WO2005113453A1 - Photocatalytic de-emulsification - Google Patents

Photocatalytic de-emulsification Download PDF

Info

Publication number
WO2005113453A1
WO2005113453A1 PCT/EP2005/052184 EP2005052184W WO2005113453A1 WO 2005113453 A1 WO2005113453 A1 WO 2005113453A1 EP 2005052184 W EP2005052184 W EP 2005052184W WO 2005113453 A1 WO2005113453 A1 WO 2005113453A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
emulsion
organic
iron compound
organic phase
Prior art date
Application number
PCT/EP2005/052184
Other languages
German (de)
French (fr)
Inventor
Christian Sattler
Karl-Heinz Funken
Christian Jung
Lamark De Oliveira
Original Assignee
Deutsches Zentrum für Luft- und Raumfahrt e. V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum für Luft- und Raumfahrt e. V. filed Critical Deutsches Zentrum für Luft- und Raumfahrt e. V.
Priority to EP05749534A priority Critical patent/EP1756011A1/en
Publication of WO2005113453A1 publication Critical patent/WO2005113453A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/047Breaking emulsions with separation aids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/301Detergents, surfactants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/325Emulsions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/30Nature of the water, waste water, sewage or sludge to be treated from the textile industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention relates to a method for photocatalytic emulsion cleavage using iron ions.
  • Emulsions are used in many areas of technology. Especially for the disposal of used emulsions, they are often broken down into their components.
  • Emulsions are usually broken down either chemically by quantitative addition of strong electrolytes such as acids or salts, thermally by distillation or evaporation or by membrane technology (ultrafiltration).
  • strong electrolytes such as acids or salts
  • membrane technology ultrafiltration
  • the Photo-Fenton oxidations have not previously been used for emulsion splitting, but have already been used, for example, in the treatment of waste water in the textile industry.
  • a successful overview of the use of Photo-Fenton oxidation for the treatment of wastewater can be found in Advances in Environmental Research 8 (2004) 553-597.
  • the use of Photo-Fenton Oxidation especially for waste water from the textile industry is described in Water Research 36 (2002) 2703-2710.
  • the treatment of waste water in the prior art aims at a quantitative destruction of the organic Compounds and the associated quantitative use of hydrogen peroxide and possibly also iron salts.
  • No. 5,266,214 A describes the treatment of waste water with the Photo-Fenton oxidation.
  • the organic impurities are quantitatively broken down by the photo-fenton oxidation, the concentration of H 2 0 2 having to be at least twice as high as that of the organic impurities.
  • an additional step for the production of iron oxalate is necessary in the process described.
  • DD 48573 A describes a two-stage process for emulsion splitting, in which in a first step the emulsion is broken up by adding a salt and then in a second step separate from it, post-oxidation is necessary.
  • emulsion splitting Common methods for emulsion splitting are the evaporation of a liquid, the removal of a phase by salting out, mechanical action, addition of electrolyte and discharge at electrodes.
  • the object of the present invention is therefore a process for the cleavage of aqueous-organic emulsions without the quantitative (stoichiometric) use of cleavage reagents previously required.
  • Another object of the present invention is to purify organically contaminated wastewater not by quantitatively breaking down the total amount of these contaminants but by separating these organic contaminants.
  • the above object is achieved in a first embodiment by a process for the cleavage of aqueous-organic emulsions characterized by process steps a) adding an oxidizing agent and an iron compound containing Fe 2+ or Fe 3+ ions to the emulsion with a pH value of ⁇ 5, b) irradiating the emulsion with UV and / or VIS light, and c) separating the organic phase formed.
  • the present invention represents a significant improvement over the previously used methods for emulsion splitting, since the use of chemicals can be significantly reduced by using photons as an energy source. The selective destruction of the surface-active substances by a Photo-Fento reaction is thus the core of the present invention.
  • Iron ions are added to the emulsion and the pH is adjusted to ⁇ 5, in particular ⁇ 4. Under these conditions, the aqueous and organic phases can be rapidly split. The phases separate in particular at a temperature of more than 50 ° C. within a period in the range from 1 to 20 minutes and can be separated using a separator.
  • the organic substances in the water are oxidized by the hydroxyl radicals formed in situ and / or the photochemical cleavage of iron complexes and / or the formation of other / further reactive intermediates.
  • emulsifiers or surfactants are preferably attacked in this treatment and lose their surface-active effect.
  • the present invention thus differs from the prior art primarily in that essentially no constituents in the aqueous solution, such as toluene or benzene, are destroyed, but rather emulsions are split where the oil-containing component is dispersed in a dispersed oil-containing phase Dispersant water is present. Furthermore, it was not obvious to a person skilled in the art to split an emulsion by means of a photochemical reaction, since emulsions have a different refractive index and higher turbidity (they usually appear milky white) than aqueous solutions contaminated with organic substances due to the oil droplets present.
  • iron compounds such as iron hydroxide, iron oxide, iron chloride, iron sulfate, iron oxalate, iron chlorate and / or iron perchlorate has proven to be particularly advantageous.
  • Both iron (II) and iron (III) can be used as raw material in this process, since iron (II) can easily be oxidized to iron (III) under the aforementioned conditions of the process.
  • the iron compound can be used at a concentration of up to 5% by weight of the concentration of the TOC (total organic carbon) present in the emulsion.
  • the iron compound in connection with the radiation and the peroxide was able to split the emulsion at a concentration of up to 5% by weight. This could be due to the fact that the emulsifiers and / or surfactants have a higher percentage of CN and C-0 bonds in the Compared to paraffins and oils. These bonds are obviously more easily attacked by the Photo-Fenton reaction.
  • a peroxide in the abovementioned is preferred as the oxidizing agent.
  • Process particularly preferably hydrogen peroxide, because this is particularly easy to handle and is readily available.
  • other peroxides such as sodium peroxide or silicon peroxide can also be used, as can the perborates, percarbonates and persulfates customary in detergent technology.
  • the emulsion is split at a temperature in the range from 0 to 100 ° C., in particular in a range from 50 to 100 ° C., and very particularly in a range from 80 to 100 ° C. Above 100 ° C one would reach the range of a thermal emulsion splitting process, since this is the boiling point of water.
  • the lower limit of 0 ° C results from the freezing point of water, while the preferred lower limits 50 and 80 ° C result from the fact that, at these temperatures, the emulsion splits particularly quickly on the one hand, and the organic molecules with a on the other short or even no delay or activation period.
  • the irradiation is preferably carried out with a UV-VIS light source which is selected from the group discharge lamp, incandescent lamp, sun, in particular a medium-pressure mercury lamp.
  • a UV-VIS light source which is selected from the group discharge lamp, incandescent lamp, sun, in particular a medium-pressure mercury lamp.
  • This has proven to be particularly effective in known Photo-Fenton processes due to the special spectrum and the intensity of the lighting.
  • the process is particularly advantageously characterized in that the iron compound which accumulates in the organic phase is withdrawn from the aqueous phase and then removed from the organic phase, and then optionally fed back to the partially or completely untreated emulsion.
  • the iron compounds accumulate primarily in the organic phase.
  • the iron can be removed from the aqueous phase relatively easily by separating the organic phase in the last step of the process.
  • this has the advantage that the otherwise usual high salt load in the wastewater is avoided by precipitation of the iron compound as hydroxide, and on the other hand that the iron can be recycled by removing it from the organic phase and then feeding it back into the emulsion ,
  • an oil in particular about 1 g / l
  • an oil is added to the untreated emulsion to separate the iron compound.
  • An Enviolet ® reactor from ack aqua concept GmbH was used.
  • the emulsion cleavage is carried out as follows. FeS0 4 heptahydrate was added as a catalyst in a concentration of 50 to 100 mg / l of the emulsion. After adding 0.01 g / l to 0.1 g / l H 2 O 2 , the solution was irradiated with a commercially available mercury vapor lamp. Medium pressure mercury lamps with an output of 125W - 12000 W and an emission maximum of 254 nm were used as the light source. The heat radiation from the light source is used to heat the emulsion. After a treatment time of a few minutes, the phases separated and could be separated using a conventional oil separator.
  • the iron ions were simultaneously enriched in the organic phase. This effect could be followed spectroscopically. This enabled the separation to be checked and the process to be easily regulated.
  • FIG. 2 shows that at a temperature of 30 ° C. after 25 min, a spontaneous drop in the TOC was observed both at a catalyst concentration of 50 mg / l and at 200 mg / l. This was because the aqueous and organic phases separated.
  • the reaction temperature increased, the emulsion cleavage split earlier. So you could observe the cleavage after 10 min at 60 ° C. The cleavage started spontaneously at 90 ° C.

