WO2005100690A1 - Use of calcium carbonate particles in papermaking - Google Patents

Use of calcium carbonate particles in papermaking Download PDF

Info

Publication number
WO2005100690A1
WO2005100690A1 PCT/EP2005/051660 EP2005051660W WO2005100690A1 WO 2005100690 A1 WO2005100690 A1 WO 2005100690A1 EP 2005051660 W EP2005051660 W EP 2005051660W WO 2005100690 A1 WO2005100690 A1 WO 2005100690A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium carbonate
suspension
equal
fiber
cationic
Prior art date
Application number
PCT/EP2005/051660
Other languages
French (fr)
Inventor
Mike Ball
Original Assignee
Solvay (Société Anonyme)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay (Société Anonyme) filed Critical Solvay (Société Anonyme)
Priority to EP05733443A priority Critical patent/EP1756363A1/en
Priority to US11/578,290 priority patent/US20070181275A1/en
Publication of WO2005100690A1 publication Critical patent/WO2005100690A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/675Oxides, hydroxides or carbonates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • D21H17/29Starch cationic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/31Gums
    • D21H17/32Guar or other polygalactomannan gum
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/56Polyamines; Polyimines; Polyester-imides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/50Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
    • D21H21/52Additives of definite length or shape
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added

Definitions

  • the present invention relates to the use of a calcium carbonate (CC) in papermaking. More specifically, it relates to the use of CC to improve the dewatering and retention properties of paper in papermaking.
  • the invention also leads to paper with improved optical properties and improved printability.
  • colloidal silica such as that associated with the various Compozil* systems, in the production of paper to obtain improved retention and dewatering.
  • colloidal silica is an expensive material and there is a need for an alternative cheaper material. It has been surprisingly discovered that colloidal silica can be replaced by ultrafine particles of calcium carbonate.
  • a dry calcium carbonate or a suspension of CC especially a suspension comprising ultrafine precipitated calcium carbonate (PCC) particles is utilized in the manner analogous to the previously employed colloidal silica.
  • PCC ultrafine precipitated calcium carbonate
  • These suspensions can provide a substantial improvement ofthe retention and dewatering in the production of paper.
  • the improvements in dewatering can, for example, allow the speed of the papermaking machine to be increased. Accordingly, the economics ofthe papermaking process can be substantially improved.
  • the obtained paper shows improved optical properties and an improved printability.
  • the invention then relates to a process for the production of paper, comprising the steps of :
  • step (b) introducing at least one suspension comprising ultrafine particles of calcium carbonate to the fiber-containing suspension, and (c) forming and dewatering the fiber-containing suspension resulting from step (b) wherein the ultrafine calcium carbonate particles have an average size lower than or equal to 200 nm.
  • the invention also relates to a method for improving the dewatering of a fiber-containing suspension containing cellulose fibers comprising the addition of a calcium carbonate suspension comprising ultrafine particles of calcium carbonate to a fiber-containing suspension containing cellulose fibers, wherein the ultrafine calcium carbonate particles have an average size lower than or equal to 200 ran,
  • the invention also relates to the use of a calcium carbonate suspension comprising ultrafine particles of calcium carbonate as a substitute for colloidal silica as a dewatering agent in the formation of paper from a fiber-containing suspension containing cellulose fibers, wherein the ultrafine calcium carbonate particles have an average size lower than or equal to 200 nm.
  • the particles of calcium carbonate according to the invention can be particles of natural or synthetic calcium carbonate.
  • Natural calcium carbonate can be processed by mechanically crushing and grading calcareous ore to obtain particles adjusted to the desired size and surface area.
  • Synthetic calcium carbonate is usually prepared by precipitation using various sources of calcium and carbonates ions.
  • Precipitated calcium carbonate (PCC) is preferred.
  • Particles of PCC may be manufactured by first preparing a calcium oxide
  • Precipitation of calcium carbonate can also be carried out by adding an alkali metal carbonate starting with lime water (caustification method) or by the addition of an alkali metal carbonate starting with solutions containing calcium chloride.
  • PCC particles obtained from the carbonation process are preferred.
