WO2005118476A1 - Zeolita itq-30 - Google Patents

Zeolita itq-30 Download PDF

Info

Publication number
WO2005118476A1
WO2005118476A1 PCT/ES2005/070072 ES2005070072W WO2005118476A1 WO 2005118476 A1 WO2005118476 A1 WO 2005118476A1 ES 2005070072 W ES2005070072 W ES 2005070072W WO 2005118476 A1 WO2005118476 A1 WO 2005118476A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystalline material
crystalline
microporous
itq
zero
Prior art date
Application number
PCT/ES2005/070072
Other languages
English (en)
French (fr)
Inventor
Avelino Corma Canos
María José DÍAZ CABAÑAS
Original Assignee
Consejo Superior De Investigaciones Científicas
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Universidad Politecnica De Valencia filed Critical Consejo Superior De Investigaciones Científicas
Priority to JP2007513974A priority Critical patent/JP2008500936A/ja
Priority to AT05774429T priority patent/ATE464272T1/de
Priority to DE602005020629T priority patent/DE602005020629D1/de
Priority to US11/597,808 priority patent/US8115001B2/en
Priority to EP05774429A priority patent/EP1770064B1/en
Publication of WO2005118476A1 publication Critical patent/WO2005118476A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/08Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1088Olefins
    • C10G2300/1092C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1096Aromatics or polyaromatics
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics

Definitions

  • T generally represents atoms with a formal oxidation state +3 or +4, such as Si, Ge, Ti, Al, B, Ga, ... If any of the T atoms has an oxidation state less than +4, the crystalline network formed has negative charges that are compensated by the presence in the channels or cavities of organic or inorganic cations.
  • organic molecules and H2O can also be accommodated, so that, in general, the chemical composition of the zeolites can be represented by the following empirical formula: x (M 1 n X0 2 ): y Y0 2 : z R : w H 2 0
  • M is one or more organic or inorganic charge cations + n;
  • X is one or more trivalent elements; And it is one or several tetravalent elements, generally Si; and R is one or more organic compounds.
  • post-synthesis treatments can vary the nature of M, X, Y and R and the values of x, y, z, yw, the chemical composition of a zeolite (as synthesized or after calcination) has a range characteristic of each zeolite and its method of obtaining.
  • the crystalline structure of each zeolite, with a specific channel and cavity system results in a characteristic X-ray diffraction pattern.
  • the zeolites differ from each other by their chemical composition range plus their X-ray diffraction pattern. Both characteristics (crystalline structure and chemical composition) also determine the physicochemical properties of each zeolite and its possible application in different industrial processes.
  • a material called PSH-3 and its method of synthesis using hexamethyleneimine is described as the structure directing agent. Subsequently, other materials have been described with certain similarities also obtained with hexamethyleneimine, such as MCM-22 (US-4954325), MCM-49 (US-5236575) and MCM-56 (US-5362697).
  • the present invention relates to a microporous, laminar, zeolitic crystalline material characterized in that it has an X-ray diffraction pattern in accordance with Table I Table I d ( ⁇ ) ( ⁇ 0.3) I / Io ( % ) 14.17 MF 12.13 M 10.63 M 4.65 M 3.98 F 3.42 MF as it is synthesized and because it has a chemical composition, in the anhydrous state, that meets the following molar relationships: x (M 1 / n X0 2 ): y Y0 2 : Si0 2 : z R
  • - x represents a value less than 0.1, can be equal to zero
  • - z has a value between zero and 0.1; - M is selected from H + , NH 4+ , one or more inorganic loading cations + n, and combinations thereof,
  • - X is one or more chemical elements of oxidation state +3,
  • - R is one or more organic compounds.
  • X is one or more elements selected from Al, Ga, B, Fe and Cr.
  • Y is one or more elements selected from Si, Sn, Ti, Ge and V.
  • x has a lower value to 0.056, being able to be equal to zero;
  • the X-ray diffraction pattern of ITQ-30 as synthesized obtained by the powder method using a fixed divergence slit is characterized by inter-planar spacing values (d) and relative intensities (I / lo) of the reflections plus intense, shown in table I above.
  • - x represents a value less than 0.1, preferably less than 0.056, and can be equal to zero;
  • - M is H + , NH 4+ , or one or more inorganic charge cations + n;
  • - X is one or more chemical elements of oxidation state +3, and
  • X is one or more elements selected from Al, Ga, B, Fe and Cr.
  • Y is one or more elements selected from Si, Sn, Ge, Ti and V.
  • Table II shows the values of inter-planar spacings (d) and relative intensities (I / I or ) of the most intense reflections of the X-ray powder diffractogram of the same ITQ-30 sample that presented the diffractogram of Table I, after being calcined at 580 ° C to remove the organic compounds occluded inside the zeolite.
  • the microporous, laminar, zeolitic crystalline material has an X-ray diffraction pattern in accordance with Table I Table I d (A) ( ⁇ 0. 3) I / Io ( % ) 14.17 MF 12.13 M 10.63 M 4.65 M 3.98 F 3.42 MF 3.32 M
  • - x has a value less than 0.056, and can be equal to zero; - and has a value less than 0.05, being able to be equal to zero;
  • - M is selected from H + , NH 4+ , one or more inorganic charge cations + n; and combinations thereof,
  • - X is one or more chemical elements of oxidation state +3, and
  • the crystalline material has A composition that corresponds to the formula: x (M ⁇ n X0 2 ): Si0 2 where
  • - x has a value of less than 0.1, and can be equal to zero;
  • - M is selected from H + , NH 4+ , one or more inorganic charge cations + n; and combinations thereof, and
  • the ITQ-30 crystalline material has a chemical composition in the calcined and anhydrous state that can be represented by the following empirical formula and Y0 2 : Si0 2 where:
  • y has a value of less than 0.05, and can be equal to zero.
  • the microporous crystalline material has a chemical composition in the calcined and anhydrous state that can be represented by the empirical formula x (HX0 2 ): Si0 2 in which - X is one or more trivalent elements and
  • the crystalline material has a value of less than 0.1, preferably less than 0.056, and can be equal to zero.
  • the crystalline material has a chemical composition in the state calcined and anhydrous that can be represented by the empirical formula YES2. It is possible, however, depending on the method of synthesis and its calcination or subsequent treatments, the existence of defects in the crystalline network, which are manifested by the presence of Si-OH groups (silanoles). These defects have not been included in the empirical formulas above.
  • Said heat treatment of the reaction mixture can be carried out in static or with stirring of the mixture. Once the crystallization is finished, the solid product is separated and dried. The subsequent calcination at temperatures between 400 and 650 ° C, preferably between 450 and 600 ° C, It causes the decomposition of the organic residues occluded in the zeolite and their exit, leaving the zeolitic channels free.
  • the source of SIO2 may be by way of example, tetraethylorthosilicate, colloidal silica, amorphous silica, or mixtures.
  • fluoride ions for example, fluorhydric acid or ammonium fluoride can be used.
  • the ITQ-30 synthesis method comprises: - preparing a reaction mixture comprising at least: - a source of SIO2, - a source of one or more tetravalent elements Y, - an organic compound, R, - a source of fluoride ions and - water, and - subjecting said mixture to heating with or without stirring at a temperature between 80 and 200 ° C, until its crystallization is achieved, and the reaction mixture has a composition, in terms of molar ratios of oxides , between the intervals:
  • YO2 / YES2 0-0.1, preferably 0-0.05, and more preferably 0-0.02,
  • ROH / YES2 0.01-1.0, preferably 0.1-1.0
  • Said tetravalent elements Y are preferably selected from Ti, Ge, V, Sn, and mixtures thereof. The addition of this, or these elements, can be done prior to heating the reaction mixture or at an intermediate time during said heating.
  • the method of synthesizing the zeolitic crystalline material comprises: preparing a reaction mixture comprising at least: - a source of SIO2, a source of one or more trivalent elements X, - an organic compound, R, - a source of fluoride and - water ions, and subjecting said mixture to heating with or without stirring at a temperature between 80 and 200 ° C, until its crystallization is achieved, and the reaction mixture has a composition, in terms of molar ratios of oxides , between intervals
  • the trivalent elements are preferably selected from Al, Ga, B, Fe and Cr.
  • aluminum source for example, aluminum alkoxides, aluminum oxides, or aluminum salts, among others, can be used. The addition of this, or these elements, can be done prior to heating the reaction mixture or at an intermediate time during said heating.
  • the trivalent elements are preferably selected from Al, Ga, B, Fe and Cr.
  • an aluminum source for example, aluminum alkoxides, aluminum oxides, or aluminum salts, among others, can be used. The addition of this, or these elements, can be done prior to heating the reaction mixture or at an intermediate time during said heating.
  • the organic cation R is N (16) -methyl-sparteinium.
  • the organic cation, or organic cations are added in a form selected from hydroxide form, salt form, and mixture of both.
  • halides preferably chloride or bromide
  • said organic cation, N (16) -methyl-sparteinium is added in the form of hydroxide, or in the form of a mixture of hydroxide and another salt, said salt being preferably a halide.
  • an amount of crystalline material is added to the reaction mixture as a crystallization promoter, said amount being between 0.01 to 15% by weight with respect to the total inorganic oxides added, preferably between 0.01 and 5% by weight with respect to the total inorganic oxides added.
  • said crystalline material added as a crystallization promoter is a crystalline material that possesses the characteristics of the crystalline, microporous, laminar ITQ-30 material of the present invention.
  • the composition of the reaction mixture responds to the general empirical formula at ROH: b M 1 n F: x X 2 0 3 : y Y0 2 : Si0 2 : w H 2 0
  • M is H + , NH4 + or one or more inorganic charge cations + n;
  • X is one or more trivalent elements, preferably Al, B, Ga, Cr, Fe, or mixtures thereof;
  • Y is one or several tetravalent elements, preferably Ti, Ge, Sn, V, or mixtures thereof;
  • the present invention also relates to a method of using the ITQ-30 zeolite as a catalytically active component in a process of conversion of organic compounds, which comprises contacting a feed with an amount of said microporous crystalline material.
  • said process is catalytic cracking of organic compounds, preferably hydrocarbons.
  • said process is selected from hydrocracking, gentle hydrocracking, isomerization of light paraffins, dewaxing, isodeparaffinization and alkylation.
  • said alkylation process is an alkylation with olefins or alcohols, of compounds selected from aromatic compounds, substituted aromatic compounds, thiophene, alkylthiophene, benzothiophene and alkylbenzothiophene compounds.
  • Particularly preferred said alkylation is a process of alkylation of benzene with propylene.
  • said process is selected from an acylation process of substituted aromatic compounds using acids, acid chlorides or anhydrides of organic acids as acylating agents.
  • said process is a Meerwein-Pondorf-Verley reaction.
  • said process is a selective oxidation of organic compounds using an oxidizing agent selected from H2O2, peroxides and organic hydroperoxides.
  • said process is an oxidation of the Baeyer-Villiger type.
  • said ITQ-30 crystalline material contains Ti, and the process is selected from epoxidation of olefins, oxidation of alkanes, oxidation of alcohols and oxidation of organic compounds containing sulfur and which can produce sulfoxides and sulfones, using hydroperoxide organic or inorganic, as oxidizing agents.
  • Said organic or inorganic hydroperoxides can be, for example, H2O2, tertbutylhydroperoxide or eumene hydroperoxide.
  • said crystalline material contains Ti, and the process is an amoximation of ketones, and more specifically from cyclohexanone to cyclohexanone oxime, with NH 3 and H2O.
  • said crystalline material contains Sn, and the process is an oxidation of Baeyer-Villiger using H2O2 as an oxidizing agent.
  • EXAMPLE 1 Preparation of N (16) -methylparteinium hydroxide. 20.25 g of (-) -spartein are mixed with 100 ml of acetone. On this mixture 17.58 g of methyl iodide is added dropwise, while stirring the mixture. After 24 hours a cream precipitate appears. 200 ml of diethyl ether are added to the reaction mixture, It is filtered and the solid obtained is dried under vacuum. The product is N (16) -methylparteinium iodide with a yield greater than 95%.
  • EXAMPLE 2 0.272 grams of aluminum isopropoxide and 4,167 grams of tetraethylorthosilicate are hydrolyzed in 11.00 grams of N (16) -methylsparteinium hydroxide solution with a concentration of 0.91 moles / Kg. The solution obtained is kept under stirring, allowing all the alcohol formed in the hydrolysis and the remaining water to evaporate. Subsequently, 0.416 g of a solution of hydrofluoric acid (48.1% HF by weight) is added and it is evaporated until the reaction mixture reaches a final composition: Si0 2 : 0.033 A1 2 0 3 : 0.50 ROH: 0.50 HF: 2 H 2 0
  • Table IV theta (°) ( ⁇ 0.3) D (A) ( ⁇ 0.3) I / Io (%) 7.25 12.19 ⁇ 00 9.01 9.81 38 12.98 6.82 11 14.45 6.13 43 15.97 5.55 10 20.20 4.40 15 21.76 4.08 21 22.11 4.02 28 22.69 3.92 40 23.69 3.76 20 25.15 3.54 25 26.14 3.41 80 27.04 3.30 24 28.24 3.16 12 31.76 2.82 5 33.57 2.67 6 34.99 2.56 3
  • ROH is N (16) -methylparteinium hydroxide.
  • the gel is heated at 175 ° C in static for 5 days in steel autoclaves with an internal Teflon sheath.
  • the solid obtained after filtering, washing with distilled water and drying at 100 ° C is ITQ-30.
  • ROH is N (16) -methylparteinium hydroxide.
  • the gel is heated for 5 days in steel autoclaves with an internal Teflon sheath at 175 ° C in static.
  • the solid obtained after filtering, washing with distilled water and drying at 100 ° C is ITQ-30.

