マスクステージ MSTを支持しているマスク定盤 4とは、防振装置 46を介し て振動的に分離されている。したがって、ノズル部材 70で発生した振動がメインコラ ム 1を介してマスクステージ MSTに伝達されることが防止されている。  Then, the main column 1 supporting the nozzle member 70 via the connecting member 52 and the barrel base 5 supporting the barrel PK of the projection optical system PL via the flange PF. Are separated from each other by vibration through a vibration isolator 47. Therefore, the vibration generated in the nozzle member 70 is prevented from being transmitted to the projection optical system PL. In addition, the main column 1 supporting the nozzle member 70 via the connecting member 52 and the substrate table 6 supporting the substrate stage PST are vibrated and separated via the vibration isolator 49. ing. Therefore, the vibration force generated by the nozzle member 70 is prevented from being transmitted to the substrate stage PST via the main column 1 and the base 9. Further, the main column 1 supporting the nozzle member 70 via the connecting member 52 and the mask base 4 supporting the mask stage MST are vibratingly separated via a vibration isolator 46. . Therefore, the vibration generated in the nozzle member 70 is prevented from being transmitted to the mask stage MST via the main column 1.
[0046] 第 1液体供給機構 10は、液体 LQ1を投影光学系 PLの最終光学素子 2Gの下面 2 S側 (光射出側)に形成された第 1空間 K1に供給する。第 1液体供給機構 10は、液 体 LQ1を送出可能な第 1液体供給部 11と、第 1液体供給部 11にその一端部を接続 する供給管 13とを備えている。第 1液体供給部 11は、液体 LQ1を収容するタンク、 供給する液体 LQ1の温度を調整する温調装置、液体 LQ1中の異物を除去するフィ ルタ装置、及び加圧ポンプ等を備えている。基板 P上に液浸領域 AR2を形成する際 、液体供給機構 10は液体 LQ1を基板 P上に供給する。  [0046] The first liquid supply mechanism 10 supplies the liquid LQ1 to the first space K1 formed on the lower surface 2S side (light emission side) of the final optical element 2G of the projection optical system PL. The first liquid supply mechanism 10 includes a first liquid supply unit 11 that can send out the liquid LQ1, and a supply pipe 13 that connects one end of the first liquid supply unit 11 to the first liquid supply unit 11. The first liquid supply unit 11 includes a tank that stores the liquid LQ1, a temperature controller that adjusts the temperature of the liquid LQ1 to be supplied, a filter device that removes foreign matter in the liquid LQ1, a pressure pump, and the like. When forming the liquid immersion area AR2 on the substrate P, the liquid supply mechanism 10 supplies the liquid LQ1 onto the substrate P.
[0047] 第 1液体回収機構 20は、最終光学素子 2Gの下面 2S側に形成された第 1空間 K1 に供給された液体 LQ1を回収する。第 1液体回収機構 20は、液体 LQ1を回収可能 な第 1液体回収部 21と、第 1液体回収部 21にその一端部を接続する回収管 23とを 備えている。第 1液体回収部 21は例えば真空ポンプ等の真空系(吸引装置)、回収 された液体 LQ 1と気体とを分離する気液分離器、及び回収した液体 LQ 1を収容する タンク等を備えている。なお、真空系、気液分離器、タンクなどの少なくとも一部を露 光装置 EXに設けずに、露光装置 EXが配置される工場などの設備を用いてもよい。 基板 P上に液浸領域 AR2を形成するために、第 1液体回収機構 20は第 1液体供給 機構 10より供給された基板 P上の液体 LQ1を所定量回収する。 [0047] The first liquid recovery mechanism 20 recovers the liquid LQ1 supplied to the first space K1 formed on the lower surface 2S side of the final optical element 2G. The first liquid recovery mechanism 20 includes a first liquid recovery unit 21 that can recover the liquid LQ1, and a recovery pipe 23 that connects one end of the first liquid recovery unit 21 to the first liquid recovery unit 21. The first liquid recovery unit 21 includes, for example, a vacuum system (suction device) such as a vacuum pump, a gas-liquid separator that separates the recovered liquid LQ1 from gas, and a tank that stores the recovered liquid LQ1. I have. At least a part of the vacuum system, gas-liquid separator, tank, etc. Instead of being provided in the optical apparatus EX, equipment such as a factory where the exposure apparatus EX is arranged may be used. In order to form the liquid immersion area AR2 on the substrate P, the first liquid recovery mechanism 20 recovers a predetermined amount of the liquid LQ1 on the substrate P supplied from the first liquid supply mechanism 10.
[0048] 第 2液体供給機構 30は、液体 LQ2を投影光学系 PLの最終光学素子 2Gの上面 2 T側に形成された第 2空間 K2に供給する。第 2液体供給機構 30は、液体 LQ2を送 出可能な第 2液体供給部 31と、第 2液体供給部 31にその一端部を接続する供給管 33とを備えている。第 2液体供給部 31は、液体 LQ2を収容するタンク、供給する液 体 LQ2の温度を調整する温調装置、液体 LQ2中の異物を除去するフィルタ装置、 及び加圧ポンプ等を備えている。なお、第 1液体供給部 11及び第 2液体供給部 31 のタンク、加圧ポンプの少なくとも一部は、必ずしも露光装置 EXが備えている必要は なぐ露光装置 EXが設置される工場などの設備を代用することもできる。  [0048] The second liquid supply mechanism 30 supplies the liquid LQ2 to the second space K2 formed on the upper surface 2T side of the final optical element 2G of the projection optical system PL. The second liquid supply mechanism 30 includes a second liquid supply unit 31 that can send out the liquid LQ2, and a supply pipe 33 that connects one end of the second liquid supply unit 31 to the second liquid supply unit 31. The second liquid supply unit 31 includes a tank that stores the liquid LQ2, a temperature controller that adjusts the temperature of the liquid LQ2 to be supplied, a filter device that removes foreign substances in the liquid LQ2, a pressure pump, and the like. The tanks of the first liquid supply unit 11 and the second liquid supply unit 31 and at least some of the pressurizing pumps do not necessarily have to be provided with the exposure apparatus EX. It can be substituted.
[0049] 第 2液体回収機構 60は、最終光学素子 2Gの上面 2S側に形成された第 2空間 K2 に供給された液体 LQ2を回収する。第 2液体回収機構 60は、液体 LQ2を回収可能 な第 2液体回収部 61と、第 2液体回収部 61にその一端部を接続する回収管 63とを 備えている。第 2液体回収部 61は例えば真空ポンプ等の真空系(吸引装置)、回収 された液体 LQ2と気体とを分離する気液分離器、及び回収した液体 LQ2を収容する タンク等を備えている。なお、真空系、気液分離器、タンクなどの少なくとも一部を露 光装置 EXに設けずに、露光装置 EXが配置される工場などの設備を用いるようにし てもよい。  [0049] The second liquid recovery mechanism 60 recovers the liquid LQ2 supplied to the second space K2 formed on the upper surface 2S side of the final optical element 2G. The second liquid recovery mechanism 60 includes a second liquid recovery unit 61 that can recover the liquid LQ2, and a recovery pipe 63 that connects one end of the second liquid recovery unit 61 to the second liquid recovery unit 61. The second liquid recovery unit 61 includes, for example, a vacuum system (suction device) such as a vacuum pump, a gas-liquid separator that separates the recovered liquid LQ2 from the gas, and a tank that stores the recovered liquid LQ2. In addition, at least a part of the vacuum system, the gas-liquid separator, the tank, and the like may not be provided in the exposure apparatus EX, and equipment such as a factory where the exposure apparatus EX is disposed may be used.
[0050] 図 2は投影光学系 PLの像面側及びノズル部材 70近傍を示す断面図、図 3はノズ ル部材 70を下から見た図である。  FIG. 2 is a sectional view showing the image plane side of the projection optical system PL and the vicinity of the nozzle member 70, and FIG. 3 is a view of the nozzle member 70 as viewed from below.
[0051] 図 2及び図 3において、最終光学素子 2G及びその上方に配置された光学素子 2F は、鏡筒 PKに支持されている。最終光学素子 2Gは平行平面板であって、鏡筒 PK の下面 PKAとその鏡筒 PKに保持された最終光学素子 2Gの下面 2Sとはほぼ面一と なって 、る。鏡筒 PKに支持された最終光学素子 2Gの上面 2T及び下面 2Sは XY平 面とほぼ平行となっている。また、最終光学素子(平行平面板) 2Gはほぼ水平に支 持されており、無屈折力である。また、鏡筒 PKと最終光学素子 2Gとの接続部などは シールされている。すなわち、最終光学素子 2Gの下面 2S側の第 1空間 K1と上面 2 T側の第 2空間 K2とは互いに独立した空間であり、第 1空間 K1と第 2空間 Κ2との間 での液体の流通が阻止されている。上述したように、第 1空間 K1は、最終光学素子 2 Gと基板 Ρとの間の空間であって、その第 1空間 K1に液体 LQ1の液浸領域 AR2が 形成される。第 1空間は、基板と平行な方向において、即ち、その、周囲が開放され ている。従って、ノズル部材 70と基板 Ρとの間に保持された液体 LQ1の界面は周囲 の気体と接触している。一方、第 2空間 Κ2は、鏡筒 ΡΚの内部空間の一部であって、 最終光学素子 2Gの上面 2Τとその上方に配置された光学素子 2Fの下面 2Uとの間 の空間である。第 2空間 Κ2は、基板と平行な方向において、即ち、その、周囲が鏡 筒 ΡΚの壁面に閉鎖されている力 第 2空間 Κ2の液体 LQ2の上面の一部は、鏡筒 Ρ Κと光学素子 2Fとの間のギャップ内の気体と接触している。 In FIGS. 2 and 3, the final optical element 2G and the optical element 2F disposed above the last optical element 2G are supported by a barrel PK. The last optical element 2G is a plane-parallel plate, and the lower surface PKA of the barrel PK and the lower surface 2S of the last optical element 2G held by the barrel PK are substantially flush. The upper surface 2T and the lower surface 2S of the final optical element 2G supported by the lens barrel PK are almost parallel to the XY plane. The last optical element (parallel plane plate) 2G is supported almost horizontally and has no refracting power. The connection between the lens barrel PK and the final optical element 2G is sealed. That is, the first space K1 on the lower surface 2S side of the final optical element 2G and the upper surface 2 The T-side second space K2 is a space independent of each other, and the flow of liquid between the first space K1 and the second space # 2 is blocked. As described above, the first space K1 is a space between the last optical element 2G and the substrate 、, and the immersion area AR2 of the liquid LQ1 is formed in the first space K1. The first space is open in a direction parallel to the substrate, that is, its periphery is open. Therefore, the interface of the liquid LQ1 held between the nozzle member 70 and the substrate is in contact with the surrounding gas. On the other hand, the second space # 2 is a part of the internal space of the lens barrel 、, and is a space between the upper surface 2Τ of the final optical element 2G and the lower surface 2U of the optical element 2F disposed above it. The second space Κ2 is in a direction parallel to the substrate, that is, a force whose periphery is closed by the wall surface of the barrel ΡΚ. A part of the upper surface of the liquid LQ2 in the second space Κ2 is optically connected to the barrel Ρ 光学. It is in contact with the gas in the gap between element 2F.
[0052] なお、最終光学素子 2Gの上面 2Τの面積は、その上面 2Τと対向する光学素子 2F の下面 2Uの面積とほぼ同一、もしくは下面 2Uの面積よりも小さぐ第 2空間 Κ2を液 体 LQで満たした場合、最終光学素子 2Gの上面 2Τのほぼ全面が液体 LQで覆われ る。 The area of the upper surface 2Τ of the final optical element 2G is substantially the same as the area of the lower surface 2U of the optical element 2F opposed to the upper surface 2Τ, or is smaller than the area of the lower surface 2U. When filled with LQ, almost the entire upper surface 2Τ of the final optical element 2G is covered with liquid LQ.
[0053] また、最終光学素子 2Gは、鏡筒 ΡΚに対して容易に取り付け ·外しが可能となって いる。すなわち、最終光学素子 2Gは交換可能に設けられている。特に、最終光学素 子 2Gの取り付け及び取り外しに際して、鏡筒 ΡΚ内の他の光学素子を離脱すること なぐまた、他の光学素子または投影光学系の光学特性に影響を与えることないよう に最終光学素子 2Gが鏡筒 ΡΚに取り付けることができる。例えば、鏡筒 ΡΚを、光学 素子 2Fを保持する第 1保持部材と、最終光学素子 2Gを保持する第 2保持部材とに 分離し、第 2保持部材を第 1保持部材にネジなどを用いて固定する構造とすることに よって、第 2保持部材を取り外して、最終光学素子 2Gを容易に交換することができる  The final optical element 2 G can be easily attached to and detached from the lens barrel. That is, the last optical element 2G is provided so as to be exchangeable. In particular, when attaching and detaching the final optical element 2G, do not detach other optical elements in the lens barrel ま た, and do not affect the optical characteristics of other optical elements or the projection optical system. The element 2G can be mounted on the lens barrel ΡΚ. For example, the lens barrel 分離 is separated into a first holding member that holds the optical element 2F and a second holding member that holds the final optical element 2G, and the second holding member is attached to the first holding member using a screw or the like. With the fixing structure, the second optical member 2G can be easily replaced by removing the second holding member.
[0054] ノズル部材 70は、投影光学系 PLの下端部の近傍に配置されており、基板 P (基板 ステージ PST)の上方において鏡筒 PKの周りを囲むように設けられた環状部材であ る。ノズル部材 70は、第 1液体供給機構 10及び第 1液体回収機構 20それぞれの一 部を構成するものである。ノズル部材 70は、その中央部に投影光学系 PL (鏡筒 PK) を配置可能な穴部 70Hを有している。本実施形態において、投影光学系 PLの投影 領域 AR1は Y軸方向(非走査方向)を長手方向とする矩形状に設定されている。 [0054] The nozzle member 70 is disposed near the lower end of the projection optical system PL, and is an annular member provided so as to surround the lens barrel PK above the substrate P (substrate stage PST). . The nozzle member 70 constitutes a part of each of the first liquid supply mechanism 10 and the first liquid recovery mechanism 20. The nozzle member 70 has a hole 70H at the center thereof in which the projection optical system PL (barrel PK) can be arranged. In the present embodiment, the projection of the projection optical system PL The area AR1 is set in a rectangular shape whose longitudinal direction is the Y-axis direction (non-scanning direction).
[0055] 基板 Ρに対向するノズル部材 70の下面 70Αには、 Υ軸方向を長手方向とする凹部 78が形成されている。投影光学系 PL (鏡筒 ΡΚ)を配置可能な穴部 70Hは凹部 78 の内側に形成されている。凹部 78の内側には、 XY平面と略平行であり、基板ステー ジ PSTに支持された基板 Pと対向する面 78A (以下、キヤビティ面 78Aと称する)が 設けられている。また、凹部 78は、内側面 79を有している。内側面 79は、基板ステ ージ PSTに支持された基板 P表面に対してほぼ直交するように設けられて 、る。ここ で、基板ステージ PSTは、基板 P表面と XY平面とが略平行となるように基板 Pを支持 している。 On the lower surface 70 78 of the nozzle member 70 opposed to the substrate Ρ, a concave portion 78 having a longitudinal direction in the Υ axis direction is formed. The hole 70H in which the projection optical system PL (barrel ΡΚ) can be arranged is formed inside the recess 78. Inside the concave portion 78, there is provided a surface 78A substantially parallel to the XY plane and facing the substrate P supported by the substrate stage PST (hereinafter referred to as a cavity surface 78A). The recess 78 has an inner side surface 79. The inner side surface 79 is provided so as to be substantially orthogonal to the surface of the substrate P supported by the substrate stage PST. Here, the substrate stage PST supports the substrate P such that the surface of the substrate P and the XY plane are substantially parallel.
[0056] ノズル部材 70の下面 70Aのうち、凹部 78の内側面 79には、第 1液体供給機構 10 の一部を構成する第 1供給口 12 (12A、 12B)が設けられている。本実施形態におい ては、第 1供給口 12 (12A、 12B)は 2つ設けられており、投影光学系 PLの光学素子 2 (投影領域 AR1)を挟んで X軸方向両側のそれぞれに設けられて ヽる。第 1供給口 12A、 12Bのそれぞれは、第 1液体供給部 11から送出された液体 LQ1を、投影光学 系 PLの像面側に配置された基板 P表面と略平行、すなわち XY平面と略平行に (横 方向に)吹き出す。  In the lower surface 70 A of the nozzle member 70, a first supply port 12 (12 A, 12 B) constituting a part of the first liquid supply mechanism 10 is provided on an inner side surface 79 of the concave portion 78. In the present embodiment, two first supply ports 12 (12A, 12B) are provided and provided on both sides in the X-axis direction with the optical element 2 (projection area AR1) of the projection optical system PL interposed therebetween. Tepuru. Each of the first supply ports 12A and 12B transfers the liquid LQ1 sent from the first liquid supply unit 11 substantially parallel to the surface of the substrate P arranged on the image plane side of the projection optical system PL, that is, substantially parallel to the XY plane. (Horizontally).
[0057] なお、本実施形態における第 1供給口 12A、 12Bは略円形状に形成されているが 、楕円形状、矩形状、スリット状など任意の形状に形成されていてもよい。また、本実 施形態においては、第 1供給口 12A、 12Bは互いにほぼ同じ大きさを有しているが、 互いに異なる大きさであってもよい。また、第 1供給口は 1箇所であってもよい。また、 第 1供給口 12A, 12Bを、投影光学系 PLの光学素子 2 (投影領域 AR1)に対して Y 軸方向両側にそれぞれ設けても良 ヽ。  [0057] Although the first supply ports 12A and 12B in the present embodiment are formed in a substantially circular shape, they may be formed in any shape such as an elliptical shape, a rectangular shape, and a slit shape. In the present embodiment, the first supply ports 12A and 12B have substantially the same size as each other, but may have different sizes. Further, the first supply port may be provided at one place. Further, the first supply ports 12A and 12B may be provided on both sides in the Y-axis direction with respect to the optical element 2 (projection area AR1) of the projection optical system PL.
[0058] ノズル部材 70の下面 70Aにおいて、投影光学系 PLの投影領域 AR1を基準として 凹部 78の外側には第 1液体回収機構 20の一部を構成する第 1回収口 22が設けら れている。第 1回収口 22は、基板 Pに対向するノズル部材 70の下面 70Aにおいて投 影光学系 PLの投影領域 AR1に対して第 1液体供給機構 10の第 1供給口 12A、 12 Bの外側に、すなわち投影領域 AR1に対して第 1供給口 12A、 12Bよりも離れて設 けられている。また第 1回収口 22は、投影領域 AR1、及び第 1供給口 12A、 12Bを 囲むように環状に形成されている。また、第 1回収口 22には多孔体 22Pが設けられて いる。この多孔体 22Pについては後述する実施形態にて図 9との関係で説明する。 なお第 1回収口 22は、投影領域 AR1、及び第 1供給口 12A、 12Bを囲むように環 状に設けなくてもよぐ例えば離散的に設けても良い。すなわち、第 1回収口 22の数 、配置、及び形状などは、上述のものに限られず、液体 LQ1が漏れ出さないように液 体 LQ1を回収できる構造であればょ 、。 [0058] On the lower surface 70A of the nozzle member 70, a first recovery port 22 constituting a part of the first liquid recovery mechanism 20 is provided outside the recess 78 with reference to the projection area AR1 of the projection optical system PL. I have. The first recovery port 22 is provided outside the first supply ports 12A and 12B of the first liquid supply mechanism 10 with respect to the projection area AR1 of the projection optical system PL on the lower surface 70A of the nozzle member 70 facing the substrate P, That is, the first supply ports 12A and 12B are located farther from the projection area AR1. The first recovery port 22 is connected to the projection area AR1 and the first supply ports 12A and 12B. It is formed annularly so as to surround it. Further, the first recovery port 22 is provided with a porous body 22P. The porous body 22P will be described in an embodiment described later with reference to FIG. The first recovery port 22 may not be provided in an annular shape so as to surround the projection area AR1 and the first supply ports 12A and 12B, and may be provided discretely, for example. That is, the number, arrangement, shape, and the like of the first collection ports 22 are not limited to those described above, and may be any structure that can collect the liquid LQ1 so that the liquid LQ1 does not leak.
[0059] 連結部材 52を介してメインコラム 1の下側段部 8に支持されたノズル部材 70は、投 影光学系 PL (鏡筒 PK)とは離れている。すなわち、ノズル部材 70の穴部 70Hの内 側面 70Kと鏡筒 PKの側面 PKSとの間には間隙が設けられている。この間隙は、投 影光学系 PLとノズル部材 70とを振動的に分離するために設けられたものである。こ れにより、ノズル部材 70で発生した振動が、投影光学系 PL側に伝達することが防止 されている。また、上述したように、メインコラム 1 (下側段部 8)と鏡筒定盤 5とは、防振 装置 47を介して振動的に分離している。したがって、ノズル部材 70で発生した振動 力 メインコラム丄及び鏡筒定盤 5を介して投影光学系 PLに伝達されることは防止さ れている。 [0059] The nozzle member 70 supported by the lower step 8 of the main column 1 via the connecting member 52 is separated from the projection optical system PL (barrel PK). That is, a gap is provided between the inner side surface 70K of the hole 70H of the nozzle member 70 and the side surface PKS of the lens barrel PK. This gap is provided for vibratingly separating the projection optical system PL and the nozzle member 70. Thus, the vibration generated by the nozzle member 70 is prevented from being transmitted to the projection optical system PL. Further, as described above, the main column 1 (the lower step portion 8) and the lens barrel base 5 are vibratedly separated via the vibration isolator 47. Therefore, the vibration force generated by the nozzle member 70 is prevented from being transmitted to the projection optical system PL via the main column 丄 and the barrel base 5.
[0060] 図 2に示すように、供給管 13の他端部は、ノズル部材 70の内部に形成された第 1 供給流路 14の一端部に接続している。一方、ノズル部材 70の第 1供給流路 14の他 端部は、ノズル部材 70の凹部 78の内側面 79に形成された第 1供給口 12に接続さ れている。ここで、ノズル部材 70の内部に形成された第 1供給流路 14は、複数(2つ) の供給口 12 (12A、 12B)のそれぞれにその他端部を接続可能なように途中から分 岐している。また、図 2に示すように、第 1供給口 12に接続された第 1供給流路 14のう ち第 1供給口 12近傍は、第 1供給口 12に向力つて漸次拡がる傾斜面となっており、 供給口 12はラッパ状に形成されている。  As shown in FIG. 2, the other end of the supply pipe 13 is connected to one end of a first supply passage 14 formed inside the nozzle member 70. On the other hand, the other end of the first supply flow path 14 of the nozzle member 70 is connected to the first supply port 12 formed on the inner side surface 79 of the recess 78 of the nozzle member 70. Here, the first supply channel 14 formed inside the nozzle member 70 is branched from the middle so that the other end can be connected to each of the plurality (two) of supply ports 12 (12A, 12B). are doing. Further, as shown in FIG. 2, of the first supply flow path 14 connected to the first supply port 12, the vicinity of the first supply port 12 is an inclined surface that gradually expands toward the first supply port 12. The supply port 12 is formed in a trumpet shape.
[0061] 第 1液体供給部 11の液体供給動作は制御装置 CONTにより制御される。液浸領 域 AR2を形成するために、制御装置 CONTは、第 1液体供給機構 10の第 1液体供 給部 11より液体 LQ1を送出する。第 1液体供給部 11より送出された液体 LQ1は、供 給管 13を流れた後、ノズル部材 70の内部に形成された第 1供給流路 14の一端部に 流入する。そして、第 1供給流路 14の一端部に流入した液体 LQ1は途中で分岐した 後、ノズル部材 70の内側面 79に形成された複数(2つ)の第 1供給口 12A、 12Bより 、最終光学素子 2Gと基板 Pとの間の第 1空間 K1に供給される。ここで、本実施形態 においては、第 1供給口 12から供給される液体 LQ1は、基板 P表面とほぼ平行に吹 き出されるため、例えば基板 P表面の上方よりその基板 P表面に対して下向きに液体 LQ 1を供給する構成に比べて、供給された液体 LQ 1が基板 Pに及ぼす力を低減で きる。したがって、液体 LQ1の供給に起因して基板 Pや基板ステージ PSTが変形す る等といった不都合の発生を防止することができる。もちろん、基板 Pや基板ステージ[0061] The liquid supply operation of the first liquid supply unit 11 is controlled by the control device CONT. In order to form the liquid immersion area AR2, the control device CONT sends out the liquid LQ1 from the first liquid supply unit 11 of the first liquid supply mechanism 10. The liquid LQ1 sent from the first liquid supply unit 11 flows through the supply pipe 13, and then flows into one end of the first supply flow path 14 formed inside the nozzle member 70. Then, the liquid LQ1 that has flowed into one end of the first supply flow path 14 has branched midway. Thereafter, the plurality of (two) first supply ports 12A and 12B formed in the inner side surface 79 of the nozzle member 70 are supplied to the first space K1 between the final optical element 2G and the substrate P. Here, in the present embodiment, since the liquid LQ1 supplied from the first supply port 12 is blown out substantially in parallel with the surface of the substrate P, for example, the liquid LQ1 is directed downward from above the surface of the substrate P. The force exerted on the substrate P by the supplied liquid LQ 1 can be reduced as compared with the configuration in which the liquid LQ 1 is supplied to the substrate P. Therefore, it is possible to prevent inconvenience such as deformation of the substrate P and the substrate stage PST due to the supply of the liquid LQ1. Of course, substrate P and substrate stage
PSTへ及ぼす圧力を考慮して、下向きに液体 LQ1が供給されるように第 1供給口を 形成してちょい。 In consideration of the pressure exerted on the PST, the first supply port is formed so that the liquid LQ1 is supplied downward.
[0062] 図 2に示すように、回収管 23の他端部は、ノズル部材 70の内部に形成された第 1 回収流路 24の一部を構成するマ-ホールド流路 24Mの一端部に接続している。一 方、マ-ホールド流路 24Mの他端部は、第 1回収口 22に対応するように平面視環状 に形成され、その第 1回収口 22に接続する第 1回収流路 24の一部を構成する環状 流路 24Kの一部に接続して!/、る。  As shown in FIG. 2, the other end of the recovery pipe 23 is connected to one end of a manifold flow path 24 M that forms a part of the first recovery flow path 24 formed inside the nozzle member 70. Connected. On the other hand, the other end of the manifold flow path 24M is formed in an annular shape in plan view so as to correspond to the first recovery port 22, and a part of the first recovery flow path 24 connected to the first recovery port 22. Connect to a part of the annular flow path 24K that constitutes! /