  • the calcium carbonate can be substantially amorphous or substantially crystalline. Substantially amorphous or crystalline is understood to mean that more than 50 % by weight ofthe calcium carbonate is in the form of amorphous or crystalline material when analyzed by an X-ray diffraction technique. Substantially crystalline calcium carbonate is preferred. Crystalline calcium carbonate can consist of calcite or aragonite or a mixture of these two crystalline phases. The calcite phase is preferred. - J
  • the particles can be of any shape. They may have the form of needles, scalenohedrons, rhombohedrons, spheres, platelets or prisms. A rhombohedral shape, that can be reduced to pseudo-cubes or pseudo-spheres, is preferred.
  • the calcium carbonate particles according to the invention have usually a
  • the particles according to the invention have generally a BET specific surface area lower than or equal to 300 m 2 /g preferably lower than or equal to 250 m 2 /g, more preferably lower than or equal to 200 m 2 /g, still more preferably lower than or equal to 150 m 2 /g and in particular lower than or equal to 100 ⁇ T/g.
  • the skilled person is aware how to determine the BET specific surface area ofthe particles.
  • the BET specific surface area is measured according to the ISO 9277 norm.
  • the "ultrafine" calcium carbonate particles according to the invention have usually a mean elementary particle size (d p ) higher than or equal to 5 nm, preferably higher than or equal to 10 nm, more preferably higher than or equal to 10 nm , still more preferably higher than or equal to 15 nm and most preferably higher than or equal to 20 nm.
  • the mean particle size is generally lower than or equal to 200 nm, preferably lower than or equal to 150 nm, more preferably lower than or equal to 100 nm and most preferably lower than or equal to 70 nm.
  • the skilled person is aware of suitable methods for determining the mean elementary particle size.
  • the calcium carbonate particles according to the invention can be coated with at least one coating agent.
  • the coating agent is selected from carboxylic acids, carboxylic acids salts, sulfonic acids, sulfonic acid salts, alkylsulfates, alkylsulfosuccinates and mixtures thereof, to mention only a few. It is preferred to use uncoated calcium carbonate.
  • the PCC suspension according to the present invention can comprise ultrafine PCC particles such as those available from Solvay SA under the SOCAL* trademark. Specific examples of such ultrafine particles are illustrated in Table 1.
  • the ultrafine particles employed in the present invention typically have a high surface area and a high charge density which make them particularly suitable for use in the invention.
  • the primary function ofthe CC particles is the ability to provide a desired charge, e.g., typically a negative charge, thereby enhancing the charge characteristics of the system.
  • the ultrafine particles can be employed as a dry solid (powder) or in an organic or aqueous suspension in an amount suitable to provide the desired dewatering improvement.
  • dry solid one intends to denote a solid for which the water content can be less than or equal to 10 % by weight.
  • This content is preferably less than or equal to 3 % by weight and more particularly less than or equal to 1 % by weight. It is preferred to use aqueous suspensions of ultrafine particles of CC. It is most preferred to use aqueous suspensions of ultrafine particles of precipitated calcium carbonate. Those suspensions can be made by dispersing dry precipitated calcium carbonate into water or can be calcium carbonate suspensions resulting from the precipitation processes. In this regard, it may be desirable to provide as high as concentration ofthe particles as possible subject to issues such as the manufacturing conditions, the maximum concentration at which the suspension would remain fluid and pourable without excessive settling.
  • the content of ultrafine particles in the suspension of calcium carbonate is usually higher than or equal to 1 % by weight, preferably higher than or equal to 5 % by weight and most preferably higher than or equal to 8 % by weight.
  • the content of ultrafine particles in the suspension is usually lower than or equal to 70 % by weight, preferably lower than or equal to 50 % by weight, more preferably lower than or equal to 40 % by weight and most preferably lower than or equal to 20 % by weight.
  • One example of a suitable suspension includes about 10 % by weight ofthe ultrafine particles in an aqueous suspension.
  • the suspensions according to the present invention can be used as a replacement for colloidal silica in paper-making processes.
  • the present invention can employ a variety of paper-making suspensions containing a variety of cellulose-containing fibers.
  • the suspensions should typically contain a suitable amount of fibers to provide the desired consistency at the various points ofthe paper making process.
  • the consistency of the fiber in thick stock can typically be on the order of 3 %, of thin stock on the order of 0.5 to 1 % and later, at the drying section, at least about 50 percent by weight of such fibers, based on dry material. Such amounts are well recognized in this field.