Abstract

La presente invenciónse refiere a un material cristalino microporoso, laminar, de naturaleza zeolitica, denomidado ITQ-30 que tal como se sintetiza tiene una composición quimica, en el estado anhidro, que cumple las siguientes relaciones molares : x (M1/nXO2) : y YO2 : SiO2 : z R donde: 'x' representa un valor inferior a 0.1, puede ser igual a cero, 'y' tiene un valor menor de 0.1, puede ser igual a cero, 'z' tiene un valor menor de 0.1; 'M' está seleccionado entre H+, NH4+, uno o varios cationes inorgánicos de carga +n, y combinaciones de los mismos, - X es uno o varios elementos quimicos de estado de oxidación +3, 'Y' es uno o varios elementos quimicos con estado de oxidación +4, y 'R' es uno o más compuestos orgánicos; a su procedimiento de preparación, en el que se usan uno o varios aditivos orgánicos en una mezcla de reacción que se hace cristalizar mediante calentamiento, y a su utilización en procesos de separación y transformación de compuestos orgánicos .

Description

TITULO ZEOLITA ITQ-30
Campo de la Técnica Materiales microporosos .
Antecedentes Las zeolitas son materiales cristalinos microporosos formados por una red cristalina de tetraedros T04 que comparten todos sus vértices dando lugar a una estructura tridimensional que contiene canales y/o cavidades de dimensiones moleculares. Son de composición variable, y T representa generalmente átomos con estado de oxidación formal +3 o +4, como por ejemplo Si, Ge, Ti, Al, B, Ga, ... Si alguno de los átomos T tiene un estado de oxidación inferior a +4, la red cristalina formada presenta cargas negativas que se compensan mediante la presencia en los canales o cavidades, de cationes orgánicos o inorgánicos. En dichos canales y cavidades pueden alojarse también moléculas orgánicas y H2O, por lo que, de manera general, la composición quimica de las zeolitas puede representarse mediante la siguiente fórmula empirica: x (M1 nX02) : y Y02 : z R : w H20
donde M es uno o varios cationes orgánicos o inorgánicos de carga +n; X es uno o varios elementos trivalentes; Y es uno o varios elementos tetravalentes, generalmente Si; y R es uno o más compuestos orgánicos . Aunque mediante tratamientos postsintesis se pueden variar la naturaleza de M, X, Y y R y los valores de x, y, z, y w, la composición quimica de una zeolita (tal y como se sintetiza o después de su calcinación) posee un rango caracteristico de cada zeolita y de su método de obtención. Por otro lado, la estructura cristalina de cada zeolita, con un sistema de canales y cavidades especifico, da lugar a un patrón de difracción de rayos X caracteristico . Por tanto, las zeolitas se diferencian entre si por su rango de composición quimica más su patrón de difracción de rayos X. Ambas caracteristicas (estructura cristalina y composición quimica) determinan además las propiedades fisicoquimicas de cada zeolita y su posible aplicación en diferentes procesos industriales. En la patente US-4439409 se describe un material denominado PSH-3 y su método de sintesis empleando hexametilenimina como agente director de estructura. Posteriormente, se han descrito otros materiales con ciertas similitudes obtenidos también con hexametilenimina, como son MCM-22 (US-4954325) , MCM-49 (US-5236575) y MCM-56 (US-5362697) .
Descripción de la invención La presente invención se refiere a un material cristalino microporoso, laminar, de naturaleza zeolitica caracterizado porque tiene un patrón de difracción de rayos X concordante con la Tabla I Tabla I d(Á) (± 0.3) I/Io(%) 14.17 MF 12.13 M 10.63 M 4.65 M 3.98 F 3.42 MF tal como se sintetiza y porque tiene una composición quimica, en el estado anhidro, que cumple las siguientes relaciones molares : x (M1/nX02) : y Y02 : Si02 : z R
donde :
- x representa un valor inferior a 0.1, puede ser igual a cero
- y tiene un valor menor de 0.1, puede ser igual a cero
- z tiene un valor comprendido entre cero y 0.1; - M está seleccionado entre H+, NH4+, uno o varios cationes inorgánicos de carga +n, y combinaciones de los mismos,
- X es uno o varios elementos quimicos de estado de oxidación +3,
- Y es uno o varios elementos quimicos con estado de oxidación +4, y
- R es uno o más compuestos orgánicos . De manera preferente X es uno o más elementos seleccionados entre Al, Ga, B, Fe y Cr. De manera preferente Y es uno o más elementos seleccionados entre Si, Sn, Ti, Ge y V. De manera preferida x posee un valor inferior a 0.056, pudiendo ser igual a cero; El patrón de difracción de rayos X de ITQ-30 tal y como se sintetiza obtenido por el método de polvo utilizando una rendija de divergencia fija se caracteriza por valores de espaciados interplanares (d) e intensidades relativas (I/lo) de las reflexiones más intensas, mostrados en la tabla I anterior. En dicha tabla las intensidades relativas se refieren según los simbolos a: MF = muy fuerte (60 - 100), F = fuerte (40 -60), M = media (20-40) y D = débil (0 - 20) . Las posiciones, anchuras e intensidades relativas de los picos dependen en cierta medida de la composición quimica del material. Además el material calcinado tiene un patrón de difracción de rayos X concordante con el establecido en la Tabla II
Tabla II d(Á) (± 0.3) I/Io(%) 12 . 19 MF 9 . 81 F 6 . 13 F 4 . 02 M 3 . 92 F 3 . 54 M 3 . 41 MF 3 . 30 M
y una composición quimica en el estado calcinado y anhidro que puede representarse por la siguiente fórmula empirica: x (M1/nX02) : y Y02 : Si02 donde :
- x representa un valor inferior a 0.1, preferentemente inferior a 0.056, pudiendo ser igual a cero;
- y tiene un valor menor de 0.1, preferentemente menor de 0.05 y más preferentemente menor de 0.02, pudiendo ser igual a cero;
- M es H+, NH4+, o uno o varios cationes inorgánicos de carga +n;
- X es uno o varios elementos quimicos de estado de oxidación +3, e
- Y es uno o varios elementos quimicos con estado de oxidación +4. De manera preferente X es uno o más elementos seleccionados entre Al, Ga, B, Fe y Cr. De manera preferente Y es uno o más elementos seleccionados entre Si, Sn, Ge, Ti y V. En la Tabla II se presentan los valores de espaciados interplanares (d) e intensidades relativas (I/Io) de las reflexiones más intensas del difractograma de rayos X de polvo de la misma muestra de ITQ-30 que presentó el difractograma de la tabla I, tras ser calcinada a 580°C para eliminar los compuestos orgánicos ocluidos en el interior de la zeolita. Según una realización preferida de la presente invención el material cristalino microporoso, laminar, de naturaleza zeolitica tiene un patrón de difracción de rayos X concordante con la Tabla I Tabla I d(A) (± 0. 3) I/Io(%) 14.17 MF 12.13 M 10.63 M 4.65 M 3.98 F 3.42 MF 3.32 M
tal como se sintetiza, tiene un patrón de difracción de rayos X concordante con el establecido en la Tabla II Tabla II d(Á) (± 0.3) I/Io(%) 12.19 MF 9.81 F 6.13 F 4.02 M 3.92 F 3.54 M 3.41 MF 3.30 M
para el material calcinado, y tiene una composición quimica en el estado calcinado y anhidro que puede representarse por la fórmula empirica: x (M1/nX02) : y Y02 : Si02 donde :
- x posee un valor inferior a 0.056, pudiendo ser igual a cero; - y tiene un valor menor de 0.05, pudiendo ser igual a cero;
- M está seleccionado entre H+, NH4+, uno o varios cationes inorgánicos de carga +n; y combinaciones de los mismos,
- X es uno o varios elementos quimicos de estado de oxidación +3, e
- Y es uno o varios elementos quimicos con estado de oxidación +4. De manera preferente X es uno o más elementos seleccionados entre Al, Ga, B, Fe y Cr. De manera preferente Y es uno o más elementos seleccionados entre Si, Sn, Ge, Ti y V Según una realización preferida adicional el material cristalino tiene una composición que corresponde a la fórmula: x (Mι nX02 ) : Si02 donde
- x posee un valor inferior a 0.1, pudiendo ser igual a cero; - M está seleccionado entre H+, NH4+, uno o varios cationes inorgánicos de carga +n; y combinaciones de los mismos, y
- X es uno o varios elementos quimicos de estado de oxidación +3. De manera preferida X está seleccionado entre Al, Ga, B, Cr, Fe y combinaciones de ellos. Según una realización preferida adicional el material cristalino ITQ-30 posee una composición quimica en el estado calcinado y anhidro que puede representarse por la siguiente fórmula empirica y Y02 : Si02 donde :
- y tiene un valor menor de 0.1, pudiendo ser igual a cero; e
- Y es uno o varios elementos quimicos con estado de oxidación +4. De manera preferida "y" tiene un valor menor de 0.05, pudiendo ser igual a cero.
Según una realización preferida adicional el material cristalino microporoso presenta una composición quimica en el estado calcinado y anhidro que puede representarse por la fórmula empirica x (HX02) : Si02 en la cual - X es uno o más elementos trivalentes y
- x posee un valor inferior a 0.1, preferentemente menor de 0.056, pudiendo ser igual a cero. Según una realización preferida adicional el material cristalino posee una composición quimica en el estado calcinado y anhidro que puede representarse por la fórmula empirica SÍO2. Es posible, sin embargo, en función del método de sintesis y de su calcinación o tratamientos posteriores, la existencia de defectos en la red cristalina, que se manifiestan por la presencia de grupos Si-OH (silanoles) . Estos defectos no han sido incluidos en las fórmulas empiricas anteriores . La presente invención se refiere también a un método para sintetizar el material cristalino microposoro, laminar, zeolitico, denomidado ITQ-30, que comprende: - preparar una mezcla de reacción que comprende al menos : - una fuente de SÍO2, - un compuesto orgánico, R, - una fuente de iones fluoruro y - agua, y someter dicha mezcla a calentamiento con o sin agitación a temperatura entre 80 y 200°C, hasta conseguir su cristalización, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos ROH/SÍO2 = 0.01-1.0, preferiblemente 0.1-1.0,
Figure imgf000009_0001
El tratamiento térmico se realiza a temperatura entre 80 y 200°C, preferentemente entre 130 y 200°C. Dicho tratamiento térmico de la mezcla de reacción puede realizarse en estático o con agitación de la mezcla. Una vez finalizada la cristalización se separa el producto sólido y se seca. La calcinación posterior a temperaturas entre 400 y 650°C, preferiblemente entre 450 y 600°C, produce la descomposición de los restos orgánicos ocluidos en la zeolita y la salida de éstos, dejando libres los canales zeoliticos . La fuente de SÍO2 puede ser a modo de ejemplo, tetraetilortosilicato, silice coloidal, silice amorfa, o mezclas . Como fuente de iones fluoruro se puede usar, por ejemplo, acido fluorhidrico o fluoruro amónico. Según una realización particular el método de sintesis de ITQ-30 comprende: - preparar una mezcla de reacción que comprende al menos : - una fuente de SÍO2, - una fuente de uno o varios elementos tetravalentes Y, - un compuesto orgánico, R, - una fuente de iones fluoruro y - agua, y - someter dicha mezcla a calentamiento con o sin agitación a temperatura entre 80 y 200°C, hasta conseguir su cristalización, y la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos:
YO2/SÍO2 = 0-0.1, preferiblemente 0-0.05, y más preferentemente 0-0.02,
ROH/SÍO2 = 0.01-1.0, preferiblemente 0.1-1.0,
Figure imgf000010_0001
Dichos elementos tetravalentes Y son seleccionados preferentemente entre Ti, Ge, V, Sn, y mezclas de ellos. La adición de este, o estos elementos, puede realizarse anteriormente al calentamiento de la mezcla de reacción o en un tiempo intermedio durante dicho calentamiento. Según una realización particular adicional el método para sintetizar el material cristalino zeolitico, comprende : - preparar una mezcla de reacción que comprende al menos : - una fuente de SÍO2, una fuente de uno o varios elementos trivalentes X, - un compuesto orgánico, R, - una fuente de iones fluoruro y - agua, y someter dicha mezcla a calentamiento con o sin agitación a temperatura entre 80 y 200°C, hasta conseguir su cristalización, y la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos
X2O3/SÍO2 = 0-0.05, preferiblemente 0-0.028, ROH/SÍO2 = 0.01-1.0, preferiblemente 0.1-1.0,