Abstract

The invention relates to a method for photocatalytic de-emulsification with the aid of iron ions. The invention relates to a method for the de-emulsification of aqueous organic emulsions. Said method is characterised by the following steps a) addition of an oxidant and an iron compound containing Fe <2+ >or Fe <3+ >ions to an aqueous organic emulsion with a pH value = 5, b) irradiation of the emulsion with UV and/or VIS Light and c) deposition of the formed organic phase.

Description

Photokatalytische Emulsionsspaltunα Photocatalytic emulsion gap α
Gegenstand der Erfindung ist ein Verfahren zur photokatalytischen Emulsionsspaltung unter Einsatz von Eisenionen.The invention relates to a method for photocatalytic emulsion cleavage using iron ions.
Emulsionen werden in vielen Bereichen der Technik eingesetzt. Insbesondere zur Entsorgung von gebrauchten Emulsionen werden diese häufig in ihre Bestandteile zerlegt.Emulsions are used in many areas of technology. Especially for the disposal of used emulsions, they are often broken down into their components.
Emulsionen werden üblicherweise entweder chemisch mittels quantitativer Zugabe starker Elektrolyte wie Säuren oder Salze, thermisch durch Destillation oder Verdampfung oder auch durch Membrantechnik (Ultrafiltration) gespalten. Der Einsatz starker Elektrolyte bei der chemischen Emulsionsspaltung kann zu hoher Salzfracht in den Abwässern führen und bedeutet einen hohen Verbrauch eben dieser Elektrolyte.Emulsions are usually broken down either chemically by quantitative addition of strong electrolytes such as acids or salts, thermally by distillation or evaporation or by membrane technology (ultrafiltration). The use of strong electrolytes in chemical emulsion splitting can lead to high salt loads in the waste water and means a high consumption of these electrolytes.
Die Photo-Fenton Oxidationen wurden bislang nicht zur Emulsionsspaltung eingesetzt, fanden aber bereits Einsatz beispielsweise in der Behandlung von Abwässern in der Textilindustrie. Ein gelungener Überblick über den Einsatz der Photo-Fenton Oxidation für die Behandlung von Abwasser findet sich in Advances in Environmental Research 8 (2004) 553-597. Der Einsatz der Photo-Fenton Oxidation speziell für Abwässer aus der Textilindustrie ist beschrieben in Water Research 36 (2002) 2703-2710. Die Behandlung der Abwässer im Stand der Technik zielt dabei auf eine quantitative Zerstörung der organischen Verbindungen und den damit verbundenen quantitativen Einsatz von Wasserstoffperoxid und gegebenenfalls auch Eisensalzen ab.The Photo-Fenton oxidations have not previously been used for emulsion splitting, but have already been used, for example, in the treatment of waste water in the textile industry. A successful overview of the use of Photo-Fenton oxidation for the treatment of wastewater can be found in Advances in Environmental Research 8 (2004) 553-597. The use of Photo-Fenton Oxidation especially for waste water from the textile industry is described in Water Research 36 (2002) 2703-2710. The treatment of waste water in the prior art aims at a quantitative destruction of the organic Compounds and the associated quantitative use of hydrogen peroxide and possibly also iron salts.
US 5,266,214 A beschreibt die Behandlung von Abwässern mit der Photo-Fenton Oxidation. In dem beschriebenen Verfahren werden die organischen Verunreinigungen quantitativ durch die Photo-Fenton Oxidation abgebaut, wobei die Konzentration von H202 mindestens doppelt so hoch sein muss, wie die der organischen Verunreinigungen. Weiterhin ist im beschriebenen Verfahren ein zusätzlicher Schritt zur Herstellung von Eisenoxalat notwendig.No. 5,266,214 A describes the treatment of waste water with the Photo-Fenton oxidation. In the process described, the organic impurities are quantitatively broken down by the photo-fenton oxidation, the concentration of H 2 0 2 having to be at least twice as high as that of the organic impurities. Furthermore, an additional step for the production of iron oxalate is necessary in the process described.
DD 48573 A beschreibt ein zweistufiges Verfahren zur Emulsionsspaltung, in dem in einem ersten Schritt die Emulsion durch Zugabe eines Salzes vorgebrochen wird und dann in einem davon getrennten zweiten Schritt eine Nachoxidation notwendig ist.DD 48573 A describes a two-stage process for emulsion splitting, in which in a first step the emulsion is broken up by adding a salt and then in a second step separate from it, post-oxidation is necessary.
Die Veröffentlichung „ Integrated photocatalytic waste water recycling in textile finishing" von Sattler et al. im Tagungsband der "3rd International Conference on Oxidation Technologies for Water and Waste Water Treatment", Mai 2003, beschreibt die Behandlung von Abwässern in der Textilindustrie mit Hilfe der Photo-Fenton Reaktion. Im beschriebenen Verfahren werden die das Waschwasser verunreinigenden Maschinenöle quantitativ zerstört. Das Wasserstoffperoxid wird quantitativ verwendet und das Eisen wird nicht recycelt.The publication "Integrated photocatalytic waste water recycling in textile finishing" by Sattler et al. In the conference volume of the "3rd International Conference on Oxidation Technologies for Water and Waste Water Treatment", May 2003, describes the treatment of waste water in the textile industry with the help of the photo -Fenton Reaction: In the described process, the machine oils contaminating the washing water are quantitatively destroyed, the hydrogen peroxide is used quantitatively and the iron is not recycled.