  • the components can for example be used for suspensions of fibers from chemical pulp, such as sulphate and sulphite pulp, thermomechanical pulp, refiner pulp or groundwood pulp from both hardwood and softwood and can also be used for suspensions based on recycled fibers.
  • the suspension can also contain mineral fillers, such as for example kaolin, titanium dioxide, gypsum, chalk and talcum.
  • paper and paper-making as used herein do of course not include solely paper and its production but also other cellulose fiber containing products in sheet or web form such as pulp sheets, board and cardboard and their production.
  • the amount of calcium carbonate in the fiber containing suspension is to a high degree dependent on the type effects desired from this.
  • This amount is usually lower than or equal to 50 wt %, preferably lower than or equal to 40 wt %, more preferably lower than or equal to 30 wt % and most preferably lower than or equal to 20 wt %.
  • the calcium carbonate suspensions in the process, method and use according to the invention can be used in combination with agents employed in the paper-making suspension. Among such agents, ionic polymers are preferred.
  • the invention then also relates to process, a method and a use as described above, where at least one ionic polymer is introduced in the fiber-containing suspension containing cellulose fibers.
  • ionic polymers cationic polymers are preferred.
  • the cationic polymers suitable for use in the invention include natural, e.g. based on carbohydrates, and synthetic polymers. Examples of suitable polymers include cationic starch, cationic guar gum, cationic acrylamide based polymers, cationic polyethyleneimines, polyamidoamines and poly(diallyldimethyl ammonium chloride). The polymers can be used singly or in combination with each other.
  • Cationic starch is preferred and can be selected from starch tertiary aminoalkyl ethers derivatives, starch quaternary ammonium ethers derivatives, aminoethylated starches, starch cyanamide derivatives, starch anthranilates and cationic dialdehyde starch.
  • These cationic starches are produced by well-know reactions from starches arising from various sources like corn, potatoes, wheat and rice, for instance.
  • the amount of polymer is to a high degree dependent on the type of this and other effects desired from this. For synthetic polymers at least 0.01 kg polymer per ton, calculated as dry on the sum of dry fibers and optional fillers are usually used.
  • CC suspension CC suspension.
  • the amount of CC suspension employed in the context ofthe present invention can vary within wide limits depending on, among other things, the type of suspension being employed.
  • the weight ratio of cationic polymer(s) to CC is typically based on the charge characteristics ofthe system.
  • the other primary factor relates to the economics ofthe system. It is particularly suitable where the ratio of polymer to CC in suspension is not less than 0.10 wt/wt, more preferably not less than 0.20 wt/wt.
  • the paper-making suspensions employed in the present invention can include one or more conventional paper additives such as hydrophobing agents, dry strength agents, wet strength agents etc. Such additives are suitable for, but not significant to, the present invention.
  • suitable additive examples include aluminum compounds that can be employed in combination with the CC suspension and cationic polymers, since it has been found that aluminum compounds may provide a further improvement of retention and dewatering.
  • Any known aluminum compound for use in papermaking can be used, for example alum, polyaluminium compounds, aluminates, aluminum chloride and aluminum nitrate.
  • the polyaluminium compounds can for example be polyaluminium chlorides, polyaluminium sulphates and polyaluminium compounds containing both chloride and sulphate ions.
  • the polyaluminium compounds can also contain other anions than chloride - 1 -
  • ions for example anions from sulphuric acid, phosphoric acid, organic acids such as citric acid and oxalic acid.
  • ions for example anions from sulphuric acid, phosphoric acid, organic acids such as citric acid and oxalic acid.
  • the cationic polymer(s) are typically added prior to the CC suspension, processes employing a reversed order of addition are not outside the scope of this invention.
  • the process includes the forming and dewatering ofthe fiber-containing suspension on a wire to form paper.
  • techniques and devices for forming and dewatering the paper-making suspension are well-recognized in the art and need not be described in detail here. It is noted that the CC suspension can be effectively employed over the entire pH range of 4 to 10 in papermaking, with 4.5 to 8.5 being typically preferred.
  • Example - Comparison of Ultrafine PCC Suspension to Compozil® Components Colloidal silica : Compozil ⁇ BMA 0, anionic silica sol used directly as sold, 10 % by weight suspension.
  • Calcium carbonate SOCA1A U3 : A, 10 % by weight suspension of SOCAL ® U3 (SOLVAY).