Figure imgf000011_0001
Los elementos trivalentes están preferentemente seleccionados entre Al, Ga, B, Fe y Cr. Como fuente de aluminio se pueden usar, por ejemplo, alcóxidos de aluminio, óxidos de aluminio, o sales de aluminio, entre otros. La adición de este, o estos elementos, puede realizarse anteriormente al calentamiento de la mezcla de reacción o en un tiempo intermedio durante dicho calentamiento . Según una realización particular adicional el método para sintetizar el material cristalino zeolitico comprende: - preparar una mezcla de reacción que comprende al menos : - una fuente de SÍO2, una fuente de uno varios elementos tetravalentes Y, una fuente de uno varios elementos trivalentes X, - un compuesto orgánico, R, - una fuente de iones fluoruro y - agua, y someter dicha mezcla a calentamiento con o sin agitación a temperatura entre 80 y 200°C, hasta conseguir su cristalización, y la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos Y02/Si02 = 0-0.1, preferiblemente 0-0.05, y más preferentemente 0-0.02,
X2O3/SÍO2 = 0-0.05, preferiblemente 0-0.028, ROH/SÍO2 = 0.01-1.0, preferiblemente 0.1-1.0,
Figure imgf000012_0001
Dichos elementos tetravalentes Y son seleccionados preferentemente entre Ti, Ge, V, Sn, y mezclas de ellos. Los elementos trivalentes están preferentemente seleccionados entre Al, Ga, B, Fe y Cr. Como fuente de aluminio se pueden usar, por ejemplo, alcoxidos de aluminio, óxidos de aluminio, o sales de aluminio, entre otros. La adición de este, o estos elementos, puede realizarse anteriormente al calentamiento de la mezcla de reacción o en un tiempo intermedio durante dicho calentamiento . De manera preferida en el método de sintesis de ITQ-30 definido anteriormente, y para cualquiera de sus realizaciones, el catión orgánico R es N (16) -metil- esparteinio . De manera preferida en el método de sintesis de ITQ-30 definido anteriormente, el catión orgánico, o cationes orgánicos, se adicionan en una forma seleccionada entre forma de hidróxido, forma de sal, y mezcla de ambas. Cuando se utiliza el catión orgánico en forma de sal, son preferidas, por ejemplo, los haluros, preferiblemente cloruro o bromuro. De manera preferida dicho catión orgánico, N (16) -metil- esparteinio, se añade en forma de hidróxido, o en forma de una mezcla de hidróxido y otra sal, siendo dicha sal preferentemente un haluro . Según una realización particular del método de sintesis del material cristalino ITQ-30, a la mezcla de reacción se le añade una cantidad de material cristalino como promotor de la cristalización, estando dicha cantidad comprendida entre 0.01 a 15% en peso con respecto al total de óxidos inorgánicos añadidos, preferentemente comprendida entre 0.01 y 5% en peso con respecto al total de óxidos inorgánicos añadidos . Además de manera preferida dicho material cristalino añadido como promotor de cristalización es un material cristalino que posee las caracteristicas del material ITQ-30 cristalino, microporoso, laminar, de la presente invención. Según una realización particular, la composición de la mezcla de reacción responde a la fórmula empirica general a ROH : b M1 nF : x X203 : y Y02 : Si02 : w H20
donde M es H+, NH4+ o uno o varios cationes inorgánicos de carga +n; X es uno o varios elementos trivalentes, preferiblemente Al, B, Ga, Cr, Fe, o mezclas de ellos; Y es uno o varios elementos tetravalentes, preferentemente Ti, Ge, Sn, V, o mezclas de ellos; R es uno o más cationes orgánicos, preferiblemente N (16) -metil-esparteinio; y los valores de a, b, x, y, y w están en los intervalos: a = R0H/Si02 = 0.01-1.0, preferiblemente 0.1-1.0, b = M1 nF/Si02 = 0-1.0, preferiblemente 0.1-1.0, x = X2O3/SÍO2 = 0-0.05, preferiblemente 0-0.028, y = YO2/SÍO2 = 0-0.1, preferiblemente 0-0.05, y más preferentemente 0-0.02, w= H2O/SÍO2 = 0-100, preferiblemente 1-50, más preferiblemente 1-15.
La presente invención se refiere también a un método de uso de la zeolita ITQ-30 como componente cataliticamente activo en un proceso de conversión de compuestos orgánicos, que comprende poner en contacto una alimentación con una cantidad de dicho material cristalino, microporoso. Según una realización particular dicho proceso es craqueo catalitico de compuestos orgánicos, preferiblemente hidrocarburos . Según una realización particular adicional dicho proceso está seleccionado entre hidrocraqueo, hidrocraqueo suave, isomerización de parafinas ligeras, desparafinado, isodesparafinado y alquilación. Según una realización particular adicional dicho proceso de alquilación es una alquilación con olefinas o alcoholes, de compuestos seleccionados entre compuestos aromáticos, compuestos aromáticos sustituidos, compuestos tiofénicos, alquiltiofénicos, benzotiofénicos y alquilbenzotiofenicos . De manera particularmente preferida dicha alquilación es un proceso de alquilación de benceno con propileno. Según una realización particular adicional dicho proceso está seleccionado entre un proceso de acilación de compuestos aromáticos sustituidos utilizando ácidos, cloruros de ácido o anhidridos de ácidos orgánicos como agentes acilantes . Según una realización particular adicional dicho proceso es una reacción de Meerwein-Pondorf-Verley . Según una realización particular adicional dicho proceso es una oxidación selectiva de compuestos orgánicos usando un agente oxidante seleccionado entre H2O2, peróxidos e hidroperóxidos orgánicos . Según una realización particular adicional dicho proceso es una oxidación del tipo Baeyer-Villiger . Según una realización particular adicional dicho material cristalino ITQ-30, contiene Ti, y el proceso está seleccionado entre epoxidación de olefinas, oxidación de alcanos, oxidación de alcoholes y oxidación de compuestos orgánicos que contengan azufre y que puedan producir sulfóxidos y sulfonas, utilizando hidroperóxido orgánicos o inorgánicos, como agentes oxidantes. Dichos hidroperóxidos orgánicos o inorgánicos, pueden ser, por ejemplo H2O2, tertbutilhidroperóxido o hidroperóxido de eumeno. Según una realización particular adicional dicho material cristalino contiene Ti, y el proceso es una amoximación de cetonas, y más especificamente de ciclohexanona a ciclohexanona oxima, con NH3 y H2O. Según una realización particular adicional dicho material cristalino contiene Sn, y el proceso es una oxidación de Baeyer-Villiger utilizando H2O2 como agente oxidante.
EJEMPLOS
EJEMPLO 1 : Preparación de hidróxido de N(16)- metilesparteinio . 20.25 g de (-) -esparteina se mezclan con 100 mi de acetona. Sobre esta mezcla se va añadiendo 17.58 g de yoduro de metilo, gota a gota, mientras se agita la mezcla. Después de 24 horas aparece un precipitado de color crema. Se añaden 200 mi de éter dietilico a la mezcla de reacción, se filtra y el sólido obtenido se seca a vacio. El producto es yoduro de N (16) -metilesparteinio con un rendimiento superior al 95 % . El yoduro se intercambia por hidróxido utilizando resina de intercambio iónico, según el siguiente procedimiento: 31.50 g de yoduro de N (16) -metilesparteinio se disuelven en 92.38 g de agua. A la disolución obtenida se añade 85 g de resina Dowes BR, previamente lavada con agua destilada hasta pH=7, y se mantiene en agitación hasta el dia siguiente. Posteriormente, se filtra, se lava con agua destilada y obtenemos 124.36 g de disolución de hidróxido de N (16) -metilesparteinio con una concentración de 0.65 moles/Kg.
EJEMPLO 2 Se hidrolizan 0.272 gramos de isopropóxido de aluminio y 4.167 gramos de tetraetilortosilicato en 11.00 gramos de disolución de hidróxido de N (16) -metilesparteinio con una concentración de 0.91 moles/Kg. La disolución obtenida se mantiene en agitación dejando evaporar todo el alcohol formado en la hidrólisis y el agua sobrante. Posteriormente, se añade 0.416 g de una disolución de ácido fluorhidrico (48.1 % de HF en peso) y se sigue evaporando hasta que la mezcla de reacción alcanza una composición final : Si02 : 0.033 A1203 : 0.50 ROH : 0.50 HF : 2 H20
donde ROH es hidróxido de N (16) -metilesparteinio . El gel se calienta a 175°C en estático durante 3 dias en autoclaves de acero con una funda interna de teflón. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es ITQ-30. El patrón de difracción de rayos X del sólido obtenido se muestra en la tabla III. Tabla III
2 theta(°) (± 0.3) d(Á) (± 0.3) I/Io(%) 6,24 14,17 90 7,29 12,13 31 8,32 10,63 26 12.90 6,86 10 14,63 6,05 16 15,59 5,69 23 19,08 4,65 32 20,03 4,43 27 21,65 4,11 36 22,32 3,98 47 25,06 3,55 37 26,08 3,42 100 26,85 3,32 35 28,25 3,16 11 29,27 3,05 6 31,71 2,82 5 33,49 2,68 3 36,43 2,47 4 37.91 2,37 5
El material se calcina a 580 °C durante 3 horas en flujo de aire para eliminar la materia orgánica y los iones fluoruro ocluidos en su interior. El patrón de difracción de rayos X de polvo del sólido obtenido coincide con los valores de la tabla IV. Tabla IV 2 theta(°) (± 0.3) D (A) (± 0.3) I/Io(%) 7,25 12,19 Í00 9,01 9,81 38 12.98 6,82 11 14,45 6,13 43 15,97 5,55 10 20,20 4,40 15 21,76 4,08 21 22,11 4,02 28 22,69 3,92 40 23,69 3,76 20 25,15 3,54 25 26,14 3,41 80 27,04 3,30 24 28,24 3,16 12 31,76 2,82 5 33,57 2,67 6 34.99 2,56 3
EJEMPLO 3 En 21.78 g de disolución de hidróxido de N(16)- metilesparteinio con una concentración de 0.94 moles/Kg se hidrolizan 8.33 g de tetraetilortosilicato y 0.33 g de isopropóxido de aluminio. La disolución obtenida se mantiene en agitación dejando evaporar el etanol y el isopropanol formados en la hidrólisis. Posteriormente, se añade 0.83 g de una disolución de ácido fluorhidrico (48.1 % de HF en peso) y se sigue evaporando hasta que la mezcla alcanza la composición:
Si02 : 0.02 A1203 : 0.50 ROH : 0.50 HF : 2 H20 donde ROH es hidróxido de N (16) -metilesparteinio . El gel se calienta durante 4 dias en autoclaves de acero con una funda interna de teflón a 175°C en estático. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es ITQ-30.
EJEMPLO 4
Se hidrolizan 0.21 g de isopropóxido de aluminio y 5.21 g de tetraetilortosilicato en 11.36 g de disolución de hidróxido de N (16) -metilesparteinio con una concentración de 1.10 moles/Kg. En la disolución obtenida se deja evaporar todo el alcohol formado en la hidrólisis y parte del agua sobrante. Posteriormente, se añade 0.52 g de una disolución de ácido fluorhidrico (48.1 % de HF en peso) . La composición final del gel de sintesis es: Si02 : 0.01 A1203 : 0.50 ROH : 0.50 HF : 2 H20
donde ROH es hidróxido de N (16) -metilesparteinio . El gel se calienta a 175°C en estático durante 5 dias en autoclaves de acero con una funda interna de teflón. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es ITQ-30.
EJEMPLO 5
Se hidrolizan 34.67 g de tetraetilortosilicato en 73.45 g de disolución de hidróxido de N(16)- metilesparteinio con una concentración de 1.133 moles/Kg, manteniendo en agitación y dejando evaporar todo el etanol formado en la hidrólisis. Posteriormente, se añade 3.55 g de una disolución de ácido fluorhidrico (46.9 % de HF en peso) y se continúa evaporando hasta que la mezcla de reacción alcanza una composición final: Si02 : 0.50 ROH : 0.50 HF : 3 H20
donde ROH es hidróxido de N (16) -metilesparteinio . Tras 29 dias de cristalización a 135°C en agitación en autoclaves de acero con una funda interna de teflón, se obtiene un sólido cuyo difractograma coincide con el descrito para la zeolita ITQ-30.
EJEMPLO 6
En 29.78 g de disolución de hidróxido de N(16)- metilesparteinio con una concentración de 0.94 moles/Kg se hidrolizan 11.66 g de tetraetilortosilicato y 0.91 g de isopropóxido de aluminio. La disolución obtenida se mantiene en agitación dejando evaporar el etanol y el isopropanol formados en la hidrólisis. Posteriormente, se añade 1.16 g de una disolución de ácido fluorhidrico (48.1 % de HF en peso) y se sigue evaporando hasta que la mezcla alcanza la composición:
Si02 : 0.04 A1203 : 0.50 ROH : 0.50 HF : 3 H20
donde ROH es hidróxido de N (16) -metilesparteinio . El gel se calienta durante 5 dias en autoclaves de acero con una funda interna de teflón a 175°C en estático. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es ITQ-30.