Um organische Bestandteile aus Emulsionen mit Hilfe der Photo-Fenton Reaktion zu entfernen, war bisher also der quantitative Einsatz von Wasserstoffperoxid notwendig. Das Eisen musste bisher in einem Umfang zugesetzt werden, der ausreichend war, um die organischen Verbindungen quantitativ zu zerstören. Eisen konnte nur durch Fällung mit Lauge aus der Emulsion entfernt werden, was zu hoher Salzfracht und zu einem mit dem übrigen Prozess möglicherweise inkompatiblen pH - Wert geführt hat und konnte bisher nicht auf einem einfachen Weg recycelt werden.In order to remove organic constituents from emulsions using the Photo-Fenton reaction, the quantitative use of hydrogen peroxide was previously necessary. So far, the iron had to be in one The amount added was sufficient to quantitatively destroy the organic compounds. Iron could only be removed from the emulsion by precipitation with lye, which led to a high salt load and possibly a pH value that was incompatible with the rest of the process, and it was previously not possible to recycle it in a simple way.
Gängige Verfahren zur Emulsionsspaltung sind das Verdampfen einer Flüssigkeit, die Entfernung einer Phase durch Aussalzen, mechanische Einwirkung, Elektrolytzusatz und Entladung an Elektroden.Common methods for emulsion splitting are the evaporation of a liquid, the removal of a phase by salting out, mechanical action, addition of electrolyte and discharge at electrodes.
Aufgabe der vorliegenden Erfindung ist also ein Verfahren zur Spaltung von wässrig-organischen Emulsionen ohne den bislang notwendigen quantitativen (stöchiometrischen) Einsatz von Spaltreagenzien. Eine weitere Aufgabe der vorliegenden Erfindung besteht darin, organisch verunreinigte Abwässer nicht durch quantitativen Abbau der Gesamtmenge dieser Verunreinigungen sondern durch Abtrennung dieser organischen Verunreinigungen zu reinigen.The object of the present invention is therefore a process for the cleavage of aqueous-organic emulsions without the quantitative (stoichiometric) use of cleavage reagents previously required. Another object of the present invention is to purify organically contaminated wastewater not by quantitatively breaking down the total amount of these contaminants but by separating these organic contaminants.
Die vorgenannte Aufgabe wird in einer ersten Ausführungsform gelöst durch ein Verfahren zur Spaltung von wässrig-organischen Emulsionen gekennzeichnet durch die Verfahrensschritte a) Zufügen eines Oxidationsmittels und einer Fe2+ - oder Fe3+ - Ionen aufweisenden Eisenverbindung zu der Emulsion mit einem pH - Wert von < 5, b) Bestrahlen der Emulsion mit UV- und/oder VIS-Licht, und c) Abscheiden der gebildeten organischen Phase. Die vorliegende Erfindung stellt eine wesentliche Verbesserung gegenüber den bisher verwendeten Verfahren zur Emulsionsspaltung dar, da durch den Einsatz von Photonen als Energiequelle der Chemikalieneinsatz deutlich reduziert werden kann. Die selektive Zerstörung der grenzflächenaktiven Substanzen durch eine Photo- Fento-Reaktion ist somit Kern der vorliegenden Erfindung. Die Emulsion wird mit Eisenionen versetzt und der pH-Wert auf < 5, insbesondere < 4 eingestellt. Unter diesen Bedingungen kann eine rasche Spaltung von wässriger und organischer Phase erreicht werden. Die Phasen trennen sich insbesondere bei einer Temperatur von mehr als 50 °C innerhalb eines Zeitraums im Bereich 1 bis 20 min und können über einen Abscheider separiert werden. Bei der Bestrahlung der Emulsion mit Licht werden die organischen Stoffe im Wasser durch die in-situ gebildeten Hydroxylradikale und/oder die photochemische Spaltung von Eisenkomplexen und/oder die Bildung anderer/weiterer reaktiver Intermediate oxidiert. Überraschend wurde gefunden, dass bei dieser Behandlung bevorzugt Emulgatoren bzw. Tenside angegriffen werden und ihre oberflächenaktive Wirkung verlieren. Die hauptsächlich vorhandenen öligen Verunreinigungen werden wesentlich langsamer angegriffen und können sich als organische Phase abscheiden. Die Zugabe von Chemikalien erfolgt in diesem Verfahren also nicht mehr stöchiometrisch als Flockungs- oder Spalthilfsmittel, sondern katalytisch bzw. sub-stöchiometrisch.The above object is achieved in a first embodiment by a process for the cleavage of aqueous-organic emulsions characterized by process steps a) adding an oxidizing agent and an iron compound containing Fe 2+ or Fe 3+ ions to the emulsion with a pH value of <5, b) irradiating the emulsion with UV and / or VIS light, and c) separating the organic phase formed. The present invention represents a significant improvement over the previously used methods for emulsion splitting, since the use of chemicals can be significantly reduced by using photons as an energy source. The selective destruction of the surface-active substances by a Photo-Fento reaction is thus the core of the present invention. Iron ions are added to the emulsion and the pH is adjusted to <5, in particular <4. Under these conditions, the aqueous and organic phases can be rapidly split. The phases separate in particular at a temperature of more than 50 ° C. within a period in the range from 1 to 20 minutes and can be separated using a separator. When the emulsion is irradiated with light, the organic substances in the water are oxidized by the hydroxyl radicals formed in situ and / or the photochemical cleavage of iron complexes and / or the formation of other / further reactive intermediates. Surprisingly, it was found that emulsifiers or surfactants are preferably attacked in this treatment and lose their surface-active effect. The main oily contaminants are attacked much more slowly and can separate out as an organic phase. In this process, chemicals are no longer added stoichiometrically as flocculants or cracking aids, but rather catalytically or sub-stoichiometrically.