Abstract

A process for the production of paper by introducing a suspension of ultrafine calcium carbonate particles to a fiber-containing suspension. A method for improving the dewatering of a fiber-containing suspension. Use of a calcium carbonate suspension comprising ultrafine particles of calcium carbonate as a substitute for colloidal silica as a dewatering agent in the formation of paper from a fiber-containing suspension. At least one ionic polymer is introduced in the fiber-containing suspension.

Description

Use of calcium carbonate particles in papermaking
The present invention relates to the use of a calcium carbonate (CC) in papermaking. More specifically, it relates to the use of CC to improve the dewatering and retention properties of paper in papermaking. The invention also leads to paper with improved optical properties and improved printability. It is well known to use colloidal silica, such as that associated with the various Compozil* systems, in the production of paper to obtain improved retention and dewatering. However colloidal silica is an expensive material and there is a need for an alternative cheaper material. It has been surprisingly discovered that colloidal silica can be replaced by ultrafine particles of calcium carbonate. Here, a dry calcium carbonate or a suspension of CC, especially a suspension comprising ultrafine precipitated calcium carbonate (PCC) particles is utilized in the manner analogous to the previously employed colloidal silica. These suspensions can provide a substantial improvement ofthe retention and dewatering in the production of paper. The improvements in dewatering can, for example, allow the speed of the papermaking machine to be increased. Accordingly, the economics ofthe papermaking process can be substantially improved. Furthermore, the obtained paper shows improved optical properties and an improved printability. The invention then relates to a process for the production of paper, comprising the steps of :
(a) providing a fiber-containing suspension containing cellulose fibers, and optional fillers;
(b) introducing at least one suspension comprising ultrafine particles of calcium carbonate to the fiber-containing suspension, and (c) forming and dewatering the fiber-containing suspension resulting from step (b) wherein the ultrafine calcium carbonate particles have an average size lower than or equal to 200 nm. The invention also relates to a method for improving the dewatering of a fiber-containing suspension containing cellulose fibers comprising the addition of a calcium carbonate suspension comprising ultrafine particles of calcium carbonate to a fiber-containing suspension containing cellulose fibers, wherein the ultrafine calcium carbonate particles have an average size lower than or equal to 200 ran, The invention also relates to the use of a calcium carbonate suspension comprising ultrafine particles of calcium carbonate as a substitute for colloidal silica as a dewatering agent in the formation of paper from a fiber-containing suspension containing cellulose fibers, wherein the ultrafine calcium carbonate particles have an average size lower than or equal to 200 nm. The particles of calcium carbonate according to the invention can be particles of natural or synthetic calcium carbonate. Natural calcium carbonate can be processed by mechanically crushing and grading calcareous ore to obtain particles adjusted to the desired size and surface area. Synthetic calcium carbonate is usually prepared by precipitation using various sources of calcium and carbonates ions. Precipitated calcium carbonate (PCC) is preferred. Particles of PCC may be manufactured by first preparing a calcium oxide
(quick lime) by subjecting limestone to calcination by burning a fuel, such as coke, a petroleum fuel (such as heavy or light oil), natural gas, petroleum gas (LPG) or the like, and then reacting the calcium oxide with water to produce a calcium hydroxide slurry (milk of lime), and reacting the calcium hydroxide slurry with carbon dioxide to obtain the desired particle size and shape PCC (carbonation process). Carbon dioxide can be discharged from a calcination furnace for obtaining the calcium oxide from limestone, from gases from power plants or from liquid CO2 containers for instance. It is preferred to use carbon dioxide discharged from a calcination furnace for obtaining the calcium υxide from limestone. Precipitation of calcium carbonate can also be carried out by adding an alkali metal carbonate starting with lime water (caustification method) or by the addition of an alkali metal carbonate starting with solutions containing calcium chloride. PCC particles obtained from the carbonation process are preferred. The calcium carbonate can be substantially amorphous or substantially crystalline. Substantially amorphous or crystalline is understood to mean that more than 50 % by weight ofthe calcium carbonate is in the form of amorphous or crystalline material when analyzed by an X-ray diffraction technique. Substantially crystalline calcium carbonate is preferred. Crystalline calcium carbonate can consist of calcite or aragonite or a mixture of these two crystalline phases. The calcite phase is preferred. - J
In the case where the calcium carbonate is synthetic calcium carbonate, the particles can be of any shape. They may have the form of needles, scalenohedrons, rhombohedrons, spheres, platelets or prisms. A rhombohedral shape, that can be reduced to pseudo-cubes or pseudo-spheres, is preferred. The calcium carbonate particles according to the invention have usually a
