WO2005115253A2 - Vascular hole closure device - Google Patents

Vascular hole closure device Download PDF

Info

Publication number
WO2005115253A2
WO2005115253A2 PCT/US2005/014948 US2005014948W WO2005115253A2 WO 2005115253 A2 WO2005115253 A2 WO 2005115253A2 US 2005014948 W US2005014948 W US 2005014948W WO 2005115253 A2 WO2005115253 A2 WO 2005115253A2
Authority
WO
WIPO (PCT)
Prior art keywords
elongated member
legs
pusher
closure device
vessel
Prior art date
Application number
PCT/US2005/014948
Other languages
French (fr)
Other versions
WO2005115253A3 (en
Inventor
Richard T. Briganti
James F. Mcguckin, Jr.
Walter H. Peters
James S. Tarmin
Stephan A. Defonzo
Original Assignee
Rex Medical, L.P.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rex Medical, L.P. filed Critical Rex Medical, L.P.
Publication of WO2005115253A2 publication Critical patent/WO2005115253A2/en
Publication of WO2005115253A3 publication Critical patent/WO2005115253A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00637Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for sealing trocar wounds through abdominal wall
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00646Type of implements
    • A61B2017/00659Type of implements located only on one side of the opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect

Definitions

  • catheters are inserted through an incision in the skin and underlying tissue to access the femoral artery in the patient's leg.
  • the catheter is then inserted through the access opening made in the wall of the femoral artery and guided through the artery to the desired site to perform surgical procedures such as angioplasty or plaque removal.
  • the access hole must be closed. This is quite difficult not only because of the high blood flow from the artery, but also because there are many layers of tissue that must be penetrated to reach the femoral artery.
  • Several approaches to date have been used to close femoral access holes.
  • suturing devices have been developed.
  • One such suturing device referred to as “the Closer” and sold by Perclose, advances needles adjacent the vessel wall opening and pulls suture material outwardly through the wall adjacent the opening. The surgeon then ties a knot in the suture, closing the opening.
  • One difficulty with the procedure involves the number of steps required by the surgeon to deploy the needles, capture the suture, withdraw the suture, and tie the knot and secure the suture.
  • the surgeon cannot easily visualize the suture because of the depth of the femoral artery (relative to the skin) and essentially ties the suture knot blindly or blindly slips a pre-tied knot into position.
  • U.S. Patent No. 4,744,364 discloses another approach for sealing a vessel puncture in the form of a device having an expandable closure member with a filament for pulling it against the vessel wall. The closure member is held in place by a strip of tape placed on the skin to hold the filament in place. However, the closure device is still subject to movement which can cause leakage through the puncture.
  • the closure device in U.S. Patent No. 5,545,178 includes a resorbable collagen foam plug located within the puncture tract.
  • coagulation typically takes up to twenty minutes and blood can leak in between the plug and tissue tract, manual pressure must be applied to the puncture for a period of time, until the collagen plug expands within the tract. It would therefore be advantageous to provide a device which would more quickly and effectively close openings (punctures) in vessel walls. Such device would advantageously avoid the aforementioned time and expense of applying manual pressure to the opening, simplify the steps required to close the opening, avoid widening of the opening, and more effectively retain the closure device in the vessel.
  • the present invention overcomes the disadvantages and deficiencies of the prior art.
  • the present invention provides a device for closing an aperture in a vessel wall comprising an elongated member having a longitudinal axis and positionable inside the vessel against the internal opening of the aperture..
  • the elongated member is dimensioned to prevent egress of fluid through the aperture.
  • a material forming two curved legs has ends positionable external of the vessel. The legs curve in different directions.
  • a retention portion is formed in the material to retain the legs during placement of the elongated member inside the vessel.
  • the curved legs are composed of shape memory material and the elongated member is fabricated of a resorbable polymeric material molded over the shape memory material.
  • the elongated member has a thickness in a middle portion greater than a thickness at the end portions and is substantially oval shaped with substantially linear sides.
  • the closure device can be used with a delivery system including a sheath having a slidable pusher positioned therein having a retention pin releasably positioned within the retention slot of the retention portion.
  • the present invention also provides in combination a device for closing an aperture in a vessel wall and a delivery system for the device.
  • the device includes an elongated member positionable inside the vessel against the internal opening of the aperture to prevent egress of fluid through the aperture and two legs extending from the elongated member and positionable external of the vessel to help retain the elongated member in position.
  • the delivery system includes a tube and a pusher slidably positioned within the tube, wherein the pusher includes a retaining pin releasably engagable with the legs.
  • the pin retains the legs within the tube and releases the legs to enable delivery from the tube.
  • the elongated member has a first thickness at an end portion and second greater thickness at a central portion, is composed of a resorbable material, and the two legs are composed of shape memory metal material.
  • the delivery system may further comprise a mechanism to automatically retract the pusher after the pusher is advanced to deliver the elongated member.
  • the mechanism includes a member receivable in a slot, the slot having a first directional component and a second different directional component.
  • the mechanism includes a member engageable in a recess having a first region of a first depth and a second region of a second depth, and the member is retained in the second region after delivery of the legs by the pusher.
  • the present invention also provides a delivery system for a device for closing an aperture comprising an outer tube, a pusher received in the outer tube and slidable from a first position to a second position to define a total stroke to deliver a first portion of the aperture closing device from the outer tube in a direction distal of the outer tube. After completion of the first stroke to deliver the first portion of the aperture closing device, the pusher automatically retracts a distance less than a total distance defined by the first stroke to move the aperture closing device proximally toward the outer tube.
  • the pusher is connected to a plunger having a member engageable with a slot in a housing to limit retraction of the pusher after completion of the first stroke.
  • the slot can have a first directional component corresponding to distal movement of the pusher and a second directional component corresponding to retraction of the pusher.
  • the slot has a first region of a first depth and a second region of a second depth, and the member is retained in the second region after retraction of the pusher.
  • the present invention also provides a method for closing a vessel wall aperture comprising: providing a closure device including an elongated member and two legs, the closure device positioned in a delivery tube; inserting the delivery tube; advancing a pusher within the delivery tube from an initial position to a distal position to eject the elongated member from a longitudinal position in the delivery tube, the elongated member moving to a transverse position after ejection from the tube and the pusher automatically retracting to a position proximal of the distal position and distal of the initial position; withdrawing the delivery tube and pusher to move the elongated member against the internal opening of the vessel wall; and applying continued force by pulling the delivery tube and pusher proximally to release the legs of the closure device.
  • the step of applying a continued force includes disengaging a retention pin within the tube from engagement with the legs of the closure device.
  • Figure 1 is a perspective view of a first embodiment of the closure device of the present invention showing the clip legs in their memorized position
  • Figure 2 is a bottom view of the closure device of Figure 1
  • Figures 3-5 are front views of the closure device of Figure l(the suture not shown for clarity) showing movement of the clip legs to their memorized position wherein: Figure 3 shows the clip legs in a partially deflected (curved) position; Figure 4 shows the clip legs in a further deflected position; and
  • Figure 5 shows the clip legs in their memorized position
  • Figure 6 is a side view illustrating the closure device of Figure 1 partially deployed from the introducer sheath wherein the elongated member is retained in a longitudinal position;
  • Figure 7 is a view similar to Figure 6 except
  • FIG. 37A shows the introducer sheath (with the closure device positioned therein) extending through the vessel wall aperture into a vessel lumen;
  • Figure 37C illustrates the elongated member of the closure device partially advanced from the delivery tube (as a result of distal advancement of the pusher) and still retained within the introducer sheath;
  • Figure 37D illustrates the pusher further advanced to fully eject .
  • Figure 37E is a cross-sectional view (top view) of the delivery system corresponding to the closure device position of Figure 37D;
  • Figure 37F illustrates the pusher, outer tube, and delivery sheath being withdrawn to retract the elongated member against the internal vessel wall to cover the internal opening of the aperture;
  • Figure 37G illustrates the pusher, outer tube, and delivery sheath further withdrawn as the legs of the closure device are cammed outwardly by the retaining pin;
  • Figure 37H illustrates the legs of the closure device fully released from the retaining pin of the pusher;
  • Figure 371 illustrates the closure device fully deployed to close the vessel aperture with the clip legs moved toward their memorized position;
  • Figure 37J is a side view of the closure device in the position of Fig.
  • Figure 38 illustrates a method of delivering the closure device of Figure 10S and showing the device positioned in the delivery tube with the tabs engaging the pusher recesses;
  • Figure 39A is a perspective view of another alternate embodiment of the delivery system of the present invention;
  • Figures 39B-39G illustrate cross-sectional views of the delivery system of Figure 39 A, showing delivery of the closure device of Figure 10P, wherein Figure 39B shows the closure device positioned in the delivery tube and the plunger in the retracted position, and showing the introducer sheath extending through the vessel wall aperture into a vessel lumen;
  • Figure 39C is a close up view of the locking pin;
  • Figure 39D illustrates the elongated member of the closure device partially advanced from the delivery tube (as a result of distal advancement of the plunger) and still retained within the introducer sheath;
  • Figure 39E illustrates the plunger further advanced to fully eject the elongated member from the introducer sheath into the vessel lumen;
  • Figure 39F illustrates the
  • Figure 1 is a perspective view of first embodiment of the vascular hole (aperture) closure device of the present invention.
  • the device is intended to close an aperture in the vessel wall, typically formed after removal of a catheter previously inserted through the vessel wall into the vessel lumen for performing angioplasty or other interventional procedures.
  • the aperture extends through the patient's skin and underlying tissue, through the external wall of the vessel, through the wall of the vessel, and through the internal wall of the vessel to communicate with the internal lumen of the vessel.
  • the closure devices of the present invention have a covering member or patch positioned within the vessel pressing against the internal wall of the vessel to block blood flow and a clip positioned external of the vessel wall to retain the covering member. The clip pulls the covering member upwardly towards the aperture.
  • Hole (aperture) closure device 10 has an elongated member 12 and a clip 14 having four legs, preferably in the form of wires, 30a, 30b, 30c, and 30d retained within a collar 38.
  • the elongated member 12 is dimensioned and configured for positioning inside the vessel on the internal side of the aperture; the wires 30a-30d are configured to be positioned outside the vessel wall adjacent the external side of the aperture.
  • Elongated member 12 is retained in a longitudinal position for delivery to the vessel, and then pivots to a transverse position within the vessel lumen. This movement is illustrated in Figures 6 and 7 wherein elongated member 12 is partially deployed from the introducer sheath 300, but still retained in a longitudinal position by engagement of the wall at distal end 303 (Fig. 6) with end region 18. When fully deployed from the introducer sheath 300, end region 18 of elongated member 12 is also released so it can pivot to the transverse position of Figure 7 where it's substantially perpendicular to an axis extending through the aperture.
  • the center of collar 38 is slightly offset from the eyelet 24, enabling the elongated member 12 to pivot slightly when deployed; the vessel wall can then further pivot the elongated member to a transverse position as it is pulled back against the wall. This movement is described in more detail below in conjunction with the discussion of the method of insertion of closure device 10.
  • the legs 30a-30e of the clip 14 are retained in a substantially straightened position for delivery and when released moved to a curved configuration. This is also discussed in detail below.
  • the elongated member 12 functions to cover (patch) the internal opening in the vessel wall to prevent the egress of blood. As illustrated in Figures 1 and 2, the elongated (covering) member has an enlarged region 20 between the first and second end regions 16, 18.
  • the longitudinal axis defines a lengthwise dimension L and transverse axes define widthwise dimensions.
  • the widthwise dimension wl at the ends 16 and 18 of the elongated member 12 are preferably substantially equal and preferably range from about .025 inches to about .035 inches.
  • the widthwise dimension progressively increases, so its maximum width w2 preferably ranges from about .090 inches to about .125 inches.
  • This central enlarged region 20 of elongated member 12 provides a larger area to patch (cover) the internal opening in the vessel.
  • the width w2 preferably is at least substantially equal to the dimension of the internal opening to effectively cover the opening. Other dimensions are also contemplated.
  • closure device 50 has an elongated member 60 which is substantially uniform in width throughout its length.
  • connecting wire 56 abuts projecting surface 62 of elongated member 60 to tip (pivot) the elongated member 60.
  • closure device 50 is identical to device 10, e.g. four legs 52a, 52b, 52c and 52d retained within a collar 59 and connected to elongated member 60 by connecting wire 56 extending through the opening in projecting surface 62.
  • the elongated member could also be configured asymmetrically so that the enlarged region is off centered to accommodate widening of the aperture as the member is pulled at an angle.
  • the elongated member can also be configured in a paddle shape with a narrowed region adjacent a wider region as discussed below in conjunction with Figures 9B-9E.
  • the elongated member can be composed of materials such as polycarbonate or polyurethane, or alternatively can be composed of resorbable materials such as glycolide/lactide polymers which after a period of time resorbs in the body, leaving only the clip portion external of the vessel lumen. If composed of resorbable material, the elongated member could optionally have regions of varying resorbability.
  • region Rl would be the last to resorb
  • region R2 would resorb at a slower rate
  • Region R3 would be the first to resorb.
  • regions Rl and R2 could optionally not be resorbable. Varying degrees of resorbability can be achieved by utilizing different materials having differing resorbable characteristics or by varying the thickness of the regions of the elongated member (the thicker regions taking a longer time to resorb).
  • the elongated member 12 has an opening or eyelet 24 formed in projecting surface 22. Opening 24 receives a connecting wire 40 to couple the clip 14 to the elongated member 12.
  • the clip legs 30a-30d of clip 14 each have a first portion which extends through collar 38, terminating at ends 33a-33d, respectively, and a second end 32a-32d, respectively, which is configured to engage tissue.
  • the ends 32a-32d are non-penetrating blunt tips.
  • sharpened or tissue penetrating tips could alternatively be provided.
  • the clip legs 30a-30d are retained in the collar 38 by laser welding, glue, or other securing means. Alternatively, the clip legs can be welded or otherwise attached to each other (and the connecting wire) without the need for a collar. Also fixed within collar 38, by any suitable means, e.g. laser welding or glue, is connecting wire 40 which loops at region 42 through opening 24.
  • FIG. 8 illustrates a transverse cross-sectional view taken through collar 38 to illustrate the positioning of the clip legs 30a-30d and connecting wire 40 within the collar 38.
  • Suture 45 also extends through eyelet 24 and functions to position the elongated member 12 as described in detail below.
  • Clip legs 30a, 30b, 30c, and 30d are preferably composed of four discrete wire elements composed of shape memory material, such as Nitinol (nickel titanium alloy) with a memorized position of that shown in Figure 5.
  • shape memory material such as Nitinol (nickel titanium alloy)
  • FIG. 10A illustrates an alternate embodiment of the closure device of the present invention, designated by reference numeral 70.
  • Closure device 70 is similar to closure device 10 except for the shape of the clip legs 78 (only two of which are shown) and the collar 75.
  • Clip legs 78 are made of wire having a rectangular cross-sectional shape.
  • the clip legs 78 are formed into an elongated U-shape.
  • a rectangular shaped collar 75 is provided instead of the cylindrical collar 38 of closure device 10.
  • closure device 70 is identical to closure device 10.
  • the clip legs 84a-84d of closure device 80 are initially formed from rectangular (or square) tubing. As shown, tubing 86 is split, preferably by laser cutting to form the four curved legs 84a-84d which in their closed position form a C-shape configuration.
  • Elongated covering member 85 is identical to elongated member 12 of closure device 10 with an enlarged width region 85 for covering (patching) the internal side of the opening.
  • a connecting wire 83 connects the clip portion to the elongated member via eyelet 88.
  • Plug 87 is slip fit over connecting wire 83 and has one or more tabs 89 snap fit through window 86a in tubing 86 to connect the elongated member 82 to the tubing 86. It should be appreciated that the other embodiments disclosed herein could also have retaining tabs for attachment to the collar portion.
  • the closure device 270 has two clip legs 272a, 272b formed from a single sheet or strip of metallic material such has shape memory material, e.g. Nitinol.
  • more than two legs can be formed from the metallic material.
  • the clip legs 272a, 272b curved into a C-shape as shown, separate at central region 274 to curve in opposite directions. This splitting at the central region and formation of the clip legs is preferably done by laser cutting a rectangular tubing. Central region 274 has a reduced width area 276.
  • the connecting end is curved to form a hook or tab 278 for attachment to the elongated member (patch) 280.
  • the connecting end also includes a reduced width portion 279 to form a shoulder for mechanical securement of the tab 278 within the elongated member 280. .
  • Elongated member 280 is oval shaped with elongated parallel side walls 282a, 282b and arcuate end walls 284a, 284b connecting the side walls 282a, 282b. In this configuration of the elongated member 280, other than the end portions, the width z is substantially uniform.
  • the transverse slot or opening 285 is configured to receive the tab 278 for securement of the clip legs to the elongated member 280. To enhance securement, during manufacture the elongated member is preferably heated to melt around the tab. Other securement processes are also contemplated. It is also contemplated that the closure device 280 can be formed with the two clip legs positioned with respect to the elongated member 90 degrees out of phase from Figure IOC.
  • the slot in the elongated member would be oriented longitudinally and the tab directed transversely (or else the legs twisted at a 90 degree angle with respect to the longitudinal tab) such that the clip legs 272a, 272b would curve in a direction substantially perpendicular to the longitudinal axis of the elongated member rather than in a direction substantially parallel to the longitudinal axis as in Figure IOC.
  • Such orientation would reduce the profile of the clip along the length of the vessel to enable positioning multiple clips along the vessel closer to one another.
  • An example of such orientation of the clip legs with respect to the elongated member is illustrated in the embodiment of Figure 10J described below.
  • Figures 1 OF- 101 illustrate another embodiment of a collarless clip closure design.
  • the elongated member (patch) 380 of closure device 370 is shaped similar to elongated member 280 of the Figure 10C embodiment in that it is oval shaped and of substantially uniform width y except for its end portions 385, 387.
  • the elongated member has a central portion with a thickness "k" at a central portion greater than the thickness at the end portions. This results in the end portions resorbing at a faster rate than the central portion, the region which attaches to the clip portion so that the clip attachment remains longer.
  • Elongated member 380 has two openings 384, 386 on its upper surface 388 and a longitudinally extending groove 389 on its lower surface 390, together forming a U-shaped channel for receipt of the clip.
  • the clip portion comprises a round wire bent to form two clip legs 371, 372 positioned 180 degrees apart.
  • the clip legs 371, 372 curve outwardly in a direction substantially parallel to the longitudinal axis of the elongated member 380.
  • Clip leg 371 has a tip 371a, a curved portion 371b and a straight portion 371c.
  • Clip leg 372 has a tip 372a, a first curved portion 372b, a second curved portion 372c, and straight portion 372d.
  • the straight portions 371c, 372d of the clip legs 371, 372 are joined by longitudinally extending portion 373. This portion 373 is seated within groove 389 in lower surface 390 of elongated member 380.
  • Straight portions 371c, 372d extend through openings 384, 386 of elongated member 380.
  • the elongated member can be heated to melt the plastic around the clip.
  • the clip legs would be folded on top of the elongated member 380 to the left as viewed in Figure 10F, with the curved portion 372c facilitating such bending.
  • the clip legs are oriented to curve in a direction substantially perpendicular to the longitudinal axis of elongated member (patch) 480 which is similar in configuration and thickness to patch 380.
  • Clip legs 471, 472 of closure device 470 each have a respective tip 471a, 472a, a curved portion 471b, 472b, a straight portion 471c, 472c, a diverging leg portion 47 Id, 472d, and a lower straight portion 47 le, 472e connected by transverse portion 474.
  • a portion of the legs e.g. the tips 471a, 471b and a curved portion, exceed the widthwise dimension of the elongated member 480.
  • the clip legs extend into the U-channel in the elongated member 480 formed by openings 484, 486 and transverse groove 488.
  • the transverse positioning of the clip legs results in the clip occupying less space along the vessel when implanted, thereby allowing placement of additional clips closer together at a later time, e.g. after the resorbable elongated member is resorbed.
  • the clip portion is also positioned at an acute angle "b" such as 45 degrees (other angles are also contemplated) to the elongated member 480, as shown, so that when inserted in the vessel, the elongated member will emerge substantially parallel to the vessel wall.
  • the lower straight portion 47 le, 472e extend in a plane substantially perpendicular to the upper surface plane of the elongated member 480 and the straight portions 471c, 472c extend at an acute angle thereto.
  • the straight portions of the clip legs are shown side by side, it is also contemplated that the straight portions could be superimposed.
  • the clip legs 471,472 would fold onto the elongated member, thereby reducing the clip delivery profile.
  • the clip can be preloaded so the legs crossover which could enhance the stability to control the deployed orientation of the elongated member.
  • the elongated member is preferably composed of resorbable material and the clip legs preferably of shape memory material, although other materials are contemplated.
  • Figures 10P-10V illustrate alternate embodiments of the closure device wherein the clip legs are stamped, laser cut or formed from a sheet, strip, ribbon or other forms of material, preferably of shape memory material such as Nitinol, which is formed into the configuration shown.
  • This flat sheet (or strip or ribbon) of material has a width p, illustrated for example in Figure 10R, greater than thickness r.
  • the width p is about .050 inches and the thickness r is about .006 inches, although other dimensions are contemplated.
  • elongated member (patch) 652 is shaped similar to the elongated member 380 of Figure 10F except that the ends 653 have a straight wall portion 654a, 654b rather than curved. As with elongated member 380, elongated member 652 has a thickness at the central portion 658 greater than the thickness at the end portions 656a, 656b.
  • the elongated member 652 is preferably made of resorbable material and preferably lactide/glycolide polymers.
  • the clip portion 660 has two clip legs 662 and 664 which curve in opposing directions.
  • the clip portion 660 has a connecting region 661 with neck region 665 extending outside the elongated member 652 and enlarged connection head 663 over which elongated member 652 is molded to attach the clip portion 660 to the elongated member 652.
  • transition region 666 which transitions to widened leg region 668.
  • Widened region 668 has an elongated slot 672 dividing the leg region 668 into two legs 662, 664.
  • Each of the legs 662, 664 curves outwardly as shown and contains a notch 667, 669, respectively, near the proximal end, which together form a pin receiving opening (described below) when the legs are in their straightened delivery configuration.
  • the elongated member 652 has a length g of about 8mm (in a 6 French system) and the length of the clip portion in the straightened delivery configuration is also about 8mm (measured from the top surface 657 of the elongated member 652).
  • the slot 672 in this preferred embodiment begins at a distance of about 2.6mm from the top surface 657 of the elongated member 652. It should be appreciated that these dimensions are for one preferred embodiment as other dimensions are clearly also contemplated. The dimensions may also differ for other French size systems.
  • Figures 10S-10T illustrate an alternate embodiment of the closure device, designated generally by reference numeral 680.
  • Closure device 680 is identical to device 650 except that instead of the notches formed in the clip legs, the clips legs 682, 684 have bent tabs 682a, 682b at their tips. These tabs 682a, 682b curve inwardly toward the widened region 683 of the clip portion.
  • the tabs 682a, 682b function to retain the clip legs 682, 684 during delivery and allow subsequent release. Their function is described in more detail below in the discussion of the method of insertion of Figure 38.
  • the tabs 682a, 682b are offset (non-symmetrical) with respect to each other.
  • the patch (elongated member) is designated by reference numeral 681, and is preferably molded over the enlarged connecting head of the clip leg portion as in Figure 10R.
  • FIGS 10U and 10V illustrate an alternate embodiment of the closure device.
  • Closure device 690 is identical to closure device 680 except that rather than being perpendicular, the clip portion 694 (containing clip legs 693, 695) is positioned at an angle to the elongated member 691.
  • the connecting region 696 extends perpendicularly, however transition region 697 is positioned at an angle so the clip portion extends at an angle. In the illustrated embodiment, the angle could be about 45 degrees although other angles are clearly contemplated.
  • the tabs 693a, 695a of the clip legs 693, 695, respectively, are offset as in the embodiment of Figure 10S.
  • FIG. 11A is a perspective view of another alternate embodiment of the closure device.
  • closure device 90 has four legs 94 (only two of which are shown) as in the embodiment of Figure 1.
  • suture 97 is connected to the loop 95 of connecting wire 96. That is, connecting wire 96 is looped through eyelet 93 of elongated member 92 at one end and receives a suture loop 95 at the opposite end. In this manner, as the suture is pulled proximally, the elongated member (and clip) are pulled proximally.
  • Connecting wire 96 is preferably attached within collar 98 by laser welding, gluing, or other suitable means. Connecting wire 96 can be utilized to bias the elongated member to a transverse position. In the Fig.
  • the connecting wire 116 of closure device 110 is embedded, e.g. insert molded, within the elongated member 112. This reduces the profile of the member 112 since the projecting surface (protrusion) as in the Fig. 11A embodiment is eliminated.
  • the connecting wire 116 is made of material, e.g. shape memory metal, which is designed to be in a substantially straightened position, or alternatively in an angled position such as 45°. This configuration biases the elongated member 112 to the transverse position.
  • device 110 is identical to device 90, e.g. legs 114 (only two are shown), suture 117 attached to connecting wire 116, etc.
  • FIGS 9B-9E illustrate an alternate embodiment of the closure device, designated by reference numeral 140, having a flexible connecting wire 146 attached to elongated covering member 142 by insert molding, mechanical connection or other suitable means.
  • connecting wire 146 optionally composed of shape memory material such as Nitinol, is positioned off center of the connecting member 142 to bias it to the transverse position and to facilitate movement of the connecting member 142 to the longitudinal position for delivery to the vessel.
  • the proximal end of connecting wire 146 is attached by suitable means to the collar 148.
  • Four clip legs 144 as in the embodiment of Figure 1 are provided.
  • the clip legs 144 can have hooked tips 145 as shown which are positioned within and engage collar 148 to facilitate securement therein.
  • the elongated covering member 142 is paddle shaped having an enlarged region 142a and a narrowed region 142b, thereby reducing its profile so the overall amount of material left in the vessel after placement of the closure device 140 is reduced. Narrowed region 142b can optionally progressively taper starting from the transition with the enlarged region 142a.
  • the collar 148, clip legs 144 and connecting wire 146 are laser welded together.
  • the connecting wire 146, with tag end 147 is subsequently connected to covering member 142 in the orientation shown.
  • covering member 142 has a longitudinal slot with interference bumps (not shown) dimensioned to receive the tag end 147 of connecting wire 142.
  • FIG 11C illustrates another alternate embodiment of the closure device, designated by reference numeral 130.
  • Closure device 130 has clip legs 134a-134d with planar surfaces formed from wire of rectangular cross-section and is preferably composed of shape memory metal.
  • a connecting strap 136 or alternatively a connecting wire like wire 96 of Figure 11 A, extends through eyelet 133 of elongated member 132.
  • Suture 137 is looped through strap 136 for pulling elongated member 132 against the internal opening of the aperture.
  • the clip legs 134a-134d are retained within collar 138 by engagement of a respective tab 139 on each of the legs extending through a respective window 135 on collar 138.
  • fewer legs e.g. two legs spaced approximately 180 degrees apart or three legs spaced approximately 120 degrees apart, or more than four legs can be provided to achieve the device retention function.
  • the two leg versions can be modified to have fewer or more legs. It should be appreciated that in a four clip version, to conserve space, i.e.
  • FIGS 28-30 illustrate an example of a single clip leg utilized to retain the elongated member and exert a proximal force on the tissue and elongated member.
  • curved clip leg 702 when deployed from delivery instrument 703 curves inwardly as shown to grasp tissue and secure elongated member 704 against the internal vessel wall.
  • clip leg 740 directly connected to elongated member 744, is retained in a substantially straightened position within the delivery instrument 742 (Figure 30), and when deployed curves around itself, to form a spring-like element, as shown in Figure 29B.
  • This clip leg 740 coils to pull up on the elongated member 744 to retain it within the vessel.
  • blunt or sharpened tips can be provided on the clip legs to perform their gripping function.
  • the clip legs can alternatively be composed of a shape memory plastic, stainless steel, resorbable material, or other materials. It should also be appreciated that the clip legs shown herein represent their full formation, e.g. their memorized position, when formed without any tissue resistance.
  • FIGS 12A-12E illustrate a first insertion method. The method illustrated shows placement of closure device 10, however, it should be understood that the other closure devices described herein can be inserted in a similar manner.
  • a dilator 304 is inserted through introducer sheath 300 and over a guidewire 302 into the vessel lumen.
  • sheath and dilator 304 extend through opening "a" in the skin, through the tissue tract to the vessel V, through external opening “b” in the vessel wall, through the aperture in the vessel wall "w”, and through an internal opening "c” on the interior side of the vessel wall into the vessel lumen (see also Fig. 12F).
  • the guidewire 302 and dilator 304 are withdrawn, and closure applying (delivery) instrument 310 is inserted through the sheath 300 into the vessel lumen as shown in Figure 12B.
  • the elongated member 12 extends distally of the delivery instrument 310 and is retained in a longitudinal position by the walls of the introducer sheath 300; the clip legs are retained in a substantially straightened position in a martensitic state within the delivery instrument by the infusion of cold saline.
  • the delivery instrument 310 is advanced through the introducer sheath 300 and past the distal tip 303 so the elongated member 12 is outside the confines of the wall of the introducer sheath 300 and extends into the vessel lumen sufficiently spaced from the internal opening in the vessel wall. This provides sufficient room for pivotal movement of the elongated member 12.
  • the elongated member 12 As the elongated member 12 is released from the confines of the wall, it is enabled to pivot toward a transverse position as shown in Figure 12C.
  • the sheath 300 and delivery instrument 310 are pulled proximally as a unit until the elongated member is seated against the internal opening c in the vessel wall w.
  • the sheath 300 and instrument 310 can optionally be fitted (locked) together so they can be moved as a single unit.
  • Suture 45 extending through eyelet 24 of elongated member 12 (see Figures 14 and 15), is attached to the delivery instrument 310 so that pulling the delivery instrument proximally pulls the suture 45 and thus the elongated member 12 proximally.
  • the elongated member 12 is pulled proximally to cover the opening in a patch-like manner with the enlarged region 20 spanning the internal opening c to prevent egress of fluid. Note that the vessel wall further pivots the elongated member to the fully transverse position.
  • the closure device is further ejected from the delivery device 310 by distal movement of a pusher (not shown) against the clip legs, thereby forcing clip 14 from the delivery instrument 310 so the clip legs 30a-30d are warmed by body temperature and move towards their memorized configuration.
  • Figure 12E illustrates the closure device 10 in position with elongated member 12 abutting internal opening c on the internal side of the vessel V to cover (patch) the opening and the retention legs 30a-30d curving downwardly and preferably slightly inwardly towards the tissue tract and aperture to engage the tissue and apply a proximal (upward) force on the elongated member 12.
  • Tissue can also be forced by the curved clip legs 30a-30d towards the aperture and tissue tract on the external side of the vessel wall.
  • Figure 12E also shows the introducer sheath 300 (and delivery device 310) being withdrawn from the patient's body. The suture is withdrawn with the delivery device 310.
  • the suture would be designed to automatically rip when a sufficient load (exceeding a threshold amount) was placed on the suture, thereby separating the closure device from the delivery instrument.
  • a sufficient load exceeding a threshold amount
  • the elongated member 12 is ejected by a pusher rather than by advancement of the delivery instrument. That is, the pusher inside the delivery instrument would be actuated to advance the closure device so the elongated member 12 is moved distally, outside the confines of the introducer sheath wall.
  • the clip legs 30a-30d still remain within the delivery instrument 310 and are not yet deployed.
  • the delivery instrument 310 can lock into the sheath 300 at a proximal end.
  • the clip legs 30a-30d are deployed by moving the delivery instrument 300 proximally to expose the clip legs or by further actuating the pusher to advance the clip legs from the delivery instrument.
  • Figures 13A-13E illustrate an alternate method of insertion of the closure device 10 of the present invention. It should be understood that the other closure devices disclosed herein could also be delivered with delivery instrument 320.
  • FIG. 13A-13E The delivery method of Figures 13A-13E is the same as the method of Figures 12A-12E except that instead of advancing the closure device distally to free the elongated member for pivotal movement, the introducer sheath 300 is retracted with respect to delivery instrument 320. More specifically, in this method, the dilator ( Figure 13 A) is introduced over the guidewire in the same manner as Figure 12 A. Note Figure 13A shows partial introduction as the sheath would be advanced further into the vessel corresponding to the position of Figure 13B. Note also, the introducer sheath 300 is inserted into the vessel, but further into the vessel than in the method of Figure 12, as shown in Figure 13B.
  • the distal tip 303 of the introducer sheath 300 is moved to the position where it is desired to release the elongated member 12 into the vessel.
  • the introducer sheath 300 is retracted with respect to the delivery instrument 320, with tubing connector 314 received in a slot 322 of delivery instrument 320.
  • the elongated member 312 is exposed as shown in Figure 13C, thus enabling the elongated member 12 to pivot towards its transverse position as it is no longer retained by the wall of the introducer sheath 300.
  • the remaining steps for pulling the elongated member 12 proximally and releasing the clip illustrated in Figs.
  • clips legs 30a-30d are preferably made of shape memory metal material, such as Nitinol, a nickel titanium alloy.
  • shape memory metal material such as Nitinol, a nickel titanium alloy.
  • cold saline is injected into the delivery instrument 320 and around the legs 30a-30d in their collapsed position within the delivery instrument 320.
  • This shape memory material characteristically exhibits rigidity in the austenitic state and more flexibility in the martensitic state.
  • the cold saline maintains the temperature dependent wires 30a-30d in a relatively softer condition as they are in the martensitic state within the delivery instrument. This facilitates the exit of wires 30a-30d from the delivery instrument 320 as frictional contact between the wires 30a-30d and the inner surface of the instrument 320 would otherwise occur if the wires were maintained in a rigid, i.e. austenitic, condition.
  • a stopcock 301 can control the flow of saline.
  • Figure 23A illustrates an insertion tube 500 which can be utilized with the introducer sheath 300 to enable a larger dimensioned delivery instrument and larger dimensioned elongated member 12 to be inserted through the introducer sheath 300.
  • Insertion tube 500 has a head portion 502 and an elongated tubular portion 504 extending from head portion 502.
  • a lumen 506 extends through the tube 500.
  • insertion tube 500 is inserted through the valve 308 and into the lumen 309 of introducer sheath 300.
  • the tube 500 terminates proximal of the reduced lumen area 307 of sheath 300.
  • Tube 500 steps down to a smaller internal lumen diameter at region 509.
  • the lumen 506 of insertion tube 500 preferably has a diameter of about .096 inches and can preferably step down to about .088 inches (region 509).
  • the lumen 309 of the introducer sheath 300 preferably has a diameter of about .125 inches and the reduced lumen area 307 preferably has a diameter D2 of about .087 inches, preferably stepped down to a diameter D3 of about .079 inches (see Fig. 26C).
  • the outer diameter Dl of the introducer sheath 300 is about .105 inches and the outer diameter of the tubular portion 504 of the insertion tube 500 is about .114 inches.
  • the delivery instrument preferably has an outer diameter of about .079 inches.
  • the elongated member 12 preferably has a lengthwise dimension of about .313 inches (8 mm).
  • the elongated member 12 can be positioned outside the delivery instrument 310 and fed into the lumen 506 of tube 500 and lumens 309, 307, 305 of the sheath 300. As shown in Figures 24-26, when initially inserted, the closure device (collar 38, elongated member 12, etc.) fits within the confines of the sheath 300 without deflecting the sheath wall ( Figure 24B).
  • FIG. 25A When the delivery instrument 310 is inserted further into the introducer sheath 500 as shown in Figure 25 A, the sheath wall is deflected as shown in Figure 25B and is deformed as it is deflected beyond its elastic limit since the internal diameter of the tip is smaller. Full insertion shown in Figure 26A further deflects (deforms) the wall as shown in Figure 26B, beyond its elastic limit. Without the use of insertion tube 500, the elongated member 12 would have to be retained within the delivery instrument 310, which would require either a larger diameter delivery instrument 310 or a smaller (lengthwise) elongated member 12.
  • Figure 26D illustrates the closure device of Figure 11B positioned within the introducer sheath 300 to deflect the wall, corresponding to the position of Figure 26 A.
  • Figures 16A-16C illustrate an alternate embodiment of the closure device of the present invention which utilizes a slotted tube to retract and release the closure device.
  • Closure device 150 has an elongated member 152 and clip legs 154a-154d identical to the elongated member 12 and clip legs 30a-30d of closure device 10 of Figure 1.
  • Closure device 150 also has a collar 158 identical to the collar 38 of Figure 1.
  • a connecting wire 156 insert molded to elongated member 152 in the same manner as Figure 1 IB, connects the clip portion of the device to the elongated member 152.
  • the cross-sectional view of Figure 16C illustrates how the clip legs 154a-154d and connecting wire 156 are seated within collar 158 along the perimeter to facilitate manufacture.
  • a slotted tube 160 of the delivery instrument having a series of slots 162, e.g. four, to create a series of flexible fingers 164 is releasably seated over collar 158 to hold the closure device. Due to this interference fit, when slotted tube 160, which is fixedly mounted to the delivery instrument 161, is pulled proximally with the proximal movement of the delivery instrument, the collar 158, and thus the closure device 150 is pulled proximally to seat the elongated member 152 against the internal wall of the vessel to cover the internal opening of the aperture. When a sufficient load is placed on slotted tube 160, the fingers 164 flex outwardly and slide over the collar 158, thereby releasing the closure device 150 from the slotted tube 160 of the delivery instrument.
  • the release tube instead of being slotted, has a crimped or swaged tip which is positioned slightly distally of the collar. This tip is flexible so that upon placement of sufficient load on the tube, the tip flexes to ride over the collar to release the closure device. Additionally, dimples could be provided on the interior surface to help retain the tube over the collar, but which would enable release of the collar.
  • a pair of jaws 181, 182 are fixed to the delivery instrument 180. Jaws 181, 182 grasp collar 178 of closure device 170.
  • Closure device 170 is substantially identical to device 160 of Figure 16A having an elongated member 172, a connecting wire 176, collar 178, and four clip legs 174 (only the ends of two are shown for clarity).
  • a sufficient load is placed on jaws 181,182, the jaws open and slide off collar 178, thereby releasing the closure device 170 from the jaws of the delivery instrument.
  • a pair of jaws 191 of delivery instrument 190 grasps one or more of the clip legs 30.
  • the jaws 191 e.g. an alligator clamp, are spring biased to an open position and are retained by the wall of the introducer sheath 300 in the closed position as shown in Figure 22.
  • FIGS 31-36 illustrate another alternate embodiment of a delivery instrument for placement of the closure device. Although described for placement of closure device 140 of Figure 9B, other closure devices described herein can be placed in a similar manner.
  • delivery instrument 800 has a housing 801 having winged grippers 802, a plunger 804 movable axially with respect to housing 801 to advance the closure device 140, and locking windows 806a, 806b to secure the plunger 804 in a retracted and advanced position, respectively.
  • An elongated outer tube 805 extends from housing 801 and is dimensioned to receive the closure device 140 therein.
  • a pusher 806 Connected to plunger 804 is a pusher 806 having four longitudinal slots 807 (see Figs. 33 and 36) to each receive a clip leg in the straightened position within the delivery instrument 800.
  • the distal end of the pusher 806 abuts a region of the clip legs 144 proximal of the retaining collar 148 as shown in Fig. 35.
  • the pusher 806 is also moved distally, forcing the closure device 140 forward so that elongated member 142 is advanced into the vessel and moves to its transverse position, helped by the biasing force of offset connecting wire 146 described above.
  • the delivery instrument 800 is inserted into the vessel through an introducer sheath, designated by reference numeral 900 in Figures 31 and 35.
  • the introducer sheath 900 has a hub 906 with a proximal opening 902 to receive either a conventional dilator or the delivery instrument 800.
  • Sheath tube 907 extends from hub 906 and has an opening 904 in the side wall at the distal end.
  • the distal end is tapered at region 909 to provide a seal with the dilator.
  • the proximal end of the sheath tube 907 is flared at region 912 to enable a smooth transition for the outer tube 805 of the delivery instrument 800 when it is inserted through the introducer sheath 900 because with the closure device 140 in place, the outer tube 805 bulges outwardly.
  • a strain relief 910 surrounds a portion of the sheath tube 907.
  • the hub 906 of sheath 900 has a 45 degree sidearm 913 having tubing 915, strain relief 914 and a male luer 916 for mounting extension assembly 920.
  • Hub 906 further includes a valve assembly at the proximal end having a spacer ring 930, a cylindrical valve element 932 having a slit arrangement, and a sheath cap 934.
  • the sheath cap 934 has an opening 936 dimensioned to receive and mount by a snap fit arrangement a dilator (not shown) and the delivery instrument 800.
  • a distal sheath cap 938 is mounted to the distal end of the hub 906.
  • a collar 810 mounted in housing 801 of the delivery instrument 800 and has a snap in tip 812 fitted within the opening 936 in the sheath cap 934. Placement of the closure device 140 using delivery instrument 800 will now be described.
  • a syringe 950 filled with fluid such as saline, is threaded onto proximal threads of extension assembly 920.
  • the introducer sheath 900 with a conventional dilator (not shown) snapped into sheath cap 934, is inserted through the tissue tract over a guidewire toward the vessel wall, with the user attempting to depress the syringe plunger 952.
  • the dilator is removed.
  • the syringe 950 is either filled with cool saline or is detached from the extension assembly 920 and another syringe with cool saline is attached to threads 922.
  • This cool saline is applied to the closure device 140 during delivery to maintain the legs 144 and connecting wire 146 in a cooled martensitic state as described above with respect to other embodiments. .
  • the delivery instrument 800 is ready for insertion through the introducer sheath 900.
  • the closure device 140 is positioned in the delivery instrument 800 as shown in Figure 35, with the clip legs 142 contained in longitudinal slots of the pusher 806.
  • the elongated member 142 is contained within the confines of the outer tube 805.
  • the outer tube 805 remains proximal of the distal tip of the introducer sheath 900 as shown.
  • the plunger 804 is depressed to move the pusher 806 distally (until fingers 809 are positioned in windows 806b) to advance the closure device 140 so the elongated member 142 is moved beyond the confines of the outer tube 805 and beyond the distal tip of the introducer sheath 900.
  • the elongated member 142 pivots to a transverse position as shown in Figure 36.
  • FIGS. 37A-37G illustrate an alternate method of insertion, shown inserting by way of example closure device 650 of Figure 10P.
  • closure device 650 as shown in Figure 37A is positioned in the delivery tube 1010 with the clip legs 662, 664 in the elongated straightened position. They are preferably maintained in this straightened martensitic position by the injection of cold saline as described above.
  • the elongated member 652 is positioned in a somewhat longitudinal position in the delivery tube 1010 as shown, except at a slight angle due to the bend (curve) in the connecting region 661.
  • a transverse retaining pin 1122 of pusher 1120 is positioned in the notches 667, 669 of the clip legs 662, 664.
  • Pusher 1120, with attached retaining pin 1122 is slidably positioned within delivery tube 1010.
  • the delivery tube 1010 is inserted through introducer sheath 1030.
  • Sheath 1030 has a beveled end to facilitate insertion through the tissue, including the vessel wall, beyond the internal aperture.
  • the pusher 1020 is advanced distally in the direction of the arrow of Figures 37C and 37D. This ejects the elongated member 652 from the delivery tube 1110 and sheath 1130.
  • the clip legs 662, 664 are retained within the delivery tube by the engagement of retaining pin 1122 with the clip leg notches 667, 669.
  • the injection of cold saline through the sheath port maintains the legs in the martensitic condition.
  • the connecting region 661 composed of shape memory material, is warmed by body temperature and moves to a straightened memorized position as shown in Figures 37D and 37E. This causes elongated member 652 to rotate to move to a transverse position.
  • elongated member 652 is positioned inside the vessel lumen, in a transverse orientation spaced from but oriented to cover (patch) the vessel aperture on the internal side.
  • the user pulls the sheath 1030, delivery tube 1020, and pusher 1120 proximally in the direction of the arrow, thereby pulling the elongated member 652 against the vessel aperture to patch the opening (Fig. 37F).
  • the sheath 1030, delivery tube 1010, and pusher 1120 is countered by the force of the vessel wall against the elongated member 652 until the force exceeds that of the retaining pin 1022 of pusher 1120.
  • Figures 371 and 37J illustrate the closure device 650 positioned in the body with the elongated member covering the vessel aperture and the clip legs 662, 664 external of the vessel.
  • Figure 371 shows the legs in the fully memorized position, it should be appreciated that the extent they move to this position will depend on the tissue.
  • Figure 38 illustrates a delivery system for the closure devices having tabs such as closure device 680 of Figure 10S and closure device 690 of Figure 10U. The delivery steps would be the same as in Figure 37 except that instead of a retaining pin, the tabs 682a, 682b (or 693a, 695a) of the clip legs are positioned within recesses 1152 and 1154 of pusher 1150.
  • the elongated member 681 After delivery of the elongated member 681 to the vessel lumen, when the pusher 1150, delivery tube 1160 and introducer sheath 1170 are pull proximally, the elongated member 681 will be pulled against the vessel aperture to patch the opening. Once engaged with the aperture and abutting the internal vessel wall, further retraction of the sheath, pusher and delivery tube is countered by the force of the vessel wall against the elongated member until the force exceeds that of the tabs 682a, 682b in the recesses 1152 and 1154. At that point the tabs 682a, 682b will pull out of the recesses releasing the clip legs and allowing delivery of the clip portion from the delivery system.
  • Delivery unit 1201 includes a handle assembly 1204 and a tube 1206 inserted through sheath S having an injection port SI.
  • the handle assembly 1204 includes a plunger 1208 and a transverse pin 1210 engaging a slot 1214 in the housing 1212.
  • the pusher 1209 extends through tube 1206 and is connected to the plunger 1208.
  • Plunger 1208 is biased proximally by plunger spring 1218.
  • Transverse locking pin 1210 is biased into the slot 1214 by spring 1220.
  • Slot 1214 has a first region 1214a defining a first depth and a second shorter region 1214b having a second greater depth.
  • plunger 1208 is in the retracted position corresponding to the elongated member 652 of the closure device 650 contained within the tube 1206.
  • pin 1210 is positioned against the proximal wall 1215 of slot 1214 and abuts wall 1208a of plunger 1208.
  • wall 1208b comes into contact with transverse pin 1210. Further advancement of the plunger 1208 causes wall 1208b to contact and slide transverse pin 1210 distal in slot 1214a.
  • FIG 39F illustrates the pusher, delivery tube and introducer sheath being withdrawn to release the clip legs 662, 664 from the retention pin 1211 (identical to pin 1122 of Figure 37) as described above.
  • Figures 40A-42B illustrate an alternate embodiment of a mechanism for automatically retracting the pusher after distal movement ejects the elongated member.
  • the drawings illustrate cross-sectional views of the proximal portion of the delivery system.
  • Proximal portion includes a handle assembly having a plunger 1302 having a transverse pin 1304 biased into engagement with slot 1320 or 1330 in handle housing 1310 by spring 1308.
  • the transverse locking pin 1304 is seated within a housing 1317 in transverse slot 1312 in plunger 1302.
  • Plunger 1302 is biased in a proximal direction by spring 1314.
  • the pusher which retains the clip legs and advances the elongated member as described above is connected to the plunger at region 1307.
  • the slot 1320 in housing 1310 has a first directional component as shown and has a proximal wall 1322 and a distal wall 1324.
  • the distal wall 1324 is common to slot 1320 and slot 1330.
  • Slot 1330 is shorter and deeper than slot 1320.
  • the proximal wall of slot 1330 is designated by reference numeral 1332.
  • Slot 1330 has a directional component different from the directional component of slot 1320 as shown.
  • transverse pin 1304 In the initial position of the plunger 1302 shown in Figures 40 A and 40B, when the closure device is fully within the delivery tube (not shown), the transverse pin 1304 abuts the proximal wall 1322 of slot 1320 due to the force of plunger spring 1314. Thus, transverse pin 1304. limits proximal movement of plunger 1302 and wall 1322 acts as a stop. In this initial position, transverse pin 1304 is biased against wall 1326 of slot 1320 by spring 1308 (biased upwardly in the orientation of Figure 40B). Note that the depth h of slot 1320 is less than the depth j of slot 1330.
  • transverse pin 1304 Upon distal advancement of plunger 1330 as shown in Figures 41 A and 4 IB, transverse pin 1304 travels in slot 1320 and into abutment with distal wall 1324.
  • the elongated member (not shown) has been ejected from the delivery tube and introducer sheath, but the clip portion remains within the delivery tube by the retention pin described above.
  • the transverse pin 1304 by abutting the common distal wall 1324 of slots 1320, 1330 stop the forward stroke of the plunger. Also, in this position, the transverse pin 1304 is biased into the deeper slot 1330 by spring 1308 and against wall 1338.
  • FIG. 18-20 illustrate alternate embodiments of the delivery instrument which facilitate repositioning of the elongated member within the vessel. That is, in these embodiments, the delivery (closure applying) instrument has a projecting distal tip with an abutment surface configured to engage one of the sides of the elongated member.
  • the elongated member 102 is biased to a transverse position by the offset suture 104 of closure device 100. It can be pivoted by the projecting tip of the instrument.
  • Figures 17A and 17B show a variation of the elongated member.
  • Closure device 120 has a mushroom shaped saddle 121 which functions to abut the internal wall of the vessel to cover the internal opening of the vessel aperture.
  • the saddle 121 has a circular periphery with two opposing sides 125 curving downwardly.
  • Clip legs 122a, 122b, 122c, and 122d extending from stem 124 function in the same manner as the clip legs described above.
  • Clip legs 122a-122d are shown with penetrating tips 124a-124d, respectively, but non-penetrating tips can also be provided.
  • This closure device 210 is described in more detail in commonly assigned patent application serial no. 09/659,648, filed September 12, 2000, the entire contents of which are incorporated herein by reference.
  • Figures 27 and 28 illustrate an alternative embodiment of the closure member of the present invention utilizing a different approach to connecting the clip legs to the elongated member. This version differs from the foregoing embodiments as it eliminates a component to simplify manufacture and simplify the device as a single element can be utilized to both attach the portions of the closure member as well as to bias the elongated member.
  • closure device 600 has four legs 602, similar to legs 30 of the embodiment of Figure 1 in that they have a memorized curved configuration.
  • a tube 604 is preferably welded to elongated member 603, but can be insert molded or attached by other means. Tube 604 is spiral cut to provide flexibility and allow bending of the tube. Extending within the proximal end 606 of the tube 604 are clip legs 602, which are welded through the tube 604 at region 608. Other means of attachment could also be utilized. The proximal portion 606 of tube 604 is not cut to provide rigidity at the region of attachment to clip legs 602.
  • the spiral tube thereby serves several functions: connects the clip legs 602 to the elongated member 603 in a flexible manner, retains the clips legs, and biases the elongated member 603 to a transverse position. While the above description contains many specifics, those specifics should not be construed as limitations on the scope of the disclosure, but merely as exemplifications of preferred embodiments thereof. For example, any of the foregoing embodiments of the elongated member (patch) could be made of resorbable or non-resorbable material. Moreover, in the foregoing embodiments, the clip portion could be positioned at an acute angle, or other angles, to the elongated member as in Figure 10J.
  • the clip legs of the foregoing embodiments can be positioned in a longitudinal orientation such as in Figure 10F, a transverse orientation as in Figure 10J, or another angled orientation with respect to the elongated member, as well as at different angle to the plane of the upper surface of the elongated member.
  • the different configurations of the elongated member disclosed herein can be used with the various clip configurations disclosed in the embodiments described in this application. With suitable materials, the clip portion and elongated member could be a one piece construction.