[0063] 第 1液体回収部 21の液体回収動作は制御装置 CONTに制御される。制御装置 C ONTは、液体 LQ1を回収するために、第 1液体回収機構 20の第 1液体回収部 21を 駆動する。真空系を有する第 1液体回収部 21の駆動により、基板 P上の液体 LQ1は 、その基板 Pの上方に設けられている第 1回収口 22を介して環状流路 24Kに鉛直上 向き(+Z方向)に流入する。環状流路 24Kに +Z方向に流入した液体 LQ1は、マ- ホールド流路 24Mで集合された後、マ-ホールド流路 24Mを流れる。その後、回収 管 23を介して第 1液体回収部 21に吸引回収される。  [0063] The liquid recovery operation of the first liquid recovery unit 21 is controlled by the controller CONT. The control device CONT drives the first liquid recovery unit 21 of the first liquid recovery mechanism 20 to recover the liquid LQ1. By driving the first liquid recovery unit 21 having a vacuum system, the liquid LQ1 on the substrate P moves vertically upward (+) to the annular flow path 24K via the first recovery port 22 provided above the substrate P. Z direction). The liquid LQ1 that has flowed into the annular flow path 24K in the + Z direction flows through the march flow path 24M after being collected in the march flow path 24M. Thereafter, the liquid is sucked and collected by the first liquid collecting part 21 through the collecting pipe 23.
[0064] 鏡筒 PKの内側面 PKLには、第 2液体供給機構 30の一部を構成する第 2供給口 3 2が設けられている。第 2供給口 32は、鏡筒 PKの内側面 PKLにおいて第 2空間 K2 の近傍に形成されており、投影光学系 PLの光軸 AXに対して +X側に設けられてい る。第 2供給口 32は、第 2液体供給部 31から送出された液体 LQ2を、最終光学素子 2Gの上面 2Tと略平行、すなわち XY平面と略平行に (横方向に)吹き出す。第 2供 給口 32は、最終光学素子 2Gの上面 2Tとほぼ平行に液体 LQ2を吹き出すので、供 給された液体 LQ2が光学素子 2G、 2F等に及ぼす力を低減できる。したがって、液 体 LQ2の供給に起因して光学素子 2G、 2F等が変形したり変位する等と 、つた不都 合の発生を防止することができる。 The inner surface PKL of the lens barrel PK is provided with a second supply port 32 constituting a part of the second liquid supply mechanism 30. The second supply port 32 is formed near the second space K2 on the inner side surface PKL of the lens barrel PK, and is provided on the + X side with respect to the optical axis AX of the projection optical system PL. The second supply port 32 blows out the liquid LQ2 sent from the second liquid supply unit 31 substantially parallel to the upper surface 2T of the final optical element 2G, that is, substantially parallel to the XY plane (in the lateral direction). Since the second supply port 32 blows out the liquid LQ2 substantially in parallel with the upper surface 2T of the final optical element 2G, the force exerted on the optical elements 2G, 2F, etc. by the supplied liquid LQ2 can be reduced. Therefore, the liquid If the optical elements 2G, 2F, etc. are deformed or displaced due to the supply of the body LQ2, it is possible to prevent occurrence of a trouble.
[0065] また、鏡筒 PKの内側面 PKLにおいて、第 2供給口 32に対して所定位置には、第 2 液体回収機構 60の一部を構成する第 2回収口 62が設けられて 、る。第 2回収口 62 は、鏡筒 PKの内側面 PKLにおいて第 2空間 K2の近傍に形成されており、投影光学 系 PLの光軸 AXに対して— X側に設けられている。すなわち、第 2供給口 32及び第 2回収口 62は対向している。本実施形態においては、第 2供給口 32及び第 2回収口 62はそれぞれスリット状に形成されている。なお、第 2供給口 32及び第 2回収口 62 は、略円形状、楕円形状、矩形状など任意の形状に形成されていてもよい。また、本 実施形態においては、第 2供給口 32、第 2回収口 62のそれぞれは互いにほぼ同じ 大きさを有しているが、互いに異なる大きさであってもよい。また、第 2供給口 32を、 上記第 1供給口 12と同様、ラッパ状に形成してもよい。  Further, on the inner surface PKL of the lens barrel PK, a second recovery port 62 that constitutes a part of the second liquid recovery mechanism 60 is provided at a predetermined position with respect to the second supply port 32. . The second recovery port 62 is formed near the second space K2 on the inner side surface PKL of the lens barrel PK, and is provided on the −X side with respect to the optical axis AX of the projection optical system PL. That is, the second supply port 32 and the second recovery port 62 face each other. In the present embodiment, each of the second supply port 32 and the second recovery port 62 is formed in a slit shape. Note that the second supply port 32 and the second recovery port 62 may be formed in any shape such as a substantially circular shape, an elliptical shape, and a rectangular shape. In the present embodiment, the second supply port 32 and the second recovery port 62 have substantially the same size as each other, but may have different sizes. Further, the second supply port 32 may be formed in a trumpet shape, like the first supply port 12 described above.
[0066] 図 2に示すように、供給管 33の他端部は、鏡筒 PKの内部に形成された第 2供給流 路 34の一端部に接続している。一方、鏡筒 PKの第 2供給流路 34の他端部は、鏡筒 PKの内側面 PKLに形成された第 2供給口 32に接続されて 、る。  As shown in FIG. 2, the other end of the supply pipe 33 is connected to one end of a second supply channel 34 formed inside the lens barrel PK. On the other hand, the other end of the second supply channel 34 of the lens barrel PK is connected to a second supply port 32 formed on the inner surface PKL of the lens barrel PK.
[0067] 第 2液体供給部 31の液体供給動作は制御装置 CONTにより制御される。制御装 置 CONTが、第 2液体供給機構 30の第 2液体供給部 31より液体 LQ2を送出すると 、その第 2液体供給部 31より送出された液体 LQ2は、供給管 33を流れた後、鏡筒 P Kの内部に形成された第 2供給流路 34の一端部に流入する。そして、第 2供給流路 34の一端部に流入した液体 LQ2は、鏡筒 PKの内側面 PKLに形成された第 2供給 口 32より、光学素子 2Fと最終光学素子 2Gとの間の第 2空間 K2に供給される。  [0067] The liquid supply operation of the second liquid supply unit 31 is controlled by the controller CONT. When the control device CONT sends out the liquid LQ2 from the second liquid supply unit 31 of the second liquid supply mechanism 30, the liquid LQ2 sent from the second liquid supply unit 31 flows through the supply pipe 33, and then flows into the mirror. It flows into one end of a second supply channel 34 formed inside the cylinder PK. Then, the liquid LQ2 that has flowed into one end of the second supply flow path 34 passes through the second supply port 32 formed on the inner side surface PKL of the barrel PK, and the second liquid LQ2 between the optical element 2F and the last optical element 2G. Supplied to space K2.
[0068] 図 2に示すように、回収管 63の他端部は、鏡筒 PKの内部に形成された第 2回収流 路 64の一端部に接続している。一方、第 2回収流路 64の他端部は、鏡筒 PKの内側 面 PKLに形成された第 2回収口 62に接続されている。  As shown in FIG. 2, the other end of the collection tube 63 is connected to one end of a second collection channel 64 formed inside the lens barrel PK. On the other hand, the other end of the second recovery channel 64 is connected to a second recovery port 62 formed on the inner surface PKL of the lens barrel PK.
[0069] 第 2液体回収部 61の液体回収動作は制御装置 CONTに制御される。制御装置 C ONTは、液体 LQ2を回収するために、第 2液体回収機構 60の第 2液体回収部 61を 駆動する。真空系を有する第 2液体回収部 61の駆動により、第 2空間 K2の液体 LQ 2は、第 2回収口 62を介して第 2回収流路 64に流入し、その後、回収管 63を介して 第 2液体回収部 61に吸引回収される。 [0069] The liquid recovery operation of the second liquid recovery unit 61 is controlled by the controller CONT. The control device CONT drives the second liquid recovery unit 61 of the second liquid recovery mechanism 60 to recover the liquid LQ2. By driving the second liquid recovery unit 61 having a vacuum system, the liquid LQ 2 in the second space K2 flows into the second recovery flow path 64 through the second recovery port 62, and then flows through the recovery pipe 63. The liquid is sucked and collected by the second liquid collecting part 61.
なお、第 2供給口 32および第 2回収口の数や配置など、上述のものに限られず、光 学素子 2Fと光学素子 2Gとの間の露光光 ELの光路が第 2液体 LQ2で満たされる構 造であればよい。  The number and arrangement of the second supply port 32 and the second recovery port are not limited to those described above, and the optical path of the exposure light EL between the optical element 2F and the optical element 2G is filled with the second liquid LQ2. Any structure is acceptable.
[0070] なお、本実施形態においては、鏡筒 PKの内部に流路 34、 64が形成されているが 、鏡筒 PKの一部に貫通孔を設けておき、そこに流路となる配管を通すようにしてもよ い。また、本実施形態においては、供給管 33及び回収管 63は、ノズル部材 70とは 別に設けられている力 供給管 33及び回収管 63のかわりにノズル部材 70の内部に 供給路及び回収路を設けて、鏡筒 PK内部に形成された流路 34、 64のそれぞれと 接続するようにしてもよ ヽ。  In the present embodiment, the flow paths 34 and 64 are formed inside the lens barrel PK. However, a through hole is provided in a part of the lens barrel PK, You may let it pass. In the present embodiment, the supply pipe 33 and the recovery pipe 63 are provided with a supply path and a recovery path inside the nozzle member 70 instead of the force supply pipe 33 and the recovery pipe 63 provided separately from the nozzle member 70. It may be provided to connect to each of the flow paths 34 and 64 formed inside the lens barrel PK.
[0071] 鏡筒 PKに保持されている光学素子 2Fの下面 2Uは平面状に形成されており、最 終光学素子 2Gの上面 2Tとほぼ平行となっている。一方、光学素子 2Fの上面 2Wは 、物体面側(マスク M側)に向力つて凸状に形成されており、正の屈折率を有している 。これにより、上面 2Wに入射する光 (露光光 EL)の反射損失が低減されており、ひ いては投影光学系 PLの大きい像側開口数が確保されている。また、屈折率 (レンズ 作用)を有する光学素子 2Fは、良好に位置決めされた状態で鏡筒 PKに堅固に固定 されている。  The lower surface 2U of the optical element 2F held by the lens barrel PK is formed in a planar shape, and is substantially parallel to the upper surface 2T of the final optical element 2G. On the other hand, the upper surface 2W of the optical element 2F is formed to be convex toward the object surface side (mask M side) and has a positive refractive index. Thereby, the reflection loss of the light (exposure light EL) incident on the upper surface 2W is reduced, and a large image-side numerical aperture of the projection optical system PL is secured. The optical element 2F having a refractive index (lens function) is firmly fixed to the barrel PK in a well-positioned state.
[0072] 光学素子 2Fの下面 2U及び最終光学素子 2Gの上面 2Tには第 2空間 K2に満たさ れた液体 LQ2が接触し、最終光学素子 2Gの下面 2Sには第 1空間 K1の液体 LQ1 が接触する。本実施形態においては、少なくとも光学素子 2F、 2Gは石英によって形 成されている。石英は、水である液体 LQ1、 LQ2との親和性が高いので、液体接触 面である光学素子 2Fの下面 2U、最終光学素子 2Gの上面 2T及び下面 2Sのほぼ全 面に液体 LQ1、 LQ2を密着させることができる。したがって、光学素子 2F、 2Gの液 体接触面 2S、 2T、 2Uに液体 LQ1、 LQ2を密着させて、光学素子 2Fと最終光学素 子 2Gとの間の光路、及び最終光学素子 2Gと基板 Pとの間の光路を液体 LQ1、 LQ2 で確実に満たすことができる。  The liquid LQ2 filled in the second space K2 contacts the lower surface 2U of the optical element 2F and the upper surface 2T of the final optical element 2G, and the liquid LQ1 of the first space K1 contacts the lower surface 2S of the final optical element 2G. Contact. In the present embodiment, at least the optical elements 2F and 2G are formed of quartz. Quartz has a high affinity for the liquids LQ1 and LQ2, which are water.Therefore, the liquid LQ1 and LQ2 are applied to almost all surfaces of the lower surface 2U of the optical element 2F, which is the liquid contact surface, and the upper surface 2T and the lower surface 2S of the final optical element 2G. Can be in close contact. Therefore, the liquids LQ1 and LQ2 are brought into close contact with the liquid contact surfaces 2S, 2T and 2U of the optical elements 2F and 2G, and the optical path between the optical element 2F and the final optical element 2G, and the optical path between the final optical element 2G and the substrate P The light path between the liquid and the liquid LQ1 and LQ2 can be reliably filled.
[0073] また、石英は屈折率の大きい材料であるため、光学素子 2Fなどの大きさを小さくす ることができ、投影光学系 PL全体や露光装置 EX全体をコンパ外ィ匕できる。また、石 英は耐水性があるので、例えば、本実施形態のように液体 LQ1、 LQ2として純水を 用いた場合であっても、液体接触面 2S、 2T、 2U等に保護膜を設ける必要がないな どの禾 lj点、がある。 Further, since quartz is a material having a large refractive index, the size of the optical element 2F and the like can be reduced, and the entire projection optical system PL and the entire exposure apparatus EX can be made compact. Also stone Since UK has water resistance, for example, even when pure water is used as the liquid LQ1 and LQ2 as in this embodiment, it is not necessary to provide a protective film on the liquid contact surfaces 2S, 2T, 2U, etc. Which has lj points,
[0074] なお、光学素子 2F、 2Gの少なくとも一方は、水との親和性が高い蛍石であってもよ い。この場合は、蛍石の液体接触面には水への溶解を防止するための保護膜を形 成しておくことが望ましい。また、例えば光学素子 2A〜2Eを蛍石で形成し、光学素 子 2F、 2Gを石英で形成してもよいし、光学素子 2A〜2Gの全てを石英(あるいは蛍 石)で形成してもよい。  [0074] At least one of the optical elements 2F and 2G may be fluorite having a high affinity for water. In this case, it is desirable to form a protective film on the liquid contact surface of the fluorite to prevent dissolution in water. Also, for example, the optical elements 2A to 2E may be formed of fluorite and the optical elements 2F and 2G may be formed of quartz, or all of the optical elements 2A to 2G may be formed of quartz (or fluorite). Good.
[0075] また、光学素子 2F、 2Gの液体接触面 2S、 2T、 2Uに、 MgF、 Al O、 SiO等を  [0075] Further, MgF, Al 2 O, SiO, etc. are applied to the liquid contact surfaces 2S, 2T, 2U of the optical elements 2F, 2G.
2 2 3 2 付着させる等の親水化 (親液化)処理を施して、液体 LQ1、 LQ2との親和性をより高 めるようにしてもよい。あるいは、本実施形態における液体 LQ1、 LQ2は極性の大き い水であるため、親液化処理 (親水化処理)としては、例えばアルコールなど極性の 大きい分子構造の物質で薄膜を形成することで、この光学素子 2F、 2Gの液体接触 面 2S、 2T、 2Uに親水性を付与することもできる。すなわち、液体 LQ1、 LQ2として 水を用いる場合には OH基など極性の大き ヽ分子構造を持ったものを前記液体接触 面 2S、 2T、 2Uに設ける処理が望ましい。  A hydrophilicity (lyophilicity) treatment such as adhesion may be performed to further enhance the affinity with the liquid LQ1 and LQ2. Alternatively, since the liquids LQ1 and LQ2 in the present embodiment are highly polar water, the lyophilic treatment (hydrophilization treatment) is performed by forming a thin film with a substance having a highly polar molecular structure such as alcohol. The liquid contact surfaces 2S, 2T, and 2U of the optical elements 2F and 2G can be provided with hydrophilicity. That is, when water is used as the liquids LQ1 and LQ2, it is desirable to provide a liquid having a large polar molecular structure such as an OH group on the liquid contact surfaces 2S, 2T, and 2U.
[0076] また、本実施形態においては、鏡筒 PKの内側面 PKL、及び光学素子 2Fの側面 2 FKのそれぞれは、撥液ィ匕処理されて撥液性を有している。鏡筒 PKの内側面 PKL、 及び光学素子 2Fの側面 2FKのそれぞれを撥液性にすることで、内側面 PKLと側面 2FKとで形成される間隙に第 2空間 K2の液体 LQ2が浸入することが防止されるとと もに、前記間隙の気体が、第 2空間 K2の液体 LQ2中に気泡となって混在することが 防止されている。 In the present embodiment, each of the inner side surface PKL of the lens barrel PK and the side surface 2 FK of the optical element 2F is subjected to a liquid repellent treatment and has liquid repellency. By making each of the inner surface PKL of the lens barrel PK and the side surface 2FK of the optical element 2F lyophobic, the liquid LQ2 of the second space K2 enters the gap formed by the inner surface PKL and the side surface 2FK. In addition, the gas in the gap is prevented from being mixed as bubbles in the liquid LQ2 in the second space K2.
[0077] 上記撥液ィ匕処理としては、例えば、ポリ四フッ化工チレン等のフッ素系榭脂材料、 アクリル系榭脂材料、シリコン系榭脂材料等の撥液性材料を塗布、あるいは前記撥 液性材料力 なる薄膜を貼付する等の処理が挙げられる。  [0077] The liquid-repellent dangling treatment includes, for example, applying a liquid-repellent material such as a fluorine-based resin material such as polytetrafluoroethylene, an acrylic resin material, or a silicon-based resin material, or applying the liquid-repellent material. Processing such as attaching a thin film made of a liquid material is included.
[0078] また、鏡筒 PKの側面 PKSとノズル部材 70の内側面 70Kとのそれぞれに撥液処理 を施してそれら側面 PKS及び内側面 70Kを撥液性にすることにより、内側面 70Kと 側面 PKSとで形成される間隙に第 1空間 K1の液体 LQ 1が浸入することが防止され るとともに、前記間隙の気体が、第 1空間 K1の液体 LQ1中に気泡となって混在する ことが防止されている。 Further, the side surface PKS of the lens barrel PK and the inner surface 70K of the nozzle member 70 are subjected to lyophobic treatment to make the side surface PKS and the inner surface 70K lyophobic, so that the inner surface 70K and the side surface The liquid LQ1 in the first space K1 is prevented from entering the gap formed with PKS. In addition, the gas in the gap is prevented from being mixed as bubbles in the liquid LQ1 in the first space K1.
[0079] なお、光学素子 2Fの側面 2FKと鏡筒 PKの内側面 PKLとの間に Oリングや Vリング 等のシール部材を配置してもよい。また、鏡筒 PKの側面 PKSとノズル部材 70の内 側面 70Kとの間に Oリングや Vリング等のシール部材を配置してもよ 、。  [0079] A seal member such as an O-ring or a V-ring may be arranged between the side surface 2FK of the optical element 2F and the inner surface PKL of the lens barrel PK. Further, a seal member such as an O-ring or a V-ring may be disposed between the side surface PKS of the lens barrel PK and the inner surface 70K of the nozzle member 70.
[0080] 次に、上述した構成を有する露光装置 EXを用いてマスク Mのパターン像を基板 P に露光する方法にっ 、て説明する。  Next, a method of exposing the pattern image of the mask M to the substrate P using the exposure apparatus EX having the above-described configuration will be described.
[0081] 基板 Pの露光を行うに際し、制御装置 CONTは、第 2液体供給機構 30より第 2空間 K2に液体 LQ2を供給する。制御装置 CONTは、第 2液体供給機構 30による単位 時間あたりの液体 LQ2の供給量及び第 2液体回収機構 60による単位時間あたりの 液体 LQ2の回収量を最適に制御しつつ、第 2液体供給機構 30及び第 2液体回収機 構 60による液体 LQ2の供給及び回収を行い、第 2空間 K2のうち、少なくとも露光光 ELの光路上を液体 LQ2で満たす。なお、第 2空間 K2へ液体 LQ2の供給を開始す るときに、鏡筒 PKの内側面 PKLと光学素子 2Fの側面 2FKとの間隙への液体 LQ2 の浸入を抑制するために、第 2液体供給機構 30による単位時間あたりの液体 LQ2の 供給量を徐々に多くしてもよい。  When exposing the substrate P, the control device CONT supplies the liquid LQ2 from the second liquid supply mechanism 30 to the second space K2. The controller CONT controls the second liquid supply mechanism while optimally controlling the amount of liquid LQ2 supplied per unit time by the second liquid supply mechanism 30 and the amount of liquid LQ2 recovered per unit time by the second liquid recovery mechanism 60. The liquid LQ2 is supplied and recovered by the 30 and the second liquid recovery mechanism 60, and at least the optical path of the exposure light EL in the second space K2 is filled with the liquid LQ2. When the supply of the liquid LQ2 to the second space K2 is started, in order to suppress the liquid LQ2 from entering the gap between the inner surface PKL of the lens barrel PK and the side surface 2FK of the optical element 2F, the second liquid The supply amount of the liquid LQ2 per unit time by the supply mechanism 30 may be gradually increased.
[0082] また、ロード位置において基板 Pが基板ステージ PSTにロードされた後、制御装置 CONTは、基板 Pを保持した基板ステージ PSTを投影光学系 PLの下、すなわち露 光位置に移動する。そして、基板ステージ PSTと投影光学系 PLの最終光学素子 2G とを対向させた状態で、制御装置 CONTは、第 1液体供給機構 10による単位時間あ たりの液体 LQ 1の供給量及び第 1液体回収機構 20による単位時間あたりの液体 LQ 1の回収量を最適に制御しつつ、第 1液体供給機構 10及び第 1液体回収機構 20〖こ よる液体 LQ1の供給及び回収を行い、第 1空間 K1のうち、少なくとも露光光 ELの光 路上に液体 LQ 1の液浸領域 AR2を形成し、その露光光 ELの光路を液体 LQ 1で満 たす。  After the substrate P is loaded on the substrate stage PST at the loading position, the control device CONT moves the substrate stage PST holding the substrate P under the projection optical system PL, that is, to the exposure position. Then, in a state where the substrate stage PST and the final optical element 2G of the projection optical system PL face each other, the control device CONT controls the supply amount of the liquid LQ 1 per unit time by the first liquid supply mechanism 10 and the first liquid The liquid LQ1 is supplied and recovered by the first liquid supply mechanism 10 and the first liquid recovery mechanism 20 while optimally controlling the amount of liquid LQ1 recovered per unit time by the recovery mechanism 20. Among them, the liquid immersion area AR2 of the liquid LQ1 is formed at least on the optical path of the exposure light EL, and the optical path of the exposure light EL is filled with the liquid LQ1.
[0083] ここで、基板ステージ PST上の所定位置には、例えば特開平 4— 65603号公報に 開示されているような基板ァライメント系、及び特開平 7— 176468号公報に開示され て 、るようなマスクァライメント系によって計測される基準マークを備えた基準部材 (計 測部材)が設けられている。更に、基板ステージ PST上の所定位置には、光計測部 として例えば特開昭 57— 117238号公報に開示されているような照度ムラセンサ、例 えば特開 2002— 14005号公報に開示されているような空間像計測センサ、及び例 えば特開平 11— 16816号公報に開示されているような照射量センサ(照度センサ) などが設けられている。制御装置 CONTは、基板 Pの露光処理を行う前に、基準部 材上のマーク計測や、光計測部を使った各種計測動作、基板ァライメント系を用いた 基板 P上のマークの検出動作を行い、その計測結果に基づいて、基板 Pのァライメン ト処理や、投影光学系 PLの結像特性調整 (キャリブレーション)処理を行う。例えば 光計測部を使った計測動作を行う場合には、制御装置 CONTは、基板ステージ PS Tを XY方向に移動することで液体 LQ 1の液浸領域 AR2に対して基板ステージ PST を相対的に移動し、光計測部上に液体 LQ 1の液浸領域 AR2を配置し、その状態で 液体 LQ 1及び液体 LQ2を介した計測動作を行う。なお、基準部材ゃ光計測部を用 V、た各種の計測動作は、露光対象の基板 Pを基板ステージ PST上にロードする前に 行っても良い。また、基板ァライメント系による基板 P上のァライメントマークの検出は 、投影光学系 PLの像面側に液体 LQ 1の液浸領域 AR2を形成する前に行っても良 い。 Here, at a predetermined position on the substrate stage PST, for example, a substrate alignment system as disclosed in JP-A-4-65603 and a substrate alignment system as disclosed in JP-A-7-176468 are disclosed. Reference member with fiducial marks measured by various mask alignment systems Measuring member). Further, at a predetermined position on the substrate stage PST, as an optical measurement unit, for example, an illuminance non-uniformity sensor as disclosed in JP-A-57-117238, for example, as disclosed in JP-A-2002-14005. There are provided an aerial image measurement sensor and an irradiation amount sensor (illuminance sensor) as disclosed in, for example, JP-A-11-16816. The control unit CONT performs mark measurement on the reference material, various measurement operations using the optical measurement unit, and detection of marks on the substrate P using the substrate alignment system before performing exposure processing on the substrate P. Based on the measurement result, alignment processing of the substrate P and adjustment (calibration) processing of the imaging characteristics of the projection optical system PL are performed. For example, when performing a measurement operation using the optical measurement unit, the control device CONT moves the substrate stage PST in the XY direction to move the substrate stage PST relative to the liquid immersion area AR2 of the liquid LQ1. Move, place the liquid immersion area AR2 of liquid LQ1 on the optical measurement unit, and perform the measurement operation via liquid LQ1 and liquid LQ2 in that state. Note that various measurement operations using the reference member light measurement unit may be performed before the substrate P to be exposed is loaded on the substrate stage PST. The detection of the alignment mark on the substrate P by the substrate alignment system may be performed before forming the liquid immersion area AR2 of the liquid LQ1 on the image plane side of the projection optical system PL.
[0084] 上記ァライメント処理及びキャリブレーション処理を行った後、制御装置 CONTは、 第 1液体供給機構 10による基板 P上に対する液体 LQ1の供給と並行して、第 1液体 回収機構 20による基板 P上の液体 LQ 1の回収を行いつつ、基板 Pを支持する基板 ステージ PSTを X軸方向(走査方向)に移動しながら、マスク Mのパターン像を、投影 光学系 PL、第 2空間 K2の液体 LQ2、及び第 1空間 K1の液体 LQ l (すなわち液浸 領域 AR2の液体)を介して基板 P上に投影露光する。  After performing the above-described alignment processing and calibration processing, the control device CONT concurrently supplies the liquid LQ1 onto the substrate P by the first liquid supply mechanism 10 and, on the substrate P by the first liquid recovery mechanism 20, While collecting the liquid LQ1 and moving the substrate stage PST supporting the substrate P in the X-axis direction (scanning direction), the pattern image of the mask M is projected onto the projection optical system PL and the liquid LQ2 in the second space K2. , And the liquid LQl in the first space K1 (ie, the liquid in the liquid immersion area AR2) is projected and exposed on the substrate P.