BET specific surface area higher than or equal to 10 m2/g, preferably higher than or equal to 20 m2/g, more preferably higher than or equal to 40 m2/g, still more preferably higher than or equal to 60 m7g and in particular higher than or equal to 70 m /g. The particles according to the invention have generally a BET specific surface area lower than or equal to 300 m2/g preferably lower than or equal to 250 m2/g, more preferably lower than or equal to 200 m2/g, still more preferably lower than or equal to 150 m2/g and in particular lower than or equal to 100 πT/g. The skilled person is aware how to determine the BET specific surface area ofthe particles. Preferably, the BET specific surface area is measured according to the ISO 9277 norm. The "ultrafine" calcium carbonate particles according to the invention have usually a mean elementary particle size (dp) higher than or equal to 5 nm, preferably higher than or equal to 10 nm, more preferably higher than or equal to 10 nm , still more preferably higher than or equal to 15 nm and most preferably higher than or equal to 20 nm. The mean particle size is generally lower than or equal to 200 nm, preferably lower than or equal to 150 nm, more preferably lower than or equal to 100 nm and most preferably lower than or equal to 70 nm. The skilled person is aware of suitable methods for determining the mean elementary particle size. In this regard it can be referred e.g. to norm NF 11 601/11 602. The calcium carbonate particles according to the invention can be coated with at least one coating agent. The coating agent is selected from carboxylic acids, carboxylic acids salts, sulfonic acids, sulfonic acid salts, alkylsulfates, alkylsulfosuccinates and mixtures thereof, to mention only a few. It is preferred to use uncoated calcium carbonate. For example, the PCC suspension according to the present invention can comprise ultrafine PCC particles such as those available from Solvay SA under the SOCAL* trademark. Specific examples of such ultrafine particles are illustrated in Table 1. In view of their size, the ultrafine particles employed in the present invention typically have a high surface area and a high charge density which make them particularly suitable for use in the invention. Although not wishing to be bound by a particle theory, it is believed that the primary function ofthe CC particles is the ability to provide a desired charge, e.g., typically a negative charge, thereby enhancing the charge characteristics of the system. The ultrafine particles can be employed as a dry solid (powder) or in an organic or aqueous suspension in an amount suitable to provide the desired dewatering improvement. By dry solid, one intends to denote a solid for which the water content can be less than or equal to 10 % by weight. This content is preferably less than or equal to 3 % by weight and more particularly less than or equal to 1 % by weight. It is preferred to use aqueous suspensions of ultrafine particles of CC. It is most preferred to use aqueous suspensions of ultrafine particles of precipitated calcium carbonate. Those suspensions can be made by dispersing dry precipitated calcium carbonate into water or can be calcium carbonate suspensions resulting from the precipitation processes. In this regard, it may be desirable to provide as high as concentration ofthe particles as possible subject to issues such as the manufacturing conditions, the maximum concentration at which the suspension would remain fluid and pourable without excessive settling. The content of ultrafine particles in the suspension of calcium carbonate is usually higher than or equal to 1 % by weight, preferably higher than or equal to 5 % by weight and most preferably higher than or equal to 8 % by weight. The content of ultrafine particles in the suspension is usually lower than or equal to 70 % by weight, preferably lower than or equal to 50 % by weight, more preferably lower than or equal to 40 % by weight and most preferably lower than or equal to 20 % by weight. One example of a suitable suspension includes about 10 % by weight ofthe ultrafine particles in an aqueous suspension. As mentioned above, the suspensions according to the present invention can be used as a replacement for colloidal silica in paper-making processes. Insofar as paper-making processes are well recognized in the art, they need not be described in detail. However, for sake of completeness, the inventors offer the following remarks regarding the paper-making suspensions that are suitable for the present invention. The present invention can employ a variety of paper-making suspensions containing a variety of cellulose-containing fibers. The suspensions should typically contain a suitable amount of fibers to provide the desired consistency at the various points ofthe paper making process. For example, the consistency of the fiber in thick stock can typically be on the order of 3 %, of thin stock on the order of 0.5 to 1 % and later, at the drying section, at least about 50 percent by weight of such fibers, based on dry material. Such amounts are well recognized in this field. The components can for example be used for suspensions of fibers from chemical pulp, such as sulphate and sulphite pulp, thermomechanical pulp, refiner pulp or groundwood pulp from both hardwood and softwood and can also be used for suspensions based on recycled fibers. The suspension can also contain mineral fillers, such as for example kaolin, titanium dioxide, gypsum, chalk and talcum. Finally, it is noted that the terms "paper" and "paper-making" as used herein do of course not include solely paper and its production but also other cellulose fiber containing products in sheet or web form such as pulp sheets, board and cardboard and their production. The amount of calcium carbonate in the fiber containing suspension is to a high degree dependent on the type effects desired from this. It is generally higher than or equal to 0.01 % by weight calculated as dry calcium carbonate on the sum of dry fibers and optional fillers, preferably higher than or equal to 0.05 wt %, more preferably higher than or equal to 0.1 wt % and most preferably higher than or equal to 0.15 wt %. This amount is usually lower than or equal to 50 wt %, preferably lower than or equal to 40 wt %, more preferably lower than or equal to 30 wt % and most preferably lower than or equal to 20 wt %. The calcium carbonate suspensions in the process, method and use according to the invention can be used in combination with agents employed in the paper-making suspension. Among such agents, ionic polymers are preferred. The invention then also relates to process, a method and a use as described above, where at least one ionic polymer is introduced in the