Claims

Reivindicaciones
1. Un material cristalino microporoso, laminar, de naturaleza zeolitica caracterizado porque tiene un patrón de difracción de rayos X concordante con la Tabla I Tabla I d(Á) (± 0.3) I/Io(%) 14.17 MF 12.13 M 10.63 M 4.65 M 3.98 F 3.42 MF 3.32 M
tal como se sintetiza, en la que las intensidades relativas significan MF = muy fuerte (60 - 100), F = fuerte (40 -60), M = media (20-40) y D =débil (0 - 20), y porque tiene una composición quimica, en el estado anhidro, que cumple las siguientes relaciones molares: x (M1/nX02) : y Y02 : Si02 : z R donde :
- x representa un valor inferior a 0.1, puede ser igual a cero
- y tiene un valor menor de 0.1 y puede ser igual a cero
- z tiene un valor comprendido entre cero y 0.1;
- M está seleccionado entre H+, NH4+, uno o varios cationes inorgánicos de carga +n, y combinaciones de los mismos, - X es uno o varios elementos quimicos de estado de oxidación +3,
- Y es uno o varios elementos quimicos con estado de oxidación +4, y
- R es uno o más compuestos orgánicos.
2. Un material cristalino microporoso de naturaleza zeolitica, caracterizado porque tiene un patrón de difracción de rayos X concordante con el establecido en la Tabla II
Tabla II d(Á) (± 0.3) I/Io(%) 12.19 MF 9.81 F 6.13 F 4.02 M 3.92 F 3.54 M 3.41 MF 3.30 M
para el material calcinado, en la que las intensidades relativas significan MF = muy fuerte (60 - 100), F = fuerte (40 - 60) , M = media (20- 40) y D =débil (0 - 20) , y con una composición quimica en el estado calcinado y anhidro que puede representarse por la siguiente fórmula empirica: x (M1/nX02) : y Y02 : Si02 donde:
- x representa un valor inferior a 0.1, puede ser igual a cero
- y tiene un valor menor de 0.1 y puede ser igual a cero
- M es H+, NH4+, o uno o varios cationes inorgánicos de carga +n;
- X es uno o varios elementos quimicos de estado de oxidación +3, e
- Y es uno o varios elementos quimicos con estado de oxidación +4.
3. Un material cristalino microporoso de naturaleza zeolitica caracterizado porque tiene un patrón de difracción de rayos X concordante con la Tabla I Tabla I d(A) (± 0. 3) I/Io(%) 14.17 MF 12.13 M 10.63 M 4.65 M 3.98 F 3.42 MF 3.32 M
tal como se sintetiza, un patrón de difracción de rayos X concordante con el establecido en la Tabla II Tabla II d(Á) (± 0.3) I/Io(%) 12.19 MF 9.81 F 6.13 F 4.02 M 3.92 F 3.54 M 3.41 MF 3.30 M
para el material calcinado, en las que las intensidades relativas significan MF = muy fuerte (60 - 100), F = fuerte (40 - 60), M = media (20- 40) y D =débil (0 - 20) , y con una composición quimica en el estado calcinado y anhidro que puede representarse por la siguiente fórmula empirica: x (M1/nX02) : y Y02 : Si02 donde :
- x posee un valor inferior a 0.056, pudiendo ser igual a cero;
- y tiene un valor menor de 0.05, pudiendo ser igual a cero; - M es H+, NH4+, o uno o varios cationes inorgánicos de carga +n; - X es uno o varios elementos quimicos de estado de oxidación +3, e
- Y es uno o varios elementos quimicos con estado de oxidación +4.
4. Un material cristalino microporoso según una de las reivindicaciones 1 a 3, caracterizado porque X es uno o más elementos seleccionados entre Al, Ga, B, Fe y Cr.
5. Un material cristalino microporoso según una de las reivindicaciones 1 a 3, caracterizado porque Y es uno o más elementos seleccionados entre Si, Sn, Ge, Ti y V
6. El material cristalino según una cualquiera de las reivindicaciones 1 a 5, caracterizado porque su composición corresponde a la fórmula: x (MιnX02) : Si02 donde
- x posee un valor inferior a 0.1, pudiendo ser igual a cero;
- M es H+, NH4+, o uno o varios cationes inorgánicos de carga +n, y
- X es uno o varios elementos quimicos de estado de oxidación +3.
7. El material cristalino según la reivindicación 6, caracterizado porque X es uno o varios elementos quimicos seleccionados entre Al, Ga, B, Fe y Cr.
8. El material cristalino según la reivindicación 6, caracterizado porque "x" posee un valor inferior a 0.056, pudiendo ser igual a cero;
9. El material cristalino de una cualquiera de las reivindicaciones 1 a 3 caracterizado porque su composición quimica en el estado calcinado y anhidro puede representarse por la siguiente fórmula empirica y Y02 : Si02 donde : - y tiene un valor menor de 0.1, pudiendo ser igual a cero; e
- Y es uno o varios elementos quimicos con estado de oxidación +4.
10. El material cristalino según la reivindicación 9, caracterizado porque "y" tiene un valor menor de 0.05, pudiendo ser igual a cero.
11. Un material cristalino microporoso de naturaleza zeolitica de acuerdo con una cualquiera de las reivindicaciones 1 a 3, caracterizado porque su composición quimica en el estado calcinado y anhidro puede representarse por la fórmula empirica x (HX02) : Si02 en la cual
- X es un elemento trivalente y
- x posee un valor inferior a 0.1.
12. Un material cristalino microporoso según la reivindicación 11, caracterizado porque x posee un valor inferior a 0.056.
13. Un material cristalino microporoso según una cualquiera de las reivindicaciones 1 a 3, caracterizado porque su composición quimica en el estado calcinado y anhidro puede representarse por la fórmula empirica SÍO2.
14. Un método para sintetizar un material cristalino zeolitico según una cualquiera de las reivindicaciones 1 a 13, caracterizado porque comprende: - preparar una mezcla de reacción que comprende al menos : - una fuente de SÍO2, - un compuesto orgánico, - una fuente de iones fluoruro y - agua, y someter dicha mezcla a calentamiento con o sin agitación a temperatura entre 80 y 200°C, hasta conseguir su cristalización, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos
Figure imgf000026_0001
15. Un método para sintetizar un material cristalino zeolitico según una la reivindicación 14, caracterizado porque comprende: - preparar una mezcla de reacción que comprende al menos : - una fuente de SÍO2, una fuente de uno o varios elementos tetravalentes Y, - un compuesto orgánico, - una fuente de iones fluoruro y - agua, y someter dicha mezcla a calentamiento con o sin agitación a temperatura entre 80 y 200°C, hasta conseguir su cristalización, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos Y02/Si02 = 0-0.1
Figure imgf000027_0001
16. Un método para sintetizar un material cristalino zeolitico según la reivindicación 14, caracterizado porque comprende : - preparar una mezcla de reacción que comprende al menos: - una fuente de SÍO2, una fuente de uno o varios elementos trivalentes X, - un compuesto orgánico, - una fuente de iones fluoruro y - agua, y someter dicha mezcla a calentamiento con o sin agitación a temperatura entre 80 y 200°C, hasta conseguir su cristalización, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos
Figure imgf000027_0002
H20/Si02 = 0-100
17. Un método para sintetizar un material cristalino zeolitico según la reivindicación 14, caracterizado porque comprende : - preparar una mezcla de reacción que comprende al menos : - una fuente de SÍO2, una fuente de uno o varios elementos tetravalentes Y, una fuente de uno o varios elementos trivalentes X, - un compuesto orgánico, - una fuente de iones fluoruro y - agua, y someter dicha mezcla a calentamiento con o sin agitación a temperatura entre 80 y 200°C, hasta conseguir su cristalización, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos :
Figure imgf000028_0001
18. Un método de sintesis del material cristalino según la reivindicación 14, caracterizado porque la composición de la mezcla de reacción responde a la fórmula empirica general a ROH : b M1 nF : x X203 : y Y02 : Si02 : w H20
donde - M es H+, NH4+ o uno o varios cationes inorgánicos de carga +n;
- X es uno o varios elementos trivalentes
- Y es uno o varios elementos tetravalentes, - R es uno o más cationes orgánicos,
- a = ROH/Si02 = 0.01-1.0,
- b = M1/nF/Si02 = 0 -1 . 0 ,
Figure imgf000029_0001
19. Un método de sintesis del material cristalino según una cualquiera de las reivindicaciones 14 a 18, caracterizado porque el catión orgánico R es N(16)-metil- esparteinio.
20. Un método de sintesis del material cristalino según la reivindicación 19, en el que el catión orgánico N(16)- metil-esparteinio es añadido en forma de hidróxido o en forma de una mezcla de hidróxido y otra sal.
21. Un método de sintesis del material cristalino según la reivindicación 19, caracterizado porque dicha sal es un haluro .
22. Un método de sintesis del material cristalino según una cualquiera de las reivindicaciones 14 a 21, caracterizado porque a la mezcla de reacción se le añade una cantidad de material cristalino como promotor de la cristalización, estando dicha cantidad comprendida entre 0.01 a 15% en peso con respecto al total de óxidos inorgánicos añadidos .
23. Un método de sintesis del material cristalino según la reivindicación 22, caracterizado porque dicho material cristalino es un material cristalino definido en una cualquiera de las reivindicaciones 1 a 13.
24. Un método de sintesis del material cristalino según la reivindicación 22, caracterizado porque se le añade una cantidad de material cristalino como promotor de la cristalización, comprendida entre 0.01 y 5% en peso con respecto al total de óxidos inorgánicos añadidos.
25. Método de uso del material cristalino, microporoso, laminar, ITQ-30, definido en cualquiera de las reivindicaciones 1 a 13, como componente cataliticamente activo en un proceso de conversión de compuestos orgánicos, que comprende poner en contacto una alimentación con una cantidad de dicho material cristalino, microporoso.
26. Método de uso del material cristalino, microporoso, laminar, ITQ-30, según la reivindicación 25 caracterizado porque dicho proceso es craqueo catalitico de compuestos orgánicos .
27. Método de uso del material cristalino, microporoso, laminar, ITQ-30, según la reivindicación 26 caracterizado porque dichos compuestos orgánicos son hidrocarburos .
28. Método de uso del material cristalino, microporoso, laminar, ITQ-30, según la reivindicación 25 caracterizado porque dicho proceso está seleccionado entre hidrocraqueo, hidrocraqueo suave, isomerización de parafinas ligeras, desparafinado, isodesparafinado y alquilación.
29. Método de uso del material cristalino, microporoso, laminar, ITQ-30, según la reivindicación 28 caracterizado porque dicha alquilación es una alquilación con olefinas o alcoholes, de compuestos seleccionados entre compuestos aromáticos, compuestos aromáticos sustituidos, compuestos tiofénicos, alquiltiofénicos, benzotiofénicos y alquilbenzotiofenicos .
30. Método de uso del material cristalino, microporoso, laminar, ITQ-30, según la reivindicación 29, caracterizado porque dicha alquilación es un proceso de alquilación de benceno con propileno.
31. Método de uso del material cristalino, microporoso, laminar, ITQ-30, según la reivindicación 25 caracterizado porque dicho proceso está seleccionado entre un proceso de acilación de compuestos aromáticos sustituidos utilizando ácidos, cloruros de ácido o anhidridos de ácidos orgánicos como agentes acilantes .
32. Método de uso del material cristalino, microporoso, laminar, ITQ-30, según la reivindicación 25, caracterizado porque dicho proceso es una reacción de Meerwein-Pondorf- Verley.
33. Método de uso del material cristalino, microporoso, laminar, ITQ-30, según la reivindicación 25, caracterizado porque el proceso es una oxidación selectiva de compuestos orgánicos usando un agente oxidante seleccionado entre H2O2, peróxidos e hidroperóxidos orgánicos.
34. Método de uso del material cristalino, microporoso, laminar, ITQ-30, según la reivindicación 25, caracterizado porque el proceso es una oxidación del tipo Baeyer-Villiger .
35. Método de uso del material cristalino, microporoso, laminar, ITQ-30, según la reivindicación 25, caracterizado porque dicho material cristalino contiene Ti, y el proceso está seleccionado entre epoxidación de olefinas, oxidación de alcanos, oxidación de alcoholes y oxidación de compuestos orgánicos que contengan azufre y que puedan producir sulfóxidos y sulfonas, utilizando hidroperóxido orgánicos o inorgánicos, como agentes oxidantes.
36. Método de uso del material cristalino, microporoso, laminar, ITQ-30, según la reivindicación 25, caracterizado porque dicho material cristalino contiene Ti, y el proceso es una amoximación de cetonas .
37. Método de uso del material cristalino, microporoso, laminar, ITQ-30, según la reivindicación 25, caracterizado porque dicho material cristalino contiene Sn, y el proceso es una oxidación de Baeyer-Villiger utilizando H2O2 como agente oxidante.
PCT/ES2005/070072 2004-05-28 2005-05-25 Zeolita itq-30 WO2005118476A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007513974A JP2008500936A (ja) 2004-05-28 2005-05-25 ゼオライトitq−30
AT05774429T ATE464272T1 (de) 2004-05-28 2005-05-25 Zeolith itq-30
DE602005020629T DE602005020629D1 (de) 2004-05-28 2005-05-25 Zeolith itq-30
US11/597,808 US8115001B2 (en) 2004-05-28 2005-05-25 Zeolite ITQ-30
EP05774429A EP1770064B1 (en) 2004-05-28 2005-05-25 Zeolite itq-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200401391A ES2246704B1 (es) 2004-05-28 2004-05-28 Zeolita itq-30.
ESP200401391 2004-05-28