Abstract

A device for closing an aperture in a vessel wall comprising an elongated member having a longitudinal axis and positionable inside the vessel against the internal opening of the aperture. The elongated member has a dimension to prevent egress of fluid through the aperture. A material forms two curved legs having ends positionable external of the vessel. The legs curve in different direction and a retention portion is formed in the material to retain the legs during placement of the elongated member inside the vessel.

Description

VASCULAR HOLE CLOSURE DEVICE BACKGROUND This application is a continuation-in-part of U.S. patent application serial no. 10/345,533, filed January 16, 2003, which is a continuation-in-part of U.S. patent application serial no. 10/163,142, filed June 5, 2002 which claims priority from provisional application serial no. 60/355,526, filed February 6, 2002 and which is a continuation-in-part of application serial no. 09/659,648, filed September 12, 2000 which claims priority from provisional patent application serial no. 60/153,736, filed September 13, 1999. The contents of each of these applications is incorporated herein by reference in their entirety. Technical Field This application relates to a vascular device and more particularly to a device for closing openings in vessel walls. Background of Related Art During certain types of vascular surgery, catheters are inserted through an incision in the skin and underlying tissue to access the femoral artery in the patient's leg. The catheter is then inserted through the access opening made in the wall of the femoral artery and guided through the artery to the desired site to perform surgical procedures such as angioplasty or plaque removal. After the surgical procedure is completed and the catheter is removed from the patient, the access hole must be closed. This is quite difficult not only because of the high blood flow from the artery, but also because there are many layers of tissue that must be penetrated to reach the femoral artery. Several approaches to date have been used to close femoral access holes. In one approach, manual compression by hand over the puncture site is augmented by a sandbag or weight until the blood coagulates. With this approach, it can take up to six hours for the vessel hole to close and for the patient to be able to ambulate. This inefficiency increases the surgical procedure time as well as the overall cost of the procedure since the hospital staff must physically maintain pressure and the patient's discharge is delayed because of the inability to ambulate. In another approach to close the vessel puncture site, a clamp is attached to the operating table and the patient's leg. The clamp applies pressure to the vessel opening. The patient, however, must still be monitored to ensure the blood is coagulating, requiring additional time of the hospital staff and increasing the cost of the procedure. To avoid the foregoing disadvantages of manual pressure approaches, suturing devices have been developed. One such suturing device, referred to as "the Closer" and sold by Perclose, advances needles adjacent the vessel wall opening and pulls suture material outwardly through the wall adjacent the opening. The surgeon then ties a knot in the suture, closing the opening. One difficulty with the procedure involves the number of steps required by the surgeon to deploy the needles, capture the suture, withdraw the suture, and tie the knot and secure the suture. Moreover, the surgeon cannot easily visualize the suture because of the depth of the femoral artery (relative to the skin) and essentially ties the suture knot blindly or blindly slips a pre-tied knot into position. Additionally, the ability to tie the knot varies among surgeons; therefore success and accuracy of the hole closure can be dependent on the skill of the surgeon. Yet another disadvantage of this suturing instrument is that the vessel opening is widened for insertion of the instrument, thus creating a bigger opening to close in the case of failure to deliver the closure system. It is also difficult to pass the needle through calcified vessels. U.S. Patent No. 4,744,364 discloses another approach for sealing a vessel puncture in the form of a device having an expandable closure member with a filament for pulling it against the vessel wall. The closure member is held in place by a strip of tape placed on the skin to hold the filament in place. However, the closure device is still subject to movement which can cause leakage through the puncture. Additionally, if the suture becomes loose, the closure member is not retained and can flow downstream in the vessel. Moreover, since the suture extends through the skin; a potential pathway for infection is created. The closure device in U.S. Patent No. 5,545,178 includes a resorbable collagen foam plug located within the puncture tract. However, since coagulation typically takes up to twenty minutes and blood can leak in between the plug and tissue tract, manual pressure must be applied to the puncture for a period of time, until the collagen plug expands within the tract. It would therefore be advantageous to provide a device which would more quickly and effectively close openings (punctures) in vessel walls. Such device would advantageously avoid the aforementioned time and expense of applying manual pressure to the opening, simplify the steps required to close the opening, avoid widening of the opening, and more effectively retain the closure device in the vessel.
SUMMARY The present invention overcomes the disadvantages and deficiencies of the prior art. The present invention provides a device for closing an aperture in a vessel wall comprising an elongated member having a longitudinal axis and positionable inside the vessel against the internal opening of the aperture.. The elongated member is dimensioned to prevent egress of fluid through the aperture. A material forming two curved legs has ends positionable external of the vessel. The legs curve in different directions. A retention portion is formed in the material to retain the legs during placement of the elongated member inside the vessel. In the preferred embodiment, the curved legs are composed of shape memory material and the elongated member is fabricated of a resorbable polymeric material molded over the shape memory material. In a preferred embodiment, the elongated member has a thickness in a middle portion greater than a thickness at the end portions and is substantially oval shaped with substantially linear sides. The closure device can be used with a delivery system including a sheath having a slidable pusher positioned therein having a retention pin releasably positioned within the retention slot of the retention portion. The present invention also provides in combination a device for closing an aperture in a vessel wall and a delivery system for the device. The device includes an elongated member positionable inside the vessel against the internal opening of the aperture to prevent egress of fluid through the aperture and two legs extending from the elongated member and positionable external of the vessel to help retain the elongated member in position. The delivery system includes a tube and a pusher slidably positioned within the tube, wherein the pusher includes a retaining pin releasably engagable with the legs. The pin retains the legs within the tube and releases the legs to enable delivery from the tube. In a preferred embodiment, the elongated member has a first thickness at an end portion and second greater thickness at a central portion, is composed of a resorbable material, and the two legs are composed of shape memory metal material. The delivery system may further comprise a mechanism to automatically retract the pusher after the pusher is advanced to deliver the elongated member. In one embodiment, the mechanism includes a member receivable in a slot, the slot having a first directional component and a second different directional component. In another embodiment, the mechanism includes a member engageable in a recess having a first region of a first depth and a second region of a second depth, and the member is retained in the second region after delivery of the legs by the pusher. The present invention also provides a delivery system for a device for closing an aperture comprising an outer tube, a pusher received in the outer tube and slidable from a first position to a second position to define a total stroke to deliver a first portion of the aperture closing device from the outer tube in a direction distal of the outer tube. After completion of the first stroke to deliver the first portion of the aperture closing device, the pusher automatically retracts a distance less than a total distance defined by the first stroke to move the aperture closing device proximally toward the outer tube. In one embodiment, the pusher is connected to a plunger having a member engageable with a slot in a housing to limit retraction of the pusher after completion of the first stroke. In this embodiment, the slot can have a first directional component corresponding to distal movement of the pusher and a second directional component corresponding to retraction of the pusher. In another embodiment, the slot has a first region of a first depth and a second region of a second depth, and the member is retained in the second region after retraction of the pusher. The present invention also provides a method for closing a vessel wall aperture comprising: providing a closure device including an elongated member and two legs, the closure device positioned in a delivery tube; inserting the delivery tube; advancing a pusher within the delivery tube from an initial position to a distal position to eject the elongated member from a longitudinal position in the delivery tube, the elongated member moving to a transverse position after ejection from the tube and the pusher automatically retracting to a position proximal of the distal position and distal of the initial position; withdrawing the delivery tube and pusher to move the elongated member against the internal opening of the vessel wall; and applying continued force by pulling the delivery tube and pusher proximally to release the legs of the closure device. In one embodiment, the step of applying a continued force includes disengaging a retention pin within the tube from engagement with the legs of the closure device. BRIEF DESCRIPTION OF THE DRAWINGS Preferred embodiment(s) of the present disclosure are described herein with reference to the drawings wherein: Figure 1 is a perspective view of a first embodiment of the closure device of the present invention showing the clip legs in their memorized position; Figure 2 is a bottom view of the closure device of Figure 1 ; Figures 3-5 are front views of the closure device of Figure l(the suture not shown for clarity) showing movement of the clip legs to their memorized position wherein: Figure 3 shows the clip legs in a partially deflected (curved) position; Figure 4 shows the clip legs in a further deflected position; and Figure 5 shows the clip legs in their memorized position; Figure 6 is a side view illustrating the closure device of Figure 1 partially deployed from the introducer sheath wherein the elongated member is retained in a longitudinal position; Figure 7 is a view similar to Figure 6 except showing the closure device further deployed from the introducer sheath to enable the elongated member to rotate to its transverse position; Figure 8 is a transverse cross-sectional view showing the positioning of the connecting wire and the clip legs within the collar of the closure device; Figure 9A is a perspective view of a second embodiment of the closure device of the present invention having an alternately configured elongated member; Figure 9B is a perspective view of a third embodiment of the closure device of the present invention having a paddle shaped elongated member; Figure 9C is an exploded view of the closure device of Figure 9B; Figure 9D is a side view of the closure device of Figure 9B; Figure 9E is a transverse cross-sectional view showing the positioning of the connecting wire and clip legs of Figure 9B within the collar of the closure device; Figure 10A is a perspective view of a fourth embodiment of the closure device of the present invention having clip legs formed of independent flat wire sections; Figure 1 OB is a perspective view of a fifth embodiment of the closure device of the present invention having clip legs integrally formed from rectangular tubing; Figure IOC is a perspective view of a sixth embodiment of the closure device; Figures 10D and 10E are respective exploded and side views of the closure device of Figure IOC; Figure 1 OF is a perspective view of a seventh embodiment of the closure device of the present invention; Figures 10G and 10H are respective exploded and top views of the closure device of Figure 10F; Figure 101 is a cross-sectional view taken along lines I-I of Figure 10H ; Figure 10J is a perspective view of an eighth embodiment of the closure device of the present invention; Figures 10K and 10L are respective exploded and top views of the closure device of Figure 10J; Figures 10M and ION are cross-sectional views taken along lines M-M and N-N, respectively, of Figure 10L; , Figures 10P, 10Q and 10R are side, front and perspective views, respectively, of a ninth embodiment of the closure device of the present invention; Figures 10S and 10T are perspective and side views, respectively, of a tenth embodiment of the closure device of the present invention; Figures 10U and 10V are perspective and side views, respectively, of an eleventh embodiment of the closure device of the present invention; Figure 11A is a perspective view of a twelfth embodiment of the closure device of the present, invention having a connecting wire extending through an eyelet of the elongated member; Figure 1 IB is a perspective view of a thirteenth embodiment of the closure device of the present invention having a connecting wire insert molded in the elongated member; Figure 11C is a perspective view of a fourteenth embodiment of the closure device of the present invention having flattened clip legs with a retaining mechanism engagable with the collar; Figure 11D is a schematic representation of an elongated member with varying regions of resorbability; Figures 12A-12E are perspective views, with a portion of the vessel cut away, illustrating a first method of delivery of the closure device of Figure 1 wherein: Figure 12A shows the dilator and sheath inserted over the guide wire into the target vessel; Figure 12B shows the delivery instrument positioned within the introducer sheath inserted through the skin opening and through the vessel wall aperture into the interior of the vessel; Figure 12C illustrates the elongated member of the closure device advanced beyond the distal end of the introducer sheath into the vessel lumen; Figure 12D illustrates the closure device pulled proximally so the elongated member abuts the internal wall of the vessel to cover the internal opening of the aperture; and Figure 12E illustrates the introducer sheath and delivery instrument being fully withdrawn to fully deploy the closure device so the clip legs move toward their memorized position to engage the tissue; Figure 12F is a side view showing the introducer sheath extending through the internal and external openings of the vessel wall aperture; Figures 13A-13E are perspective views, with a portion of the vessel cut away, illustrating an alternate method of delivery of the closure device of Figure 1 wherein: Figure 13A shows the dilator and sheath being inserted over the guidewire into the target vessel; Figure 13B shows the delivery instrument positioned within the introducer sheath inserted through the skin opening and through the vessel wall aperture into the interior of the vessel to a position where it is desirable to deploy the elongated member; Figure 13C illustrates the introducer sheath withdrawn proximally in a slot in the delivery instrument to release the elongated member of the closure device into the vessel; Figure 13D illustrates the closure device pulled proximally so the elongated member abuts the internal wall of the vessel to cover the internal opening of the aperture; and Figure 13E illustrates the introducer sheath and delivery instrument being fully withdrawn to fully deploy the closure device so the clip legs move toward their memorized position to engage the tissue; Figure 14 is a perspective view similar to Figures 12D and 13D showing the closure device partially deployed so that the elongated member is in its transverse position against the internal wall of the vessel; Figure 15 is an enlarged perspective view of the region of the closure device outlined in Figure 14; Figure 16A is a perspective view of a fifteenth embodiment of the closure device of the present invention placed by a delivery instrument having a slotted tube overlying the collar; Figure 16B is a perspective view of the slotted tube of Figure 16A; Figure 16C is a transverse cross-sectional view taken through the collar of Figure 16 A; Figure 16D is a perspective view of an alternate delivery instrument of the present invention for placement of the closure device, the instrument having a pair of jaws engaging the collar (the clip legs removed for clarity); Figure 17A is a front view of a sixteenth embodiment of the closure device of the present invention having a mushroom shaped aperture covering member; Figure 17B is a side view of the closure device of Figure 17 A; Figure 18 is a side view of another alternate embodiment of the delivery instrument for the closure device having a projecting tip for pivoting the elongated member; Figure 19 is a side view of the closure device of Figure 15 with the delivery instrument of Figure 18; Figure 20 is a side view of another alternate embodiment of the closure device of the present invention having a wire offset with respect to the elongated member for biasing the elongated member to the transverse position; Figure 21 is a perspective view of yet another alternate embodiment of the delivery instrument for the closure device of the present invention having a pair of jaws for grasping and releasing the closure device; Figure 22 is an enlarged view of the region outlined in Figure 21 showing the jaws grasping the closure device; Figure 23 A is a perspective view of an insertion tube configured for insertion into the introducer sheath; Figure 23B is a longitudinal cross-sectional view of the insertion tube positioned within the introducer sheath; Figure 24A is a side view of the delivery instrument being inserted into the introducer sheath; Figure 24B is a view taken along lines B-B of Figure 24 A showing the sheath and insertion tube in cross-section and the closure device positioned therein; Figure 25A is a side view similar to Figure 24A except showing the delivery instrument inserted further into the introducer sheath; Figure 25B is a view taken along lines B-B of Figure 25 A showing the introducer sheath in cross section and the closure device positioned therein deflecting the sheath; Figure 26A is a side view similar to Figure 24A except showing the delivery instrument fully inserted into the introducer sheath; Figure 26B is a cross-sectional view taken along lines B-B of Figure 26A showing the closure device positioned therein and deflecting the sheath; Figure 26C is a cross-sectional view of the distal end of the introducer sheath of Figure 26A; Figure 26D is a cross-sectional view similar to Figure 26B except showing the closure device of Figure 11 B positioned in the introducer sheath; Figure 27A is a perspective view of a fifteenth embodiment of the closure device of the present invention having a spiral tube; Figure 27B is a perspective view of the closure device of Figure 27A positioned to close the aperture in the vessel wall; Figure 28A is a side view of another alternate embodiment of the closure device having a single clip leg shown in a deflected position; Figure 28B is a side view of the clip of Figure 28A showing the range of movement of the clip leg; Figure 29A is a side view of yet another alternate embodiment of the closure device having a single clip leg shown in a partially deflected position; Figure 29B is a side view of the closure device of Figure 29A showing the clip leg in a fully deflected position; Figure 30 is a side view of the closure device of Figure 29 A showing the clip leg in the straightened position within the delivery instrument; Figure 31 is a perspective view of another alternate embodiment of the delivery instrument of the present invention for placement of the closure device showing the instrument positioned in an introducer sheath, the plunger in the retracted position, and the syringe connected to the extension assembly; Figure 32 is a cross-sectional view of the proximal end of the delivery instrument of Figure 31 showing the plunger in the retracted position; Figure 33 is a transverse cross-sectional view taken along lines C-C of the delivery instrument of Figure 31 (with the introducer sheath removed for clarity); Figure 34 is a longitudinal sectional view showing a portion of the delivery instrument of Figure 31 positioned in an introducer sheath; Figure 35 is a side view illustrating the distal end of the delivery instrument and the closure device in the introducer sheath; Figure 36 is a side view showing the elongated member advanced from the delivery instrument and introducer sheath by the pusher; Figures 37A-37H illustrate an alternate method of delivering the closure device of Figure 10P, showing cross-sectional views of the distal end of the delivery system, wherein Figure 37 A shows the closure device positioned in the delivery tube within the introducer sheath; Figure 37B is a cross-sectional view (top view) taken along the lines of Fig. 37A and showing the introducer sheath (with the closure device positioned therein) extending through the vessel wall aperture into a vessel lumen; Figure 37C illustrates the elongated member of the closure device partially advanced from the delivery tube (as a result of distal advancement of the pusher) and still retained within the introducer sheath; , Figure 37D illustrates the pusher further advanced to fully eject . the elongated member from the introducer sheath into the vessel lumen; Figure 37E is a cross-sectional view (top view) of the delivery system corresponding to the closure device position of Figure 37D; Figure 37F illustrates the pusher, outer tube, and delivery sheath being withdrawn to retract the elongated member against the internal vessel wall to cover the internal opening of the aperture; Figure 37G illustrates the pusher, outer tube, and delivery sheath further withdrawn as the legs of the closure device are cammed outwardly by the retaining pin; and Figure 37H illustrates the legs of the closure device fully released from the retaining pin of the pusher; Figure 371 illustrates the closure device fully deployed to close the vessel aperture with the clip legs moved toward their memorized position; Figure 37J is a side view of the closure device in the position of Fig. 371, Figure 38 illustrates a method of delivering the closure device of Figure 10S and showing the device positioned in the delivery tube with the tabs engaging the pusher recesses; Figure 39A is a perspective view of another alternate embodiment of the delivery system of the present invention; Figures 39B-39G illustrate cross-sectional views of the delivery system of Figure 39 A, showing delivery of the closure device of Figure 10P, wherein Figure 39B shows the closure device positioned in the delivery tube and the plunger in the retracted position, and showing the introducer sheath extending through the vessel wall aperture into a vessel lumen; Figure 39C is a close up view of the locking pin; Figure 39D illustrates the elongated member of the closure device partially advanced from the delivery tube (as a result of distal advancement of the plunger) and still retained within the introducer sheath; Figure 39E illustrates the plunger further advanced to fully eject the elongated member from the introducer sheath into the vessel lumen; and Figure 39F illustrates the plunger retracted (phantom lines) to move the elongated member proximally and the pusher, outer tube, and delivery sheath being withdrawn to retract the elongated member against the internal vessel wall to cover the internal opening of the aperture; Figures 40A-42B illustrate yet another alternate delivery method of the present invention, illustrating cross-sectional views of the delivery system showing delivery of the closure device of Figure 10P, wherein Figure 40A illustrates the plunger in the retracted position with the locking pin in the proximal position corresponding to the entire closure device positioned within the delivery tube; Figure 40B is a close up cross-sectional view showing the position of the locking pin in the shallower recess corresponding to the position of Figure 40 A; Figure 41 A illustrates the plunger advanced so the locking pin travels to the end of the recess; Figure 41B is a close up cross-sectional view showing the position of the locking pin in the deeper recess corresponding to the position of Figure 41 A; Figure 42A illustrates the plunger retracted so the locking pin travels to the proximal end of the deeper recess; and Figure 42B is a close up cross-sectional view showing the position of the locking pin in the deeper recess corresponding to the position of Figure 42A. DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS Referring now in detail to the drawings where like reference numerals identify similar or like components throughout the several views, Figure 1 is a perspective view of first embodiment of the vascular hole (aperture) closure device of the present invention. The device is intended to close an aperture in the vessel wall, typically formed after removal of a catheter previously inserted through the vessel wall into the vessel lumen for performing angioplasty or other interventional procedures. The aperture extends through the patient's skin and underlying tissue, through the external wall of the vessel, through the wall of the vessel, and through the internal wall of the vessel to communicate with the internal lumen of the vessel. The closure devices of the present invention have a covering member or patch positioned within the vessel pressing against the internal wall of the vessel to block blood flow and a clip positioned external of the vessel wall to retain the covering member. The clip pulls the covering member upwardly towards the aperture. Turning first to Figures 1-5, a first embodiment of the closure device of the present invention is illustrated. Hole (aperture) closure device 10 has an elongated member 12 and a clip 14 having four legs, preferably in the form of wires, 30a, 30b, 30c, and 30d retained within a collar 38. The elongated member 12 is dimensioned and configured for positioning inside the vessel on the internal side of the aperture; the wires 30a-30d are configured to be positioned outside the vessel wall adjacent the external side of the aperture. Elongated member 12 is retained in a longitudinal position for delivery to the vessel, and then pivots to a transverse position within the vessel lumen. This movement is illustrated in Figures 6 and 7 wherein elongated member 12 is partially deployed from the introducer sheath 300, but still retained in a longitudinal position by engagement of the wall at distal end 303 (Fig. 6) with end region 18. When fully deployed from the introducer sheath 300, end region 18 of elongated member 12 is also released so it can pivot to the transverse position of Figure 7 where it's substantially perpendicular to an axis extending through the aperture. Note that preferably the center of collar 38 is slightly offset from the eyelet 24, enabling the elongated member 12 to pivot slightly when deployed; the vessel wall can then further pivot the elongated member to a transverse position as it is pulled back against the wall. This movement is described in more detail below in conjunction with the discussion of the method of insertion of closure device 10. The legs 30a-30e of the clip 14 are retained in a substantially straightened position for delivery and when released moved to a curved configuration. This is also discussed in detail below. The elongated member 12 functions to cover (patch) the internal opening in the vessel wall to prevent the egress of blood. As illustrated in Figures 1 and 2, the elongated (covering) member has an enlarged region 20 between the first and second end regions 16, 18. The longitudinal axis defines a lengthwise dimension L and transverse axes define widthwise dimensions. The widthwise dimension wl at the ends 16 and 18 of the elongated member 12 are preferably substantially equal and preferably range from about .025 inches to about .035 inches. At the enlarged region 20, the widthwise dimension progressively increases, so its maximum width w2 preferably ranges from about .090 inches to about .125 inches. This central enlarged region 20 of elongated member 12 provides a larger area to patch (cover) the internal opening in the vessel. The width w2 preferably is at least substantially equal to the dimension of the internal opening to effectively cover the opening. Other dimensions are also contemplated. It should be appreciated that the elongated member could be provided without an enlarged region as long as it has sufficient area to cover the opening (aperture). This is illustrated by way of example in Figure 9 A, wherein closure device 50 has an elongated member 60 which is substantially uniform in width throughout its length. In this embodiment, connecting wire 56 abuts projecting surface 62 of elongated member 60 to tip (pivot) the elongated member 60. In all other respects, closure device 50 is identical to device 10, e.g. four legs 52a, 52b, 52c and 52d retained within a collar 59 and connected to elongated member 60 by connecting wire 56 extending through the opening in projecting surface 62. The elongated member could also be configured asymmetrically so that the enlarged region is off centered to accommodate widening of the aperture as the member is pulled at an angle. The elongated member can also be configured in a paddle shape with a narrowed region adjacent a wider region as discussed below in conjunction with Figures 9B-9E. The elongated member can be composed of materials such as polycarbonate or polyurethane, or alternatively can be composed of resorbable materials such as glycolide/lactide polymers which after a period of time resorbs in the body, leaving only the clip portion external of the vessel lumen. If composed of resorbable material, the elongated member could optionally have regions of varying resorbability. One example is shown in Figure 11D, where region Rl would be the last to resorb, region R2 would resorb at a slower rate, and Region R3 would be the first to resorb. One of more of these regions, e.g. Rl and R2, could optionally not be resorbable. Varying degrees of resorbability can be achieved by utilizing different materials having differing resorbable characteristics or by varying the thickness of the regions of the elongated member (the thicker regions taking a longer time to resorb). With continued reference to the closure device 10 of Figures 1-5, the elongated member 12 has an opening or eyelet 24 formed in projecting surface 22. Opening 24 receives a connecting wire 40 to couple the clip 14 to the elongated member 12. The clip legs 30a-30d of clip 14 each have a first portion which extends through collar 38, terminating at ends 33a-33d, respectively, and a second end 32a-32d, respectively, which is configured to engage tissue. In Fig. 1, the ends 32a-32d are non-penetrating blunt tips. However, it is also contemplated that sharpened or tissue penetrating tips could alternatively be provided. The clip legs 30a-30d are retained in the collar 38 by laser welding, glue, or other securing means. Alternatively, the clip legs can be welded or otherwise attached to each other (and the connecting wire) without the need for a collar. Also fixed within collar 38, by any suitable means, e.g. laser welding or glue, is connecting wire 40 which loops at region 42 through opening 24. The two ends of the connecting wire are designated by reference numeral 44. (Only one end is shown). Figure 8 illustrates a transverse cross-sectional view taken through collar 38 to illustrate the positioning of the clip legs 30a-30d and connecting wire 40 within the collar 38. Suture 45 also extends through eyelet 24 and functions to position the elongated member 12 as described in detail below. Clip legs 30a, 30b, 30c, and 30d are preferably composed of four discrete wire elements composed of shape memory material, such as Nitinol (nickel titanium alloy) with a memorized position of that shown in Figure 5. In use, the clip legs 30a-30d are retained in the delivery instrument in a substantially straightened position, and when released, are warmed by body temperature to curve inwardly as shown in Figures 3 and 4. The extent to which the clip legs can return to their memorized position will depend on the thickness and resistance of the tissue. Once curved inwardly, the curved clip legs 30a-30d grasp the tissue to retain the closure device 10 within the tissue. As the legs 30a- 30d curve inwardly, they apply a proximal pulling force on the elongated member 12 to pull it slightly upwardly (proximally) against the vessel wall. The legs may gather and force tissue on the external side of the vessel wall toward the opening. Figure 10A illustrates an alternate embodiment of the closure device of the present invention, designated by reference numeral 70. Closure device 70 is similar to closure device 10 except for the shape of the clip legs 78 (only two of which are shown) and the collar 75. Clip legs 78 (preferably four are provided) are made of wire having a rectangular cross-sectional shape. The clip legs 78, as shown, are formed into an elongated U-shape. Also, instead of the cylindrical collar 38 of closure device 10, a rectangular shaped collar 75 is provided. In all other respects, e.g. elongated covering member 72, connecting wire 73, etc. closure device 70 is identical to closure device 10. In the embodiment of Figure 10B, the clip legs 84a-84d of closure device 80 are initially formed from rectangular (or square) tubing. As shown, tubing 86 is split, preferably by laser cutting to form the four curved legs 84a-84d which in their closed position form a C-shape configuration. Elongated covering member 85 is identical to elongated member 12 of closure device 10 with an enlarged width region 85 for covering (patching) the internal side of the opening. A connecting wire 83 connects the clip portion to the elongated member via eyelet 88. Plug 87 is slip fit over connecting wire 83 and has one or more tabs 89 snap fit through window 86a in tubing 86 to connect the elongated member 82 to the tubing 86. It should be appreciated that the other embodiments disclosed herein could also have retaining tabs for attachment to the collar portion. In the embodiment of Figures 10C-10E, the closure device 270 has two clip legs 272a, 272b formed from a single sheet or strip of metallic material such has shape memory material, e.g. Nitinol. Alternatively more than two legs, e.g. four legs, can be formed from the metallic material. The clip legs 272a, 272b, curved into a C-shape as shown, separate at central region 274 to curve in opposite directions. This splitting at the central region and formation of the clip legs is preferably done by laser cutting a rectangular tubing. Central region 274 has a reduced width area 276. The connecting end is curved to form a hook or tab 278 for attachment to the elongated member (patch) 280. The connecting end also includes a reduced width portion 279 to form a shoulder for mechanical securement of the tab 278 within the elongated member 280. . Elongated member 280, as shown, is oval shaped with elongated parallel side walls 282a, 282b and arcuate end walls 284a, 284b connecting the side walls 282a, 282b. In this configuration of the elongated member 280, other than the end portions, the width z is substantially uniform. The transverse slot or opening 285 is configured to receive the tab 278 for securement of the clip legs to the elongated member 280. To enhance securement, during manufacture the elongated member is preferably heated to melt around the tab. Other securement processes are also contemplated. It is also contemplated that the closure device 280 can be formed with the two clip legs positioned with respect to the elongated member 90 degrees out of phase from Figure IOC. That is, the slot in the elongated member would be oriented longitudinally and the tab directed transversely (or else the legs twisted at a 90 degree angle with respect to the longitudinal tab) such that the clip legs 272a, 272b would curve in a direction substantially perpendicular to the longitudinal axis of the elongated member rather than in a direction substantially parallel to the longitudinal axis as in Figure IOC. Such orientation would reduce the profile of the clip along the length of the vessel to enable positioning multiple clips along the vessel closer to one another. An example of such orientation of the clip legs with respect to the elongated member is illustrated in the embodiment of Figure 10J described below. Figures 1 OF- 101 illustrate another embodiment of a collarless clip closure design. In this embodiment, the elongated member (patch) 380 of closure device 370 is shaped similar to elongated member 280 of the Figure 10C embodiment in that it is oval shaped and of substantially uniform width y except for its end portions 385, 387. The elongated member has a central portion with a thickness "k" at a central portion greater than the thickness at the end portions. This results in the end portions resorbing at a faster rate than the central portion, the region which attaches to the clip portion so that the clip attachment remains longer. Elongated member 380 has two openings 384, 386 on its upper surface 388 and a longitudinally extending groove 389 on its lower surface 390, together forming a U-shaped channel for receipt of the clip. The clip portion, as shown, comprises a round wire bent to form two clip legs 371, 372 positioned 180 degrees apart. The clip legs 371, 372 curve outwardly in a direction substantially parallel to the longitudinal axis of the elongated member 380. Clip leg 371 has a tip 371a, a curved portion 371b and a straight portion 371c. Clip leg 372 has a tip 372a, a first curved portion 372b, a second curved portion 372c, and straight portion 372d. The straight portions 371c, 372d of the clip legs 371, 372 are joined by longitudinally extending portion 373. This portion 373 is seated within groove 389 in lower surface 390 of elongated member 380. Straight portions 371c, 372d extend through openings 384, 386 of elongated member 380. To enhance securement of the clip portion to the elongated member 380, during manufacture the elongated member can be heated to melt the plastic around the clip. During delivery of the clip to the surgical site, the clip legs would be folded on top of the elongated member 380 to the left as viewed in Figure 10F, with the curved portion 372c facilitating such bending. In the alternate embodiment of Figures 10J-10N, the clip legs are oriented to curve in a direction substantially perpendicular to the longitudinal axis of elongated member (patch) 480 which is similar in configuration and thickness to patch 380. Clip legs 471, 472 of closure device 470 each have a respective tip 471a, 472a, a curved portion 471b, 472b, a straight portion 471c, 472c, a diverging leg portion 47 Id, 472d, and a lower straight portion 47 le, 472e connected by transverse portion 474. Note a portion of the legs, e.g. the tips 471a, 471b and a curved portion, exceed the widthwise dimension of the elongated member 480. The clip legs extend into the U-channel in the elongated member 480 formed by openings 484, 486 and transverse groove 488. The transverse positioning of the clip legs results in the clip occupying less space along the vessel when implanted, thereby allowing placement of additional clips closer together at a later time, e.g. after the resorbable elongated member is resorbed. The clip portion is also positioned at an acute angle "b" such as 45 degrees (other angles are also contemplated) to the elongated member 480, as shown, so that when inserted in the vessel, the elongated member will emerge substantially parallel to the vessel wall. To achieve this angle, the lower straight portion 47 le, 472e extend in a plane substantially perpendicular to the upper surface plane of the elongated member 480 and the straight portions 471c, 472c extend at an acute angle thereto. Although the straight portions of the clip legs are shown side by side, it is also contemplated that the straight portions could be superimposed. During delivery, the clip legs 471,472 would fold onto the elongated member, thereby reducing the clip delivery profile. During assembly, the clip can be preloaded so the legs crossover which could enhance the stability to control the deployed orientation of the elongated member. As in the other embodiments of Figure 10, the elongated member is preferably composed of resorbable material and the clip legs preferably of shape memory material, although other materials are contemplated. Figures 10P-10V illustrate alternate embodiments of the closure device wherein the clip legs are stamped, laser cut or formed from a sheet, strip, ribbon or other forms of material, preferably of shape memory material such as Nitinol, which is formed into the configuration shown. This flat sheet (or strip or ribbon) of material has a width p, illustrated for example in Figure 10R, greater than thickness r. In a preferred embodiment, the width p is about .050 inches and the thickness r is about .006 inches, although other dimensions are contemplated. Turning first to the closure device 650 of Figures 10P-10R, elongated member (patch) 652 is shaped similar to the elongated member 380 of Figure 10F except that the ends 653 have a straight wall portion 654a, 654b rather than curved. As with elongated member 380, elongated member 652 has a thickness at the central portion 658 greater than the thickness at the end portions 656a, 656b. The elongated member 652 is preferably made of resorbable material and preferably lactide/glycolide polymers. The clip portion 660 has two clip legs 662 and 664 which curve in opposing directions. The clip portion 660 has a connecting region 661 with neck region 665 extending outside the elongated member 652 and enlarged connection head 663 over which elongated member 652 is molded to attach the clip portion 660 to the elongated member 652. Above the connecting region 661 is transition region 666 which transitions to widened leg region 668. Widened region 668 has an elongated slot 672 dividing the leg region 668 into two legs 662, 664. Each of the legs 662, 664 curves outwardly as shown and contains a notch 667, 669, respectively, near the proximal end, which together form a pin receiving opening (described below) when the legs are in their straightened delivery configuration. In a preferred embodiment, the elongated member 652 has a length g of about 8mm (in a 6 French system) and the length of the clip portion in the straightened delivery configuration is also about 8mm (measured from the top surface 657 of the elongated member 652). The slot 672 in this preferred embodiment begins at a distance of about 2.6mm