Die vorliegende Erfindung unterscheidet sich vom Stand der Technik also vor allem dadurch, dass im Wesentlichen keine in der wässrigen Lösung befindlichen Bestandteile wie Toluol oder Benzol zerstört werden, sondern Emulsionen gespalten werden, wo die ölhaltige Komponente in einer dispergierten ölhaltigen Phase im Dispersionsmittel Wasser vorliegt. Weiterhin war es für den Fachmann nicht naheliegend, eine Emulsion mittels einer photochemischen Reaktion zu spalten, da Emulsionen aufgrund der vorhandenen Öltröpfchen einen anderen Brechungsindex und eine höhere Trübung (sie erscheinen in der Regel milchig weiß) als mit organischen Substanzen verunreinigte wässrige Lösungen besitzen.The present invention thus differs from the prior art primarily in that essentially no constituents in the aqueous solution, such as toluene or benzene, are destroyed, but rather emulsions are split where the oil-containing component is dispersed in a dispersed oil-containing phase Dispersant water is present. Furthermore, it was not obvious to a person skilled in the art to split an emulsion by means of a photochemical reaction, since emulsions have a different refractive index and higher turbidity (they usually appear milky white) than aqueous solutions contaminated with organic substances due to the oil droplets present.
Als besonders vorteilhaft hat sich der Einsatz von Eisenverbindungen wie Eisenhydroxid, Eisenoxid, Eisenchlorid, Eisensulfat, Eisenoxalat, Eisenchlorat und/oder Eisenperchlorat herausgestellt. Der Einsatz von Eisensulfat hat sich als besonders vorteilhaft herausgestellt, da nicht, wie bei beispielsweise Eisenoxalat, das Eisensalz in einem zusätzlichen Schritt hergestellt werden muss. In diesem Verfahren können als Rohstoff sowohl Eisen(II) und Eisen(III) eingesetzt werden, da Eisen(II) bei den vorgenannten Bedingungen des Verfahrens leicht zu Eisen(III) oxidiert werden kann.The use of iron compounds such as iron hydroxide, iron oxide, iron chloride, iron sulfate, iron oxalate, iron chlorate and / or iron perchlorate has proven to be particularly advantageous. The use of iron sulfate has proven to be particularly advantageous since, as in the case of iron oxalate, for example, the iron salt does not have to be produced in an additional step. Both iron (II) and iron (III) can be used as raw material in this process, since iron (II) can easily be oxidized to iron (III) under the aforementioned conditions of the process.
Im Unterschied zum referierten Stand der Technik werden bei der vorliegenden Erfindung wesentlich weniger Eisenionen und Peroxid benötigt.In contrast to the cited prior art, significantly fewer iron ions and peroxide are required in the present invention.
Insbesondere kann die Eisenverbindung mit einer Konzentration mit bis zu 5 Gew.-% der Konzentration der in der Emulsion vorhandenen TOC (total organic carbon = totaler organischer Kohlenstoff) eingesetzt werden. Überraschenderweise war die Eisenverbindung in Verbindung mit der Bestrahlung und dem Peroxid schon in einer Konzentration von bis zu 5 Gew.-% in der Lage, die Emulsion zu spalten. Dies könnte darauf zurückzuführen sein, dass die Emulgatoren und/oder Tenside prozentual einen höheren Anteil von C-N und C-0 Bindungen im Vergleich zu Paraffinen und Ölen haben. Diese Bindungen werden offensichtlich leichter durch die Photo-Fenton Reaktion angegriffen.In particular, the iron compound can be used at a concentration of up to 5% by weight of the concentration of the TOC (total organic carbon) present in the emulsion. Surprisingly, the iron compound in connection with the radiation and the peroxide was able to split the emulsion at a concentration of up to 5% by weight. This could be due to the fact that the emulsifiers and / or surfactants have a higher percentage of CN and C-0 bonds in the Compared to paraffins and oils. These bonds are obviously more easily attacked by the Photo-Fenton reaction.
Bevorzugt wird als Oxidationsmittel ein Peroxid im o.g. Verfahren, besonders bevorzugt Wasserstoffperoxid eingesetzt, da dies besonders leicht zu handhaben ist und leicht verfügbar ist. Alternativ sind aber auch andere Peroxide wie Natriumperoxid oder Siliziumperoxid ebenso einsetzbar wie die in der Waschmitteltechnoiogie üblichen Perborate, Percarbonate und Persulfate.A peroxide in the abovementioned is preferred as the oxidizing agent. Process, particularly preferably hydrogen peroxide, because this is particularly easy to handle and is readily available. Alternatively, however, other peroxides such as sodium peroxide or silicon peroxide can also be used, as can the perborates, percarbonates and persulfates customary in detergent technology.