fiber-containing suspension containing cellulose fibers. Among ionic polymers, cationic polymers are preferred. The cationic polymers suitable for use in the invention include natural, e.g. based on carbohydrates, and synthetic polymers. Examples of suitable polymers include cationic starch, cationic guar gum, cationic acrylamide based polymers, cationic polyethyleneimines, polyamidoamines and poly(diallyldimethyl ammonium chloride). The polymers can be used singly or in combination with each other. Cationic starch is preferred and can be selected from starch tertiary aminoalkyl ethers derivatives, starch quaternary ammonium ethers derivatives, aminoethylated starches, starch cyanamide derivatives, starch anthranilates and cationic dialdehyde starch. These cationic starches are produced by well-know reactions from starches arising from various sources like corn, potatoes, wheat and rice, for instance. The amount of polymer is to a high degree dependent on the type of this and other effects desired from this. For synthetic polymers at least 0.01 kg polymer per ton, calculated as dry on the sum of dry fibers and optional fillers are usually used. Suitably amounts of from 0.01 to 3 and preferably from 0.03 to 2 kg per ton are used. For polymers based on carbohydrates, such as cationic starch and cationic guar gum, typically, amounts of at least 0.1 kg/ton, calculated as dry on the sum of dry fibers and optional fillers, are used. Suitably these are used in amounts of from 0.5 to 30 kg/ton and preferably from 1 to 15 kg/ton. The other significant component ofthe paper-making suspension is the CC suspension. The amount of CC suspension employed in the context ofthe present invention can vary within wide limits depending on, among other things, the type of suspension being employed. In the context ofthe present invention, the weight ratio of cationic polymer(s) to CC is typically based on the charge characteristics ofthe system. The other primary factor relates to the economics ofthe system. It is particularly suitable where the ratio of polymer to CC in suspension is not less than 0.10 wt/wt, more preferably not less than 0.20 wt/wt. However, it is important to note that a wide range of amounts for the CC suspension employed is capable of providing the dewatering advantages that can be associated with the present invention. The paper-making suspensions employed in the present invention can include one or more conventional paper additives such as hydrophobing agents, dry strength agents, wet strength agents etc. Such additives are suitable for, but not significant to, the present invention. Examples of suitable additive include aluminum compounds that can be employed in combination with the CC suspension and cationic polymers, since it has been found that aluminum compounds may provide a further improvement of retention and dewatering. Any known aluminum compound for use in papermaking can be used, for example alum, polyaluminium compounds, aluminates, aluminum chloride and aluminum nitrate. The polyaluminium compounds can for example be polyaluminium chlorides, polyaluminium sulphates and polyaluminium compounds containing both chloride and sulphate ions. The polyaluminium compounds can also contain other anions than chloride - 1 -
ions, for example anions from sulphuric acid, phosphoric acid, organic acids such as citric acid and oxalic acid. In addition, while the cationic polymer(s) are typically added prior to the CC suspension, processes employing a reversed order of addition are not outside the scope of this invention. Upon adding the CC suspension to the fiber-containing suspension, the process includes the forming and dewatering ofthe fiber-containing suspension on a wire to form paper. In this regard, techniques and devices for forming and dewatering the paper-making suspension are well-recognized in the art and need not be described in detail here. It is noted that the CC suspension can be effectively employed over the entire pH range of 4 to 10 in papermaking, with 4.5 to 8.5 being typically preferred. The invention is further illustrated in the following example which, however, is not intended to limit the same. Example - Comparison of Ultrafine PCC Suspension to Compozil® Components : Colloidal silica : Compozil^ BMA 0, anionic silica sol used directly as sold, 10 % by weight suspension. Calcium carbonate : SOCA1A U3 : A, 10 % by weight suspension of SOCAL® U3 (SOLVAY).
(Stirring speed 1500 rpm, small toothed-disk stirrer) Cationic potatoe Starch with 0.4-0.5 % of N : a 1 % by weight hot suspension of starch. Production of the paper material : The fiber containing suspension has been diluted to a concentration of approximately 7.0 g/1 by addition of deionized water. The concentration has been adjusted by testing the total retention (Procedure P.5.). Then NaCl was added to attain a conductance of 1.2 mS/cm. This stock has then been divided into 1000-ml portions. The fiber concentrations were 6.51 g/1 for samples employing calcium carbonate et 6.84 g/1 for samples employing colloidal silica. The required amounts of starch paste and/or calcium carbonate suspension or colloidal silica suspensions have then been added to these portions, and the mixtures have been subjected to defined shearing using a Dynamic Filtration System DFS 03 (Overseas instruments), and then desiccated. Determination of the Drainage Time 1000 ml ofthe paper-stock/starch mixture were emptied through the funnel ofthe DFS03 into the stirring chamber (which is intended for the desiccation time) and then stirred at 500 rpm. The stirrer stopped after 60 s, and at the same time the sealing cone ofthe stirring chamber was lifted. The amount of filtrate thus produced was measured vs. time. The maximum amount of filtrate was 400 g. The filtration was done through a Schopper-Riegler standard metal screen. Table 2 illustrates that the results for calcium carbonate while, Table 3 shows the results for colloidal silica in tabular form.
Table 1
Figure imgf000010_0001
Mean particle size (nm) 90 → 20
Specific surface (m2/g) IS → 70
Table 2 : Effect of calcium carbonate on the Drainage Time
Figure imgf000010_0002
Figure imgf000011_0001