[0085] 本実施形態における露光装置 EXは、マスク Mと基板 Pとを X軸方向(走査方向)に 移動しながらマスク Mのパターン像を基板 Pに投影露光するものであって、走査露光 時には、投影光学系 PL、及び第 1、第 2空間 Kl、 Κ2の液体 LQ1、 LQ2を介してマ スク Mの一部のパターン像が投影領域 AR1内に投影され、マスク Mがー X方向(又 は +X方向)に速度 Vで移動するのに同期して、基板 Pが投影領域 AR1に対して + X方向(又は— X方向)に速度 β ·Υ ( βは投影倍率)で移動する。基板 Ρ上には複数 のショット領域が設定されており、 1つのショット領域への露光終了後に、基板 Pのス テツビング移動によって次のショット領域が走査開始位置に移動し、以下、ステップ' アンド'スキャン方式で基板 Pを移動しながら各ショット領域に対する走査露光処理が 順次行われる。 The exposure apparatus EX according to the present embodiment projects and exposes the pattern image of the mask M onto the substrate P while moving the mask M and the substrate P in the X-axis direction (scanning direction). A part of the pattern image of the mask M is projected into the projection area AR1 through the projection optical system PL and the liquids LQ1 and LQ2 in the first and second spaces Kl and Κ2, and the mask M is moved in the X direction (or In synchronization with the movement at the velocity V in the + X direction, the substrate P moves in the + X direction (or -X direction) with respect to the projection area AR1 at the velocity β · Υ (β is the projection magnification). Substrate 複数 Multiple on After the exposure of one shot area is completed, the next shot area moves to the scanning start position by the stepping movement of the substrate P, and thereafter, the substrate P is moved by the step-and-scan method. Scanning exposure processing is sequentially performed on each shot area while moving.
[0086] 本実施形態においては、レンズ作用を有する光学素子 2Fの下に、平行平面板から なる最終光学素子 2Gが配置されて 、るが、最終光学素子 2Gの下面 2S側及び上面 2T側の第 1、第 2空間 Kl、 Κ2のそれぞれに液体 LQ1、 LQ2を満たすことで、光学 素子 2Fの下面 2Uや最終光学素子 2Gの上面 2Tでの反射損失が低減され、投影光 学系 PLの大きな像側開口数を確保した状態で、基板 Pを良好に露光することができ る。  [0086] In the present embodiment, the final optical element 2G made of a plane-parallel plate is disposed below the optical element 2F having a lens function, but the lower optical element 2G has a lower surface 2S side and an upper optical surface 2T side. By filling the liquids LQ1 and LQ2 in the first and second spaces Kl and Κ2, respectively, the reflection loss at the lower surface 2U of the optical element 2F and the upper surface 2T of the final optical element 2G is reduced, and the projection optical system PL has a large size. The substrate P can be favorably exposed while maintaining the image-side numerical aperture.
[0087] 基板 Pの露光中においても、第 2液体供給機構 30及び第 2液体回収機構 60による 液体 LQ2の供給及び回収は継続される。更に、基板 Pの露光前後においても、第 2 液体供給機構 30及び第 2液体回収機構 60による液体 LQ2の供給及び回収は継続 される。第 2液体供給機構 30及び第 2液体回収機構 60による液体 LQ2の供給及び 回収を継続することで、第 2空間 K2の液体 LQ2は常に新鮮な (清浄な)液体 LQ2と 交換される。第 2空間 K2に対する液体 LQ2の供給及び回収を行わずに、第 2空間 K 2に液体 LQ2を溜めた状態で露光を行ってもよいが、露光光 ELの照射により液体 L Q2の温度が変化し、投影光学系 PLの液体を介した結像特性が変動する可能性が ある。したがって、第 2液体供給機構 30より温度調整された液体 LQ2を常時供給す るとともに、その液体 LQ2を第 2液体回収機構 60により回収することで、第 2空間 K2 の液体 LQ2の温度変化を抑えることができる。同様に、露光光 ELの照射中において 、第 1液体供給機構 10及び第 1液体回収機構 20による液体 LQ1の供給及び回収を 常時行うことにより、第 1空間 K1の液体 LQ1は常に新鮮な (清浄な)液体 LQ1と交換 される。第 1空間 K1の液体 LQ1 (すなわち基板 P上の液浸領域 AR2の液体 LQ1)の 温度変化を抑えることができる。また、液体 LQ1、 LQ2の供給及び回収を常時行つ て、清浄な液体 LQ1、 LQ2を流し続けることにより、第 1、第 2空間 Kl、 Κ2に細菌( ノ クテリア等)が発生し、清浄度が劣化するといつた不都合の発生を防止することもで きる。 [0088] なお、第 2空間 K2の液体 LQ2の温度変化等が露光精度に影響を与えない程度で あれば、第 2空間 Κ2に液体 LQ2を溜めた状態で露光を行い、所定時間間隔毎や所 定処理基板枚数毎に、第 2空間 Κ2の液体 LQ2を交換するようにしてもよい。この場 合、露光光 ELの照射中(例えば、基板 Ρの露光中)に、第 2液体供給機構 30及び第 2液体回収機構 60による液体 LQ2の供給及び回収が停止されるので、液体 LQ2の 供給 (液体 LQ2の流れ)に起因する光学素子 2Fの振動や変位が防止され、基板 Ρ の露光及び上述の光計測部を用いた各種の計測動作を精度良く実行することがで きる。 [0087] Even during the exposure of the substrate P, the supply and recovery of the liquid LQ2 by the second liquid supply mechanism 30 and the second liquid recovery mechanism 60 are continued. Further, before and after the exposure of the substrate P, the supply and recovery of the liquid LQ2 by the second liquid supply mechanism 30 and the second liquid recovery mechanism 60 are continued. By continuing to supply and recover the liquid LQ2 by the second liquid supply mechanism 30 and the second liquid recovery mechanism 60, the liquid LQ2 in the second space K2 is always replaced with a fresh (clean) liquid LQ2. Exposure may be performed in a state where the liquid LQ2 is stored in the second space K2 without supplying and recovering the liquid LQ2 to and from the second space K2, but the temperature of the liquid LQ2 changes due to irradiation of the exposure light EL. However, the imaging characteristics of the projection optical system PL via the liquid may fluctuate. Therefore, the temperature change of the liquid LQ2 in the second space K2 is suppressed by constantly supplying the liquid LQ2 whose temperature has been adjusted from the second liquid supply mechanism 30 and recovering the liquid LQ2 by the second liquid recovery mechanism 60. be able to. Similarly, during the exposure of the exposure light EL, the liquid LQ1 in the first space K1 is always fresh (cleaned) by constantly supplying and recovering the liquid LQ1 by the first liquid supply mechanism 10 and the first liquid recovery mechanism 20. Na) Replaced with liquid LQ1. The temperature change of the liquid LQ1 in the first space K1 (that is, the liquid LQ1 in the liquid immersion area AR2 on the substrate P) can be suppressed. In addition, by constantly supplying and recovering liquids LQ1 and LQ2 and continuing to flow clean liquids LQ1 and LQ2, bacteria (e.g., nocteria) are generated in the first and second spaces Kl and # 2, and the cleanliness level is reduced. It is also possible to prevent the occurrence of inconvenience when the quality of the battery deteriorates. If the temperature change or the like of the liquid LQ2 in the second space K2 does not affect the exposure accuracy, the exposure is performed in a state where the liquid LQ2 is stored in the second space # 2. The liquid LQ2 in the second space # 2 may be replaced for each predetermined number of substrates to be processed. In this case, the supply and recovery of the liquid LQ2 by the second liquid supply mechanism 30 and the second liquid recovery mechanism 60 are stopped during the exposure of the exposure light EL (for example, during the exposure of the substrate Ρ). Vibration and displacement of the optical element 2F due to the supply (flow of the liquid LQ2) are prevented, and exposure of the substrate and various measurement operations using the above-described optical measurement unit can be executed with high accuracy.
[0089] 基板 Ρの露光が終了すると、制御装置 CONTは、第 1液体供給機構 10による液体 LQ1の供給を停止し、第 1液体回収機構 20等を使って、液浸領域 AR2の液体 LQ1 (第 1空間 K1の液体 LQ1)をすベて回収する。更に、制御装置 CONTは、第 1液体 回収機構 20の第 1回収口 22等を使って基板 P上や基板ステージ PST上に残留して いる液体 LQ1の滴などを回収する。一方、制御装置 CONTは、基板 Pの露光が終了 した後も、第 2液体供給機構 30及び第 2液体回収機構 60の液体 LQ2の供給及び回 収を継続し、第 2空間 K2に液体 LQ2を流し続ける。こうすること〖こより、上述同様、第 2空間 K2の清浄度が劣化したり、液体 LQ2の気化(乾燥)に起因して光学素子 2F、 2Gの液体接触面 2U、 2T等に付着痕 (所謂ウォーターマーク)が形成される等といつ た不都合の発生を防止することができる。そして、基板 P上の液体 LQ1が回収された 後、制御装置 CONTは、その基板 Pを支持した基板ステージ PSTをアンロード位置 まで移動し、アンロードする。なお、基板ステージ PSTが投影光学系 PL力も離れた 位置 (例えば、ロード位置、アンロード位置)へ移動している場合、投影光学系 PLの 像面側に平坦面を有する所定部材を配置して、その所定部材と投影光学系 PLとの 間の空間 (第 1空間)を液体 LQ1で満たし続けても良い。  When the exposure of the substrate 終了 is completed, the control device CONT stops the supply of the liquid LQ1 by the first liquid supply mechanism 10 and uses the first liquid recovery mechanism 20 or the like to supply the liquid LQ1 ( Collect all the liquid LQ1) in the first space K1. Further, the control device CONT collects the liquid LQ1 droplets and the like remaining on the substrate P and the substrate stage PST by using the first recovery port 22 of the first liquid recovery mechanism 20 and the like. On the other hand, even after the exposure of the substrate P is completed, the controller CONT continues to supply and recover the liquid LQ2 of the second liquid supply mechanism 30 and the second liquid recovery mechanism 60, and supplies the liquid LQ2 to the second space K2. Keep flowing. As a result, as described above, as described above, the cleanliness of the second space K2 is deteriorated, and the adhesion traces (so-called “so-called”) on the liquid contact surfaces 2U and 2T of the optical elements 2F and 2G due to the vaporization (drying) of the liquid LQ2. Inconvenience such as when a watermark is formed can be prevented. Then, after the liquid LQ1 on the substrate P is collected, the control device CONT moves the substrate stage PST supporting the substrate P to the unload position and unloads it. When the substrate stage PST is moved to a position where the projection optical system PL force is also away (for example, a loading position, an unloading position), a predetermined member having a flat surface is arranged on the image plane side of the projection optical system PL. Alternatively, the space (first space) between the predetermined member and the projection optical system PL may be continuously filled with the liquid LQ1.
[0090] ところで、液浸領域 AR2 (第 1空間 K1)の液体 LQ1中に、例えば感光剤(フォトレジ スト)に起因する異物など、基板 P上力も発生した不純物等が混入することによって、 その液体 LQ1が汚染する可能性がある。液浸領域 AR2の液体 LQ1は最終光学素 子 2Gの下面 2Sにも接触するため、その汚染された液体 LQ1によって、最終光学素 子 2の下面 2Sが汚染する可能性がある。また、空中を浮遊している不純物が、投影 光学系 PLの像面側に露出している最終光学素子 2Gの下面 2Sに付着する可能性も ある。 [0090] By the way, impurities such as foreign matter caused by a photosensitive agent (photoresist), which also generates a force on the substrate P, are mixed into the liquid LQ1 in the liquid immersion area AR2 (first space K1). Liquid LQ1 may be contaminated. Since the liquid LQ1 in the immersion area AR2 also contacts the lower surface 2S of the final optical element 2G, the contaminated liquid LQ1 may contaminate the lower surface 2S of the final optical element 2. In addition, impurities floating in the air are projected It may adhere to the lower surface 2S of the final optical element 2G exposed on the image plane side of the optical system PL.
[0091] 本実施形態にお!、ては、最終光学素子 2Gは、鏡筒 PKに対して容易に取り付け及 び取り外し可能(交換可能)でとなっているため、その汚染された最終光学素子 2Gの みを清浄な最終光学素子 2Gと交換することで、光学素子の汚染に起因する露光精 度及び投影光学系 PLを介した計測精度の劣化を防止できる。一方、第 2空間 K2に は常に清浄な液体 LQ2が流し続けられており、第 2空間 K2の液体 LQ2は基板 Pに 接触しないようになっている。また、第 2空間 K2は、光学素子 2F、 2G、及び鏡筒 PK で囲まれたほぼ閉空間であるため、空中を浮遊している不純物は第 2空間 K2の液体 LQ2に混入し難ぐ光学素子 2Fには不純物が付着し難い。したがって、光学素子 2 Fの下面 2Uや最終光学素子 2Gの上面 2Tの清浄度は維持されて 、る。したがって、 最終光学素子 2Gを交換するのみで、投影光学系 PLの透過率の低下等を防止して 露光精度及び計測精度を維持することができる。  In the present embodiment, since the last optical element 2G is easily attachable to and detachable from the lens barrel PK (replaceable), the contaminated final optical element By replacing only 2G with a clean final optical element 2G, it is possible to prevent deterioration of exposure accuracy and measurement accuracy via the projection optical system PL due to contamination of the optical element. On the other hand, the clean liquid LQ2 is always kept flowing in the second space K2, so that the liquid LQ2 in the second space K2 does not contact the substrate P. Since the second space K2 is a substantially closed space surrounded by the optical elements 2F and 2G and the lens barrel PK, impurities floating in the air are difficult to be mixed into the liquid LQ2 in the second space K2. Impurities hardly adhere to the element 2F. Therefore, the cleanliness of the lower surface 2U of the optical element 2F and the upper surface 2T of the final optical element 2G are maintained. Therefore, only by exchanging the last optical element 2G, it is possible to prevent a decrease in the transmittance of the projection optical system PL and maintain the exposure accuracy and the measurement accuracy.
[0092] 以上説明したように、最終光学素子 2Gの下面 2T側の第 1空間 K1と上面 2S側の 第 2空間 K2とを独立した空間とし、第 1空間 K1及び第 2空間 K2のそれぞれに液体 L Ql、 LQ2を満たして露光するようにしたので、マスク Mを通過した露光光 ELを、光 学素子 2Fの下面 2Uの一部、最終光学素子 2Gの上面 2Tの一部、及び最終光学素 子 2Gの下面 2Sの一部を介して、基板 Pまで良好に到達させることができる。  [0092] As described above, the first space K1 on the lower surface 2T side and the second space K2 on the upper surface 2S side of the final optical element 2G are independent spaces, and each of the first space K1 and the second space K2 is Since the exposure was performed by filling the liquids LQl and LQ2, the exposure light EL that passed through the mask M was applied to a part of the lower surface 2U of the optical element 2F, a part of the upper surface 2T of the final optical element 2G, and the final optical element. It is possible to favorably reach the substrate P through a part of the lower surface 2S of the device 2G.
[0093] そして、汚染する可能性の高!、最終光学素子 2Gを容易に交換可能とすることで、 清浄な最終光学素子 2Gを備えた投影光学系 PLを使って良好に露光することができ る。平行平面板からなる最終光学素子 2Gを設けずに、光学素子 2Fに液浸領域 AR 2の液体を接触させる構成も考えられるが、投影光学系 PLの像側開口数を大きくしょ うとすると、光学素子の有効径を大きくする必要があり、光学素子 2Fを大型化せざる を得なくなる。光学素子 2Fの周囲には、上述したようなノズル部材 70や、不図示で はあるがァライメント系などといった各種計測装置が配置されるため、そのような大型 の光学素子 2Fを交換することは、作業性が低ぐ困難である。更に、光学素子 2Fは 屈折率 (レンズ作用)を有して ヽるため、投影光学系 PL全体の光学特性 (結像特性) を維持するために、その光学素子 2Fを高 、位置決め精度で鏡筒 PKに取り付ける必 要がある。本実施形態では、最終光学素子 2Gとして比較的小型な平行平面板を設 け、その最終光学素子 2Gを交換する構成であるため、作業性良く容易に交換作業 を行うことができ、投影光学系 PLの光学特性を維持することもできる。そして、最終光 学素子 2Gの下面 2S側の第 1空間 K1及び上面 2T側の第 2空間 K2のそれぞれに対 して液体 LQ1、 LQ2を独立して供給及び回収可能な第 1、第 2液体供給機構 10、 3 0、及び第 1、第 2液体回収機構 20、 60を設けたことにより、液体 LQ1、 LQ2の清浄 度を維持しつつ、照明光学系 ILから射出された露光光 ELを投影光学系 PLの像面 側に配置された基板 Pまで良好に到達させることができる。 [0093] Then, the possibility of contamination is high! By making the last optical element 2G easily replaceable, it is possible to perform good exposure using the projection optical system PL having the clean last optical element 2G. You. A configuration in which the liquid in the liquid immersion area AR 2 is brought into contact with the optical element 2F without providing the final optical element 2G composed of a plane-parallel plate can also be considered. It is necessary to increase the effective diameter of the element, and the optical element 2F must be enlarged. Around the optical element 2F, various measuring devices such as the nozzle member 70 as described above and an alignment system (not shown) are arranged. Workability is low and difficult. Further, since the optical element 2F has a refractive index (lens function), the optical element 2F is mirrored with high positioning accuracy in order to maintain the optical characteristics (imaging characteristics) of the entire projection optical system PL. Must be attached to cylinder PK It is necessary. In the present embodiment, a relatively small parallel plane plate is provided as the last optical element 2G, and the last optical element 2G is replaced. Therefore, the replacement work can be easily performed with good workability, and the projection optical system can be easily replaced. The optical characteristics of PL can be maintained. The first and second liquids LQ1 and LQ2 can be supplied and recovered independently to the first space K1 on the lower surface 2S side and the second space K2 on the upper surface 2T side of the final optical element 2G. By providing the supply mechanisms 10 and 30, and the first and second liquid recovery mechanisms 20 and 60, the exposure light EL emitted from the illumination optical system IL is projected while maintaining the cleanliness of the liquids LQ1 and LQ2. It is possible to favorably reach the substrate P arranged on the image plane side of the optical system PL.
[0094] なお、本実施形態においては、液体 LQ2は光学素子 2Fの下面 2U及び最終光学 素子 2Gの上面 2Tのそれぞれのほぼ全域を濡らすように第 2空間 K2に満たされてい る力 液体 LQ2は露光光 ELの光路上に配置されるように第 2空間 K2の一部を満た していればよい。換言すれば、第 2空間 K2はその必要な一部が液体 LQ2で十分に 満たされていればよい。同様に、第 1空間 K1もその必要な一部が液体 LQ1で十分 に満たされて 、ればよ 、。  [0094] In the present embodiment, the liquid LQ2 is filled in the second space K2 so that the liquid LQ2 wets almost all of the lower surface 2U of the optical element 2F and the upper surface 2T of the final optical element 2G. It is sufficient that a part of the second space K2 is filled so as to be arranged on the optical path of the exposure light EL. In other words, the second space K2 only needs to be partially filled with the liquid LQ2. Similarly, the first space K1 is also required to be partially filled with the liquid LQ1.
[0095] なお、図 1〜図 3で説明した実施形態において、基板 P上に局所的に液浸領域 AR 2を形成するための機構は、第 1液体供給機構 10及び第 1液体回収機構 20 (ノズル 部材 70)に限られず、各種形態の機構を使うことができる。例えば、欧州特許出願公 開 EP1420298 (A2)公報及び米国特許公開第 2004Z0207824号公報に開示さ れている機構を用いることもでき、本国際出願で指定または選択された国の法令で 許容される限りにおいて、この公開公報の記載内容を援用して本文の記載の一部と する。  In the embodiments described with reference to FIGS. 1 to 3, the mechanism for locally forming the liquid immersion area AR 2 on the substrate P includes a first liquid supply mechanism 10 and a first liquid recovery mechanism 20. The mechanism is not limited to the (nozzle member 70), and various types of mechanisms can be used. For example, the mechanisms disclosed in European Patent Application Publication No. EP1420298 (A2) and U.S. Patent Publication No. 2004Z0207824 may be used, as long as the laws of the country designated or selected in this international application permit. , The contents of this publication are incorporated herein by reference.
[0096] <第 2実施形態 >  [0096] <Second embodiment>
次に、本発明の第 2実施形態について図 4を参照しながら説明する。以下の説明に おいて、上述した実施形態と同一又は同等の構成部分については同一の符号を付 し、その説明を簡略もしくは省略する。  Next, a second embodiment of the present invention will be described with reference to FIG. In the following description, components that are the same as or equivalent to those in the above-described embodiment will be given the same reference numerals, and descriptions thereof will be simplified or omitted.
[0097] 本実施形態の特徴的な部分は、第 1空間 K1と第 2空間 K2とを連結する連結孔 74 が設けられている点にある。連結孔 74は鏡筒 PKの下面に周方向に所定間隔で複 数設けられている。また、連結孔 74のそれぞれには多孔体 74Pが設けられている。 [0098] また、本実施形態においては、第 1空間 K1に直接的に液体を供給する第 1供給口 を含む第 1液体供給機構(10)は設けられていない。また、第 2空間 K2の液体を直 接的に回収する第 2回収口を含む第 2液体回収機構 (60)も設けられて 、な 、。本実 施形態における露光装置 EXは、第 2空間 K2に液体 LQを供給する第 2液体供給機 構 30、及び第 1空間 K1 (液浸領域 AR2)の液体 LQを回収する第 1液体回収機構 2 0を備えている。 [0097] A characteristic part of the present embodiment is that a connection hole 74 that connects the first space K1 and the second space K2 is provided. A plurality of connection holes 74 are provided at predetermined intervals in the circumferential direction on the lower surface of the lens barrel PK. Each of the connection holes 74 is provided with a porous body 74P. [0098] In the present embodiment, the first liquid supply mechanism (10) including the first supply port that directly supplies the liquid to the first space K1 is not provided. A second liquid recovery mechanism (60) including a second recovery port for directly recovering the liquid in the second space K2 is also provided. The exposure apparatus EX in the present embodiment includes a second liquid supply mechanism 30 for supplying the liquid LQ to the second space K2, and a first liquid recovery mechanism for recovering the liquid LQ in the first space K1 (the liquid immersion area AR2). 20.
[0099] また、本実施形態にぉ 、ては、鏡筒 PKの側面とノズル部材 70との間の間隙に対し て、第 1空間 K1の液体 LQが浸入することを阻止するシール部材 100が設けられて いる。シール部材 100は、ノズル部材 70の振動が鏡筒 PKに伝達するのを防止する 見地力も柔軟なゴムやシリコンなどの部材カも形成されるのが望ましい。なお、シー ル部材 100は無くてもよぐ第 1の実施形態で述べたように、例えば鏡筒 PKの側面 及びノズル部材 70の内側面 70Tを撥液性にすることで、前記間隙への第 1空間 K1 の液体 LQ1の浸入、及び第 1空間 K1の液体 LQへの気体の混入を阻止することが できる。  In the present embodiment, a seal member 100 that prevents the liquid LQ in the first space K 1 from entering the gap between the side surface of the lens barrel PK and the nozzle member 70 is provided. It is provided. It is preferable that the seal member 100 is also formed of a member such as rubber or silicon which has a flexible appearance and prevents vibration of the nozzle member 70 from being transmitted to the lens barrel PK. Note that, as described in the first embodiment, the seal member 100 may be omitted, for example, by making the side surface of the lens barrel PK and the inner surface 70T of the nozzle member 70 liquid-repellent, It is possible to prevent the liquid LQ1 in the first space K1 from entering and the gas from entering the liquid LQ in the first space K1.
[0100] 制御装置 CONTは、第 1空間 K1及び第 2空間 K2に液体 LQを満たすとき、第 2液 体供給機構 30を使って、第 2空間 K2に液体 LQを供給する。第 2空間 K2に供給さ れた液体 LQは、連結孔 74を介して第 1空間 K1にも供給される。第 2液体供給機構 30は、第 2空間 K2から液体 LQを供給し、連結孔 74を介して第 1空間 K1にも液体 L Qを流入させることで、第 1空間 K1と第 2空間 K2とを液体 LQで満たす。連結孔 74を 介して第 1空間 K1に供給された液体 LQは基板 P上に液浸領域 AR2を形成し、その 液浸領域 AR2の液体 LQは、第 1液体供給機構 20の第 1回収口 22より回収される。 そして、第 1空間 K1と第 2空間 K2とが液体 LQで満たされた後、制御装置 CONTは 、第 1空間 K1及び第 2空間 K2の液体 LQを介して、基板 P上に露光光 ELを照射し て基板 Pを露光する。なお本実施形態において、第 1液体供給機構 10を併用して第 1空間 K1に液体 LQを供給してもよ 、。  [0100] When the first space K1 and the second space K2 are filled with the liquid LQ, the control device CONT supplies the liquid LQ to the second space K2 using the second liquid supply mechanism 30. The liquid LQ supplied to the second space K2 is also supplied to the first space K1 via the connection hole 74. The second liquid supply mechanism 30 supplies the liquid LQ from the second space K2, and also allows the liquid LQ to flow into the first space K1 via the connection hole 74, thereby connecting the first space K1 and the second space K2. Fill with liquid LQ. The liquid LQ supplied to the first space K1 through the connection hole 74 forms an immersion area AR2 on the substrate P, and the liquid LQ in the immersion area AR2 is used as the first recovery port of the first liquid supply mechanism 20. Recovered from 22. Then, after the first space K1 and the second space K2 are filled with the liquid LQ, the control device CONT emits the exposure light EL onto the substrate P via the liquid LQ in the first space K1 and the second space K2. The substrate P is exposed by irradiation. In the present embodiment, the liquid LQ may be supplied to the first space K1 by using the first liquid supply mechanism 10 together.
[0101] このように、第 1空間 K1と第 2空間 K2とを連結孔 74を介して連結することで、装置 構成を簡略ィ匕することができる。  As described above, by connecting the first space K1 and the second space K2 through the connection hole 74, the configuration of the device can be simplified.
[0102] なお、第 1空間 K1に液体 LQを満たした後、第 1空間 K1に満たされた液体 LQを、 連結孔 74を介して第 2空間 K2に流入させることで、第 1空間 Klと第 2空間 K2とを液 体 LQで満たすようにしてもよい。この場合、基板 Ρに接触した液体 LQが第 2空間 Κ2 に満たされることとなるので、例えば連結孔 74にケミカルフィルタ等を配置しておけば 、第 2空間 Κ2には、基板 Ρ上などから発生した不純物を混入した液体 LQが満たされ ることがない。 [0102] After the first space K1 is filled with the liquid LQ, the liquid LQ filled in the first space K1 is The first space Kl and the second space K2 may be filled with the liquid LQ by flowing into the second space K2 through the connection hole 74. In this case, the liquid LQ in contact with the substrate Ρ is filled in the second space Κ2, so if, for example, a chemical filter or the like is arranged in the connection hole 74, the second space Κ2 will be placed from above the substrate な ど. The liquid LQ containing the generated impurities is not filled.
[0103] <第 3実施形態 >  [0103] <Third embodiment>
次に、本発明の第 3実施形態について図 5を参照しながら説明する。  Next, a third embodiment of the present invention will be described with reference to FIG.
[0104] 本実施形態の特徴的な部分は、最終光学素子 2Gがノズル部材 70に支持されてい る点にある。つまり、最終光学素子 2Gが、投影光学系 PLを構成する他の光学素子 2 A〜2Fとは分離して支持されている点にある。  A characteristic part of the present embodiment is that the last optical element 2 G is supported by the nozzle member 70. That is, the last optical element 2G is supported separately from the other optical elements 2A to 2F constituting the projection optical system PL.