Publications (1)

Publication Number Publication Date
WO2005118476A1 true WO2005118476A1 (es) 2005-12-15

Family

ID=35462850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/070072 WO2005118476A1 (es) 2004-05-28 2005-05-25 Zeolita itq-30

Country Status (7)

Country Link
US (1) US8115001B2 (es)
EP (1) EP1770064B1 (es)
JP (1) JP2008500936A (es)
AT (1) ATE464272T1 (es)
DE (1) DE602005020629D1 (es)
ES (2) ES2246704B1 (es)
WO (1) WO2005118476A1 (es)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007089381A2 (en) 2006-01-31 2007-08-09 Exxonmobil Chemical Patents Inc. Alkylaromatics production
WO2007094938A1 (en) * 2006-02-14 2007-08-23 Exxonmobil Chemical Patents Inc. An mcm-22 family molecular sieve composition
WO2008013639A1 (en) 2006-07-28 2008-01-31 Exxonmobil Chemical Patents Inc. Molecular sieve composition (emm-10-p), its method of making, and use for hydrocarbon conversions
WO2008016477A2 (en) * 2006-07-28 2008-02-07 Exxonmobil Chemical Patents Inc. A novel molecular sieve composition, a method of making and a process of using the same
WO2008016456A2 (en) 2006-07-28 2008-02-07 Exxonmobil Chemical Patents Inc. Molecular sieve composition (emm-10), its method of making, and use for hydrocarbon conversions
WO2008097737A1 (en) 2007-02-09 2008-08-14 Exxonmobil Chemical Patents Inc. A Corporation Of The State Of Delaware Improved alkylaromatic production process
WO2008100658A1 (en) 2007-02-12 2008-08-21 Exxonmobil Chemical Patents Inc. Production of high purity ethylbenzene from non-extracted feed and non-extracted reformate useful therein
WO2008156959A1 (en) 2007-06-21 2008-12-24 Exxonmobil Chemical Patents Inc. Improved liquid phase alkylation process
US7786338B2 (en) 2007-10-26 2010-08-31 Exxonmobil Research And Engineering Company Selective oligomerization of isobutene
US7799316B2 (en) 2006-02-14 2010-09-21 Exxonmobil Chemical Patents Inc. Process for manufacturing MCM-22 family molecular sieves
US7816573B2 (en) 2006-02-14 2010-10-19 Exxonmobil Chemical Patents Inc. Molecular sieve composition
US7829062B2 (en) 2006-02-14 2010-11-09 Exxonmobil Chemical Patent Inc. Method of preparing a molecular sieve composition
US7883686B2 (en) 2006-07-28 2011-02-08 Exxonmobil Chemical Patents Inc. MCM-22 family molecular sieve composition, its method of making, and use for hydrocarbon conversions
US7906685B2 (en) 2007-09-21 2011-03-15 Exxonmobil Chemical Patents Inc. Process for producing cyclohexylbenzene
US7910779B2 (en) 2007-09-21 2011-03-22 Exxonmobil Chemical Patents Inc. Process for producing cyclohexylbenzene
US7910778B2 (en) 2007-08-25 2011-03-22 Exxonmobil Chemical Patents Inc. Process for producing cyclohexylbenzene
US7959899B2 (en) 2006-07-28 2011-06-14 Exxonmobil Chemical Patents Inc. Molecular sieve composition (EMM-10-P), its method of making, and use for hydrocarbon conversions
US8084648B2 (en) 2008-02-12 2011-12-27 Exxonmobil Chemical Patents Inc. Process for producing cyclohexylbenzene
US8106243B2 (en) 2008-05-01 2012-01-31 Exxonmobil Chemical Patents Inc. Process for producing cyclohexylbenzene
WO2012030440A1 (en) 2010-08-30 2012-03-08 Exxonmobil Chemical Patents Inc. Improved alkylation process
US8178728B2 (en) 2008-04-14 2012-05-15 Exxonmobil Chemical Patents Inc. Process for producing cyclohexylbenzene
US8187569B2 (en) 2006-02-14 2012-05-29 Exxonmobil Chemical Patents Inc. Process for manufacturing molecular sieve of MFS framework type and its use
US8198496B2 (en) 2008-07-28 2012-06-12 Exxonmobil Chemical Patents Inc. Process of making alkylaromatics using EMM-13
US8212096B2 (en) 2008-07-28 2012-07-03 Exxonmobil Chemical Patents Inc. Hydroalkylation of aromatic compounds using EMM-13
US8217213B2 (en) 2008-07-28 2012-07-10 Exxonmobil Chemical Patents Inc. Hydroalkylation of aromatic compounds using EMM-12
CN101489675B (zh) * 2006-07-28 2012-07-11 埃克森美孚化学专利公司 分子筛组合物(emm-10),其制造方法和用于烃转化的用途
US8222468B2 (en) 2006-05-08 2012-07-17 Exxonmobil Chemical Patents Inc. Organic compound conversion process
US8247629B2 (en) 2006-05-24 2012-08-21 Exxonmobil Chemical Patents Inc. Monoalkylated aromatic compound production
US8398955B2 (en) 2007-10-26 2013-03-19 Exxonmobil Chemical Patents Inc. Method of preparing a molecular sieve composition
WO2013039673A1 (en) 2011-09-16 2013-03-21 Exxonmobil Chemical Patents Inc. Improved liquid phase alkylation process
WO2013048636A1 (en) 2011-09-16 2013-04-04 Exxonmobil Chemical Patents Inc. Improved mcm-56 manufacture
US8466333B2 (en) 2008-07-28 2013-06-18 Exxonmobil Chemical Patents Inc. Process of making alkylaromatics using EMM-12
US8519194B2 (en) 2009-02-26 2013-08-27 Exxonmobil Chemical Patents Inc. Process for producing cyclohexylbenzene
US8557219B2 (en) 2006-02-14 2013-10-15 Exxonmobil Chemical Patents Inc. High throughput process for manufacturing molecular sieves
US8623777B2 (en) 2007-11-02 2014-01-07 Exxonmobil Chemical Patents Inc. Process for rejuvenating a catalyst composition
RU2509055C2 (ru) * 2008-07-28 2014-03-10 Эксонмобил Кемикэл Пейтентс Инк. Новая молекулярно-ситовая композиция емм-12, способы ее получения и применения
US8704025B2 (en) 2008-07-28 2014-04-22 Exxonmobil Chemical Patents Inc. Molecular sieve composition EMM-12, a method of making and a process of using the same
CN103756719A (zh) * 2014-01-26 2014-04-30 中国石油天然气集团公司 一种分离石油组分中含硫化合物的方法
US8816145B2 (en) 2007-06-21 2014-08-26 Exxonmobil Chemical Patents Inc. Liquid phase alkylation process
US8822363B2 (en) 2007-11-16 2014-09-02 Exxonmobil Chemical Patents Inc. Catalyst regeneration process
US8859836B2 (en) 2006-02-14 2014-10-14 Exxonmobil Chemical Patents Inc. Hydrocarbon conversion process using molecular sieve of MFS framework type
WO2014182440A1 (en) 2013-05-09 2014-11-13 Exxonmobil Chemical Patetns Inc. Regeneration of aromatic alkylation catalysts using hydrogen-containing gases
WO2014182442A1 (en) 2013-05-09 2014-11-13 Exxonmobil Chemical Patents Inc. Regeneration of aromatic alkylation catalysts using aromatic solvents
WO2014182434A1 (en) 2013-05-09 2014-11-13 Exxonmobil Chemical Patents Inc. Treatment of aromatic alkylation catalysts
US9005433B2 (en) 2011-07-27 2015-04-14 Saudi Arabian Oil Company Integrated process for in-situ organic peroxide production and oxidative heteroatom conversion
US9108893B2 (en) 2011-10-17 2015-08-18 Exxonmobil Chemical Patents Inc. Process for producing cyclohexylbenzene
US9233887B2 (en) 2010-12-21 2016-01-12 Exxonmobil Chemical Patents Inc. Process for producing a monocycloalkyl-substituted aromatic compound
US9458067B2 (en) 2012-02-08 2016-10-04 Exxonmobil Chemical Patents Inc. Process for producing cyclohexylbenzene
US9545622B2 (en) 2010-10-11 2017-01-17 Exxonmobil Chemical Patents Inc. Activation and use of hydroalkylation catalysts
US9795949B2 (en) 2006-05-08 2017-10-24 Exxonmobil Chemical Patents Inc. Catalyst composition
WO2017213749A1 (en) 2016-06-09 2017-12-14 Exxonmobil Chemical Patents Inc. A process for producing mono-alkylated aromatic compound
WO2018071185A1 (en) 2016-10-10 2018-04-19 Exxonmobil Chemical Patents Inc. Heavy aromatics to btx conversion process and dual bed catalyst systems used
WO2018140149A1 (en) 2017-01-25 2018-08-02 Exxonmobil Chemical Patents Inc. Transalkylation process and catalyst composition used therein
WO2018160327A1 (en) 2017-02-28 2018-09-07 Exxonmobil Chemical Patents Inc. Catalyst compositions and their use in aromatic alkylation processes
WO2018183009A1 (en) 2017-03-29 2018-10-04 Exxonmobil Chemical Patents Inc. Catalyst compositions and their use in aromatic alkylation processes
WO2018183012A1 (en) 2017-03-29 2018-10-04 Exxonmobil Chemical Patents Inc. Methods for removing impurities from a hydrocarbon stream and their use in aromatic alkylation processes
US10239052B2 (en) 2014-01-27 2019-03-26 Exxonmobil Chemical Patents Inc. Synthesis of molecular sieves having MWW framework structure
WO2022015491A1 (en) 2020-07-16 2022-01-20 Exxonmobil Chemical Patents Inc. Method of synthesizing a molecular sieve of mww framework type
WO2022184759A1 (en) 2021-03-03 2022-09-09 Exxonmobil Chemical Patents Inc. Method of synthesizing a molecular sieve of mww framework type