Claims

C L A I M S
1 - A process for the production of paper, comprising the steps of :
(a) providing a fiber-containing suspension containing cellulose fibers, and optional fillers;
(b) introducing at least one suspension comprising ultrafine particles of calcium carbonate to the fiber-containing suspension, and
(c) forming and dewatering the fiber-containing suspension resulting from step (b)
wherein the ultrafine calcium carbonate particles have an average size lower than or equal to 200 nm.
2 - A method for improving the dewatering of a fiber-containing suspension containing cellulose-fibers comprising the addition of a calcium carbonate suspension comprising ultrafine particles of calcium carbonate to a fiber-containing suspension containing cellulose-fibers, wherein the ultrafine calcium carbonate particles have an average size lower than or equal to 200 nm.
3 - Use of a calcium carbonate suspension comprising ultrafine particles of calcium carbonate as a substitute for colloidal silica as a dewatering agent in the formation of paper from a fiber-containing suspension containing cellulose- fibers, wherein the ultrafine calcium carbonate particles have an average size lower than or equal to 200 nm.
4 - Process, method and use according to claims 1 to 3, wherein at least one ionic polymer is introduced in the fiber-containing suspension containing cellulose fibers.
5 - Process, method and use according to any of claims 1 to 4, wherein the calcium carbonate is a precipitated calcium carbonate and wherein the calcium carbonate is calcite.
6 - Process, method and use according to any of claims 1 to 5 wherein the content of ultrafine particles of calcium carbonate in the calcium carbonate suspension is higher than or equal to 1 % by weight and lower than or equal to 70 % by weight.
7 - Process, method and use according to any of claims 1 to 6 wherein the ratio ofthe cationic polymer with respect to the calcium carbonate is higher or equal to 0.1 wt/wt.
8 - Process, method and use according to any of claims 1 to 7, wherein the amount of calcium carbonate in the fiber-containing suspension containing cellulose fibers is higher than or equal to 0.01 % and lower than or equal to 50 % by weight calculated as dry calcium carbonate on the sum of dry fibers and optional fillers.
9 - Process, method and use according to any of claims 1 to 8, wherein the ionic polymer is a cationic polymer selected from cationic starch, cationic guar gum, cationic acrylamide based polymers, cationic polyethyleneimines, polyamidoamines and poly(diallyldimethyl ammonium chloride) or any mixture thereof. 10 - Process, method and use according to claim 9 wherein the cationic starch is selected from starch tertiary aminoalkyl ethers derivatives, starch quaternary ammonium ethers derivatives, aminoethylated starches, starch cyanamide derivatives, starch anthranilates and cationic dialdehyde starch.
PCT/EP2005/051660 2004-04-16 2005-04-14 Use of calcium carbonate particles in papermaking WO2005100690A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05733443A EP1756363A1 (en) 2004-04-16 2005-04-14 Use of calcium carbonate particles in papermaking
US11/578,290 US20070181275A1 (en) 2005-04-14 2005-04-14 Use of calcuim carbonate particles in papermaking

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04101574.4 2004-04-16
EP04101574A EP1586704A1 (en) 2004-04-16 2004-04-16 Use of ultrafine calcium carbonate particles in papermaking

Publications (1)

Publication Number Publication Date
WO2005100690A1 true WO2005100690A1 (en) 2005-10-27

Family

ID=34928967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/051660 WO2005100690A1 (en) 2004-04-16 2005-04-14 Use of calcium carbonate particles in papermaking

Country Status (2)

Country Link
EP (2) EP1586704A1 (en)
WO (1) WO2005100690A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011131843A1 (en) 2010-04-22 2011-10-27 Nordkalk Oy Ab The use of acidic water in the manufacture of paper
WO2015006272A1 (en) * 2013-07-10 2015-01-15 Ecolab Usa Inc. Enhancement of sheet dewatering using soy flour or soy protein
US9725599B2 (en) 2007-12-12 2017-08-08 Omya International Ag Surface-mineralized organic fibers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2483151C1 (en) * 2011-11-10 2013-05-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Method of manufacturing paper for printing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279663A (en) * 1989-10-12 1994-01-18 Industrial Progesss, Inc. Low-refractive-index aggregate pigments products
US5296002A (en) * 1990-03-13 1994-03-22 Pfizer Inc. Rhombohedral calcium carbonate and accelerated heat-aging process for the production thereof
US5312484A (en) * 1989-10-12 1994-05-17 Industrial Progress, Inc. TiO2 -containing composite pigment products
US5798173A (en) * 1994-03-04 1998-08-25 Mitsubishi Paper Mills Limited Ink jet recording sheet
EP1099795A1 (en) * 1999-06-24 2001-05-16 Akzo Nobel N.V. Sizing emulsion
US6270626B1 (en) * 1998-04-27 2001-08-07 Rhodia Chimie Paper making retention system of bentonite and a cationic galactomannan
WO2002049765A2 (en) * 2000-12-20 2002-06-27 Coatex S.A.S. Grinding and/or dispersing aid of mineral materials in aqueous suspension, suspensions and uses thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4793985A (en) * 1982-08-23 1988-12-27 J. M. Huber Corporation Method of producing ultrafine ground calcium carbonate
US5116418A (en) * 1984-12-03 1992-05-26 Industrial Progress Incorporated Process for making structural aggregate pigments