[0105] 図 5において、光学素子 2Fは鏡筒 PKより露出している。投影光学系 PLを構成す る複数の光学素子 2A〜2Gのうち、光学素子 2A〜2Fは鏡筒 PKで支持されて ヽる。 一方、最終光学素子 2Gは、連結部材 72を介してノズル部材 70に支持されている。 環状部材であるノズル部材 70は、投影光学系 PLの先端部の光学素子 2F、 2Gの近 傍に配置されており、基板 P (基板ステージ PST)の上方において光学素子 2F、 2G の周りを囲むように設けられている。すなわち、光学素子 2F、 2Gは、ノズル部材 70 の穴部 70Hの内側に配置されている。穴部 70Hは凹部 78の内側に形成されている  In FIG. 5, the optical element 2F is exposed from the lens barrel PK. Of the plurality of optical elements 2A to 2G constituting the projection optical system PL, the optical elements 2A to 2F are supported by a lens barrel PK. On the other hand, the final optical element 2G is supported by the nozzle member 70 via the connecting member 72. The nozzle member 70, which is an annular member, is disposed near the optical elements 2F and 2G at the tip of the projection optical system PL, and surrounds the optical elements 2F and 2G above the substrate P (substrate stage PST). It is provided as follows. That is, the optical elements 2F and 2G are arranged inside the hole 70H of the nozzle member 70. The hole 70H is formed inside the recess 78
[0106] 最終光学素子 2Gは、ノズル部材 70のキヤビティ面 78Aに連結部材 72を介して保 持されている。連結部材 72はノズル部材 70のキヤビティ面 78Aに固定されており、 その連結部材 72に最終光学素子 2Gが固定されている。ノズル部材 70に連結部材 7 2を介して保持された最終光学素子 2Gと、鏡筒 PKに保持された光学素子 2A〜2F とは離れており、最終光学素子 2Gの上面 2Tと光学素子 2Fの下面 2Uとの間に第 2 空間 2Kが形成されている。最終光学素子 2Gは、鏡筒 PKに保持された他の光学素 子 2A〜2Fとは分離した状態で、ノズル部材 70に連結部材 72を介して支持された構 成となっている。 The last optical element 2 G is held on the cavity surface 78 A of the nozzle member 70 via the connecting member 72. The connecting member 72 is fixed to the cavity surface 78A of the nozzle member 70, and the final optical element 2G is fixed to the connecting member 72. The final optical element 2G held by the nozzle member 70 via the connecting member 72 and the optical elements 2A to 2F held by the barrel PK are separated, and the upper surface 2T of the final optical element 2G and the optical element 2F are separated. A second space 2K is formed between the second space 2K and the lower surface 2U. The last optical element 2G is configured to be supported by the nozzle member 70 via the connecting member 72 in a state where it is separated from the other optical elements 2A to 2F held by the barrel PK.
[0107] 連結部材 72の下面 72Aとその連結部材 72に保持された平行平面板力もなる最終 光学素子 2Gの下面 2Sとはほぼ面一となつて 、る。連結部材 72に支持された最終光 学素子 2Gの上面 2T及び下面 2Sは XY平面とほぼ平行となっている。また、連結部 材 72とキヤビティ面 78Αとの接続部、及び最終光学素子 2Gと連結部材 72との接続 部などはシールされている。また、連結部材 72はほぼ板状部材であって、孔などは 設けられていない。すなわち、最終光学素子 2Gの下面 2S側の第 1空間 K1と上面 2 Τ側の第 2空間 Κ2とは互いに独立した空間であり、第 1空間 K1と第 2空間 2Κとの間 での液体の流通が阻止されて 、る。 [0107] The lower surface 72A of the connecting member 72 and the lower surface 2S of the final optical element 2G, which is also held by the connecting member 72 and has a plane parallel plate force, are substantially flush with each other. Final light supported by connecting member 72 The upper surface 2T and the lower surface 2S of the element 2G are almost parallel to the XY plane. In addition, the connection between the connection member 72 and the cavity surface 78 °, the connection between the last optical element 2G and the connection member 72, and the like are sealed. Further, the connecting member 72 is a substantially plate-shaped member, and has no holes or the like. In other words, the first space K1 on the lower surface 2S side of the final optical element 2G and the second space Κ2 on the upper surface 2 で are independent spaces, and the liquid between the first space K1 and the second space 2Κ Distribution has been blocked.
[0108] また、最終光学素子 2Gは、連結部材 72に対して容易に取り付け '外しが可能とな つている。すなわち、最終光学素子 2Gは交換可能に設けられている。なお、最終光 学素子 2Gを交換するために、連結部材 72をノズル部材 70 (キヤビティ面 78Α)に対 して取り付け '外し可能(交換可能)に設けてもよいし、ノズル部材 70を交換可能にし てもよい。 The final optical element 2 G can be easily attached to and detached from the connecting member 72. That is, the last optical element 2G is provided so as to be exchangeable. In order to replace the final optical element 2G, the connecting member 72 may be attached to the nozzle member 70 (cavity surface 78 mm) so that it can be detached (replaceable) or the nozzle member 70 can be replaced. It may be.
[0109] ノズル部材 70の下面 70Αのうち、凹部 78の内側の内側面 79には、第 1実施形態と 同様に、第 1液体供給機構 10の一部を構成する第 1供給口 12 (12A、 12B)が設け られている。また、ノズル部材 70の下面 70Αにおいて、投影光学系 PLの投影領域 A R1を基準として凹部 78の外側には、第 1実施形態と同様に、第 1液体回収機構 20 の一部を構成する第 1回収口 22が設けられて 、る。  As in the first embodiment, the first supply port 12 (12A) constituting a part of the first liquid supply mechanism 10 is provided on the inner side surface 79 inside the concave portion 78 of the lower surface 70Α of the nozzle member 70. , 12B) are provided. Further, on the lower surface 70Α of the nozzle member 70, outside the concave portion 78 with reference to the projection area A R1 of the projection optical system PL, as in the first embodiment, a part of the first liquid recovery mechanism 20 is formed. 1 A collection port 22 is provided.
[0110] 連結部材 52を介してメインコラム 1の下側段部 8に支持されたノズル部材 70は、投 影光学系 PL (光学素子 2F)とは離れている。すなわち、ノズル部材 70の穴部 70Hの 内側面 70Kと光学素子 2Fの側面 2FKとの間には間隙が設けられており、光学素子 2Fを保持する鏡筒 PKとノズル部材 70との間にも間隙が設けられている。これら間隙 は、投影光学系 PL (光学素子 2A〜2F)とノズル部材 70とを振動的に分離するため に設けられたものである。これにより、ノズル部材 70で発生した振動力 投影光学系 PL側に伝達することが防止されている。また、上述したように、メインコラム 1 (下側段 部 8)と鏡筒定盤 5とは、防振装置 47を介して振動的に分離している。したがって、ノ ズル部材 70で発生した振動がメインコラム 1及び鏡筒定盤 5を介して投影光学系 PL に伝達されることは防止されて 、る。  [0110] The nozzle member 70 supported by the lower step 8 of the main column 1 via the connecting member 52 is separated from the projection optical system PL (optical element 2F). That is, a gap is provided between the inner side surface 70K of the hole 70H of the nozzle member 70 and the side surface 2FK of the optical element 2F, and also between the lens barrel PK holding the optical element 2F and the nozzle member 70. A gap is provided. These gaps are provided for vibratingly separating the projection optical system PL (optical elements 2A to 2F) and the nozzle member 70. This prevents the vibration force generated by the nozzle member 70 from being transmitted to the projection optical system PL. Further, as described above, the main column 1 (the lower step portion 8) and the lens barrel base 5 are vibratedly separated via the vibration isolator 47. Therefore, the vibration generated by the nozzle member 70 is prevented from being transmitted to the projection optical system PL via the main column 1 and the barrel base 5.
[0111] ノズル部材 70の内側面 70Kには、第 2液体供給機構 30の一部を構成する第 2供 給口 32が設けられている。第 2供給口 32は、第 2液体供給部 31から送出された液体 LQ2を、最終光学素子 2Gの上面 2Tと略平行、すなわち ΧΥ平面と略平行に (横方 向に)吹き出す。第 2供給口 32は、最終光学素子 2Gの上面 2Τとほぼ平行に液体 L Q2を吹き出すので、供給された液体 LQ2が光学素子 2G等に及ぼす力を低減でき る。したがって、液体 LQ2の供給に起因して光学素子 2Gや連結部材 72、あるいは 光学素子 2Fが変形したり変位する等といった不都合の発生を防止することができる [0111] A second supply port 32 constituting a part of the second liquid supply mechanism 30 is provided on the inner side surface 70K of the nozzle member 70. The second supply port 32 is connected to the liquid supplied from the second liquid supply unit 31. LQ2 is blown out substantially parallel to the upper surface 2T of the final optical element 2G, that is, substantially parallel (horizontally) to the ΧΥ plane. Since the second supply port 32 blows out the liquid LQ2 substantially in parallel with the upper surface 2 最終 of the final optical element 2G, the force exerted on the optical element 2G by the supplied liquid LQ2 can be reduced. Therefore, it is possible to prevent inconvenience such as deformation or displacement of the optical element 2G, the connecting member 72, or the optical element 2F due to the supply of the liquid LQ2.
[0112] また、ノズル部材 70の内側面 70Κにおいて、第 2供給口 32に対して所定位置には 、第 2液体回収機構 60の一部を構成する第 2回収口 62が設けられている。本実施形 態においては、第 2回収口 62は第 2供給口 32の上方に設けられている。 [0112] In addition, a second recovery port 62 constituting a part of the second liquid recovery mechanism 60 is provided at a predetermined position with respect to the second supply port 32 on the inner side surface 70 # of the nozzle member 70. In the present embodiment, the second recovery port 62 is provided above the second supply port 32.
[0113] 図 6はノズル部材 70を示す概略斜視図である。図 6に示すように、第 2供給口 32は ノズル部材 70の内側面 70Κに複数設けられている。本実施形態においては、第 2供 給口 32は、内側面 70Κにおいて周方向にほぼ等間隔で設けられている。同様に、 第 2回収口 62はノズル部材 70の内側面 70Κに複数設けられており、本実施形態に おいては、第 2回収口 62は、第 2供給口 32の上方において周方向にほぼ等間隔で 設けられている。  FIG. 6 is a schematic perspective view showing the nozzle member 70. As shown in FIG. 6, a plurality of second supply ports 32 are provided on the inner side surface 70Κ of the nozzle member 70. In the present embodiment, the second supply ports 32 are provided at substantially equal intervals in the circumferential direction on the inner side surface 70 °. Similarly, a plurality of second recovery ports 62 are provided on the inner side surface 70Κ of the nozzle member 70, and in the present embodiment, the second recovery ports 62 are substantially circumferentially above the second supply ports 32. They are provided at equal intervals.
[0114] なお、図 6においては、第 2供給口 32及び第 2回収口 62は略円形状に形成されて いるが、楕円形状、矩形状、スリット状など任意の形状に形成されていてもよい。また 、本実施形態においては、第 2供給口 32、第 2回収口 62のそれぞれは互いにほぼ 同じ大きさを有しているが、互いに異なる大きさであってもよい。また、第 2供給口 32 を第 2回収口 62の上方に配置するようにしてもよい。また、第 2供給口 32及び第 2回 収ロ 62のそれぞれを内側面 70Κにおいて周方向に並べて設ける構成の他に、例え ば内側面 70Κにお 、て投影光学系 PLの光軸 ΑΧを挟んで +Χ側に第 2供給口 32を 設け、—X側に第 2回収口 62を設ける等、その配置は任意に設定可能である。 すなわち、本実施形態においても、第 2供給口 32、および第 2回収口 62の数、配 置、形状などは、図 5, 6に示した構造に限られず、光学素子 2Fと光学素子 2Gとの 間の露光光 ELの光路が第 2液体 LQで満たされる構造であればよい。  In FIG. 6, the second supply port 32 and the second recovery port 62 are formed in a substantially circular shape, but may be formed in an arbitrary shape such as an elliptical shape, a rectangular shape, and a slit shape. Good. In the present embodiment, the second supply port 32 and the second recovery port 62 have substantially the same size as each other, but may have different sizes. Further, the second supply port 32 may be arranged above the second recovery port 62. Further, in addition to the configuration in which the second supply port 32 and the second collection roller 62 are arranged side by side in the circumferential direction on the inner surface 70 °, for example, the optical axis の of the projection optical system PL is sandwiched between the inner surface 70 °. The arrangement can be arbitrarily set, for example, by providing a second supply port 32 on the + 、 side and a second recovery port 62 on the −X side. That is, also in the present embodiment, the number, arrangement, shape, and the like of the second supply port 32 and the second recovery port 62 are not limited to the structures shown in FIGS. Any structure may be used as long as the optical path of the exposure light EL during the period is filled with the second liquid LQ.
[0115] なお、図 2を参照して説明した実施形態において、鏡筒 PKの内側面 PKLに、図 6 に示すような配置で第 2供給口 32及び第 2回収口 62を形成してもよ 、。 [0116] 図 5に示すように、供給管 33の他端部は、ノズル部材 70の内部に形成された第 2 供給流路 34の一端部に接続している。一方、ノズル部材 70の第 2供給流路 34の他 端部は、ノズル部材 70の内側面 70Kに形成された第 2供給口 32に接続されている。 ここで、ノズル部材 70の内部に形成された第 2供給流路 34は、複数の第 2供給口 32 のそれぞれにその他端部を接続可能なように途中力も分岐している。なお、第 2供給 口 32を、上記第 1供給口 12と同様、ラッパ状に形成してもよい。 In the embodiment described with reference to FIG. 2, the second supply port 32 and the second recovery port 62 may be formed on the inner surface PKL of the lens barrel PK in the arrangement shown in FIG. Yo, As shown in FIG. 5, the other end of the supply pipe 33 is connected to one end of a second supply channel 34 formed inside the nozzle member 70. On the other hand, the other end of the second supply channel 34 of the nozzle member 70 is connected to a second supply port 32 formed on the inner side surface 70K of the nozzle member 70. Here, the second supply flow path 34 formed inside the nozzle member 70 also has an intermediate force branched so that the other end can be connected to each of the plurality of second supply ports 32. Note that the second supply port 32 may be formed in a trumpet shape, similarly to the first supply port 12.
[0117] 第 2液体供給部 31の液体供給動作は制御装置 CONTにより制御される。制御装 置 CONTが、第 2液体供給機構 30の第 2液体供給部 31より液体 LQ2を送出すると 、その第 2液体供給部 31より送出された液体 LQ2は、供給管 33を流れた後、ノズル 部材 70の内部に形成された第 2供給流路 34の一端部に流入する。そして、第 2供給 流路 34の一端部に流入した液体 LQ2は途中で分岐した後、ノズル部材 70の内側 面 70Kに形成された複数の第 2供給口 32より、光学素子 2Fと最終光学素子 2Gとの 間の第 2空間 K2に供給される。  [0117] The liquid supply operation of the second liquid supply unit 31 is controlled by the control device CONT. When the control device CONT sends out the liquid LQ2 from the second liquid supply unit 31 of the second liquid supply mechanism 30, the liquid LQ2 sent from the second liquid supply unit 31 flows through the supply pipe 33, and then flows through the nozzle. It flows into one end of the second supply channel 34 formed inside the member 70. Then, the liquid LQ2 that has flowed into one end of the second supply flow path 34 is branched on the way, and then, through a plurality of second supply ports 32 formed on the inner surface 70K of the nozzle member 70, the optical element 2F and the final optical element. It is supplied to the second space K2 between 2G.
[0118] 図 5に示すように、回収管 63の他端部は、ノズル部材 70の内部に形成された第 2 回収流路 44の一部に接続している。一方、第 2回収流路 44の他端部は、ノズル部材 70の内側面 70Kに形成された第 2回収口 62に接続されている。ここで、ノズル部材 70の内部に形成された第 2回収流路 64は、複数の第 2回収口 62のそれぞれにその 他端部を接続可能なように途中から分岐している。  As shown in FIG. 5, the other end of the recovery pipe 63 is connected to a part of the second recovery flow path 44 formed inside the nozzle member 70. On the other hand, the other end of the second recovery channel 44 is connected to a second recovery port 62 formed on the inner side surface 70K of the nozzle member 70. Here, the second recovery channel 64 formed inside the nozzle member 70 branches off from the middle so that the other end can be connected to each of the plurality of second recovery ports 62.
[0119] 第 2液体回収部 61の液体回収動作は制御装置 CONTに制御される。制御装置 C ONTは、液体 LQ2を回収するために、第 2液体回収機構 60の第 2液体回収部 61を 駆動する。真空系を有する第 2液体回収部 61の駆動により、第 2空間 K2の液体 LQ 2は、第 2回収口 62を介して第 2回収流路 64に流入し、その後、回収管 63を介して 第 2液体回収部 61に吸引回収される。  [0119] The liquid recovery operation of the second liquid recovery unit 61 is controlled by the controller CONT. The control device CONT drives the second liquid recovery unit 61 of the second liquid recovery mechanism 60 to recover the liquid LQ2. By driving the second liquid recovery unit 61 having a vacuum system, the liquid LQ 2 in the second space K2 flows into the second recovery flow path 64 through the second recovery port 62, and then flows through the recovery pipe 63. The liquid is sucked and collected by the second liquid collecting part 61.
[0120] また、本実施形態においては、ノズル部材 70の内側面 70K、及び光学素子 2Fの 側面 2FKのそれぞれは、撥液ィ匕処理されて撥液性を有している。ノズル部材 70の内 側面 70Κ、及び光学素子 2Fの側面 2FKのそれぞれを撥液性にすることで、内側面 70Κと側面 2FKとで形成される間隙に第 2空間 Κ2の液体 LQ2が浸入することが防 止されるとともに、前記間隙の気体が、第 2空間 Κ2の液体 LQ2中に気泡となって混 在することが防止されて 、る。 [0120] Further, in the present embodiment, each of the inner side surface 70K of the nozzle member 70 and the side surface 2FK of the optical element 2F is subjected to a liquid repelling treatment and has liquid repellency. By making each of the inner surface 70Κ of the nozzle member 70 and the side surface 2FK of the optical element 2F lyophobic, the liquid LQ2 in the second space Κ2 enters the gap formed by the inner surface 70Κ and the side surface 2FK. Is prevented, and the gas in the gap is mixed as bubbles in the liquid LQ2 in the second space # 2. Is prevented from being present.
[0121] 以上のように、最終光学素子 2Gと他の光学素子 2A〜2Fとを分離して支持し、最 終光学素子 2Gの下面 2T側の第 1空間 K1と上面 2S側の第 2空間 K2とを独立した空 間とし、第 1空間 K1及び第 2空間 K2のそれぞれに液体 LQ1、 LQ2を満たして露光 するようにしたので、マスク Mを通過した露光光 ELを基板 Pまで良好に到達させるこ とがでさる。  [0121] As described above, the final optical element 2G and the other optical elements 2A to 2F are separated and supported, and the first space K1 on the lower surface 2T side and the second space on the upper surface 2S side of the final optical element 2G. K2 is made an independent space, and the first space K1 and the second space K2 are exposed by filling the liquids LQ1 and LQ2, respectively, so that the exposure light EL that has passed through the mask M reaches the substrate P well. It can be done.
[0122] また、最終光学素子 2Gをノズル部材 70で支持することにより、光学素子 2F、 2Gと ノズル部材 70との間に鏡筒 PKを配置しない構成とすることができる。したがって、光 学素子 2F、 2Gに対してノズル部材 70を近づけることができ、装置のコンパクトィ匕を 図ることができる等、装置の設計の自由度を向上することができる。また、ノズル部材 70に形成された第 1供給口 12、および第 1回収口 22を投影領域 AR1に近づけるこ とができる。そのため、液浸領域 AR2の大きさを小さくすることができる。したがって、 液浸領域 AR2の大きさに伴って基板ステージ PSTを大型化したり、基板ステージ PS Tの移動ストロークを大きくする必要がなくなるので、装置をコンパクトィ匕できる。  Further, by supporting the final optical element 2G with the nozzle member 70, a configuration in which the lens barrel PK is not arranged between the optical elements 2F and 2G and the nozzle member 70 can be adopted. Therefore, the nozzle member 70 can be brought closer to the optical elements 2F and 2G, and the degree of freedom in designing the device can be improved, for example, the device can be compact. Further, the first supply port 12 and the first recovery port 22 formed in the nozzle member 70 can be brought closer to the projection area AR1. Therefore, the size of the liquid immersion area AR2 can be reduced. Therefore, it is not necessary to increase the size of the substrate stage PST or increase the moving stroke of the substrate stage PST according to the size of the liquid immersion area AR2, so that the apparatus can be compact.
[0123] なお、ノズル部材 70は液浸領域 AR2 (第 1空間 K1)の液体の供給及び回収を行う 供給口 12及び回収口 22を有する部材であり、また基板 P (基板ステージ PST)の移 動に伴って液浸領域 AR2の液体の剪断力を受けるので、ノズル部材 70には振動が 生じやすい。し力しながら、本実施形態においては、ノズル部材 70に保持されている 光学素子 2Gが平行平板なので、ノズル部材 70の振動が露光や計測の精度に与え る影響を抑えることができる。一方、上述したように、防振装置 47などによって鏡筒 P Kには振動が生じ難いため、図 2や図 5を参照して説明した第 1、第 2実施形態のよう に、鏡筒 PKで最終光学素子 2Gを支持することで、投影光学系 PLの結像特性に与 える影響を抑えることができる。  [0123] The nozzle member 70 is a member having a supply port 12 and a recovery port 22 for supplying and recovering the liquid in the liquid immersion area AR2 (first space K1). The nozzle member 70 also moves the substrate P (substrate stage PST). Since the nozzle member 70 receives the shearing force of the liquid in the liquid immersion area AR2 with the movement, the nozzle member 70 is likely to generate vibration. However, in the present embodiment, since the optical element 2G held by the nozzle member 70 is a parallel flat plate, the influence of the vibration of the nozzle member 70 on the exposure and measurement accuracy can be suppressed. On the other hand, as described above, since the lens barrel PK is hardly vibrated by the vibration isolator 47 or the like, as in the first and second embodiments described with reference to FIGS. By supporting the last optical element 2G, the influence on the imaging characteristics of the projection optical system PL can be suppressed.
[0124] なお、ノズル部材 70で最終光学素子 2Gを支持する場合には、ノズル部材 70と最 終光学素子 2Gとの間に防振機構を設けることで、ノズル部材 70で発生した振動が、 最終光学素子 2Gに伝わることを防止することができる。また、本実施形態においても 、第 1実施形態と同様に、露光光 ELが発射されている間、第 2液体供給機構 30及び 第 2液体回収機構 60の液体 LQ2の供給及び回収を継続し、第 2空間 K2を液体 LQ 2で満たし続ける。こうすることにより、上述同様、第 2空間 K2の液体 LQ2の清浄度の 劣化や温度変化を抑えることができる。一方、露光光 ELが発射されている間、第 2空 間 K2を液体 LQ2で満たした状態で、第 2液体供給機構 30及び第 2液体回収機構 6 0の液体 LQ2の供給及び回収を停止してもよい。こうすることにより、液体 LQ2の供 給 (液体 LQ2の流れ)に起因する光学素子 2Fの振動や変位が防止され、基板 Pの 露光及び上述の光計測部を用いた各種の計測動作を精度良く実行することができる [0124] When the final optical element 2G is supported by the nozzle member 70, the vibration generated by the nozzle member 70 is reduced by providing an anti-vibration mechanism between the nozzle member 70 and the final optical element 2G. Transmission to the final optical element 2G can be prevented. Also in this embodiment, as in the first embodiment, while the exposure light EL is emitted, the supply and recovery of the liquid LQ2 of the second liquid supply mechanism 30 and the second liquid recovery mechanism 60 are continued, Liquid LQ in the second space K2 Keep filling with 2. By doing so, similarly to the above, it is possible to suppress the deterioration of the cleanliness of the liquid LQ2 in the second space K2 and the temperature change. On the other hand, while the exposure light EL is emitted, the supply and recovery of the liquid LQ2 of the second liquid supply mechanism 30 and the second liquid recovery mechanism 60 are stopped while the second space K2 is filled with the liquid LQ2. May be. By doing so, the vibration and displacement of the optical element 2F due to the supply of the liquid LQ2 (the flow of the liquid LQ2) can be prevented, and the exposure of the substrate P and various measurement operations using the above-described optical measurement unit can be performed with high accuracy. Can be performed
[0125] <第 4実施形態 > [0125] <Fourth embodiment>
次に、本発明の第 4実施形態について図 7を参照しながら説明する。本実施形態の 特徴的な部分は、連結部材 72に、第 1空間 K1と第 2空間 K2とを連結する連結孔 74 が設けられている点にある。連結孔 74は連結部材 72に周方向に所定間隔で複数設 けられて 、る。連結孔 74のそれぞれには多孔体 74Pが設けられて!/、る。  Next, a fourth embodiment of the present invention will be described with reference to FIG. A characteristic part of the present embodiment is that a connection hole 74 that connects the first space K1 and the second space K2 is provided in the connection member 72. A plurality of connection holes 74 are provided in the connection member 72 at predetermined intervals in the circumferential direction. Each of the connection holes 74 is provided with a porous body 74P.
[0126] また、本実施形態においては、第 1空間 K1に直接的に液体を供給する第 1供給口 を含む第 1液体供給機構(10)は設けられていない。また、第 2空間 K2の液体を直 接的に回収する第 2回収口を含む第 2液体回収機構 (60)も設けられて 、な 、。一方 、本実施形態における露光装置 EXは、第 2空間 K2に液体 LQを供給する第 2液体 供給機構 30、及び第 1空間 K1 (液浸領域 AR2)の液体 LQを回収する第 1液体回収 機構 20を備えている。  [0126] In the present embodiment, the first liquid supply mechanism (10) including the first supply port for directly supplying the liquid to the first space K1 is not provided. A second liquid recovery mechanism (60) including a second recovery port for directly recovering the liquid in the second space K2 is also provided. On the other hand, the exposure apparatus EX in the present embodiment includes a second liquid supply mechanism 30 that supplies the liquid LQ to the second space K2, and a first liquid recovery mechanism that collects the liquid LQ in the first space K1 (the liquid immersion area AR2). It has 20.