from the top surface 657 of the elongated member 652. It should be appreciated that these dimensions are for one preferred embodiment as other dimensions are clearly also contemplated. The dimensions may also differ for other French size systems. Figures 10S-10T illustrate an alternate embodiment of the closure device, designated generally by reference numeral 680. Closure device 680 is identical to device 650 except that instead of the notches formed in the clip legs, the clips legs 682, 684 have bent tabs 682a, 682b at their tips. These tabs 682a, 682b curve inwardly toward the widened region 683 of the clip portion. The tabs 682a, 682b function to retain the clip legs 682, 684 during delivery and allow subsequent release. Their function is described in more detail below in the discussion of the method of insertion of Figure 38. The tabs 682a, 682b are offset (non-symmetrical) with respect to each other. The patch (elongated member) is designated by reference numeral 681, and is preferably molded over the enlarged connecting head of the clip leg portion as in Figure 10R. Figures 10U and 10V illustrate an alternate embodiment of the closure device. Closure device 690 is identical to closure device 680 except that rather than being perpendicular, the clip portion 694 (containing clip legs 693, 695) is positioned at an angle to the elongated member 691. As shown, the connecting region 696 extends perpendicularly, however transition region 697 is positioned at an angle so the clip portion extends at an angle. In the illustrated embodiment, the angle could be about 45 degrees although other angles are clearly contemplated. The tabs 693a, 695a of the clip legs 693, 695, respectively, are offset as in the embodiment of Figure 10S. In the foregoing embodiments, although a triangular shaped connecting head is shown, other shaped connecting heads are contemplated to create an enlarged region to increase the surface area to improve retention when the elongated member is molded over the connecting head. Also, in these embodiments, although two clip legs are formed, a different number of clip legs can be utilized. As explained below, although the legs are shown in the fully memorized position, the extent they move (curve) towards this position will depend on the tissue and may also depend on the resoφtion of the patch (if a resorbable patch is utilized). Upon resorbtion of the patch, the connecting head and connecting portion are preferably designed to retract from the lumen of the vessel. Figure 11A is a perspective view of another alternate embodiment of the closure device. In this embodiment, closure device 90 has four legs 94 (only two of which are shown) as in the embodiment of Figure 1. Instead of a suture extending through the eyelet 24 as shown in Figures 1 and 14, suture 97 is connected to the loop 95 of connecting wire 96. That is, connecting wire 96 is looped through eyelet 93 of elongated member 92 at one end and receives a suture loop 95 at the opposite end. In this manner, as the suture is pulled proximally, the elongated member (and clip) are pulled proximally. Connecting wire 96 is preferably attached within collar 98 by laser welding, gluing, or other suitable means. Connecting wire 96 can be utilized to bias the elongated member to a transverse position. In the Fig. 11B embodiment, the connecting wire 116 of closure device 110 is embedded, e.g. insert molded, within the elongated member 112. This reduces the profile of the member 112 since the projecting surface (protrusion) as in the Fig. 11A embodiment is eliminated. Also, the connecting wire 116 is made of material, e.g. shape memory metal, which is designed to be in a substantially straightened position, or alternatively in an angled position such as 45°. This configuration biases the elongated member 112 to the transverse position. Otherwise, device 110 is identical to device 90, e.g. legs 114 (only two are shown), suture 117 attached to connecting wire 116, etc. Figures 9B-9E illustrate an alternate embodiment of the closure device, designated by reference numeral 140, having a flexible connecting wire 146 attached to elongated covering member 142 by insert molding, mechanical connection or other suitable means. As shown, connecting wire 146, optionally composed of shape memory material such as Nitinol, is positioned off center of the connecting member 142 to bias it to the transverse position and to facilitate movement of the connecting member 142 to the longitudinal position for delivery to the vessel. The proximal end of connecting wire 146 is attached by suitable means to the collar 148. Four clip legs 144 as in the embodiment of Figure 1 are provided. The clip legs 144 can have hooked tips 145 as shown which are positioned within and engage collar 148 to facilitate securement therein. The elongated covering member 142 is paddle shaped having an enlarged region 142a and a narrowed region 142b, thereby reducing its profile so the overall amount of material left in the vessel after placement of the closure device 140 is reduced. Narrowed region 142b can optionally progressively taper starting from the transition with the enlarged region 142a. In a preferred manufacturing method, the collar 148, clip legs 144 and connecting wire 146 are laser welded together. The connecting wire 146, with tag end 147 is subsequently connected to covering member 142 in the orientation shown. In this preferred attachment method, covering member 142 has a longitudinal slot with interference bumps (not shown) dimensioned to receive the tag end 147 of connecting wire 142. Absorbable or non-absorbable glue could optionally be applied to enhance the attachment of tag end 147 and to provide a seal. Figure 11C illustrates another alternate embodiment of the closure device, designated by reference numeral 130. Closure device 130 has clip legs 134a-134d with planar surfaces formed from wire of rectangular cross-section and is preferably composed of shape memory metal. A connecting strap 136, or alternatively a connecting wire like wire 96 of Figure 11 A, extends through eyelet 133 of elongated member 132. Suture 137 is looped through strap 136 for pulling elongated member 132 against the internal opening of the aperture. The clip legs 134a-134d are retained within collar 138 by engagement of a respective tab 139 on each of the legs extending through a respective window 135 on collar 138. In the closure devices described herein having four discrete wire legs spaced approximately 90 degrees apart, it is also contemplated that fewer legs, e.g. two legs spaced approximately 180 degrees apart or three legs spaced approximately 120 degrees apart, or more than four legs can be provided to achieve the device retention function. Likewise, the two leg versions can be modified to have fewer or more legs. It should be appreciated that in a four clip version, to conserve space, i.e. minimize the size for positioning within the delivery instrument and introducer sheath, the legs need not be symmetrically spaced with respect to one another, but preferably at least the opposing legs would be about 180 degrees apart, (see e.g. Figure 16C). Figures 28-30 illustrate an example of a single clip leg utilized to retain the elongated member and exert a proximal force on the tissue and elongated member. In Figures 28A, 28B, curved clip leg 702, when deployed from delivery instrument 703 curves inwardly as shown to grasp tissue and secure elongated member 704 against the internal vessel wall. In Figures 29 and 30, clip leg 740, directly connected to elongated member 744, is retained in a substantially straightened position within the delivery instrument 742 (Figure 30), and when deployed curves around itself, to form a spring-like element, as shown in Figure 29B. This clip leg 740 coils to pull up on the elongated member 744 to retain it within the vessel. In each of the embodiments described herein, blunt or sharpened tips can be provided on the clip legs to perform their gripping function. Although preferably composed of shape memory metal, the clip legs can alternatively be composed of a shape memory plastic, stainless steel, resorbable material, or other materials. It should also be appreciated that the clip legs shown herein represent their full formation, e.g. their memorized position, when formed without any tissue resistance. When placed in tissue, the clip legs would not necessarily move (curve) to the full extent shown. The extent of their curve would depend in large part on the type and thickness of the patient's tissue. Tuning now to the placement of the closure device of the present invention, Figures 12A-12E illustrate a first insertion method. The method illustrated shows placement of closure device 10, however, it should be understood that the other closure devices described herein can be inserted in a similar manner. As shown in Figure 12 A, a dilator 304 is inserted through introducer sheath 300 and over a guidewire 302 into the vessel lumen. Note the sheath and dilator 304 extend through opening "a" in the skin, through the tissue tract to the vessel V, through external opening "b" in the vessel wall, through the aperture in the vessel wall "w", and through an internal opening "c" on the interior side of the vessel wall into the vessel lumen (see also Fig. 12F). Next, the guidewire 302 and dilator 304 are withdrawn, and closure applying (delivery) instrument 310 is inserted through the sheath 300 into the vessel lumen as shown in Figure 12B. The elongated member 12 extends distally of the delivery instrument 310 and is retained in a longitudinal position by the walls of the introducer sheath 300; the clip legs are retained in a substantially straightened position in a martensitic state within the delivery instrument by the infusion of cold saline. The delivery instrument 310 is advanced through the introducer sheath 300 and past the distal tip 303 so the elongated member 12 is outside the confines of the wall of the introducer sheath 300 and extends into the vessel lumen sufficiently spaced from the internal opening in the vessel wall. This provides sufficient room for pivotal movement of the elongated member 12. As the elongated member 12 is released from the confines of the wall, it is enabled to pivot toward a transverse position as shown in Figure 12C. Next, the sheath 300 and delivery instrument 310 are pulled proximally as a unit until the elongated member is seated against the internal opening c in the vessel wall w. (It is contemplated that the sheath 300 and instrument 310 can optionally be fitted (locked) together so they can be moved as a single unit.) Suture 45 extending through eyelet 24 of elongated member 12 (see Figures 14 and 15), is attached to the delivery instrument 310 so that pulling the delivery instrument proximally pulls the suture 45 and thus the elongated member 12 proximally. The elongated member 12 is pulled proximally to cover the opening in a patch-like manner with the enlarged region 20 spanning the internal opening c to prevent egress of fluid. Note that the vessel wall further pivots the elongated member to the fully transverse position. Once elongated member 12 is seated, the closure device is further ejected from the delivery device 310 by distal movement of a pusher (not shown) against the clip legs, thereby forcing clip 14 from the delivery instrument 310 so the clip legs 30a-30d are warmed by body temperature and move towards their memorized configuration. Figure 12E illustrates the closure device 10 in position with elongated member 12 abutting internal opening c on the internal side of the vessel V to cover (patch) the opening and the retention legs 30a-30d curving downwardly and preferably slightly inwardly towards the tissue tract and aperture to engage the tissue and apply a proximal (upward) force on the elongated member 12. Tissue can also be forced by the curved clip legs 30a-30d towards the aperture and tissue tract on the external side of the vessel wall. Figure 12E also shows the introducer sheath 300 (and delivery device 310) being withdrawn from the patient's body. The suture is withdrawn with the delivery device 310. Note that in one embodiment, the suture would be designed to automatically rip when a sufficient load (exceeding a threshold amount) was placed on the suture, thereby separating the closure device from the delivery instrument. In an alternate insertion method, when the delivery instrument 310 is inserted through the introducer sheath 300, and the elongated member 12 remains within the confines of the wall of the introducer sheath 300 the elongated member is ejected by a pusher rather than by advancement of the delivery instrument. That is, the pusher inside the delivery instrument would be actuated to advance the closure device so the elongated member 12 is moved distally, outside the confines of the introducer sheath wall. In this deployed position of the elongated member 12, the clip legs 30a-30d still remain within the delivery instrument 310 and are not yet deployed. Optionally, the delivery instrument 310 can lock into the sheath 300 at a proximal end. After pulling back on the elongated member 12 to cover the internal opening of the vessel, the clip legs 30a-30d are deployed by moving the delivery instrument 300 proximally to expose the clip legs or by further actuating the pusher to advance the clip legs from the delivery instrument. Figures 13A-13E illustrate an alternate method of insertion of the closure device 10 of the present invention. It should be understood that the other closure devices disclosed herein could also be delivered with delivery instrument 320. The delivery method of Figures 13A-13E is the same as the method of Figures 12A-12E except that instead of advancing the closure device distally to free the elongated member for pivotal movement, the introducer sheath 300 is retracted with respect to delivery instrument 320. More specifically, in this method, the dilator (Figure 13 A) is introduced over the guidewire in the same manner as Figure 12 A. Note Figure 13A shows partial introduction as the sheath would be advanced further into the vessel corresponding to the position of Figure 13B. Note also, the introducer sheath 300 is inserted into the vessel, but further into the vessel than in the method of Figure 12, as shown in Figure 13B. That is, the distal tip 303 of the introducer sheath 300 is moved to the position where it is desired to release the elongated member 12 into the vessel. Once in position, the introducer sheath 300 is retracted with respect to the delivery instrument 320, with tubing connector 314 received in a slot 322 of delivery instrument 320. As the sheath 300 is retracted, the elongated member 312 is exposed as shown in Figure 13C, thus enabling the elongated member 12 to pivot towards its transverse position as it is no longer retained by the wall of the introducer sheath 300. The remaining steps for pulling the elongated member 12 proximally and releasing the clip (illustrated in Figs. 13D and 13E) are identical to the steps described above with respect to Figures 12D and 12E. To enable movement between an expanded and collapsed configuration in the delivery methods described herein, as noted above, clips legs 30a-30d are preferably made of shape memory metal material, such as Nitinol, a nickel titanium alloy. To facilitate passage of the clip legs through the lumen of the delivery instrument 320 and into the vessel, cold saline is injected into the delivery instrument 320 and around the legs 30a-30d in their collapsed position within the delivery instrument 320. This shape memory material characteristically exhibits rigidity in the austenitic state and more flexibility in the martensitic state. The cold saline maintains the temperature dependent wires 30a-30d in a relatively softer condition as they are in the martensitic state within the delivery instrument. This facilitates the exit of wires 30a-30d from the delivery instrument 320 as frictional contact between the wires 30a-30d and the inner surface of the instrument 320 would otherwise occur if the wires were maintained in a rigid, i.e. austenitic, condition. A stopcock 301 (see e.g. Fig. 24 A) can control the flow of saline. Figure 23A illustrates an insertion tube 500 which can be utilized with the introducer sheath 300 to enable a larger dimensioned delivery instrument and larger dimensioned elongated member 12 to be inserted through the introducer sheath 300. Insertion tube 500 has a head portion 502 and an elongated tubular portion 504 extending from head portion 502. A lumen 506 extends through the tube 500. As shown in Figure 23B, insertion tube 500 is inserted through the valve 308 and into the lumen 309 of introducer sheath 300. The tube 500 terminates proximal of the reduced lumen area 307 of sheath 300. Tube 500 steps down to a smaller internal lumen diameter at region 509. The lumen 506 of insertion tube 500 preferably has a diameter of about .096 inches and can preferably step down to about .088 inches (region 509). The lumen 309 of the introducer sheath 300 preferably has a diameter of about .125 inches and the reduced lumen area 307 preferably has a diameter D2 of about .087 inches, preferably stepped down to a diameter D3 of about .079 inches (see Fig. 26C). Preferably, the outer diameter Dl of the introducer sheath 300 is about .105 inches and the outer diameter of the tubular portion 504 of the insertion tube 500 is about .114 inches. The delivery instrument preferably has an outer diameter of about .079 inches. The elongated member 12 preferably has a lengthwise dimension of about .313 inches (8 mm). (Note that the foregoing dimensions are provided by way of example and other dimensions are also contemplated.) Due to the use of insertion tube 500, the elongated member 12 can be positioned outside the delivery instrument 310 and fed into the lumen 506 of tube 500 and lumens 309, 307, 305 of the sheath 300. As shown in Figures 24-26, when initially inserted, the closure device (collar 38, elongated member 12, etc.) fits within the confines of the sheath 300 without deflecting the sheath wall (Figure 24B). When the delivery instrument 310 is inserted further into the introducer sheath 500 as shown in Figure 25 A, the sheath wall is deflected as shown in Figure 25B and is deformed as it is deflected beyond its elastic limit since the internal diameter of the tip is smaller. Full insertion shown in Figure 26A further deflects (deforms) the wall as shown in Figure 26B, beyond its elastic limit. Without the use of insertion tube 500, the elongated member 12 would have to be retained within the delivery instrument 310, which would require either a larger diameter delivery instrument 310 or a smaller (lengthwise) elongated member 12. Figure 26D illustrates the closure device of Figure 11B positioned within the introducer sheath 300 to deflect the wall, corresponding to the position of Figure 26 A. Figures 16A-16C illustrate an alternate embodiment of the closure device of the present invention which utilizes a slotted tube to retract and release the closure device. Closure device 150 has an elongated member 152 and clip legs 154a-154d identical to the elongated member 12 and clip legs 30a-30d of closure device 10 of Figure 1. Closure device 150 also has a collar 158 identical to the collar 38 of Figure 1. A connecting wire 156, insert molded to elongated member 152 in the same manner as Figure 1 IB, connects the clip portion of the device to the elongated member 152. The cross-sectional view of Figure 16C illustrates how the clip legs 154a-154d and connecting wire 156 are seated within collar 158 along the perimeter to facilitate manufacture. A slotted tube 160 of the delivery instrument, having a series of slots 162, e.g. four, to create a series of flexible fingers 164 is releasably seated over collar 158 to hold the closure device. Due to this interference fit, when slotted tube 160, which is fixedly mounted to the delivery instrument 161, is pulled proximally with the proximal movement of the delivery instrument, the collar 158, and thus the closure device 150 is pulled proximally to seat the elongated member 152 against the internal wall of the vessel to cover the internal opening of the aperture. When a sufficient load is placed on slotted tube 160, the fingers 164 flex outwardly and slide over the collar 158, thereby releasing the closure device 150 from the slotted tube 160 of the delivery instrument. In an alternate embodiment (not shown), the release tube, instead of being slotted, has a crimped or swaged tip which is positioned slightly distally of the collar. This tip is flexible so that upon placement of sufficient load on the tube, the tip flexes to ride over the collar to release the closure device. Additionally, dimples could be provided on the interior surface to help retain the tube over the collar, but which would enable release of the collar. In the alternate embodiment of Figure 16D, instead of a slotted tube, a pair of jaws 181, 182 are fixed to the delivery instrument 180. Jaws 181, 182 grasp collar 178 of closure device 170. Closure device 170 is substantially identical to device 160 of Figure 16A having an elongated member 172, a connecting wire 176, collar 178, and four clip legs 174 (only the ends of two are shown for clarity). When a sufficient load is placed on jaws 181,182, the jaws open and slide off collar 178, thereby releasing the closure device 170 from the jaws of the delivery instrument. In the embodiment of Figures 21 and 22, a pair of jaws 191 of delivery instrument 190 grasps one or more of the clip legs 30. The jaws 191, e.g. an alligator clamp, are spring biased to an open position and are retained by the wall of the introducer sheath 300 in the closed position as shown in Figure 22. When the delivery instrument is advanced within introducer sheath 300 past the distal tip 302, the jaws 191 move to the open position to release the clip legs and closure device. Figures 31-36 illustrate another alternate embodiment of a delivery instrument for placement of the closure device. Although described for placement of closure device 140 of Figure 9B, other closure devices described herein can be placed in a similar manner. Turning first to Figures 31, delivery instrument 800 has a housing 801 having winged grippers 802, a plunger 804 movable axially with respect to housing 801 to advance the closure device 140, and locking windows 806a, 806b to secure the plunger 804 in a retracted and advanced position, respectively. An elongated outer tube 805 extends from housing 801 and is dimensioned to receive the closure device 140 therein. Connected to plunger 804 is a pusher 806 having four longitudinal slots 807 (see Figs. 33 and 36) to each receive a clip leg in the straightened position within the delivery instrument 800. The distal end of the pusher 806 abuts a region of the clip legs 144 proximal of the retaining collar 148 as shown in Fig. 35. When the plunger 804 is advanced, the pusher 806 is also moved distally, forcing the closure device 140 forward so that elongated member 142 is advanced into the vessel and moves to its transverse position, helped by the biasing force of offset connecting wire 146 described above. Note that advancement of the plunger 804 moves flexible fingers 809 from engagement in opposed locking windows 806a to engagement in windows 806b to retain the plunger 804 and pusher 806 in the advanced position. Also note the angled surface 809a of fingers 809 enable distal movement of the plunger 804 while straight surface 809b prevents proximal movement out of windows 806a and 806b (see Fig. 32). The delivery instrument 800 is inserted into the vessel through an introducer sheath, designated by reference numeral 900 in Figures 31 and 35. The introducer sheath 900 has a hub 906 with a proximal opening 902 to receive either a conventional dilator or the delivery instrument 800. Sheath tube 907 extends from hub 906 and has an opening 904 in the side wall at the distal end. The distal end is tapered at region 909 to provide a seal with the dilator. The proximal end of the sheath tube 907 is flared at region 912 to enable a smooth transition for the outer tube 805 of the delivery instrument 800 when it is inserted through the introducer sheath 900 because with the closure device 140 in place, the outer tube 805 bulges outwardly. A strain relief 910 surrounds a portion of the sheath tube 907. The hub 906 of sheath 900 has a 45 degree sidearm 913 having tubing 915, strain relief 914 and a male luer 916 for mounting extension assembly 920. A conventional clamp 918 is placed on tubing 915. The distal end of extension assembly 920 is screwed onto male luer 916 and the proximal end of extension assembly has a mounting assembly 922 with a screw thread for mounting a syringe which is described below. Hub 906 further includes a valve assembly at the proximal end having a spacer ring 930, a cylindrical valve element 932 having a slit arrangement, and a sheath cap 934. The sheath cap 934 has an opening 936 dimensioned to receive and mount by a snap fit arrangement a dilator (not shown) and the delivery instrument 800. A distal sheath cap 938 is mounted to the distal end of the hub 906. A collar 810 mounted in housing 801 of the delivery instrument 800 and has a snap in tip 812 fitted within the opening 936 in the sheath cap 934. Placement of the closure device 140 using delivery instrument 800 will now be described. First, to position the introducer sheath 900 in the vessel, a syringe 950, filled with fluid such as saline, is threaded onto proximal threads of extension assembly 920. The introducer sheath 900, with a conventional dilator (not shown) snapped into sheath cap 934, is inserted through the tissue tract over a guidewire toward the vessel wall, with the user attempting to depress the syringe plunger 952. While the sheath 900 is still within the tissue tract, very little saline can be ejected from the syringe 950 through side opening 904. Thus there is little movement of the plunger 952. However, once the introducer sheath 900 is advanced through the tissue tract and through the vessel wall into the vessel lumen, saline can freely flow out through side opening 904 (after flowing in the gap between the dilator and the internal wall of the sheath 900), thus enabling more rapid depression of the plunger 952. This provides a tactile feel that the introducer sheath 900 is desirably positioned within the vessel, thus ensuring that the closure device, when inserted through the sheath 900 via delivery instrument 800, will be inserted into the vessel lumen. Once the introducer sheath 900 is in place in the vessel, the dilator is removed. The syringe 950 is either filled with cool saline or is detached from the extension assembly 920 and another syringe with cool saline is attached to threads 922. This cool saline is applied to the closure device 140 during delivery to maintain the legs 144 and connecting wire 146 in a cooled martensitic state as described above with respect to other embodiments. . After removal of the dilator, the delivery instrument 800 is ready for insertion through the introducer sheath 900. The closure device 140 is positioned in the delivery instrument 800 as shown in Figure 35, with the clip legs 142 contained in longitudinal slots of the pusher 806. The elongated member 142 is contained within the confines of the outer tube 805. When inserted through and snapped into the introducer sheath 900, the outer tube 805 remains proximal of the distal tip of the introducer sheath 900 as shown. Next, the plunger 804 is depressed to move the pusher 806 distally (until fingers 809 are positioned in windows 806b) to advance the closure device 140 so the elongated member 142 is moved beyond the confines of the outer tube 805 and beyond the distal tip of the introducer sheath 900. Once outside the confines of tube 805 and sheath 900, the elongated member 142 pivots to a transverse position as shown in Figure 36. The sheath 900 and delivery instrument 800 are then pulled proximally, pulling the elongated member 142 against the vessel wall. Once in abutment with the vessel wall, it applies a counterforce against the proximal movement of the sheath 900 and delivery instrument 800. Consequently, subsequent proximal movement of the sheath 900 and instrument 800 will release the clip legs 144 from the confines of the sheath 900 and instrument 800, where the clip legs 144 will return to their curved memorized temperature as they are warmed by body temperature. The sheath 900 and delivery instrument 800 are then removed from the body. Figures 37A-37G illustrate an alternate method of insertion, shown inserting by way of example closure device 650 of Figure 10P. Initially, closure device 650 as shown in Figure 37A is positioned in the delivery tube 1010 with the clip legs 662, 664 in the elongated straightened position. They are preferably maintained in this straightened martensitic position by the injection of cold saline as described above. In this position, the elongated member 652 is positioned in a somewhat longitudinal position in the delivery tube 1010 as shown, except at a slight angle due to the bend (curve) in the connecting region 661. Also, in this position, a transverse retaining pin 1122 of pusher 1120 is positioned in the notches 667, 669 of the clip legs 662, 664. Pusher 1120, with attached retaining pin 1122, is slidably positioned within delivery tube 1010. The delivery tube 1010 is inserted through introducer sheath 1030. Sheath 1030 has a beveled end to facilitate insertion through the tissue, including the vessel wall, beyond the internal aperture. After placement of delivery tube 1010 within .the introducer sheath 1030 which is already positioned so that the distal end protrudes through the vessel aperture and into the vessel lumen M (via injection of saline exiting through port 1033 as described above), the pusher 1020 is advanced distally in the direction of the arrow of Figures 37C and 37D. This ejects the elongated member 652 from the delivery tube 1110 and sheath 1130. The clip legs 662, 664, however, are retained within the delivery tube by the engagement of retaining pin 1122 with the clip leg notches 667, 669. The injection of cold saline through the sheath port maintains the legs in the martensitic condition. Upon ejection, the connecting region 661, composed of shape memory material, is warmed by body temperature and moves to a straightened memorized position as shown in Figures 37D and 37E. This causes elongated member 652 to rotate to move to a transverse position. Thus, as shown, at this point, elongated member 652 is positioned inside the vessel lumen, in a transverse orientation spaced from but oriented to cover (patch) the vessel aperture on the internal side. The remaining clip legs remain inside the pusher 1120 of the delivery tube 1010. In the next step, the user pulls the sheath 1030, delivery tube 1020, and pusher 1120 proximally in the direction of the arrow, thereby pulling the elongated member 652 against the vessel aperture to patch the opening (Fig. 37F). Once engaged with the aperture and abutting the internal vessel wall, further retraction of the sheath 1030, delivery tube 1010, and pusher 1120 is countered by the force of the vessel wall against the elongated member 652 until the force exceeds that of the retaining pin 1022 of pusher 1120. At that point, the retaining pin 1122 will slide out of notches 667 and 669 as the proximal ends of the clip legs 662, 664 are cammed outwardly as shown in Figure 37G. As the legs cam outwardly, their movement is limited by the internal wall of the pusher 1020. However, they are separated sufficiently so that the pin 1122 is released. Thus, further retraction releases the clip legs from the delivery tube 1010 and sheath 1030. Once the legs are released, they are warmed by body temperature and move toward their curved position to retain the elongated member 652. Figure 37H shows the clip legs released from the retention pin 1122. Figures 371 and 37J illustrate the closure device 650 positioned in the body with the elongated member covering the vessel aperture and the clip legs 662, 664 external of the vessel. Although Figure 371 shows the legs in the fully memorized position, it should be appreciated that the extent they move to this position will depend on the tissue. Figure 38 illustrates a delivery system for the closure devices having tabs such as closure device 680 of Figure 10S and closure device 690 of Figure 10U. The delivery steps would be the same as in Figure 37 except that instead of a retaining pin, the tabs 682a, 682b (or 693a, 695a) of the clip legs are positioned within recesses 1152 and 1154 of pusher 1150. After delivery of the elongated member 681 to the vessel lumen, when the pusher 1150, delivery tube 1160 and introducer sheath 1170 are pull proximally, the elongated member 681 will be pulled against the vessel aperture to patch the opening. Once engaged with the aperture and abutting the internal vessel wall, further retraction of the sheath, pusher and delivery tube is countered by the force of the vessel wall against the elongated member until the force exceeds that of the tabs 682a, 682b in the recesses 1152 and 1154. At that point the tabs 682a, 682b will pull out of the recesses releasing the clip legs and allowing delivery of the clip portion from the delivery system. In an alternate embodiment of Figures 39A-39F, a mechanism is provided which causes the pusher to automatically retract slightly after it is advanced to eject the elongated member. Turning first to Figures 39A-39C, delivery unit is designated by reference numeral 1201. Delivery unit 1201 includes a handle assembly 1204 and a tube 1206 inserted through sheath S having an injection port SI. The handle assembly 1204 includes a plunger 1208 and a transverse pin 1210 engaging a slot 1214 in the housing 1212. The pusher 1209 extends through tube 1206 and is connected to the plunger 1208. Plunger 1208 is biased proximally by plunger spring 1218. Transverse locking pin 1210 is biased into the slot 1214 by spring 1220. Slot 1214 has a first region 1214a defining a first depth and a second shorter region 1214b having a second greater depth. In the initial position of Figure 39B, plunger 1208 is in the retracted position corresponding to the elongated member 652 of the closure device 650 contained within the tube 1206. In this position, pin 1210 is positioned against the proximal wall 1215 of slot 1214 and abuts wall 1208a of plunger 1208. When the plunger 1208 is advanced as shown in Figure 39D to advance elongated member 652 from the tube 1206, wall 1208b comes into contact with transverse pin 1210. Further advancement of the plunger 1208 causes wall 1208b to contact and slide transverse pin 1210 distal in slot 1214a. This advancement continues until transverse pin 1310 comes into contact with distal wall 1222 of second region 1214b of slot 214. Thus, wall 1222 acts a stop for the forward stroke of the plunger 1208. After such distal advancement, plunger 1208 is automatically retracted by the force of plunger spring 1218 so that pin 1210 slides into abutment with wall 1224 of slot region 1214b (Figure 39F). This limits the retraction of the plunger 1208. Since the slot region 1214b is shorter than the slot region 1214a, the return stroke is less than the forward stroke. This automatic retraction causes the elongated member to retract to reduce the gap between its top surface 657 and the vessel aperture corresponding to the distance of travel on the return stroke. This gap reduction reduces the amount of blood backflow during the remainder of the delivery procedure. Figure 39F illustrates the pusher, delivery tube and introducer sheath being withdrawn to release the clip legs 662, 664 from the retention pin 1211 (identical to pin 1122 of Figure 37) as described above. Figures 40A-42B illustrate an alternate embodiment of a mechanism for automatically retracting the pusher after distal movement ejects the elongated member. The drawings illustrate cross-sectional views of the proximal portion of the delivery system. Proximal portion includes a handle assembly having a plunger 1302 having a transverse pin 1304 biased into engagement with slot 1320 or 1330 in handle housing 1310 by spring 1308. The transverse locking pin 1304 is seated within a housing 1317 in transverse slot 1312 in plunger 1302. Plunger 1302 is biased in a proximal direction by spring 1314. The pusher which retains the clip legs and advances the elongated member as described above is connected to the plunger at region 1307. The slot 1320 in housing 1310 has a first directional component as shown and has a proximal wall 1322 and a distal wall 1324. The distal wall 1324 is common to slot 1320 and slot 1330. Slot 1330 is shorter and deeper than slot 1320. The proximal wall of slot 1330 is designated by reference numeral 1332. Slot 1330 has a directional component different from the directional component of slot 1320 as shown. In the initial position of the plunger 1302 shown in Figures 40 A and 40B, when the closure device is fully within the delivery tube (not shown), the transverse pin 1304 abuts the proximal wall 1322 of slot 1320 due to the force of plunger spring 1314. Thus, transverse pin 1304. limits proximal movement of plunger 1302 and wall 1322 acts as a stop. In this initial position, transverse pin 1304 is biased against wall 1326 of slot 1320 by spring 1308 (biased upwardly in the orientation of Figure 40B). Note that the depth h of slot 1320 is less than the depth j of slot 1330. Upon distal advancement of plunger 1330 as shown in Figures 41 A and 4 IB, transverse pin 1304 travels in slot 1320 and into abutment with distal wall 1324. In this position of the plunger 1302, the elongated member (not shown) has been ejected from the delivery tube and introducer sheath, but the clip portion remains within the delivery tube by the retention pin described above. Note in this position, the transverse pin 1304, by abutting the common distal wall 1324 of slots 1320, 1330 stop the forward stroke of the plunger. Also, in this position, the transverse pin 1304 is biased into the deeper slot 1330 by spring 1308 and against wall 1338. After the plunger 1302 and transverse pin 1304 reach the position of Figures 41 A and 41 B to deploy the elongated member, the force of spring 1314 forces the plunger 1302 proximally to the position shown in Figures 42A and 42B. The transverse pin 1304 travels proximally in slot 1330 until it abuts proximal wall 1332 of slot 1330, thus wall 1332 acts as a stop for retraction of the plunger 1302. As can be appreciated, proximal wall 1332 limits retraction of plunger 1302 and since the length of slot 1330 is less than the length of slot 1320, the return stroke of plunger 1302 is less than the forward stroke. The automatic retraction of the plunger 1302 and thus the pusher (not shown) causes automatic retraction of the elongated member to reduce the gap with respect to the vessel aperture as discussed above with the embodiment of Figure 39. After such retraction, the pusher, delivery tube 1310 and introducer sheath are retracted in the same manner as described above to release the clip legs from the delivery system. Figures 18-20 illustrate alternate embodiments of the delivery instrument which facilitate repositioning of the elongated member within the vessel. That is, in these embodiments, the delivery (closure applying) instrument has a projecting distal tip with an abutment surface configured to engage one of the sides of the elongated member. Pressing of the abutment surface against the top surface of the elongated member forces the elongated member to pivot back to a longitudinal position for withdrawal from the vessel if desired. This more easily allows repositioning within the body prior to deployment of the clip. More specifically, in Figure 18, protruding tip 402 of instrument 400 abuts upper surface 99 of elongated member 92. This figure shows use of the closure device 90 of Figure 11A with the instrument 300. In Figure 19, closure device 10'is similar to closure device 10' of Figure 1 (and Figure 15), except for the separate opening for connecting wire 42'. Elongated member 12' is pivotable back to the position shown in phantom by the projecting tip 412 of instrument 410. In Figure 20, the elongated member 102 is biased to a transverse position by the offset suture 104 of closure device 100. It can be pivoted by the projecting tip of the instrument. Figures 17A and 17B show a variation of the elongated member. Closure device 120 has a mushroom shaped saddle 121 which functions to abut the internal wall of the vessel to cover the internal opening of the vessel aperture. The saddle 121 has a circular periphery with two opposing sides 125 curving downwardly. Clip legs 122a, 122b, 122c, and 122d extending from stem 124 function in the same manner as the clip legs described above. Clip legs 122a-122d are shown with penetrating tips 124a-124d, respectively, but non-penetrating tips can also be provided. This closure device 210 is described in more detail in commonly assigned patent application serial no. 09/659,648, filed September 12, 2000, the entire contents of which are incorporated herein by reference. Figures 27 and 28 illustrate an alternative embodiment of the closure member of the present invention utilizing a different approach to connecting the clip legs to the elongated member. This version differs from the foregoing embodiments as it eliminates a component to simplify manufacture and simplify the device as a single element can be utilized to both attach the portions of the closure member as well as to bias the elongated member. More specifically, closure device 600 has four legs 602, similar to legs 30 of the embodiment of Figure 1 in that they have a memorized curved configuration. A tube 604 is preferably welded to elongated member 603, but can be insert molded or attached by other means. Tube 604 is spiral cut to provide flexibility and allow bending of the tube. Extending within the proximal end 606 of the tube 604 are clip legs 602, which are welded through the tube 604 at region 608. Other means of attachment could also be utilized. The proximal portion 606 of tube 604 is not cut to provide rigidity at the region of attachment to clip legs 602. The spiral tube thereby serves several functions: connects the clip legs 602 to the elongated member 603 in a flexible manner, retains the clips legs, and biases the elongated member 603 to a transverse position. While the above description contains many specifics, those specifics should not be construed as limitations on the scope of the disclosure, but merely as exemplifications of preferred embodiments thereof. For example, any of the foregoing embodiments of the elongated member (patch) could be made of resorbable or non-resorbable material. Moreover, in the foregoing embodiments, the clip portion could be positioned at an acute angle, or other angles, to the elongated member as in Figure 10J. Additionally, the clip legs of the foregoing embodiments can be positioned in a longitudinal orientation such as in Figure 10F, a transverse orientation as in Figure 10J, or another angled orientation with respect to the elongated member, as well as at different angle to the plane of the upper surface of the elongated member. Also, the different configurations of the elongated member disclosed herein can be used with the various clip configurations disclosed in the embodiments described in this application. With suitable materials, the clip portion and elongated member could be a one piece construction. Those skilled in the art will envision many other possible variations that are within the scope and spirit of the disclosure as defined by the claims appended hereto.