Gemäß einer bevorzugten Ausführungsform wird die Emulsion bei einer Temperatur im Bereich von 0 bis 100 °C, insbesondere in einem Bereich von 50 bis 100 °C, und ganz besonders in einem Bereich von 80 bis 100 °C gespalten. Oberhalb von 100 °C würde man in den Bereich eines thermischen Verfahrens zur Emulsionsspaltung kommen, da dies der Siedepunkt von Wasser ist. Die untere Grenze von 0 °C ergibt sich aus dem Gefrierpunkt von Wasser, während sich die bevorzugten Untergrenzen 50 bzw. 80 °C daraus ergeben, dass sich bei diesen Temperaturen zum einen die Emulsion besonders schnell spaltet, und zum anderen die organischen Moleküle mit einer kleinen oder sogar gar keiner Verzögerungs- oder Aktivierungszeitspanne abgebaut werden.According to a preferred embodiment, the emulsion is split at a temperature in the range from 0 to 100 ° C., in particular in a range from 50 to 100 ° C., and very particularly in a range from 80 to 100 ° C. Above 100 ° C one would reach the range of a thermal emulsion splitting process, since this is the boiling point of water. The lower limit of 0 ° C results from the freezing point of water, while the preferred lower limits 50 and 80 ° C result from the fact that, at these temperatures, the emulsion splits particularly quickly on the one hand, and the organic molecules with a on the other short or even no delay or activation period.
Vorzugsweise wird- die Bestrahlung mit einer UV-VIS-Lichtquelle durchgeführt, die ausgewählt ist aus der Gruppe Entladungslampe, Glühlampe, Sonne, insbesondere ein Quecksilbermitteldruckstrahler ist. Dieser hat sich in bekannten Photo-Fenton Prozessen aufgrund des speziellen Spektrums und der Intensität der Beleuchtung als besonders effektiv erwiesen. Besonders vorteilhafterweise ist das Verfahren dadurch gekennzeichnet, dass man die sich in der organischen Phase anreichernde Eisenverbindung der wässrigen Phase entzieht und anschließend aus der organischen Phase entfernt, dann gegebenenfalls der teilweise oder vollständig unbehandelten Emulsion wieder zuführt. Während der dieser Erfindung vorangegangenen Experimente wurde überraschend festgestellt, dass sich die Eisenverbindungen trotz ihrer polaren Natur vor allem in der organischen Phase anreichern. Durch diesen Umstand kann das Eisen relativ einfach durch die Abscheidung der organischen Phase im letzten Schritt des Verfahrens der wässrigen Phase entzogen werden. Dies hat einerseits den Vorteil, dass die sonst übliche hohe Salzfracht im Abwasser durch Ausfällung der Eisenverbindung als Hydroxid vermieden wird, zum anderen, dass das Eisen recycelt werden kann, dadurch dass es aus der organischen Phase entfernt wird und dann der Emulsion wieder zugeführt werden kann.The irradiation is preferably carried out with a UV-VIS light source which is selected from the group discharge lamp, incandescent lamp, sun, in particular a medium-pressure mercury lamp. This has proven to be particularly effective in known Photo-Fenton processes due to the special spectrum and the intensity of the lighting. The process is particularly advantageously characterized in that the iron compound which accumulates in the organic phase is withdrawn from the aqueous phase and then removed from the organic phase, and then optionally fed back to the partially or completely untreated emulsion. During the experiments preceding this invention it was surprisingly found that, despite their polar nature, the iron compounds accumulate primarily in the organic phase. As a result of this, the iron can be removed from the aqueous phase relatively easily by separating the organic phase in the last step of the process. On the one hand, this has the advantage that the otherwise usual high salt load in the wastewater is avoided by precipitation of the iron compound as hydroxide, and on the other hand that the iron can be recycled by removing it from the organic phase and then feeding it back into the emulsion ,
Um die Abtrennung der Eisenverbindung aus der wässrigen Phase besonders einfach zugestalten, hat es sich überraschenderweise als besonders vorteilhaft herausgestellt, dass man zur Abtrennung der Eisenverbindung aus der wässrigen Phase der unbehandelten Emulsion ein Öl, insbesondere etwa 1 g/l, zusetzt. Bevorzugt werden hierzu durch den Photo-Fenton Prozess besonders schwer abbaubare Öle verwendet. Hierdurch kann eine Mindestmenge an organischen Stoffen in der Emulsion und so ein Transport der Eisenverbindung garantiert werden. Ausführungsbeispiel :In order to make the separation of the iron compound from the aqueous phase particularly simple, it has surprisingly turned out to be particularly advantageous that an oil, in particular about 1 g / l, is added to the untreated emulsion to separate the iron compound. Preference is given to using oils that are particularly difficult to degrade due to the Photo-Fenton process. This can guarantee a minimum amount of organic substances in the emulsion and thus transport of the iron compound. Design example:
Das Verfahren wurde an Abwässern aus der Gardinenproduktion erprobt. Diese enthielten Präparationsöle sowie nicht-ionische Tenside als Emulgatoren. Zur einfacheren Überprüfung der Reproduzierbarkeit wurden im Labor auch Modellabwasser mit der gleichen Zusammensetzung behandelt.The process was tested on wastewater from curtain production. These contained preparation oils and non-ionic surfactants as emulsifiers. To make it easier to check reproducibility, model wastewater with the same composition was also treated in the laboratory.