[0127] 制御装置 CONTは、第 1空間 K1及び第 2空間 K2に液体 LQを満たすとき、第 2液 体供給機構 20を使って、第 2空間 K2に液体 LQを供給する。第 2空間 K2に供給さ れた液体 LQは、連結孔 74を介して第 1空間 K1にも供給される。このように、第 2液 体供給機構 30は、第 2空間 K2から液体 LQを供給し、連結孔 74を介して第 1空間 K 1にも液体 LQを流入させることで、第 1空間 K1と第 2空間 K2とを液体 LQで満たす。 連結孔 74を介して第 1空間 K1に供給された液体 LQは基板 P上に液浸領域 AR2を 形成し、その液浸領域 AR2の液体 LQは、第 1液体供給機構 20の第 1回収口 22より 回収される。そして、第 1空間 K1と第 2空間 K2とが液体 LQで満たされた後、制御装 置 CONTは、第 1空間 K1及び第 2空間 K2の液体 LQを介して、基板 P上に露光光 E Lを照射して基板 Pを露光する。 [0128] このように、第 1空間 Klと第 2空間 K2とを連結孔 74を介して連結することで、装置 構成を簡略ィ匕することができる。なお、本実施形態においても、第 1空間 K1に液体 L Qを満たした後、第 1空間 K1に満たされた液体 LQを、連結孔 74を介して第 2空間 Κ 2に流入させることで、第 1空間 K1と第 2空間 Κ2とを液体 LQで満たすようにしてもよ い。 [0127] When the first space K1 and the second space K2 are filled with the liquid LQ, the control device CONT supplies the liquid LQ to the second space K2 using the second liquid supply mechanism 20. The liquid LQ supplied to the second space K2 is also supplied to the first space K1 via the connection hole 74. As described above, the second liquid supply mechanism 30 supplies the liquid LQ from the second space K2 and allows the liquid LQ to flow also into the first space K1 through the connection hole 74, thereby connecting the first space K1 with the first space K1. The second space K2 is filled with the liquid LQ. The liquid LQ supplied to the first space K1 through the connection hole 74 forms an immersion area AR2 on the substrate P, and the liquid LQ in the immersion area AR2 is used as the first recovery port of the first liquid supply mechanism 20. Collected from 22. After the first space K1 and the second space K2 are filled with the liquid LQ, the control device CONT issues the exposure light EL onto the substrate P via the liquid LQ in the first space K1 and the second space K2. To expose the substrate P. As described above, by connecting the first space Kl and the second space K2 through the connection hole 74, the configuration of the device can be simplified. Also in the present embodiment, after the first space K1 is filled with the liquid LQ, the liquid LQ filled in the first space K1 is caused to flow into the second space Κ2 through the connection hole 74, whereby The first space K1 and the second space Κ2 may be filled with the liquid LQ.
[0129] なお、上述の第 3及び第 4の実施形態においては、第 1空間 Kl、及び第 2空間 Κ2 用の液体流路を有するノズル部材 70で最終光学素子 2Gを支持しているが、第 1空 間 K1、及び第 2空間 Κ2のどちらか一方のための液体流路を有するノズル部材 70で 最終光学素子 2Gを支持してもよい。また、第 1空間 K1と第 2空間の少なくとも一方に 液体を供給する供給口だけを有するノズル部材で最終光学素子 2Gを支持してもよ いし、第 1空間 K1と第 2空間の少なくとも一方の液体を回収する回収口だけを有する ノズル部材で最終光学素子 2Gを支持してもよい。また、上述の第 3及び第 4の実施 形態においては、最終光学素子 2Gをノズル部材 70で支持しているが、これに限られ ず、鏡筒 ΡΚ及びノズル部材 70とは異なる部材で最終光学素子 2Gを支持するように してちよい。  [0129] In the third and fourth embodiments described above, the final optical element 2G is supported by the nozzle member 70 having the liquid flow path for the first space Kl and the second space # 2. The final optical element 2G may be supported by the nozzle member 70 having a liquid flow path for one of the first space K1 and the second space # 2. Further, the final optical element 2G may be supported by a nozzle member having only a supply port for supplying a liquid to at least one of the first space K1 and the second space, or at least one of the first space K1 and the second space. The final optical element 2G may be supported by a nozzle member having only a recovery port for recovering the liquid. In the third and fourth embodiments described above, the final optical element 2G is supported by the nozzle member 70. However, the present invention is not limited to this, and the final optical element 2G may be formed of a member different from the lens barrel and the nozzle member 70. The element 2G may be supported.
[0130] また、上述の第 3及び第 4の実施形態で採用されている最終光学素子 2Gをノズル 部材 70で支持する構成は、第 1空間 K1のみを液体で満たす液浸露光方式にも採 用することができる。  The configuration in which the final optical element 2G used in the third and fourth embodiments is supported by the nozzle member 70 is also adopted in an immersion exposure method in which only the first space K1 is filled with a liquid. Can be used.
[0131] また、上述の第 1〜第 4の実施形態において、投影光学系 PLは、無屈折力の平行 平面板である最終光学素子 2Gを含めて所定の結像特性となるように調整されて 、る 力 最終光学素子 2Gが結像特性にまったく影響を及ぼさない場合には、最終光学 素子 2Gを除いて、投影光学系 PLの結像特性が所定の結像特性となるように調整し てもよい。  In the first to fourth embodiments described above, the projection optical system PL is adjusted so as to have a predetermined imaging characteristic including the final optical element 2 G, which is a parallel flat plate having no refractive power. If the final optical element 2G does not affect the imaging characteristics at all, adjust so that the imaging characteristics of the projection optical system PL will have the predetermined imaging characteristics except for the final optical element 2G. May be.
[0132] また、上述の第 1〜第 4の実施形態において、最終光学素子 2Gは、無屈折力の平 行平面板であるが、屈折力を有する光学素子であってもよい。すなわち、最終光学 素子 2Gの上面 2Tが曲率を持っていてもよい。この場合、最終光学素子 2Gの交換を 容易とするために、最終光学素子 2Gの上面 2Tの曲率は極力小さ 、ほうが望ま 、 [0133] また、上述の第 1〜第 4の実施形態においては、投影光学系 PLの光軸 AX上にお いて、第 1空間 K1の液体 LQ1は、第 2空間 K2の液体 LQ2よりも厚くなつているが、 第 2空間 K2の液体 LQ2を第 1空間 K1の液体 LQ1よりも厚くしてもよいし、同じ厚さ にしてもよい。更に、上述の第 1〜第 4の実施形態においては、 Z軸方向に関して、最 終光学素子 2Gの厚さは、第 1空間 K1の液体 LQ1及び第 2空間 K2の液体 LQ2より も薄くなつているが、最終光学素子 2Gを最も厚くしてもよい。すなわち、第 1空間 K1 の液体 LQ1、第 2空間 K2の液体 LQ2、及び最終光学素子 2Gの Z軸方向の厚さは、 液体 LQ1、 LQ2、及び最終光学素子 2Gを介して基板 P上に投影されるパターンの 結像状態が最適化されるように適宜決めてやればよい。なお、一例としては、光軸 A X上における液体 LQ1及び液体 LQ2の厚さを 5mm以下、最終光学素子 2Gの厚さ を 3〜 12mmとすることができる。 In the first to fourth embodiments, the last optical element 2G is a parallel flat plate having no refractive power, but may be an optical element having refractive power. That is, the upper surface 2T of the final optical element 2G may have a curvature. In this case, in order to facilitate replacement of the final optical element 2G, the curvature of the upper surface 2T of the final optical element 2G is preferably as small as possible. In the first to fourth embodiments described above, on the optical axis AX of the projection optical system PL, the liquid LQ1 in the first space K1 is thicker than the liquid LQ2 in the second space K2. However, the liquid LQ2 in the second space K2 may be thicker than or the same as the liquid LQ1 in the first space K1. Furthermore, in the above-described first to fourth embodiments, the thickness of the final optical element 2G in the Z-axis direction is smaller than the liquid LQ1 in the first space K1 and the liquid LQ2 in the second space K2. However, the final optical element 2G may be thickest. That is, the liquid LQ1 in the first space K1, the liquid LQ2 in the second space K2, and the thickness in the Z-axis direction of the final optical element 2G are projected onto the substrate P via the liquid LQ1, LQ2, and the final optical element 2G. What is necessary is just to determine suitably so that the imaging state of the pattern to be performed may be optimized. Note that, as an example, the thickness of the liquid LQ1 and the liquid LQ2 on the optical axis AX can be 5 mm or less, and the thickness of the final optical element 2G can be 3 to 12 mm.
[0134] また、上述の第 1〜第 4の実施形態においては、最終光学素子 2Gは投影光学系 P Lの光軸 AXに対してほぼ静止した状態で支持されているが、その位置、傾きを調整 するために、微小移動可能に支持されていてもよい。例えば、最終光学素子 2Gの支 持部にァクチユエータを配置して、最終光学素子 2Gの位置 (X軸方向、 Y軸方向、 Z 軸方向)や傾き(Θ Χ方向、 0 Y方向)を自動的に調整できるようにしてもよい。この場 合、第 3、第 4実施形態のように、ノズル部材 70で、最終光学素子 2Gを保持する場 合には、ノズル部材の位置や傾きを調整することによって、最終光学素子 2Gの位置 及び Z又は傾きを調整してもよ ヽ。  In the above-described first to fourth embodiments, the final optical element 2G is supported in a state of being substantially stationary with respect to the optical axis AX of the projection optical system PL. For adjustment, it may be supported so that it can move minutely. For example, an actuator is placed on the support of the last optical element 2G, and the position (X-axis direction, Y-axis direction, Z-axis direction) and inclination (Θ Χ direction, 0 Y direction) of the last optical element 2G are automatically set. May be adjusted. In this case, as in the third and fourth embodiments, when the final optical element 2G is held by the nozzle member 70, the position and inclination of the nozzle member are adjusted to adjust the position of the final optical element 2G. And you can adjust Z or tilt.
[0135] また、上述の第 1〜第 4の実施形態において、最終光学素子 2Gの位置 (X軸方向、 Y軸方向、 Z軸方向)や、傾き( Θ X方向、 Θ Y方向)を計測する干渉計等の計測器を 更に設けてもよい。この計測器は、光学素子 2A〜2Fに対する位置や傾きを計測で きることが望ましい。このような計測器を搭載することで、最終光学素子 2Gの位置や 傾きのずれを容易に知ることができ、上述したァクチユエータと併用すれば、最終光 学素子 2Gの位置や傾きを高精度に調整することができる。  In the above-described first to fourth embodiments, the position (X-axis direction, Y-axis direction, Z-axis direction) and inclination (、 X direction, ΘY direction) of the final optical element 2G are measured. A measuring instrument such as an interferometer may be further provided. It is desirable that this measuring instrument can measure the position and inclination with respect to the optical elements 2A to 2F. By installing such a measuring instrument, the position and inclination of the final optical element 2G can be easily known, and if used together with the above-described actuator, the position and inclination of the final optical element 2G can be accurately determined. Can be adjusted.
[0136] また、第 3及び第 4の実施形態に記載されているように、最終光学素子 2Gを、光学 素子 2Fとは分離して支持する場合、最終光学素子 2Gが液体 LQ1から受ける圧力 や振動が直接光学素子 2A〜2Fに伝導しな ヽので、投影光学系 PLの結像特性の 劣化を抑制することができる。この場合、最終光学素子 2Gを軟らかく保持したり、基 板 Pの傾き(基板ステージ PSTの傾き)に応じて最終光学素子 2Gの位置や傾きを調 整すれば、より効果的に光学素子 2A〜2Fへの圧力や振動を抑えることができる。 Further, as described in the third and fourth embodiments, when the final optical element 2G is supported separately from the optical element 2F, the pressure applied to the final optical element 2G from the liquid LQ1 or the like Since the vibration is not directly transmitted to the optical elements 2A to 2F, the imaging characteristics of the projection optical system PL Deterioration can be suppressed. In this case, by holding the final optical element 2G softly or adjusting the position and inclination of the final optical element 2G according to the inclination of the substrate P (the inclination of the substrate stage PST), the optical elements 2A to Pressure and vibration to 2F can be suppressed.
[0137] 上述したように、本実施形態における液体 LQ1、 LQ2は純水を用いた。純水は、半 導体製造工場等で容易に大量に入手できるとともに、基板 P上のフォトレジストや光 学素子 (レンズ)等に対する悪影響がない利点がある。また、純水は環境に対する悪 影響がないとともに、不純物の含有量が極めて低いため、基板 Pの表面、及び投影 光学系 PLの先端面に設けられている光学素子の表面を洗浄する作用も期待できる 。なお工場等力 供給される純水の純度が低い場合には、露光装置が超純水製造 器を持つようにしてもよい。 [0137] As described above, pure water was used for the liquids LQ1 and LQ2 in the present embodiment. Pure water has the advantage that it can be easily obtained in large quantities at semiconductor manufacturing plants and the like, and that it has no adverse effect on the photoresist on the substrate P, optical elements (lenses), and the like. In addition, pure water has no adverse effect on the environment and has an extremely low impurity content, so it is expected to have the effect of cleaning the surface of the substrate P and the surface of the optical element provided on the tip end of the projection optical system PL. it can . When the purity of pure water supplied to the factory is low, the exposure apparatus may have an ultrapure water production unit.
[0138] そして、波長が 193nm程度の露光光 ELに対する純水(水)の屈折率 nはほぼ 1. 4 4程度と言われており、露光光 ELの光源として ArFエキシマレーザ光(波長 193nm) を用いた場合、基板 P上では lZn、すなわち約 134nm程度に短波長化されて高い 解像度が得られる。更に、焦点深度は空気中に比べて約 n倍、すなわち約 1. 44倍 程度に拡大されるため、空気中で使用する場合と同程度の焦点深度が確保できれ ばよい場合には、投影光学系 PLの開口数をより増カロさせることができ、この点でも解 像度が向上する。 [0138] The refractive index n of pure water (water) with respect to the exposure light EL having a wavelength of about 193 nm is said to be about 1.44, and the ArF excimer laser light (wavelength 193 nm) is used as the light source of the exposure light EL. In the case where is used, on the substrate P, the wavelength is shortened to lZn, that is, about 134 nm, and a high resolution is obtained. Furthermore, since the depth of focus is expanded to about n times, that is, about 1.44 times as compared with that in the air, when it is sufficient to secure the same depth of focus as that used in air, projection The numerical aperture of the optical system PL can be further increased, and this also improves the resolution.
[0139] なお、上述した図 2及び図 5の実施形態においては、液体 LQ1、 LQ2として同じ純 水を供給しているが、第 1空間に供給される純水 (液体 LQ1)と第 2空間に供給される 純水 (液体 LQ2)との品質を異ならせてもよい。純水の品質としては、例えば設定温 度、温度均一性、温度安定性、比抵抗値、あるいは TOC (total organic carbon) 値、溶存気体濃度 (溶存酸素、溶存窒素)、などが挙げられる。例えば、第 2空間 K2 に供給される純水よりも、投影光学系 PLの像面に近い第 1空間 K1へ供給される純 水の品質を高くしてもよい。また、第 1空間と第 2空間に互いに異なる種類の液体を 供給し、第 1空間 K1に満たす液体 LQ1と第 2空間 K2に満たす液体 LQ2とを互いに 異なる種類にしてもよい。例えば露光光 ELに対する屈折率及び Z又は透過率が互 いに異なるものを用いることができる。また、例えば、第 2空間 K2にフッ素系オイルを はじめとする純水以外の所定の液体を満たすことができる。オイルは、バクテリアなど の細菌の繁殖する確率が低 、液体であるため、第 2空間 K2や液体 LQ2 (フッ素系ォ ィル)の流れる流路の清浄度を維持することができる。 In the above-described embodiments of FIGS. 2 and 5, the same pure water is supplied as the liquids LQ1 and LQ2, but pure water (liquid LQ1) supplied to the first space and the second space are supplied. The quality may be different from that of the pure water (liquid LQ2) supplied to the tank. The quality of pure water includes, for example, set temperature, temperature uniformity, temperature stability, specific resistance, TOC (total organic carbon) value, dissolved gas concentration (dissolved oxygen, dissolved nitrogen), and the like. For example, the quality of pure water supplied to the first space K1, which is closer to the image plane of the projection optical system PL, may be higher than the pure water supplied to the second space K2. Alternatively, different types of liquid may be supplied to the first space and the second space, and the liquid LQ1 filling the first space K1 and the liquid LQ2 filling the second space K2 may be different types. For example, those having a different refractive index and Z or transmittance for the exposure light EL can be used. Further, for example, the second space K2 can be filled with a predetermined liquid other than pure water such as a fluorine-based oil. Oil, bacteria, etc. Since the bacteria have a low probability of breeding and are liquid, the cleanliness of the flow path through which the second space K2 and the liquid LQ2 (fluorine-based oil) flow can be maintained.
[0140] また、液体 LQ1、 LQ2の双方を水以外の液体にしてもよい。例えば、露光光 ELの 光源が Fレーザである場合、この Fレーザ光は水を透過しないので、液体 LQ1、 LQ [0140] Both liquids LQ1 and LQ2 may be liquids other than water. For example, if the light source of the exposure light EL is an F laser, this F laser light does not pass through water, so the liquid LQ1, LQ
2 2  twenty two
2としては Fレーザ光を透過可能な例えば、過フッ化ポリエーテル (PFPE)やフッ素  For example, perfluoropolyether (PFPE) or fluorine that can transmit F laser light
2  2
系オイル等のフッ素系流体であってもよい。この場合、液体 LQ1、 LQ2と接触する部 分には、例えばフッ素を含む極性の小さい分子構造の物質で薄膜を形成することで 親液化処理する。また、液体 LQ1、 LQ2としては、その他にも、露光光 ELに対する 透過性があってできるだけ屈折率が高ぐ投影光学系 PLや基板 P表面に塗布されて いるフォトレジストに対して安定なもの(例えばセダー油)を用いることも可能である。こ の場合も表面処理は用いる液体 LQ1、 LQ2の極性に応じて行われる。また、液体 L Qの純水の代わりに、所望の屈折率を有する種々の流体、例えば、超臨界流体や高 屈折率の気体を用いることも可能である。  It may be a fluorine-based fluid such as a system oil. In this case, the portion that comes into contact with the liquids LQ1 and LQ2 is subjected to lyophilic treatment by forming a thin film with a substance having a molecular structure of small polarity including fluorine, for example. In addition, as liquids LQ1 and LQ2, other liquids that are transparent to the exposure light EL and have a refractive index as high as possible and are stable against the photoresist applied to the surface of the projection optical system PL and the substrate P ( It is also possible to use, for example, cedar oil). Also in this case, the surface treatment is performed according to the polarities of the liquids LQ1 and LQ2 to be used. Further, instead of the pure water as the liquid LQ, various fluids having a desired refractive index, for example, a supercritical fluid or a gas having a high refractive index can be used.
[0141] なお、上述したような液浸法においては、投影光学系の開口数 NAが 0. 9〜1. 3に なることもある。このように投影光学系の開口数 NAが大きくなる場合には、従来から 露光光として用いられて 、るランダム偏光光では偏光効果によって結像性能が悪ィ匕 することもあるので、偏光照明を用いるのが望ましい。その場合、マスク(レチクル)の ライン 'アンド'スペースパターンのラインパターンの長手方向に合わせた直線偏光照 明を行い、マスク(レチクル)のパターンからは、 S偏光成分 (TE偏光成分)、すなわち ラインパターンの長手方向に沿った偏光方向成分の回折光が多く射出されるように するとよ ヽ。投影光学系 PLと基板 P表面に塗布されたレジストとの間が液体で満たさ れて ヽる場合、投影光学系 PLと基板 P表面に塗布されたレジストとの間が空気 (気体 )で満たされている場合に比べて、コントラストの向上に寄与する S偏光成分 (TE偏 光成分)の回折光のレジスト表面での透過率が高くなるため、投影光学系の開口数 NAが 1. 0を越えるような場合でも高い結像性能を得ることができる。また、位相シフ トマスクゃ特開平 6— 188169号公報に開示されているようなラインパターンの長手 方向に合わせた斜入射照明法 (特にダイポール照明法)等を適宜組み合わせると更 に効果的である。特に、直線偏光照明法とダイポール照明法との組み合わせは、ライ ン'アンド'スペースパターンの周期方向が所定の一方向に限られている場合や、所 定の一方向に沿ってホールパターンが密集している場合に有効である。例えば、透 過率 6%のハーフトーン型の位相シフトマスク(ノヽーフピッチ 45nm程度のパターン) を、直線偏光照明法とダイポール照明法とを併用して照明する場合、照明系の瞳面 においてダイポールを形成する二光束の外接円で規定される照明 σを 0. 95、その 瞳面における各光束の半径を 0. 125 σ、投影光学系 PLの開口数を ΝΑ= 1. 2とす ると、ランダム偏光光を用いるよりも、焦点深度 (DOF)を 150nm程度増加させること ができる。 [0141] In the liquid immersion method described above, the numerical aperture NA of the projection optical system may be 0.9 to 1.3. When the numerical aperture NA of the projection optical system is increased as described above, since the imaging performance may be deteriorated due to the polarization effect with the randomly polarized light which has been conventionally used as the exposure light, the polarized illumination may be used. It is desirable to use. In such a case, linearly polarized light is illuminated according to the longitudinal direction of the line pattern of the 'and' space pattern of the mask (reticle). From the pattern of the mask (reticle), the S-polarized component (TE-polarized component), It is preferable that a large amount of diffracted light having a polarization direction component along the longitudinal direction of the pattern is emitted. When the liquid is filled between the projection optical system PL and the resist applied to the surface of the substrate P, the space between the projection optical system PL and the resist applied to the surface of the substrate P is filled with air (gas). The transmittance of the diffracted light of the S-polarized light component (TE-polarized light component), which contributes to the improvement of contrast, on the resist surface is higher than that of the case where the numerical aperture NA of the projection optical system exceeds 1.0. Even in such a case, high imaging performance can be obtained. Further, it is more effective to appropriately combine a phase shift mask, such as an oblique incidence illumination method (particularly, a dipole illumination method) adapted to the longitudinal direction of the line pattern as disclosed in JP-A-6-188169. In particular, the combination of linearly polarized illumination and dipole illumination is This is effective when the periodic direction of the 'and' space pattern is limited to one predetermined direction, or when the hole patterns are dense along the predetermined one direction. For example, when illuminating a halftone type phase shift mask with a transmittance of 6% (a pattern with a notch pitch of about 45 nm) by using both the linearly polarized illumination method and the dipole illumination method, the dipole is placed on the pupil plane of the illumination system. If the illumination σ defined by the circumcircle of the two light beams to be formed is 0.95, the radius of each light beam on its pupil plane is 0.125 σ, and the numerical aperture of the projection optical system PL is ΝΑ = 1.2, The depth of focus (DOF) can be increased by about 150 nm compared to using randomly polarized light.
[0142] また、例えば ArFエキシマレーザを露光光とし、 1Z4程度の縮小倍率の投影光学 系 PLを使って、微細なライン ·アンド'スペースパターン(例えば 25〜50nm程度のラ イン 'アンド'スペース)を基板 P上に露光するような場合、マスク Mの構造 (例えばパ ターンの微細度やクロムの厚み)によっては、 Wave guide効果によりマスク Mが偏 光板として作用し、コントラストを低下させる P偏光成分 (TM偏光成分)の回折光より S偏光成分 (TE偏光成分)の回折光が多くマスク M力 射出されるようになる。この場 合、上述の直線偏光照明を用いることが望ましいが、ランダム偏光光でマスク Mを照 明しても、投影光学系 PLの開口数 NAが 0. 9〜1. 3のように大きい場合でも高い解 像性能を得ることができる。  [0142] Further, using, for example, an ArF excimer laser as the exposure light, and using a projection optical system PL with a reduction ratio of about 1Z4, a fine line and space pattern (for example, a line and space of about 25 to 50 nm) is used. When the mask M is exposed on the substrate P, depending on the structure of the mask M (for example, the fineness of the pattern and the thickness of chromium), the mask M acts as a polarizing plate due to the wave guide effect, and the P polarization component which lowers the contrast. More diffracted light of the S-polarized light component (TE-polarized light component) than the diffracted light of the (TM-polarized light component) is emitted from the mask M force. In this case, it is desirable to use the linearly polarized illumination described above.However, even when the mask M is illuminated with the randomly polarized light, the numerical aperture NA of the projection optical system PL is as large as 0.9 to 1.3. However, high resolution performance can be obtained.
[0143] また、マスク M上の極微細なライン 'アンド'スペースパターンを基板 P上に露光する ような場合、 Wire Grid効果により P偏光成分 (TM偏光成分)が S偏光成分 (TE偏 光成分)よりも大きくなる可能性もあるが、例えば ArFエキシマレーザを露光光とし、 1 Z4程度の縮小倍率の投影光学系 PLを使って、 25nmより大きいライン 'アンド'スぺ ースパターンを基板 P上に露光するような場合には、 S偏光成分 (TE偏光成分)の回 折光が P偏光成分 (TM偏光成分)の回折光よりも多くマスク M力 射出されるので、 投影光学系 PLの開口数 NAが 0. 9〜1. 3のように大きい場合でも高い解像性能を 得ることができる。  [0143] In the case where a very fine line 'and' space pattern on the mask M is exposed on the substrate P, the P polarization component (TM polarization component) is changed to the S polarization component (TE polarization component) by the Wire Grid effect. However, for example, an ArF excimer laser as the exposure light may be used as the exposure light, and a line 'and' space pattern larger than 25 nm may be formed on the substrate P using a projection optical system PL having a reduction ratio of about 1 Z4. In the case of exposure, the S-polarized light component (TE-polarized light component) diffracted light is emitted more than the diffracted light of the P-polarized light component (TM-polarized light component) by the mask M force. High resolution performance can be obtained even when is large, such as 0.9 to 1.3.