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1102638B1 (pt) * 2011-06-16 2020-10-20 Universidade Federal Do Rio Grande Do Sul zeólita e materiais mesoporosos organizados como carga para a formulação de compostos de borracha, borracha termoplástica, plástico e fabricação de produtos
ES2430404B1 (es) * 2012-04-18 2014-09-29 Consejo Superior De Investigaciones Científicas (Csic) Material ITQ-49, su procedimiento de obtención y su uso
US8524966B1 (en) 2012-05-14 2013-09-03 Uop Llc Catalysts for improved cumene production and method of making and using same
MX350214B (es) * 2012-11-05 2017-08-30 Basf Se Proceso para la oxidación de compuestos orgánicos de carbonilo.
US11203013B2 (en) 2017-01-20 2021-12-21 California Institute Of Technology Enantiomerically enriched, polycrystalline molecular sieves

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043179A (en) * 1997-08-13 2000-03-28 California Institute Of Technology Zeolite CIT-5 and method of making
ES2192935A1 (es) * 2001-05-14 2003-10-16 Univ Valencia Politecnica Sintesis de zeolita itq-21
US20040038804A1 (en) * 2000-03-21 2004-02-26 Toray Industries, Inc. Process for conversion of organic compounds

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3117135A1 (de) 1981-04-30 1982-11-18 Bayer Ag, 5090 Leverkusen Kristallines alumosilicat, verfahren zu dessen herstellung sowie dessen verwendung zur katalytischen umwandlung von methanol und/oder dimethylether in kohlenwasserstoffe
US4954325A (en) 1986-07-29 1990-09-04 Mobil Oil Corp. Composition of synthetic porous crystalline material, its synthesis and use
US5236575A (en) * 1991-06-19 1993-08-17 Mobil Oil Corp. Synthetic porous crystalline mcm-49, its synthesis and use
US5362697A (en) 1993-04-26 1994-11-08 Mobil Oil Corp. Synthetic layered MCM-56, its synthesis and use
ES2186488B1 (es) * 2000-10-11 2004-01-16 Univ Valencia Politecnica Zeolita itq-17.
ES2186487B1 (es) * 2000-10-11 2004-01-16 Univ Valencia Politecnica Zeolita itq-15.
ES2186489B1 (es) * 2000-10-11 2004-01-16 Univ Valencia Politecnica Zeolita itq-16.
ES2190722B1 (es) * 2001-01-30 2004-10-01 Universidad Politecnica De Valencia Material cristalino microporoso de naturaleza zeolitica (itq-20) y su procedimiento de obtencion.
ES2192923B1 (es) * 2001-01-30 2004-10-01 Universidad Politecnica De Valencia Material cristalino microporoso (itq-19) con caracteristicas laminares, su procedimiento de preparacion y su uso como catalizador en procesos de conversion catalitica de compuestos organicos.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043179A (en) * 1997-08-13 2000-03-28 California Institute Of Technology Zeolite CIT-5 and method of making
US20040038804A1 (en) * 2000-03-21 2004-02-26 Toray Industries, Inc. Process for conversion of organic compounds
ES2192935A1 (es) * 2001-05-14 2003-10-16 Univ Valencia Politecnica Sintesis de zeolita itq-21

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LOBO R. ET AL: "Synthesis and characterization of pure-silica and boron-substituted SSZ-24 using N(16)methylsparteinium bromide as structure-directing agent", MICROPOROUS MATERIALS, vol. 3, no. 1-2, 1994, pages 61 - 69, XP000783874 *
TSUJI K. ET AL: "High-silica molecular sieve synthesis using the sparteine related compounds as structure-directing agents", MICROPOROUS AND MESOPOROUS MATERIALS, vol. 28, no. 3, 1999, pages 461 - 469, XP004165647 *