Claims

WHAT IS CLAIMED IS;
1. A device for closing an aperture in a vessel wall, the aperture having an external opening in an external region of the vessel wall and an internal opening in an internal region of the vessel wall, the device comprising: an elongated member having a longitudinal axis and positionable inside the vessel against the internal opening of the aperture, the elongated member having a dimension to prevent egress of fluid through the aperture; and a material forming two curved legs having ends positionable external of the vessel, the legs curving in different directions, and a retention portion formed in the material to retain the legs during placement of the elongated member inside the vessel.
2. The device of claim 1, wherein he retention portion comprises an opening.
3. The device of claim 2, wherein the at least two curved legs are composed of shape memory metal material.
4. The device of claim 1, wherein the material is fabricated to separate at a first end into curved leg regions and further fabricated with a tab at a second end to connect the curved legs to the elongated member.
5. The device of claim 4, wherein the legs are fabricated of metal material and the elongated member is fabricated of a polymeric material and is molded over the metal material.
6. The device of claim 4, wherein the elongated member is composed of a resorbable material.
7. The device of claim 1, wherein the elongated member has a thickness in a middle portion greater than a thickness at the end portions.
8. The device of claim 1 for use with a delivery system, wherein the retention portion includes a retention slot and the system includes a sheath having a slidable pusher positioned therein, the pusher including a retention pin releasably positioned within the retention slot.
9. The device of claim 1, wherein the elongated member is substantially oval shaped with substantially linear sides.
10. The device of claim 2, wherein the material includes an enlarged head for connecting the material to the elongated member.
11. In combination a device for closing an aperture in a vessel wall, the aperture having an external opening in an external region of the vessel wall and an internal opening in an internal region of the vessel wall, and a delivery system for the device, the combination comprising: the device including an elongated member having a longitudinal axis and a transverse axis and positionable inside the vessel against the internal opening of the aperture to prevent egress of fluid through the aperture and two legs extending from the elongated member and positionable external of the vessel to help retain the elongated member in position, and the delivery system including a tube and a pusher slidably positioned within the tube, the pusher including a retaining pin releasably engagable with the legs, the pin retaining the legs within the tube and releasing the legs to enable delivery from the tube.
12. The combination of claim 11, wherein the elongated member has a first thickness at an end portion and second greater thickness at a central portion.
13. The combination of claim 11, wherein the elongated member is composed of a resorbable material and the two legs are composed of shape memory metal material.
14. The combination of claim 11, wherein the delivery system further comprises a mechanism to automatically retract the pusher after the pusher is advanced to deliver the elongated member.
15. The combination of claim 14, wherein the mechanism includes a member receivable in a slot, the slot having a first directional component and a second different directional component.
16. The combination of claim 14, wherein the mechanism includes a member engagable in a recess, the recess having a first region of a first depth and a second region of a second depth, the member being retained in the second region after delivery of the legs by the pusher.
17. A delivery system for a device for closing an aperture comprising: an outer tube; and a pusher slidably received in the outer tube, the pusher slidable from a first position to a second position to define a total stroke to deliver a first portion of the aperture closing device from the outer tube in a direction distal of the outer tube; wherein after completion of the first stroke to deliver the first portion of the aperture closing device, the pusher automatically retracts a distance less than a total distance defined by the first stroke to move the aperture closing device proximally toward the outer tube.
18. The delivery system of claim 17, further comprising a plunger operatively connected to the pusher, the plunger having a member engageable with a slot in a housing to limit retraction of the pusher after completion of the first stroke.
19. The delivery system of claim 18, wherein the slot has a first directional component corresponding to distal movement of the pusher and a second directional component corresponding to retraction of the pusher.
20. The delivery system of claim 18, wherein the slot has a first region of a first depth and a second region of a second depth, the member being retained in the second region after retraction of the pusher.
21. A method for closing an aperture in a vessel wall, the aperture having an external opening in an external region of the vessel wall and an internal opening in an internal region of the vessel wall, the method comprising: providing a closure device including an elongated member and two legs, the closure device positioned in a delivery tube; inserting the delivery tube; advancing a pusher within the delivery tube from an initial position to a distal position to eject the elongated member from a longitudinal position ih the delivery tube, the elongated member moving to a transverse position after ejection from the tube, and the pusher automatically retracting to a position proximal of the distal position and distal of the initial position; withdrawing the delivery tube and pusher to move the elongated member against the internal opening of the vessel wall; and applying continued force by pulling the delivery tube and pusher proximally to release the legs of the closure device.
22. The method of claim 21, wherein the step of applying a continued force includes disengaging a retention pin within the tube from engagement with the legs of the closure device.
PCT/US2005/014948 2004-05-17 2005-04-29 Vascular hole closure device WO2005115253A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/847,141 2004-05-17
US10/847,141 US7662161B2 (en) 1999-09-13 2004-05-17 Vascular hole closure device

Publications (2)

Publication Number Publication Date
WO2005115253A2 true WO2005115253A2 (en) 2005-12-08
WO2005115253A3 WO2005115253A3 (en) 2006-01-26

Family

ID=34968507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/014948 WO2005115253A2 (en) 2004-05-17 2005-04-29 Vascular hole closure device

Country Status (2)

Country Link
US (3) US7662161B2 (en)
WO (1) WO2005115253A2 (en)