[0144] 更に、マスク(レチクル)のラインパターンの長手方向に合わせた直線偏光照明(S 偏光照明)だけでなぐ特開平 6— 53120号公報に開示されているように、光軸を中 心とした円の接線 (周)方向に直線偏光する偏光照明法と斜入射照明法との組み合 わせも効果的である。特に、マスク(レチクル)のパターンが所定の一方向に延びるラ インパターンだけでなぐ複数の異なる方向に延びるラインパターンが混在 (周期方 向が異なるライン 'アンド'スペースパターンが混在)する場合には、同じく特開平 6— 53120号公報に開示されて 、るように、光軸を中心とした円の接線方向に直線偏光 する偏光照明法と輪帯照明法とを併用することによって、投影光学系の開口数 NA が大きい場合でも高い結像性能を得ることができる。例えば、透過率 6%のハーフト ーン型の位相シフトマスク(ノヽーフピッチ 63nm程度のパターン)を、光軸を中心とし た円の接線方向に直線偏光する偏光照明法と輪帯照明法 (輪帯比 3Z4)とを併用し て照明する場合、照明 σを 0. 95、投影光学系 PLの開口数を ΝΑ= 1. 00とすると、 ランダム偏光光を用いるよりも、焦点深度 (DOF)を 250nm程度増加させることがで き、ハーフピッチ 55nm程度のパターンで投影光学系の開口数 NA= 1. 2では、焦 点深度を lOOnm程度増カロさせることができる。 Further, as disclosed in JP-A-6-53120, in which only linearly polarized light (S-polarized light) aligned with the longitudinal direction of the line pattern of the mask (reticle) is used, the optical axis is centered. Combination of the polarized illumination method and the oblique incidence illumination method that linearly polarizes in the tangential (circumferential) direction of the circle It is also effective. In particular, when a plurality of line patterns extending in different directions are mixed (only line patterns having different periodic directions are mixed with 'and' space patterns), the pattern of a mask (reticle) is formed only by a line pattern extending in one predetermined direction. As disclosed in Japanese Patent Application Laid-Open No. 53120/1994, a projection optical system can be obtained by using both a polarization illumination method for linearly polarized light in a tangential direction of a circle around the optical axis and an annular illumination method. High imaging performance can be obtained even when the numerical aperture NA is large. For example, a polarization illumination method and a ring illumination method (a ring zone) in which a halftone phase shift mask (a pattern with a notch pitch of about 63 nm) having a transmittance of 6% is linearly polarized in the tangential direction of a circle centered on the optical axis. When the illumination is used together with the ratio 3Z4), assuming that the illumination σ is 0.95 and the numerical aperture of the projection optical system PL is ΝΑ = 1.00, the depth of focus (DOF) is 250 nm more than using randomly polarized light. When the numerical aperture of the projection optical system is NA = 1.2 with a pattern having a half pitch of about 55 nm, the focal depth can be increased by about 100 nm.
[0145] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミック ウェハ、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリ コンウェハ)等が適用される。 The substrate P in each of the above embodiments is not limited to a semiconductor wafer for manufacturing a semiconductor device, but may be a glass substrate for a display device, a ceramic wafer for a thin-film magnetic head, or a mask or a mask used in an exposure apparatus. A reticle master (synthetic quartz, silicon wafer), etc. is applied.
[0146] 露光装置 EXとしては、マスク Mと基板 Pとを同期移動してマスク Mのパターンを走 查露光するステップ ·アンド'スキャン方式の走査型露光装置 (スキャニングステツパ) の他に、マスク Mと基板 Pとを静止した状態でマスク Mのパターンを一括露光し、基 板 Pを順次ステップ移動させるステップ ·アンド ·リピート方式の投影露光装置 (ステツ ノ )にも適用することができる。  The exposure apparatus EX includes a step-and-scan type scanning exposure apparatus (scanning stepper) for scanning and exposing the pattern of the mask M by synchronously moving the mask M and the substrate P. The present invention can also be applied to a step-and-repeat type projection exposure apparatus (stepper) in which the pattern of the mask M is exposed collectively while the substrate M and the substrate P are stationary, and the substrate P is sequentially moved stepwise.
[0147] また、露光装置 EXとしては、第 1パターンと基板 Pとをほぼ静止した状態で第 1バタ ーンの縮小像を投影光学系 (例えば 1Z8縮小倍率で反射素子を含まな 、屈折型投 影光学系)を用 、て基板 P上に一括露光する方式の露光装置にも適用できる。この 場合、更にその後に、第 2パターンと基板 Pとをほぼ静止した状態で第 2パターンの 縮小像をその投影光学系を用いて、第 1パターンと部分的に重ねて基板 P上に一括 露光するスティツチ方式の一括露光装置にも適用できる。また、ステイッチ方式の露 光装置としては、基板 P上で少なくとも 2つのパターンを部分的に重ねて転写し、基 板 Pを順次移動させるステップ 'アンド'ステイッチ方式の露光装置にも適用できる。ま た、基板 Pを保持するステージとは別に測定用の部材ゃセンサを搭載した測定ステ ージを備えた露光装置にも本発明を適用することはできる。なお、測定ステージを備 えた露光装置は、例えば欧州特許公開第 1, 041, 357号公報に記載されており、本 国際出願で指定または選択された国の法令で許容される限りにおいて、この文献の 記載内容を援用して本文の記載の一部とする。 In addition, as the exposure apparatus EX, a reduced image of the first pattern is projected with the first pattern and the substrate P almost stationary, and a projection optical system (for example, a refraction type that does not include a reflective element at 1Z8 reduction magnification). The present invention can also be applied to an exposure apparatus that uses a projection optical system to perform simultaneous exposure on a substrate P. In this case, after that, while the second pattern and the substrate P are almost stationary, the reduced image of the second pattern is partially exposed on the substrate P at one time using the projection optical system so as to partially overlap the first pattern. The present invention can also be applied to a stitch type batch exposure apparatus. Also, as a stitch type exposure device, at least two patterns are partially overlapped and transferred on the substrate P, and Step P in which the plate P is sequentially moved The present invention can also be applied to an exposure apparatus of the 'and' stitch method. Further, the present invention can be applied to an exposure apparatus having a measurement stage in which a member for measurement and a sensor are mounted separately from a stage for holding the substrate P. An exposure apparatus equipped with a measurement stage is described in, for example, European Patent Publication No. 1,041,357, and as long as the laws of the country specified or selected in the international application permit this law, The contents of the above are used as part of the text.
[0148] また、本発明はツインステージ型の露光装置にも適用できる。ツインステージ型の 露光装置の構造及び露光動作は、例えば特開平 10— 163099号及び特開平 10— 214783号(対応米国特許 6, 341, 007、 6, 400, 441、 6, 549, 269及び 6, 590 , 634)、特表 2000— 505958号(対応米国特許 5, 969, 441)あるいは米国特許 6 , 208, 407に開示されており、本国際出願で指定または選択された国の法令で許 容される限りにお 、て、それらの開示を援用して本文の記載の一部とする。  The present invention is also applicable to a twin-stage type exposure apparatus. The structure and exposure operation of a twin-stage type exposure apparatus are described in, for example, JP-A-10-163099 and JP-A-10-214783 (corresponding to US Pat. Nos. 6,341,007, 6,400,441, 6,549,269 and 6). , 590, 634), International Patent Publication No. 2000-505958 (corresponding US Pat. No. 5,969,441) or US Pat. No. 6,208,407, which are licensed under the laws of the country designated or selected in this international application. To the extent permitted, their disclosures are incorporated herein by reference.
[0149] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置や、薄膜磁気ヘッド、撮像素子 (CCD)あるいはレチクル又はマスクなどを 製造するための露光装置などにも広く適用できる。  The type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element for exposing a semiconductor element pattern onto a substrate P, but may be an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, It can be widely applied to an image pickup device (CCD), an exposure apparatus for manufacturing a reticle or a mask, and the like.
[0150] 上述の実施形態においては、光透過性の基板上に所定の遮光パターン (又は位 相パターン '減光パターン)を形成した光透過型マスク(レチクル)を用いたが、このレ チクルに代えて、例えば米国特許第 6, 778, 257号公報に開示されているように、 露光すべきパターンの電子データに基づいて、透過パターン又は反射パターン、あ るいは発光パターンを形成する電子マスクを用いても良い。また、国際公開第 2001 Z035168号パンフレットに開示されているように、干渉縞をウェハ W上に形成するこ とによって、ウェハ W上にライン ·アンド ·スペースパターンを形成する露光装置(リソ グラフィシステム)にも本発明を適用することができる。  In the above-described embodiment, a light-transmitting mask (reticle) in which a predetermined light-shielding pattern (or a phase pattern “darkening pattern”) is formed on a light-transmitting substrate is used. Alternatively, for example, as disclosed in US Pat. No. 6,778,257, an electronic mask for forming a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed is provided. May be used. Further, as disclosed in WO 2001 Z035168 pamphlet, an exposure apparatus (lithography system) for forming a line-and-space pattern on a wafer W by forming interference fringes on the wafer W The present invention can also be applied to
[0151] 上述の実施形態においては、投影光学系 PLと基板 Pとの間を局所的に液体で満 たす露光装置を採用して ヽるが、露光対象の基板の表面全体が液体で覆われる液 浸露光装置にも本発明を適用可能である。露光対象の基板の表面全体が液体で覆 われる液浸露光装置の構造及び露光動作は、例えば特開平 6— 124873号公報、 特開平 10— 303114号公報、米国特許第 5, 825, 043号などに詳細に記載されて おり、本国際出願で指定または選択された国の法令で許容される限りにおいて、この 文献の記載内容を援用して本文の記載の一部とする。 [0151] In the above-described embodiment, an exposure apparatus that locally fills the space between the projection optical system PL and the substrate P with liquid is employed, but the entire surface of the substrate to be exposed is covered with liquid. The present invention is also applicable to an immersion exposure apparatus to be described. The structure and exposure operation of an immersion exposure apparatus in which the entire surface of a substrate to be exposed is covered with a liquid are described in, for example, JP-A-6-124873, It is described in detail in Japanese Patent Application Laid-Open No. 10-303114, U.S. Pat. No. 5,825,043, and to the extent permitted by the laws of the country designated or selected in this international application, the contents of this document And incorporated as part of the text.
[0152] 基板ステージ PSTやマスクステージ MSTにリニアモータを用いる場合は、エアベア リングを用いたエア浮上型およびローレンツ力またはリアクタンス力を用いた磁気浮 上型のどちらを用いてもよい。また、各ステージ PST、 MSTは、ガイドに沿って移動 するタイプでもよぐガイドを設けないガイドレスタイプであってもよい。ステージにリニ ァモータを用 \ヽた f列 ίま、米国特許 5, 623, 853及び 5, 528, 118【こ開示されており 、それぞれ本国際出願で指定または選択された国の法令で許容される限りにおいて 、これらの文献の記載内容を援用して本文の記載の一部とする。  [0152] When a linear motor is used for the substrate stage PST or the mask stage MST, any of an air levitation type using an air bearing and a magnetic levitation type using Lorentz force or reactance force may be used. Further, each of the stages PST and MST may be of a type that moves along a guide or a guideless type that does not include a swing guide. US Pat. Nos. 5,623,853 and 5,528,118 [disclosed, each permitted by the laws of the country specified or selected in this international application] To the extent possible, the contents of these documents are incorporated and incorporated as part of the text.
[0153] 各ステージ PST、 MSTの駆動機構としては、二次元に磁石を配置した磁石ュ-ッ トと、二次元にコイルを配置した電機子ユニットとを対向させ電磁力により各ステージ PST、 MSTを駆動する平面モータを用いてもよい。この場合、磁石ユニットと電機子 ユニットとのいずれか一方をステージ PST、 MSTに接続し、磁石ユニットと電機子ュ ニットとの他方をステージ PST、 MSTの移動面側に設ければよ!、。  [0153] The drive mechanism of each stage PST, MST is such that a magnet cut in which magnets are arranged two-dimensionally and an armature unit in which coils are arranged two-dimensionally face each other, and each stage PST, MST is driven by electromagnetic force. May be used. In this case, one of the magnet unit and the armature unit should be connected to the stages PST and MST, and the other of the magnet unit and the armature unit should be provided on the moving surface side of the stages PST and MST!
[0154] 基板ステージ PSTの移動により発生する反力は、投影光学系 PLに伝わらないよう に、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。この反力の処理方 法は、例えば、米国特許 5, 528, 118 (特開平 8— 166475号公報)に詳細に開示さ れており、本国際出願で指定または選択された国の法令で許容される限りにおいて 、この文献の記載内容を援用して本文の記載の一部とする。  [0154] The reaction force generated by the movement of the substrate stage PST may be mechanically released to the floor (ground) using a frame member so as not to be transmitted to the projection optical system PL. The method of dealing with this reaction force is disclosed in detail, for example, in US Pat. No. 5,528,118 (JP-A-8-166475), and is permitted by the laws of the country designated or selected in this international application. To the extent possible, the contents of this document are incorporated and incorporated herein as part of the text.
[0155] マスクステージ MSTの移動により発生する反力は、投影光学系 PLに伝わらないよ うに、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。この反力の処理方 法は、例えば、米国特許第 5, 874, 820 (特開平 8— 330224号公報)に詳細に開 示されており、本国際出願で指定または選択された国の法令で許容される限りにお いて、この文献の開示を援用して本文の記載の一部とする。  [0155] The reaction force generated by the movement of the mask stage MST may be mechanically released to the floor (ground) using a frame member so as not to be transmitted to the projection optical system PL. The method of dealing with this reaction force is disclosed in detail, for example, in US Pat. No. 5,874,820 (Japanese Patent Application Laid-Open No. 8-330224), and is based on the laws of the country designated or selected in this international application. To the extent permitted, the disclosure of this document is incorporated herein by reference.
[0156] 以上のように、本願実施形態の露光装置 EXは、請求の範囲に挙げられた各構成 要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保 つように、組み立てることで製造される。これら各種精度を確保するために、この組み 立ての前後には、各種光学系については光学的精度を達成するための調整、各種 機械系につ 、ては機械的精度を達成するための調整、各種電気系につ 、ては電気 的精度を達成するための調整が行われる。各種サブシステム力 露光装置への組み 立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回 路の配管接続等が含まれる。この各種サブシステム力 露光装置への組み立て工程 の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブ システムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置 全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度 等が管理されたクリーンルームで行うことが望ましい。 [0156] As described above, the exposure apparatus EX of the embodiment of the present invention controls various subsystems including the components described in the claims to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. So, it is manufactured by assembling. To ensure these various precisions, Before and after setting, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and electrical accuracy for various electrical systems Adjustments are made to achieve Various subsystems The process of assembling the lithography system includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Needless to say, there is an assembling process for each subsystem before the assembling process into the exposure apparatus. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustments are made to ensure the various precisions of the exposure apparatus as a whole. It is desirable to manufacture the exposure apparatus in a clean room in which the temperature, cleanliness, etc. are controlled.
[0157] 半導体デバイス等のマイクロデバイスは、図 8に示すように、マイクロデバイスの機 能 ·性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 202、デバイスの基材である基板を製造するステップ 203、前述した 実施形態の露光装置 EXによりマスクのパターンを基板に露光する露光処理ステップ 204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージェ 程を含む) 205、検査ステップ 206等を経て製造される。  As shown in FIG. 8, a microdevice such as a semiconductor device includes a step 201 of designing the function and performance of the microdevice, a step 202 of manufacturing a mask (reticle) based on the design step, and Step 203 of manufacturing a substrate as a base material, exposure processing step 204 of exposing a mask pattern to the substrate by the exposure apparatus EX of the above-described embodiment, device assembly step (including dicing step, bonding step, and package step) 205 It is manufactured through an inspection step 206 and the like.
[0158] <第 5実施形態 >  [0158] <Fifth embodiment>
次に、上述の第 1〜第 4の実施形態における第 1液体回収機構 20の回収方法の別 の実施形態について説明する。なお、本実施形態においては、第 1回収口 22から液 体 LQだけを回収するようにしており、これによつて液体回収に起因する振動の発生 を抑制するようにしている。  Next, another embodiment of the recovery method of the first liquid recovery mechanism 20 in the above-described first to fourth embodiments will be described. Note that, in the present embodiment, only the liquid LQ is collected from the first collection port 22, thereby suppressing the generation of vibration due to the liquid collection.
[0159] 以下、図 9の模式図を参照しながら、本実施形態における第 1液体回収機構 20に よる液体回収動作の原理について説明する。図 1〜5及び 7との関係で説明した第 1 液体回収機構 20の第 1回収口 22には、多孔部材 25として、例えば多数の孔が形成 された薄板状の多孔部材 (メッシュ部材)を使用することができる。本実施形態にぉ 、 ては、多孔部材はチタンで形成されている。また本実施形態においては、多孔部材 2 5が濡れた状態で、多孔部材 25の上面と下面との圧力差を後述の所定条件を満足 するように制御することで、多孔部材 25の孔カも液体 LQだけを回収するものである。 上述の所定条件に係るパラメータとしては、多孔部材 25の孔径、多孔部材 25の液体 LQとの接触角(親和性)、及び第 1液体回収部 21の吸引力(多孔部材 25の上面に 圧力)等が挙げられる。 Hereinafter, the principle of the liquid recovery operation by the first liquid recovery mechanism 20 in the present embodiment will be described with reference to the schematic diagram of FIG. In the first recovery port 22 of the first liquid recovery mechanism 20 described in relation to FIGS. 1 to 5 and 7, as the porous member 25, for example, a thin plate-shaped porous member (mesh member) having a large number of holes is formed. Can be used. In this embodiment, the porous member is formed of titanium. Further, in the present embodiment, by controlling the pressure difference between the upper surface and the lower surface of the porous member 25 so as to satisfy a predetermined condition described later in a wet state of the porous member 25, the hole power of the porous member 25 is also reduced. It collects only liquid LQ. The parameters according to the above predetermined conditions include the pore diameter of the porous member 25, the liquid of the porous member 25, The contact angle (affinity) with the LQ, the suction force of the first liquid recovery unit 21 (pressure on the upper surface of the porous member 25), and the like are given.
[0160] 図 9は、多孔部材 25の部分断面の拡大図であって、多孔部材 25を介して行われる 液体回収の一具体例を示す。多孔部材 25の下には、基板 Pが配置されており、多孔 部材 25と基板 Pとの間には、気体空間及び液体空間が形成されている。より具体的 には、多孔部材 25の第 1孔 25Haと基板 Pの間には気体空間が形成され、多孔部材 25の第 2孔 25Hbと基板 Pとの間には液体空間が形成されている。このような状況は 、例えば、図 2に示した液浸領域 AR2の端部で生じ、あるいは何らかの原因で液浸 領域 AR2に気体が生じることによって起こる。また、多孔部材 25の上には、第 1回収 流路 24の一部を形成する流路空間が形成されている。  FIG. 9 is an enlarged view of a partial cross section of the porous member 25, and shows a specific example of liquid recovery performed through the porous member 25. The substrate P is disposed below the porous member 25, and a gas space and a liquid space are formed between the porous member 25 and the substrate P. More specifically, a gas space is formed between the first hole 25Ha of the porous member 25 and the substrate P, and a liquid space is formed between the second hole 25Hb of the porous member 25 and the substrate P. . Such a situation occurs, for example, at the end of the immersion area AR2 shown in FIG. 2, or when gas is generated in the immersion area AR2 for some reason. Further, on the porous member 25, a channel space forming a part of the first recovery channel 24 is formed.
[0161] 図 9において、多孔部材 25の第 1孔 25Haと基板 Pの間の空間の圧力(多孔部材 2 5Hの下面の圧力)を Pa、多孔部材 25の上の流路空間の圧力(多孔部材 25の上面 での圧力)を Pb、第 1及び第 2孔 25Ha, 25Hbの孔径 (直径)を d、多孔部材 25 (孔 2 5Hの内側)の液体 LQとの接触角を Q、液体 LQの表面張力を γとして、  In FIG. 9, the pressure in the space between the first hole 25Ha of the porous member 25 and the substrate P (the pressure on the lower surface of the porous member 25H) is Pa, and the pressure in the flow passage space above the porous member 25 (the porous The pressure at the upper surface of the member 25) is Pb, the hole diameter (diameter) of the first and second holes 25Ha, 25Hb is d, the contact angle of the porous member 25 (inside the hole 25H) with the liquid LQ is Q, and the liquid LQ Let γ be the surface tension of
(4 Χ γ X cos 0 ) /d ≥ (Pa— Pb) · ' · (3)  (4 Χ γ X cos 0) / d ≥ (Pa— Pb) · '· (3)
の条件が成立する場合、図 9に示すように、多孔部材 25の第 1孔 25Haの下側 (基板 P側)に気体空間が形成されても、多孔部材 25の下側の空間の気体が孔 25Haを介 して多孔部材 25の上側の空間に移動 (侵入)することを防止することができる。すな わち、上記(3)式の条件を満足するように、接触角 Θ、孔径 d、液体 LQの表面張力 γ、圧力 Pa、 Pbを最適化することで、液体 LQと気体との界面が多孔部材 25の孔 25 Ha内に維持され、第 1孔 25Haからの気体の侵入を抑えることができる。一方、多孔 部材 25の第 2孔 25Hbの下側(基板 P側)には液体空間が形成されているので、第 2 孔 25Hbを介して液体 LQのみを回収することができる。  When the condition of the above is satisfied, as shown in FIG. 9, even if a gas space is formed below the first hole 25Ha of the porous member 25 (substrate P side), the gas in the space below the porous member 25 is released. It is possible to prevent movement (intrusion) into the space above the porous member 25 through the hole 25Ha. That is, by optimizing the contact angle Θ, the pore diameter d, the surface tension γ of the liquid LQ, the pressure Pa, and the Pb so as to satisfy the condition of the above equation (3), the interface between the liquid LQ and the gas is optimized. Is maintained in the hole 25Ha of the porous member 25, and gas intrusion from the first hole 25Ha can be suppressed. On the other hand, since a liquid space is formed below the second hole 25Hb (substrate P side) of the porous member 25, only the liquid LQ can be recovered through the second hole 25Hb.
[0162] なお、上記(3)式の条件においては、説明を簡単にするために多孔部材 25の上の 液体 LQの静水圧は考慮して 、な 、。  [0162] Note that, under the conditions of the above formula (3), the hydrostatic pressure of the liquid LQ on the porous member 25 is taken into consideration for simplicity of description.
[0163] また、本実施形態において、第 1液体回収機構 20は、多孔部材 25の下の空間の 圧力 Pa、孔 25Hの直径 d、多孔部材 25 (孔 25Hの内側面)の液体 LQとの接触角 Θ 、液体 (純水) LQの表面張力 γは一定として、第 1液体回収部 21の吸引力を制御し て、上記(3)式を満足するように、多孔部材 25の上の流路空間の圧力を調整してい る。ただし、上記(3)式において、(Pa— Pb)が大きいほど、すなわち、 ( (4 X y X co s 0 ) /d)が大きいほど、上記(3)式を満足するような圧力 Pbの制御が容易になるの で、孔 25Ha、 25Hbの直径 d、及び多孔部材 25の液体 LQとの接触角 0 (0< 0 < 9 0° )は可能な限り小さくすることが望ましい。なお、上述の図 1, 2, 4, 5, 7及び 9な どを用いた説明においては、最終光学素子 2Gの下面 2Sと基板 Pとを対向させた状 態で、最終光学素子 2Gの下面 2Sと基板 Pとの間の第 1空間 K1を液体 LQ1で満たし ているが、投影光学系 PLと他の部材 (例えば、基板ステージ PSTの上面 51など)が 対向している場合にも投影光学系 PLとその他の部材との間を液体で満たすことがで きることはいうまでもない。 [0163] In the present embodiment, the first liquid recovery mechanism 20 is connected to the pressure Pa in the space below the porous member 25, the diameter d of the hole 25H, and the liquid LQ of the porous member 25 (the inner surface of the hole 25H). Assuming that the contact angle Θ and the surface tension γ of the liquid (pure water) LQ are constant, the suction force of the first liquid recovery section 21 is controlled. Thus, the pressure in the flow path space above the porous member 25 is adjusted so as to satisfy the above equation (3). However, in the above equation (3), as (Pa—Pb) is larger, that is, as ((4XyXcos0) / d) is larger, the pressure Pb satisfying the above equation (3) becomes larger. For easy control, the diameter d of the holes 25Ha and 25Hb, and the contact angle 0 (0 <0 <90 °) of the porous member 25 with the liquid LQ are desirably as small as possible. In the above description using FIGS. 1, 2, 4, 5, 7 and 9, etc., the lower surface 2S of the final optical element 2G is opposed to the substrate P, and the lower surface The first space K1 between the 2S and the substrate P is filled with the liquid LQ1, but the projection optical system PL and other members (for example, the upper surface 51 of the substrate stage PST) face each other. It goes without saying that the space between the system PL and other members can be filled with liquid.
産業上の利用可能性 Industrial applicability
本発明によれば、液浸露光により汚染される可能性のある光学素子を容易且つ迅 速に交換することができる。それゆえ、良好な露光精度及び計測精度を維持すること ができる。また、露光装置のメンテナンスコストの上昇やスループットの低下を抑える ことができる。  According to the present invention, an optical element that may be contaminated by immersion exposure can be easily and promptly replaced. Therefore, good exposure accuracy and measurement accuracy can be maintained. In addition, it is possible to suppress an increase in maintenance cost and a decrease in throughput of the exposure apparatus.