Zum Einsatz kam hierbei ein Enviolet® Reaktor der Firma a.c.k. aqua concept GmbH. Die Emulsionsspaltung wird wie folgt durchgeführt. Als Katalysator wurde FeS04 Heptahydrat in einer Konzentration von 50 bis 100 mg/1 der Emulsion zugesetzt. Nach Zugabe von 0,01g/l bis 0,1 g/l H2O2 wurde die Lösung mit einer handelsüblichen Quecksilberdampflampe bestrahlt. Als Lichtquelle wurden Quecksilbermitteldruckstrahler mit einer Leistung von 125W - 12000 W und einem Emissionsmaximum von 254 nm verwendet. Die Wärmestrahlung der Lichtquelle wird genutzt, um die Emulsion zu erwärmen. Nach einer Behandlungszeit von wenigen Minuten entmischten sich die Phasen und konnten über einen üblichen Öl- Abscheider getrennt werden. Als Modellsubstanzen wurden unterschiedliche biologisch schwer abbaubare Fette und Öle unterschiedlicher Kettenlänge (C10 - C40) untersucht. Die Emulsionen wurden durch den Einsatz üblicher Tenside stabil gehalten. Es wurden Probenvolumina von 0,8 I - 3000 I mit einem TOC Gehalt von >1000 mg/1 bestrahlt. Die volumenbezogene Leistung der Lampen betrug 4 - 200 W/1. Fig. 1 zeigt, dass bei neutralem pH-Wert kein Absinken des TOC in der wässrigen Phase zu beobachten ist (Punkte). Die Emulsion trennt sich nicht. Auch die Anhebung der Temperatur ohne Einsatz eines Katalysators führte zu keiner Entmischung und auch das Absenken des pH-Werts ohne Einsatz des Photokatalysators führt nicht zu einer Entmischung. Diese konnte nur bei pH-Werten ≤ 5, insbesondere bei pH 3 und der Anwesenheit des Photo katalysators /Oxidationsmittelsystems und unter Bestrahlung beobachtet werden (Quadrate).An Enviolet ® reactor from ack aqua concept GmbH was used. The emulsion cleavage is carried out as follows. FeS0 4 heptahydrate was added as a catalyst in a concentration of 50 to 100 mg / l of the emulsion. After adding 0.01 g / l to 0.1 g / l H 2 O 2 , the solution was irradiated with a commercially available mercury vapor lamp. Medium pressure mercury lamps with an output of 125W - 12000 W and an emission maximum of 254 nm were used as the light source. The heat radiation from the light source is used to heat the emulsion. After a treatment time of a few minutes, the phases separated and could be separated using a conventional oil separator. Different biodegradable fats and oils of different chain lengths (C10 - C40) were examined as model substances. The emulsions were kept stable by using conventional surfactants. Sample volumes of 0.8 I - 3000 I with a TOC content of> 1000 mg / 1 were irradiated. The volume-related output of the lamps was 4 - 200 W / 1. Fig. 1 shows that no decrease in TOC in the aqueous phase can be observed at neutral pH (points). The emulsion does not separate. Even raising the temperature without using a Catalyst did not result in segregation, and even lowering the pH without using the photocatalyst does not result in segregation. This could only be observed at pH values ≤ 5, especially at pH 3 and the presence of the photocatalyst / oxidizing agent system and under radiation (squares).
Bei der Behandlung wurden gleichzeitig die Eisenionen in der organischen Phase angereichert. Dieser Effekt konnte spektroskopisch verfolgt werden. Dadurch konnte die Trennung kontrolliert werden und eine einfache Regelung des Verfahrens ermöglichen.During the treatment, the iron ions were simultaneously enriched in the organic phase. This effect could be followed spectroscopically. This enabled the separation to be checked and the process to be easily regulated.
Die Geschwindigkeit und der Verlauf der Emulsionsspaltung hing dabei außer vom pH - Wert stark von der Reaktionstemperatur ab. Die Katalysatorkonzentration konnte dagegen in einem weiten Bereich variiert werden, ohne dass die Abbaugeschwindigkeit relevant verändert wird. Fig. 2 zeigt, dass bei einer Temperatur von 30°C nach 25 min sowohl bei einer Katalysatorkonzentration von 50 mg/1 als auch bei 200 mg/I ein spontaner Abfall des TOC zu beobachten war. Das rührte daher, dass sich die wässrige und die organische Phase trennten. Bei einer Erhöhung der Reaktionstemperatur spaltete sich die Emulsionsspaltung früher. So konnte man bei 60°C die Spaltung nach 10 min beobachten. Bei 90°C begann die Spaltung spontan. Allerdings konnte man bei Erhöhung der Reaktionstemperatur beobachten, dass der TOC nicht so schnell absank wie bei niedrigen Temperaturen. Das rührte daher, dass bei höheren Temperaturen die Wasserlöslichkeit der organischen Substanzen besser ist. Es überlagerten sich also hier die Effekte der Emulsionsspaltung mit der photokatalytischen Oxidation. Bei allen Reaktionsbedingungen konnte eine Reduktion des TOC um 70- 80% nach 30 min beobachtet werden, solange der pH - Wert wie oben beschrieben eingestellt blieb. The speed and the course of the emulsion cleavage depended strongly on the reaction temperature apart from the pH value. In contrast, the catalyst concentration could be varied within a wide range without the degradation rate being changed in a relevant manner. FIG. 2 shows that at a temperature of 30 ° C. after 25 min, a spontaneous drop in the TOC was observed both at a catalyst concentration of 50 mg / l and at 200 mg / l. This was because the aqueous and organic phases separated. When the reaction temperature increased, the emulsion cleavage split earlier. So you could observe the cleavage after 10 min at 60 ° C. The cleavage started spontaneously at 90 ° C. However, when the reaction temperature was increased, it was observed that the TOC did not drop as quickly as at low temperatures. This is because the water solubility of the organic substances is better at higher temperatures. The effects of emulsion cleavage and photocatalytic oxidation were therefore superimposed here. A reduction in TOC of 70- 80% can be observed after 30 min as long as the pH remained adjusted as described above.