Cited By (243)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008097955A1 (en) * 2007-02-05 2008-08-14 Boston Scientific Scimed, Inc. Apparatus and method for closing an opening in a blood vessel using a permanent implant
US7875054B2 (en) 2007-10-01 2011-01-25 Boston Scientific Scimed, Inc. Connective tissue closure device and method
EP2444008A3 (en) * 2006-09-29 2012-08-29 Ethicon Endo-Surgery, Inc. Surgical staples having compressible or crushable members for securing tissue therein and stapling instruments for deploying the same
US8353438B2 (en) 2009-11-19 2013-01-15 Ethicon Endo-Surgery, Inc. Circular stapler introducer with rigid cap assembly configured for easy removal
US8353437B2 (en) 2007-06-22 2013-01-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a geared return mechanism
US8371491B2 (en) 2008-02-15 2013-02-12 Ethicon Endo-Surgery, Inc. Surgical end effector having buttress retention features
US8393514B2 (en) 2010-09-30 2013-03-12 Ethicon Endo-Surgery, Inc. Selectively orientable implantable fastener cartridge
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US8408439B2 (en) 2007-06-22 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8424740B2 (en) 2007-06-04 2013-04-23 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8453908B2 (en) 2008-02-13 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8453907B2 (en) 2009-02-06 2013-06-04 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with cutting member reversing mechanism
US8453914B2 (en) 2009-12-24 2013-06-04 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US8479969B2 (en) 2007-01-10 2013-07-09 Ethicon Endo-Surgery, Inc. Drive interface for operably coupling a manipulatable surgical tool to a robot
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8517244B2 (en) 2004-07-28 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8540130B2 (en) 2008-02-14 2013-09-24 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US8540133B2 (en) 2008-09-19 2013-09-24 Ethicon Endo-Surgery, Inc. Staple cartridge
US8540129B2 (en) 2008-02-13 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8573461B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with cam-driven staple deployment arrangements
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US8590762B2 (en) 2007-03-15 2013-11-26 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configurations
US8602287B2 (en) 2008-09-23 2013-12-10 Ethicon Endo-Surgery, Inc. Motor driven surgical cutting instrument
US8602288B2 (en) 2008-09-23 2013-12-10 Ethicon Endo-Surgery. Inc. Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US8608044B2 (en) 2008-02-15 2013-12-17 Ethicon Endo-Surgery, Inc. Feedback and lockout mechanism for surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
US8616431B2 (en) 2007-06-04 2013-12-31 Ethicon Endo-Surgery, Inc. Shiftable drive interface for robotically-controlled surgical tool
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US8632462B2 (en) 2011-03-14 2014-01-21 Ethicon Endo-Surgery, Inc. Trans-rectum universal ports
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8636187B2 (en) 2005-08-31 2014-01-28 Ethicon Endo-Surgery, Inc. Surgical stapling systems that produce formed staples having different lengths
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US8672207B2 (en) 2010-07-30 2014-03-18 Ethicon Endo-Surgery, Inc. Transwall visualization arrangements and methods for surgical circular staplers
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US8740038B2 (en) 2010-09-30 2014-06-03 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a releasable portion
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US8746529B2 (en) 2006-01-31 2014-06-10 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US8752747B2 (en) 2006-01-31 2014-06-17 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8783541B2 (en) 2003-05-20 2014-07-22 Frederick E. Shelton, IV Robotically-controlled surgical end effector system
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8789739B2 (en) 2011-09-06 2014-07-29 Ethicon Endo-Surgery, Inc. Continuous stapling instrument
US8789740B2 (en) 2010-07-30 2014-07-29 Ethicon Endo-Surgery, Inc. Linear cutting and stapling device with selectively disengageable cutting member
US8789741B2 (en) 2010-09-24 2014-07-29 Ethicon Endo-Surgery, Inc. Surgical instrument with trigger assembly for generating multiple actuation motions
US8794497B2 (en) 2010-09-09 2014-08-05 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US8800841B2 (en) 2011-03-15 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical staple cartridges
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US8844789B2 (en) 2006-01-31 2014-09-30 Ethicon Endo-Surgery, Inc. Automated end effector component reloading system for use with a robotic system
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US8911471B2 (en) 2006-03-23 2014-12-16 Ethicon Endo-Surgery, Inc. Articulatable surgical device
US8926598B2 (en) 2011-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable and rotatable end effector
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9028519B2 (en) 2008-09-23 2015-05-12 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9044229B2 (en) 2011-03-15 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical fastener instruments
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US9072515B2 (en) 2008-02-14 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9113874B2 (en) 2006-01-31 2015-08-25 Ethicon Endo-Surgery, Inc. Surgical instrument system
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9204878B2 (en) 2008-02-14 2015-12-08 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US9272406B2 (en) 2010-09-30 2016-03-01 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US9282966B2 (en) 2004-07-28 2016-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9283054B2 (en) 2013-08-23 2016-03-15 Ethicon Endo-Surgery, Llc Interactive displays
US9289210B2 (en) 2008-09-19 2016-03-22 Ethicon Endo-Surgery, Llc Surgical stapler with apparatus for adjusting staple height
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US9301752B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising a plurality of capsules
US9307987B2 (en) 2009-12-24 2016-04-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument that analyzes tissue thickness
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US9307988B2 (en) 2005-08-31 2016-04-12 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9320521B2 (en) 2006-06-27 2016-04-26 Ethicon Endo-Surgery, Llc Surgical instrument
US9326768B2 (en) 2005-08-31 2016-05-03 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9358005B2 (en) 2010-09-30 2016-06-07 Ethicon Endo-Surgery, Llc End effector layer including holding features
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9370358B2 (en) 2006-01-31 2016-06-21 Ethicon Endo-Surgery, Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US9549735B2 (en) 2013-12-23 2017-01-24 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a firing member including fastener transfer surfaces
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US9690362B2 (en) 2014-03-26 2017-06-27 Ethicon Llc Surgical instrument control circuit having a safety processor
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
US9724098B2 (en) 2012-03-28 2017-08-08 Ethicon Endo-Surgery, Llc Staple cartridge comprising an implantable layer
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9743929B2 (en) 2014-03-26 2017-08-29 Ethicon Llc Modular powered surgical instrument with detachable shaft assemblies
US9743928B2 (en) 2006-01-31 2017-08-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US9795382B2 (en) 2005-08-31 2017-10-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9814462B2 (en) 2010-09-30 2017-11-14 Ethicon Llc Assembly for fastening tissue comprising a compressible layer
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9826978B2 (en) 2010-09-30 2017-11-28 Ethicon Llc End effectors with same side closure and firing motions
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9839429B2 (en) 2008-02-15 2017-12-12 Ethicon Endo-Surgery, Llc Stapling system comprising a lockout
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US9895147B2 (en) 2005-11-09 2018-02-20 Ethicon Llc End effectors for surgical staplers
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US9931118B2 (en) 2015-02-27 2018-04-03 Ethicon Endo-Surgery, Llc Reinforced battery for a surgical instrument
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10004498B2 (en) 2006-01-31 2018-06-26 Ethicon Llc Surgical instrument comprising a plurality of articulation joints
US10028744B2 (en) 2015-08-26 2018-07-24 Ethicon Llc Staple cartridge assembly including staple guides
US10039529B2 (en) 2010-09-17 2018-08-07 Ethicon Llc Power control arrangements for surgical instruments and batteries
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10052102B2 (en) 2015-06-18 2018-08-21 Ethicon Llc Surgical end effectors with dual cam actuated jaw closing features
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10092292B2 (en) 2013-02-28 2018-10-09 Ethicon Llc Staple forming features for surgical stapling instrument
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US10172619B2 (en) 2015-09-02 2019-01-08 Ethicon Llc Surgical staple driver arrays
US10172620B2 (en) 2015-09-30 2019-01-08 Ethicon Llc Compressible adjuncts with bonding nodes
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10206676B2 (en) 2008-02-14 2019-02-19 Ethicon Llc Surgical cutting and fastening instrument
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10226249B2 (en) 2013-03-01 2019-03-12 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10245030B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instruments with tensioning arrangements for cable driven articulation systems
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10271849B2 (en) 2015-09-30 2019-04-30 Ethicon Llc Woven constructs with interlocked standing fibers
US10271851B2 (en) 2016-04-01 2019-04-30 Ethicon Llc Modular surgical stapling system comprising a display
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US10285705B2 (en) 2016-04-01 2019-05-14 Ethicon Llc Surgical stapling system comprising a grooved forming pocket
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
US10307159B2 (en) 2016-04-01 2019-06-04 Ethicon Llc Surgical instrument handle assembly with reconfigurable grip portion
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10398433B2 (en) 2007-03-28 2019-09-03 Ethicon Llc Laparoscopic clamp load measuring devices
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10413294B2 (en) 2012-06-28 2019-09-17 Ethicon Llc Shaft assembly arrangements for surgical instruments
US10426481B2 (en) 2014-02-24 2019-10-01 Ethicon Llc Implantable layer assemblies
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US10499890B2 (en) 2006-01-31 2019-12-10 Ethicon Llc Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US10517596B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Articulatable surgical instruments with articulation stroke amplification features
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US10542979B2 (en) 2016-06-24 2020-01-28 Ethicon Llc Stamped staples and staple cartridges using the same
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10575868B2 (en) 2013-03-01 2020-03-03 Ethicon Llc Surgical instrument with coupler assembly
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces

Families Citing this family (361)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8083766B2 (en) * 1999-09-13 2011-12-27 Rex Medical, Lp Septal defect closure device
US7662161B2 (en) 1999-09-13 2010-02-16 Rex Medical, L.P Vascular hole closure device
US7097665B2 (en) 2003-01-16 2006-08-29 Synecor, Llc Positioning tools and methods for implanting medical devices
US6675809B2 (en) 2001-08-27 2004-01-13 Richard S. Stack Satiation devices and methods
CN101810521B (en) 2001-08-27 2015-05-13 辛尼科有限责任公司 Satiation devices and methods
US7146984B2 (en) * 2002-04-08 2006-12-12 Synecor, Llc Method and apparatus for modifying the exit orifice of a satiation pouch
US20040143342A1 (en) 2003-01-16 2004-07-22 Stack Richard S. Satiation pouches and methods of use
US8398656B2 (en) 2003-01-30 2013-03-19 Integrated Vascular Systems, Inc. Clip applier and methods of use
US20040176800A1 (en) * 2003-03-07 2004-09-09 Paraschac Joseph Francis Barbed closure device
CA2538329A1 (en) 2003-09-15 2005-03-31 Abbott Laboratories Suture locking device and methods
US20050247320A1 (en) * 2003-10-10 2005-11-10 Stack Richard S Devices and methods for retaining a gastro-esophageal implant
US8206456B2 (en) 2003-10-10 2012-06-26 Barosense, Inc. Restrictive and/or obstructive implant system for inducing weight loss
EP1689300A4 (en) * 2003-11-25 2011-06-22 Boston Scient Ltd An Irish Company Hemostatic pressure plug
EP1740132B1 (en) 2004-04-26 2014-12-31 Synecor, LLC Restrictive and/or obstructive implant for inducing weight loss
US8905977B2 (en) 2004-07-28 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
EP1871241B1 (en) * 2005-04-22 2012-12-19 Rex Medical, L.P. Closure device for left atrial appendage
US8313497B2 (en) * 2005-07-01 2012-11-20 Abbott Laboratories Clip applier and methods of use
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US7846093B2 (en) * 2005-09-26 2010-12-07 K2M, Inc. Minimally invasive retractor and methods of use
US20080190989A1 (en) * 2005-10-03 2008-08-14 Crews Samuel T Endoscopic plication device and method
US9055942B2 (en) 2005-10-03 2015-06-16 Boston Scienctific Scimed, Inc. Endoscopic plication devices and methods
US8267942B2 (en) * 2005-12-23 2012-09-18 Ethicon, Inc. Systems and methods for closing a vessel wound
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US8021389B2 (en) * 2006-05-17 2011-09-20 Warsaw Orthopedic, Inc. Surgical staple assembly
JP5269779B2 (en) * 2006-06-21 2013-08-21 クック・バイオテック・インコーポレーテッド Acupuncture grafts and related methods and systems useful for the treatment of gastrointestinal fistulas
US8109895B2 (en) 2006-09-02 2012-02-07 Barosense, Inc. Intestinal sleeves and associated deployment systems and methods
US20090125040A1 (en) * 2006-09-13 2009-05-14 Hambly Pablo R Tissue acquisition devices and methods
EP2068719B1 (en) * 2006-09-15 2017-10-25 Boston Scientific Scimed, Inc. System for anchoring stomach implant
US20100070019A1 (en) * 2006-10-29 2010-03-18 Aneuwrap Ltd. extra-vascular wrapping for treating aneurysmatic aorta and methods thereof
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8071166B2 (en) * 2007-01-29 2011-12-06 Guardian Industries Corp. Method of making heat treated coated article using diamond-like carbon (DLC) coating and protective film
US7964238B2 (en) * 2007-01-29 2011-06-21 Guardian Industries Corp. Method of making coated article including ion beam treatment of metal oxide protective film
US7914857B2 (en) * 2007-01-29 2011-03-29 Guardian Industries Corp. Method of making heat treated coated article using diamond-like carbon (DLC) coating and protective film with oxygen content of protective film based on bending characteristics of coated article
US8132426B2 (en) * 2007-01-29 2012-03-13 Guardian Industries Corp. Method of making heat treated coated article using diamond-like carbon (DLC) coating and protective film
US8003167B2 (en) * 2007-01-29 2011-08-23 Guardian Industries Corp. Method of making heat treated coated article using diamond-like carbon (DLC) coating and protective film
US8317856B2 (en) * 2007-03-05 2012-11-27 Endospan Ltd. Multi-component expandable supportive bifurcated endoluminal grafts and methods for using same
JP5331104B2 (en) * 2007-05-12 2013-10-30 バロセンス、インク Apparatus and method for gastric segmentation
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
WO2008152617A2 (en) 2007-06-15 2008-12-18 Zerusa Limited A closure device
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
AU2008276658B2 (en) * 2007-07-13 2013-10-03 Rex Medical, Lp Vascular hole closure device
US20090030284A1 (en) 2007-07-18 2009-01-29 David Cole Overtube introducer for use in endoscopic bariatric surgery
CA2696993C (en) * 2007-07-18 2017-01-03 Samuel T. Crews Endoscopic implant system and method
MX2010002827A (en) * 2007-09-12 2010-08-31 Transluminal Technologies Llc Closure device, deployment apparatus, and method of deploying a closure device.
US7993367B2 (en) * 2007-09-28 2011-08-09 Accessclosure, Inc. Apparatus and methods for sealing a vascular puncture
US8486131B2 (en) 2007-12-15 2013-07-16 Endospan Ltd. Extra-vascular wrapping for treating aneurysmatic aorta in conjunction with endovascular stent-graft and methods thereof
US20090171383A1 (en) 2007-12-31 2009-07-02 David Cole Gastric space occupier systems and methods of use
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US20110029013A1 (en) 2008-02-15 2011-02-03 Mcguckin James F Vascular Hole Closure Device
US8070772B2 (en) 2008-02-15 2011-12-06 Rex Medical, L.P. Vascular hole closure device
US8920462B2 (en) 2008-02-15 2014-12-30 Rex Medical, L.P. Vascular hole closure device
US8491629B2 (en) * 2008-02-15 2013-07-23 Rex Medical Vascular hole closure delivery device
US8920463B2 (en) 2008-02-15 2014-12-30 Rex Medical, L.P. Vascular hole closure device
US9226738B2 (en) 2008-02-15 2016-01-05 Rex Medical, L.P. Vascular hole closure delivery device
US20090228037A1 (en) * 2008-03-07 2009-09-10 Medtronic Vascular, Inc Vascular Closure Implant
US8020741B2 (en) 2008-03-18 2011-09-20 Barosense, Inc. Endoscopic stapling devices and methods
US9364206B2 (en) * 2008-04-04 2016-06-14 Access Closure, Inc. Apparatus and methods for sealing a vascular puncture
US8029533B2 (en) 2008-04-04 2011-10-04 Accessclosure, Inc. Apparatus and methods for sealing a vascular puncture
PL3476312T3 (en) 2008-09-19 2024-03-11 Ethicon Llc Surgical stapler with apparatus for adjusting staple height
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US7934631B2 (en) 2008-11-10 2011-05-03 Barosense, Inc. Multi-fire stapling systems and methods for delivering arrays of staples
US9486191B2 (en) 2009-01-09 2016-11-08 Abbott Vascular, Inc. Closure devices
CA2751664A1 (en) 2009-02-06 2010-08-12 Ethicon Endo-Surgery, Inc. Driven surgical stapler improvements
US20100276469A1 (en) * 2009-05-01 2010-11-04 Barosense, Inc. Plication tagging device and method
US8961539B2 (en) * 2009-05-04 2015-02-24 Boston Scientific Scimed, Inc. Endoscopic implant system and method
CA2961767C (en) 2009-06-23 2018-08-14 Endospan Ltd. Vascular prostheses for treating aneurysms
WO2011004374A1 (en) 2009-07-09 2011-01-13 Endospan Ltd. Apparatus for closure of a lumen and methods of using the same
WO2011064782A2 (en) 2009-11-30 2011-06-03 Endospan Ltd. Multi-component stent-graft system for implantation in a blood vessel with multiple branches
EP2509535B1 (en) 2009-12-08 2016-12-07 Endospan Ltd Endovascular stent-graft system with fenestrated and crossing stent-grafts
EP2519161B1 (en) 2009-12-30 2020-04-29 Vivasure Medical Limited Closure system
EP2519166A4 (en) 2009-12-31 2017-06-14 Endospan Ltd Endovascular flow direction indicator
CA2789304C (en) 2010-02-08 2018-01-02 Endospan Ltd. Thermal energy application for prevention and management of endoleaks in stent-grafts
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9737289B2 (en) * 2010-10-29 2017-08-22 Vectec S.A. Single use, disposable, tissue suspender device
US8603137B2 (en) * 2010-11-01 2013-12-10 Abbott Cardiovascular Systems, Inc. Methods and systems for establishing hemostasis relative to a puncture
EP2658453B1 (en) * 2010-12-30 2020-04-29 Vivasure Medical Limited Surgical closure systems
CA2826022A1 (en) 2011-02-03 2012-08-09 Endospan Ltd. Implantable medical devices constructed of shape memory material
US8685047B2 (en) 2011-02-07 2014-04-01 Abbott Vascular, Inc. Scaffold device for preventing tissue trauma
WO2012111006A1 (en) 2011-02-17 2012-08-23 Endospan Ltd. Vascular bands and delivery systems therefor
US9149265B2 (en) 2011-02-26 2015-10-06 Abbott Cardiovascular Systems, Inc. Hinged tissue support device
WO2012117395A1 (en) 2011-03-02 2012-09-07 Endospan Ltd. Reduced-strain extra- vascular ring for treating aortic aneurysm
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US8574287B2 (en) 2011-06-14 2013-11-05 Endospan Ltd. Stents incorporating a plurality of strain-distribution locations
ES2568377T3 (en) 2011-06-21 2016-04-28 Endospan Ltd Endovascular system with circumferentially overlapping stents
EP2729095B1 (en) 2011-07-07 2016-10-26 Endospan Ltd. Stent fixation with reduced plastic deformation
AU2012202202B2 (en) 2011-07-20 2017-05-11 Rex Medical, L.P. Vascular hole closure delivery device
US9055932B2 (en) 2011-08-26 2015-06-16 Abbott Cardiovascular Systems, Inc. Suture fastener combination device
WO2013030818A2 (en) 2011-08-28 2013-03-07 Endospan Ltd. Stent-grafts with post-deployment variable axial and radial displacement
WO2013065040A1 (en) 2011-10-30 2013-05-10 Endospan Ltd. Triple-collar stent-graft
WO2013084235A2 (en) 2011-12-04 2013-06-13 Endospan Ltd. Branched stent-graft system
EP2819586A2 (en) 2012-02-29 2015-01-07 Vivasure Medical Limited Percutaneous perforation closure systems, devices, and methods
US9138214B2 (en) 2012-03-02 2015-09-22 Abbott Cardiovascular Systems, Inc. Suture securing systems, devices and methods
JP6305979B2 (en) 2012-03-28 2018-04-04 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Tissue thickness compensator with multiple layers
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
WO2013171730A1 (en) 2012-05-15 2013-11-21 Endospan Ltd. Stent-graft with fixation elements that are radially confined for delivery
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
CN104487005B (en) 2012-06-28 2017-09-08 伊西康内外科公司 Empty squeeze latching member
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9364209B2 (en) 2012-12-21 2016-06-14 Abbott Cardiovascular Systems, Inc. Articulating suturing device
US9993360B2 (en) 2013-01-08 2018-06-12 Endospan Ltd. Minimization of stent-graft migration during implantation
US9486132B2 (en) 2013-01-17 2016-11-08 Abbott Cardiovascular Systems, Inc. Access device for accessing tissue
US9668892B2 (en) 2013-03-11 2017-06-06 Endospan Ltd. Multi-component stent-graft system for aortic dissections
US9850013B2 (en) 2013-03-15 2017-12-26 Vivasure Medical Limited Loading devices and methods for percutaneous perforation closure systems
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
EP3021762B1 (en) 2013-07-15 2020-03-04 E-Pacing, Inc. Vasculature closure devices
CN106028966B (en) 2013-08-23 2018-06-22 伊西康内外科有限责任公司 For the firing member restoring device of powered surgical instrument
US20140171986A1 (en) 2013-09-13 2014-06-19 Ethicon Endo-Surgery, Inc. Surgical Clip Having Comliant Portion
WO2015075708A1 (en) 2013-11-19 2015-05-28 Endospan Ltd. Stent system with radial-expansion locking
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
CN106456176B (en) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 Fastener cartridge including the extension with various configuration
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US20150297225A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
BR112016023807B1 (en) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT
US10405866B2 (en) 2014-04-25 2019-09-10 Flow MedTech, Inc Left atrial appendage occlusion device
US20170209131A1 (en) * 2014-07-25 2017-07-27 E-Pacing, Inc. Vasculature closure devices and automatic deployment systems
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
WO2016044740A1 (en) 2014-09-19 2016-03-24 Flow Medtech, Inc. Left atrial appendage occlusion device delivery system
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
CN107427300B (en) 2014-09-26 2020-12-04 伊西康有限责任公司 Surgical suture buttress and buttress material
GB2531556A (en) 2014-10-22 2016-04-27 Xiros Ltd An elongate guide element for an implant
EP3232939B1 (en) 2014-12-15 2020-09-23 Vivasure Medical Limited Implantable sealable member with mesh layer
US10433826B2 (en) 2014-12-15 2019-10-08 Vivasure Medical Limited Closure apparatus with flexible sealable member and flexible support member
CA2967904C (en) 2014-12-18 2023-01-10 Endospan Ltd. Endovascular stent-graft with fatigue-resistant lateral tube
BR112017012996B1 (en) 2014-12-18 2022-11-08 Ethicon Llc SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE
CA2975309C (en) 2015-02-10 2019-03-05 Vascular Solutions, Inc. Closure device for sealing percutaneous opening in a vessel
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
BR112018003693B1 (en) 2015-08-26 2022-11-22 Ethicon Llc SURGICAL STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPPING INSTRUMENT
MX2022006192A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
CN108697414B (en) 2015-12-15 2022-02-01 维瓦舒尔医疗设备有限公司 Arteriotomy closure device with slotted shoe to achieve advantageous pressure distribution
CN108882932B (en) 2016-02-09 2021-07-23 伊西康有限责任公司 Surgical instrument with asymmetric articulation configuration
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
CN109310431B (en) 2016-06-24 2022-03-04 伊西康有限责任公司 Staple cartridge comprising wire staples and punch staples
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US20180168609A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Firing assembly comprising a fuse
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US20180168598A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Staple forming pocket arrangements comprising zoned forming surface grooves
JP6983893B2 (en) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US20180168647A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments having end effectors with positive opening features
US10881401B2 (en) 2016-12-21 2021-01-05 Ethicon Llc Staple firing member comprising a missing cartridge and/or spent cartridge lockout
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
MX2019007311A (en) 2016-12-21 2019-11-18 Ethicon Llc Surgical stapling systems.
US10736629B2 (en) 2016-12-21 2020-08-11 Ethicon Llc Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
US11389161B2 (en) 2017-06-28 2022-07-19 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10611679B2 (en) 2017-10-26 2020-04-07 Guardian Glass, LLC Coated article including noble metal and polymeric hydrogenated diamond like carbon composite material having antibacterial and photocatalytic properties, and/or methods of making the same
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11751867B2 (en) 2017-12-21 2023-09-12 Cilag Gmbh International Surgical instrument comprising sequenced systems
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11504105B2 (en) 2019-01-25 2022-11-22 Rex Medical L.P. Vascular hole closure device
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11439383B2 (en) 2019-08-20 2022-09-13 Abbott Cardiovascular Systems, Inc. Self locking suture and self locking suture mediated closure device
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US20220031351A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with differential articulation joint arrangements for accommodating flexible actuators
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
WO2023069735A1 (en) * 2021-10-22 2023-04-27 Armstrong Medical, Inc. Endoluminal stoma device
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998027868A1 (en) * 1996-12-20 1998-07-02 Gore Enterprise Holdings, Inc. Self-expanding defect closure device and method of making and using
WO2003065898A2 (en) * 2002-02-06 2003-08-14 Rex Medical, L.P. Vascular hole closure device