Claims

請求の範囲 The scope of the claims
[1] 基板上に露光光を照射して前記基板を露光する露光装置であって、  [1] An exposure apparatus that exposes the substrate by irradiating the substrate with exposure light,
複数のエレメントを備える投影光学系と、  A projection optical system having a plurality of elements,
前記複数のエレメントのうち、前記投影光学系の像面に最も近い第 1エレメントを、 前記投影光学系の光軸に対してほぼ静止した状態で支持する支持部材と、 前記第 1エレメントの一面側に形成され、液体で満たされる第 1空間と、 前記第 1エレメントの他面側に、前記第 1空間とは独立に形成され、液体で満たさ れる第 2空間とを備え、  A support member for supporting a first element closest to an image plane of the projection optical system in a state of being substantially stationary with respect to an optical axis of the projection optical system, of the plurality of elements; A first space filled with a liquid, and a second space formed on the other surface side of the first element independently of the first space and filled with a liquid,
前記第 1空間の液体で前記基板表面の一部を覆う液浸領域を形成するとともに、 前記第 1空間の液体と前記第 2空間の液体とを介して、前記基板上に露光光を照射 して前記基板を露光する露光装置。  The liquid in the first space forms a liquid immersion area that covers a part of the substrate surface, and the substrate is irradiated with exposure light via the liquid in the first space and the liquid in the second space. An exposure apparatus for exposing the substrate by exposure.
[2] 前記第 1空間の液体と前記第 2空間の液体とは異なる請求項 1に記載の露光装置 2. The exposure apparatus according to claim 1, wherein the liquid in the first space and the liquid in the second space are different.
[3] 前記投影光学系は、前記第 1エレメントに次いで前記投影光学系の像面に近い第 2エレメントを有し、 [3] The projection optical system has a second element close to an image plane of the projection optical system next to the first element,
前記第 1エレメントと前記第 2エレメントとを支持する支持部材を備える請求項 1に記 載の露光装置。  The exposure apparatus according to claim 1, further comprising a support member that supports the first element and the second element.
[4] 前記第 1エレメントは、前記投影光学系を構成する他のエレメントとは分離して支持 されて 、る請求項 1に記載の露光装置。  4. The exposure apparatus according to claim 1, wherein the first element is supported separately from other elements constituting the projection optical system.
[5] 前記第 1空間に液体を供給する第 1液体供給機構と、 [5] a first liquid supply mechanism for supplying a liquid to the first space,
前記第 1空間に供給された液体を回収する第 1液体回収機構とを備える請求項 1 に記載の露光装置。  The exposure apparatus according to claim 1, further comprising: a first liquid recovery mechanism configured to recover the liquid supplied to the first space.
[6] 前記第 1エレメントの周囲に前記基板と対向するように配置され、前記基板との間に 液体を保持可能であり、前記第 1液体回収機構によって回収される液体の流路が形 成された流路形成部材をさらに備え、  [6] A liquid flow path that is arranged around the first element so as to face the substrate, can hold a liquid between the first element and the substrate, and is formed by the first liquid recovery mechanism. Further provided a flow path forming member,
前記流路形成部材の下面の少なくとも一部に液体を回収するための回収口が形成 されて 、る請求項 5に記載の露光装置。  The exposure apparatus according to claim 5, wherein a recovery port for recovering a liquid is formed in at least a part of a lower surface of the flow path forming member.
[7] 前記流路形成部材は、前記第 1液体供給機構によって供給される液体の流路も形 成されて!/、る請求項 6に記載の露光装置。 [7] The flow path forming member also has a flow path for the liquid supplied by the first liquid supply mechanism. 7. The exposure apparatus according to claim 6, wherein the exposure apparatus is! /.
[8] 前記流路形成部材は、前記第 1エレメントの両側に前記第 1液体供給機構の液体供 給口が形成されて!ヽる請求項 7に記載の露光装置。 [8] The exposure apparatus according to claim 7, wherein the flow path forming member has liquid supply ports of the first liquid supply mechanism formed on both sides of the first element.
[9] 前記第 1エレメントと前記基板との距離は、前記流路形成部材の下面と前記基板との 距離よりも長い請求項 6に記載の露光装置。 9. The exposure apparatus according to claim 6, wherein a distance between the first element and the substrate is longer than a distance between a lower surface of the flow path forming member and the substrate.
[10] 前記投影光学系は、前記第 1エレメントに次いで前記投影光学系の像面に近い第 2 エレメントを有し、 [10] The projection optical system has a second element close to an image plane of the projection optical system next to the first element,
前記第 1エレメントと前記第 2エレメントとの距離は、前記第 1エレメントと前記基板との 距離よりも短い請求項 9に記載の露光装置。  10. The exposure apparatus according to claim 9, wherein a distance between the first element and the second element is shorter than a distance between the first element and the substrate.
[11] 前記第 1エレメントが、前記第 1液体供給機構によって供給される液体の流路、及 び前記第 1液体回収機構によって回収される液体の流路のうち少なくとも一方を形成 された流路形成部材に保持されている請求項 5に記載の露光装置。 [11] A flow path in which the first element forms at least one of a flow path of a liquid supplied by the first liquid supply mechanism and a flow path of a liquid recovered by the first liquid recovery mechanism. 6. The exposure apparatus according to claim 5, wherein the exposure apparatus is held by a forming member.
[12] 前記流路形成部材には、前記第 1空間への液体供給とは独立して、前記第 2空間 への液体供給を行うための流路も形成されて!ヽる請求項 11に記載の露光装置。 [12] The channel according to claim 11, wherein the channel forming member is also provided with a channel for supplying the liquid to the second space independently of the liquid supply to the first space. Exposure apparatus according to the above.
[13] 前記第 2空間に液体を供給する第 2液体供給機構を備える請求項 1に記載の露光 装置。 13. The exposure apparatus according to claim 1, further comprising a second liquid supply mechanism that supplies a liquid to the second space.
[14] 前記第 2空間に供給された液体を回収する第 2液体回収機構を備える請求項 13に 記載の露光装置。  14. The exposure apparatus according to claim 13, further comprising a second liquid recovery mechanism that recovers the liquid supplied to the second space.
[15] 前記第 2空間の液体は交換可能であることを特徴とする請求項 14に記載の露光装 置。  15. The exposure apparatus according to claim 14, wherein the liquid in the second space is exchangeable.
[16] 前記基板の露光中に、前記第 2液体供給機構による液体の供給が停止される請求 項 13に記載の露光装置。  16. The exposure apparatus according to claim 13, wherein the supply of the liquid by the second liquid supply mechanism is stopped during the exposure of the substrate.
[17] 基板上に露光光を照射して前記基板を露光する露光装置であって、 [17] An exposure apparatus that exposes the substrate by irradiating the substrate with exposure light,
複数のエレメントを備える投影光学系と、  A projection optical system having a plurality of elements,
前記複数のエレメントのうち、前記投影光学系の像面に最も近い第 1エレメントの一 面側に形成される第 1空間と、  A first space formed on one surface side of a first element closest to an image plane of the projection optical system among the plurality of elements;
前記第 1エレメントの他面側に形成される第 2空間と、  A second space formed on the other surface side of the first element,
前記第 1空間と前記第 2空間とを連結する連結孔と、 前記第 1空間と前記第 2空間との一方に液体を供給し、前記連結孔を介して前記 第 1空間と前記第 2空間とを液体で満たす液体供給機構とを備え、 A connection hole connecting the first space and the second space, A liquid supply mechanism that supplies a liquid to one of the first space and the second space and fills the first space and the second space with the liquid via the connection hole;
前記第 1空間及び前記第 2空間の液体を介して、前記基板上に露光光を照射して 前記基板を露光する露光装置。  An exposure apparatus for exposing the substrate by irradiating the substrate with exposure light via the liquid in the first space and the liquid in the second space.
[18] 前記第 1エレメントは平行平面板である請求項 1または 17に記載の露光装置。 18. The exposure apparatus according to claim 1, wherein the first element is a plane-parallel plate.
[19] 前記第 1空間の液体は純水である請求項 1または 17に記載の露光装置。 19. The exposure apparatus according to claim 1, wherein the liquid in the first space is pure water.
[20] 前記第 2空間の液体は純水である請求項 19に記載の露光装置。 20. The exposure apparatus according to claim 19, wherein the liquid in the second space is pure water.
[21] 前記投影光学系は、前記第 1エレメントに次いで前記投影光学系の像面に近い第 2エレメントを有し、 [21] The projection optical system has a second element close to an image plane of the projection optical system next to the first element,
前記第 1エレメントは、前記基板表面と対向するように配置され、前記露光光が通 過する第 1面と、前記第 2エレメントと対向するように配置され、前記露光光が通過す る第 2面とを有し、  The first element is arranged to face the substrate surface, and a first surface through which the exposure light passes, and a second surface arranged to face the second element and the exposure light passes therethrough. Surface and
前記第 2エレメントは、前記第 1エレメントの第 2面と対向するように配置され、前記 露光光が通過する第 3面を有し、  The second element is disposed so as to face a second surface of the first element, and has a third surface through which the exposure light passes;
前記第 2面の面積は、前記第 3面の面積と同じ、もしくは前記第 3面の面積よりも小 さい請求項 1または 17に記載の露光装置。  18. The exposure apparatus according to claim 1, wherein the area of the second surface is the same as the area of the third surface, or smaller than the area of the third surface.
[22] 前記第 1エレメントは、無屈折力である請求項 1または 17に記載の露光装置。 22. The exposure apparatus according to claim 1, wherein the first element has no refractive power.
[23] 第 1エレメントが、投影光学系の光学特性に影響を与えることなぐ投影光学系から 着脱可能である請求項 1または 17に記載の露光装置。 23. The exposure apparatus according to claim 1, wherein the first element is detachable from the projection optical system without affecting the optical characteristics of the projection optical system.
[24] 第 1空間は周囲が開放された空間であり、第 2空間は周囲が閉鎖された空間である 請求項 1または 17に記載の露光装置。 [24] The exposure apparatus according to claim 1 or 17, wherein the first space is a space whose periphery is open, and the second space is a space whose periphery is closed.
[25] 第 2空間が、第 1エレメントと第 2エレメントの間に画成されている請求項 3または 21 に記載の露光装置。 [25] The exposure apparatus according to claim 3, wherein the second space is defined between the first element and the second element.
[26] 前記液体を、流路形成部材に形成された流路から第 1及び第 2空間に、基板と平 行に流出する請求項 12に記載の露光装置。  26. The exposure apparatus according to claim 12, wherein the liquid flows out of the flow path formed in the flow path forming member into the first and second spaces in parallel with the substrate.
[27] さらに、第 1空間と前記第 2空間との他方から液体を回収する液体回収機構を備え る請求項 17に記載の露光装置。 27. The exposure apparatus according to claim 17, further comprising a liquid recovery mechanism that recovers a liquid from the other of the first space and the second space.
[28] さらに、前記液体供給機構が第 1空間と前記第 2空間の一方に液体を吹き出すノズ ルが形成されたノズルプレートを備え、ノズルプレートが第 1エレメントを支持して 、る 請求項 17に記載の露光装置。 [28] Further, the nozzle for ejecting the liquid to one of the first space and the second space by the liquid supply mechanism. The exposure apparatus according to claim 17, further comprising a nozzle plate having a nozzle formed thereon, wherein the nozzle plate supports the first element.
[29] 前記ノズルは液体を基板面と平行に噴出する請求項 28に記載の露光装置。 29. The exposure apparatus according to claim 28, wherein the nozzle ejects the liquid in parallel with the substrate surface.
[30] 前記投影光学系が、複数のエレメントを収容する鏡筒を有し、露光装置内において 前記鏡筒が前記ノズルプレートとは独立に支持されている請求項 28に記載の露光 装置。 30. The exposure apparatus according to claim 28, wherein the projection optical system has a lens barrel that accommodates a plurality of elements, and the lens barrel is supported in the exposure apparatus independently of the nozzle plate.
[31] 前記鏡筒と前記ノズルプレートの間に、液体が流入するのを防止するシール部材 が設けられて 、る請求項 30に記載の露光装置。  31. The exposure apparatus according to claim 30, wherein a seal member for preventing a liquid from flowing is provided between the lens barrel and the nozzle plate.
[32] 連結孔に多孔体が設けられている請求項 17に記載の露光装置。 32. The exposure apparatus according to claim 17, wherein a porous body is provided in the connection hole.
[33] 第 1液体回収機構が第 1空間から液体を回収するための回収口を有し、回収口に 多孔部材が配置されて 、る請求項 5に記載の露光装置。 33. The exposure apparatus according to claim 5, wherein the first liquid recovery mechanism has a recovery port for recovering the liquid from the first space, and a porous member is arranged in the recovery port.
[34] 液体回収機構が第 1空間から液体を回収するための回収口を有し、回収口に多孔 部材が配置されている請求項 27に記載の露光装置。 34. The exposure apparatus according to claim 27, wherein the liquid recovery mechanism has a recovery port for recovering the liquid from the first space, and the recovery port is provided with a porous member.
[35] 多孔部材と基板の間の空間の圧力を Pa、多孔部材上の流路空間の圧力を Pb、多 孔部材の孔径を d、多孔部材の液体との接触角を 0、液体の表面張力を γとして、 ([35] The pressure of the space between the porous member and the substrate is Pa, the pressure of the flow passage space on the porous member is Pb, the pore diameter of the porous member is d, the contact angle of the porous member with the liquid is 0, the surface of the liquid is Let γ be the tension,
4 Χ y X cos 0 ) /d ≥ (Pa— Pb)の条件が成立する請求項 33または 34に記載の 露光装置。 35. The exposure apparatus according to claim 33, wherein a condition of 4ΧyXcos0) / d≥ (Pa-Pb) is satisfied.
[36] 請求項 1または 17に記載の露光装置を用いることを特徴とするデバイス製造方法。  [36] A device manufacturing method using the exposure apparatus according to claim 1 or 17.
[37] 複数のエレメントを備える投影光学系を介して基板に露光光を照射して前記基板を 露光する露光方法であって、 [37] An exposure method for exposing the substrate by irradiating the substrate with exposure light via a projection optical system including a plurality of elements,
前記複数のエレメントのうち、前記投影光学系の像面に最も近い第 1エレメントの光 射出側の第 1空間に液体をもたらすことと、  Bringing the liquid to the first space on the light emission side of the first element closest to the image plane of the projection optical system, of the plurality of elements;
第 1エレメントの光入射側で且つ第 1空間とは隔離された第 2空間に液体を供給す ることと、  Supplying liquid to a second space on the light incident side of the first element and isolated from the first space;
第 1空間の液体と第 2空間の液体とを介して前記基板に露光光を照射して前記基 板を露光することと、  Irradiating the substrate with exposure light through the liquid in the first space and the liquid in the second space to expose the substrate;
前記基板に露光光を照射している間、第 2空間を液体で満たした状態で、第 2空間 への液体の供給を停止することと含む露光方法。 An exposure method, comprising: stopping supply of a liquid to the second space in a state where the second space is filled with the liquid while irradiating the substrate with the exposure light.
[38] 第 1空間及び第 2空間に液体をそれぞれもたらす際に、第 1空間及び第 2空間にそ れぞれ液体を独立して供給する請求項 37に記載の露光方法。 38. The exposure method according to claim 37, wherein when bringing the liquid to the first space and the second space, respectively, the liquid is supplied to the first space and the second space, respectively.
[39] さらに、第 1空間及び第 2空間からそれぞれ独立して液体を回収することを含む請 求項 38に記載の露光方法。  39. The exposure method according to claim 38, further comprising independently recovering the liquid from the first space and the second space.
[40] 第 1空間に液体をもたらす際に、液体を第 1空間に基板と平行に吹き出す請求項 3 7に記載の露光方法。  40. The exposure method according to claim 37, wherein when bringing the liquid into the first space, the liquid is blown into the first space in parallel with the substrate.
[41] 前記第 1空間の液体で前記基板上の一部に液浸領域を形成する請求項 37に記載 の露光方法。  41. The exposure method according to claim 37, wherein a liquid immersion area is formed in a part of the substrate with the liquid in the first space.
[42] 前記第 1エレメントの近傍に配置された流路形成部材、及び前記第 1エレメントと前 記基板との間に液体を保持して、前記基板上の一部に液浸領域を形成する請求項 41に記載の露光方法。  [42] A flow path forming member arranged near the first element and a liquid held between the first element and the substrate to form a liquid immersion region in a part of the substrate. 42. The exposure method according to claim 41.
[43] 前記流路形成部材の下面の少なくとも一部に形成された回収口から前記第 1空間の 液体を回収する請求項 42に記載の露光方法。  43. The exposure method according to claim 42, wherein the liquid in the first space is recovered from a recovery port formed in at least a part of a lower surface of the flow path forming member.
[44] 前記第 1エレメントと前記基板との距離は、前記流路形成部材の下面と前記基板との 距離よりも長い請求項 43に記載の露光装置。 44. The exposure apparatus according to claim 43, wherein a distance between the first element and the substrate is longer than a distance between a lower surface of the flow path forming member and the substrate.
[45] 前記投影光学系は、前記第 1エレメントに次いで前記投影光学系の像面に近い第 2 エレメントを有し、 [45] The projection optical system has a second element near the image plane of the projection optical system next to the first element,
前記第 1エレメントと前記第 2エレメントとの距離は、前記第 1エレメントと前記基板との 距離よりも短い請求項 44に記載の露光装置。  45. The exposure apparatus according to claim 44, wherein a distance between the first element and the second element is shorter than a distance between the first element and the substrate.
[46] 複数のエレメントを備える投影光学系を介して基板に露光光を照射して前記基板を 露光する露光方法であって、 [46] An exposure method for exposing the substrate by irradiating the substrate with exposure light via a projection optical system including a plurality of elements,
前記複数のエレメントのうち、前記投影光学系の像面に最も近い第 1エレメントの一 面側に形成される第 1空間と、第 1空間と流通され且つ他面側に形成される第 2空間 との一方の空間に液体を供給することによって第 1空間と第 2空間を液体で満たし、 前記第 1空間の液体で前記基板の表面の一部を覆う液浸領域を形成し、第 1空間 及び第 2空間の液体を介して基板に露光光を照射して前記基板を露光することを含 む露光方法。  Among the plurality of elements, a first space formed on one surface side of a first element closest to an image plane of the projection optical system, and a second space formed on the other surface side while being circulated with the first space. The first space and the second space are filled with the liquid by supplying the liquid to one of the spaces, and a liquid immersion area that covers a part of the surface of the substrate with the liquid in the first space is formed. And an exposure method including irradiating the substrate with exposure light via the liquid in the second space to expose the substrate.
[47] 第 1空間が第 1エレメントの光射出側の面と基板との間に形成される請求項 46に記 載の露光方法。 47. The device according to claim 46, wherein the first space is formed between the light emitting side surface of the first element and the substrate. Exposure method described above.
第 2空間に液体を供給し、第 1空間から液体を回収する請求項 46に記載の露光方 法。  47. The exposure method according to claim 46, wherein the liquid is supplied to the second space, and the liquid is recovered from the first space.
PCT/JP2005/010217 2004-06-04 2005-06-03 Exposure apparatus, exposure method, and device producing method WO2005119742A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP05745697A EP1768169B9 (en) 2004-06-04 2005-06-03 Exposure apparatus, exposure method, and device producing method
KR1020067022069A KR101264936B1 (en) 2004-06-04 2005-06-03 Exposure apparatus exposure method and device producing method
US11/628,482 US20070216889A1 (en) 2004-06-04 2005-06-03 Exposure Apparatus, Exposure Method, and Method for Producing Device
CN2005800159214A CN1954408B (en) 2004-06-04 2005-06-03 Exposure apparatus, exposure method, and method for producing device
IL179826A IL179826A0 (en) 2004-06-04 2006-12-04 Exposure apparatus, exposure method, and device producing method
US11/645,639 US20070103661A1 (en) 2004-06-04 2006-12-27 Exposure apparatus, exposure method, and method for producing device
US11/802,061 US20070222958A1 (en) 2004-06-04 2007-05-18 Exposure apparatus, exposure method, and method for producing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-167115 2004-06-04
JP2004167115 2004-06-04