Claims

Patentansprüche claims
1. Verfahren zur Spaltung von wässrig-organischen Emulsionen gekennzeichnet durch die Verfahrensschritte a) Zufügen eines Oxidationsmittels und einer Fe2+ - oder Fe3+ - Ionen aufweisenden Eisenverbindung, zu der Emulsion mit einem pH - Wert von < 5, b) Bestrahlen der Emulsion mit UV- und/oder VIS-Licht, und c) Abscheiden der gebildeten organischen Phase.1. Process for the cleavage of aqueous-organic emulsions characterized by the process steps a) adding an oxidizing agent and an iron compound containing Fe 2+ or Fe 3+ ions to the emulsion with a pH of <5, b) irradiating the Emulsion with UV and / or VIS light, and c) separating the organic phase formed.
2. Verfahren gemäß Anspruch 1 dadurch gekennzeichnet, dass man als Eisenverbindung Eisenhydroxid, Eisenoxid, Eisenchlorid, Eisensulfat, Eisenoxalat, Eisenchlorat und/oder Eisenperchlorat einsetzt.2. The method according to claim 1, characterized in that iron hydroxide, iron oxide, iron chloride, iron sulfate, iron oxalate, iron chlorate and / or iron perchlorate is used as the iron compound.
3. Verfahren gemäß Anspruch 1 oder 2 dadurch gekennzeichnet, dass man die Eisenverbindung in einer Konzentration von bis zu 5 Gew. % bezogen auf die Konzentration der in der Emulsion vorhandenen TOC (Total Organic Carbon = Totaler Organischer Kohlenstoff) einsetzt.3. The method according to claim 1 or 2, characterized in that the iron compound is used in a concentration of up to 5% by weight based on the concentration of the TOC (total organic carbon) present in the emulsion.
4. Verfahren gemäß einem der Ansprüche 1 bis 3 dadurch gekennzeichnet, dass man als Oxidationsmittel ein Peroxid, insbesondere Wasserstoffperoxid einsetzt.4. The method according to any one of claims 1 to 3, characterized in that a peroxide, in particular hydrogen peroxide, is used as the oxidizing agent.
5. Verfahren gemäß einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass man die Emulsion bei einer Temperatur im Bereich von 0 bis 100 °C spaltet.5. The method according to any one of claims 1 to 4, characterized in that the emulsion is split at a temperature in the range from 0 to 100 ° C.
6. Verfahren gemäß einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, dass man die Bestrahlung mit einer UV-Licht Quelle durchführt, die ausgewählt ist aus der Gruppe Entladungslampe, Glühlampe, Sonne, insbesondere Quecksilbermitteldruckstrahler.6. The method according to any one of claims 1 to 5, characterized in that the irradiation with a UV light source carries out, which is selected from the group discharge lamp, incandescent lamp, sun, in particular medium pressure mercury lamps.
7. Verfahren gemäß einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass man die sich in der organischen Phase anreichernde Eisenverbindung der wässrigen Phase entzieht und anschließend aus der organischen Phase entfernt, dann gegebenenfalls der teilweise oder vollständig unbehandelten Emulsion wieder zuführt.7. The method according to any one of claims 1 to 6, characterized in that the iron compound accumulating in the organic phase is removed from the aqueous phase and then removed from the organic phase, then optionally fed back to the partially or completely untreated emulsion.
8. Verfahren gemäß einem der Ansprüche 1 bis 7 dadurch gekennzeichnet, dass man zur Abtrennung der Eisenverbindung aus der wässrigen Phase der Emulsion ein Öl, insbesondere etwa 1 g/l, zusetzt. 8. The method according to any one of claims 1 to 7, characterized in that an oil, in particular about 1 g / l, is added to separate the iron compound from the aqueous phase.
PCT/EP2005/052184 2004-05-21 2005-05-12 Photocatalytic de-emulsification WO2005113453A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05749534A EP1756011A1 (en) 2004-05-21 2005-05-12 Photocatalytic de-emulsification

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004025007.3 2004-05-21
DE102004025007.3A DE102004025007B4 (en) 2004-05-21 2004-05-21 Photocatalytic emulsion splitting

Publications (1)

Publication Number Publication Date
WO2005113453A1 true WO2005113453A1 (en) 2005-12-01