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007089381A2 (en) 2006-01-31 2007-08-09 Exxonmobil Chemical Patents Inc. Alkylaromatics production
US7803976B2 (en) 2006-01-31 2010-09-28 Exxonmobil Chemical Patents Inc. Alkylaromatics production
US7425659B2 (en) 2006-01-31 2008-09-16 Exxonmobil Chemical Patents Inc. Alkylaromatics production
US7799316B2 (en) 2006-02-14 2010-09-21 Exxonmobil Chemical Patents Inc. Process for manufacturing MCM-22 family molecular sieves
WO2007094938A1 (en) * 2006-02-14 2007-08-23 Exxonmobil Chemical Patents Inc. An mcm-22 family molecular sieve composition
US8557219B2 (en) 2006-02-14 2013-10-15 Exxonmobil Chemical Patents Inc. High throughput process for manufacturing molecular sieves
US9079809B2 (en) 2006-02-14 2015-07-14 Exxonmobil Chemical Patents Inc. High throughput process for manufacturing molecular sieves of MFI framework type
US8748684B2 (en) 2006-02-14 2014-06-10 Exxonmobile Chemical Patents Inc. Hydrocarbon conversion process using a high throughput process for manufacturing molecular sieves
US8021643B2 (en) 2006-02-14 2011-09-20 Exxonmobil Chemical Patents Inc. MCM-22 family molecular sieve composition
US8859836B2 (en) 2006-02-14 2014-10-14 Exxonmobil Chemical Patents Inc. Hydrocarbon conversion process using molecular sieve of MFS framework type
US7846418B2 (en) 2006-02-14 2010-12-07 Exxonmobil Chemical Patents Inc. MCM-22 family molecular sieve composition
US8187569B2 (en) 2006-02-14 2012-05-29 Exxonmobil Chemical Patents Inc. Process for manufacturing molecular sieve of MFS framework type and its use
US8017540B2 (en) 2006-02-14 2011-09-13 Exxonmobil Chemical Patents Inc. Method of preparing a molecular sieve composition
US8673263B2 (en) 2006-02-14 2014-03-18 Exxonmobil Chemical Patents Inc. Hydrocarbon conversion process using a high throughput process for manufacturing molecular sieves of MFI framework type
US7816573B2 (en) 2006-02-14 2010-10-19 Exxonmobil Chemical Patents Inc. Molecular sieve composition
US7829062B2 (en) 2006-02-14 2010-11-09 Exxonmobil Chemical Patent Inc. Method of preparing a molecular sieve composition
US8080234B2 (en) 2006-02-14 2011-12-20 Exxonmobil Chemical Patents, Inc. Process for manufacturing MCM-22 family molecular sieves
US8222468B2 (en) 2006-05-08 2012-07-17 Exxonmobil Chemical Patents Inc. Organic compound conversion process
US9795949B2 (en) 2006-05-08 2017-10-24 Exxonmobil Chemical Patents Inc. Catalyst composition
US8524967B2 (en) 2006-05-24 2013-09-03 Exxonmobil Chemical Patents Inc. Monoalkylated aromatic compound production
US8247629B2 (en) 2006-05-24 2012-08-21 Exxonmobil Chemical Patents Inc. Monoalkylated aromatic compound production
US8357830B2 (en) 2006-05-24 2013-01-22 Exxonmobil Chemical Patents Inc. Monoalkylated aromatic compound production
US8636976B2 (en) 2006-07-28 2014-01-28 Exxonmobil Chemical Patents Inc. Molecular sieve composition (EMM-10-P), its method of making, and use for hydrocarbon conversions
WO2008016456A3 (en) * 2006-07-28 2008-03-27 Exxonmobil Chem Patents Inc Molecular sieve composition (emm-10), its method of making, and use for hydrocarbon conversions
US7883686B2 (en) 2006-07-28 2011-02-08 Exxonmobil Chemical Patents Inc. MCM-22 family molecular sieve composition, its method of making, and use for hydrocarbon conversions
US7842277B2 (en) 2006-07-28 2010-11-30 Exxonmobil Chemical Patents Inc. Molecular sieve composition, a method of making and a process of using the same
WO2008013639A1 (en) 2006-07-28 2008-01-31 Exxonmobil Chemical Patents Inc. Molecular sieve composition (emm-10-p), its method of making, and use for hydrocarbon conversions
US8262904B2 (en) 2006-07-28 2012-09-11 Exxonmobil Chemical Patents Inc. Molecular sieve composition (EMM-10-P), its method of making, and use for hydrocarbon conversions
US8110176B2 (en) 2006-07-28 2012-02-07 Exxonmobil Chemical Patents Inc. Molecular sieve composition (EMM-10), its method of making, and use for hydrocarbon conversions
US7959899B2 (en) 2006-07-28 2011-06-14 Exxonmobil Chemical Patents Inc. Molecular sieve composition (EMM-10-P), its method of making, and use for hydrocarbon conversions
WO2008016477A3 (en) * 2006-07-28 2008-03-27 Exxonmobil Chem Patents Inc A novel molecular sieve composition, a method of making and a process of using the same
CN101489675B (zh) * 2006-07-28 2012-07-11 埃克森美孚化学专利公司 分子筛组合物(emm-10),其制造方法和用于烃转化的用途
US8529752B2 (en) 2006-07-28 2013-09-10 Exxonmobil Chemical Patents Inc. Molecular sieve composition (EMM-10), its method of making, and use for hydrocarbon conversions
WO2008016477A2 (en) * 2006-07-28 2008-02-07 Exxonmobil Chemical Patents Inc. A novel molecular sieve composition, a method of making and a process of using the same
WO2008016456A2 (en) 2006-07-28 2008-02-07 Exxonmobil Chemical Patents Inc. Molecular sieve composition (emm-10), its method of making, and use for hydrocarbon conversions
WO2008097737A1 (en) 2007-02-09 2008-08-14 Exxonmobil Chemical Patents Inc. A Corporation Of The State Of Delaware Improved alkylaromatic production process
WO2008100658A1 (en) 2007-02-12 2008-08-21 Exxonmobil Chemical Patents Inc. Production of high purity ethylbenzene from non-extracted feed and non-extracted reformate useful therein
EP3492560A1 (en) 2007-06-21 2019-06-05 ExxonMobil Chemical Patents Inc. Improved liquid phase alkylation process
WO2008156959A1 (en) 2007-06-21 2008-12-24 Exxonmobil Chemical Patents Inc. Improved liquid phase alkylation process
US9169173B2 (en) 2007-06-21 2015-10-27 Exxonmobil Chemical Patents Inc. Liquid phase alkylation process
US8816145B2 (en) 2007-06-21 2014-08-26 Exxonmobil Chemical Patents Inc. Liquid phase alkylation process
US7910778B2 (en) 2007-08-25 2011-03-22 Exxonmobil Chemical Patents Inc. Process for producing cyclohexylbenzene
US7910779B2 (en) 2007-09-21 2011-03-22 Exxonmobil Chemical Patents Inc. Process for producing cyclohexylbenzene
US7906685B2 (en) 2007-09-21 2011-03-15 Exxonmobil Chemical Patents Inc. Process for producing cyclohexylbenzene
US9321043B2 (en) 2007-10-26 2016-04-26 Exxonmobile Chemical Patents Inc. Molecular sieve composition from pre-formed extrudates and process of use
US7786338B2 (en) 2007-10-26 2010-08-31 Exxonmobil Research And Engineering Company Selective oligomerization of isobutene
US8398955B2 (en) 2007-10-26 2013-03-19 Exxonmobil Chemical Patents Inc. Method of preparing a molecular sieve composition
US8623777B2 (en) 2007-11-02 2014-01-07 Exxonmobil Chemical Patents Inc. Process for rejuvenating a catalyst composition
US8822363B2 (en) 2007-11-16 2014-09-02 Exxonmobil Chemical Patents Inc. Catalyst regeneration process
US8084648B2 (en) 2008-02-12 2011-12-27 Exxonmobil Chemical Patents Inc. Process for producing cyclohexylbenzene
US8178728B2 (en) 2008-04-14 2012-05-15 Exxonmobil Chemical Patents Inc. Process for producing cyclohexylbenzene
US8329956B2 (en) 2008-04-14 2012-12-11 Exxonmobil Chemical Patents Inc. Process for producing cyclohexylbenzene
US8106243B2 (en) 2008-05-01 2012-01-31 Exxonmobil Chemical Patents Inc. Process for producing cyclohexylbenzene
US8466333B2 (en) 2008-07-28 2013-06-18 Exxonmobil Chemical Patents Inc. Process of making alkylaromatics using EMM-12