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US11/628,482 A-371-Of-International US20070216889A1 (en) 2004-06-04 2005-06-03 Exposure Apparatus, Exposure Method, and Method for Producing Device
US11/645,639 Division US20070103661A1 (en) 2004-06-04 2006-12-27 Exposure apparatus, exposure method, and method for producing device
US11/802,061 Division US20070222958A1 (en) 2004-06-04 2007-05-18 Exposure apparatus, exposure method, and method for producing device

Publications (1)

Publication Number Publication Date
WO2005119742A1 true WO2005119742A1 (en) 2005-12-15

Family

ID=35463117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010217 WO2005119742A1 (en) 2004-06-04 2005-06-03 Exposure apparatus, exposure method, and device producing method

Country Status (8)

Country Link
US (2) US20070216889A1 (en)
EP (1) EP1768169B9 (en)
JP (1) JP2010118714A (en)
KR (1) KR101264936B1 (en)
CN (1) CN1954408B (en)
IL (1) IL179826A0 (en)
TW (1) TW200604758A (en)
WO (1) WO2005119742A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344960A (en) * 2005-06-10 2006-12-21 Internatl Business Mach Corp <Ibm> Immersion lithography device and method (immersion lithography device having uniform pressure, at least on projection optical component and wafer)
JP2007013152A (en) * 2005-06-28 2007-01-18 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
JP2007281441A (en) * 2006-03-13 2007-10-25 Nikon Corp Exposure apparatus, maintenance method, exposure method, and method of manufacturing device
JP2009038373A (en) * 2007-08-02 2009-02-19 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
US20100066987A1 (en) * 2008-09-17 2010-03-18 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
US7936441B2 (en) 2005-05-12 2011-05-03 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8068209B2 (en) 2007-03-23 2011-11-29 Nikon Corporation Nozzle to help reduce the escape of immersion liquid from an immersion lithography tool
CN102298274A (en) * 2006-05-18 2011-12-28 株式会社尼康 Exposure method and apparatus, maintenance method and device manufacturing method
US8134685B2 (en) 2007-03-23 2012-03-13 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
US8233139B2 (en) 2008-03-27 2012-07-31 Nikon Corporation Immersion system, exposure apparatus, exposing method, and device fabricating method
US8300207B2 (en) 2007-05-17 2012-10-30 Nikon Corporation Exposure apparatus, immersion system, exposing method, and device fabricating method
JP5151977B2 (en) * 2006-05-10 2013-02-27 株式会社ニコン Exposure apparatus and device manufacturing method
EP2653924A3 (en) * 2007-01-23 2014-07-30 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposure method, and device fabricating method
US8928857B2 (en) 2009-05-01 2015-01-06 Asml Netherlands B.V. Lithographic apparatus and method of operating the apparatus
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9013672B2 (en) 2007-05-04 2015-04-21 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
JP2018159959A (en) * 2018-07-11 2018-10-11 株式会社ニコン Liquid immersion member, exposure device and exposure method, and device manufacturing method
TWI644182B (en) * 2008-12-29 2018-12-11 尼康股份有限公司 Exposure apparatus, exposure method, and device manufacturing method

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101330370B1 (en) * 2004-04-19 2013-11-15 가부시키가이샤 니콘 Exposure apparatus and device producing method
US8717533B2 (en) 2004-06-10 2014-05-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
KR20070026603A (en) 2004-06-10 2007-03-08 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device producing method
US20070222959A1 (en) * 2004-06-10 2007-09-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8508713B2 (en) 2004-06-10 2013-08-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP1768170A4 (en) 2004-06-10 2010-06-16 Nikon Corp Exposure equipment, exposure method and device manufacturing method
US8373843B2 (en) 2004-06-10 2013-02-12 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
CN102998910A (en) 2004-08-03 2013-03-27 株式会社尼康 Exposure apparatus, exposure method and device manufacturing method
US7812926B2 (en) * 2005-08-31 2010-10-12 Nikon Corporation Optical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
JP4735186B2 (en) * 2005-10-21 2011-07-27 株式会社ニコン Immersion microscope equipment
JP5453806B2 (en) * 2006-02-16 2014-03-26 株式会社ニコン Exposure apparatus, exposure method, and display manufacturing method
US9632425B2 (en) 2006-12-07 2017-04-25 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
WO2009043790A2 (en) 2007-10-02 2009-04-09 Carl Zeiss Smt Ag Projection objective for microlithography
JP5326259B2 (en) * 2007-11-08 2013-10-30 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
NL1036579A1 (en) * 2008-02-19 2009-08-20 Asml Netherlands Bv Lithographic apparatus and methods.
US8289497B2 (en) * 2008-03-18 2012-10-16 Nikon Corporation Apparatus and methods for recovering fluid in immersion lithography
US8654306B2 (en) * 2008-04-14 2014-02-18 Nikon Corporation Exposure apparatus, cleaning method, and device fabricating method
WO2009143879A1 (en) * 2008-05-28 2009-12-03 Carl Zeiss Smt Ag An element, in particular an optical element, for immersion lithography
US9256137B2 (en) * 2011-08-25 2016-02-09 Nikon Corporation Exposure apparatus, liquid holding method, and device manufacturing method
US9323160B2 (en) * 2012-04-10 2016-04-26 Nikon Corporation Liquid immersion member, exposure apparatus, exposure method, device fabricating method, program, and recording medium
CN105229774B (en) * 2013-10-08 2019-01-11 株式会社尼康 Liquid soaks component, exposure device and exposure method and device making method
WO2019115197A1 (en) * 2017-12-15 2019-06-20 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus, and method of using a fluid handling structure
CN112684665A (en) * 2020-12-25 2021-04-20 浙江启尔机电技术有限公司 Immersion liquid supply and recovery device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD224448A1 (en) 1984-03-01 1985-07-03 Zeiss Jena Veb Carl DEVICE FOR PHOTOLITHOGRAPHIC STRUCTURAL TRANSMISSION
JPH10303114A (en) 1997-04-23 1998-11-13 Nikon Corp Immersion aligner
WO1999049504A1 (en) 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
EP1420303A2 (en) 2002-10-25 2004-05-19 Samsung Electronics Co., Ltd. Organophotoreceptor with charge transport compound having an epoxy group
EP1420302A1 (en) * 2002-11-18 2004-05-19 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2004193252A (en) * 2002-12-10 2004-07-08 Nikon Corp Exposing method and device manufacturing method
WO2004107048A2 (en) 2003-05-30 2004-12-09 Carl Zeiss Smt Ag Microlithographic projection exposure system
EP1510871A2 (en) 2003-08-29 2005-03-02 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2005116571A (en) * 2003-10-02 2005-04-28 Nikon Corp Aligner and method of manufacturing device
JP2005191381A (en) * 2003-12-26 2005-07-14 Canon Inc Exposure method and system thereof
EP1571698A1 (en) 2002-12-10 2005-09-07 Nikon Corporation Exposure apparatus, exposure method and method for manufacturing device
EP1670043A2 (en) 2003-09-29 2006-06-14 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3314219A (en) * 1965-03-10 1967-04-18 Bass Brothers Entpr Inc Drilling mud degassers for oil wells
GB1242527A (en) * 1967-10-20 1971-08-11 Kodak Ltd Optical instruments
US3675395A (en) * 1970-10-09 1972-07-11 Keene Corp Apparatus for the purification of oils and the like
US4315760A (en) * 1980-01-17 1982-02-16 Bij De Leij Jan D Method and apparatus for degasing, during transportation, a confined volume of liquid to be measured
US4509852A (en) * 1980-10-06 1985-04-09 Werner Tabarelli Apparatus for the photolithographic manufacture of integrated circuit elements
US4346164A (en) * 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
US4466253A (en) * 1982-12-23 1984-08-21 General Electric Company Flow control at flash tank of open cycle vapor compression heat pumps
FI73950C (en) * 1985-02-15 1987-12-10 Hackman Ab Oy Method and apparatus for pumping and volume measurement of food liquids
CN85104763B (en) * 1985-06-13 1988-08-24 沈汉石 Method and device for removing gas cells in a hydraulic system
US4730634A (en) * 1986-06-19 1988-03-15 Amoco Corporation Method and apparatus for controlling production of fluids from a well
JP2753930B2 (en) * 1992-11-27 1998-05-20 キヤノン株式会社 Immersion type projection exposure equipment
US5486896A (en) * 1993-02-19 1996-01-23 Nikon Corporation Exposure apparatus
US5425265A (en) * 1993-12-20 1995-06-20 Jaisinghani; Rajan A. Apparatus and method for measuring the capillary pressure distribution of porous materials
US5528118A (en) * 1994-04-01 1996-06-18 Nikon Precision, Inc. Guideless stage with isolated reaction stage
US5874820A (en) * 1995-04-04 1999-02-23 Nikon Corporation Window frame-guided stage mechanism
JP3376690B2 (en) * 1994-04-28 2003-02-10 株式会社ニコン Exposure apparatus and exposure method using the same
US5623853A (en) * 1994-10-19 1997-04-29 Nikon Precision Inc. Precision motion stage with single guide beam and follower stage
JPH08316124A (en) * 1995-05-19 1996-11-29 Hitachi Ltd Method and apparatus for projection exposing
US5825043A (en) * 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
ATE404906T1 (en) * 1996-11-28 2008-08-15 Nikon Corp ALIGNMENT DEVICE AND EXPOSURE METHOD
DE69717975T2 (en) * 1996-12-24 2003-05-28 Asml Netherlands Bv POSITIONER BALANCED IN TWO DIRECTIONS, AND LITHOGRAPHIC DEVICE WITH SUCH A POSITIONER
US6208407B1 (en) * 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
TW490596B (en) * 1999-03-08 2002-06-11 Asm Lithography Bv Lithographic projection apparatus, method of manufacturing a device using the lithographic projection apparatus, device manufactured according to the method and method of calibrating the lithographic projection apparatus
US6716268B2 (en) * 2000-01-17 2004-04-06 Lattice Intellectual Property Ltd. Slugging control
SE517821C2 (en) * 2000-09-29 2002-07-16 Tetra Laval Holdings & Finance Method and apparatus for continuously venting a liquid
JP4635364B2 (en) * 2001-04-03 2011-02-23 株式会社ニコン Exposure apparatus and exposure method
WO2002091078A1 (en) * 2001-05-07 2002-11-14 Massachusetts Institute Of Technology Methods and apparatus employing an index matching medium
CA2445647A1 (en) * 2001-05-25 2002-12-05 P&G-Clairol, Inc. 1,3-dihydroxybenzene derivatives and colorants containing said compounds
TW529172B (en) * 2001-07-24 2003-04-21 Asml Netherlands Bv Imaging apparatus
US6581456B1 (en) * 2002-01-07 2003-06-24 Xerox Corporation Substrate bending stiffness measurement method and system
US6934003B2 (en) * 2002-01-07 2005-08-23 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
JP4211272B2 (en) * 2002-04-12 2009-01-21 株式会社ニコン Exposure apparatus and exposure method
US20040154641A1 (en) * 2002-05-17 2004-08-12 P.C.T. Systems, Inc. Substrate processing apparatus and method
US6788477B2 (en) * 2002-10-22 2004-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for method for immersion lithography
JP3977324B2 (en) * 2002-11-12 2007-09-19 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus
CN101470360B (en) * 2002-11-12 2013-07-24 Asml荷兰有限公司 Immersion lithographic apparatus and device manufacturing method
CN101713932B (en) * 2002-11-12 2012-09-26 Asml荷兰有限公司 Lithographic apparatus and device manufacturing method
SG121822A1 (en) * 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
SG131766A1 (en) * 2002-11-18 2007-05-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
DE10258718A1 (en) * 2002-12-09 2004-06-24 Carl Zeiss Smt Ag Projection lens, in particular for microlithography, and method for tuning a projection lens
KR20130010039A (en) * 2002-12-10 2013-01-24 가부시키가이샤 니콘 Exposure system and device producing method
US6992750B2 (en) * 2002-12-10 2006-01-31 Canon Kabushiki Kaisha Exposure apparatus and method
CN101852993A (en) * 2002-12-10 2010-10-06 株式会社尼康 Exposure method, and manufacturing method of device
US6781670B2 (en) * 2002-12-30 2004-08-24 Intel Corporation Immersion lithography
KR101875296B1 (en) * 2003-02-26 2018-07-05 가부시키가이샤 니콘 Exposure apparatus and method, and method of producing apparatus
KR101497289B1 (en) * 2003-04-10 2015-02-27 가부시키가이샤 니콘 Environmental system including a transport region for an immersion lithography apparatus
JP4582089B2 (en) * 2003-04-11 2010-11-17 株式会社ニコン Liquid jet recovery system for immersion lithography
US7317504B2 (en) * 2004-04-08 2008-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US6809794B1 (en) * 2003-06-27 2004-10-26 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
EP1491956B1 (en) * 2003-06-27 2006-09-06 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP3862678B2 (en) * 2003-06-27 2006-12-27 キヤノン株式会社 Exposure apparatus and device manufacturing method
EP2264531B1 (en) * 2003-07-09 2013-01-16 Nikon Corporation Exposure apparatus and device manufacturing method
US8149381B2 (en) * 2003-08-26 2012-04-03 Nikon Corporation Optical element and exposure apparatus
KR101171809B1 (en) * 2003-08-26 2012-08-13 가부시키가이샤 니콘 Optical element and exposure device
JP4378136B2 (en) * 2003-09-04 2009-12-02 キヤノン株式会社 Exposure apparatus and device manufacturing method
JP4444920B2 (en) * 2003-09-19 2010-03-31 株式会社ニコン Exposure apparatus and device manufacturing method
CN1860585B (en) * 2003-09-29 2010-04-28 株式会社尼康 Liquid immersion type lens system and projection exposure device
US7545481B2 (en) * 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP3376523A1 (en) * 2004-01-05 2018-09-19 Nikon Corporation Exposure apparatus, exposure method, and device producing method
WO2005076084A1 (en) * 2004-02-09 2005-08-18 Carl Zeiss Smt Ag Projection objective for a microlithographic projection exposure apparatus
JP4018647B2 (en) * 2004-02-09 2007-12-05 キヤノン株式会社 Projection exposure apparatus and device manufacturing method
JP4510494B2 (en) * 2004-03-29 2010-07-21 キヤノン株式会社 Exposure equipment
US7271878B2 (en) * 2004-04-22 2007-09-18 International Business Machines Corporation Wafer cell for immersion lithography
US7481867B2 (en) * 2004-06-16 2009-01-27 Edwards Limited Vacuum system for immersion photolithography
US7180572B2 (en) * 2004-06-23 2007-02-20 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion optical projection system
US7701550B2 (en) * 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7379155B2 (en) * 2004-10-18 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7251013B2 (en) * 2004-11-12 2007-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG124351A1 (en) * 2005-01-14 2006-08-30 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP5001534B2 (en) * 2005-06-30 2012-08-15 京セラ株式会社 Piezoelectric actuator and discharge device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD224448A1 (en) 1984-03-01 1985-07-03 Zeiss Jena Veb Carl DEVICE FOR PHOTOLITHOGRAPHIC STRUCTURAL TRANSMISSION
JPH10303114A (en) 1997-04-23 1998-11-13 Nikon Corp Immersion aligner
WO1999049504A1 (en) 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
EP1420303A2 (en) 2002-10-25 2004-05-19 Samsung Electronics Co., Ltd. Organophotoreceptor with charge transport compound having an epoxy group
EP1420302A1 (en) * 2002-11-18 2004-05-19 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1571698A1 (en) 2002-12-10 2005-09-07 Nikon Corporation Exposure apparatus, exposure method and method for manufacturing device
JP2004193252A (en) * 2002-12-10 2004-07-08 Nikon Corp Exposing method and device manufacturing method
WO2004107048A2 (en) 2003-05-30 2004-12-09 Carl Zeiss Smt Ag Microlithographic projection exposure system
JP2005093997A (en) * 2003-08-29 2005-04-07 Asml Netherlands Bv Lithographic apparatus and manufacturing method of device
EP1510871A2 (en) 2003-08-29 2005-03-02 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1670043A2 (en) 2003-09-29 2006-06-14 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JP2005116571A (en) * 2003-10-02 2005-04-28 Nikon Corp Aligner and method of manufacturing device
JP2005191381A (en) * 2003-12-26 2005-07-14 Canon Inc Exposure method and system thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1768169A4

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936441B2 (en) 2005-05-12 2011-05-03 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2006344960A (en) * 2005-06-10 2006-12-21 Internatl Business Mach Corp <Ibm> Immersion lithography device and method (immersion lithography device having uniform pressure, at least on projection optical component and wafer)
JP4545119B2 (en) * 2005-06-28 2010-09-15 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
JP2007013152A (en) * 2005-06-28 2007-01-18 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
JP2009302594A (en) * 2005-06-28 2009-12-24 Asml Netherlands Bv Lithographic apparatus, and device manufacturing method
US8035800B2 (en) 2006-03-13 2011-10-11 Nikon Corporation Exposure apparatus, maintenance method, exposure method, and method for producing device
JP2007281441A (en) * 2006-03-13 2007-10-25 Nikon Corp Exposure apparatus, maintenance method, exposure method, and method of manufacturing device
JP5151977B2 (en) * 2006-05-10 2013-02-27 株式会社ニコン Exposure apparatus and device manufacturing method
US8477283B2 (en) 2006-05-10 2013-07-02 Nikon Corporation Exposure apparatus and device manufacturing method
CN102298274A (en) * 2006-05-18 2011-12-28 株式会社尼康 Exposure method and apparatus, maintenance method and device manufacturing method
EP3407137A1 (en) * 2007-01-23 2018-11-28 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
US8891059B2 (en) 2007-01-23 2014-11-18 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
EP2653924A3 (en) * 2007-01-23 2014-07-30 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposure method, and device fabricating method
US8068209B2 (en) 2007-03-23 2011-11-29 Nikon Corporation Nozzle to help reduce the escape of immersion liquid from an immersion lithography tool
US8134685B2 (en) 2007-03-23 2012-03-13 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
US9013675B2 (en) 2007-03-23 2015-04-21 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9013672B2 (en) 2007-05-04 2015-04-21 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US8300207B2 (en) 2007-05-17 2012-10-30 Nikon Corporation Exposure apparatus, immersion system, exposing method, and device fabricating method
US8462314B2 (en) 2007-08-02 2013-06-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2009038373A (en) * 2007-08-02 2009-02-19 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
JP2012142625A (en) * 2007-08-02 2012-07-26 Asml Netherlands Bv Barrier member and lithographic apparatus
US8233139B2 (en) 2008-03-27 2012-07-31 Nikon Corporation Immersion system, exposure apparatus, exposing method, and device fabricating method
US10151984B2 (en) 2008-09-17 2018-12-11 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
US9176371B2 (en) * 2008-09-17 2015-11-03 Asml Netherlands B.V. Immersion lithographic apparatus with a barrier between a projection system and a liquid confinement structure
US20100066987A1 (en) * 2008-09-17 2010-03-18 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
US10429741B2 (en) 2008-09-17 2019-10-01 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
TWI644182B (en) * 2008-12-29 2018-12-11 尼康股份有限公司 Exposure apparatus, exposure method, and device manufacturing method
TWI709002B (en) * 2008-12-29 2020-11-01 日商尼康股份有限公司 Exposure apparatus and device manufacturing method
US9709901B2 (en) 2009-05-01 2017-07-18 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
US10146139B2 (en) 2009-05-01 2018-12-04 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
US8928857B2 (en) 2009-05-01 2015-01-06 Asml Netherlands B.V. Lithographic apparatus and method of operating the apparatus
JP2018159959A (en) * 2018-07-11 2018-10-11 株式会社ニコン Liquid immersion member, exposure device and exposure method, and device manufacturing method

Also Published As

Publication number Publication date
CN1954408B (en) 2012-07-04
IL179826A0 (en) 2007-05-15
US20070216889A1 (en) 2007-09-20
JP2010118714A (en) 2010-05-27
CN1954408A (en) 2007-04-25
EP1768169A1 (en) 2007-03-28
EP1768169A4 (en) 2008-11-05
EP1768169B1 (en) 2012-10-24
US20070222958A1 (en) 2007-09-27
KR20070016134A (en) 2007-02-07
EP1768169B9 (en) 2013-03-06
TW200604758A (en) 2006-02-01
KR101264936B1 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
WO2005119742A1 (en) Exposure apparatus, exposure method, and device producing method
JP6308316B2 (en) Exposure apparatus, device manufacturing method, and exposure method
JP4655763B2 (en) Exposure apparatus, exposure method, and device manufacturing method
TWI508136B (en) Exposure apparatus, exposure method, and device manufacturing method
JP4555903B2 (en) Exposure apparatus and device manufacturing method
JP4720747B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP5287948B2 (en) Exposure apparatus and device manufacturing method
WO2004053953A1 (en) Exposure apparatus and method for manufacturing device
JP4513747B2 (en) Exposure apparatus and device manufacturing method
US20070103661A1 (en) Exposure apparatus, exposure method, and method for producing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067022069

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580015921.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11628482

Country of ref document: US

Ref document number: 2007216889

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 179826

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005745697

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3775/KOLNP/2006

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 1020067022069

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005745697

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11628482

Country of ref document: US