Family

ID=34969427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/052184 WO2005113453A1 (en) 2004-05-21 2005-05-12 Photocatalytic de-emulsification

Country Status (3)

Country Link
EP (1) EP1756011A1 (en)
DE (1) DE102004025007B4 (en)
WO (1) WO2005113453A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2771281B1 (en) * 2011-10-27 2018-05-16 Institut De Recherche Pour Le Developpement Reactor usable for decontamination of fluids and method of use

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010020105B4 (en) * 2009-05-08 2015-07-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Recycling of Iron in the Photo-Fenton Process
DE102010008234A1 (en) * 2010-02-12 2011-08-18 a.c.k. aqua concept GmbH Karlsruhe, 76189 Process for the treatment of photographic lacquer-containing wastewaters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1592720A (en) * 1976-12-27 1981-07-08 Ford Motor Co Electrolytic methodfor breaking an oil-inwater emulsion
US5120428A (en) * 1991-06-06 1992-06-09 Energy Mines & Resources Canada Deashing of heavy hydrocarbon residues
EP0540972A1 (en) * 1991-11-06 1993-05-12 AUSIMONT S.p.A. Process for oxidizing organic materials with hydrogen peroxide under conditions of irradiation in aqueous phase

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD48573A1 (en) * 1965-08-03 1966-06-05 Herbert Schilenski Process for dismantling spent oil emulsions, in particular drilling and cutting oils
DE3832523C1 (en) * 1988-09-24 1990-01-18 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe, De
US5043080A (en) * 1990-02-26 1991-08-27 Solarchem Enterprises Inc. Treating contaminated effluents and groundwaters
US5266214A (en) * 1992-12-22 1993-11-30 Cryptonics Corporation Photocatalytic method for treatment of contaminated water
GB9623337D0 (en) 1996-11-08 1997-01-08 Markessinis Andreas Water treatment process
GR1003914B (en) 2000-05-26 2002-06-25 Αποστολος Βλησιδης A method of processing oil-plant wastes and resulting organo-humic product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1592720A (en) * 1976-12-27 1981-07-08 Ford Motor Co Electrolytic methodfor breaking an oil-inwater emulsion
US5120428A (en) * 1991-06-06 1992-06-09 Energy Mines & Resources Canada Deashing of heavy hydrocarbon residues
EP0540972A1 (en) * 1991-11-06 1993-05-12 AUSIMONT S.p.A. Process for oxidizing organic materials with hydrogen peroxide under conditions of irradiation in aqueous phase

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1756011A1 *
TEIXEIRA A C S C ET AL: "Degradation of an aminosilicone polymer in a water emulsion by the Fenton and the photochemically enhanced Fenton reactions", CHEMICAL ENGINEERING AND PROCESSING, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 44, no. 8, August 2005 (2005-08-01), pages 923 - 931, XP004823716, ISSN: 0255-2701 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2771281B1 (en) * 2011-10-27 2018-05-16 Institut De Recherche Pour Le Developpement Reactor usable for decontamination of fluids and method of use

Also Published As

Publication number Publication date
EP1756011A1 (en) 2007-02-28
DE102004025007B4 (en) 2020-01-09
DE102004025007A1 (en) 2005-12-15

Similar Documents

Publication Publication Date Title
EP3873659B1 (en) Method for the removal of polyfluorinated organic compounds from water by means of an adsorbent and regeneration thereof
DE112017001666T5 (en) Process for reducing pollutant discharge in phenol acetone production
EP3527696A1 (en) Method for treatment and reuse of process water containing salt
DE4327804A1 (en) Decomposition of organic halogen cpds. - by exposing soln. to UV light then adding alkali to ppte. salt, for economical destruction of e.g. tri:chloroethylene, poly:chloro-bi:phenyl and chloro-fluorocarbon cpds.
DE10132315A1 (en) Reclamation of waste cooking oil comprises treatment with alkaline reducing water produced by electrolysis
EP0680931B1 (en) Process for treating a medium containing organic constituents
EP1756011A1 (en) Photocatalytic de-emulsification
EP0472124A1 (en) Catalytic oxidation of wastewater
DE60209109T2 (en) METHOD FOR CLEANING A REDOX-MEDIATOR-CONTAINING SOLUTION BEFORE ITS ELECTROLYTIC REGENERATION
DE19800699A1 (en) Removal of heavy metal ions from aqueous media
DE102010020105B4 (en) Recycling of Iron in the Photo-Fenton Process
EP0930273B1 (en) Method and device for the treatment of surface water with a high algae content
DE2426117C3 (en) Process for the multi-stage continuous processing of neutral dyeing waste water containing organic dyes and production auxiliaries by means of ozone under turbulence
WO1993011186A1 (en) Method of regenerating pvpp, and the use of an oxidizing agent for the regeneration
WO2009074434A2 (en) Method for purifying waste gases produced during the production of cyanuric chloride
DE19614642C2 (en) Process for processing waste sulfuric acid
DE2927276C2 (en) Process for the concentration of used cooling lubricants by ultrafiltration
DE2313217A1 (en) PROCESS FOR THE REMOVAL OF HYDROCARBONS FROM AQUATIC SOLUTIONS
DE19538872C2 (en) Process for the treatment of an organic compound with a solvent present in the supercritical state
DE19639716A1 (en) Process for treating sludge in biological wastewater treatment
DE2543353C3 (en) Process and device for treating wastewater on ships
DE2408778A1 (en) Destruction of waste carbonaceous substances - by subjecting to irradiation and action of water and excess oxygen
EP0419842A1 (en) Method for removing halogenated organic contaminants with at least 5 C-atoms from water
DE102007046003A1 (en) To remove organic silicon compounds from waste water it is oxidized using ozone and hydrogen peroxide
DE2320799C3 (en) Process for cleaning industrial waste water

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005749534

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005749534

Country of ref document: EP