RU2509055C2 (ru) * 2008-07-28 2014-03-10 Эксонмобил Кемикэл Пейтентс Инк. Новая молекулярно-ситовая композиция емм-12, способы ее получения и применения
US8704023B2 (en) 2008-07-28 2014-04-22 Exxonmobil Chemical Patents Inc. Molecular sieve composition EMM-13, a method of making and a process of using the same
US8704025B2 (en) 2008-07-28 2014-04-22 Exxonmobil Chemical Patents Inc. Molecular sieve composition EMM-12, a method of making and a process of using the same
US8217213B2 (en) 2008-07-28 2012-07-10 Exxonmobil Chemical Patents Inc. Hydroalkylation of aromatic compounds using EMM-12
US8212096B2 (en) 2008-07-28 2012-07-03 Exxonmobil Chemical Patents Inc. Hydroalkylation of aromatic compounds using EMM-13
US8198496B2 (en) 2008-07-28 2012-06-12 Exxonmobil Chemical Patents Inc. Process of making alkylaromatics using EMM-13
US8519194B2 (en) 2009-02-26 2013-08-27 Exxonmobil Chemical Patents Inc. Process for producing cyclohexylbenzene
US9199892B2 (en) 2010-08-30 2015-12-01 Exxonmobil Chemical Patents Inc. Alkylation process
WO2012030440A1 (en) 2010-08-30 2012-03-08 Exxonmobil Chemical Patents Inc. Improved alkylation process
US9545622B2 (en) 2010-10-11 2017-01-17 Exxonmobil Chemical Patents Inc. Activation and use of hydroalkylation catalysts
US9233887B2 (en) 2010-12-21 2016-01-12 Exxonmobil Chemical Patents Inc. Process for producing a monocycloalkyl-substituted aromatic compound
US9637690B2 (en) 2011-07-27 2017-05-02 Saudi Arabian Oil Company Integrated system for in-situ organic peroxide production and oxidative heteroatom conversion and hydrotreating
US9005433B2 (en) 2011-07-27 2015-04-14 Saudi Arabian Oil Company Integrated process for in-situ organic peroxide production and oxidative heteroatom conversion
US10508246B2 (en) 2011-07-27 2019-12-17 Saudi Arabian Oil Company Integrated process for in-situ organic peroxide production and oxidative heteroatom conversion
US9909074B2 (en) 2011-07-27 2018-03-06 Saudi Arabian Oil Company Integrated process for in-situ organic peroxide production and oxidative heteroatom conversion
US9540572B2 (en) 2011-07-27 2017-01-10 Saudi Arabian Oil Company Integrated system for in-situ organic peroxide production and oxidative heteroatom conversion
WO2013048636A1 (en) 2011-09-16 2013-04-04 Exxonmobil Chemical Patents Inc. Improved mcm-56 manufacture
US9446961B2 (en) 2011-09-16 2016-09-20 Exxonmobil Chemical Patents Inc. MCM-56 manufacture
WO2013039673A1 (en) 2011-09-16 2013-03-21 Exxonmobil Chemical Patents Inc. Improved liquid phase alkylation process
US9108893B2 (en) 2011-10-17 2015-08-18 Exxonmobil Chemical Patents Inc. Process for producing cyclohexylbenzene
US9458067B2 (en) 2012-02-08 2016-10-04 Exxonmobil Chemical Patents Inc. Process for producing cyclohexylbenzene
WO2014182442A1 (en) 2013-05-09 2014-11-13 Exxonmobil Chemical Patents Inc. Regeneration of aromatic alkylation catalysts using aromatic solvents
WO2014182440A1 (en) 2013-05-09 2014-11-13 Exxonmobil Chemical Patetns Inc. Regeneration of aromatic alkylation catalysts using hydrogen-containing gases
WO2014182434A1 (en) 2013-05-09 2014-11-13 Exxonmobil Chemical Patents Inc. Treatment of aromatic alkylation catalysts
CN103756719A (zh) * 2014-01-26 2014-04-30 中国石油天然气集团公司 一种分离石油组分中含硫化合物的方法
CN103756719B (zh) * 2014-01-26 2015-11-18 中国石油天然气集团公司 一种分离石油组分中含硫化合物的方法
US10239052B2 (en) 2014-01-27 2019-03-26 Exxonmobil Chemical Patents Inc. Synthesis of molecular sieves having MWW framework structure
US10940467B2 (en) 2014-01-27 2021-03-09 Exxonmobil Chemical Patents Inc. Synthesis of molecular sieves having MWW framework structure
WO2017213749A1 (en) 2016-06-09 2017-12-14 Exxonmobil Chemical Patents Inc. A process for producing mono-alkylated aromatic compound
WO2018071185A1 (en) 2016-10-10 2018-04-19 Exxonmobil Chemical Patents Inc. Heavy aromatics to btx conversion process and dual bed catalyst systems used
WO2018140149A1 (en) 2017-01-25 2018-08-02 Exxonmobil Chemical Patents Inc. Transalkylation process and catalyst composition used therein
WO2018160327A1 (en) 2017-02-28 2018-09-07 Exxonmobil Chemical Patents Inc. Catalyst compositions and their use in aromatic alkylation processes
WO2018183009A1 (en) 2017-03-29 2018-10-04 Exxonmobil Chemical Patents Inc. Catalyst compositions and their use in aromatic alkylation processes
WO2018183012A1 (en) 2017-03-29 2018-10-04 Exxonmobil Chemical Patents Inc. Methods for removing impurities from a hydrocarbon stream and their use in aromatic alkylation processes
WO2022015491A1 (en) 2020-07-16 2022-01-20 Exxonmobil Chemical Patents Inc. Method of synthesizing a molecular sieve of mww framework type
WO2022184759A1 (en) 2021-03-03 2022-09-09 Exxonmobil Chemical Patents Inc. Method of synthesizing a molecular sieve of mww framework type

Also Published As

Publication number Publication date
EP1770064B1 (en) 2010-04-14
ES2246704A1 (es) 2006-02-16
JP2008500936A (ja) 2008-01-17
ES2344013T3 (es) 2010-08-16
US8115001B2 (en) 2012-02-14
DE602005020629D1 (de) 2010-05-27
EP1770064A1 (en) 2007-04-04
US20080027247A1 (en) 2008-01-31
ATE464272T1 (de) 2010-04-15
ES2246704B1 (es) 2007-06-16

Similar Documents

Publication Publication Date Title
WO2005118476A1 (es) Zeolita itq-30
WO1997019021A1 (es) Zeolita itq-1
ES2236310T3 (es) Material cristalino microporoso (itq-15), metodo para su preparacion, y su uso en procesos de separacion y transformacion de compuestos organicos.
WO2000078677A1 (es) Sintesis de zeolitas
JPS5813492B2 (ja) カイホウホネグミコウゾウゼオライトノゴウセイホウ
ES2327395T3 (es) Material cristalino poroso (zeolita itq-21), el metodo de preparacion del mismo y el uso del mismo en la conservacion catalitica de compuestos organicos.
ES2228271A1 (es) Metodo para la preparacion de nanozeolita zsm-5 de elevada superficie externa por cristalizacion de nucleos sililados.
JPH0513091B2 (es)
ES2241877T3 (es) Zeolita itq-16.
WO2008116958A1 (es) Procedimiento de preparacion de un aluminosilicato con estructura tipo ferrierita a partir de geles que contienen tetrametilamonio y bencil-metilpirrolidinio, y sus aplicaciones
JP4003014B2 (ja) 半開放系での均一溶液からのゼオライトおよび中間細孔質固体の合成方法
WO2002030819A1 (es) Un material cristalino microporoso (itq-17), metodo para su preparacion y su uso en procesos de separacion y transformacion de compuestos organicos
US7056489B2 (en) Synthesis of zeolite ITQ-16 in an alkaline medium
JP3697737B2 (ja) 合成ゼオライト物質
EP1043274B1 (en) Zeolithe itq-5
ES2204257B1 (es) Sintesis de itq-21 en ausencia de iones fluoruro.
WO2001009036A1 (es) Zeolita itq-10
ES2228278B1 (es) Material cristalino microporoso de naturaleza zeolitica (zeolita itq-28).
JPS6159246B2 (es)
JPS6247809B2 (es)
ES2208084B1 (es) Material cristalino microporoso de naturaleza zeolitica (zeolita itq-22), su metodo de sintesis y su uso como catalizador.
JPH07247114A (ja) ゼオライト・ベ−タの製造方法
Corma et al. Zeolite ITQ-30
WO2021170890A1 (es) Material cristalino de naturaleza zeolítica
JPH0357049B2 (es)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007513974

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005774429

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005774429

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11597808

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11597808

Country of ref document: US