Family Cites Families (322)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US90859A (en) * 1869-06-01 Improved bttckle
US65547A (en) * 1867-06-11 William crighton
US106418A (en) * 1870-08-16 Improvement in electro-magnets
US192627A (en) * 1877-07-03 Adam e
US2024871A (en) 1935-06-13 1935-12-17 Edwin R Parsons Toggle bolt and sleeve
US2398220A (en) 1944-11-28 1946-04-09 Rawlplug Company Inc Toggle lock
US3467089A (en) * 1967-02-14 1969-09-16 Hollister Inc Intrauterine contraceptive device (iud)
CH477873A (en) 1967-07-14 1969-09-15 Apamed Anst Intrauterine contraceptive device
US3454004A (en) * 1967-08-18 1969-07-08 Holland Rantos Co Inc Intrauterine contraceptive device
US3527223A (en) 1967-09-01 1970-09-08 Melvin Shein Ear stud and hollow piercer for insertion thereof
US3675648A (en) 1970-08-05 1972-07-11 Alza Corp Intrauterine contraceptive device
US3842827A (en) * 1972-04-04 1974-10-22 E Jacobs Endocervical contraceptive device
US3913573A (en) * 1972-10-02 1975-10-21 Morton Gutnick Intrauterine contraceptive devices with plural parallel leg segments
US3842826A (en) * 1972-10-25 1974-10-22 Hollister Inc Intrauterine contraceptive device and inserter therefor
US3874388A (en) * 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
FI50042C (en) * 1973-03-19 1975-12-10 Outokumpu Oy Interuteral contraceptive body
JPS5320957Y2 (en) * 1973-11-14 1978-06-01
JPS5719226B2 (en) * 1974-06-21 1982-04-21
US4007743A (en) * 1975-10-20 1977-02-15 American Hospital Supply Corporation Opening mechanism for umbrella-like intravascular shunt defect closure device
US4031569A (en) * 1976-03-15 1977-06-28 Jacob H John Nasal septum plug
US4117838A (en) 1976-09-02 1978-10-03 Hasson Harrith M Intrauterine contraceptive device
US4286497A (en) 1979-06-18 1981-09-01 Shamah Alfred A Ratchet-securable toggle retainer
US4317445A (en) * 1980-03-31 1982-03-02 Baxter Travenol Laboratories, Inc. Catheter insertion unit with separate flashback indication for the cannula
US4505274A (en) * 1980-10-17 1985-03-19 Propper Manufacturing Co., Inc. Suture clip
US4485816A (en) 1981-06-25 1984-12-04 Alchemia Shape-memory surgical staple apparatus and method for use in surgical suturing
US4638803A (en) 1982-09-30 1987-01-27 Rand Robert W Medical apparatus for inducing scar tissue formation in a body
US4512338A (en) * 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
US4676245A (en) * 1983-02-09 1987-06-30 Mamoru Fukuda Interlocking surgical staple assembly
US4665906A (en) * 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
US4615514A (en) 1985-01-29 1986-10-07 Hamlin Jerry J Holding apparatus and method for securely positioning members to be joined by welding or the like
US4610671A (en) 1985-03-28 1986-09-09 Luther Medical Products, Inc. Assembly of stylet and catheter
US4705040A (en) * 1985-11-18 1987-11-10 Medi-Tech, Incorporated Percutaneous fixation of hollow organs
USRE34866E (en) * 1987-02-17 1995-02-21 Kensey Nash Corporation Device for sealing percutaneous puncture in a vessel
US4744364A (en) * 1987-02-17 1988-05-17 Intravascular Surgical Instruments, Inc. Device for sealing percutaneous puncture in a vessel
US5478353A (en) 1987-05-14 1995-12-26 Yoon; Inbae Suture tie device system and method for suturing anatomical tissue proximate an opening
US4836204A (en) 1987-07-06 1989-06-06 Landymore Roderick W Method for effecting closure of a perforation in the septum of the heart
US4917089A (en) * 1988-08-29 1990-04-17 Sideris Eleftherios B Buttoned device for the transvenous occlusion of intracardiac defects
US4924866A (en) * 1988-10-26 1990-05-15 Inbae Yoon Wound-closing device
US5047047A (en) 1988-10-26 1991-09-10 Inbae Yoon Wound closing device
FR2641692A1 (en) * 1989-01-17 1990-07-20 Nippon Zeon Co Plug for closing an opening for a medical application, and device for the closure plug making use thereof
US5620461A (en) * 1989-05-29 1997-04-15 Muijs Van De Moer; Wouter M. Sealing device
US6764500B1 (en) 1989-05-29 2004-07-20 Kensey Nash Corporation Sealing device
NL8901350A (en) * 1989-05-29 1990-12-17 Wouter Matthijs Muijs Van De M CLOSURE ASSEMBLY.
US4971068A (en) 1989-07-07 1990-11-20 Bio-Plexus, Inc. Blood vessel locating needle assembly with thermochromic indicator
US5749879A (en) 1989-08-16 1998-05-12 Medtronic, Inc. Device or apparatus for manipulating matter
US5129906A (en) 1989-09-08 1992-07-14 Linvatec Corporation Bioabsorbable tack for joining bodily tissue and in vivo method and apparatus for deploying same
US5061274A (en) 1989-12-04 1991-10-29 Kensey Nash Corporation Plug device for sealing openings and method of use
WO1993007813A1 (en) * 1989-12-04 1993-04-29 Kensey Nash Corporation Plug device for sealing openings and method of use
DE69102515T2 (en) 1990-04-02 1994-10-20 Kanji Inoue DEVICE FOR CLOSING A SHUTTER OPENING BY MEANS OF A NON-OPERATIONAL METHOD.
US5021059A (en) * 1990-05-07 1991-06-04 Kensey Nash Corporation Plug device with pulley for sealing punctures in tissue and methods of use
US5391183A (en) * 1990-09-21 1995-02-21 Datascope Investment Corp Device and method sealing puncture wounds
US5108421A (en) 1990-10-01 1992-04-28 Quinton Instrument Company Insertion assembly and method of inserting a vessel plug into the body of a patient
US5192300A (en) * 1990-10-01 1993-03-09 Quinton Instrument Company Insertion assembly and method of inserting a vessel plug into the body of a patient
US5372146A (en) 1990-11-06 1994-12-13 Branch; Thomas P. Method and apparatus for re-approximating tissue
US5108420A (en) * 1991-02-01 1992-04-28 Temple University Aperture occlusion device
US5171252A (en) 1991-02-05 1992-12-15 Friedland Thomas W Surgical fastening clip formed of a shape memory alloy, a method of making such a clip and a method of using such a clip
CA2078530A1 (en) 1991-09-23 1993-03-24 Jay Erlebacher Percutaneous arterial puncture seal device and insertion tool therefore
US5350400A (en) 1991-10-30 1994-09-27 American Cyanamid Company Malleable, bioabsorbable, plastic staple; and method and apparatus for deforming such staple
DE69229539T2 (en) 1991-11-05 2000-02-17 Childrens Medical Center Occlusion device for repairing heart and vascular defects
US5222974A (en) * 1991-11-08 1993-06-29 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5676689A (en) 1991-11-08 1997-10-14 Kensey Nash Corporation Hemostatic puncture closure system including vessel location device and method of use
US5282827A (en) 1991-11-08 1994-02-01 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5411520A (en) * 1991-11-08 1995-05-02 Kensey Nash Corporation Hemostatic vessel puncture closure system utilizing a plug located within the puncture tract spaced from the vessel, and method of use
US5279572A (en) * 1991-12-03 1994-01-18 Yasuo Hokama Indwelling intravenous needle with two blood-backflow passage routes
US6056768A (en) * 1992-01-07 2000-05-02 Cates; Christopher U. Blood vessel sealing system
DE69334196T2 (en) * 1992-01-21 2009-01-02 Regents Of The University Of Minnesota, Minneapolis Closure device of a septal defect
US5236440A (en) * 1992-04-14 1993-08-17 American Cyanamid Company Surgical fastener
US6063085A (en) * 1992-04-23 2000-05-16 Scimed Life Systems, Inc. Apparatus and method for sealing vascular punctures
US6350274B1 (en) * 1992-05-11 2002-02-26 Regen Biologics, Inc. Soft tissue closure systems
US5413571A (en) * 1992-07-16 1995-05-09 Sherwood Medical Company Device for sealing hemostatic incisions
US5443481A (en) * 1992-07-27 1995-08-22 Lee; Benjamin I. Methods and device for percutaneous sealing of arterial puncture sites
US5292332A (en) 1992-07-27 1994-03-08 Lee Benjamin I Methods and device for percutanceous sealing of arterial puncture sites
US5306254A (en) * 1992-10-01 1994-04-26 Kensey Nash Corporation Vessel position locating device and method of use
US5643317A (en) * 1992-11-25 1997-07-01 William Cook Europe S.A. Closure prosthesis for transcatheter placement
US5267971A (en) * 1993-03-17 1993-12-07 Becton, Dickinson And Company Catheter introducer with notched needle
US5334210A (en) 1993-04-09 1994-08-02 Cook Incorporated Vascular occlusion assembly
US5312435A (en) * 1993-05-17 1994-05-17 Kensey Nash Corporation Fail predictable, reinforced anchor for hemostatic puncture closure
WO1994028800A1 (en) 1993-06-04 1994-12-22 Kensey Nash Corporation Hemostatic vessel puncture closure with filament lock
US5486195A (en) * 1993-07-26 1996-01-23 Myers; Gene Method and apparatus for arteriotomy closure
US5462561A (en) 1993-08-05 1995-10-31 Voda; Jan K. Suture device
US5507754A (en) 1993-08-20 1996-04-16 United States Surgical Corporation Apparatus and method for applying and adjusting an anchoring device
FR2710254B1 (en) 1993-09-21 1995-10-27 Mai Christian Multi-branch osteosynthesis clip with self-retaining dynamic compression.
JPH09508543A (en) 1994-02-01 1997-09-02 ケンゼー・ナッシュ・コーポレーション Closure device for transdermal drug delivery
US5545178A (en) * 1994-04-29 1996-08-13 Kensey Nash Corporation System for closing a percutaneous puncture formed by a trocar to prevent tissue at the puncture from herniating
US5531759A (en) * 1994-04-29 1996-07-02 Kensey Nash Corporation System for closing a percutaneous puncture formed by a trocar to prevent tissue at the puncture from herniating
US5630824A (en) 1994-06-01 1997-05-20 Innovasive Devices, Inc. Suture attachment device
US5433727A (en) 1994-08-16 1995-07-18 Sideris; Eleftherios B. Centering buttoned device for the occlusion of large defects for occluding
US5549633A (en) * 1994-08-24 1996-08-27 Kensey Nash Corporation Apparatus and methods of use for preventing blood seepage at a percutaneous puncture site
US6171329B1 (en) * 1994-12-19 2001-01-09 Gore Enterprise Holdings, Inc. Self-expanding defect closure device and method of making and using
US5665109A (en) 1994-12-29 1997-09-09 Yoon; Inbae Methods and apparatus for suturing tissue
US5702421A (en) 1995-01-11 1997-12-30 Schneidt; Bernhard Closure device for closing a vascular opening, such as patent ductus arteriosus
US5634936A (en) 1995-02-06 1997-06-03 Scimed Life Systems, Inc. Device for closing a septal defect
US5649959A (en) * 1995-02-10 1997-07-22 Sherwood Medical Company Assembly for sealing a puncture in a vessel
US5976159A (en) 1995-02-24 1999-11-02 Heartport, Inc. Surgical clips and methods for tissue approximation
AU701307B2 (en) 1995-06-09 1999-01-28 Hiroshi Hara Sheet for holding information recording carriers
US5810846A (en) 1995-08-03 1998-09-22 United States Surgical Corporation Vascular hole closure
AU3410095A (en) 1995-08-24 1997-03-19 Inbae Yoon Suture tie device system and method for suturing anatomical tissue proximate an opening
US6071300A (en) * 1995-09-15 2000-06-06 Sub-Q Inc. Apparatus and method for percutaneous sealing of blood vessel punctures
US5704943A (en) 1995-09-25 1998-01-06 Yoon; Inbae Ligating instrument with multiple loop ligature supply and methods therefor
US5674231A (en) 1995-10-20 1997-10-07 United States Surgical Corporation Apparatus and method for vascular hole closure
WO1997016119A1 (en) * 1995-10-30 1997-05-09 Children's Medical Center Corporation Self-centering umbrella-type septal closure device
US6015417A (en) * 1996-01-25 2000-01-18 Reynolds, Jr.; Walker Surgical fastener
DE19604817C2 (en) * 1996-02-09 2003-06-12 Pfm Prod Fuer Die Med Ag Device for closing defect openings in the human or animal body
US5735877A (en) 1996-02-28 1998-04-07 Pagedas; Anthony C. Self locking suture lock
FR2745992B1 (en) * 1996-03-13 1998-08-28 MECHANICAL PAIN REMOVAL DEVICE AND RELATED METHOD
US5853422A (en) 1996-03-22 1998-12-29 Scimed Life Systems, Inc. Apparatus and method for closing a septal defect
US5728132A (en) * 1996-04-08 1998-03-17 Tricardia, L.L.C. Self-sealing vascular access device
AR001590A1 (en) 1996-04-10 1997-11-26 Jorge Alberto Baccaro Abnormal vascular communications occluder device and applicator cartridge of said device
US5662681A (en) * 1996-04-23 1997-09-02 Kensey Nash Corporation Self locking closure for sealing percutaneous punctures
US6491714B1 (en) 1996-05-03 2002-12-10 William F. Bennett Surgical tissue repair and attachment apparatus and method
US5893856A (en) * 1996-06-12 1999-04-13 Mitek Surgical Products, Inc. Apparatus and method for binding a first layer of material to a second layer of material
US5690674A (en) 1996-07-02 1997-11-25 Cordis Corporation Wound closure with plug
US5728133A (en) * 1996-07-09 1998-03-17 Cardiologics, L.L.C. Anchoring device and method for sealing percutaneous punctures in vessels
RU2108070C1 (en) 1996-07-09 1998-04-10 Борис Петрович Кручинин Microsurgical fastening device and manipulation pusher for its mounting
AU740072B2 (en) * 1996-08-06 2001-10-25 Tyco Group S.A.R.L. Insertion assembly and method of inserting a hemostatic closure device into an incision
US5896856A (en) * 1996-08-14 1999-04-27 Frasier; Robert J. Emergency air cooling device
US5741297A (en) * 1996-08-28 1998-04-21 Simon; Morris Daisy occluder and method for septal defect repair
US5810884A (en) 1996-09-09 1998-09-22 Beth Israel Deaconess Medical Center Apparatus and method for closing a vascular perforation after percutaneous puncture of a blood vessel in a living subject
US5861003A (en) * 1996-10-23 1999-01-19 The Cleveland Clinic Foundation Apparatus and method for occluding a defect or aperture within body surface
US5948002A (en) 1996-11-15 1999-09-07 Bonutti; Peter M. Apparatus and method for use in positioning a suture anchor
US5782861A (en) * 1996-12-23 1998-07-21 Sub Q Inc. Percutaneous hemostasis device
IL119911A (en) * 1996-12-25 2001-03-19 Niti Alloys Tech Ltd Surgical clip
WO1998034547A1 (en) 1997-02-07 1998-08-13 Radi Medical Systems Ab An inflatable hemostat
US5782860A (en) * 1997-02-11 1998-07-21 Biointerventional Corporation Closure device for percutaneous occlusion of puncture sites and tracts in the human body and method
US6409739B1 (en) * 1997-05-19 2002-06-25 Cardio Medical Solutions, Inc. Device and method for assisting end-to side anastomosis
SE9701935D0 (en) 1997-05-23 1997-05-23 Radi Medical Systems Medical device
US6001110A (en) 1997-06-20 1999-12-14 Boston Scientific Corporation Hemostatic clips
US5957940A (en) 1997-06-30 1999-09-28 Eva Corporation Fasteners for use in the surgical repair of aneurysms
GB9715241D0 (en) 1997-07-18 1997-09-24 Jeffree Martin A Device for treating aneurysms
US20050216059A1 (en) 2002-09-05 2005-09-29 Bonutti Peter M Method and apparatus for securing a suture
CA2298637A1 (en) 1997-08-04 1999-02-11 Jennifer J. Mccrory Occlusion system for aneurysm repair
US6174322B1 (en) * 1997-08-08 2001-01-16 Cardia, Inc. Occlusion device for the closure of a physical anomaly such as a vascular aperture or an aperture in a septum
US5916235A (en) 1997-08-13 1999-06-29 The Regents Of The University Of California Apparatus and method for the use of detachable coils in vascular aneurysms and body cavities
US5964782A (en) 1997-09-18 1999-10-12 Scimed Life Systems, Inc. Closure device and method
US5984949A (en) 1997-10-06 1999-11-16 Levin; John M. Tissue hooks and tools for applying same
US5976174A (en) 1997-12-15 1999-11-02 Ruiz; Carlos E. Medical hole closure device and methods of use
US6033427A (en) * 1998-01-07 2000-03-07 Lee; Benjamin I. Method and device for percutaneous sealing of internal puncture sites
JP4187411B2 (en) 1998-01-30 2008-11-26 セント ジュード メディカル エーティージー, インコーポレイテッド Device for use in closing a septal defect
US6113611A (en) 1998-05-28 2000-09-05 Advanced Vascular Technologies, Llc Surgical fastener and delivery system
US5919207A (en) * 1998-06-02 1999-07-06 Taheri; Syde A. Percutaneous arterial closure with staples
US5910155A (en) * 1998-06-05 1999-06-08 United States Surgical Corporation Vascular wound closure system
US6139564A (en) 1998-06-16 2000-10-31 Target Therapeutics Inc. Minimally occlusive flow disruptor stent for bridging aneurysm necks
US6048357A (en) * 1998-07-09 2000-04-11 X-Site, L.L.C. Anchoring device and method for sealing punctures in vessels
US6048358A (en) 1998-07-13 2000-04-11 Barak; Shlomo Method and apparatus for hemostasis following arterial catheterization
US6334865B1 (en) * 1998-08-04 2002-01-01 Fusion Medical Technologies, Inc. Percutaneous tissue track closure assembly and method
US6336941B1 (en) * 1998-08-14 2002-01-08 G. V. Subba Rao Modular hip implant with shock absorption system
US6183496B1 (en) * 1998-11-02 2001-02-06 Datascope Investment Corp. Collapsible hemostatic plug
US6066160A (en) 1998-11-23 2000-05-23 Quickie Llc Passive knotless suture terminator for use in minimally invasive surgery and to facilitate standard tissue securing
US6080183A (en) * 1998-11-24 2000-06-27 Embol-X, Inc. Sutureless vessel plug and methods of use
JP3906475B2 (en) * 1998-12-22 2007-04-18 ニプロ株式会社 Transcatheter surgery closure plug and catheter assembly
ATE324072T1 (en) 1998-12-30 2006-05-15 Ethicon Inc THREAD SECURING DEVICE
US6126675A (en) 1999-01-11 2000-10-03 Ethicon, Inc. Bioabsorbable device and method for sealing vascular punctures
US6120524A (en) 1999-02-16 2000-09-19 Taheri; Syde A. Device for closing an arterial puncture and method
US8137364B2 (en) 2003-09-11 2012-03-20 Abbott Laboratories Articulating suturing device and method
US6136010A (en) 1999-03-04 2000-10-24 Perclose, Inc. Articulating suturing device and method
US6228096B1 (en) * 1999-03-31 2001-05-08 Sam R. Marchand Instrument and method for manipulating an operating member coupled to suture material while maintaining tension on the suture material
US6537299B1 (en) * 1999-04-05 2003-03-25 Ethicon, Inc. Intravascular hemostasis device and method
US7226467B2 (en) 1999-04-09 2007-06-05 Evalve, Inc. Fixation device delivery catheter, systems and methods of use
US8216256B2 (en) 1999-04-09 2012-07-10 Evalve, Inc. Detachment mechanism for implantable fixation devices
US6206907B1 (en) * 1999-05-07 2001-03-27 Cardia, Inc. Occlusion device with stranded wire support arms
US6712836B1 (en) 1999-05-13 2004-03-30 St. Jude Medical Atg, Inc. Apparatus and methods for closing septal defects and occluding blood flow
AU5160500A (en) 1999-05-28 2000-12-18 Cohesion Technologies, Inc. Apparatuses, methods and compositions for closing tissue puncture openings
US6766186B1 (en) * 1999-06-16 2004-07-20 C. R. Bard, Inc. Post biospy tissue marker and method of use
WO2000078226A1 (en) 1999-06-18 2000-12-28 Radi Medical Systems Ab A tool, a sealing device, a system and a method for closing a wound
US7846180B2 (en) 1999-06-22 2010-12-07 Ethicon Endo-Surgery, Inc. Tissue fixation devices and methods of fixing tissue
US8574243B2 (en) 1999-06-25 2013-11-05 Usgi Medical, Inc. Apparatus and methods for forming and securing gastrointestinal tissue folds
US6251122B1 (en) * 1999-09-02 2001-06-26 Scimed Life Systems, Inc. Intravascular filter retrieval device and method
US7341595B2 (en) 1999-09-13 2008-03-11 Rex Medical, L.P Vascular hole closure device
US7662161B2 (en) 1999-09-13 2010-02-16 Rex Medical, L.P Vascular hole closure device
WO2001021247A1 (en) 1999-09-20 2001-03-29 Appriva Medical, Inc. Method and apparatus for closing a body lumen
US6231561B1 (en) 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
US6626930B1 (en) 1999-10-21 2003-09-30 Edwards Lifesciences Corporation Minimally invasive mitral valve repair method and apparatus
US6462169B1 (en) 1999-11-30 2002-10-08 Poly-Med, Inc. Amorphous polymeric polyaxial initiators and compliant crystalline copolymers therefrom
US6331184B1 (en) 1999-12-10 2001-12-18 Scimed Life Systems, Inc. Detachable covering for an implantable medical device
US6197042B1 (en) * 2000-01-05 2001-03-06 Medical Technology Group, Inc. Vascular sheath with puncture site closure apparatus and methods of use
US6391048B1 (en) * 2000-01-05 2002-05-21 Integrated Vascular Systems, Inc. Integrated vascular device with puncture site closure component and sealant and methods of use
US6336914B1 (en) 2000-01-13 2002-01-08 Gillespie, Iii Richard D. Releasable interlock assembly having axial and rotational engagement
US20010010005A1 (en) * 2000-01-24 2001-07-26 Kammerer Gene W. Meniscal repair device
US6350270B1 (en) 2000-01-24 2002-02-26 Scimed Life Systems, Inc. Aneurysm liner
US6391037B1 (en) 2000-03-02 2002-05-21 Prodesco, Inc. Bag for use in the intravascular treatment of saccular aneurysms
US6346117B1 (en) 2000-03-02 2002-02-12 Prodesco, Inc. Bag for use in the intravascular treatment of saccular aneurysms
JP3844661B2 (en) * 2000-04-19 2006-11-15 ラディ・メディカル・システムズ・アクチェボラーグ Intra-arterial embolus
US6451030B2 (en) 2000-06-30 2002-09-17 Li Medical Technologies, Inc. Rotor blade anchor and tool for installing same particularlly for arthroscopic installation
US7153323B1 (en) 2000-06-30 2006-12-26 Boston Scientific Scimed, Inc. Aneurysm liner with multi-segment extender
WO2002005865A2 (en) 2000-07-14 2002-01-24 Sub-Q, Inc. Sheath-mounted arterial plug delivery device
US6440152B1 (en) 2000-07-28 2002-08-27 Microvena Corporation Defect occluder release assembly and method
EP1326672A4 (en) 2000-10-18 2007-03-07 Nmt Medical Inc Over-the-wire interlock attachment/detachment mechanism
US6447524B1 (en) 2000-10-19 2002-09-10 Ethicon Endo-Surgery, Inc. Fastener for hernia mesh fixation
US6508828B1 (en) * 2000-11-03 2003-01-21 Radi Medical Systems Ab Sealing device and wound closure device
US6626937B1 (en) 2000-11-14 2003-09-30 Advanced Cardiovascular Systems, Inc. Austenitic nitinol medical devices
US20020082622A1 (en) * 2000-11-24 2002-06-27 Kane David Lee Collapsed deployable soft tissue anchor for repairing soft tissue to bone
US7285097B2 (en) 2001-01-12 2007-10-23 Radi Medical System Ab Technique to confirm correct positioning with respect to arterial wall
ES2248510T3 (en) * 2001-01-12 2006-03-16 Radi Medical Systems Ab CLOSURE DEVICE OF ARTERIAL PERFORATIONS WITH INDICATION OF POSITIONING.
US6569185B2 (en) * 2001-02-15 2003-05-27 Scimed Life Systems Inc Continuous infusion technique for arterial sealing
US7025776B1 (en) * 2001-04-24 2006-04-11 Advanced Catheter Engineering, Inc. Arteriotomy closure devices and techniques
US6855153B2 (en) 2001-05-01 2005-02-15 Vahid Saadat Embolic balloon
JP4267867B2 (en) * 2001-05-03 2009-05-27 ラディ・メディカル・システムズ・アクチェボラーグ Wound occlusion element guide device
ATE272359T1 (en) * 2001-05-09 2004-08-15 Radi Medical Systems DEVICE FOR SEALING AN ARTERIAL PERFORATION
US6863680B2 (en) 2001-11-08 2005-03-08 Sub-Q, Inc. System and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure
US7338514B2 (en) 2001-06-01 2008-03-04 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods and tools, and related methods of use
WO2002100245A2 (en) 2001-06-08 2002-12-19 Morris Innovative Research, Inc. Method and apparatus for sealing access
JP4159805B2 (en) 2001-06-15 2008-10-01 ラディ・メディカル・システムズ・アクチェボラーグ Pushing mechanism for closing method
US6702835B2 (en) 2001-09-07 2004-03-09 Core Medical, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US20070129755A1 (en) 2005-12-05 2007-06-07 Ovalis, Inc. Clip-based systems and methods for treating septal defects
US6811560B2 (en) 2001-09-20 2004-11-02 Cordis Neurovascular, Inc. Stent aneurysm embolization method and device
US6663653B2 (en) 2001-09-20 2003-12-16 Radi Medical Systems Ab Adjustable radial artery compressor
US7892247B2 (en) 2001-10-03 2011-02-22 Bioconnect Systems, Inc. Devices and methods for interconnecting vessels
US20030105487A1 (en) * 2001-11-30 2003-06-05 Benz Philip David Hemostatic compression pad
US20070198038A1 (en) 2001-12-03 2007-08-23 Cohen Adam L Microdevices for Tissue Approximation and Retention, Methods for Using, and Methods for Making
US7318833B2 (en) 2001-12-19 2008-01-15 Nmt Medical, Inc. PFO closure device with flexible thrombogenic joint and improved dislodgement resistance
US6749621B2 (en) * 2002-02-21 2004-06-15 Integrated Vascular Systems, Inc. Sheath apparatus and methods for delivering a closure device
US8430934B2 (en) 2002-03-01 2013-04-30 Regents Of The University Of Minnesota Vascular occlusion device
US7695488B2 (en) 2002-03-27 2010-04-13 Boston Scientific Scimed, Inc. Expandable body cavity liner device
AU2003224567A1 (en) 2002-05-08 2003-11-11 Radi Medical Systems Ab Dissolvable medical sealing device
US8088143B2 (en) 2002-06-12 2012-01-03 Radi Medical Systems Ab Closure device
EP1371333B1 (en) 2002-06-12 2004-05-19 Radi Medical Systems Ab Closure device
US6972027B2 (en) 2002-06-26 2005-12-06 Stryker Endoscopy Soft tissue repair system
US7033393B2 (en) * 2002-06-27 2006-04-25 Raymedica, Inc. Self-transitioning spinal disc anulus occulsion device and method of use
JP4425135B2 (en) 2002-07-31 2010-03-03 アボット ラボラトリーズ バスキュラー エンタープライゼズ リミテッド Device for sealing vascular and tissue puncture holes
WO2004012601A2 (en) 2002-08-01 2004-02-12 Abbott Laboratories Vascular Enterprises, Limited Apparatus for sealing punctures in blood vessels
US20040039413A1 (en) 2002-08-21 2004-02-26 Radi Medical Systems Ab Radial artery compression system
AU2003256201B2 (en) 2002-09-05 2006-06-01 Radi Medical Devices Ab Guide for a medical device
US7135032B2 (en) 2002-09-06 2006-11-14 Radi Medical Systems Ab Femoral compression device with support
US8398675B2 (en) 2002-10-25 2013-03-19 Radi Medical Systems Ab Absorbable medical sealing device with retaining assembly having at least two loops
US7329270B2 (en) 2002-12-19 2008-02-12 Radi Medical Systems Ab Femoral compression device
US7094209B2 (en) 2003-01-14 2006-08-22 Radi Medical Systems Ab Method for introducer replacement
EP1440656A3 (en) 2003-01-14 2004-10-06 Radi Medical Systems Ab Device for visually indicating a blood pressure
US8382793B2 (en) 2003-01-14 2013-02-26 Radi Medical Systems Ab Introducer sheath
US6960224B2 (en) 2003-01-22 2005-11-01 Cardia, Inc. Laminated sheets for use in a fully retrievable occlusion device
US20040143294A1 (en) 2003-01-22 2004-07-22 Cardia, Inc. Septal stabilization device
US7637921B2 (en) 2003-03-04 2009-12-29 Radi Medical Systems Ab Femoral compression device with progressive pressure device
US7618435B2 (en) 2003-03-04 2009-11-17 Nmt Medical, Inc. Magnetic attachment systems
US7572267B2 (en) 2003-04-16 2009-08-11 Tyco Healthcare Group Lp Method and apparatus for radical prostatectomy anastomosis including an anchor for engaging a body vessel and deployable sutures
US6825255B2 (en) * 2003-05-01 2004-11-30 Solutia Incorporated Polyvinyl butyral sheet having antiblocking characteristics
US8109968B2 (en) 2003-05-07 2012-02-07 Anpa Medical, Inc. Suture lock
US7862584B2 (en) 2003-05-07 2011-01-04 Anpa Medical, Inc. Suture lock
US7150757B2 (en) 2003-06-11 2006-12-19 Fallin T Wade Adjustable line locks and methods
CA2529754C (en) 2003-06-19 2016-05-10 Vascular Therapies Llc Medical devices and methods for regulating the tissue response to vascular closure devices
US20060173492A1 (en) 2003-07-03 2006-08-03 Radi Medical Systems Ab Wound closure and sealing device
JP2007504885A (en) 2003-09-11 2007-03-08 エヌエムティー メディカル, インコーポレイティッド Devices, systems and methods for suturing tissue
US7144410B2 (en) 2003-09-18 2006-12-05 Cardia Inc. ASD closure device with self centering arm network
US20050075654A1 (en) 2003-10-06 2005-04-07 Brian Kelleher Methods and devices for soft tissue securement
US20050192627A1 (en) 2003-10-10 2005-09-01 Whisenant Brian K. Patent foramen ovale closure devices, delivery apparatus and related methods and systems
CA2542089A1 (en) 2003-10-10 2005-04-21 Proximare, Inc. Patent foramen ovale (pfo) closure devices, delivery apparatus and related methods and systems
US8337522B2 (en) * 2003-10-15 2012-12-25 St. Jude Medical Puerto Rico Llc Vascular sealing device with locking hub
US7931670B2 (en) 2003-10-15 2011-04-26 St. Jude Medical Puerto Rico Llc Tissue puncture closure device with automatic tamping
US8007514B2 (en) 2003-10-17 2011-08-30 St. Jude Medical Puerto Rico Llc Automatic suture locking device
US7326230B2 (en) 2003-10-23 2008-02-05 Sundaram Ravikumar Vascular sealing device and method of use
US20050096697A1 (en) 2003-11-04 2005-05-05 Forsberg Andrew T. Vascular insertion sheath with stiffened tip
US7175648B2 (en) * 2003-11-18 2007-02-13 Granit Medical Innovations, Llc Deep endoscopic staple and stapler
US7621937B2 (en) 2003-12-03 2009-11-24 St. Jude Medical Puerto Rico LC Vascular sealing device with high surface area sealing plug
US7597705B2 (en) 2003-12-03 2009-10-06 St. Jude Medical Puerto Rico Llc Vascular puncture seal anchor nest
WO2006126979A2 (en) 2003-12-04 2006-11-30 Ev3, Inc. System and method for delivering a left atrial appendage containment device
US8267959B2 (en) 2003-12-19 2012-09-18 Radi Medical Systems Ab Technique for securing a suture
US7717929B2 (en) 2003-12-19 2010-05-18 Radi Medical Systems Ab Technique for securing a suture
CN101361667B (en) 2003-12-26 2012-05-23 泰尔茂株式会社 Tissue closure and tissue closing device
US7946976B2 (en) 2004-03-23 2011-05-24 Michael Gertner Methods and devices for the surgical creation of satiety and biofeedback pathways
US20050267524A1 (en) 2004-04-09 2005-12-01 Nmt Medical, Inc. Split ends closure device
US8057511B2 (en) 2004-05-07 2011-11-15 Usgi Medical, Inc. Apparatus and methods for positioning and securing anchors
DE102004022590A1 (en) 2004-05-07 2005-12-01 Feussner, Hubertus, Prof.Dr.med. Blind rivet for adaptation of biological tissue and device for setting the same, in particular through the instrument channel of an endoscope
US7704268B2 (en) 2004-05-07 2010-04-27 Nmt Medical, Inc. Closure device with hinges
US20050283193A1 (en) 2004-06-18 2005-12-22 Radi Medical Systems Ab Introducer guide
US7468068B2 (en) 2004-06-30 2008-12-23 Alwin Kolster Suture for wound closure, tissue approximation, tissue support, suspension and/or fixation
US8348971B2 (en) 2004-08-27 2013-01-08 Accessclosure, Inc. Apparatus and methods for facilitating hemostasis within a vascular puncture
US7905904B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US7658751B2 (en) 2006-09-29 2010-02-09 Biomet Sports Medicine, Llc Method for implanting soft tissue
SE0403070D0 (en) 2004-12-16 2004-12-16 Radi Medical Systems Closure Device
US8105352B2 (en) 2004-12-16 2012-01-31 Radi Medical Systems Ab Medical sealing device
JP4366306B2 (en) 2004-12-17 2009-11-18 テルモ株式会社 In vivo tissue closure device and in vivo tissue closure device
JP4823533B2 (en) 2005-02-04 2011-11-24 オリンパス株式会社 Medical suture ligation tool and medical suture ligation apparatus
US8882787B2 (en) 2005-03-02 2014-11-11 St. Jude Medical, Cardiology Division, Inc. Tissue anchor apparatus
US7931671B2 (en) 2005-03-11 2011-04-26 Radi Medical Systems Ab Medical sealing device
US20060217760A1 (en) 2005-03-17 2006-09-28 Widomski David R Multi-strand septal occluder
US7713283B2 (en) 2005-04-11 2010-05-11 St. Jude Medical Puerto Rico, Llc Tissue puncture closure device with magazine fed tamping system
US7618438B2 (en) 2005-05-17 2009-11-17 St. Jude Medical Puerto Rico Llc Tissue puncture closure device with disengagable automatic tamping system
US7758594B2 (en) 2005-05-20 2010-07-20 Neotract, Inc. Devices, systems and methods for treating benign prostatic hyperplasia and other conditions
US8252005B2 (en) 2005-06-30 2012-08-28 Edwards Lifesciences Corporation System, apparatus, and method for fastening tissue
US20070032824A1 (en) 2005-08-04 2007-02-08 St. Jude Medical Puerto Rico B.V. Tissue puncture closure device with track plug
US8062309B2 (en) 2005-08-19 2011-11-22 Boston Scientific Scimed, Inc. Defect occlusion apparatus, system, and method
US20070088388A1 (en) 2005-09-19 2007-04-19 Opolski Steven W Delivery device for implant with dual attachment sites
US7875041B2 (en) 2005-09-28 2011-01-25 Olympus Medical Systems Corp. Suturing method for penetrating hole
US7775988B2 (en) 2005-09-30 2010-08-17 Radi Medical Systems Ab Method for determining the blood flow in a coronary artery
US7632308B2 (en) 2005-11-23 2009-12-15 Didier Loulmet Methods, devices, and kits for treating mitral valve prolapse
US20070135826A1 (en) 2005-12-01 2007-06-14 Steve Zaver Method and apparatus for delivering an implant without bias to a left atrial appendage
US8317822B2 (en) 2005-12-22 2012-11-27 Ethicon, Inc. Systems and methods for closing a vessel wound
US8267942B2 (en) 2005-12-23 2012-09-18 Ethicon, Inc. Systems and methods for closing a vessel wound
US20070156175A1 (en) 2005-12-29 2007-07-05 Weadock Kevin S Device for attaching, relocating and reinforcing tissue and methods of using same
WO2007078226A1 (en) 2005-12-30 2007-07-12 Abb Technology Ltd. Cooling of high voltage devices
US7625392B2 (en) 2006-02-03 2009-12-01 James Coleman Wound closure devices and methods
US20090036920A1 (en) 2006-03-22 2009-02-05 Radi Medical Systems Ab Closure device
US20090036919A1 (en) 2006-03-22 2009-02-05 Radi Medical Systems Ab Closure device
US20070225756A1 (en) 2006-03-22 2007-09-27 Radi Medical Systems Ab Closure device and insertion assembly
US20090030450A1 (en) 2006-03-22 2009-01-29 Radi Medical Systems Ab Closure device
WO2007124772A1 (en) 2006-04-28 2007-11-08 Covidien Ag Organopexy tool and organopexy kit
US20070276437A1 (en) 2006-05-25 2007-11-29 Mitralign, Inc. Lockers for surgical tensioning members and methods of using the same to secure surgical tensioning members
US20080065156A1 (en) 2006-09-08 2008-03-13 Hauser David L Expandable clip for tissue repair
US8080034B2 (en) 2007-03-29 2011-12-20 St. Jude Medical, Inc. Vascular hemostasis device and deployment apparatus
US7938846B2 (en) 2007-06-22 2011-05-10 Radi Medical Systems Ab Femoral compression device
US8366741B2 (en) 2007-09-13 2013-02-05 Cardia, Inc. Occlusion device with centering arm
US8858591B2 (en) 2007-10-31 2014-10-14 Radi Medical Systems Ab Method and device for sealing a puncture hole in a bodily organ
US8652166B2 (en) 2007-11-30 2014-02-18 Radi Medical Systems Ab Insertion tool for a medical closure device
US8070772B2 (en) 2008-02-15 2011-12-06 Rex Medical, L.P. Vascular hole closure device
US8491629B2 (en) 2008-02-15 2013-07-23 Rex Medical Vascular hole closure delivery device
US20110029013A1 (en) 2008-02-15 2011-02-03 Mcguckin James F Vascular Hole Closure Device
JP5290717B2 (en) 2008-02-21 2013-09-18 テルモ株式会社 In vivo tissue closure device
US20090216267A1 (en) 2008-02-26 2009-08-27 Boston Scientific Scimed, Inc. Closure device with rapidly dissolving anchor
US20090234377A1 (en) 2008-03-14 2009-09-17 Radi Medical Systems Ab Medical closure device
US9101340B2 (en) 2008-03-31 2015-08-11 St. Jude Medical Coordination Center Bvba Insertion tool for a closure device
US8197446B2 (en) 2008-06-25 2012-06-12 Tyco Healthcare Group Lp Access cannula with hinge restrictor
US8480686B2 (en) 2008-09-25 2013-07-09 Ethicon Endo-Surgery, Inc. Methods and devices for delivering and applying suture anchors
US9241696B2 (en) 2008-10-30 2016-01-26 Abbott Vascular Inc. Closure device
US8029534B2 (en) 2009-03-16 2011-10-04 Cook Medical Technologies Llc Closure device with string retractable umbrella
US9028466B2 (en) 2009-06-08 2015-05-12 St. Jude Medical Coordination Center Bvba Adapter for use in connecting to a first percutaneous introducer
US9486192B2 (en) 2009-07-28 2016-11-08 St. Jude Medical Puerto Rico Llc Vascular closure device with automatic suture cutter
EP2464296B1 (en) 2009-08-14 2018-09-19 Terumo Puerto Rico L.L.C. Carrier tube for vascular closure device
EP2480142B1 (en) 2009-09-22 2017-06-07 Synthes GmbH Multi-stitch anchor suture-based soft tissue repair system
US20110082495A1 (en) 2009-10-02 2011-04-07 Ruiz Carlos E Apparatus And Methods For Excluding The Left Atrial Appendage
US8469944B2 (en) 2009-11-03 2013-06-25 Radi Medical Systems Ab Introducer access assembly
US8685059B2 (en) 2010-06-08 2014-04-01 Essential Medical Llc Self-locking closure device for percutaneously sealing punctures
US8906042B2 (en) 2010-07-29 2014-12-09 Covidien Lp Wound closure device including mesh barrier
US10485524B2 (en) 2011-10-25 2019-11-26 Essential Medical, Inc. Instrument and methods for surgically closing percutaneous punctures
US9757104B2 (en) 2012-07-19 2017-09-12 Essential Medical, Inc. Multi-lumen tamper tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998027868A1 (en) * 1996-12-20 1998-07-02 Gore Enterprise Holdings, Inc. Self-expanding defect closure device and method of making and using
WO2003065898A2 (en) * 2002-02-06 2003-08-14 Rex Medical, L.P. Vascular hole closure device