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279663A (en) * 1989-10-12 1994-01-18 Industrial Progesss, Inc. Low-refractive-index aggregate pigments products
US5312484A (en) * 1989-10-12 1994-05-17 Industrial Progress, Inc. TiO2 -containing composite pigment products
US5296002A (en) * 1990-03-13 1994-03-22 Pfizer Inc. Rhombohedral calcium carbonate and accelerated heat-aging process for the production thereof
EP0703193A2 (en) * 1990-03-13 1996-03-27 Minerals Technologies Inc. Rhombohedral calcium carbonate
US5798173A (en) * 1994-03-04 1998-08-25 Mitsubishi Paper Mills Limited Ink jet recording sheet
US6270626B1 (en) * 1998-04-27 2001-08-07 Rhodia Chimie Paper making retention system of bentonite and a cationic galactomannan
EP1099795A1 (en) * 1999-06-24 2001-05-16 Akzo Nobel N.V. Sizing emulsion
WO2002049765A2 (en) * 2000-12-20 2002-06-27 Coatex S.A.S. Grinding and/or dispersing aid of mineral materials in aqueous suspension, suspensions and uses thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9725599B2 (en) 2007-12-12 2017-08-08 Omya International Ag Surface-mineralized organic fibers
WO2011131843A1 (en) 2010-04-22 2011-10-27 Nordkalk Oy Ab The use of acidic water in the manufacture of paper
US8906201B2 (en) 2010-04-22 2014-12-09 Nordkalk Oy Ab Use of acidic water in the manufacture of paper
WO2015006272A1 (en) * 2013-07-10 2015-01-15 Ecolab Usa Inc. Enhancement of sheet dewatering using soy flour or soy protein

Also Published As

Publication number Publication date
EP1586704A1 (en) 2005-10-19
EP1756363A1 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
AU601111B2 (en) Precipitated calcium carbonate-cationic starch binder as retention aid system for paper making
RU2445416C2 (en) Composition of filler
CA2870656C (en) Charge controlled phch
US11193241B2 (en) Method of producing a filler
SE461860B (en) PROCEDURES FOR PREPARING PAPER AND COATED PAPER WHICH BASED PAPER CONTAINS PRECIPATED CALCIUM CARBONATE
US5676746A (en) Agglomerates for use in making cellulosic products
AU710308B2 (en) Acid tolerant calcium carbonate composition and uses therefor
JP3582659B2 (en) Treatment of inorganic pigments with carboxymethylcellulose compounds
US5653795A (en) Bulking and opacifying fillers for cellulosic products
CA2814025A1 (en) Process for manufacturing paper and board
US20080053337A1 (en) Precipitated calcium carbonate from kraft pulp lime mud for use in filled and coated paper
US20070181275A1 (en) Use of calcuim carbonate particles in papermaking
EP1756363A1 (en) Use of calcium carbonate particles in papermaking
US7413601B2 (en) Kaolin products and their use
US8906201B2 (en) Use of acidic water in the manufacture of paper
Shen et al. Modification of precipitated calcium carbonate filler using sodium silicate/zinc chloride based modifiers to improve acid-resistance and use of the modified filler in papermaking
Kuusisto et al. The effect of carbonation conditions on the properties of carbohydrate-calcium carbonate hybrid pigments
Lee et al. Crystallization of precipitated calcium carbonate with anionic polyacrylamide and its application to papermaking
CA1334560C (en) Precipitated calcium carbonate-cationic starch binder as retention aid system for paper making
WO1996032449A9 (en) Bulking and opacifying fillers for cellulosic products
WO1996032449A1 (en) Bulking and opacifying fillers for cellulosic products
Gerli et al. Ondeo Nalco Pacific Ltd, The Strategy Tower 2, 2 International Business Park, Singapore

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005733443

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005733443

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11578290

Country of ref document: US

Ref document number: 2007181275

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11578290

Country of ref document: US