WO2005092416A1 - Self-contained micromechanical ventilator - Google Patents

Self-contained micromechanical ventilator Download PDF

Info

Publication number
WO2005092416A1
WO2005092416A1 PCT/US2004/005717 US2004005717W WO2005092416A1 WO 2005092416 A1 WO2005092416 A1 WO 2005092416A1 US 2004005717 W US2004005717 W US 2004005717W WO 2005092416 A1 WO2005092416 A1 WO 2005092416A1
Authority
WO
WIPO (PCT)
Prior art keywords
subsystem
air
head compressor
constructed
patient
Prior art date
Application number
PCT/US2004/005717
Other languages
French (fr)
Inventor
Loland Alex Pranger
William P. Wiesmann
Adrian R. Urias
Original Assignee
Sekos, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekos, Inc. filed Critical Sekos, Inc.
Priority to PCT/US2004/005717 priority Critical patent/WO2005092416A1/en
Priority to JP2007500732A priority patent/JP2007525273A/en
Priority to EP04715084A priority patent/EP1718355A1/en
Priority to CA002556695A priority patent/CA2556695A1/en
Priority to AU2004317545A priority patent/AU2004317545A1/en
Publication of WO2005092416A1 publication Critical patent/WO2005092416A1/en
Priority to IL177607A priority patent/IL177607A0/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M16/0009Accessories therefor, e.g. sensors, vibrators, negative pressure with sub-atmospheric pressure, e.g. during expiration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/208Non-controlled one-way valves, e.g. exhalation, check, pop-off non-rebreathing valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0063Compressors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/105Filters
    • A61M16/106Filters in a path
    • A61M16/107Filters in a path in the inspiratory path
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/43Composition of exhalation
    • A61M2230/432Composition of exhalation partial CO2 pressure (P-CO2)

Definitions

  • the disposable breathing circuit allows the ventilator to be utilized by multiple patients without risk of contamination.
  • This device utilizes canistered oxygen sources.
  • This device also would be rendered inoperable under the conditions anticipated by the present invention. Therefore, there is a need for portable ventilators that overcome the disadvantages of the existing stationary ventilators.
  • the following porta-ble ventilators address some of the needs discussed above.
  • U.S. Patents 6,152,135, 5, 881,722- and 5,868,133 to DeVries, et al. discloses a portable ventilator device that utilizes ambient air through a filter and a compressor system. The compressor operates continuously to provide air only during inspiration.
  • the DeVries, et al . devices are utilized in hospital settings and are intended to provide a patient with mobility when using the ventilator.
  • SUMMARY OF THE INVENTION It is therefore an objective of this invention to provide a portable ventilator that provides short-term ventilatory support. It is another objective of the present invention to provide a portable ventilator that in-cludes a pneumatic subsystem, a power subsystem and a sensor subsystem. It is another objective of the paresent invention to provide a portable ventilator wherein the pneumatic subsystem includes two dual head compressor for increased air output. It is another objective of the piresent invention to provide a portable ventilator wherein the pneumatic subsystem includes an accumulator. It is another objective of the present invention to provide a portable ventilator that is a disposable one- use device having an indefinite shelf ]_ife.
  • the power subsystem also includes a power conditioning circuit to eliminate fluctuating voltages to the control subsystem.
  • the control subsystem includes a timing circuit and a relay switch to control the on-off cycle of the dual-head and single head compressors.
  • the alarm subsystem is capable of visually indicating repairable, non-repairable and patient based problems as well as an audible alarm.
  • a portable ventilator that is a disposable one-use device or a refurbished device having an indefinite shelf life .
  • Figure 1 is a schematic of the portable ventilator, the pneumatic subsystem, the power subsystem and the sensor subsystem.
  • Figure 2 is a schematic of the pneumatic subsystem shown in figure 1.
  • Figure 3 is a schematic of the power subsystem shown in figure 1.
  • Figure 4 is a schematic of the sensor subsystem shown in igure 1.
  • Figure 5 is a drawing of the portable ventilator shown in igure 1.
  • Figure 6 is a schematic of the portable ventilator, the pneumatic subsystem, the power subsystem, the control subsystem and the alarm subsystem.
  • Figure 6a is a drawing of the portable ventilator shown in figure 6.
  • Figure 7 is a schematic of the pneumatic subsystem shown in figure 6.
  • Figure 8 is a schematic of the power subsystem shown in figure 6.
  • Figure 9 is a schematic of the control subsystem shown in figure 6.
  • Figure 9a is a graph of the dual head compressor on-off cycle .
  • Figure 9b is a graph of resistors and capacitor charging and discharging timing cycle.
  • Figure 9c is a graph of the output of the timing circuit.
  • Figure 9d is a graph of the higher power on-off c ⁇ ycle from the relay switch to the dual head compressor.
  • Figure 9e is a graph of the higher power on-off c ⁇ cle from the relay switch to the single head compressor.
  • Figure 10 is a schematic of the alarm subsystem shown in figure 6.
  • the present invention is a portable ventilator that provides short-term ventilatory support to one or more patients for the management of trauma or respiratory paralysis.
  • the portable ventilator V assures consistent tidal volume and respiratory irate and provides hands free operational capabilities .
  • the portable ventilator V is a fully functional multi-mode device suited for field hospital or forward surgrlcal units, where experienced personnel can utilize the multi- mode capabilities unique to this device.
  • Portable ventilator V is also suitable for use by untrad-ned personnel, and in particularly useful in resource-li d-ted environments. Additionally, the portable ventilator V can be configured as a disposable one-use device that has an indefinite shelf life.
  • the portable ventilator V of the present invention includes a pneumatic subsystem N, a power subsystem P, and a sensor subsystem S. Each of these systems shall be described below.
  • the pneumatic subsystem N includes two dual head air compressors la and lb for increased air output. Ambient or NVC filtered air is drawn into the dual head compressors la and lb and compressed. The compressed air exits la and lb and enters into the accumulator tank 2.
  • An accumulator tank 2 is connected to each of the compressors la and lb to act as a pneumatic holding area for the combined outputs (4 in total) of compressors la and lb.
  • the accumulator tank 2 overcomes the inconsistent nature of the phasing of the pressure waves inherent with dual head air compressors and prevents compressors la and lb outputs from canceling each other.
  • the accumulator tank 2 is further connected to a connector system 3.
  • the connector system 3 provides constant, total airflow through the accumulator 2 to the user, for a necessary period of time.
  • the periods of time are controlled through a timing circuit T that is part of a logic board B.
  • the logic board includes timing circuit T and is connected to the power subsystem P.
  • Logic board B controls power to compressors la and lb in order to turn la and lb on and off. Duration of the on-time of compressors la and lb determines the amount of air that is delivered to the user.
  • the logic board B utilizes analog logic and does not require microprocessor control.
  • the logic board B is also connected to the sensor subsystem S.
  • the portable ventilator V includes a sensor subsystem S that provides critical care monitoring and support critically ill patients in the emergency situations.
  • the sensor subsystem S includes an airflow sensor 4 that detects loss of connection of the portable ventilator V from the patient's face mask or endotracheal tube.
  • the sensor subsystem S also includes an airway pressure sensor 5.
  • the pressure sensor 5 provides the desirable function of detecting the end of a previous breath (inhaled) in the user, so that air delivery can be delayed until the completion of the previous breath.
  • An airflow sensor 6 is used to detect the cessation of exhalation of the previous breath if the scheduled start time for the next breath is not completed.
  • the sensor subsystem S may be located within the ventilator V or be exterior to ventilator V.
  • the power subsystem P of the portable ventilator V include disposable or rechargeable batteries 7 that are capable of operating under high capacity, wide temperature ranges and are compatible with the pneumatic subsystem N and the sensor subsystem S.
  • the portable ventilator V of the present invention utilizes conventional lead-acid rechargeable batteries 7.
  • the batteries 7 must provide at least 30 to 60 minutes of operating time.
  • the portable ventilator As shown in figure 5, the pneumatic subsystem N is connected to the sensor subsystem S and the power subsystem P and enclosed within housing 8 of the portable ventilator V.
  • Housing 8 includes an rigid frame structure
  • Portable ventilator V includes an input port 8b that allows rechargeable batteries 7 to be powered using an external power source or an AC power source. Alternatively, batteries 7 may include disposable type batteries . Housing 8 also a recessed control panel 8c. Control panel 8c includes ports for providing air to the user through known means. The panel 8c also includes a switch for selecting desired air flow rates, an on/off switch, and can include a switch for recharging the batteries 7. The control panel 8c is recessed to prevent damage to any instrumentation positioned thereon.
  • the portable ventilator V of the present invention implements controlled ventilation and assists control ventilation to a patient. Example 1 below shows functionality and performance of two portable ventilators V described above.
  • Example 1 The Sekos 2 and 3 ventilators were tested. All tidal volumes, respiratory rates and other parameters were within +10% of the settings existing on the ventilator V.
  • the portable ventilators tested above have been shown to be superior in performance to traditional "ambu- bags". These and other portable ventilators having the features discussed above are within the scope of this invention.
  • the present invention includes a preferred embodiment as shown in figure 6.
  • the portable ventilator V 2 as shown in figure 6, includes a pneumatic subsystem 2 , a power subsystem P 2 , a control subsystem C2 and an alarm subsystem A 2 .
  • the portable ventilator V 2 as shown in figure 6 (a) includes a hard shell housing 100 having an exterior surface 100a and an interior surface 100b.
  • the pneumatic subsystem N ⁇ As shown in figure 7, the pneumatic subsystem N 2 includes at least one dual head air compressor 101 for increased air output and a single head compressor 102 for closing a flutter valve 103.
  • the pneumatic subsystem N 2 is responsible for the inhalation and exhalation cycles of the portable ventilator V 2 .
  • ambient air a is drawn into the dual head compressor 101 through the air input port 104.
  • Ambient air a may also be passed through an NBC filter NBC to remove contaminants, before passing through air input port 104.
  • a small adapter (not shown) may be connected to the air input port 104 to allow the ventilator V 2 to operate by drawing air a from a purified source (not pictured) .
  • ambient air a is divided into two air flow paths by y-shaped medical grade tubing 105.
  • the tubing 105 may also be pre-manufactured plastic or metal.
  • tubing 105 includes all necessary fittings and attachments. Additionally, tubing 105 may be an integral part of an interior portion 100b of the hard shell housing 100, shown in figure 6a. Ambient air a enters the dual head compressor 101, from tubing 105, through dual-head compressor input ports 101a and 101b. Dual head compressor 101 compresses ambient air a. It is important to note that combination of using a dual head compressor 101 with a single head compressor 102 is critical to the portable ventilator V 2 of the preferred embodiment of this invention as disclosed in figures 6 through 10. It is also important to note that multiple single head compressors in place of the dual head compressor 101, as disclosed in the preferred embodiment of figures 6 through 10, are outside the scope of this present invention. This is because dual-head compressors provide for increased efficiency and smaller size. This factor is essential to the proper design and function of the portable ventilator V 2 .
  • Dual Head Compressor weight - 14.2 oz, size - 28.9 cubic inches .
  • Dual-head compressors draw in outside air and increase pressure within, to allow for the proper tidal volumes to be pushed through a small amount of space.
  • PV gas law
  • (P) pressure
  • (V) volume
  • (n) number of molecules
  • (R) gas law constant
  • (T) temperature
  • the values nRT must remain constant when dual head compressor 101 is operational.
  • obtaining particular volumes (V) of air from the environment into a small, fixed volume of the ventilator V 2 requires that the pressure (P) of the air a must be increased to keep nRT the same.
  • Air manifold 106 is manufactured from plastic or metal. Air manifold 106 may also be an integral part of the interior portion 100b. As is understood by one of ordinary skill in the art, air manifold 106 includes all necessary fittings and attachments.
  • a pressure sensor 107 is connected to the air manifold 106 to monitor the pressure of air a delivered to the patient H.
  • the pressure sensor 107 gauges the air pressure of compressed air a within air manifold 106.
  • air a exceeds a known threshold, the dual head compressor 101 is stopped and the single head compressor 102 is started, and air is no longer delivered to the patient H, as discussed below.
  • the air manifold 106 is also connected to the flutter valve 103.
  • Flutter valve 103 allows compressed air a to enter through input port 103a and be delivered to the patient H through bi-directional port 103b. When compressed air a is being delivered to the patient H through bidirectional port 103b, exhale port 103c remains closed.
  • exhale port 103 ⁇ is open to allow exhaled air to be removed from the portable ventilator V 2 .
  • the exhalation cycle is described below.
  • Compressed air a that is delivered to the patient H, passes through medical grade tubing 108, flutter valve 103 and further through medical grade tubing 109 that is connected to the patient H through valve port 110.
  • tubing 108 is integral to air manifold 106, and is shown in figure 7 as a separate element for descriptive purposes. Medical grade tubings 108 and 109 may also be pre-manufactured plastic or metal.
  • tubings 108 and 109 include all necessary fittings and attachments .
  • Tubings 108 and 109 may be integral to interior portion 100b.
  • a standard medical grade, patient endotracheal tube (not shown) or tubing to a respiratory mask (not shown) is connected between the portable ventilator V 2 and the patient H at patient valve port 110.
  • exhaled air a e is returned from the patient H through the patient valve port 110, tubing 109 and the bi-directional port 103b.
  • the single head compressor 102 causes flutter valve 103 to close input port 103a, thereby directing the exhaled air a e into exhaust port 103c.
  • Exhaled air a e passes from exhaust port 103c into medical grade tubing 111.
  • Tubing 111 may be premanufactured plastic or metal and may be integral to interior portion 100b. As is understood by one of ordinary skill in the art, tubing 111 includes all necessary fittings and attachments.
  • Tubing 111 includes a t-junction Ilia that directs the exhaled air a e into a second pressure sensor 112. Second pressure sensor 112 verifies whether patient H is exhaling.
  • t-junction Ilia and pressure sensor 112 can be replaced with an in-line flow sensor (not shown) .
  • the exhaled air a e is directed to a patient exhale port 115, positioned on the ventilator housing 100.
  • the exhaled air a e Prior to reaching the exhale port 115, the exhaled air a e is directed through an in-line capnography chamber 113.
  • the capnography chamber 113 is used to detect the presence of exhaled C0 2 in exhaled air a e .
  • the exhaled air a e travels from the capnography chamber 113 through medical grade tubing 114.
  • Tubing 114 may be premanufactured plastic or metal and may be integral to interior portion 100b. As is understood by one of ordinary skill in the art, tubing 114 includes all necessary fittings and attachments.
  • An additional colorimetric or chemical capnography sensor CS may be connected externally to portable ventilator V 2 at exhale port 115, to further monitor ventilation efficiency.
  • the single head compressor 102 is connected to the flutter valve 103 and the air manifold 106 through medical grade tubing 116. It is important to note that tubing 116 is integral to air manifold 106, and is shown in figure 7 as a separate element for descriptive purposes . Tubing 116 may be premanufactured plastic or metal and may be integral to interior portion 100b. As is understood by one of ordinary skill in the art, tubing 116 includes all necessary fittings and attachments.
  • the single head compressor 102 operates only when the dual-head compressor 101 is not running. The single-head compressor 102 is used in this manner to ensure that the flutter valve input port 103a remains fully closed and the exhaust port 103c to be fully open in the exhalation cycle.
  • This alternating operation of the dual head compressor 101 and the single head compressor 102 allows for dead volumes of air located in air manifold 106 to be evacuated through tubing 116, medical grade tubing 117 and exhaust port 118, between the inhalation cycles.
  • Tubing 117 may be premanufactured plastic or metal and may be integral to interior portion 100b. As is understood by one of ordinary skill in the art, tubing 117 includes all necessary fittings and attachments.
  • the single head compressor 102 functions to mechanically close flutter valve 103. This mechanism is preferred over electronically controlled valves, as they lead to pressure losses. This mechanism is preferred over other venting systems and pressure relief valves to reduce loss of inspiration air and pressure gradients.
  • the single head compressor 102 forcibly pulls air a out of air manifold 106, thereby allowing for the next inhalation cycle to begin unimpeded by dead air within air manifold 106.
  • the single head compressor 102 provides a brief instance of negative pressure during the closure of input port 103a that assists the patient H to exhale.
  • the operation of this dual head compressor 101 and the single head compressor 102 precludes the use of the accumulator 2, as discussed in the embodiments of figure 1, above.
  • single head compressor 102, tubing 117 and exhaust port 118 can be used to relieve pressure and/or heat buildup within the portable ventilator V 2 .
  • Exhaust port 118 also protects the portable ventilator V 2 from contamination in extreme environmental hazards, as well as contamination from water, dust, mud, etc. It is important to note that the exhaust port 118 is positioned away from exhaust port 115 so as not to alter capnography measurements obtained from capnography sensors 113 and CS .
  • the power subsystem P ⁇ The power subsystem P 2 , as shown in figure 8, is discussed below.
  • the power subsystem P 2 provides power to the portable ventilator V 2 .
  • the power subsystem P 2 includes a battery source 201 and a power jack 202 that accepts an external power source EP.
  • a 12-14 volt rechargeable battery is preferred as the battery source 201.
  • replaceable batteries may also be utilized.
  • Power jack 202 is connected to electronic circuit 203 that is further connected to the battery source 201.
  • the electronic circuit 203 accepts power from the external power source EP through the power jack 202 to regulate voltage necessary to recharge battery source 201 and/or bypass battery source 201.
  • the by-pass from the electronic circuit 203 allows the portable ventilator V to operate if battery 201 is missing, inoperational or recharging.
  • Power is directed from either the battery 201 or the electronic circuit 203 into a power switch 204.
  • the power is turned on, it is directed from the power switch 204 to a voltage regulator circuit 205 that provides power for the subsystems within the ventilator V 2 .
  • the power subsystem P2 utilizes the voltage regulator circuit 205 to eliminate fluctuating voltages to the control subsystem C 2 .
  • a second voltage regulator circuit 206 is utilized. Additionally, the power subsystem P 2 provides driving voltage through the control subsystem C 2 to the dual head compressor 101 and the single head compressor 102 of the pneumatic subsystem N 2 .
  • the control subsystem C 2 As discussed under the pneumatic subsystem N 2 above, the on-off cycle between dual head compressor 101 and single head compressor 102 is critical to the operation of the preferred embodiment as shown in figure 6. As shown in figure 9, the control subsystem C includes a timing circuit 401 that is used to control a mechanical relay switch 402 that in turn determines the on/off cycle between dual head compressor 101 and the single head compressor 102.
  • the relay is configured as an electronically controlled single-pole double-throw switch 402.
  • timing circuit 401 is a "555" circuit.
  • the relay switch 402 is in turn connected to the single head compressor 102 of the pneumatic subsystem N 2 through a relay switch bar 402a and a first connector position 402b.
  • Relay switch 402 and relay switch bar 402a are preferably mechanical.
  • the relay switch 402 is also connected to the dual head compressor 101 through the switch bar 402a and second connector position 402 ⁇ .
  • the timing circuit 401 is connected to a relay control 402d, that is used to move the relay switch bar 402a between first connector position 402b and second connector position 402c, based upon a breath-timing cycle generated by the timing circuit. The breath-timing cycle is discussed below.
  • the timing circuit 401 is also connected to a capacitor 403, a first resistor 404 and a second resistor 405. Second resistor 405 is in turn connected to the power subsystem P 2 .
  • the connection between the power subsystem P 2 and the pneumatic subsystem N 2 is not shown in figure 9.
  • the breath-timing cycle is defined by the respiratory rate and the tidal volume, the values for which have been selected in accordance with American Medical Association guidelines.
  • t_ represents the desired on time of compressor 101, correlating to the inhalation time
  • t 2 represents the desired off time of compressor 101, correlating to the exhalation time.
  • the sum of the inhalation and exhalation times (ti + i ⁇ ) is one complete breath-timing cycle.
  • the respiratory rate is the number of complete breath-timing cycles per minute.
  • the tidal volume is determined by the amount of air delivered during the inspiration phase in one breath-timing cycle. Tidal volume is the product of the flow rate of the compressor 101 by the on time i of compressor 101. Therefore:
  • i and t 2 are thus determined by using the AMA' s respiratory rate and tidal volume guidelines, as well as the flow rate of compressor 101.
  • Diode 406 is used to allow the possibility that i less than t 2 .
  • the capacitor 403, first resistor 404 and second resistor 405 form a charging and discharging timing circuit.
  • the charge cycle duration is selected to be equal to the desired inhalation time ti.
  • the discharge timing cycle is selected to be equal to the determined exhalation time t 2 .
  • timing circuit 401 is utilized to establish a clear demarcation of on and off states, as shown in figure 9c, triggered by the output of the charging and discharging circuit. It is important to note that timing circuit 401 is not powerful enough to operate compressors 101 and 102 directly. Therefore, the relay 402 is used where the output of timing circuit 401, as shown in figure 9c, is the control input to the relay 402.
  • a resistor 407 is used to prevent an electrical short, when the output of timing circuit 401 is on.
  • the output of the charging and discharging circuit from timing circuit 401 controls the relay 402 such that the on-cycle of circuit 401 causes the relay 402 to create a pathway to deliver a high power on-cycle to dual head compressor 101.
  • the off-cycle of timing circuit 401 causes the relay 402 to create a pathway to single head compressor 102.
  • the alarm subsystem A 2 includes a light alarm suppression switch 501 connected to a repairable LED indicator 502, a non-repairable LED indicator 503 and a patient problem LED indicator 504.
  • the LED indicators 502, 503 and 504 are configured to indicate repairable problems, non-repairable problems, and patient based problems, respectively, within the portable ventilator V 2 .
  • the LED indicators 502, 503 and 504 are positioned on the outer surface 100a of hard shell 100 of portable ventilator V 2 .
  • the alarm suppression switch 501 is accessible to the user U and used to disengage LED alarms 502, 503 and 504 when necessary.
  • An audible alarm suppression switch 505 connected to an audible alarm switch 506.
  • the audible alarm switch 506 is positioned on the outer surface 100a of hard shell 100.
  • the audible alarm suppression switch 505 is accessible to the user U and used to disengage audible alarm 506 when necessary.
  • a low voltage detect circuit 507 is connected to the battery 201 and the power switch 205 of the power subsystem P 2 to indicate when voltage is too low.
  • Low voltage detect circuit 507 is also connected to the light alarm suppression switch 501 and repairable LED indicator 502 to denote a repairable problem to the user U.
  • the low voltage detect circuit 507 is also connected to the audible alarm suppression switch 505 and the audible alarm to indicate a sound-based alarm to the user U.
  • a missing pulse/device/component failure detect circuit 508 is connected to the control subsystem C 2 .
  • the missing pulse/device/component failure detect circuit 508 is also is also connected to the light alarm suppression switch 501 and non-repairable LED indicator 503 to denote a non-repairable problem to the user U, ie portable ventilator V 2 must be replaced.
  • the missing pulse/device/component failure detect circuit 508 is also connected to the audible alarm suppression switch 505 and the audible alarm to indicate a sound-based alarm to the user U.
  • Carbon dioxide detect circuit 509 is connected to a carbon dioxide event counter 510 and a carbon dioxide event trigger 511.
  • the circuit 509, counter 510 and trigger 511 is connected to the capnography sensor 113 of the pneumatic subsystem N 2 to indicate insignificant carbon dioxide concentrations in exhaled air a e .
  • the carbon dioxide event trigger 511 is further connected to the light alarm suppression switch 501 and patient problem LED indicator 502 to denote a improper connection or patient distress to the user U.
  • the circuit 509, counter 510 and trigger 511 are also connected to the audible alarm suppression switch 505 and the audible alarm to indicate a sound-based alarm to the user U.
  • An exhale airflow detect circuit 512 is connected to an exhale event counter 513 and an exhale event trigger 514.
  • the exhale circuit 512, event counter 513 and event trigger 514 is connected to the pressure sensor 112 of the pneumatic subsystem N 2 .
  • the exhale event trigger 514 is further connected to the light alarm suppression switch 501 and patient problem LED indicator 502 to denote a improper connection or patient distress to the user U.
  • the exhale circuit 512, event counter 513 and event trigger 514 are also connected to the audible alarm suppression switch 505 and the audible alarm to indicate a sound-based alarm to the user U.
  • An inspiration pressure detect circuit 515 is connected to an inspiration event counter 516 and inspiration event trigger 517 to generate an alarm response when the ambient air, a, pressure is too high or too low.
  • the inspiration circuit 515 is connected to the pressure sensor 107 of the pneumatic subsystem N 2 .
  • the inspiration event trigger 517 is further connected to the light alarm suppression switch 501 and patient problem LED indicator 502 to denote a improper connection or patient distress to the user U.
  • inspiration pressure detect circuit 515, inspiration event counter 516 and inspiration event trigger 517 are also connected to the audible alarm suppression switch 505 and the audible alarm to indicate a sound-based alarm to the user U.
  • This inspiration pressure detect circuit 51_5 can also cause the relay control switch 402d to immediately switch from operating the dual head compressor 101 to operating the single head compressor 102 when a preset pressure threshold is exceeded, to prevent harm to patient H.

Abstract

The portable ventilator (v) of the present invention provide a hands-free ventilatory support device in critical care, emergency and resource limited environments. The portable ventilator (v) utilizes ambient air and includes a two dual head compressor system to provide a consistent air supply to the patient. The ventilator device is battery operated and is capable of providing up to 60 minutes of care. In a preferred embodiment, the portable ventilator (v) of the present invention also includes a pneumatic subsystem (n), a control subsystem (c2), a power subsystem (p) and an alarm subsystem (A2). The portable ventilator (v) of the preferred embodiment includes a dual head and single head compressor system (101, 102) that operates alternatively, to provide a consistent and continuous inhalation and exhalation cycle.

Description

SELF-CONTAINED MICRO ECHANICAL VENTILATOR
This application is a continuation-in-part of
10 /228 , 166 , filed August 26 , 2002 .
BACKGROUND OF THE INVENTION Immediate medical care can save the lives of countless accident victims and military personnel. In the emergency medical services arena, there has long been an emphasis on the golden hour during which a patient must receive definitive medical attention. However, definitive medical attention is often limited, because of the lack of necessary equipment. While state of the art medical equipment can be found in medical facilities, such is not the case in emergency situations or military applications. This is particularly true in the area of ventilators . Inspiration-only ventilators are known and widely used in hospital settings as they provide useful breathing circuits while minimizing the amount of oxygen utilized in treating the patient. Current ventilators are generally designed for stationary, medical facilities. They are heavy, cumbersome and ill suited for portable applications. Most ventilators utilize medical grade air or highly flammable, compressed canisters of oxygen for its oxygen sources. These tanks air/oxygen are heavy, cumbersome, and unsuitable for transport. Prior-art ventilators also require large power sources, making them even less suitable for quick, on-site use. Lastly, most known ventilators require operation by trained personnel in treatment environments, where additional equipment and resources are easily available. For example, U.S. Patent 5,664,563 to Schroeder, et al . , disclose a computer- controlled pneumatic ventilator system that includes a. double venturi drive and a disposable breathing ciαrcuit. The double venturi drive provides quicker completion of the exhalation phase leading to an overall improved breathing circuit. The disposable breathing circuit allows the ventilator to be utilized by multiple patients without risk of contamination. This device utilizes canistered oxygen sources. This device also would be rendered inoperable under the conditions anticipated by the present invention. Therefore, there is a need for portable ventilators that overcome the disadvantages of the existing stationary ventilators. The following porta-ble ventilators address some of the needs discussed above. U.S. Patents 6,152,135, 5, 881,722- and 5,868,133 to DeVries, et al., discloses a portable ventilator device that utilizes ambient air through a filter and a compressor system. The compressor operates continuously to provide air only during inspiration. The DeVries, et al . , devices are utilized in hospital settings and are intended to provide a patient with mobility when using the ventilator. Since these devices are not directed to on-site emergency use, they provide closed loop control, sophisticated valve systems and circuitry that would render them inoperable under the types of emergency conditions anticipated by the present invention. The references cited above recognize the need for portable ventilators that provide a consistent breathing circuit. As is the case with most portable ventilators, these devices provide breathing circuits including valve systems and an oxygen source. However, these devices lack the means by which they can be quickly facilitated in emergency situations where there are no stationary sources of power. Secondly, most of these devices depend on canister-style oxygen sources, which are cumbersome, and lessen the ability of the ventilators to be truly portable. Thirdly, the prior art ventilators do not provide breathing circuits that can be continuously used in the absence of stationary power sources . These and other drawbacks are overcome by the present invention as will be discussed, below. SUMMARY OF THE INVENTION It is therefore an objective of this invention to provide a portable ventilator that provides short-term ventilatory support. It is another objective of the present invention to provide a portable ventilator that in-cludes a pneumatic subsystem, a power subsystem and a sensor subsystem. It is another objective of the paresent invention to provide a portable ventilator wherein the pneumatic subsystem includes two dual head compressor for increased air output. It is another objective of the piresent invention to provide a portable ventilator wherein the pneumatic subsystem includes an accumulator. It is another objective of the present invention to provide a portable ventilator that is a disposable one- use device having an indefinite shelf ]_ife. It is also another objective of the present invention to provide a portable ventilator that includes a pneumatic subsystem, a power subsystem, a control subsystem and an alarm subsystem. It is another objective of the present invention to provide a portable ventilator wherein the pneumatic subsystem includes one dual head compressor forr increased air output and a means for relieving air manifold pressure with a single head compressor, thereby eliminating the need for an accumulator. It is another objective of the present invention to provide a portable ventilator wherein the power subsystem includes a battery source and a jack that allows the ventilator to access an external power source, where the battery or the external power source is used to power the pneumatic, control and alarm subsystems. It is another objective of the present invention to provide a portable ventilator wherein the power subsystem also includes a power conditioning circuit to eliminate fluctuating voltages to the control subsystem. It is also another objective of the present invention to provide a portable ventilator wherein the control subsystem includes a timing circuit and a relay switch to control the on-off cycle of the dual-head and single head compressors. It is also another objective of the present invention to provide a portable ventilator wherein the alarm subsystem is capable of visually indicating repairable, non-repairable and patient based problems as well as an audible alarm. It is another objective of the present invention to provide a portable ventilator that is a disposable one-use device or a refurbished device having an indefinite shelf life . These and other objectives have been described in the detailed description provided below. DESCRIPTION OF THE DRAWINGS
Figure 1 is a schematic of the portable ventilator, the pneumatic subsystem, the power subsystem and the sensor subsystem.
Figure 2 is a schematic of the pneumatic subsystem shown in figure 1.
Figure 3 is a schematic of the power subsystem shown in figure 1. Figure 4 is a schematic of the sensor subsystem shown in igure 1.
Figure 5 is a drawing of the portable ventilator shown in igure 1.
Figure 6 is a schematic of the portable ventilator, the pneumatic subsystem, the power subsystem, the control subsystem and the alarm subsystem.
Figure 6a is a drawing of the portable ventilator shown in figure 6.
Figure 7 is a schematic of the pneumatic subsystem shown in figure 6.
Figure 8 is a schematic of the power subsystem shown in figure 6.
Figure 9 is a schematic of the control subsystem shown in figure 6. Figure 9a is a graph of the dual head compressor on-off cycle . Figure 9b is a graph of resistors and capacitor charging and discharging timing cycle.
Figure 9c is a graph of the output of the timing circuit. Figure 9d is a graph of the higher power on-off c^ycle from the relay switch to the dual head compressor.
Figure 9e is a graph of the higher power on-off c^cle from the relay switch to the single head compressor. Figure 10 is a schematic of the alarm subsystem shown in figure 6.
DETAILED DESCRIPTION OF THE EMBODIMENTS The present invention is a portable ventilator that provides short-term ventilatory support to one or more patients for the management of trauma or respiratory paralysis. As shown in figure 1, the portable ventilator V assures consistent tidal volume and respiratory irate and provides hands free operational capabilities . The portable ventilator V is a fully functional multi-mode device suited for field hospital or forward surgrlcal units, where experienced personnel can utilize the multi- mode capabilities unique to this device. Portable ventilator V is also suitable for use by untrad-ned personnel, and in particularly useful in resource-li d-ted environments. Additionally, the portable ventilator V can be configured as a disposable one-use device that has an indefinite shelf life. Also in figure 1, the portable ventilator V of the present invention includes a pneumatic subsystem N, a power subsystem P, and a sensor subsystem S. Each of these systems shall be described below.
The pneumatic subsystem: As shown in figure 2, the pneumatic subsystem N includes two dual head air compressors la and lb for increased air output. Ambient or NVC filtered air is drawn into the dual head compressors la and lb and compressed. The compressed air exits la and lb and enters into the accumulator tank 2. An accumulator tank 2 is connected to each of the compressors la and lb to act as a pneumatic holding area for the combined outputs (4 in total) of compressors la and lb. The accumulator tank 2 overcomes the inconsistent nature of the phasing of the pressure waves inherent with dual head air compressors and prevents compressors la and lb outputs from canceling each other. The accumulator tank 2 is further connected to a connector system 3. Since the compressors la and lb function as constant-flow rates over a wide range of physiologic pressures, the connector system 3 provides constant, total airflow through the accumulator 2 to the user, for a necessary period of time. The periods of time are controlled through a timing circuit T that is part of a logic board B. The logic board: The logic board B includes timing circuit T and is connected to the power subsystem P. Logic board B controls power to compressors la and lb in order to turn la and lb on and off. Duration of the on-time of compressors la and lb determines the amount of air that is delivered to the user. The logic board B utilizes analog logic and does not require microprocessor control. The logic board B is also connected to the sensor subsystem S.
The sensor subsystem: As shown in figure 3, the portable ventilator V includes a sensor subsystem S that provides critical care monitoring and support critically ill patients in the emergency situations. The sensor subsystem S includes an airflow sensor 4 that detects loss of connection of the portable ventilator V from the patient's face mask or endotracheal tube. The sensor subsystem S also includes an airway pressure sensor 5. The pressure sensor 5 provides the desirable function of detecting the end of a previous breath (inhaled) in the user, so that air delivery can be delayed until the completion of the previous breath. An airflow sensor 6 is used to detect the cessation of exhalation of the previous breath if the scheduled start time for the next breath is not completed. The sensor subsystem S may be located within the ventilator V or be exterior to ventilator V.
The power subsystem: As shown in figure 4, the power subsystem P of the portable ventilator V include disposable or rechargeable batteries 7 that are capable of operating under high capacity, wide temperature ranges and are compatible with the pneumatic subsystem N and the sensor subsystem S. In a preferred embodiment, the portable ventilator V of the present invention utilizes conventional lead-acid rechargeable batteries 7. The batteries 7 must provide at least 30 to 60 minutes of operating time.
The portable ventilator: As shown in figure 5, the pneumatic subsystem N is connected to the sensor subsystem S and the power subsystem P and enclosed within housing 8 of the portable ventilator V. Housing 8 includes an rigid frame structure
8a that is made of either plastic or metals and capable of withstanding physical and mechanical pressures.
Portable ventilator V includes an input port 8b that allows rechargeable batteries 7 to be powered using an external power source or an AC power source. Alternatively, batteries 7 may include disposable type batteries . Housing 8 also a recessed control panel 8c. Control panel 8c includes ports for providing air to the user through known means. The panel 8c also includes a switch for selecting desired air flow rates, an on/off switch, and can include a switch for recharging the batteries 7. The control panel 8c is recessed to prevent damage to any instrumentation positioned thereon. The portable ventilator V of the present invention implements controlled ventilation and assists control ventilation to a patient. Example 1 below shows functionality and performance of two portable ventilators V described above.
Example 1 : The Sekos 2 and 3 ventilators were tested. All tidal volumes, respiratory rates and other parameters were within +10% of the settings existing on the ventilator V.
Figure imgf000013_0001
The portable ventilators tested above, have been shown to be superior in performance to traditional "ambu- bags". These and other portable ventilators having the features discussed above are within the scope of this invention. The present invention includes a preferred embodiment as shown in figure 6. The portable ventilator V2, as shown in figure 6, includes a pneumatic subsystem 2, a power subsystem P2, a control subsystem C2 and an alarm subsystem A2. The portable ventilator V2 as shown in figure 6 (a) includes a hard shell housing 100 having an exterior surface 100a and an interior surface 100b. The pneumatic subsystem N∑: As shown in figure 7, the pneumatic subsystem N2 includes at least one dual head air compressor 101 for increased air output and a single head compressor 102 for closing a flutter valve 103. The pneumatic subsystem N2 is responsible for the inhalation and exhalation cycles of the portable ventilator V2. During the inhalation cycle, ambient air a is drawn into the dual head compressor 101 through the air input port 104. Ambient air a may also be passed through an NBC filter NBC to remove contaminants, before passing through air input port 104. Alternatively, a small adapter (not shown) may be connected to the air input port 104 to allow the ventilator V2 to operate by drawing air a from a purified source (not pictured) . Upon entering the portable ventilator V2, ambient air a is divided into two air flow paths by y-shaped medical grade tubing 105. The tubing 105 may also be pre-manufactured plastic or metal. As is understood by one of ordinary skill in the art, tubing 105 includes all necessary fittings and attachments. Additionally, tubing 105 may be an integral part of an interior portion 100b of the hard shell housing 100, shown in figure 6a. Ambient air a enters the dual head compressor 101, from tubing 105, through dual-head compressor input ports 101a and 101b. Dual head compressor 101 compresses ambient air a. It is important to note that combination of using a dual head compressor 101 with a single head compressor 102 is critical to the portable ventilator V2 of the preferred embodiment of this invention as disclosed in figures 6 through 10. It is also important to note that multiple single head compressors in place of the dual head compressor 101, as disclosed in the preferred embodiment of figures 6 through 10, are outside the scope of this present invention. This is because dual-head compressors provide for increased efficiency and smaller size. This factor is essential to the proper design and function of the portable ventilator V2.
Example 2 : For an equivalent tidal volume output:
Dual Head Compressor: weight - 14.2 oz, size - 28.9 cubic inches .
2 Single Head Compressors: weight - 20.4 oz, size - 32.0 cubic inches .
Dual-head compressors draw in outside air and increase pressure within, to allow for the proper tidal volumes to be pushed through a small amount of space. Using the ideal gas law PV=nRT, where (P) = pressure, (V) = volume, (n) = number of molecules, (R) = gas law constant, and (T) = temperature, the values nRT must remain constant when dual head compressor 101 is operational. Thus, as necessitated by the proper operation of ventilator V2, obtaining particular volumes (V) of air from the environment into a small, fixed volume of the ventilator V2, requires that the pressure (P) of the air a must be increased to keep nRT the same. The increased pressure of air a forces the air a through the ventilator V2 into the lungs of the patient H. This is due to the tendencies of fluids, here the compressed air a, to flow from the area of greater pressure of the ventilator V2 to the area of lower pressure of the lungs of the patient H, thereby filling them. As shown in figure 7, compressed air a exits the compressor 101 through compressor output ports 101c and lOld and into the air manifold 106. Air manifold 106 is manufactured from plastic or metal. Air manifold 106 may also be an integral part of the interior portion 100b. As is understood by one of ordinary skill in the art, air manifold 106 includes all necessary fittings and attachments. A pressure sensor 107 is connected to the air manifold 106 to monitor the pressure of air a delivered to the patient H. The pressure sensor 107 gauges the air pressure of compressed air a within air manifold 106. When air a exceeds a known threshold, the dual head compressor 101 is stopped and the single head compressor 102 is started, and air is no longer delivered to the patient H, as discussed below. As shown in figure 7, the air manifold 106 is also connected to the flutter valve 103. Flutter valve 103 allows compressed air a to enter through input port 103a and be delivered to the patient H through bi-directional port 103b. When compressed air a is being delivered to the patient H through bidirectional port 103b, exhale port 103c remains closed. When the patient H exhales however, the input port 103a is closed off, and exhale port 103σ is open to allow exhaled air to be removed from the portable ventilator V2. The exhalation cycle is described below. Compressed air a, that is delivered to the patient H, passes through medical grade tubing 108, flutter valve 103 and further through medical grade tubing 109 that is connected to the patient H through valve port 110. It is important to note that tubing 108 is integral to air manifold 106, and is shown in figure 7 as a separate element for descriptive purposes. Medical grade tubings 108 and 109 may also be pre-manufactured plastic or metal. As is understood by one of ordinary skill in the art, tubings 108 and 109 include all necessary fittings and attachments . Tubings 108 and 109 may be integral to interior portion 100b. A standard medical grade, patient endotracheal tube (not shown) or tubing to a respiratory mask (not shown) is connected between the portable ventilator V2 and the patient H at patient valve port 110. During the exhalation cycle, exhaled air ae is returned from the patient H through the patient valve port 110, tubing 109 and the bi-directional port 103b. The single head compressor 102 causes flutter valve 103 to close input port 103a, thereby directing the exhaled air ae into exhaust port 103c. Exhaled air ae passes from exhaust port 103c into medical grade tubing 111. Tubing 111 may be premanufactured plastic or metal and may be integral to interior portion 100b. As is understood by one of ordinary skill in the art, tubing 111 includes all necessary fittings and attachments. Tubing 111 includes a t-junction Ilia that directs the exhaled air ae into a second pressure sensor 112. Second pressure sensor 112 verifies whether patient H is exhaling. In an alternate embodiment, t-junction Ilia and pressure sensor 112 can be replaced with an in-line flow sensor (not shown) . The exhaled air ae is directed to a patient exhale port 115, positioned on the ventilator housing 100. Prior to reaching the exhale port 115, the exhaled air ae is directed through an in-line capnography chamber 113. The capnography chamber 113 is used to detect the presence of exhaled C02 in exhaled air ae. The exhaled air ae travels from the capnography chamber 113 through medical grade tubing 114. Tubing 114 may be premanufactured plastic or metal and may be integral to interior portion 100b. As is understood by one of ordinary skill in the art, tubing 114 includes all necessary fittings and attachments. An additional colorimetric or chemical capnography sensor CS may be connected externally to portable ventilator V2 at exhale port 115, to further monitor ventilation efficiency. As shown in figure 7, the single head compressor 102, is connected to the flutter valve 103 and the air manifold 106 through medical grade tubing 116. It is important to note that tubing 116 is integral to air manifold 106, and is shown in figure 7 as a separate element for descriptive purposes . Tubing 116 may be premanufactured plastic or metal and may be integral to interior portion 100b. As is understood by one of ordinary skill in the art, tubing 116 includes all necessary fittings and attachments. The single head compressor 102 operates only when the dual-head compressor 101 is not running. The single-head compressor 102 is used in this manner to ensure that the flutter valve input port 103a remains fully closed and the exhaust port 103c to be fully open in the exhalation cycle. This alternating operation of the dual head compressor 101 and the single head compressor 102 allows for dead volumes of air located in air manifold 106 to be evacuated through tubing 116, medical grade tubing 117 and exhaust port 118, between the inhalation cycles. Tubing 117 may be premanufactured plastic or metal and may be integral to interior portion 100b. As is understood by one of ordinary skill in the art, tubing 117 includes all necessary fittings and attachments. It is important to note that the single head compressor 102 functions to mechanically close flutter valve 103. This mechanism is preferred over electronically controlled valves, as they lead to pressure losses. This mechanism is preferred over other venting systems and pressure relief valves to reduce loss of inspiration air and pressure gradients. Secondly, use of the single head compressor 102 forcibly pulls air a out of air manifold 106, thereby allowing for the next inhalation cycle to begin unimpeded by dead air within air manifold 106. Thirdly, the single head compressor 102 provides a brief instance of negative pressure during the closure of input port 103a that assists the patient H to exhale. In addition, the operation of this dual head compressor 101 and the single head compressor 102 precludes the use of the accumulator 2, as discussed in the embodiments of figure 1, above. In an alternate embodiment, single head compressor 102, tubing 117 and exhaust port 118 can be used to relieve pressure and/or heat buildup within the portable ventilator V2. Exhaust port 118 also protects the portable ventilator V2 from contamination in extreme environmental hazards, as well as contamination from water, dust, mud, etc. It is important to note that the exhaust port 118 is positioned away from exhaust port 115 so as not to alter capnography measurements obtained from capnography sensors 113 and CS .
The power subsystem P∑: The power subsystem P2, as shown in figure 8, is discussed below. The power subsystem P2 provides power to the portable ventilator V2. The power subsystem P2 includes a battery source 201 and a power jack 202 that accepts an external power source EP. A 12-14 volt rechargeable battery is preferred as the battery source 201. However, replaceable batteries may also be utilized. Power jack 202 is connected to electronic circuit 203 that is further connected to the battery source 201. The electronic circuit 203 accepts power from the external power source EP through the power jack 202 to regulate voltage necessary to recharge battery source 201 and/or bypass battery source 201. When an external power source EP is connected to the power jack 202, the by-pass from the electronic circuit 203 allows the portable ventilator V to operate if battery 201 is missing, inoperational or recharging. Power is directed from either the battery 201 or the electronic circuit 203 into a power switch 204. When the power is turned on, it is directed from the power switch 204 to a voltage regulator circuit 205 that provides power for the subsystems within the ventilator V2. The power subsystem P2 utilizes the voltage regulator circuit 205 to eliminate fluctuating voltages to the control subsystem C2. For components in the control and alarm subsystems C2 and A2, respectively, that require a lower voltage, a second voltage regulator circuit 206 is utilized. Additionally, the power subsystem P2 provides driving voltage through the control subsystem C2 to the dual head compressor 101 and the single head compressor 102 of the pneumatic subsystem N2.
The control subsystem C2: As discussed under the pneumatic subsystem N2 above, the on-off cycle between dual head compressor 101 and single head compressor 102 is critical to the operation of the preferred embodiment as shown in figure 6. As shown in figure 9, the control subsystem C includes a timing circuit 401 that is used to control a mechanical relay switch 402 that in turn determines the on/off cycle between dual head compressor 101 and the single head compressor 102. The relay is configured as an electronically controlled single-pole double-throw switch 402. In a preferred embodiment, timing circuit 401 is a "555" circuit. The relay switch 402 is in turn connected to the single head compressor 102 of the pneumatic subsystem N2 through a relay switch bar 402a and a first connector position 402b. Relay switch 402 and relay switch bar 402a are preferably mechanical. The relay switch 402 is also connected to the dual head compressor 101 through the switch bar 402a and second connector position 402σ. The timing circuit 401 is connected to a relay control 402d, that is used to move the relay switch bar 402a between first connector position 402b and second connector position 402c, based upon a breath-timing cycle generated by the timing circuit. The breath-timing cycle is discussed below. The timing circuit 401 is also connected to a capacitor 403, a first resistor 404 and a second resistor 405. Second resistor 405 is in turn connected to the power subsystem P2. The connection between the power subsystem P2 and the pneumatic subsystem N2 is not shown in figure 9. The breath-timing cycle is defined by the respiratory rate and the tidal volume, the values for which have been selected in accordance with American Medical Association guidelines. As shown in figure 9a, t_ represents the desired on time of compressor 101, correlating to the inhalation time, and t2 represents the desired off time of compressor 101, correlating to the exhalation time. The sum of the inhalation and exhalation times (ti + i ) is one complete breath-timing cycle. The respiratory rate is the number of complete breath-timing cycles per minute. The tidal volume is determined by the amount of air delivered during the inspiration phase in one breath-timing cycle. Tidal volume is the product of the flow rate of the compressor 101 by the on time i of compressor 101. Therefore:
(1) x = TV/f where TV= tidal volume, f=flow rate of compressor 101;
(2) i + t2 = 60 seconds/RR where RR=respiratory rate, the number of breaths per minute;
(3) t2 = 60/RR - i = 60/RR - TV/f.
The values for i and t2 are thus determined by using the AMA' s respiratory rate and tidal volume guidelines, as well as the flow rate of compressor 101. Diode 406 is used to allow the possibility that i less than t2. As would be understood by one of ordinary skill in the art, the capacitor 403, first resistor 404 and second resistor 405 form a charging and discharging timing circuit. In the present invention, as shown in figure 9b, the charge cycle duration is selected to be equal to the desired inhalation time ti. The discharge timing cycle is selected to be equal to the determined exhalation time t2. Thus: (4) i = .693(rχ + r2)cι and
(5) t2 = .693(r2)cι; where ri is the value of the first resistor 404, r2 is the value of the second resistor 405 and Ci is the value of the capacitor 403. Because the output of the charging and discharging circuit is indeterminate with respect to an on or off state of compressor 101, timing circuit 401 is utilized to establish a clear demarcation of on and off states, as shown in figure 9c, triggered by the output of the charging and discharging circuit. It is important to note that timing circuit 401 is not powerful enough to operate compressors 101 and 102 directly. Therefore, the relay 402 is used where the output of timing circuit 401, as shown in figure 9c, is the control input to the relay 402. A resistor 407 is used to prevent an electrical short, when the output of timing circuit 401 is on. As shown in figure 9d, the output of the charging and discharging circuit from timing circuit 401 controls the relay 402 such that the on-cycle of circuit 401 causes the relay 402 to create a pathway to deliver a high power on-cycle to dual head compressor 101. As shown in figure 9e, the off-cycle of timing circuit 401 causes the relay 402 to create a pathway to single head compressor 102. The on-cycle of compressor
101 and off cycle of compressor 102 make up the on-off cycle discussed above. It is also important to note that the timing characteristics, as shown in figures 9c and 9d, must correspond to the desired timing characteristics in figure 9a for the proper operation of portable ventilator
V2.
The alarm subsystem A2: As shown in figure 10, the alarm subsystem A2 includes a light alarm suppression switch 501 connected to a repairable LED indicator 502, a non-repairable LED indicator 503 and a patient problem LED indicator 504. The LED indicators 502, 503 and 504 are configured to indicate repairable problems, non-repairable problems, and patient based problems, respectively, within the portable ventilator V2. The LED indicators 502, 503 and 504 are positioned on the outer surface 100a of hard shell 100 of portable ventilator V2. The alarm suppression switch 501 is accessible to the user U and used to disengage LED alarms 502, 503 and 504 when necessary. An audible alarm suppression switch 505 connected to an audible alarm switch 506. The audible alarm switch 506 is positioned on the outer surface 100a of hard shell 100. The audible alarm suppression switch 505 is accessible to the user U and used to disengage audible alarm 506 when necessary. A low voltage detect circuit 507 is connected to the battery 201 and the power switch 205 of the power subsystem P2 to indicate when voltage is too low. Low voltage detect circuit 507 is also connected to the light alarm suppression switch 501 and repairable LED indicator 502 to denote a repairable problem to the user U. The low voltage detect circuit 507 is also connected to the audible alarm suppression switch 505 and the audible alarm to indicate a sound-based alarm to the user U. A missing pulse/device/component failure detect circuit 508 is connected to the control subsystem C2. The missing pulse/device/component failure detect circuit 508 is also is also connected to the light alarm suppression switch 501 and non-repairable LED indicator 503 to denote a non-repairable problem to the user U, ie portable ventilator V2 must be replaced. The missing pulse/device/component failure detect circuit 508 is also connected to the audible alarm suppression switch 505 and the audible alarm to indicate a sound-based alarm to the user U. Carbon dioxide detect circuit 509 is connected to a carbon dioxide event counter 510 and a carbon dioxide event trigger 511. The circuit 509, counter 510 and trigger 511 is connected to the capnography sensor 113 of the pneumatic subsystem N2 to indicate insignificant carbon dioxide concentrations in exhaled air ae. The carbon dioxide event trigger 511 is further connected to the light alarm suppression switch 501 and patient problem LED indicator 502 to denote a improper connection or patient distress to the user U. The circuit 509, counter 510 and trigger 511 are also connected to the audible alarm suppression switch 505 and the audible alarm to indicate a sound-based alarm to the user U. An exhale airflow detect circuit 512 is connected to an exhale event counter 513 and an exhale event trigger 514. The exhale circuit 512, event counter 513 and event trigger 514 is connected to the pressure sensor 112 of the pneumatic subsystem N2. The exhale event trigger 514 is further connected to the light alarm suppression switch 501 and patient problem LED indicator 502 to denote a improper connection or patient distress to the user U. The exhale circuit 512, event counter 513 and event trigger 514 are also connected to the audible alarm suppression switch 505 and the audible alarm to indicate a sound-based alarm to the user U. An inspiration pressure detect circuit 515 is connected to an inspiration event counter 516 and inspiration event trigger 517 to generate an alarm response when the ambient air, a, pressure is too high or too low. The inspiration circuit 515 is connected to the pressure sensor 107 of the pneumatic subsystem N2. The inspiration event trigger 517 is further connected to the light alarm suppression switch 501 and patient problem LED indicator 502 to denote a improper connection or patient distress to the user U. The inspiration pressure detect circuit 515, inspiration event counter 516 and inspiration event trigger 517 are also connected to the audible alarm suppression switch 505 and the audible alarm to indicate a sound-based alarm to the user U. This inspiration pressure detect circuit 51_5 can also cause the relay control switch 402d to immediately switch from operating the dual head compressor 101 to operating the single head compressor 102 when a preset pressure threshold is exceeded, to prevent harm to patient H. What is claimed is:

Claims

1. A portable ventilator system comprising a pneumatic subsystem, a power subsystem, a sensor subsystem and a logic board; said logic board further comprising a timing circuit and connected to each of said subsystems; said pneumatic subsystem, said power subsystem and said logic board further constructed so as to be enclosed within a housing having a recessed control panel.
2. A portable ventilator system comprising: a hard shell device housing having an interior portion and an exterior surface; said interior portion including a power subsystem connected to a pneumatic subsystem, a control subsystem, and an alarm subsystem; said pneumatic subsystem comprising a dual head compressor connected to a single head compressor, said dual head compressor and said single head compressor constructed so as to operate at alternate times; said control subsystem comprising a timing circuit connected to a relay, said relay further connected to said single head compressor and said dual head compressor so as to control on and off cycle between said dual head compressor and allow said dual head compressor and single head compressor to operate at alternate times; said power subsystem comprising a battery source connected to an electronic circuit which in turn is connected to a power jack, so as to supp]_y regulated power to said pneumatic, control and alarm subsystems, said electronic circuit and said power j ack further constructed so as to connect to an external power source; said power subsystem further comprising a voltage regulator circuit so as to eliminate fluctuations in voltage to said control subsystem, said power subsystem also comprising a second voltage regulator circuit so as to supply lower voltages to said control and alarm subsystems; said alarm subsystem connected to sal d pneumatic subsystem and further comprising an LED patient problem indicator so as to detect patient problems within said pneumatic subsystem, said patient problem indicator positioned on said exterior surface; said alarm subsystem further comprising a failure detect circuit connected to a non-repa-irable LED indicator, said circuit and non-repairable LED indicator connected to said control subsystem, so as to visually detect non-repairable problems within sa-id control subsystem said non-repairable problem indicator position on said exterior surface; and said alarm subsystem further comprising a low voltage detect circuit connected to a repairable LED indicator, said circuit and repairable LiED indicator connected to said power subsystem and so as to visually detect repairable problems within said power subsystem, said repairable indication positioned on said exterior surface .
3. A portable ventilator system as recited in claim 2 wherein said pneumatic subsystem further? comprises a first input port constructed so as to allow ambient inhalation air to enter said ventilator; a first section of medical gr de y-tubing constructed so as to divide said ambient inhalation air into two flow paths; said dual head compressor consisting of first and second input ports and first and second output ports, said input ports constructed so as to receive said ambient inhalation air from said y-tubing, ssid dual head compressor constructed so as to compress said ambient inhalation air, said first and second output ports further constructed as to dispel said compressed ambient inhalation air from said dual head compressor; an air manifold constructed so as to receive said compressed ambient inhalation air and dispel said compressed ambient inhalation air to a first pressure sensor and a bi-directional flutter valve , said first pressure sensor constructed so as to detect pressure of said ambient inhalation air; said flutter valve constructed so as to have a first inlet port so as to receive said compressed inhalation air, a second bi-directional port constructed so as to transfer said inhalation to a patient; said single head compressor constructed so as to allow said second port to also receive exhalation air from said patient; said flutter valve further constructed so as to transfer said exhalation air from said second port to a third outlet port, said outlet port constructed so as to allow said exhalation air to be monitored by a second sensor and transferred to a carbon dioxide detector, said single head compressor further constructed so as to remove dead air from said ventilator.
4. A portable ventilator system as recited in claim 3 wherein said control subsystem further comprises a first resistor connected to a second resistor and a capacitor so as to generate charging and discharging cycles; said timing circuit connected to said first resistor, said second resistor and said capacitor so as to establish on and off states corresponding to said charging and discharging cycles, said timing circuit further connected to said relay, said relay configured so as to provide increased power of said on-off states corresponding to on and off states of said timing circuit; said relay further comprising a relay control and a switch bar, said relay control constructed so as to switch said switch bar between a second connector position and a first connector position; said second connector position connected to said single head compressor so as to operate said single head compressor in said on and off cycle; and said first connector position connected to said dual head compressor, so as to operate said dual head compressor in said on and off cycle corresponding to said increased power on-off states.
5. A portable ventilator system as recited in claim 4 wherein said alarm subsystem further comprises a light alarm suppression switch and an audible alarm connected to an audible alarm suppression switch; said light alarm suppression switch constructed so as to suppress said non-repairable LED indicator, said repairable indicator and said patient problems indicator; and said audible alarm constructed so as to provide sound based alarms corresponding to repairable, non- repairable and patient problem indications, said audible alarm positioned on said exterior surface, said audible alarm switch further constructed so as to bypass said audible alarm as necessary.
6. A portable ventilator system as recited in claim 5 wherein said second sensor comprises a pressure sensor.
7. A portable ventilator system as recited in claim 5 wherein said second sensor comprises a flow sensor.
8. A method of operating a portable ventilator comprising the steps of: (a) drawing ambient inhalation air into a dual head compressor, (b) compressing said ambient air in said dual head compressor and monitoring the pressure of said compressed air while maintaining a single head compressor in an off position; (c) transferring the compressed inhalation air into an air manifold and causing a flutter valve to open; (d) transferring said compressed inhalation air from said manifold to said flutter valve through an input port; (e) transferring said compressed inhalation air to a patient through a second bi-directional port in said flutter valve; (f) maintaining an exhale port of said flutter valve closed when operating said dual head compressor; (g) operating single head compressor to close off said input port and open exhale port, turning off said dual head compressor at the point when single head compressor is turned on, and allowing exhalation air from said patient to enter bi-directional port; (h) transferring exhalation air through said exhale port and verifying the presence exhalation air using a second sensor; and (i) removing exhalation air from said ventilator, through a patient exhale port.
9. A method of operating a portable ventilator as recited in claim 8 and further comprising the step of: measuring concentration of carbon dioxide in exhalation air using a capnography sensor.
10. A method of operating a portable ventilator as recited in claim 9 and further comprising the steps of (a) obtaining said on and off cycles using a timing circuit; (b) controlling on and off cycles for said dual head compressor and said single head compressor using a relay switch; (c) obtaining inhalation and exhalation cycles for the patient using said portable ventilator, said inhalation and exhalation cycles corresponding to said on and off cycles of said dual head and single head compressor; (d) providing visual and audible alarms corresponding to patient related problems; and (e) providing visual and audible alarms corresponding to ventilator repairable and non-repairable problems.
11. A method of operating a portable ventilator as recited in claim 10 comprising using a pressure sensor as said second sensor.
12. A method of operating a portable ventilator as recited in claim 10 comprising using a flow sensor as said second sensor.
PCT/US2004/005717 2004-02-26 2004-02-26 Self-contained micromechanical ventilator WO2005092416A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/US2004/005717 WO2005092416A1 (en) 2004-02-26 2004-02-26 Self-contained micromechanical ventilator
JP2007500732A JP2007525273A (en) 2004-02-26 2004-02-26 Self-contained micromechanical ventilator
EP04715084A EP1718355A1 (en) 2004-02-26 2004-02-26 Self-contained micromechanical ventilator
CA002556695A CA2556695A1 (en) 2004-02-26 2004-02-26 Self-contained micromechanical ventilator
AU2004317545A AU2004317545A1 (en) 2004-02-26 2004-02-26 Self-contained micromechanical ventilator
IL177607A IL177607A0 (en) 2004-02-26 2006-08-21 Self-contained micromechanical ventilator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2004/005717 WO2005092416A1 (en) 2004-02-26 2004-02-26 Self-contained micromechanical ventilator

Publications (1)

Publication Number Publication Date
WO2005092416A1 true WO2005092416A1 (en) 2005-10-06

Family

ID=34957229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/005717 WO2005092416A1 (en) 2004-02-26 2004-02-26 Self-contained micromechanical ventilator

Country Status (6)

Country Link
EP (1) EP1718355A1 (en)
JP (1) JP2007525273A (en)
AU (1) AU2004317545A1 (en)
CA (1) CA2556695A1 (en)
IL (1) IL177607A0 (en)
WO (1) WO2005092416A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10195391B2 (en) 2008-10-17 2019-02-05 Koninklijke Philips N.V. Volume control in a medical ventilator

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150083121A1 (en) 2006-11-01 2015-03-26 Joseph Fisher Portable life support apparatus
JP5517332B2 (en) 2009-08-28 2014-06-11 アルバック機工株式会社 Ventilator and its operating method
JP5570853B2 (en) * 2010-02-26 2014-08-13 日本光電工業株式会社 Ventilator
JP2011200472A (en) * 2010-03-26 2011-10-13 Seijin Wakefulness management assisting device or its method
US9022746B2 (en) * 2011-09-09 2015-05-05 Allied Healthcare Products, Inc. Shuttling by-pass compressor apparatus
EP3039973B1 (en) * 2013-09-30 2019-09-18 Japan Tobacco Inc. Non-burning type flavor inhaler

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3502075A (en) * 1967-02-27 1970-03-24 Abbott Lab Portable resuscitator apparatus
US4592349A (en) * 1981-08-10 1986-06-03 Bird F M Ventilator having an oscillatory inspiratory phase and method
US4773410A (en) * 1984-10-09 1988-09-27 Transpirator Technologies, Inc. Method and apparatus for the treatment of the respiratory track with vapor-phase water
US5074299A (en) * 1988-05-02 1991-12-24 Dietz Henry G Monitor for controlling the flow of gases for breathing during inhalation
US5664563A (en) 1994-12-09 1997-09-09 Cardiopulmonary Corporation Pneumatic system
US5868133A (en) 1994-10-14 1999-02-09 Bird Products Corporation Portable drag compressor powered mechanical ventilator
WO2000016839A1 (en) * 1998-09-23 2000-03-30 The Johns Hopkins University Emergency life support system
US6152135A (en) 1998-10-23 2000-11-28 Pulmonetic Systems, Inc. Ventilator system
US20040035424A1 (en) * 2002-08-26 2004-02-26 Wiesmann William P. Self-contained micromechanical ventilator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4825802A (en) * 1986-07-24 1989-05-02 Societe Anonyme Drager Pheumatic alarm for respirator
US6349724B1 (en) * 2000-07-05 2002-02-26 Compumedics Sleep Pty. Ltd. Dual-pressure blower for positive air pressure device
ATE422167T1 (en) * 2000-10-19 2009-02-15 Mallinckrodt Inc VENTILATOR WITH DUAL GAS SUPPLY

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3502075A (en) * 1967-02-27 1970-03-24 Abbott Lab Portable resuscitator apparatus
US4592349A (en) * 1981-08-10 1986-06-03 Bird F M Ventilator having an oscillatory inspiratory phase and method
US4773410A (en) * 1984-10-09 1988-09-27 Transpirator Technologies, Inc. Method and apparatus for the treatment of the respiratory track with vapor-phase water
US5074299A (en) * 1988-05-02 1991-12-24 Dietz Henry G Monitor for controlling the flow of gases for breathing during inhalation
US5868133A (en) 1994-10-14 1999-02-09 Bird Products Corporation Portable drag compressor powered mechanical ventilator
US5881722A (en) 1994-10-14 1999-03-16 Bird Products Corporation Portable drag compressor powered mechanical ventilator
US5664563A (en) 1994-12-09 1997-09-09 Cardiopulmonary Corporation Pneumatic system
WO2000016839A1 (en) * 1998-09-23 2000-03-30 The Johns Hopkins University Emergency life support system
US6152135A (en) 1998-10-23 2000-11-28 Pulmonetic Systems, Inc. Ventilator system
US20040035424A1 (en) * 2002-08-26 2004-02-26 Wiesmann William P. Self-contained micromechanical ventilator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1718355A1

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10195391B2 (en) 2008-10-17 2019-02-05 Koninklijke Philips N.V. Volume control in a medical ventilator
US11147938B2 (en) 2008-10-17 2021-10-19 Koninklijke Philips N.V. Volume control in a medical ventilator

Also Published As

Publication number Publication date
IL177607A0 (en) 2006-12-10
JP2007525273A (en) 2007-09-06
CA2556695A1 (en) 2005-10-06
AU2004317545A1 (en) 2005-10-06
EP1718355A1 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
US7320321B2 (en) Self-contained micromechanical ventilator
US7721736B2 (en) Self-contained micromechanical ventilator
US7080646B2 (en) Self-contained micromechanical ventilator
AU2011299224B2 (en) Oxygen concentrator heat management system and method
JP5820893B2 (en) Ventilator
US9707371B2 (en) Ventilation systems and methods
US20120055482A1 (en) Oxygen concentrator heat management system and method
EP0903160A1 (en) Inspiratory tube
US20090139522A1 (en) Monitor for automatic resuscitator with optional gas flow control
US20210093824A1 (en) Methods and apparatus for treating a respiratory disorder
US20090205660A1 (en) Monitor for automatic resuscitator with primary and secondary gas flow control
US6929006B2 (en) Device and process for metering breathing gas
WO2005092416A1 (en) Self-contained micromechanical ventilator
US11253664B2 (en) Emergency respiratory ventilator
US20230166070A1 (en) Mechanical respirator
KR101577931B1 (en) Portable oxygen generator system for emergency treatment
CN111182939B (en) Method and apparatus for breathing a patient
US20240058563A1 (en) Automated ventilator
CN111182939A (en) Method and apparatus for breathing a patient
AU2010319481B2 (en) Ventilation systems and methods

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2556695

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 177607

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2007500732

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004715084

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004317545

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2004317545

Country of ref document: AU

Date of ref document: 20040226

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004715084

Country of ref document: EP