Cited By (736)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US8783541B2 (en) 2003-05-20 2014-07-22 Frederick E. Shelton, IV Robotically-controlled surgical end effector system
US10292707B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Articulating surgical stapling instrument incorporating a firing mechanism
US9585663B2 (en) 2004-07-28 2017-03-07 Ethicon Endo-Surgery, Llc Surgical stapling instrument configured to apply a compressive pressure to tissue
US10485547B2 (en) 2004-07-28 2019-11-26 Ethicon Llc Surgical staple cartridges
US9737302B2 (en) 2004-07-28 2017-08-22 Ethicon Llc Surgical stapling instrument having a restraining member
US9603991B2 (en) 2004-07-28 2017-03-28 Ethicon Endo-Surgery, Llc Surgical stapling instrument having a medical substance dispenser
US10278702B2 (en) 2004-07-28 2019-05-07 Ethicon Llc Stapling system comprising a firing bar and a lockout
US9844379B2 (en) 2004-07-28 2017-12-19 Ethicon Llc Surgical stapling instrument having a clearanced opening
US9737303B2 (en) 2004-07-28 2017-08-22 Ethicon Llc Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US10383634B2 (en) 2004-07-28 2019-08-20 Ethicon Llc Stapling system incorporating a firing lockout
US10293100B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Surgical stapling instrument having a medical substance dispenser
US9510830B2 (en) 2004-07-28 2016-12-06 Ethicon Endo-Surgery, Llc Staple cartridge
US8517244B2 (en) 2004-07-28 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US10314590B2 (en) 2004-07-28 2019-06-11 Ethicon Llc Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9282966B2 (en) 2004-07-28 2016-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US9561032B2 (en) 2005-08-31 2017-02-07 Ethicon Endo-Surgery, Llc Staple cartridge comprising a staple driver arrangement
US9592052B2 (en) 2005-08-31 2017-03-14 Ethicon Endo-Surgery, Llc Stapling assembly for forming different formed staple heights
US9326768B2 (en) 2005-08-31 2016-05-03 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US9307988B2 (en) 2005-08-31 2016-04-12 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US10842489B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US9844373B2 (en) 2005-08-31 2017-12-19 Ethicon Llc Fastener cartridge assembly comprising a driver row arrangement
US10321909B2 (en) 2005-08-31 2019-06-18 Ethicon Llc Staple cartridge comprising a staple including deformable members
US9848873B2 (en) 2005-08-31 2017-12-26 Ethicon Llc Fastener cartridge assembly comprising a driver and staple cavity arrangement
US10932774B2 (en) 2005-08-31 2021-03-02 Ethicon Llc Surgical end effector for forming staples to different heights
US10842488B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US9839427B2 (en) 2005-08-31 2017-12-12 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and a staple driver arrangement
US10729436B2 (en) 2005-08-31 2020-08-04 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10070863B2 (en) 2005-08-31 2018-09-11 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil
US8636187B2 (en) 2005-08-31 2014-01-28 Ethicon Endo-Surgery, Inc. Surgical stapling systems that produce formed staples having different lengths
US10869664B2 (en) 2005-08-31 2020-12-22 Ethicon Llc End effector for use with a surgical stapling instrument
US10278697B2 (en) 2005-08-31 2019-05-07 Ethicon Llc Staple cartridge comprising a staple driver arrangement
US10420553B2 (en) 2005-08-31 2019-09-24 Ethicon Llc Staple cartridge comprising a staple driver arrangement
US10271845B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US10271846B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Staple cartridge for use with a surgical stapler
US9795382B2 (en) 2005-08-31 2017-10-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US10245032B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Staple cartridges for forming staples having differing formed staple heights
US10245035B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Stapling assembly configured to produce different formed staple heights
US10463369B2 (en) 2005-08-31 2019-11-05 Ethicon Llc Disposable end effector for use with a surgical instrument
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US10028742B2 (en) 2005-11-09 2018-07-24 Ethicon Llc Staple cartridge comprising staples with different unformed heights
US9968356B2 (en) 2005-11-09 2018-05-15 Ethicon Llc Surgical instrument drive systems
US9895147B2 (en) 2005-11-09 2018-02-20 Ethicon Llc End effectors for surgical staplers
US10149679B2 (en) 2005-11-09 2018-12-11 Ethicon Llc Surgical instrument comprising drive systems
US9451958B2 (en) 2006-01-31 2016-09-27 Ethicon Endo-Surgery, Llc Surgical instrument with firing actuator lockout
US8752747B2 (en) 2006-01-31 2014-06-17 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US10098636B2 (en) 2006-01-31 2018-10-16 Ethicon Llc Surgical instrument having force feedback capabilities
US10993717B2 (en) 2006-01-31 2021-05-04 Ethicon Llc Surgical stapling system comprising a control system
US10010322B2 (en) 2006-01-31 2018-07-03 Ethicon Llc Surgical instrument
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US9743928B2 (en) 2006-01-31 2017-08-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US10299817B2 (en) 2006-01-31 2019-05-28 Ethicon Llc Motor-driven fastening assembly
US11051811B2 (en) 2006-01-31 2021-07-06 Ethicon Llc End effector for use with a surgical instrument
US10004498B2 (en) 2006-01-31 2018-06-26 Ethicon Llc Surgical instrument comprising a plurality of articulation joints
US8844789B2 (en) 2006-01-31 2014-09-30 Ethicon Endo-Surgery, Inc. Automated end effector component reloading system for use with a robotic system
US9320520B2 (en) 2006-01-31 2016-04-26 Ethicon Endo-Surgery, Inc. Surgical instrument system
US10463383B2 (en) 2006-01-31 2019-11-05 Ethicon Llc Stapling instrument including a sensing system
US10201363B2 (en) 2006-01-31 2019-02-12 Ethicon Llc Motor-driven surgical instrument
US8820605B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instruments
US11058420B2 (en) 2006-01-31 2021-07-13 Cilag Gmbh International Surgical stapling apparatus comprising a lockout system
US10463384B2 (en) 2006-01-31 2019-11-05 Ethicon Llc Stapling assembly
US9113874B2 (en) 2006-01-31 2015-08-25 Ethicon Endo-Surgery, Inc. Surgical instrument system
US8746529B2 (en) 2006-01-31 2014-06-10 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US9326770B2 (en) 2006-01-31 2016-05-03 Ethicon Endo-Surgery, Llc Surgical instrument
US10653417B2 (en) 2006-01-31 2020-05-19 Ethicon Llc Surgical instrument
US10058963B2 (en) 2006-01-31 2018-08-28 Ethicon Llc Automated end effector component reloading system for use with a robotic system
US9326769B2 (en) 2006-01-31 2016-05-03 Ethicon Endo-Surgery, Llc Surgical instrument
US10499890B2 (en) 2006-01-31 2019-12-10 Ethicon Llc Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US10893853B2 (en) 2006-01-31 2021-01-19 Ethicon Llc Stapling assembly including motor drive systems
US10842491B2 (en) 2006-01-31 2020-11-24 Ethicon Llc Surgical system with an actuation console
US10052100B2 (en) 2006-01-31 2018-08-21 Ethicon Llc Surgical instrument system configured to detect resistive forces experienced by a tissue cutting implement
US10335144B2 (en) 2006-01-31 2019-07-02 Ethicon Llc Surgical instrument
US10052099B2 (en) 2006-01-31 2018-08-21 Ethicon Llc Surgical instrument system comprising a firing system including a rotatable shaft and first and second actuation ramps
US10278722B2 (en) 2006-01-31 2019-05-07 Ethicon Llc Motor-driven surgical cutting and fastening instrument
US9370358B2 (en) 2006-01-31 2016-06-21 Ethicon Endo-Surgery, Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10342533B2 (en) 2006-01-31 2019-07-09 Ethicon Llc Surgical instrument
US10485539B2 (en) 2006-01-31 2019-11-26 Ethicon Llc Surgical instrument with firing lockout
US9517068B2 (en) 2006-01-31 2016-12-13 Ethicon Endo-Surgery, Llc Surgical instrument with automatically-returned firing member
US10743849B2 (en) 2006-01-31 2020-08-18 Ethicon Llc Stapling system including an articulation system
US10426463B2 (en) 2006-01-31 2019-10-01 Ehticon LLC Surgical instrument having a feedback system
US9492167B2 (en) 2006-03-23 2016-11-15 Ethicon Endo-Surgery, Llc Articulatable surgical device with rotary driven cutting member
US9402626B2 (en) 2006-03-23 2016-08-02 Ethicon Endo-Surgery, Llc Rotary actuatable surgical fastener and cutter
US10213262B2 (en) 2006-03-23 2019-02-26 Ethicon Llc Manipulatable surgical systems with selectively articulatable fastening device
US10064688B2 (en) 2006-03-23 2018-09-04 Ethicon Llc Surgical system with selectively articulatable end effector
US10070861B2 (en) 2006-03-23 2018-09-11 Ethicon Llc Articulatable surgical device
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8911471B2 (en) 2006-03-23 2014-12-16 Ethicon Endo-Surgery, Inc. Articulatable surgical device
US9149274B2 (en) 2006-03-23 2015-10-06 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US9301759B2 (en) 2006-03-23 2016-04-05 Ethicon Endo-Surgery, Llc Robotically-controlled surgical instrument with selectively articulatable end effector
US9320521B2 (en) 2006-06-27 2016-04-26 Ethicon Endo-Surgery, Llc Surgical instrument
US10420560B2 (en) 2006-06-27 2019-09-24 Ethicon Llc Manually driven surgical cutting and fastening instrument
US10314589B2 (en) 2006-06-27 2019-06-11 Ethicon Llc Surgical instrument including a shifting assembly
US10172616B2 (en) 2006-09-29 2019-01-08 Ethicon Llc Surgical staple cartridge
US8973804B2 (en) 2006-09-29 2015-03-10 Ethicon Endo-Surgery, Inc. Cartridge assembly having a buttressing member
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US8499993B2 (en) 2006-09-29 2013-08-06 Ethicon Endo-Surgery, Inc. Surgical staple cartridge
US8485412B2 (en) 2006-09-29 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical staples having attached drivers and stapling instruments for deploying the same
US8899465B2 (en) 2006-09-29 2014-12-02 Ethicon Endo-Surgery, Inc. Staple cartridge comprising drivers for deploying a plurality of staples
EP2444008A3 (en) * 2006-09-29 2012-08-29 Ethicon Endo-Surgery, Inc. Surgical staples having compressible or crushable members for securing tissue therein and stapling instruments for deploying the same
US9603595B2 (en) 2006-09-29 2017-03-28 Ethicon Endo-Surgery, Llc Surgical instrument comprising an adjustable system configured to accommodate different jaw heights
US9179911B2 (en) 2006-09-29 2015-11-10 Ethicon Endo-Surgery, Inc. End effector for use with a surgical fastening instrument
US8360297B2 (en) 2006-09-29 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling instrument with self adjusting anvil
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US10695053B2 (en) 2006-09-29 2020-06-30 Ethicon Llc Surgical end effectors with staple cartridges
US8763875B2 (en) 2006-09-29 2014-07-01 Ethicon Endo-Surgery, Inc. End effector for use with a surgical fastening instrument
US8365976B2 (en) 2006-09-29 2013-02-05 Ethicon Endo-Surgery, Inc. Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same
US9706991B2 (en) 2006-09-29 2017-07-18 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples including a lateral base
US11406379B2 (en) 2006-09-29 2022-08-09 Cilag Gmbh International Surgical end effectors with staple cartridges
US9408604B2 (en) 2006-09-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instrument comprising a firing system including a compliant portion
US10595862B2 (en) 2006-09-29 2020-03-24 Ethicon Llc Staple cartridge including a compressible member
US10448952B2 (en) 2006-09-29 2019-10-22 Ethicon Llc End effector for use with a surgical fastening instrument
US10342541B2 (en) 2006-10-03 2019-07-09 Ethicon Llc Surgical instruments with E-beam driver and rotary drive arrangements
US10206678B2 (en) 2006-10-03 2019-02-19 Ethicon Llc Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument
US10517682B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Surgical instrument with wireless communication between control unit and remote sensor
US11064998B2 (en) 2007-01-10 2021-07-20 Cilag Gmbh International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11000277B2 (en) 2007-01-10 2021-05-11 Ethicon Llc Surgical instrument with wireless communication between control unit and remote sensor
US9757123B2 (en) 2007-01-10 2017-09-12 Ethicon Llc Powered surgical instrument having a transmission system
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11006951B2 (en) 2007-01-10 2021-05-18 Ethicon Llc Surgical instrument with wireless communication between control unit and sensor transponders
US8840603B2 (en) 2007-01-10 2014-09-23 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8479969B2 (en) 2007-01-10 2013-07-09 Ethicon Endo-Surgery, Inc. Drive interface for operably coupling a manipulatable surgical tool to a robot
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US10517590B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Powered surgical instrument having a transmission system
US10751138B2 (en) 2007-01-10 2020-08-25 Ethicon Llc Surgical instrument for use with a robotic system
US10433918B2 (en) 2007-01-10 2019-10-08 Ethicon Llc Surgical instrument system configured to evaluate the load applied to a firing member at the initiation of a firing stroke
US8517243B2 (en) 2007-01-10 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US10441369B2 (en) 2007-01-10 2019-10-15 Ethicon Llc Articulatable surgical instrument configured for detachable use with a robotic system
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8746530B2 (en) 2007-01-10 2014-06-10 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US10278780B2 (en) 2007-01-10 2019-05-07 Ethicon Llc Surgical instrument for use with robotic system
US9730692B2 (en) 2007-01-11 2017-08-15 Ethicon Llc Surgical stapling device with a curved staple cartridge
US9675355B2 (en) 2007-01-11 2017-06-13 Ethicon Llc Surgical stapling device with a curved end effector
US9603598B2 (en) 2007-01-11 2017-03-28 Ethicon Endo-Surgery, Llc Surgical stapling device with a curved end effector
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US9724091B2 (en) 2007-01-11 2017-08-08 Ethicon Llc Surgical stapling device
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US9700321B2 (en) 2007-01-11 2017-07-11 Ethicon Llc Surgical stapling device having supports for a flexible drive mechanism
US9655624B2 (en) 2007-01-11 2017-05-23 Ethicon Llc Surgical stapling device with a curved end effector
US9775613B2 (en) 2007-01-11 2017-10-03 Ethicon Llc Surgical stapling device with a curved end effector
US9999431B2 (en) 2007-01-11 2018-06-19 Ethicon Endo-Surgery, Llc Surgical stapling device having supports for a flexible drive mechanism
US9750501B2 (en) 2007-01-11 2017-09-05 Ethicon Endo-Surgery, Llc Surgical stapling devices having laterally movable anvils
US10912575B2 (en) 2007-01-11 2021-02-09 Ethicon Llc Surgical stapling device having supports for a flexible drive mechanism
WO2008097955A1 (en) * 2007-02-05 2008-08-14 Boston Scientific Scimed, Inc. Apparatus and method for closing an opening in a blood vessel using a permanent implant
US9757130B2 (en) 2007-02-28 2017-09-12 Ethicon Llc Stapling assembly for forming different formed staple heights
US8672208B2 (en) 2007-03-15 2014-03-18 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a releasable buttress material
US8590762B2 (en) 2007-03-15 2013-11-26 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configurations
US8925788B2 (en) 2007-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. End effectors for surgical stapling instruments
US8668130B2 (en) 2007-03-15 2014-03-11 Ethicon Endo-Surgery, Inc. Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US9289206B2 (en) 2007-03-15 2016-03-22 Ethicon Endo-Surgery, Llc Lateral securement members for surgical staple cartridges
US9872682B2 (en) 2007-03-15 2018-01-23 Ethicon Llc Surgical stapling instrument having a releasable buttress material
US10398433B2 (en) 2007-03-28 2019-09-03 Ethicon Llc Laparoscopic clamp load measuring devices
US8616431B2 (en) 2007-06-04 2013-12-31 Ethicon Endo-Surgery, Inc. Shiftable drive interface for robotically-controlled surgical tool
US8424740B2 (en) 2007-06-04 2013-04-23 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US9186143B2 (en) 2007-06-04 2015-11-17 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US10368863B2 (en) 2007-06-04 2019-08-06 Ethicon Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US10299787B2 (en) 2007-06-04 2019-05-28 Ethicon Llc Stapling system comprising rotary inputs
US9795381B2 (en) 2007-06-04 2017-10-24 Ethicon Endo-Surgery, Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US9750498B2 (en) 2007-06-04 2017-09-05 Ethicon Endo Surgery, Llc Drive systems for surgical instruments
US10363033B2 (en) 2007-06-04 2019-07-30 Ethicon Llc Robotically-controlled surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US10441280B2 (en) 2007-06-04 2019-10-15 Ethicon Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US9585658B2 (en) 2007-06-04 2017-03-07 Ethicon Endo-Surgery, Llc Stapling systems
US9987003B2 (en) 2007-06-04 2018-06-05 Ethicon Llc Robotic actuator assembly
US10327765B2 (en) 2007-06-04 2019-06-25 Ethicon Llc Drive systems for surgical instruments
US8408439B2 (en) 2007-06-22 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US9662110B2 (en) 2007-06-22 2017-05-30 Ethicon Endo-Surgery, Llc Surgical stapling instrument with an articulatable end effector
US8353437B2 (en) 2007-06-22 2013-01-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a geared return mechanism
US9138225B2 (en) 2007-06-22 2015-09-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US7875054B2 (en) 2007-10-01 2011-01-25 Boston Scientific Scimed, Inc. Connective tissue closure device and method
US8469994B2 (en) 2007-10-01 2013-06-25 Boston Scientific Scimed, Inc. Connective tissue closure device and method
US8540129B2 (en) 2008-02-13 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US9687231B2 (en) 2008-02-13 2017-06-27 Ethicon Llc Surgical stapling instrument
US10765424B2 (en) 2008-02-13 2020-09-08 Ethicon Llc Surgical stapling instrument
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8453908B2 (en) 2008-02-13 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US9980729B2 (en) 2008-02-14 2018-05-29 Ethicon Endo-Surgery, Llc Detachable motor powered surgical instrument
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US9877723B2 (en) 2008-02-14 2018-01-30 Ethicon Llc Surgical stapling assembly comprising a selector arrangement
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US8540130B2 (en) 2008-02-14 2013-09-24 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US10307163B2 (en) 2008-02-14 2019-06-04 Ethicon Llc Detachable motor powered surgical instrument
US10206676B2 (en) 2008-02-14 2019-02-19 Ethicon Llc Surgical cutting and fastening instrument
US10463370B2 (en) 2008-02-14 2019-11-05 Ethicon Llc Motorized surgical instrument
US9901344B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US9901346B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US10470763B2 (en) 2008-02-14 2019-11-12 Ethicon Llc Surgical cutting and fastening instrument including a sensing system
US9901345B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US9095339B2 (en) 2008-02-14 2015-08-04 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US9962158B2 (en) 2008-02-14 2018-05-08 Ethicon Llc Surgical stapling apparatuses with lockable end effector positioning systems
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US9211121B2 (en) 2008-02-14 2015-12-15 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US9498219B2 (en) 2008-02-14 2016-11-22 Ethicon Endo-Surgery, Llc Detachable motor powered surgical instrument
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US9872684B2 (en) 2008-02-14 2018-01-23 Ethicon Llc Surgical stapling apparatus including firing force regulation
US9999426B2 (en) 2008-02-14 2018-06-19 Ethicon Llc Detachable motor powered surgical instrument
US9204878B2 (en) 2008-02-14 2015-12-08 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9084601B2 (en) 2008-02-14 2015-07-21 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US10779822B2 (en) 2008-02-14 2020-09-22 Ethicon Llc System including a surgical cutting and fastening instrument
US10238385B2 (en) 2008-02-14 2019-03-26 Ethicon Llc Surgical instrument system for evaluating tissue impedance
US9867618B2 (en) 2008-02-14 2018-01-16 Ethicon Llc Surgical stapling apparatus including firing force regulation
US8991677B2 (en) 2008-02-14 2015-03-31 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US8657178B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US8573461B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with cam-driven staple deployment arrangements
US8998058B2 (en) 2008-02-14 2015-04-07 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US10660640B2 (en) 2008-02-14 2020-05-26 Ethicon Llc Motorized surgical cutting and fastening instrument
US9522029B2 (en) 2008-02-14 2016-12-20 Ethicon Endo-Surgery, Llc Motorized surgical cutting and fastening instrument having handle based power source
US10238387B2 (en) 2008-02-14 2019-03-26 Ethicon Llc Surgical instrument comprising a control system
US9072515B2 (en) 2008-02-14 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US10265067B2 (en) 2008-02-14 2019-04-23 Ethicon Llc Surgical instrument including a regulator and a control system
US10004505B2 (en) 2008-02-14 2018-06-26 Ethicon Llc Detachable motor powered surgical instrument
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US9839429B2 (en) 2008-02-15 2017-12-12 Ethicon Endo-Surgery, Llc Stapling system comprising a lockout
US8371491B2 (en) 2008-02-15 2013-02-12 Ethicon Endo-Surgery, Inc. Surgical end effector having buttress retention features
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US11058418B2 (en) 2008-02-15 2021-07-13 Cilag Gmbh International Surgical end effector having buttress retention features
US10390823B2 (en) 2008-02-15 2019-08-27 Ethicon Llc End effector comprising an adjunct
US10058327B2 (en) 2008-02-15 2018-08-28 Ethicon Llc End effector coupling arrangements for a surgical cutting and stapling instrument
US9913647B2 (en) 2008-02-15 2018-03-13 Ethicon Llc Disposable loading unit for use with a surgical instrument
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US8608044B2 (en) 2008-02-15 2013-12-17 Ethicon Endo-Surgery, Inc. Feedback and lockout mechanism for surgical instrument
US10856866B2 (en) 2008-02-15 2020-12-08 Ethicon Llc Surgical end effector having buttress retention features
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US8540133B2 (en) 2008-09-19 2013-09-24 Ethicon Endo-Surgery, Inc. Staple cartridge
US9289210B2 (en) 2008-09-19 2016-03-22 Ethicon Endo-Surgery, Llc Surgical stapler with apparatus for adjusting staple height
US10258336B2 (en) 2008-09-19 2019-04-16 Ethicon Llc Stapling system configured to produce different formed staple heights
US10420549B2 (en) 2008-09-23 2019-09-24 Ethicon Llc Motorized surgical instrument
US10485537B2 (en) 2008-09-23 2019-11-26 Ethicon Llc Motorized surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8602288B2 (en) 2008-09-23 2013-12-10 Ethicon Endo-Surgery. Inc. Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US9028519B2 (en) 2008-09-23 2015-05-12 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US10765425B2 (en) 2008-09-23 2020-09-08 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US10105136B2 (en) 2008-09-23 2018-10-23 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US10130361B2 (en) 2008-09-23 2018-11-20 Ethicon Llc Robotically-controller motorized surgical tool with an end effector
US9549732B2 (en) 2008-09-23 2017-01-24 Ethicon Endo-Surgery, Llc Motor-driven surgical cutting instrument
US11617575B2 (en) 2008-09-23 2023-04-04 Cilag Gmbh International Motor-driven surgical cutting instrument
US9655614B2 (en) 2008-09-23 2017-05-23 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument with an end effector
US10736628B2 (en) 2008-09-23 2020-08-11 Ethicon Llc Motor-driven surgical cutting instrument
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US10238389B2 (en) 2008-09-23 2019-03-26 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US10898184B2 (en) 2008-09-23 2021-01-26 Ethicon Llc Motor-driven surgical cutting instrument
US10045778B2 (en) 2008-09-23 2018-08-14 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US10456133B2 (en) 2008-09-23 2019-10-29 Ethicon Llc Motorized surgical instrument
US8602287B2 (en) 2008-09-23 2013-12-10 Ethicon Endo-Surgery, Inc. Motor driven surgical cutting instrument
US10149683B2 (en) 2008-10-10 2018-12-11 Ethicon Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US9370364B2 (en) 2008-10-10 2016-06-21 Ethicon Endo-Surgery, Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US11129615B2 (en) 2009-02-05 2021-09-28 Cilag Gmbh International Surgical stapling system
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US10758233B2 (en) 2009-02-05 2020-09-01 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US9486214B2 (en) 2009-02-06 2016-11-08 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US8453907B2 (en) 2009-02-06 2013-06-04 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with cutting member reversing mechanism
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US9393015B2 (en) 2009-02-06 2016-07-19 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with cutting member reversing mechanism
US10420550B2 (en) 2009-02-06 2019-09-24 Ethicon Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US8899466B2 (en) 2009-11-19 2014-12-02 Ethicon Endo-Surgery, Inc. Devices and methods for introducing a surgical circular stapling instrument into a patient
US8353438B2 (en) 2009-11-19 2013-01-15 Ethicon Endo-Surgery, Inc. Circular stapler introducer with rigid cap assembly configured for easy removal
US8353439B2 (en) 2009-11-19 2013-01-15 Ethicon Endo-Surgery, Inc. Circular stapler introducer with radially-openable distal end portion
US8622275B2 (en) 2009-11-19 2014-01-07 Ethicon Endo-Surgery, Inc. Circular stapler introducer with rigid distal end portion
US9675372B2 (en) 2009-12-24 2017-06-13 Ethicon Llc Motor-driven surgical cutting instrument with electric actuator directional control assembly
US9307987B2 (en) 2009-12-24 2016-04-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument that analyzes tissue thickness
US8453914B2 (en) 2009-12-24 2013-06-04 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
US9585660B2 (en) 2010-01-07 2017-03-07 Ethicon Endo-Surgery, Llc Method for testing a surgical tool
US9597075B2 (en) 2010-07-30 2017-03-21 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8789740B2 (en) 2010-07-30 2014-07-29 Ethicon Endo-Surgery, Inc. Linear cutting and stapling device with selectively disengageable cutting member
US10470770B2 (en) 2010-07-30 2019-11-12 Ethicon Llc Circular surgical fastening devices with tissue acquisition arrangements
US8801734B2 (en) 2010-07-30 2014-08-12 Ethicon Endo-Surgery, Inc. Circular stapling instruments with secondary cutting arrangements and methods of using same
US8801735B2 (en) 2010-07-30 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical circular stapler with tissue retention arrangements
US8672207B2 (en) 2010-07-30 2014-03-18 Ethicon Endo-Surgery, Inc. Transwall visualization arrangements and methods for surgical circular staplers
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9232945B2 (en) 2010-09-09 2016-01-12 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US8794497B2 (en) 2010-09-09 2014-08-05 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US10675035B2 (en) 2010-09-09 2020-06-09 Ethicon Llc Surgical stapling head assembly with firing lockout for a surgical stapler
US10039529B2 (en) 2010-09-17 2018-08-07 Ethicon Llc Power control arrangements for surgical instruments and batteries
US10188393B2 (en) 2010-09-17 2019-01-29 Ethicon Llc Surgical instrument battery comprising a plurality of cells
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US10595835B2 (en) 2010-09-17 2020-03-24 Ethicon Llc Surgical instrument comprising a removable battery
US10492787B2 (en) 2010-09-17 2019-12-03 Ethicon Llc Orientable battery for a surgical instrument
US8789741B2 (en) 2010-09-24 2014-07-29 Ethicon Endo-Surgery, Inc. Surgical instrument with trigger assembly for generating multiple actuation motions
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US9131940B2 (en) 2010-09-29 2015-09-15 Ethicon Endo-Surgery, Inc. Staple cartridge
US10130363B2 (en) 2010-09-29 2018-11-20 Ethicon Llc Staple cartridge
US8978954B2 (en) 2010-09-30 2015-03-17 Ethicon Endo-Surgery, Inc. Staple cartridge comprising an adjustable distal portion
US9113862B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a variable staple forming system
US10463372B2 (en) 2010-09-30 2019-11-05 Ethicon Llc Staple cartridge comprising multiple regions
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US8393514B2 (en) 2010-09-30 2013-03-12 Ethicon Endo-Surgery, Inc. Selectively orientable implantable fastener cartridge
US8474677B2 (en) 2010-09-30 2013-07-02 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix and a cover
US10485536B2 (en) 2010-09-30 2019-11-26 Ethicon Llc Tissue stapler having an anti-microbial agent
US8529600B2 (en) 2010-09-30 2013-09-10 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix
US10136890B2 (en) 2010-09-30 2018-11-27 Ethicon Llc Staple cartridge comprising a variable thickness compressible portion
US10149682B2 (en) 2010-09-30 2018-12-11 Ethicon Llc Stapling system including an actuation system
US8740038B2 (en) 2010-09-30 2014-06-03 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a releasable portion
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US9795383B2 (en) 2010-09-30 2017-10-24 Ethicon Llc Tissue thickness compensator comprising resilient members
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US9592050B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc End effector comprising a distal tissue abutment member
US9801634B2 (en) 2010-09-30 2017-10-31 Ethicon Llc Tissue thickness compensator for a surgical stapler
US8740034B2 (en) 2010-09-30 2014-06-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with interchangeable staple cartridge arrangements
US9592053B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc Staple cartridge comprising multiple regions
US8740037B2 (en) 2010-09-30 2014-06-03 Ethicon Endo-Surgery, Inc. Compressible fastener cartridge
US10405854B2 (en) 2010-09-30 2019-09-10 Ethicon Llc Surgical stapling cartridge with layer retention features
US10064624B2 (en) 2010-09-30 2018-09-04 Ethicon Llc End effector with implantable layer
US10398436B2 (en) 2010-09-30 2019-09-03 Ethicon Llc Staple cartridge comprising staples positioned within a compressible portion thereof
US9808247B2 (en) 2010-09-30 2017-11-07 Ethicon Llc Stapling system comprising implantable layers
US10588623B2 (en) 2010-09-30 2020-03-17 Ethicon Llc Adhesive film laminate
US9814462B2 (en) 2010-09-30 2017-11-14 Ethicon Llc Assembly for fastening tissue comprising a compressible layer
US9572574B2 (en) 2010-09-30 2017-02-21 Ethicon Endo-Surgery, Llc Tissue thickness compensators comprising therapeutic agents
US8746535B2 (en) 2010-09-30 2014-06-10 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising detachable portions
US9826978B2 (en) 2010-09-30 2017-11-28 Ethicon Llc End effectors with same side closure and firing motions
US9566061B2 (en) 2010-09-30 2017-02-14 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasably attached tissue thickness compensator
US10363031B2 (en) 2010-09-30 2019-07-30 Ethicon Llc Tissue thickness compensators for surgical staplers
US9833238B2 (en) 2010-09-30 2017-12-05 Ethicon Endo-Surgery, Llc Retainer assembly including a tissue thickness compensator
US9480476B2 (en) 2010-09-30 2016-11-01 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising resilient members
US9833242B2 (en) 2010-09-30 2017-12-05 Ethicon Endo-Surgery, Llc Tissue thickness compensators
US9833236B2 (en) 2010-09-30 2017-12-05 Ethicon Llc Tissue thickness compensator for surgical staplers
US9839420B2 (en) 2010-09-30 2017-12-12 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US9433419B2 (en) 2010-09-30 2016-09-06 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of layers
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9358005B2 (en) 2010-09-30 2016-06-07 Ethicon Endo-Surgery, Llc End effector layer including holding features
US10335150B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge comprising an implantable layer
US10335148B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge including a tissue thickness compensator for a surgical stapler
US8752699B2 (en) 2010-09-30 2014-06-17 Ethicon Endo-Surgery, Inc. Implantable fastener cartridge comprising bioabsorbable layers
US8757465B2 (en) 2010-09-30 2014-06-24 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix and an alignment matrix
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9301752B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising a plurality of capsules
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US9301755B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Compressible staple cartridge assembly
US9844372B2 (en) 2010-09-30 2017-12-19 Ethicon Llc Retainer assembly including a tissue thickness compensator
US9295464B2 (en) 2010-09-30 2016-03-29 Ethicon Endo-Surgery, Inc. Surgical stapler anvil comprising a plurality of forming pockets
US9848875B2 (en) 2010-09-30 2017-12-26 Ethicon Llc Anvil layer attached to a proximal end of an end effector
US9861361B2 (en) 2010-09-30 2018-01-09 Ethicon Llc Releasable tissue thickness compensator and fastener cartridge having the same
US9282962B2 (en) 2010-09-30 2016-03-15 Ethicon Endo-Surgery, Llc Adhesive film laminate
US9277919B2 (en) 2010-09-30 2016-03-08 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising fibers to produce a resilient load
US9272406B2 (en) 2010-09-30 2016-03-01 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US8763877B2 (en) 2010-09-30 2014-07-01 Ethicon Endo-Surgery, Inc. Surgical instruments with reconfigurable shaft segments
US8777004B2 (en) 2010-09-30 2014-07-15 Ethicon Endo-Surgery, Inc. Compressible staple cartridge comprising alignment members
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9883861B2 (en) 2010-09-30 2018-02-06 Ethicon Llc Retainer assembly including a tissue thickness compensator
US8783542B2 (en) 2010-09-30 2014-07-22 Ethicon Endo-Surgery, Inc. Fasteners supported by a fastener cartridge support
US10182819B2 (en) 2010-09-30 2019-01-22 Ethicon Llc Implantable layer assemblies
US8814024B2 (en) 2010-09-30 2014-08-26 Ethicon Endo-Surgery, Inc. Fastener system comprising a plurality of connected retention matrix elements
US10194910B2 (en) 2010-09-30 2019-02-05 Ethicon Llc Stapling assemblies comprising a layer
US9168038B2 (en) 2010-09-30 2015-10-27 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a tissue thickness compensator
US8840003B2 (en) 2010-09-30 2014-09-23 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with compact articulation control arrangement
US10028743B2 (en) 2010-09-30 2018-07-24 Ethicon Llc Staple cartridge assembly comprising an implantable layer
US9113864B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instruments with separate and distinct fastener deployment and tissue cutting systems
US8857694B2 (en) 2010-09-30 2014-10-14 Ethicon Endo-Surgery, Inc. Staple cartridge loading assembly
US10213198B2 (en) 2010-09-30 2019-02-26 Ethicon Llc Actuator for releasing a tissue thickness compensator from a fastener cartridge
US8864009B2 (en) 2010-09-30 2014-10-21 Ethicon Endo-Surgery, Inc. Tissue thickness compensator for a surgical stapler comprising an adjustable anvil
US9113865B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a layer
US8864007B2 (en) 2010-09-30 2014-10-21 Ethicon Endo-Surgery, Inc. Implantable fastener cartridge having a non-uniform arrangement
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US8899463B2 (en) 2010-09-30 2014-12-02 Ethicon Endo-Surgery, Inc. Surgical staple cartridges supporting non-linearly arranged staples and surgical stapling instruments with common staple-forming pockets
US8925782B2 (en) 2010-09-30 2015-01-06 Ethicon Endo-Surgery, Inc. Implantable fastener cartridge comprising multiple layers
US9924947B2 (en) 2010-09-30 2018-03-27 Ethicon Llc Staple cartridge comprising a compressible portion
US8978956B2 (en) 2010-09-30 2015-03-17 Ethicon Endo-Surgery, Inc. Jaw closure arrangements for surgical instruments
US10265074B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Implantable layers for surgical stapling devices
US10123798B2 (en) 2010-09-30 2018-11-13 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US10265072B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Surgical stapling system comprising an end effector including an implantable layer
US9033203B2 (en) 2010-09-30 2015-05-19 Ethicon Endo-Surgery, Inc. Fastening instrument for deploying a fastener system comprising a retention matrix
US10258330B2 (en) 2010-09-30 2019-04-16 Ethicon Llc End effector including an implantable arrangement
US9044227B2 (en) 2010-09-30 2015-06-02 Ethicon Endo-Surgery, Inc. Collapsible fastener cartridge
US9044228B2 (en) 2010-09-30 2015-06-02 Ethicon Endo-Surgery, Inc. Fastener system comprising a plurality of fastener cartridges
US10258332B2 (en) 2010-09-30 2019-04-16 Ethicon Llc Stapling system comprising an adjunct and a flowable adhesive
US9687236B2 (en) 2010-10-01 2017-06-27 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8734478B2 (en) 2011-03-14 2014-05-27 Ethicon Endo-Surgery, Inc. Rectal manipulation devices
US9974529B2 (en) 2011-03-14 2018-05-22 Ethicon Llc Surgical instrument
US9033204B2 (en) 2011-03-14 2015-05-19 Ethicon Endo-Surgery, Inc. Circular stapling devices with tissue-puncturing anvil features
US8632462B2 (en) 2011-03-14 2014-01-21 Ethicon Endo-Surgery, Inc. Trans-rectum universal ports
US9980713B2 (en) 2011-03-14 2018-05-29 Ethicon Llc Anvil assemblies with collapsible frames for circular staplers
US8978955B2 (en) 2011-03-14 2015-03-17 Ethicon Endo-Surgery, Inc. Anvil assemblies with collapsible frames for circular staplers
US9113883B2 (en) 2011-03-14 2015-08-25 Ethicon Endo-Surgery, Inc. Collapsible anvil plate assemblies for circular surgical stapling devices
US10588612B2 (en) 2011-03-14 2020-03-17 Ethicon Llc Collapsible anvil plate assemblies for circular surgical stapling devices
US9211122B2 (en) 2011-03-14 2015-12-15 Ethicon Endo-Surgery, Inc. Surgical access devices with anvil introduction and specimen retrieval structures
US10130352B2 (en) 2011-03-14 2018-11-20 Ethicon Llc Surgical bowel retractor devices
US9089330B2 (en) 2011-03-14 2015-07-28 Ethicon Endo-Surgery, Inc. Surgical bowel retractor devices
US10045769B2 (en) 2011-03-14 2018-08-14 Ethicon Llc Circular surgical staplers with foldable anvil assemblies
US9918704B2 (en) 2011-03-14 2018-03-20 Ethicon Llc Surgical instrument
US8827903B2 (en) 2011-03-14 2014-09-09 Ethicon Endo-Surgery, Inc. Modular tool heads for use with circular surgical instruments
US9125654B2 (en) 2011-03-14 2015-09-08 Ethicon Endo-Surgery, Inc. Multiple part anvil assemblies for circular surgical stapling devices
US8858590B2 (en) 2011-03-14 2014-10-14 Ethicon Endo-Surgery, Inc. Tissue manipulation devices
US9113884B2 (en) 2011-03-14 2015-08-25 Ethicon Endo-Surgery, Inc. Modular surgical tool systems
US8800841B2 (en) 2011-03-15 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical staple cartridges
US9044229B2 (en) 2011-03-15 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical fastener instruments
US8926598B2 (en) 2011-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable and rotatable end effector
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US10117652B2 (en) 2011-04-29 2018-11-06 Ethicon Llc End effector comprising a tissue thickness compensator and progressively released attachment members
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9775614B2 (en) 2011-05-27 2017-10-03 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotatable staple deployment arrangements
US10071452B2 (en) 2011-05-27 2018-09-11 Ethicon Llc Automated end effector component reloading system for use with a robotic system
US9913648B2 (en) 2011-05-27 2018-03-13 Ethicon Endo-Surgery, Llc Surgical system
US10485546B2 (en) 2011-05-27 2019-11-26 Ethicon Llc Robotically-driven surgical assembly
US10130366B2 (en) 2011-05-27 2018-11-20 Ethicon Llc Automated reloading devices for replacing used end effectors on robotic surgical systems
US10426478B2 (en) 2011-05-27 2019-10-01 Ethicon Llc Surgical stapling systems
US10231794B2 (en) 2011-05-27 2019-03-19 Ethicon Llc Surgical stapling instruments with rotatable staple deployment arrangements
US9271799B2 (en) 2011-05-27 2016-03-01 Ethicon Endo-Surgery, Llc Robotic surgical system with removable motor housing
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US10335151B2 (en) 2011-05-27 2019-07-02 Ethicon Llc Robotically-driven surgical instrument
US10383633B2 (en) 2011-05-27 2019-08-20 Ethicon Llc Robotically-driven surgical assembly
US10524790B2 (en) 2011-05-27 2020-01-07 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10420561B2 (en) 2011-05-27 2019-09-24 Ethicon Llc Robotically-driven surgical instrument
US10004506B2 (en) 2011-05-27 2018-06-26 Ethicon Llc Surgical system
US8789739B2 (en) 2011-09-06 2014-07-29 Ethicon Endo-Surgery, Inc. Continuous stapling instrument
US9107663B2 (en) 2011-09-06 2015-08-18 Ethicon Endo-Surgery, Inc. Stapling instrument comprising resettable staple drivers
US9198661B2 (en) 2011-09-06 2015-12-01 Ethicon Endo-Surgery, Inc. Stapling instrument comprising a plurality of staple cartridges stored therein
US8833632B2 (en) 2011-09-06 2014-09-16 Ethicon Endo-Surgery, Inc. Firing member displacement system for a stapling instrument
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US9592054B2 (en) 2011-09-23 2017-03-14 Ethicon Endo-Surgery, Llc Surgical stapler with stationary staple drivers
US9687237B2 (en) 2011-09-23 2017-06-27 Ethicon Endo-Surgery, Llc Staple cartridge including collapsible deck arrangement
US9216019B2 (en) 2011-09-23 2015-12-22 Ethicon Endo-Surgery, Inc. Surgical stapler with stationary staple drivers
US9730697B2 (en) 2012-02-13 2017-08-15 Ethicon Endo-Surgery, Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US10166025B2 (en) 2012-03-26 2019-01-01 Ethicon Llc Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US9974538B2 (en) 2012-03-28 2018-05-22 Ethicon Llc Staple cartridge comprising a compressible layer
US9918716B2 (en) 2012-03-28 2018-03-20 Ethicon Llc Staple cartridge comprising implantable layers
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US10441285B2 (en) 2012-03-28 2019-10-15 Ethicon Llc Tissue thickness compensator comprising tissue ingrowth features
US9724098B2 (en) 2012-03-28 2017-08-08 Ethicon Endo-Surgery, Llc Staple cartridge comprising an implantable layer
US10064621B2 (en) 2012-06-15 2018-09-04 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US10639115B2 (en) 2012-06-28 2020-05-05 Ethicon Llc Surgical end effectors having angled tissue-contacting surfaces
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US10413294B2 (en) 2012-06-28 2019-09-17 Ethicon Llc Shaft assembly arrangements for surgical instruments
US10485541B2 (en) 2012-06-28 2019-11-26 Ethicon Llc Robotically powered surgical device with manually-actuatable reversing system
US10383630B2 (en) 2012-06-28 2019-08-20 Ethicon Llc Surgical stapling device with rotary driven firing member
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US11058423B2 (en) 2012-06-28 2021-07-13 Cilag Gmbh International Stapling system including first and second closure systems for use with a surgical robot
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US10420555B2 (en) 2012-06-28 2019-09-24 Ethicon Llc Hand held rotary powered surgical instruments with end effectors that are articulatable about multiple axes
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US11622766B2 (en) 2012-06-28 2023-04-11 Cilag Gmbh International Empty clip cartridge lockout
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
US10258333B2 (en) 2012-06-28 2019-04-16 Ethicon Llc Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9364230B2 (en) 2012-06-28 2016-06-14 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotary joint assemblies
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9907620B2 (en) 2012-06-28 2018-03-06 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US10687812B2 (en) 2012-06-28 2020-06-23 Ethicon Llc Surgical instrument system including replaceable end effectors
US10874391B2 (en) 2012-06-28 2020-12-29 Ethicon Llc Surgical instrument system including replaceable end effectors
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US10092292B2 (en) 2013-02-28 2018-10-09 Ethicon Llc Staple forming features for surgical stapling instrument
US9326767B2 (en) 2013-03-01 2016-05-03 Ethicon Endo-Surgery, Llc Joystick switch assemblies for surgical instruments
US9554794B2 (en) 2013-03-01 2017-01-31 Ethicon Endo-Surgery, Llc Multiple processor motor control for modular surgical instruments
US9358003B2 (en) 2013-03-01 2016-06-07 Ethicon Endo-Surgery, Llc Electromechanical surgical device with signal relay arrangement
US10226249B2 (en) 2013-03-01 2019-03-12 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US10575868B2 (en) 2013-03-01 2020-03-03 Ethicon Llc Surgical instrument with coupler assembly
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US9468438B2 (en) 2013-03-01 2016-10-18 Eticon Endo-Surgery, LLC Sensor straightened end effector during removal through trocar
US10285695B2 (en) 2013-03-01 2019-05-14 Ethicon Llc Articulatable surgical instruments with conductive pathways
US9782169B2 (en) 2013-03-01 2017-10-10 Ethicon Llc Rotary powered articulation joints for surgical instruments
US9700309B2 (en) 2013-03-01 2017-07-11 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US9398911B2 (en) 2013-03-01 2016-07-26 Ethicon Endo-Surgery, Llc Rotary powered surgical instruments with multiple degrees of freedom
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US10470762B2 (en) 2013-03-14 2019-11-12 Ethicon Llc Multi-function motor for a surgical instrument
US9808244B2 (en) 2013-03-14 2017-11-07 Ethicon Llc Sensor arrangements for absolute positioning system for surgical instruments
US9888919B2 (en) 2013-03-14 2018-02-13 Ethicon Llc Method and system for operating a surgical instrument
US9687230B2 (en) 2013-03-14 2017-06-27 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US9629623B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgery, Llc Drive system lockout arrangements for modular surgical instruments
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9351726B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Articulation control system for articulatable surgical instruments
US10238391B2 (en) 2013-03-14 2019-03-26 Ethicon Llc Drive train control arrangements for modular surgical instruments
US9351727B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Drive train control arrangements for modular surgical instruments
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US9814460B2 (en) 2013-04-16 2017-11-14 Ethicon Llc Modular motor driven surgical instruments with status indication arrangements
US9826976B2 (en) 2013-04-16 2017-11-28 Ethicon Llc Motor driven surgical instruments with lockable dual drive shafts
US10149680B2 (en) 2013-04-16 2018-12-11 Ethicon Llc Surgical instrument comprising a gap setting system
US9801626B2 (en) 2013-04-16 2017-10-31 Ethicon Llc Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
US9867612B2 (en) 2013-04-16 2018-01-16 Ethicon Llc Powered surgical stapler
US10405857B2 (en) 2013-04-16 2019-09-10 Ethicon Llc Powered linear surgical stapler
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9775609B2 (en) 2013-08-23 2017-10-03 Ethicon Llc Tamper proof circuit for surgical instrument battery pack
US10828032B2 (en) 2013-08-23 2020-11-10 Ethicon Llc End effector detection systems for surgical instruments
US10441281B2 (en) 2013-08-23 2019-10-15 Ethicon Llc surgical instrument including securing and aligning features
US9510828B2 (en) 2013-08-23 2016-12-06 Ethicon Endo-Surgery, Llc Conductor arrangements for electrically powered surgical instruments with rotatable end effectors
US9808249B2 (en) 2013-08-23 2017-11-07 Ethicon Llc Attachment portions for surgical instrument assemblies
US9924942B2 (en) 2013-08-23 2018-03-27 Ethicon Llc Motor-powered articulatable surgical instruments
US10201349B2 (en) 2013-08-23 2019-02-12 Ethicon Llc End effector detection and firing rate modulation systems for surgical instruments
US9283054B2 (en) 2013-08-23 2016-03-15 Ethicon Endo-Surgery, Llc Interactive displays
US11918209B2 (en) 2013-08-23 2024-03-05 Cilag Gmbh International Torque optimization for surgical instruments
US9700310B2 (en) 2013-08-23 2017-07-11 Ethicon Llc Firing member retraction devices for powered surgical instruments
US10624634B2 (en) 2013-08-23 2020-04-21 Ethicon Llc Firing trigger lockout arrangements for surgical instruments
US9987006B2 (en) 2013-08-23 2018-06-05 Ethicon Llc Shroud retention arrangement for sterilizable surgical instruments
US9445813B2 (en) 2013-08-23 2016-09-20 Ethicon Endo-Surgery, Llc Closure indicator systems for surgical instruments
US9763662B2 (en) 2013-12-23 2017-09-19 Ethicon Llc Fastener cartridge comprising a firing member configured to directly engage and eject fasteners from the fastener cartridge
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US9585662B2 (en) 2013-12-23 2017-03-07 Ethicon Endo-Surgery, Llc Fastener cartridge comprising an extendable firing member
US9549735B2 (en) 2013-12-23 2017-01-24 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a firing member including fastener transfer surfaces
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9968354B2 (en) 2013-12-23 2018-05-15 Ethicon Llc Surgical staples and methods for making the same
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US10265065B2 (en) 2013-12-23 2019-04-23 Ethicon Llc Surgical staples and staple cartridges
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9757124B2 (en) 2014-02-24 2017-09-12 Ethicon Llc Implantable layer assemblies
US10426481B2 (en) 2014-02-24 2019-10-01 Ethicon Llc Implantable layer assemblies
US9775608B2 (en) 2014-02-24 2017-10-03 Ethicon Llc Fastening system comprising a firing member lockout
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
US9839422B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for altering implantable layers for use with surgical fastening instruments
US9884456B2 (en) 2014-02-24 2018-02-06 Ethicon Llc Implantable layers and methods for altering one or more properties of implantable layers for use with fastening instruments
US9839423B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for modifying the shape of the implantable layers for use with a surgical fastening instrument
US10136889B2 (en) 2014-03-26 2018-11-27 Ethicon Llc Systems and methods for controlling a segmented circuit
US9743929B2 (en) 2014-03-26 2017-08-29 Ethicon Llc Modular powered surgical instrument with detachable shaft assemblies
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US11497488B2 (en) 2014-03-26 2022-11-15 Cilag Gmbh International Systems and methods for controlling a segmented circuit
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
US10028761B2 (en) 2014-03-26 2018-07-24 Ethicon Llc Feedback algorithms for manual bailout systems for surgical instruments
US9730695B2 (en) 2014-03-26 2017-08-15 Ethicon Endo-Surgery, Llc Power management through segmented circuit
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
US9690362B2 (en) 2014-03-26 2017-06-27 Ethicon Llc Surgical instrument control circuit having a safety processor
US10117653B2 (en) 2014-03-26 2018-11-06 Ethicon Llc Systems and methods for controlling a segmented circuit
US9750499B2 (en) 2014-03-26 2017-09-05 Ethicon Llc Surgical stapling instrument system
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
US10010324B2 (en) 2014-04-16 2018-07-03 Ethicon Llc Fastener cartridge compromising fastener cavities including fastener control features
US10470768B2 (en) 2014-04-16 2019-11-12 Ethicon Llc Fastener cartridge including a layer attached thereto
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
US9877721B2 (en) 2014-04-16 2018-01-30 Ethicon Llc Fastener cartridge comprising tissue control features
US11185330B2 (en) 2014-04-16 2021-11-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US11517315B2 (en) 2014-04-16 2022-12-06 Cilag Gmbh International Fastener cartridges including extensions having different configurations
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
US10542988B2 (en) 2014-04-16 2020-01-28 Ethicon Llc End effector comprising an anvil including projections extending therefrom
US9844369B2 (en) 2014-04-16 2017-12-19 Ethicon Llc Surgical end effectors with firing element monitoring arrangements
US10327776B2 (en) 2014-04-16 2019-06-25 Ethicon Llc Surgical stapling buttresses and adjunct materials
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US9788836B2 (en) 2014-09-05 2017-10-17 Ethicon Llc Multiple motor control for powered medical device
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
US9757128B2 (en) 2014-09-05 2017-09-12 Ethicon Llc Multiple sensors with one sensor affecting a second sensor's output or interpretation
US10016199B2 (en) 2014-09-05 2018-07-10 Ethicon Llc Polarity of hall magnet to identify cartridge type
US10135242B2 (en) 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
US9737301B2 (en) 2014-09-05 2017-08-22 Ethicon Llc Monitoring device degradation based on component evaluation
US10426477B2 (en) 2014-09-26 2019-10-01 Ethicon Llc Staple cartridge assembly including a ramp
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
US10206677B2 (en) 2014-09-26 2019-02-19 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US10426476B2 (en) 2014-09-26 2019-10-01 Ethicon Llc Circular fastener cartridges for applying radially expandable fastener lines
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10052104B2 (en) 2014-10-16 2018-08-21 Ethicon Llc Staple cartridge comprising a tissue thickness compensator
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9968355B2 (en) 2014-12-18 2018-05-15 Ethicon Llc Surgical instruments with articulatable end effectors and improved firing beam support arrangements
US10245028B2 (en) 2015-02-27 2019-04-02 Ethicon Llc Power adapter for a surgical instrument
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10045779B2 (en) 2015-02-27 2018-08-14 Ethicon Llc Surgical instrument system comprising an inspection station
US10182816B2 (en) 2015-02-27 2019-01-22 Ethicon Llc Charging system that enables emergency resolutions for charging a battery
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US10226250B2 (en) 2015-02-27 2019-03-12 Ethicon Llc Modular stapling assembly
US9931118B2 (en) 2015-02-27 2018-04-03 Ethicon Endo-Surgery, Llc Reinforced battery for a surgical instrument
US10159483B2 (en) 2015-02-27 2018-12-25 Ethicon Llc Surgical apparatus configured to track an end-of-life parameter
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10206605B2 (en) 2015-03-06 2019-02-19 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10729432B2 (en) 2015-03-06 2020-08-04 Ethicon Llc Methods for operating a powered surgical instrument
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10433844B2 (en) 2015-03-31 2019-10-08 Ethicon Llc Surgical instrument with selectively disengageable threaded drive systems
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
US10052102B2 (en) 2015-06-18 2018-08-21 Ethicon Llc Surgical end effectors with dual cam actuated jaw closing features
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10517599B2 (en) 2015-08-26 2019-12-31 Ethicon Llc Staple cartridge assembly comprising staple cavities for providing better staple guidance
US11058426B2 (en) 2015-08-26 2021-07-13 Cilag Gmbh International Staple cartridge assembly comprising various tissue compression gaps and staple forming gaps
US10028744B2 (en) 2015-08-26 2018-07-24 Ethicon Llc Staple cartridge assembly including staple guides
US10166026B2 (en) 2015-08-26 2019-01-01 Ethicon Llc Staple cartridge assembly including features for controlling the rotation of staples when being ejected therefrom
US10433845B2 (en) 2015-08-26 2019-10-08 Ethicon Llc Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading
US10390829B2 (en) 2015-08-26 2019-08-27 Ethicon Llc Staples comprising a cover
US10980538B2 (en) 2015-08-26 2021-04-20 Ethicon Llc Surgical stapling configurations for curved and circular stapling instruments
US10098642B2 (en) 2015-08-26 2018-10-16 Ethicon Llc Surgical staples comprising features for improved fastening of tissue
US11103248B2 (en) 2015-08-26 2021-08-31 Cilag Gmbh International Surgical staples for minimizing staple roll
US10357251B2 (en) 2015-08-26 2019-07-23 Ethicon Llc Surgical staples comprising hardness variations for improved fastening of tissue
US10470769B2 (en) 2015-08-26 2019-11-12 Ethicon Llc Staple cartridge assembly comprising staple alignment features on a firing member
US10213203B2 (en) 2015-08-26 2019-02-26 Ethicon Llc Staple cartridge assembly without a bottom cover
US10188394B2 (en) 2015-08-26 2019-01-29 Ethicon Llc Staples configured to support an implantable adjunct
US10172619B2 (en) 2015-09-02 2019-01-08 Ethicon Llc Surgical staple driver arrays
US10314587B2 (en) 2015-09-02 2019-06-11 Ethicon Llc Surgical staple cartridge with improved staple driver configurations
US10251648B2 (en) 2015-09-02 2019-04-09 Ethicon Llc Surgical staple cartridge staple drivers with central support features
US10357252B2 (en) 2015-09-02 2019-07-23 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10327777B2 (en) 2015-09-30 2019-06-25 Ethicon Llc Implantable layer comprising plastically deformed fibers
US10433846B2 (en) 2015-09-30 2019-10-08 Ethicon Llc Compressible adjunct with crossing spacer fibers
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10271849B2 (en) 2015-09-30 2019-04-30 Ethicon Llc Woven constructs with interlocked standing fibers
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
US11690623B2 (en) 2015-09-30 2023-07-04 Cilag Gmbh International Method for applying an implantable layer to a fastener cartridge
US10524788B2 (en) 2015-09-30 2020-01-07 Ethicon Llc Compressible adjunct with attachment regions
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US10172620B2 (en) 2015-09-30 2019-01-08 Ethicon Llc Compressible adjuncts with bonding nodes
US10307160B2 (en) 2015-09-30 2019-06-04 Ethicon Llc Compressible adjunct assemblies with attachment layers
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10653413B2 (en) 2016-02-09 2020-05-19 Ethicon Llc Surgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly
US10413291B2 (en) 2016-02-09 2019-09-17 Ethicon Llc Surgical instrument articulation mechanism with slotted secondary constraint
US10245029B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instrument with articulating and axially translatable end effector
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
US10245030B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instruments with tensioning arrangements for cable driven articulation systems
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10470764B2 (en) 2016-02-09 2019-11-12 Ethicon Llc Surgical instruments with closure stroke reduction arrangements
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10357246B2 (en) 2016-04-01 2019-07-23 Ethicon Llc Rotary powered surgical instrument with manually actuatable bailout system
US10307159B2 (en) 2016-04-01 2019-06-04 Ethicon Llc Surgical instrument handle assembly with reconfigurable grip portion
US10420552B2 (en) 2016-04-01 2019-09-24 Ethicon Llc Surgical stapling system configured to provide selective cutting of tissue
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10675021B2 (en) 2016-04-01 2020-06-09 Ethicon Llc Circular stapling system comprising rotary firing system
US10456140B2 (en) 2016-04-01 2019-10-29 Ethicon Llc Surgical stapling system comprising an unclamping lockout
US10413293B2 (en) 2016-04-01 2019-09-17 Ethicon Llc Interchangeable surgical tool assembly with a surgical end effector that is selectively rotatable about a shaft axis
US11045191B2 (en) 2016-04-01 2021-06-29 Cilag Gmbh International Method for operating a surgical stapling system
US10413297B2 (en) 2016-04-01 2019-09-17 Ethicon Llc Surgical stapling system configured to apply annular rows of staples having different heights
US10342543B2 (en) 2016-04-01 2019-07-09 Ethicon Llc Surgical stapling system comprising a shiftable transmission
US10433849B2 (en) 2016-04-01 2019-10-08 Ethicon Llc Surgical stapling system comprising a display including a re-orientable display field
US10531874B2 (en) 2016-04-01 2020-01-14 Ethicon Llc Surgical cutting and stapling end effector with anvil concentric drive member
US10376263B2 (en) 2016-04-01 2019-08-13 Ethicon Llc Anvil modification members for surgical staplers
US10709446B2 (en) 2016-04-01 2020-07-14 Ethicon Llc Staple cartridges with atraumatic features
US10314582B2 (en) 2016-04-01 2019-06-11 Ethicon Llc Surgical instrument comprising a shifting mechanism
US10271851B2 (en) 2016-04-01 2019-04-30 Ethicon Llc Modular surgical stapling system comprising a display
US10285705B2 (en) 2016-04-01 2019-05-14 Ethicon Llc Surgical stapling system comprising a grooved forming pocket
US10682136B2 (en) 2016-04-01 2020-06-16 Ethicon Llc Circular stapling system comprising load control
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10368867B2 (en) 2016-04-18 2019-08-06 Ethicon Llc Surgical instrument comprising a lockout
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US10426469B2 (en) 2016-04-18 2019-10-01 Ethicon Llc Surgical instrument comprising a primary firing lockout and a secondary firing lockout
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US10675024B2 (en) 2016-06-24 2020-06-09 Ethicon Llc Staple cartridge comprising overdriven staples
US10702270B2 (en) 2016-06-24 2020-07-07 Ethicon Llc Stapling system for use with wire staples and stamped staples
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
US11000278B2 (en) 2016-06-24 2021-05-11 Ethicon Llc Staple cartridge comprising wire staples and stamped staples
US10542979B2 (en) 2016-06-24 2020-01-28 Ethicon Llc Stamped staples and staple cartridges using the same
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10603036B2 (en) 2016-12-21 2020-03-31 Ethicon Llc Articulatable surgical instrument with independent pivotable linkage distal of an articulation lock
US11571210B2 (en) 2016-12-21 2023-02-07 Cilag Gmbh International Firing assembly comprising a multiple failed-state fuse
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US10517596B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Articulatable surgical instruments with articulation stroke amplification features
US11160551B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Articulatable surgical stapling instruments
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument

Also Published As

Publication number Publication date
US20100305588A1 (en) 2010-12-02
US20050033326A1 (en) 2005-02-10
US20140142622A1 (en) 2014-05-22
US9968345B2 (en) 2018-05-15
US8597324B2 (en) 2013-12-03
WO2005115253A3 (en) 2006-01-26
US7662161B2 (en) 2010-02-16

Similar Documents

Publication Publication Date Title
US9968345B2 (en) Vascular hole closure device
CA2473451C (en) Vascular hole closure device
US6949107B2 (en) Injection method for locating vessel lumen
US7942888B2 (en) Vascular hole closure device
US11123059B2 (en) Vascular hole closure delivery device
US8211124B2 (en) Sealing clip, delivery systems, and methods
US6632238B2 (en) Vascular sheath with puncture site closure apparatus and methods of use
AU2008276658B2 (en) Vascular hole closure device
IL178986A (en) Suture device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase in:

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase