WO2005085125A1 - マイクロアクチュエータ、およびマイクロアクチュエータを備えた装置 - Google Patents

マイクロアクチュエータ、およびマイクロアクチュエータを備えた装置 Download PDF

Info

Publication number
WO2005085125A1
WO2005085125A1 PCT/JP2005/003533 JP2005003533W WO2005085125A1 WO 2005085125 A1 WO2005085125 A1 WO 2005085125A1 JP 2005003533 W JP2005003533 W JP 2005003533W WO 2005085125 A1 WO2005085125 A1 WO 2005085125A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable
base
microactuator
elastic support
unit
Prior art date
Application number
PCT/JP2005/003533
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Mushika
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/597,784 priority Critical patent/US7859167B2/en
Priority to JP2006519387A priority patent/JPWO2005085125A1/ja
Publication of WO2005085125A1 publication Critical patent/WO2005085125A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0035Constitution or structural means for controlling the movement of the flexible or deformable elements
    • B81B3/0051For defining the movement, i.e. structures that guide or limit the movement of an element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/002Electrostatic motors
    • H02N1/006Electrostatic motors of the gap-closing type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/042Micromirrors, not used as optical switches

Definitions

  • the present invention relates to a microactuator and a device provided with the microactuator.
  • the present invention relates to a microactuator capable of tilting and vertical displacement, and an apparatus including the microactuator.
  • microactuators are manufactured using MEMS (Micro Electro Mechanical System) technology, and applications of the microactuators to various fields such as optics, high-frequency circuits, and biotechnology are expected.
  • MEMS Micro Electro Mechanical System
  • a micromirror array for controlling the wavefront of light has been developed. In such applications, it is effective to tilt each light reflecting surface with respect to the base and simultaneously perform vertical displacement in order to smoothly control the wavefront of light.
  • Non-Patent Document 1 discloses an example of a microactuator capable of performing such tilting and vertical displacement.
  • FIG. 10 is a perspective view schematically showing the microactuator 1000 disclosed in Non-Patent Document 1.
  • the movable electrode 100 is supported on its outer periphery by three elastic beams 101a, 101b, and 101c. Further, the movable electrode 100 faces three fixed electrodes 102a, 102b and 102c.
  • the fixed electrodes 102a, 102b, and 102c are provided so as to be capable of independently applying a drive voltage, and a potential difference is provided between the fixed electrodes 102a, 102b, and 102c. Thereby, an electrostatic force is generated in the direction in which the movable electrode 100 is attracted.
  • the movable electrode 100 vertically displaces downward without substantially tilting. If these driving voltages are different from each other, the movable electrode 100 vertically displaces downward while tilting in a desired direction. As described above, the movable electrode 100 can tilt in two axes simultaneously with the vertical displacement in the downward direction.
  • Non-Patent Document 1 U. Srinivasan, et al., "FluidicSelf—Assembly of Micro mirrors Onto Microactuators Using Capillary Forces ", IEEEJournal on Selected Topics in Quantum Electronics, Vol. 8, No. 1, pp. 4-11 (January, 2002)
  • the microactuator 1000 as described above has a problem that the relationship between the drive signal of the fixed electrode and the mirror displacement has a large non-diagonality.
  • non-diagonal means that when a predetermined voltage is applied to a fixed electrode and one end of the movable electrode 100 on the side facing the fixed electrode is displaced in the vertical direction, the movable electrode 100 faces the other fixed electrode. This means that the end of the movable electrode 100 on the side to be displaced is also displaced in the vertical direction.
  • FIG. 11 is a diagram showing the operation of the micro actuator 1000.
  • FIG. 11 is a schematic cross-sectional view of the microactuator 1000, so that only the movable electrode 100, the two elastic beams 101a and 101b, and the two fixed electrodes 102a and 102b are illustrated.
  • the point of action a of the driving force exerted on the movable electrode 100 by the fixed electrode 102a is a point passing through the center of the area of the fixed electrode 102a where the driving force is generated and passing through an axis perpendicular to the fixed electrode 102a.
  • the point of action b of the driving force exerted on the movable electrode 100 by the fixed electrode 102b is a point passing through the center of a region of the fixed electrode 102b where the driving force is generated and passing through an axis perpendicular to the fixed electrode 102b.
  • the displacement of the movable electrode 100 at each of the action points a and b can be controlled independently by the voltage applied to the corresponding fixed electrode.
  • the device can have a simple configuration. Even when performing control to correct displacement due to non-diagonality (for example, ⁇ '), the smaller the non-diagonality, the greater the control High accuracy and simplification are easy. In particular, in the case of electrostatic driving, since the driving force is generated only in the suction direction, it is difficult to perform correction control in the direction of returning the value of ⁇ ′ to zero.
  • the amount of data for correcting the displacement caused by the non-diagonality becomes enormous.
  • the amount of data for correcting displacement caused by the non-diagonality becomes enormous. . This causes a significant increase in cost and a reduction in the drive speed of the microactuator. From this point, the off-diagonality is small!
  • the present invention has been made in view of the above problems, and has as its object to provide a microactuator in which the non-diagonality between the driving force and the displacement of the movable portion is reduced, and a microactuator thereof.
  • An object of the present invention is to provide an apparatus provided with:
  • the microactuator of the present invention includes a base, a movable part displaceable with respect to the base, a displacement of the movable part in a direction perpendicular to the base, and a tilt with respect to the base.
  • the elastic support portion supports the movable portion at a position between the second action point and the second action point, and the elastic support portion generates a restoring force generated in the elastic support portion in response to a displacement of the movable portion in a direction perpendicular to the base.
  • the spring constant of the force is kz (NZm), and the elasticity depends on the tilt angle of the movable part with respect to the base.
  • the panel constant of the restoring torque generated in the supporting portion is kr (NmZrad)
  • the distance between the first point of action and the second point of action is 2L (m)
  • the kz, the kr, and the L satisfies the relationship of 0.5 ⁇ L 2 -kz / kr ⁇ 2.
  • a microactuator of the present invention includes a base, a movable part displaceable with respect to the base, a displacement of the movable part in a vertical direction with respect to the base, and a two-axis structure with respect to the base.
  • An elastic support portion for supporting the movable portion so that the movable portion can be tilted; and a plurality of drive portions for displacing the movable portion with respect to the base, wherein the plurality of drive portions act on the movable portion.
  • the elastic supporting portion supports the movable portion at a position surrounded by a plurality of action points where a force acts, and the elastic supporting portion responds to the displacement of the movable portion in the vertical direction with respect to the base.
  • the panel constant of the restoring force generated in the movable portion is kz (NZm), and the panel constant of the restoring torque generated in the elastic support portion in accordance with the tilt angle of the movable electrode is krx (NmZrad) and kry (NmZrad).
  • Each of said plurality of points of action and said elastic support When the distance between the position supporting the movable part and the position supporting the movable part is R (m), ⁇ kz, ⁇ 'krx, k kry, and R R are 1 ⁇ R 2- It is characterized by satisfying the relationship of kz / krx ⁇ 5, 1 ⁇ R 2 -kz / kry ⁇ 5, 0.67 ⁇ krx / kry ⁇ 1.5.
  • the elastic support portion supports a substantially central portion of the movable portion.
  • each of the plurality of drive sections includes an electrode facing the movable section, and each of the plurality of drive sections is provided with an electrode. Drives the movable part by an electrostatic force generated between the movable part and the electrode.
  • the plurality of drive units are arranged substantially symmetrically about an axis passing through a position where the elastic support unit supports the movable unit and perpendicular to the base.
  • the elastic support portion includes a first end connected to the base, and a second end connected to the movable portion, wherein the first end and the second end are connected to each other. 2
  • the distance between the two ends is H
  • the relationship of H, R, and force 0.8 ⁇ H / R ⁇ 1.6 is satisfied.
  • a distance between the first end and the central part of the movable part is longer than a distance between the second end and the central part of the movable part.
  • the elastic support portion includes a beam portion, and the beam portion includes a folded portion in which a direction in which the beam portion extends is reversed.
  • a distance between the folded portion and a central portion of the movable portion is a distance between a position of the elastic support portion connected to the base and a central portion of the movable portion. Longer.
  • the other end of the movable unit is Displaced away from the base.
  • the kz and said kr and the L satisfies the relation of 1 ⁇ L 2 'kzZkr.
  • the kz and the KRX and the kry said R satisfies the 2 ⁇ R 2 -kz / krx, 2 ⁇ R 2 'kzZkry relationship.
  • the device of the present invention is characterized in that a plurality of the microactuators are provided, and the plurality of microactuators share the base.
  • the device of the present invention includes a plurality of the microactuators, wherein the plurality of microactuators share the base and are adjacent to each other among the plurality of microactuators.
  • the pitch between the microactuators is P (m)
  • the P and the R satisfy a relationship of 0.29 ⁇ R / P ⁇ 0.37.
  • the device further includes a control unit that outputs a control signal to the plurality of driving units and controls a displacement of the movable unit.
  • control section is capable of displacing the movable section in three or more stages.
  • control unit is configured to control the drive unit, which receives the control signal among the plurality of drive units, according to a target displacement amount of an action point of a driving force applied to the movable unit. Outputs control signal.
  • the movable section has a light reflecting surface.
  • the device further includes a light source that generates light.
  • the apparatus further includes a wavefront information generation unit that receives light passing through the light reflecting surface and generates wavefront information indicating a wavefront state of the light, and the control unit includes: The movable part is displaced according to the information.
  • the elastic supporting portion supports the movable portion at a position between a plurality of action points or at a position surrounded by the plurality of action points.
  • a specific relationship is provided between a panel constant corresponding to the displacement of the movable portion in the vertical direction and a panel constant corresponding to the tilt angle of the movable portion.
  • the off-diagonality between the driving force of the driving section and the displacement of the movable section is small, and the displacements at the respective positions of the action points in the movable section are independently controlled without interfering with each other. As a result, simplification of control and higher precision can be realized.
  • FIG. 1A is an exploded perspective view schematically showing a microactuator according to Embodiment 1 of the present invention.
  • FIG. 1B is an exploded perspective view schematically showing a microactuator array according to Embodiment 1 of the present invention.
  • FIG. 2A is an explanatory diagram of an operation of the microactuator according to the first embodiment of the present invention in a one-dimensional model.
  • FIG. 2B is an explanatory diagram of the operation of the microactuator according to the first embodiment of the present invention in a one-dimensional model.
  • FIG. 3A is a plan view schematically showing a microactuator according to Embodiment 1 of the present invention.
  • FIG. 3B The theory of operation of the microactuator according to the first embodiment of the present invention in a two-dimensional model.
  • FIG. 3C is an explanatory diagram of an operation of the microactuator according to the first embodiment of the present invention in a two-dimensional model.
  • FIG. 4 is a plan view schematically showing a microactuator according to Embodiment 1 of the present invention.
  • FIG. 5A is a plan view schematically showing a microactuator according to Embodiment 2 of the present invention.
  • FIG. 5B is an enlarged view of the vicinity of the folded portion of the elastic beam of the microactuator according to the second embodiment of the present invention.
  • FIG. 6A is a plan view schematically showing a microactuator according to Embodiment 3 of the present invention.
  • FIG. 6B is a side view schematically showing a state in which the elastic supporting portion of the microactuator according to Embodiment 3 of the present invention is warped.
  • FIG. 7 is a diagram schematically showing an apparatus including a microactuator according to Embodiment 4 of the present invention.
  • FIG. 8A is an explanatory diagram of a one-dimensional model showing a relationship between a coordinate position of an action point in a movable portion and wavefront approximation accuracy according to Embodiment 4 of the present invention.
  • FIG. 8B is an explanatory diagram of a one-dimensional model showing the relationship between the coordinate position of the action point in the movable part and the wavefront approximation accuracy according to Embodiment 4 of the present invention.
  • [ ⁇ 8C] A diagram plotting the relationship between the radius of curvature of the phase function and the distance that minimizes the wavefront error according to Embodiment 4 of the present invention.
  • FIG. 9A is a plan view schematically showing a microactuator array according to Embodiment 4 of the present invention.
  • FIG. 9B is a diagram plotting the relationship between the radius of curvature of the phase function and the distance that minimizes the wavefront error according to Embodiment 4 of the present invention.
  • FIG. 10 is a perspective view schematically showing a conventional microactuator.
  • FIG. 11 is an explanatory diagram of an operation of a conventional microactuator.
  • FIG. 1A is an exploded perspective view schematically illustrating the microactuator 10 of the present embodiment.
  • the microactuator 10 includes a base 1, a movable part 7, an elastic support part 5, and fixed electrodes 4a, 4b, and 4c.
  • the micro actuator 10 is manufactured using, for example, the MEMS technology.
  • the base 1 is, for example, a silicon substrate.
  • a drive circuit la is provided on the base 1, and an insulating layer 2 is provided on the drive circuit la.
  • Movable part 7 can be displaced with respect to base 1 Noh.
  • the elastic support portion 5 has elasticity, and moves the movable portion 7 so that the movable portion 7 can be displaced in a direction perpendicular to the plane direction of the base 1 and the movable portion 7 can be tilted with respect to the base 1.
  • Each of the fixed electrodes 4a-4c functions as a driving unit that drives the movable unit 7 in a direction perpendicular to the plane direction of the base 1.
  • a conductive material such as aluminum (A1) alloy, polysilicon germanium (Poly-SiGe) or the like that can be formed at a low temperature of 450 ° C or less is used.
  • Each of the fixed electrodes 4a-4c is connected to the drive circuit la by a via (not shown) formed in the insulating layer 2.
  • the drive circuit la can independently apply a drive voltage within a predetermined voltage range (for example, 0 to 30 V) to the fixed electrodes 4a to 4c.
  • This drive voltage can be set, for example, as a multi-step value of lObit.
  • the elastic support portion 5 includes three elastic beams 5 a to 5 c, fixing portions 5 d to 5 f for fixing the elastic beams 5 a to 5 c to the base 1, and a support portion for supporting the movable portion 7. 5g.
  • the elastic beams 5a-5c are connected to the ground wiring section 3.
  • the end connected to the fixed portion 5d-5f is the fixed end 5h-3 ⁇ 4, and the end connected to the support 5g is the movable end 5k. — Call it 5m.
  • a first sacrificial layer (not shown) is formed on the ground wiring portion 3 and the fixed electrodes 4a-4c using a photoresist, and then the first sacrificial layer is formed.
  • the elastic support 5 may be formed on the sacrificial layer 1.
  • the material of the elastic support portion 5 the same conductive material as the ground wiring portion 3 and the fixed electrodes 4a-4c is used.
  • the support 5g is connected to a protrusion 6a provided at the center of the movable electrode 6. Further, the three elastic beams 5a-5c are connected to each other via a support 5g.
  • a second sacrificial layer (not shown) is formed on the elastic support portion 5 using a photoresist, and then the second sacrificial layer is formed on the second sacrificial layer.
  • the movable electrode 6 may be formed.
  • the movable electrode 6 has a substantially regular hexagonal shape.
  • As the material of the movable electrode 6, the same conductive material as that of the ground wiring portion 3 and the fixed electrodes 4a to 4c is used.
  • the upper surface of the movable electrode 6 is a mirror portion 6b that is a light reflection surface.
  • the upper surface of the movable electrode 6 may be coated with gold, a dielectric multilayer film or the like to form the mirror portion 6b.
  • the first and second sacrificial layers described above it is removed by an organic solvent, oxygen plasma, or the like, and a void is formed in the portion after the removal.
  • the movable electrode 6 is connected to the drive circuit 1a via the elastic support part 5 and the ground wiring part 3, and is kept at the ground potential.
  • the movable electrode 6 is opposed to the three fixed electrodes 4a-4c via a gap.
  • a potential difference occurs between the movable electrode 6 and the fixed electrodes 4a-4c, an electrostatic force is generated between the movable electrode 6 and the fixed electrodes 4a-4c.
  • the movable part 7 is driven using the electrostatic force as a driving force.
  • the elastic support portion 5 is elastically deformed, and the posture of the movable portion 7 is determined by the balance between the elastic restoring force of the elastic support portion 5 and the driving force.
  • the amount of displacement of the movable part 7 in the direction perpendicular to the base 1 and the amount of tilt with respect to the base 1 can be reduced. Can be controlled. If the driving voltages of the fixed electrodes 4a-4c are set to be the same, the movable portion 7 does not substantially tilt, and the entire movable portion 7 including the central portion of the movable portion 7 is vertically displaced in the direction approaching the base 1. If these driving voltages are different from each other, the movable section 7 tilts in a desired direction.
  • the tilt with respect to the base 1 is a tilt around two tilt axes that are parallel to the plane direction of the base 1 and orthogonal to each other.
  • FIG. 1B shows a microactuator array 35 in which one microactuator 10 is used as a unit cell and a plurality of unit cells are arranged.
  • FIG. 1B is an exploded perspective view schematically showing the micro actuator array 35.
  • the movable part 7, the elastic support part 5, and the fixed electrodes 4a-4c of the plurality of microactuators 10 are provided on a single base 1, and the plurality of microactuators 10 are Share Base 1 with each other!
  • the pitch P between the microactuators 10 adjacent to each other is, for example, 110 ⁇ m.
  • the number of the micro actuators 10 is, for example, 42 ⁇ 36.
  • the micro-actuator array 35 including the plurality of micro-actuators 10 functions as a micro-mirror array.
  • the microactuator 10 (FIG. 1A) is supported by the elastic support 5 so as to be capable of biaxial tilting and uniaxial vertical displacement.
  • a one-dimensional model that performs one-axis tilt and one-axis vertical displacement Next, a two-dimensional model that performs two-axis tilting and one-axis vertical displacement will be described.
  • FIGS. 2A and 2B are explanatory diagrams of the operation of the microactuator 10 in a one-dimensional model.
  • FIG. 2A shows a state where a predetermined voltage is applied only to the fixed electrode 4a and the movable electrode 6 is sucked.
  • the point of action A of the driving force exerted on the movable electrode 6 of the movable part 7 by the fixed electrode 4a is a point passing through the center of the area of the fixed electrode 4a where the driving force is generated and passing through an axis perpendicular to the fixed electrode 4a. It is.
  • the point of action B of the driving force exerted on the movable electrode 6 by the fixed electrode 4b is a point passing through the center of a region of the fixed electrode 4b where the driving force is generated and passing through an axis perpendicular to the fixed electrode 4b.
  • the elastic support portion 5 supports the center of the movable electrode 6 approximately, in the one-dimensional model, the elastic support portion 5 is located at the position between the action point A and the action point B (central portion O). This means that they support 6.
  • the fixed electrodes 4a and 4b are arranged substantially symmetrically about an axis passing through the central portion O and perpendicular to the base 1 (FIG. 1A). For this reason, the distance between the central part O and the point of action A and the distance between the central part O and the point of action B are both approximately equal to L (m). The distance between point of action A and point of action B is 2L.
  • the panel constant of the restoring force generated in the elastic support portion 5 in accordance with the vertical displacement ⁇ o (m) of the movable electrode 6 at the center O with respect to the base 1 is set to kz (NZm)
  • the panel constant of the restoring torque generated in the elastic support portion 5 according to the tilt angle ⁇ (rad) with respect to 1 is kr (NmZrad).
  • the microactuator 10 of the present invention has a configuration in which the elastic supporting portion 5 supports the substantially central portion ⁇ ⁇ of the movable portion 7, and further includes the panel constants kz and kr and the distance L.
  • the control device for controlling the microactuator can have a simple configuration.
  • the non-diagonal magnitudes ⁇ and ⁇ can be reduced to ⁇ or less.
  • FIG. 2B shows a state in which independent voltages are applied to the fixed electrodes 4a and 4b, respectively, and the movable electrode 6 is attracted.
  • the driving force generated by the fixed electrode 4a is denoted by Fa (N)
  • the driving force generated by the fixed electrode 4b is denoted by Fb (N).
  • the vertical displacement of the movable electrode 6 at the point of action A is ⁇ a (m)
  • the vertical displacement of the movable electrode 6 at the point of action B is ⁇ b (m).
  • the interference of the displacement at the action points A and B when an arbitrary driving force is generated at the fixed electrodes 4a and 4b (the displacement of the working point B of the driving force generated by the fixed electrode 4a
  • the interference and the interference of the driving force generated by the fixed electrode 4b with respect to the displacement of the action point A) can be suppressed to 1Z3 or less, and the independent control of the displacement at the action points A and B can be improved.
  • the displacement ⁇ ′ due to non-diagonality is not fixed electrode 4 If it occurs in the direction away from b, basically, if the magnitude of the driving forces Fa and Fb is set appropriately, displacement due to non-diagonality can be easily corrected. Thereby, the control device that corrects the displacement due to the non-diagonality can have a simple configuration.
  • FIGS. 3A to 3C are explanatory diagrams of the operation of the microactuator 10 in a two-dimensional model.
  • FIG. 3A is a plan view schematically showing the microactuator 10, and the X axis and the y axis with the origin at the center O of the movable electrode 6 are set as shown in FIG. 3A. You.
  • the point of action A of the driving force Fa exerted on the movable electrode 6 of the movable portion 7 by the fixed electrode 4a is defined by an axis passing through the center of the region of the fixed electrode 4a where the driving force Fa is generated and perpendicular to the fixed electrode 4a. It is a passing point.
  • the point of action B of the driving force Fb exerted on the movable electrode 6 by the fixed electrode 4b is a point passing through the center of the area of the fixed electrode 4b where the driving force Fb is generated and passing through an axis perpendicular to the fixed electrode 4b.
  • the point of action C of the driving force Fc exerted on the movable electrode 6 by the fixed electrode 4c is a point passing through the center of the area of the fixed electrode 4c where the driving force Fc is generated and passing through an axis perpendicular to the fixed electrode 4c.
  • the elastic support portion 5 supports the movable electrode 6 at a position (approximately the center of the movable electrode 6 in the present embodiment) surrounded by action points A, B, and C.
  • the action point A is located at the center of the area of the movable electrode 6 that overlaps with the fixed electrode 4a.
  • action points B and C are the same applies.
  • the fixed electrodes 4a-4c are rotationally symmetric with respect to a center O where the elastic supporting portion 5 supports the movable electrode 6.
  • the distance between the action points A and C and the central O force is R (m).
  • the action points A—C are located on the circumference of a circle having a radius R centered on the central portion O, and are evenly spaced 120 degrees from the central portion O.
  • FIG. 3B is a schematic diagram of a cross section of the microactuator 10 along the y axis
  • FIG. 3C is a schematic diagram of a cross section of the microactuator 10 along the X axis.
  • the fixed electrodes 4a, 4b and 4c independently generate driving forces Fa, Fb and Fc, whereby the movable electrode 6 at the action points A, B and at the same position in a direction perpendicular to the base 1. Suppose that they are displaced by ⁇ a, ⁇ b and ⁇ c, respectively.
  • Equation (13) close to the value of R 2 'kz / krx to 2, in the this closer the value of KRX on the value of kry, all non-diagonal elements can be reduced to a desired value.
  • the elastic supporting portion 5 supports the central portion O of the movable electrode 6 and gives a specific relationship to R, kz, krx, and kry, thereby generating an arbitrary driving force on the fixed electrodes 4a-4c.
  • the interference of the displacement at the working point A— can be suppressed to a predetermined value or less, and the independent control of the displacement at the working point A—C can be improved.
  • Table 2 shows an example of the conditions of R, kz, krx, and kry necessary to reduce off-diagonality.
  • the elastic support portion 5 supports the substantially central portion O of the movable electrode 6, and the panel constants kz, krx and kry and the distance R
  • the magnitude of non-diagonality can be reduced to 1Z3 or less. it can.
  • the magnitude of the non-diagonality is 1Z10 or less. From Table 2, the panel constants kz, krx and kry and the distance R
  • the non-diagonal magnitudes ⁇ and ⁇ can be reduced to ⁇ or less.
  • the displacement due to non-diagonality can be easily corrected even when the suction force is generated as the driving force Fa-Fc and no force is generated, as described with reference to the one-dimensional model. can do.
  • FIG. 4 is a plan view schematically showing the microactuator 10.
  • the central part 0, the action points A to C, and the distance R have been described with reference to Fig. 3A, and thus description thereof is omitted here.
  • the distance R in the microactuator 10 shown in FIG. 4 is 37 ⁇ m.
  • the distance H from the center O to the movable end 5k of the elastic support 5 is 5.5 / ⁇ , the center ⁇
  • the force is the distance to the fixed end 5h of the elastic support 5 5 is 45.5 111, and the central O-force is also the elastic support
  • the distance H to the center of the fixed part 5d of 5 is 51 ⁇ m.
  • the width W of the support 5g is 11 ⁇ m,
  • the width W of the elastic beam 5a is 4 ⁇ m, and the width W of the fixed part 5d is 11 ⁇ m. Thickness of elastic support 5
  • the longitudinal elastic modulus is 69 GPa and the Poisson's ratio is 0.35.
  • the fixed end 5h on the side connected to the base 1 is located outside the movable end 5k on the side connected to the movable electrode 6, and the distance between the fixed end 5h and the central portion O is It is longer than the distance between the movable end 5k and the central part O.
  • H the linear distance between the two parts that are farthest apart from each other.
  • the distance H is 40 ⁇ m, which is equal to the length of the elastic beam 5a.
  • the values of R 2 'kz / kr x, R 2 ' kzZkry, and krxZkry are 2.18, 2.02, and 1.08, respectively. 1 ⁇ R 2 -kz / krx ⁇ 5,
  • the length Q of one side of the movable electrode 6 is 62 ⁇ m, and the fixed electrodes 4 a to 4 c and the elastic supporting portion 5 are all arranged under the plane area of the movable electrode 6. .
  • the fixed electrodes 4a and 4b have a planar positional relationship distributed on opposite sides with respect to a tilt axis U (FIG. 4) passing through the central portion O. .
  • the restoring torque kr for the tilt axis U is equal to krx, and the distance L between each of the action points A and B and the tilt axis U is equal to 3RZ2.
  • L 2 'kzZkr becomes 1.58,
  • the active portion 5 supports the central portion O of the movable electrode 6 of the movable portion 7, and the panel according to the vertical displacement and the tilt angle of the movable portion 7.
  • the movable section 7 includes the movable electrode 6, and the fixed electrodes 4 a to 4 c forming a parallel plate electrode pair with the movable electrode 6 function as a driving section for driving the movable section 7.
  • the driving unit may be any element that generates a driving force in a direction perpendicular to the base 1 with respect to the movable unit.
  • the fixed electrodes 4a to 4c and the movable electrode 6 may form a vertical comb-shaped electrode pair.
  • the drive unit may be an element that generates a driving force other than electrostatic force, such as an electromagnetic force other than electrostatic force. These driving forces are preferably non-contact forces, but the panel constants kz, kr, krx and kry and the distance L And contact force may be used as long as it does not cause a large disturbance to the specific relationship with R.
  • the microactuator 10 according to the present embodiment can perform two-axis tilting and one-axis vertical displacement.
  • the present invention is not limited to the one-dimensional model. It is needless to say that the present invention is also applicable to a micro actuator capable of tilting the axis and vertical displacement of one axis.
  • the microactuator 10 according to the present embodiment has a planar shape in which the components are symmetrically arranged about the center O, but the present invention is not limited to this. According to the present invention, it is possible to obtain an effect of reducing non-diagonality even in a configuration in which components are not symmetrically arranged.
  • FIGS. 5A and 5B a second embodiment of the microactuator according to the present invention will be described.
  • FIG. 5A is a plan view schematically showing the microactuator 10a of the present embodiment.
  • the microactuator 10a includes an elastic support portion 15 instead of the flexible support portion 5 of the microactuator 10 in Embodiment 1, and includes fixed electrodes 14a to 14c instead of the fixed electrodes 4a to 4c.
  • the planar shape of the elastic support portion 15 is a meander shape, and the elastic beams 15a to 15c of the elastic support portion 15 have folded portions 15n to 15s in which the extending direction of the beam portion is reversed at approximately 180 degrees. .
  • the elastic support portion 15 includes three elastic beams 15a to 15c and a base 1
  • the elastic beam 15a has a meandering shape and has two folded portions 15 ⁇ and 15 ⁇ that fold the extending direction of the beam at approximately 180 degrees.
  • the center portion O force is also the distance to the movable end 15k, H is 5.5 / ⁇ , and the center portion ⁇ is fixed end 1
  • the effective width W of the support 15g is 13 ⁇ m
  • the width W of the elastic beam 15a is 3 ⁇ m
  • the width W of the fixed part 15d is 11 ⁇ m.
  • the thickness of the elastic support 15 is in the range of 0.11 ⁇ m.
  • the preferred here is 0.
  • the longitudinal elastic modulus is 69 GPa and the Poisson's ratio is 0.35.
  • the total length of the elastic beam 15a is 120 ⁇ m, which is 2.61 times the distance H.
  • the fixing portions 15d to 15f can be formed integrally with the fixing portions of the adjacent microactuators.
  • the support portion 15g is connected to the movable electrode 6 at three locations indicated by oblique lines in FIG. 5A.
  • the reason why the number of connection points is three is to further increase the connection strength between the movable electrode 6 and the elastic support portion 15.
  • the location of the connection point may be approximately anywhere in the center O.
  • the length Q of one side of the movable electrode 6 is 62 ⁇ m.
  • the panel constant kr (or krx, kry) related to the tilt angle becomes approximately lZn
  • the panel constant kz for displacement is about 1 / n.
  • the value of the ratio between kr and kz, kz / kr, is about lZn 2 . That is, as the value of kzZkr decreases rapidly as n increases,
  • the actual overall length of the beam can be increased n times.
  • the panel constant kr (or krx, kry) for the tilt angle is about lZn
  • the panel constant kz for the vertical displacement is also about 1 / n. Therefore, the value of the ratio kz / kr between kr and kz is almost constant, almost independent of n. Therefore, if the elastic beam has a meandering shape, simply increase the number of turns of the beam.
  • the panel constant kz for vertical displacement is equal to lZn.
  • FIG. 5B is an enlarged view of the vicinity of the folded portion 15 ⁇ of the elastic beam 15a.
  • the upper diagram is a plan view of the folded portion 15 ⁇
  • the lower diagram is a side view of the folded portion 15 ⁇ .
  • the elastic support portion 15 includes the folded portion 15 ⁇ 15 s for reversing the extending direction of the beam, the elasticity of the panel constant kz and the panel constant kr is reduced. Low rigidity of the beam can be realized without changing the value of the ratio. As a result, both the effect of reducing the off-diagonality and the effect of obtaining a large displacement of the movable section 7 with low-voltage driving can be obtained.
  • FIGS. 6A and 6B a third embodiment of the microactuator according to the present invention will be described.
  • FIG. 6A is a plan view schematically showing the microactuator 10b of the present embodiment.
  • the microactuator 10b includes an elastic support portion 25 instead of the flexible support portion 15 of the microactuator 10a in Embodiment 2, and includes fixed electrodes 24a to 24c instead of the fixed electrodes 14a to 14c. .
  • the fixed end 25h—25j of the elastic support 25 is folded back 25 ⁇ —2
  • the fixed electrodes 24a to 24c are arranged at a position where the distance R between the action points A to C and the central portion O is 38.5 ⁇ m.
  • the elastic support portion 25 includes three elastic beams 25a to 25c, and these elastic beams 25a to 25c are mounted on a base 1
  • the shape of the elastic beam 25a is a meander shape having an odd number (here, one) of folded portions 25 ⁇ that folds the extending direction of the beam at approximately 180 degrees.
  • the distance between the folded part 25 ⁇ and the central part ⁇ ⁇ is longer than the distance between the fixed part 25d and the central part ⁇ .
  • the center portion O force is also the distance H to the movable end 25k.
  • Distance H is 17.5 / ⁇ ⁇
  • distance from center ⁇ to center of fixed part 25d ⁇ is 10
  • the effective width W of the support 25g is 9 ⁇ m, and the width W of the elastic beam 25a is 3 ⁇ m
  • the thickness of the elastic support 25 is preferably in the range of 0.1-- ⁇ m, here 0.5 ⁇ m.
  • the longitudinal elastic modulus is 69 GPa and the Poisson's ratio is 0.35.
  • the distance H between the two portions of the elastic beam 25a that is farthest apart from each other is 41.
  • the distance between the movable end 25k and the bent portion 25 ⁇ corresponds to this.
  • the total length of the elastic beam 25a is 74.5 ⁇ m, which is 1.8 times the distance H.
  • FIG. 6B is a side view schematically showing a state where the elastic support portion 25 is warped.
  • the elastic support portion 25 warps due to, for example, a residual stress gradient generated during the film forming process. May be born. Due to the influence of the warp, a vertical height error ⁇ is generated between the support portion 25g and the fixed portion 25d. Assuming that the radius of curvature of this warp is ⁇ , ⁇ ⁇ is approximately
  • ⁇ ⁇ can be reduced in proportion to its square.
  • the distance H can be reduced by locating the fixed end 25h-23 ⁇ 4 closer to the center O than the folded back 25 n-25p
  • the fixed end 25h-23 ⁇ 4 of the elastic support portion 25 is arranged at a position closer to the central portion O than the folded portion 25 ⁇ -25p. Therefore, even when the elastic support portion 25 is warped due to, for example, a residual stress gradient generated during a film forming process, the height error ⁇ ⁇ of the movable electrode 6 in the vertical direction can be suppressed to a small value.
  • the effect of reducing the off-diagonality described in the second embodiment and the effect of obtaining a large displacement of the movable portion 7 by low-voltage driving can be obtained.
  • FIGS. 1-10 An embodiment of an apparatus having a microactuator according to the present invention will be described with reference to FIGS.
  • FIG. 7 is a diagram schematically illustrating an apparatus 30 including the microactuator of the present embodiment.
  • the device provided with the microactuator of the present invention is not limited to, for example, an optical pickup or an optical disk device for recording and reproducing information on and from an optical disk.
  • An apparatus 30 which is an optical disk apparatus will be described as an example of an apparatus including the microactuator of the present invention.
  • the device 30 includes a light source 31, a collimator lens 32, a polarizing beam splitter 33, a 1/4 wavelength plate 34, a microactuator array 35, an objective lens 36, an objective lens actuator 38, and wavefront information. It includes a generation unit 47 and a control unit 42.
  • the micro actuator array 35 includes the plurality of micro actuators 10.
  • the microactuator array 35 may include a plurality of microactuators 10a or 10b instead of the microactuator 10. , These microactuators 10, 10a and 10b may be provided in combination.
  • the control unit 42 outputs a control signal as a drive voltage to the fixed electrodes 4a-4c, and controls the displacement (vertical displacement and tilt) of the movable unit 7.
  • the control section 42 modulates the wavefront of the light incident on the mirror section 6b by displacing the movable section 7 to a desired posture.
  • the light source 31 is, for example, a GaN laser device.
  • the light beam emitted from the light source 31 is converted into an infinite light beam by the collimator lens 32 and enters the polarization beam splitter 33. Only the P-polarized light component of this light beam passes through the polarizing beam splitter 33, and the remaining S-polarized light component is reflected and enters a front light monitor (not shown).
  • the transmitted P-polarized light component is converted into circularly polarized light by the 1Z4 wave plate.
  • each of the movable parts 7 includes a mirror part 6b which is a light reflecting surface, and reflects a light beam.
  • the movable part 7 is displaced in accordance with the magnitude of the voltage applied to each of the fixed electrodes 4a-4c, and locally changes the wavefront of the light beam.
  • the angle of incidence and the angle of emission of light with respect to the microactuator array 35 are each set to 45 degrees.
  • the light beam whose wavefront has been changed by the microactuator array 35 is focused on the recording layer of the disk 37 by the objective lens 36.
  • the objective lens actuator 38 translates the objective lens 36 in two directions, the optical axis direction of the light beam and the direction orthogonal to the optical axis, to focus the light beam on a desired recording layer, and follow the recording track.
  • the disk 37 is an optical recording medium that includes a plurality of recording layers arranged at predetermined intervals and a light-transmittable base member that covers and protects the recording layers. It is more preferable that the recording layer has a diffusive property or a fluorescent property in order to prevent the loss of the difference information of the odd symmetric aberration in the round trip.
  • the light beam reflected by the recording layer of the disk 37 passes through the mirror portion 6b of the microactuator array 35 and the 1Z4 wave plate 34 again. Most of this light beam is an S-polarized component, so that the light beam is reflected by the polarization beam splitter 33 and enters the wavefront information generation unit 47.
  • the wavefront information generation unit 47 generates wavefront information indicating the wavefront state of the light beam.
  • the wavefront information generation unit 47 includes a hologram 39, a lens 40, and a photodetector 41. Although the wavefront information generation unit 47 is described here as a modal type wavefront sensor, A Shack-Hartmann type wavefront sensor may be used! /, And some! / ⁇ may use another aberration detection method as described in JP-A-2000-155979. V ,. A modal wavefront sensor is disclosed in the following document.
  • the lens 40 focuses the n pairs of light beams deflected by the hologram 39 on the photodetector 41. Assuming that the focal length of the lens 40 is f, the hologram 39 and the photodetector 41 are each located at a distance f from the main plane of the lens 40, and the lens 40 functions as a Fourier transform lens.
  • the photodetector 41 generates a differential output signal Si, which is an intensity signal of ⁇ primary light, for each of the n pairs of light beams, and outputs the signal to the control unit.
  • the differential output signal Si corresponding to the aberration mode Mi is a signal corresponding to the magnitude Ai of the aberration mode Mi.
  • the sensitivity SiZA i for the aberration mode Mi is determined in advance by design parameters such as the noise coefficient Bi.
  • the differential output signal Si indicates wavefront information, and the magnitude of the differential output signal Si indicates the wavefront state of the light beam.
  • the differential output signal S is the spherical aberration due to the change in the base material thickness of the disk 37
  • the differential output signal S is tilted in the radial direction of the disk 37.
  • the differential output signal S is an aberration mainly corresponding to coma due to the inclination of the disk 37 in the tangential direction.
  • the differential output signal S is used to defocus the objective lens 36.
  • the differential output signal S is an output signal relating to the aberration mode.
  • the control unit 42 displaces the movable unit 7 according to the wavefront information indicated by the differential output signal Si.
  • the control unit 42 includes a wavefront calculation unit 43, a lens shift correction calculation unit 44, an overall control unit 45, And a correction control unit 46.
  • the control unit 42 or a part thereof is provided on the base 1 of the microactuator array 35, and the control unit 42 and the microactuator array 35 are integrated into one chip.
  • a light source 31 a collimator lens 32, a polarizing beam splitter 33, a 1Z4 wave plate 34, a microactuator array 35, an objective lens 36, an objective lens actuator 38, and a wavefront information generating unit 47 are provided. It is located on a pickup base (not shown). In this case, the optical pickup base may double as the base 1. Further, the control section 42 or a part thereof may be provided on the optical pickup base.
  • the wavefront calculation unit 43 uses the differential output signal S-S to calculate the wavefront calculation unit 43.
  • ⁇ (X, y) Calculates the phase function ⁇ (X, y) for correcting the wavefront aberration accompanying.
  • x and y are coordinates corresponding to the mirror position of the micro actuator array 35.
  • the lens shift correction operation unit 44 receives the value of the lens shift amount X of the objective lens 36 from the overall control unit 45, and based on this, the position correlation X—X, y)
  • This ⁇ (X—X, y) is used when the wavefront correction controller 46 controls the microactuator array 35.
  • the overall control unit 45 outputs the focus control signal Fo and the focus control signal Fo based on the differential output signals S and S.
  • a tracking control signal Tr is generated and output to the objective lens actuator 38. Further, the overall control unit 45 calculates the lens shift amount X of the objective lens 36 by passing the generated tracking control signal Tr through a low-pass filter.
  • the wavefront correction control unit 46 outputs a signal indicating ⁇ ( ⁇ - ⁇ , y) from the lens shift correction calculation unit 44.
  • the control signal D is received and generates a control signal D for controlling the displacement of each movable portion 7 of the microactuator array 35 in accordance with ⁇ (X—X, y).
  • the microactuator array 35 includes, for example, 42 ⁇ 36 microactuators 10. In this case, since each of the microactuators 10 has three fixed electrodes 4a-4c, the microactuator array 35 has 42 ⁇ 36 ⁇ 3 fixed electrodes.
  • the control signal D indicates the magnitude of each drive voltage individually applied to each of the 42 ⁇ 36 ⁇ 3 fixed electrodes.
  • the wavefront correction control unit 46 is configured to control the fixed electrode receiving the control signal D in accordance with the target displacement of the point of action of the driving force exerted on the movable unit 7 by the fixed electrode. The magnitude of the drive voltage applied to the fixed electrode is set.
  • the driving voltage applied to the fixed electrode and the displacement of the movable section 7 generally have a non-linear relationship
  • by giving the control signal D a higher resolution (for example, lObit) a linear displacement can be obtained. Correction processing can be performed.
  • the control signal D is switched in time series.
  • the wavefront correction control unit 46 Since there is no need to perform any correction for displacement due to non-diagonality, the control configuration can be extremely simplified.
  • the microactuator 10 of the present invention has a small non-diagonal size ⁇ ' ⁇ ⁇ , so the control configuration is simple even if the number of fixed electrodes is large (for example, 42 x 36 x 3). Can be If the magnitude of non-diagonality ⁇ ' ⁇ ⁇ is large as in the conventional microactuator 1000 (Fig.
  • the amount of computation for correcting displacement due to non-diagonality becomes enormous.
  • the control structure becomes complicated, resulting in a significant increase in cost and a reduction in the driving speed of the micro actuator.
  • the amount of calculation for correcting displacement caused by non-diagonality can be extremely small, so that cost reduction and high-speed driving of the microactuator can be realized. .
  • the present invention is particularly useful when driving a large number of microactuators.
  • the wavefront correction control unit 46 can easily correct the displacement due to non-diagonality even when using a driving force that generates no force in the suction direction such as electrostatic force. It can be carried out.
  • Each of the action points AB in the movable portion 7 is a point passing through the center of a region of the fixed electrodes 4a-4c where the driving force of the corresponding fixed electrode is generated and passing through an axis perpendicular to the fixed electrode.
  • the center of the region where the driving force of a certain fixed electrode is generated coincides with, for example, the center of the fixed electrode.
  • the microactuator 10 is capable of tilting in two axes and vertical displacement in one axis. First, a one-dimensional model that performs one-axis tilt and one-axis vertical displacement will be described, followed by a two-dimensional model that performs two-axis tilt and one-axis vertical displacement.
  • FIGS. 8A to 8B are explanatory diagrams of a one-dimensional model showing a relationship between a coordinate position of an action point in the movable section 7 and a wavefront approximation accuracy.
  • the horizontal axis is the coordinate position in the X direction of microactuator 10, and the vertical axis is the phase of the wavefront.
  • the phase function ⁇ to be corrected is indicated by a two-dot chain line.
  • the phase function ⁇ is given as a function of the coordinate position X as described above. Since the mirror section 6b can control the displacement and the inclination with respect to the base 1, the phase function ⁇ is reproduced by a polygonal line approximation.
  • P be the pitch between adjacent mirror sections 6b. Coordinate point X for each pitch P
  • the displacement and tilt of the mirror part 6b can be obtained by connecting the values of the phase function ⁇ ( ⁇ ) and ⁇ (ji j + iix) for two adjacent coordinate points x and X. it can. This approximate line ⁇ , j + i
  • FIG. 8C shows that the radius of curvature p of the phase function ⁇ in the section [x, x] and the wavefront error are minimized.
  • FIG. 6 is a diagram plotting a relationship between the distance L and the distance L. It is assumed that the length of the mirror portion 6b is substantially equal to the pitch P.
  • the horizontal axis is the dimensionless radius of curvature p ZP, and the vertical axis is the dimensionless distance LZP that minimizes the wavefront error.
  • Wavefront error length definite integral value of the squares of errors in the mirror P ⁇ ( ⁇ - ⁇ ') is defined as the square root of 2 dx.
  • the wavefront error can be minimized to the same extent as the method using the least squares method. Further, since the displacement target value of the action point in the movable section 7 can be directly calculated from the phase function ⁇ , the amount of calculation can be extremely reduced.
  • FIG. 9 is an explanatory diagram of a two-dimensional model showing a relationship between a coordinate position of an action point in the movable portion 7 and a wavefront approximation accuracy.
  • FIG. 9A is a plan view schematically showing the microactuator array 35.
  • the pitch between the mirror portions 6b adjacent to each other is P.
  • the length Q of one side of the mirror section 6b is approximated to be equal to (P / 1?>), And the gap between the adjacent mirror section 6b is ignored.
  • FIG. 9B is a diagram plotting the relationship between the radius of curvature p of the phase function ⁇ in the mirror section 6b and the value of the distance R that minimizes the wavefront error.
  • Fig. 9B the horizontal axis represents the dimensionless radius of curvature ZP, and the vertical axis represents the dimensionless dimensionless distance RZP that minimizes the wavefront error.
  • Wavefront error definite integral value of the square errors definitive regular hexagonal mirror plane ⁇ ⁇ ( ⁇ - ') is defined as the square root of 2 d X dy.
  • phase function ⁇ represents a spherical surface
  • the dimensionless distance RZP that minimizes the wavefront error is almost independent of the dimensionless radius of curvature / o ZP, and is a constant value of about 0.37.
  • the results of the above-described one-dimensional model are indicated by dotted lines. This result shows that the phase function ⁇ force is a force almost equivalent to representing a cylindrical surface that has curvature only in the X direction and no curvature in the y direction.
  • the dimensionless distance RZP is about 0.29 .
  • the phase function ⁇ represents a spherical surface
  • the flatness is 0, and if the phase function ⁇ represents a cylindrical surface, the flatness is 1, the normal wavefront has an intermediate flatness. Therefore, as indicated by the hatched portions in the figure, it is understood that the range of the dimensionless distance RZP should be set to be greater than or equal to 0.29 and less than or equal to 0.37.
  • the displacement target value of the action point A—C can be obtained simply by directly inputting the coordinate position (X, y) of each action point to the phase function ⁇ . , The amount of computation performed by the wavefront correction controller 46 can be extremely reduced.
  • microactuator of the present invention and an apparatus provided with the microactuator are suitably used in the field of optical devices and optical disc devices that perform aberration correction, optical scanning, spectral separation, and the like. It is also suitably used in the fields of high-frequency circuits such as tunable capacitors, flow control devices such as variable flow paths, and biotechnology.

Abstract

 本発明のマイクロアクチュエータは、基台1と、基台1に対して変位可能な可動部7と、可動部7を支持する弾性支持部5と、可動部7を変位させる駆動部4a~4cとを備える。可動部7の垂直方向への変位に応じたバネ定数と、可動部7の傾動角度に応じたバネ定数との間に特定の関係を持たせて、駆動力と可動部7の変位との対角性を大きくすることにより、マイクロアクチュエータの制御の高精度化および簡素化を実現する。                                                                       

Description

明 細 書
マイクロアクチユエータ、およびマイクロアクチユエータを備えた装置 技術分野
[0001] 本発明は、傾動と垂直変位とが可能なマイクロアクチユエータ、およびそのマイクロ ァクチユエータを備えた装置に関する。
背景技術
[0002] MEMS (Micro Electro Mechanical System)技術を用いて多様なマイクロ ァクチユエータが作製され、光学、高周波回路、バイオテクノロジーなど様々な分野 へのマイクロアクチユエータの応用が期待されている。例えば補償光学 (Adaptive Optics)分野では、光の波面を制御するためのマイクロミラーアレイが開発されてい る。こうした用途では、光の波面を滑らかに制御するために、 1つ 1つの光反射面を基 台に対して傾動させると同時に垂直変位をさせることが有効である。
[0003] このような傾動と垂直変位とが可能なマイクロアクチユエ一タの例は、非特許文献 1 に開示されている。図 10は、非特許文献 1に開示されるマイクロアクチユエータ 1000 を模式的に示す斜視図である。
[0004] 可動電極 100は、その外周部を 3本の弾性梁 101a、 101bおよび 101cにより支持 されている。また、可動電極 100は 3つの固定電極 102a、 102bおよび 102cと対向 している。固定電極 102a、 102bおよび 102cは、それぞれ独立に駆動電圧を印加 可能に設けられ、可動電極 100との間で電位差が与えられる。これにより、可動電極 100を吸引する方向に静電力が発生する。
[0005] 固定電極 102a— 102cの駆動電圧を同一に設定すれば、可動電極 100はほぼ傾 動せずに下方向に垂直変位する。また、これらの駆動電圧を互いに異ならせれば、 可動電極 100は所望の方向に傾動しながら下方向に垂直変位する。このように、可 動電極 100は下方向への垂直変位と同時に 2軸の傾動が可能である。
[0006] ミラー 103は、接合部 104において可動電極 100と接合されているため、可動電極 100の変位がそのままミラー 103の変位を決定する。
非特許文献 1 : U. Srinivasan, et al. , "FluidicSelf— Assembly of Micro mirrors Onto Microactuators Using Capillary Forces", IEEEJournal on Selected Topics in Quantum Electronics, Vol. 8, No. 1, pp. 4-11 (January, 2002)
発明の開示
発明が解決しょうとする課題
[0007] しかしながら、上記のようなマイクロアクチユエータ 1000は、固定電極の駆動信号と ミラー変位との関係における非対角性が大きいという課題がある。ここで、非対角性と は、ある固定電極に所定の電圧を印加し、その固定電極に対向する側の可動電極 1 00の一端が垂直方向に変位した場合に、他の固定電極に対向する側の可動電極 1 00の端部も垂直方向に変位してしまうことを指す。
[0008] 図 11を参照して、この課題を説明する。図 11は、マイクロアクチユエータ 1000の動 作を示す図である。図 11は模式化したマイクロアクチユエータ 1000の断面図である ので、可動電極 100と、 2本の弾性梁 101aおよび 101bと、 2つの固定電極 102aお よび 102bのみが図示されている。固定電極 102aが可動電極 100に及ぼす駆動力 の作用点 aは、固定電極 102aのうちの駆動力が発生する領域の中心を通り固定電 極 102aに垂直な軸を通る点である。固定電極 102bが可動電極 100に及ぼす駆動 力の作用点 bは、固定電極 102bのうちの駆動力が発生する領域の中心を通り固定 電極 102bに垂直な軸を通る点である。
[0009] ここでは、固定電極 102aのみに所定の電圧を印加して可動電極 100を吸引した場 合を説明する。固定電極 102aは駆動力 Fを発生し、作用点 aにおいて可動電極 100 は垂直方向に δだけ変位する。このとき、駆動力を発生していない固定電極 102bに 対向する作用点 bにおいても可動電極 100は垂直方向に δ 'だけ変位している。ここ で、この変位 δ,と変位 δとの比の値 δ ' Ζ δを非対角性の大きさの指標とする。
[0010] 可動電極 100の姿勢制御の観点から、こうした非対角性は小さい方が良い。非対 角性が変位の目標分解能に対して十分小さければ、各作用点 aおよび bにおける可 動電極 100の変位を、対応する固定電極への印加電圧によりそれぞれ独立して制 御できるので、制御装置を簡素な構成にすることができる。また、非対角性に起因す る変位 (例えば δ ' )を補正する制御を行う場合でも、非対角性が小さいほど制御の 高精度化と簡素化が容易となる。特に静電駆動の場合は駆動力が吸引方向にしか 発生しないため、 δ 'の大きさを 0に戻す方向への補正制御が難しい。また、マイクロ ァクチユエータの特性のばらつきが大きい場合は非対角性に起因する変位の補正の ためのデータ量が膨大になってしまう。特に、マイクロアクチユエータを多数備える装 置 (マイクロミラーアレイ等)において上述の非対角性が大きいと、非対角性に起因す る変位の補正のためのデータ量が膨大になってしまう。このことは、著しいコストの増 大およびマイクロアクチユエータの駆動速度の低下の原因となる。このような点から、 非対角性は小さ!、方が望ま 、。
[0011] しかしながら、図 10および図 11から明らかなように、可動電極 100の外周部を支持 して、その内側に固定電極を形成した構成では、 1つの固定電極 102aによって発生 する駆動力 Fによって可動電極 100の全ての位置が下方向に変位してしまう。このた め、非対角性が極めて大きい。補正制御の高精度化および簡素化を考慮すると、非 対角性 δ 'Ζ δは 1Ζ3以下であることが望ましいが、従来のマイクロアクチユエータ 1 000の構成では、設計上の工夫をしても非対角性を 1Z3以下にすることは極めて困 難であった。
[0012] 本発明は、上記課題に鑑みてなされたものであり、その目的は、駆動力と可動部の 変位との非対角性を小さくしたマイクロアクチユエータ、およびそのマイクロアクチユエ ータを備えた装置を提供することにある。
課題を解決するための手段
[0013] 本発明のマイクロアクチユエータは、基台と、前記基台に対して変位可能な可動部 と、前記可動部の前記基台に対する垂直方向の変位、および前記基台に対する傾 動が可能となるように前記可動部を支持する弾性支持部と、前記基台に対して前記 可動部を変位させる複数の駆動部とを備え、前記複数の駆動部は、第 1の駆動部と 第 2の駆動部とを含み、前記第 1の駆動部が前記可動部に及ぼす第 1の駆動力の第 1の作用点と、前記第 2の駆動部が前記可動部に及ぼす第 2の駆動力の第 2の作用 点との間の位置で、前記弾性支持部は前記可動部を支持しており、前記可動部の 前記基台に対する垂直方向への変位に応じて前記弾性支持部に生じる復元力のバ ネ定数を kz(NZm)、前記可動部の前記基台に対する傾動角度に応じて前記弾性 支持部に生じる復元トルクのパネ定数を kr (NmZrad)、前記第 1の作用点と前記第 2の作用点との間の距離を 2L (m)とするときに、前記 kzと前記 krと前記 Lとが、 0. 5 ≤L2-kz/kr ≤ 2の関係を満たすことを特徴とする。
[0014] 本発明のマイクロアクチユエータは、基台と、前記基台に対して変位可能な可動部 と、前記可動部の前記基台に対する垂直方向の変位、および前記基台に対する 2軸 の傾動が可能となるように前記可動部を支持する弾性支持部と、前記基台に対して 前記可動部を変位させる複数の駆動部とを備え、前記複数の駆動部が前記可動部 に及ぼす駆動力が作用する複数の作用点で囲まれた位置で、前記弾性支持部は前 記可動部を支持しており、前記可動部の前記基台に対する垂直方向への変位に応 じて前記弾性支持部に生じる復元力のパネ定数を kz (NZm)、前記可動電極の前 記 2軸の傾動における傾動角度に応じて前記弾性支持部に生じる復元トルクのパネ 定数を krx (NmZrad)および kry (NmZrad)、前記複数の作用点のそれぞれと前 記弾性支持部が前記可動部を支持している前記位置との間の距離を R(m)としたと きに、刖記 kzと刖'記 krxと刖記 kryと刖記 Rとが、 1 ≤ R2-kz/krx ≤ 5、 1 ≤ R2-kz/kry ≤ 5、 0. 67 ≤ krx/kry ≤ 1. 5の関係を満たすことを特徴 とする。
[0015] ある実施形態において、前記弾性支持部は、前記可動部の概ね中央部を支持して いる。
[0016] ある実施形態において、前記可動部の少なくとも一部は導電性を有し、前記複数 の駆動部のそれぞれは前記可動部と対向する電極を備え、前記複数の駆動部のそ れぞれは、前記可動部と前記電極との間に生じる静電力により前記可動部を駆動す る。
[0017] ある実施形態において、前記複数の駆動部は、前記弾性支持部が前記可動部を 支持している位置を通り前記基台に垂直な軸を中心に概ね対称に配置されている。
[0018] ある実施形態において、前記弾性支持部は、前記基台に接続された第 1端部と、 前記可動部に接続された第 2端部とを備え、前記第 1端部と前記第 2端部との間の距 離を Hとしたときに、前記 Hと前記 Rと力 0. 8 ≤ H/R ≤ 1. 6の関係を満たす [0019] ある実施形態において、前記第 1端部と前記可動部の中央部との間の距離は、前 記第 2端部と前記可動部の中央部との間の距離よりも長い。
[0020] ある実施形態にお!、て、前記弾性支持部は梁部を備え、前記梁部は、前記梁部の 延びる方向が反転している折り返し部を備える。
[0021] ある実施形態において、前記折り返し部と前記可動部の中央部との間の距離は、 前記弾性支持部の前記基台に接続された位置と前記可動部の中央部との間の距離 よりち長い。
[0022] ある実施形態において、前記複数の駆動部のうちの 1つが前記可動部を駆動して 前記可動部の一端が前記基台に近づく方向に変位した場合に、前記可動部の他端 は前記基台から離れる方向に変位する。
[0023] ある実施形態において、前記 kzと前記 krと前記 Lとが、 1 ≤ L2'kzZkrの関係を 満たす。
[0024] ある実施形態において、前記 kzと前記 krxと前記 kryと前記 Rとが、 2 ≤ R2-kz/ krx、 2 ≤ R2'kzZkryの関係を満たす。
[0025] 本発明の装置は、前記マイクロアクチユエータを複数個備え、前記複数のマイクロ ァクチユエータは、前記基台を互いに共有して 、ることを特徴とする。
[0026] 本発明の装置は、前記マイクロアクチユエータを複数個備え、前記複数のマイクロ ァクチユエータは、前記基台を互いに共有しており、前記複数のマイクロアクチユエ ータのうちの互いに隣接するマイクロアクチユエータ同士のピッチを P (m)としたとき に、前記 Pと前記 Rとが、 0. 29 ≤ R/P ≤ 0. 37の関係を満たすことを特徴とす る。
[0027] ある実施形態において、前記装置は、前記複数の駆動部に制御信号を出力して、 前記可動部の変位を制御する制御部をさらに備える。
[0028] ある実施形態にぉ 、て、前記制御部は、前記可動部を 3段階以上に変位可能であ る。
[0029] ある実施形態にぉ 、て、前記制御部は、前記複数の駆動部のうちの前記制御信号 を受け取る駆動部が前記可動部に及ぼす駆動力の作用点の目標変位量に応じた 前記制御信号を出力する。 [0030] ある実施形態において、前記可動部は光反射面を備える。
[0031] ある実施形態において、前記装置は、光を発生する光源をさらに備える。
[0032] ある実施形態において、前記装置は、前記光反射面を通った光を受け取り、前記 光の波面状態を示す波面情報を生成する波面情報生成部をさらに備え、前記制御 部は、前記波面情報に応じて前記可動部を変位させる。
発明の効果
[0033] 本発明によれば、弾性支持部が可動部を複数の作用点の間あるいは複数の作用 点で囲まれた位置で支持する。また、可動部の垂直方向への変位に応じたパネ定数 と、可動部の傾動角度に応じたパネ定数との間に特定の関係を持たせている。これ により、駆動部の駆動力と可動部の変位との非対角性を小さくする (すなわち対角性 を大きくする)ことができ、マイクロアクチユエータの制御の高精度化および簡素化を 容易に実現することができる。また、マイクロアクチユエータを制御する制御装置を簡 素な構成にすることができる。
[0034] 本発明によれば、駆動部の駆動力と可動部の変位との非対角性は小さぐ可動部 中の作用点のそれぞれの位置における変位は、互いに干渉せず独立に制御するこ とができるので、制御の簡素化と高精度化とを実現することができる。
図面の簡単な説明
[0035] [図 1A]本発明の実施形態 1によるマイクロアクチユエ一タを模式的に示す分解斜視 図である。
[図 1B]本発明の実施形態 1によるマイクロアクチユエータアレイを模式的に示す分解 斜視図である。
[図 2A]本発明の実施形態 1によるマイクロアクチユエータの 1次元モデルでの動作説 明図である。
[図 2B]本発明の実施形態 1によるマイクロアクチユエータの 1次元モデルでの動作説 明図である。
[図 3A]本発明の実施形態 1によるマイクロアクチユエ一タを模式的に示す平面図であ る。
[図 3B]本発明の実施形態 1によるマイクロアクチユエータの 2次元モデルでの動作説 明図である。
[図 3C]本発明の実施形態 1によるマイクロアクチユエータの 2次元モデルでの動作説 明図である。
[図 4]本発明の実施形態 1によるマイクロアクチユエ一タを模式的に示す平面図であ る。
[図 5A]本発明の実施形態 2によるマイクロアクチユエ一タを模式的に示す平面図であ る。
[図 5B]本発明の実施形態 2によるマイクロアクチユエ一タの弹性梁の折り返し部周辺 を拡大した図である。
[図 6A]本発明の実施形態 3によるマイクロアクチユエ一タを模式的に示す平面図であ る。
[図 6B]本発明の実施形態 3によるマイクロアクチユエ一タの弹性支持部に反りがある 状態を模式的に示す側面図である。
[図 7]本発明の実施形態 4によるマイクロアクチユエータを備えた装置を模式的に示 す図である。
圆 8A]本発明の実施形態 4による可動部中の作用点の座標位置と波面近似精度と の関係を示す 1次元モデルの説明図である。
圆 8B]本発明の実施形態 4による可動部中の作用点の座標位置と波面近似精度と の関係を示す 1次元モデルの説明図である。
圆 8C]本発明の実施形態 4による位相関数の曲率半径と、波面誤差を極小にする距 離との関係をプロットした図である。
[図 9A]本発明の実施形態 4によるマイクロアクチユエータアレイを模式的に示す平面 図である。
圆 9B]本発明の実施形態 4による位相関数の曲率半径と、波面誤差を極小にする距 離との関係をプロットした図である。
[図 10]従来のマイクロアクチユエ一タを模式的に示す斜視図である。
[図 11]従来のマイクロアクチユエータの動作説明図である。
符号の説明 [0036] 1 基板
4a— 4c、 14a— 14c、 24a— 24c 固定電極
5、 15、 25 弾性支持部
5a, 15a, 25a 弾性梁
5h— 5j、 15h— 15j、 25h— 25j 固定端
5k— 5m、 15k— 15m、 25k— 25m 可動端
15n— 15s, 25n— 25p 折り返し部
6 可動電極
6b ミラー部
7 可動部
10、 10a、 10b マイクロアクチユエータ
31 光源
35 マイクロアクチユエータアレイ
42 制御部
47 波面情報生成部
発明を実施するための最良の形態
[0037] 以下、図面を参照して、本発明によるマイクロアクチユエータ、およびマイクロアクチ ユエータを備えた装置の実施形態を説明する。
[0038] (実施形態 1)
図 1A—図 4を参照して、本発明によるマイクロアクチユエ一タの第 1の実施形態を 説明する。
[0039] まず、図 1Aを参照する。図 1Aは、本実施形態のマイクロアクチユエータ 10を模式 的に示す分解斜視図である。
[0040] マイクロアクチユエータ 10は、基台 1と、可動部 7と、弾性支持部 5と、固定電極 4a、 4bおよび 4cとを備える。マイクロアクチユエータ 10は、例えば MEMS技術を用いて 作製される。基台 1は、例えばシリコン基板である。基台 1上には駆動回路 laが設け られており、駆動回路 laの上に絶縁層 2が設けられている。絶縁層 2上には、固定電 極 4a— 4cおよび接地配線部 3が設けられて 、る。可動部 7は基台 1に対して変位可 能である。弾性支持部 5は弾性を有し、基台 1の平面方向に対して垂直な方向への 可動部 7の変位、および基台 1に対する可動部 7の傾動が可能となるように可動部 7 を支持している。固定電極 4a— 4cのそれぞれは、基台 1の平面方向に対して垂直な 方向に可動部 7を駆動する駆動部として機能する。固定電極 4a— 4cおよび接地配 線部 3の材料として、アルミニウム (A1)合金、ポリシリコンゲルマニウム(Poly— SiGe) 等の 450°C以下で低温成膜が可能な導電材料が用いられる。固定電極 4a— 4cのそ れぞれは、絶縁層 2に形成されたビア (不図示)によって駆動回路 laに接続されてい る。駆動回路 laは、所定の電圧の範囲内(例えば 0— 30V)の駆動電圧を固定電極 4a— 4cにそれぞれ独立して印加することができる。この駆動電圧は例えば lObitの 多段階の値として設定され得る。
[0041] 弾性支持部 5は、 3本の弾性梁 5a— 5cと、これらの弾性梁 5a— 5cを基台 1に固定 する固定部 5d— 5fと、可動部 7を支持するための支持部 5gとを備える。弾性梁 5a— 5cは接地配線部 3に接続されている。ここで、弾性梁 5a— 5cの端部のうち、固定部 5 d— 5fに接続された側の端部を固定端 5h— ¾、支持部 5gに接続された側の端部を 可動端 5k— 5mと呼ぶ。
[0042] 弾性支持部 5を形成するには、まず、接地配線部 3および固定電極 4a— 4c上にフ オトレジストを用いて第 1の犠牲層(不図示)を形成し、次に、その第 1の犠牲層上に 弾性支持部 5を形成すればよい。弾性支持部 5の材料として、接地配線部 3および固 定電極 4a— 4cと同様の導電材料が用いられる。
[0043] 支持部 5gは可動電極 6の中央部に設けられた突起 6aと接続している。また、 3本の 弾性梁 5a— 5cは支持部 5gを介して互いに連結して 、る。
[0044] 可動部 7を形成するには、まず、弾性支持部 5上にフォトレジストを用いて第 2の犠 牲層(不図示)を形成し、次に、その第 2の犠牲層上に可動電極 6を形成すればよい 。可動電極 6は概正六角形の形状を有する。可動電極 6の材料として、接地配線部 3 および固定電極 4a— 4cと同様の導電材料が用いられる。可動電極 6の上面は光反 射面であるミラー部 6bとなっている。光反射効率をより高めるために、可動電極 6の 上面に金や誘電体多層膜等をコーティングしてミラー部 6bを形成しても良い。なお、 マイクロアクチユエータ 10の製造工程において、上述した第 1および第 2の犠牲層は 最終的には有機溶剤や酸素プラズマ等により除去され、除去された後の部分には空 隙が形成される。可動電極 6は弾性支持部 5および接地配線部 3を介して駆動回路 1 aと接続し、接地電位に保たれている。
[0045] 可動電極 6は 3つの固定電極 4a— 4cと空隙を介して対向している。可動電極 6と固 定電極 4a— 4cとの間に電位差が生じると、可動電極 6と固定電極 4a— 4cとの間に 静電力が生じる。この静電力を駆動力として可動部 7を駆動する。この駆動力によつ て可動部 7が変位すると弾性支持部 5が弾性的に変形し、弾性支持部 5の弾性復元 力と駆動力との釣り合いによって可動部 7の姿勢が決定する。各固定電極 4a— 4cに よって発生する駆動力の大きさを制御することにより、可動部 7の基台 1に対して垂直 な方向への変位の量と、基台 1に対する傾動の量とを制御することができる。固定電 極 4a— 4cの駆動電圧を同一に設定すれば、可動部 7はほぼ傾動せずに、可動部 7 の中央部を含む可動部 7全体が基台 1に近づく方向に垂直変位する。また、これらの 駆動電圧を互いに異ならせれば、可動部 7は所望の方向に傾動する。ここで、基台 1 に対する傾動は、基台 1の平面方向に平行で互!ヽに直交する 2つの傾動軸周りの傾 動である。
[0046] 上述の 1つのマイクロアクチユエータ 10を単位セルとし、複数の単位セルを配列し たマイクロアクチユエータアレイ 35を図 1Bに示す。図 1Bはマイクロアクチユエータァ レイ 35を模式的に示す分解斜視図である。複数のマイクロアクチユエータ 10が備え る可動部 7、弾性支持部 5および固定電極 4a— 4cは、 1枚の基台 1上に設けられて おり、複数のマイクロアクチユエータ 10は 1枚の基台 1を互 ヽに共有して!/、る。
[0047] 互いに隣接するマイクロアクチユエータ 10同士のピッチ Pは例えば 110 μ mである 。マイクロアクチユエータ 10の数は例えば 42 X 36個である。このような複数のマイク ロアクチユエータ 10を備えたマイクロアクチユエータアレイ 35は、マイクロミラーアレイ として機能する。
[0048] 次に、図 2A—図 3Cを参照して、固定電極 4a— 4cによって発生する駆動力と可動 部 7の変位との間の非対角性を小さくするための条件を説明する。マイクロアクチユエ ータ 10 (図 1A)は 2軸の傾動と 1軸の垂直変位が可能なように弾性支持部 5に支持さ れている。説明の順序として、まず 1軸の傾動と 1軸の垂直変位を行う 1次元モデルを 説明し、次いで 2軸の傾動と 1軸の垂直変位を行う 2次元モデルを説明する。
[0049] 図 2Aおよび図 2Bは、マイクロアクチユエータ 10の 1次元モデルでの動作説明図で ある。図 2Aは固定電極 4aのみに所定の電圧を印加して可動電極 6を吸引した状態 を示している。
[0050] 固定電極 4aが可動部 7の可動電極 6に及ぼす駆動力の作用点 Aは、固定電極 4a のうちの駆動力が発生する領域の中心を通り固定電極 4aに垂直な軸を通る点である 。固定電極 4bが可動電極 6に及ぼす駆動力の作用点 Bは、固定電極 4bのうちの駆 動力が発生する領域の中心を通り固定電極 4bに垂直な軸を通る点である。弾性支 持部 5は可動電極 6の概ね中央部を支持しているので、 1次元モデルでは、作用点 A と作用点 Bとの間の位置(中央部 O)で弾性支持部 5は可動電極 6を支持していること になる。この中央部 Oを通り基台 1 (図 1A)に垂直な軸を中心に、固定電極 4aおよび 4bは概ね対称に配置されている。このため、中央部 Oと作用点 Aとの間の距離およ び中央部 Oと作用点 Bとの間の距離はどちらも概ね等しく L (m)である。作用点 Aと作 用点 Bとの間の距離は 2Lである。
[0051] 中央部 Oにおける可動電極 6の基台 1に対する垂直変位 δ o (m)に応じて弾性支 持部 5に生じる復元力のパネ定数を kz (NZm)とし、可動電極 6の基台 1に対する傾 動角度 Θ (rad)に応じて弾性支持部 5に生じる復元トルクのパネ定数を kr (NmZra d)とする。固定電極 4aのみに所定の電圧を印加して可動電極 6を吸引した場合に作 用点 Aに生じる駆動力を Fa (N)、固定電極 4bのみに所定の電圧を印加して可動電 極 6を吸引した場合に作用点 Bに生じる駆動力を Fb (N)とする。また、作用点 Aにお ける可動電極 6の垂直方向の変位を δ (m)とし、作用点 Bにおける可動電極 6の垂 直方向の変位を δ ' (m)とする。このとき、力のつりあいは(式 1)で表される。
Fa+Fb= ( 6 + δ ' ) /2 X kz (式 1)
[0052] また、モーメントのつりあ 、は(式 2)で表される。
L- (Fa-Fb) = ( 6 - 6 ' ) /2L X kr (式 2)
[0053] 図 2Aを参照して、固定電極 4aのみに所定の電圧を印加して可動電極 6を吸引し た場合、作用点 Aには駆動力 Faが発生し、作用点 Aにおいて可動電極 6は垂直方 向に δだけ変位する。このとき、駆動力が発生していない作用点 Βにおいて可動電 極 6は垂直方向に δ 'だけ変位する。この場合、 Fb = 0なので、(式 1)および(式 2)よ り、
Fa=(6 + δ ')/2Xkz (式 3)
L-Fa=(6-6 ')/2LXkr (式 4)
o
となり、(式 3)および (式 4)より、
δ =(l/kz + L2/kr)Fa (式 5)
δ ' = (l/kz-L2/kr) Fa (式 6)
II
となる。したがって、非対角性の \大きさ δ 'Ζ δは、(式 7)で与えられる。
[0054] [数 1] δ ' 1— (L2 · k z/k r)
6 1 + (L2 · k z/k r) (式 7、
[0055] (式 7)から、 L2'kzZkrの値を 1に近づけることで、非対角性の大きさ δ 'Ζ δを所 望の値にまで小さくすることが可能であることが判る。非対角性の大きさ δ,Ζ δと、 L 2'kzZkrで与えられる値とには直接的な対応関係が存在し、この関係を (表 1)に示 す。
[0056] [表 1] 非対角性の大きさ 《5' 5 必要なし2 - k z/k rの条件
0. 5 0. 33 ≤ L2 · k z/k r ≤ 3
0. 5 ≤ L2 · k z/k r ≤ 2
0. 25 0. 6 ≤ L2 - k z/k r ≤ 1. 67
0. 2 0. 67 ≤ L2 · k z/k r ≤ 1. 5
0. 1 0. 82 ≤ L2■ k z/k r ≤ 1. 2
[0057] 従来のマイクロアクチユエータ 1000 (図 10)ように弾性支持部が可動電極の外周を 支持する構成では、非対角性の大きさ δ 'Ζ δを 1Ζ3以下にすることは非常に困難 であることは既に説明した。これに対し、本発明のマイクロアクチユエータ 10は、弾性 支持部 5が可動部 7の概ね中央部 Οを支持する構成であり、さらに、パネ定数 kzおよ び krと距離 Lとに、
0.5 ≤L2-kz/kr ≤ 2 の関係を持たせることで、非対角性の大きさ δ ,Ζδを 1Z3以下にすることができる 。このように非対角性を小さくすることで、マイクロアクチユエータ 10の制御の高精度 化および簡素化を容易に実現することができる。また、マイクロアクチユエータを制御 する制御装置を簡素な構成にすることができる。
[0058] なお、非対角性の大きさ δ ,Ζδは ΙΖΙΟ以下であればより望ましい。(表 1)よりバ ネ定数 kzおよび krと距離 Lとに、
0.82 ≤L2-kz/kr ≤ 1.2
の関係を持たせることで、非対角性の大きさ δ ,Ζδを ΐΖΐο以下にすることができる
[0059] なお、ここでは固定電極 4aのみが駆動力を発生する場合を説明したが、固定電極 4aおよび 4bにそれぞれ任意の駆動力を発生させる場合でも上記の関係は成り立つ 。このことを図 2Bを参照して説明する。図 2Bは固定電極 4aおよび 4bにそれぞれ独 立の電圧を印加して可動電極 6を吸引した状態を示している。
[0060] 固定電極 4aが発生する駆動力を Fa (N)、固定電極 4bが発生する駆動力を Fb (N )とする。また、作用点 Aにおける可動電極 6の垂直方向の変位を δ a(m)とし、作用 点 Bにおける可動電極 6の垂直方向の変位を δ b(m)とする。ここで、 Fb = 0のとき、 ( 式 1)および (式 2)より、
6a=(l/kz+L2/kr)Fa (式 8)
6b=(l/kz-L2/kr)Fa (式 9)
となり、 Fa = 0のとき、(式 1)および(式 2)より、
6a=(l/kz-L2/kr)Fb (式 10)
6b=(l/kz+L2/kr)Fb (式 11)
となる。(式 8)—(式 11)より、変位 δ aおよび δ bと駆動力 Faおよび Fbとの関係は( 式 12)で与えられる。
[0061] [数 2] 1 - (L2-kz/kr)
1 + (L2-kz/kr) Fa
L2
+ ——
kz kr
1— 2 ' kz/kr)
6 b Fb
1 + (Lz-kz/kr)
(式 1 2 )
[0062] (式 12)の右辺の行列において、非対角成分と対角成分との比の値は(式 7)を参 照して説明した非対角性の大きさと一致している。このことから、パネ定数 kzおよび kr と距離 Lとに、
0. 5 ≤L2-kz/kr ≤ 2
の関係を持たせることで、固定電極 4aおよび 4bに任意の駆動力を発生させた場合 の作用点 Aおよび Bにおける変位の干渉(固定電極 4aによって発生した駆動力の作 用点 Bの変位に対する干渉、および固定電極 4bによって発生した駆動力の作用点 Aの変位に対する干渉)を 1Z3以下に抑え、作用点 Aおよび Bにおける変位の独立 制御性を高めることができる。
[0063] また、さらに L2 · kzZkrが
1 ≤ L2-kz/kr
の条件を満たした場合には、(式 12)における非対角項が負の値をとるが、この条件 は駆動力として静電力を用いる場合のように駆動力 Faおよび Fbが吸引力し力発生 しな 、構成にぉ 、て、非対角性に起因する変位の補正を容易にする。
[0064] この理由を、再び図 2Aを参照して説明する。
[0065] 1 ≤ L2-kz/kr
の条件が満たされる場合において、固定電極 4aを駆動して発生する駆動力 Faにより 可動電極 6の作用点 A側の一端が基台 1に近づく方向に変位したとき、可動電極 6の 作用点 B側の他端は基台 1から離れる方向に変位し、作用点 Bでの非対角性による 変位 δ 'は負の値をとる。この変位を補正するには固定電極 4bによって吸引力を発 生すればよい。非対角性による変位 δ 'が固定電極 4bに近づく方向に発生する場合 は、静電力のような吸引力し力発生しない構成でこの変位を補正するのは非常に難 しい。しかし、吸引力しか発生しない構成でも、非対角性による変位 δ 'が固定電極 4 bから離れる方向に発生する場合は、基本的に駆動力 Faおよび Fbの大きさを適切に 設定すれば非対角性に起因する変位の補正を容易に行うことができる。これにより、 非対角性に起因する変位の補正を行う制御装置を簡素な構成にすることができる。
[0066] 次に、図 3A—図 3Cを参照して、 2軸の傾動と 1軸の垂直変位を行う 2次元モデル を説明する。図 3A—図 3Cは、マイクロアクチユエータ 10の 2次元モデルでの動作説 明図である。
[0067] 図 3Aは、マイクロアクチユエータ 10を模式的に示す平面図であり、可動電極 6の中 央部 Oを原点とする X軸および y軸を図 3Aに示すように設定して 、る。
[0068] 固定電極 4aが可動部 7の可動電極 6に及ぼす駆動力 Faの作用点 Aは、固定電極 4aのうちの駆動力 Faが発生する領域の中心を通り固定電極 4aに垂直な軸を通る点 である。固定電極 4bが可動電極 6に及ぼす駆動力 Fbの作用点 Bは、固定電極 4bの うちの駆動力 Fbが発生する領域の中心を通り固定電極 4bに垂直な軸を通る点であ る。固定電極 4cが可動電極 6に及ぼす駆動力 Fcの作用点 Cは、固定電極 4cのうち の駆動力 Fcが発生する領域の中心を通り固定電極 4cに垂直な軸を通る点である。 弾性支持部 5は作用点 A、 Bおよび Cで囲まれた位置 (本実施形態では可動電極 6の 概ね中央部)で可動電極 6を支持している。固定電極 4aと可動電極 6とが平行平板 電極を形成するとした第 1次近似では、作用点 Aは可動電極 6における固定電極 4a とオーバーラップする領域の中心に位置する。作用点 Bおよび Cについても同様であ る。弾性支持部 5が可動電極 6を支持している中央部 Oを中心として、固定電極 4a— 4cは回転対称に配置されている。作用点 A— Cのそれぞれと中央部 O力 の距離は R (m)である。作用点 A— Cは、中央部 Oを中心とした半径 Rの円の円周上に位置し 、中央部 Oから見て 120度の均等な角度間隔で位置している。
[0069] 図 3Bはマイクロアクチユエータ 10の y軸に沿った断面の模式図、図 3Cはマイクロア クチユエータの X軸に沿った断面の模式図である。固定電極 4a、 4bおよび 4cがそれ ぞれ独立に駆動力 Fa、 Fbおよび Fcを発生し、これによつて作用点 A、 Bおよびじに おいて可動電極 6が基台 1に垂直な方向にそれぞれ δ a、 δ bおよび δ cだけ変位す るちのとする。
[0070] 可動電極 6の基台 1に対する垂直変位 δ o (m)に応じて弾性支持部 5に生じる復元 力のパネ定数を kz (NZm)、可動電極 6の x軸周りの傾動における傾動角度 Θ x (ra d)に応じて弾性支持部 5に生じる復元トルクのパネ定数を krx (NmZrad)、可動電 極 6の y軸周りの傾動における傾動角度 0 y (md)に応じて弾性支持部 5に生じる復 元トルクのパネ定数を kry (NmZrad)とする。
[0071] 変位 S a、 S bおよび S cと駆動力 Fa、Fbおよび Fcとの関係は(式 13)で与えられる
[0072] [数 3] r ヽ
<5 b
Figure imgf000018_0001
(式 1 3 )
[0073] (式 13)において、 R2'kz/krxの値を 2に近づけ、 krxの値を kryの値に近づけるこ とで、すべての非対角成分を所望の値にまで小さくできる。このことから、弾性支持部 5が可動電極 6の中央部 Oを支持し、 R、 kz、 krx、 kryに特定の関係を持たせること によって、固定電極 4a— 4cに任意の駆動力を発生させた場合の作用点 A— こお ける変位の干渉を所定値以下に抑え、作用点 A— Cにおける変位の独立制御性を 高めることができる。
[0074] 非対角性を小さくするのに必要な R、 kz、 krx、 kryの条件の一例を (表 2)に示す。
[0075] [表 2]
非対角性の大きさ R, kz、 k r X, k r yの条件例
0. 33 · · · (= 1/3) 1 ≤ R2 · k z Xk r x ≤ 5
1 ≤ R2 · k z/k r y ≤ 5
0. 6 7 ≤ k r x/k r y ≤ 1. 5
0. 2 5 1. 1 ≤ R2 ■ k z/k r x ≤ 4
1. 1 ≤ Rz · k z /k r y ≤ 4
0. 7 1 ≤ k r x/k r y ≤ 1. 4
0. 2 1. 3 ≤ R2 · k z/k r x ≤ 3. 3
1. 3 ≤ R2 · k z/k r y ≤ 3. 3
0. 77 ≤ k r x/k r y ≤ 1. 3
0. 1 1. 6 ≤ R2 · k z/k r x ≤ 2. 5
1. 6 ≤ R3 · k z/k r y ≤ 2. 5
0. 8 7 ≤ k r x/k r y ≤ 1, 1 5
[0076] 弾性支持部 5が可動電極 6の概ね中央部 Oを支持し、パネ定数 kz、 krxおよび kry と距離 Rとに、
1 ≤ R2-kz/krx ≤ 5、
1 ≤ R2-kz/kry ≤ 5、
0.67 ≤ krx/kry ≤ 1.5
の関係を持たせることで、 1軸の垂直変位と 2軸の傾動とを含む 3軸の自由度を持つ マイクロアクチユエータ 10において、非対角性の大きさを 1Z3以下に小さくすること ができる。
[0077] なお、非対角性の大きさは 1Z10以下であればより望ましい。(表 2)より、パネ定数 kz、 krxおよび kryと距離 Rとに、
1.6 ≤ R2-kz/krx ≤ 2.5、
1.6 ≤ R2-kz/kry ≤ 2.5、
0.87 ≤ krx/kry ≤ 1.15
の関係を持たせることで、非対角性の大きさ δ ,Ζδを ΐΖΐο以下にすることができる
[0078] また、さらに R2 · kz/krが
2 ≤ R2'kz/krx、
2 ≤ R2'kz,kry
の条件を満たすことで、 1次元モデルを参照して説明したのと同様に、駆動力 Fa— F cとして吸引力し力発生しない場合でも、非対角性に起因する変位の補正を容易に することができる。
[0079] 次に図 4を参照して、上述したような条件を満たすマイクロアクチユエータ 10の具体 的な寸法数値を説明する。図 4はマイクロアクチユエータ 10を模式的に示す平面図 である。
[0080] 中央部 0、作用点 A— C、距離 Rについては図 3Aを参照して説明したのでここでは その説明を省略する。図 4に示すマイクロアクチユエータ 10における距離 Rは 37 μ m である。中央部 Oから弾性支持部 5の可動端 5kまでの距離 Hは 5. 5 /ζ πι、中央部 Ο
1
力も弾性支持部 5の固定端 5hまでの距離 Ηは 45. 5 111、中央部 O力も弾性支持部
2
5の固定部 5dの中心までの距離 Hは 51 μ mである。支持部 5gの幅 Wは 11 μ m、
3 1
弾性梁 5aの幅 Wは 4 μ m、固定部 5dの幅 Wは 11 μ mである。弾性支持部 5の厚さ
2 3
は 0. l- ΐ μ mの範囲であることが好ましぐここでは 0. 5 μ mである。弾性支持部 5 の材料をアルミニウム合金 (例えばアルミシリコン)とした場合、縦弾性係数は 69GPa 、ポアソン比は 0. 35である。
[0081] 基台 1に接続された側の固定端 5hは、可動電極 6に接続された側の可動端 5kより も外側に位置し、固定端 5hと中央部 Oとの間の距離は、可動端 5kと中央部 Oとの間 の距離よりも長い。固定端 5hから可動端 5kに向けて延在する弾性梁 5aの中で、互 いに最も離れた 2つの部分同士の直線距離を Hとする。ここでは、距離 Hは弾性梁 5 aの長さに等しぐ 40 μ mである。 krZkrx、 krZkryの値はおよそ距離 Hの 2乗に反 比例するため、距離 Hの値を適宜調節して所望の kzZkrx、 krZkryの値を得ること が可能である。距離 Hと距離 Rとの関係は
0. 8 ≤ H/R ≤ 1. 6
を満たすように決定するのが好ましい。上記した Hおよび Rの値 (H=40 m、 R= 3 の場合、 HZRの値は 1. 08となり
0. 8 ≤ H/R ≤ 1. 6
の関係を満たしている。
[0082] 以上の数値を有する弾性支持部 5は、 kz= l. 16 (N/m) , krx= 7. 29 Χ 1Ο"10 ( Nm/rad) , kry= 7. 90 X 10— 10 (Nm/rad)の特性を示した。このとき、 R2'kz/kr x、R2'kzZkry、krxZkryの値はそれぞれ 2. 18、 2. 02、 1. 08となるため、 1 ≤ R2-kz/krx ≤ 5、
1 ≤ R2-kz/kry ≤ 5、
0. 67 ≤ krx/kry ≤ 1. 5
の条件を満たしている。これは (式 13)を基に計算すると、非対角性が 3%以下となる 条件であることが判る。このように、本発明によれば、極めて非対角性が小さいマイク ロアクチユエータを実現することができる。
[0083] なお、可動電極 6の 1辺の長さ Qは 62 μ mであり、固定電極 4a— 4cおよび弾性支 持部 5は全て可動電極 6の平面領域下に存在するようにして ヽる。
[0084] ここで、 1次元モデルを用いて説明した
0. 5 ≤L2-kz/kr ≤ 2
の条件が、 2次元モデルにも適用可能であることを説明する。
[0085] 例えば固定電極 4aおよび 4bの 2つに注目すると、固定電極 4aおよび 4bは、中央 部 Oを通る傾動軸 U (図 4)を中心に互いに反対側に振り分けられた平面位置関係を 有する。傾動軸 Uに関する復元トルク krは krxに等しぐ作用点 Aおよび Bのそれぞ れと傾動軸 Uとの距離 Lは 3RZ2に等しい。このとき、 L2'kzZkrは 1. 58となり、
0. 5 ≤L2-kz/kr ≤ 2
の条件を満たすことがわ力る。
[0086] 以上説明したように、本実施形態によれば、可動部 7の可動電極 6の中央部 Oを弹 性支持部 5が支持し、可動部 7の垂直変位および傾動角度に応じたパネ定数に特定 の関係を持たせることによって、駆動力と変位との間の非対角性を小さくすることがで きる。
[0087] なお、本実施形態では、可動部 7が可動電極 6を備え、可動電極 6と平行平板電極 対を形成する固定電極 4a— 4cが、可動部 7を駆動する駆動部として機能しているが 、本発明はこれに限定されるものではなぐ駆動部は、可動部に対して基台 1と垂直 な方向への駆動力を発生するエレメントであれば何でも良い。例えば、固定電極 4a 一 4cと可動電極 6とが垂直櫛形電極対を形成してもよい。また、駆動部は、静電力以 外の電磁力等、静電力以外の駆動力を発生するエレメントであっても良い。こうした 駆動力は非接触力であるのが好ましいが、パネ定数 kz、 kr、 krxおよび kryと距離 L および Rとの特定の関係に大きな外乱を与えないものであれば、接触力であっても良 い。
[0088] また、本実施形態によるマイクロアクチユエータ 10は、 2軸の傾動と 1軸の垂直変位 が可能であるが、 1次元モデルでの原理説明からも明らかなように、本発明が 1軸の 傾動と 1軸の垂直変位が可能なマイクロアクチユエータについても適用可能であるこ とは言うまでもない。
[0089] また、本実施形態によるマイクロアクチユエータ 10は、中央部 Oを中心として各構成 要素が対称配置された平面形状を有するが、本発明はこれに限定されない。本発明 によれば、各構成要素が対称配置されていない構成においても、非対角性を小さく するという効果を得ることが可能である。
[0090] (実施形態 2)
図 5Aおよび図 5Bを参照して、本発明によるマイクロアクチユエ一タの第 2の実施形 態を説明する。
[0091] まず、図 5Aを参照する。図 5Aは、本実施形態のマイクロアクチユエータ 10aを模式 的に示す平面図である。
[0092] マイクロアクチユエータ 10aは、実施形態 1におけるマイクロアクチユエータ 10の弹 性支持部 5の代わりに弾性支持部 15を備え、固定電極 4a— 4cの代わりに固定電極 14a— 14cを備える。弾性支持部 15の平面形状はミアンダ (meander)形状であり、 弾性支持部 15の弾性梁 15a— 15cは、概 180度で梁部の延びる方向が反転して 、 る折り返し部 15n— 15sを備える。
[0093] 固定電極 14a— 14cは、弾性支持部 15の占有領域を確保するために、固定電極 4 a— 4cに比べて面積が小さくなつており、その結果、作用点 A— Cは中央部 O力もより 離れて位置する(R= 39 m)。
[0094] 弾性支持部 15は、 3本の弾性梁 15a— 15cと、これらの弾性梁 15a— 15cを基台 1
(図 1 A)に固定する固定部 15d— 15fと、可動部 7 (図 1 A)を支持するための支持部 15gとを備える。弾性梁 15a— 15cの端部のうち、固定部 15d— 15fに接続された側 の端部を固定端 15h— 1 ¾、支持部 15gに接続された側の端部を可動端 15k— 15 mと呼ぶ。 [0095] ここでは、弾性梁 15aに注目して弾性支持部 15の平面形状を説明する。弾性梁 15 aはミアンダ形状であり、概 180度で梁の延在方向を折り返す 2つの折り返し部 15η および 15οを有する。弾性梁 15aをミアンダ形状にすることで実質的な梁長さが長く なり、パネ定数 kz、 krx、 kryを小さくすることができるので、低電圧駆動でも大きな変 位が得られるようになる。
[0096] ここで、中央部 O力も可動端 15kまでの距離 Hは 5. 5 /ζ πι、中央部 Οから固定端 1
1
5hまでの距離 Ηは 51. 5 ;z m、中央部 Oから固定部 15dの中心までの距離 Hは 57
2 3 μ mである。また、支持部 15gの実効幅 Wは 13 μ m、弾性梁 15aの幅 Wは 3 μ m、
1 2 固定部 15dの幅 Wは 11 μ mである。弾性支持部 15の厚さは 0· 1-1 μ mの範囲が
3
好ましぐここでは 0. である。弾性支持部 15の材料をアルミニウム合金とした場 合、縦弾性係数は 69GPa、ポアソン比は 0. 35である。
[0097] 弾性梁 15aの中で互いに最も離れた 2つの部分同士の距離 Hは、固定端 15hと可 動端 15kとの直線距離に等しぐ 46 μ mである。 Hおよび Rがこれらの値 (Η=46 μ
111、1^= 39 111)の場合、1171^の値は1. 18となり、
0. 8 ≤ H/R ≤ 1. 6
の関係を満たしている。
[0098] 弾性梁 15aの梁の全長は 120 μ mであり、距離 Hの 2. 61倍である。
[0099] 固定部 15d— 15fは、隣接するマイクロアクチユエータの固定部と一体に形成され 得る。支持部 15gは、図 5A中に斜線で示した 3箇所で可動電極 6と接続している。接 続箇所を 3箇所にしたのは可動電極 6と弾性支持部 15との接続強度をより高めるた めである。接続箇所の位置は概ね中央部 Oであればどこでもよい。可動電極 6の 1辺 の長さ Qは 62 μ mである。
[0100] 上記の数値を有する弾性支持部 15は、 kz = 0. 34 (N/m) , krx= 2. 34 X 10"10 (
Nm/rad) , kry= 2. 57 X 10— 10 (NmZrad)の特性を示した。このとき、 R2'kzZkr x、R2'kzZkry、krxZkryの値はそれぞれ 2. 19、 2. 00、 1. 10をとるため、
1 ≤ R2-kz/krx ≤ 5、
1 ≤ R2-kz/kry ≤ 5、
0. 67 ≤ krx/kry ≤ 1. 5 の条件を満たしている。
[0101] 上記のように弾性梁 15a— 15cをミアンダ形状にした効果を、弾性梁が直線形状の 場合と比較して説明する。
[0102] 弾性梁が直線形状の場合、弾性梁のパネ定数を下げるために梁の長さを n倍に伸 ばすと、傾動角度に関するパネ定数 kr (または krx、 kry)はおよそ lZnとなり、垂直 変位に関するパネ定数 kzはおよそ 1/nとなる。 krと kzとの比の値である kz/krは およそ lZn2となる。すなわち、 nの増加につれて kzZkrの値は急速に減少するので
0. 5 ≤L2- kz/kr ≤ 2あるいは
1 ≤ R2-kz/krx ≤ 5、
1 ≤ R2-kz/kry ≤ 5
の条件を満たすことが難 、。
[0103] これに対し、弾性梁がミアンダ形状の場合は、
0. 8 ≤ H/R ≤ 1. 6
の条件を満たすように距離 Hの長さをほぼ保ったまま、梁を複数回折り返すことにより 実質的な梁の全長を n倍にすることができる。この場合、傾動角度に関するパネ定数 kr (または、 krx、 kry)がおよそ lZnとなると共に、垂直変位に関するパネ定数 kzも およそ 1/nとなる。従って、 krと kzとの比 kz/krの値は nにほとんど依存せずほぼ一 定となる。したがって、弾性梁がミアンダ形状の場合は、梁の折り返し回数を増やす だけで、
0. 5 ≤L2- kz/kr ≤ 2あるいは
1 ≤ R2-kz/krx ≤ 5、
1 ≤ R2-kz/kry ≤ 5
の関係を満たしたままパネ定数を小さくすることができる。
[0104] 弾性梁がミアンダ形状の場合に、垂直変位に関するパネ定数 kzが lZnでなぐ 1
Znに比例して変化する理由を、図 5Bを参照して説明する。
[0105] 図 5Bは、弾性梁 15aの折り返し部 15ο周辺を拡大した図である。上側の図は折り返 し部 15οの平面図、下側の図は折り返し部 15οの側面図である。 [0106] 折り返し部 15oにおける弾性梁 15aの橈み角を φとすると、点 S力も Sに至る微小
1 2
変位 Δ χに対する垂直変位の変化量 Δ ε (S→S ;H¾ (i Δ χとなる。
1 2
[0107] 点 S力 Sに至る微小変位 (一 Δ X)に対する垂直変位の変化量 Δ ε (S→S )を考
3 4 3 4 えた場合は (—φ Δ χ)の項が存在する。このため、点 S力 Sに至る垂直変位を考え
1 4
た場合は φの項は相殺されてより高次の Δ φ Δ χの項が残る。
[0108] このように、折り返し部で弾性梁の延在方向を反転させているために、弾性梁の橈 み角成分に関する垂直変位が一部相殺されて小さくなる。この結果、パネ定数 kzの 特性を lZn3よりも lZnに近づけることができる。
[0109] 以上説明したように、本実施形態によれば、弾性支持部 15が梁の延在方向を反転 させる折り返し部 15η— 15sを備えているために、パネ定数 kzとパネ定数 krとの比の 値をほとんど変えることなぐ梁の低剛性ィ匕を実現することができる。これによつて、非 対角性を小さくする効果と、低電圧駆動で可動部 7の大きな変位を得る効果との両方 が得られる。
[0110] (実施形態 3)
図 6Aおよび図 6Bを参照して、本発明によるマイクロアクチユエ一タの第 3の実施形 態を説明する。
[0111] まず、図 6Aを参照する。図 6Aは、本実施形態のマイクロアクチユエータ 10bを模式 的に示す平面図である。
[0112] マイクロアクチユエータ 10bは、実施形態 2におけるマイクロアクチユエータ 10aの弹 性支持部 15の代わりに弾性支持部 25を備え、固定電極 14a— 14cの代わりに固定 電極 24a— 24cを備える。弾性支持部 25の固定端 25h— 25jは、折り返し部 25η— 2
5ρよりも中央部 Οに近 、位置に配置されて 、る。
[0113] 固定電極 24a— 24cは、作用点 A— Cと中央部 Oとの距離 Rが 38. 5 μ mとなる位 置に配置されている。
[0114] 弾性支持部 25は、 3本の弾性梁 25a— 25cと、これらの弾性梁 25a— 25cを基台 1
(図 1A)に固定する固定部 25d— 25fと、可動部 7 (図 1A)を支持するための支持部 25gとを備える。弾性梁 25a— 25cの端部のうち、固定部 25d— 25fに接続された側 の端部を固定端 25h— 2¾、支持部 25gに接続された側の端部を可動端 25k— 25 mと呼ぶ。
[0115] ここでは、弾性梁 25aに注目して弾性支持部 25の平面形状を説明する。弾性梁 25 aの形状は、概 180度で梁の延在方向を折り返す奇数個(ここでは 1つ)の折り返し部 25ηを有するミアンダ形状である。折り返し部 25ηと中央部 Οとの間の距離は、固定 部 25dと中央部 Οとの間の距離よりも長い。
[0116] ここで、中央部 O力も可動端 25kまでの距離 Hは 6 /z m、中央部 Oから固定端 25h
1
までの距離 Hは 17. 5 /ζ πι、中央部 Οから固定部 25dの中心までの距離 Ηは 10
2 3 mである。また、支持部 25gの実効幅 Wは 9 μ m、弾性梁 25aの幅 Wは 3 μ mである
1 2
。弾性支持部 25の厚さは 0. l- ΐ μ mの範囲が好ましぐここでは 0. 5 μ mである。 弾性支持部 25の材料をアルミニウム合金とした場合、縦弾性係数は 69GPa、ポアソ ン比は 0. 35である。
[0117] 弾性梁 25aの中で互いに最も離れた 2つの部分同士の距離 Hは 41. であり、 本実施形態では可動端 25kと折り曲げ部 25ηとの距離がこれに相当する。 Ηおよび R力 Sこれらの値(H=41. 、: R= 38. 5 /z m)の場合、 H/Rの値は 1. 08となり、 0. 8 ≤ H/R ≤ 1. 6
の関係を満たしている。
[0118] 弾性梁 25aの梁の全長は 74. 5 μ mであり、距離 Hの 1. 8倍である。
[0119] 上記の数値を有する弾性支持部 25は、 kz = 0. 55 (NZm)、 krx= 3. 70 X 10"10 ( Nm/rad)、 kry=4. 08 X 10"10 (Nm/rad)の特性を示した。このとき、 R2'kzZkr x、R2'kzZkry、krxZkryの値はそれぞれ 2. 20、 2. 00、 1. 10をとるため、
1 ≤ R2-kz/krx ≤ 5、
1 ≤ R2-kz/kry ≤ 5、
0. 67 ≤ krx/kry ≤ 1. 5
の条件を満たしている。
[0120] 図 6Bを参照して、弾性支持部 25の固定端 25h— 25jを折り返し部 25η— 25pよりも 中央部 Oに近い位置に配置することにより得られる効果を説明する。
[0121] 図 6Bは、弾性支持部 25に反りがある状態を模式的に示す側面図である。
[0122] 弾性支持部 25は、例えば成膜プロセス時に生じた残留応力勾配等により反りを発 生することがある。この反りの影響により支持部 25gと固定部 25dとの間で垂直方向 の高さ誤差 Δ ζが生じる。この反りの曲率半径を ρとすると、 Δ ζは近似的に
Figure imgf000027_0001
と表される。
[0123] 従って、中央部 Oから固定部 25dの中心までの距離 Hを小さくするほど、高さ誤差
3
Δ ζはその自乗に比例して小さくすることができる。固定端 25h— 2¾を折り返し部 25 n— 25pよりも中央部 Oに近い位置に配置することで距離 Hを小さくすることができる
3
[0124] 以上説明したように、本実施形態によれば、弾性支持部 25の固定端 25h— 2¾を 折り返し部 25η— 25pよりも中央部 Oに近い位置に配置している。このため、例えば 成膜プロセス時に生じた残留応力勾配等により弾性支持部 25に反りが発生した場合 にも、可動電極 6の垂直方向の高さ誤差 Δ ζを小さく抑えることができる。むろん、実 施形態 2で説明した非対角性を小さくする効果と低電圧駆動で可動部 7の大きな変 位を得る効果をも得られることは言うまでもな 、。
[0125] (実施形態 4)
図 7—図 9Βを参照して、本発明のマイクロアクチユエータを備えた装置の実施形態 を説明する。
[0126] まず、図 7を参照する。図 7は、本実施形態のマイクロアクチユエータを備えた装置 3 0を模式的に示す図である。本発明のマイクロアクチユエータを備える装置は、例え ば光ディスクに対して情報の記録再生を行う光ピックアップまたは光ディスク装置であ る力 これらに限定されない。本発明のマイクロアクチユエータを備える装置の一例と して、光ディスク装置である装置 30を説明する。
[0127] 装置 30は、光源 31と、コリメータレンズ 32と、偏光ビームスプリッタ 33と、 1Ζ4波長 板 34と、マイクロアクチユエータアレイ 35と、対物レンズ 36と、対物レンズァクチユエ ータ 38と、波面情報生成部 47と、制御部 42とを備える。
[0128] 図 1Bを参照して説明したように、マイクロアクチユエータアレイ 35は複数のマイクロ ァクチユエータ 10を備える。なお、マイクロアクチユエータアレイ 35は、マイクロアクチ ユエータ 10の代わりにマイクロアクチユエータ 10aまたは 10bを複数個備えてもよいし 、これらのマイクロアクチユエータ 10、 10aおよび 10bを組み合わせて備えてもよい。
[0129] 制御部 42は、固定電極 4a— 4cに駆動電圧として制御信号を出力し、可動部 7の 変位 (垂直変位および傾動)を制御する。制御部 42は、可動部 7を所望の姿勢に変 位させて、ミラー部 6bに入射した光の波面を変調する。
[0130] 次に、装置 30の動作をより詳細に説明する。
[0131] 光源 31は例えば GaNレーザ素子である。光源 31から出射された光ビームは、コリ メータレンズ 32により無限系の光ビームに変換され、偏光ビームスプリッタ 33に入射 する。この光ビームのうち P偏光成分だけが偏光ビームスプリッタ 33を透過し、残りの S偏光成分は反射されて前光モニター (不図示)に入射する。透過した P偏光成分は 1Z4波長板 34によって円偏光に変換される。
[0132] マイクロアクチユエータアレイ 35上には複数のマイクロアクチユエータ 10が 2次元ァ レイ状に配列されて 、る。可動部 7のそれぞれは光反射面であるミラー部 6bを備え、 光ビームを反射する。可動部 7は、固定電極 4a— 4cのそれぞれに印加された電圧の 大きさに応じて変位し、光ビームの波面を局所的に変化させる。マイクロアクチユエ一 タアレイ 35に対する光の入射角および出射角は、それぞれ 45度に設定されている。
[0133] マイクロアクチユエータアレイ 35によって波面が変化した光ビームは、対物レンズ 3 6によってディスク 37の記録層に集光される。対物レンズァクチユエータ 38は、光ビ ームの光軸方向および光軸に直交する方向の 2方向に対物レンズ 36平行移動させ 、光ビームの所望の記録層への合焦と、所望の記録トラックへの追従を行う。
[0134] ディスク 37は、所定の間隔で配置された複数の記録層と、記録層を覆って保護す る光透過可能な基材部とを備える光記録媒体である。往復路での奇対称収差の収 差情報消失を防止するため、記録層には拡散性もしくは蛍光性を持たせることがより 好ましい。ディスク 37の記録層で反射された光ビームは、再度マイクロアクチユエータ アレイ 35のミラー部 6bと 1Z4波長板 34とを通過する。この光ビームは大半が S偏光 成分であるため、偏光ビームスプリッタ 33によって反射され、波面情報生成部 47に 入射する。波面情報生成部 47は、光ビームの波面状態を示す波面情報を生成する 。波面情報生成部 47は、ホログラム 39と、レンズ 40と、光検出器 41とを備える。この 波面情報生成部 47は、ここではモーダル型の波面センサであるとして説明するが、 シャツク =ハルトマン(Shack— Hartmann)型の波面センサであってもよ!/、し、ある!/ヽ は特開 2000— 155979号公報に記載されたような他の収差検出方法を用いても良 V、。モーダル型の波面センサは下記の文献に開示されて 、る。
[0135] M. A. A. Neil, M. J. Booth, and T. Wilson, "New modal wave— fr ont sensor: a theoretical analysis, " J. Opt. Soc. Am. A Z Vol . 17, No. 6, pp. 1098 - 1107 (2000)
[0136] ホログラム 39は n (nは複数)個の直交する収差モード Mi (i= l— n)において、それ ぞれ異なる方向に ± 1次光を生成する。予め定められたバイアス係数を Biとして、各 モード Miに対応するこれらの ± 1次光の + 1次光には + BiMi、 一 1次光には BiMi のバイアス収差がそれぞれ付与される。
[0137] レンズ 40は、ホログラム 39によって偏向された n対の光ビームを光検出器 41上に 集光する。レンズ 40の焦点距離を fとすると、ホログラム 39と光検出器 41とはそれぞ れレンズ 40の主平面より距離 fの位置に配置されており、レンズ 40はフーリエ変換レ ンズとして機能する。
[0138] 光検出器 41は各 n対の光ビームについて ± 1次光の強度信号である差動出力信 号 Siを生成し、制御部 42へ出力する。収差モード Miに対応した差動出力信号 Siは 収差モード Miの大きさ Aiに対応する信号となる。収差モード Miに対する感度 SiZA iはノ ィァス係数 Bi等の設計パラメータにより予め決定されている。
[0139] 差動出力信号 Siは波面情報を示しており、差動出力信号 Siの大きさが光ビームの 波面状態を表している。差動出力信号 Sはディスク 37の基材厚変化に伴う球面収差
1
モードに関する出力信号である。差動出力信号 Sはディスク 37のラジアル方向の傾
2
きに伴うコマ収差に主に対応した収差モードに関する出力信号である。差動出力信 号 Sはディスク 37のタンジュンシャル方向の傾きに伴うコマ収差に主に対応した収差
3
モードに関する出力信号である。差動出力信号 Sは対物レンズ 36のデフォーカスに
4
よる収差モードに関する出力信号である。また、差動出力信号 Sはディスク 37のプリ
5
ピットおよび記録マークによって変調された信号である。
[0140] 制御部 42は、差動出力信号 Siが示す波面情報に応じて可動部 7を変位させる。制 御部 42は、波面演算部 43と、レンズシフト補正演算部 44と、全体制御部 45と、波面 補正制御部 46とを備える。好ましい実施形態では、制御部 42もしくはその一部は、 マイクロアクチユエータアレイ 35の基台 1上に設けられ、制御部 42とマイクロアクチュ エータアレイ 35とは 1チップ化されている。
[0141] 別の好ましい実施形態では、光源 31、コリメータレンズ 32、偏光ビームスプリッタ 33 、 1Z4波長板 34、マイクロアクチユエータアレイ 35、対物レンズ 36、対物レンズァク チユエータ 38および波面情報生成部 47は光ピックアップ基台(不図示)上に配置さ れている。この場合は、光ピックアップ基台が基台 1を兼用してもよい。また、制御部 4 2もしくはその一部が光ピックアップ基台上に設けられていてもよい。
[0142] 波面演算部 43は、差動出力信号 S— Sを用いて、ディスク 37の基材厚変化と傾き
1 3
に伴う波面収差を補正するための位相関数 φ (X, y)を算出する。ここで x、 yはマイク ロアクチユエータアレイ 35のミラー位置に対応した座標である。
[0143] レンズシフト補正演算部 44は、全体制御部 45から対物レンズ 36のレンズシフト量 X の値を受け取り、これに基づいて位相関 X— X , y)
0 数 φ (X, y)を φ (
0 に変換する。この φ (X— X , y)は、波面補正制御部 46がマイクロアクチユエータアレイ 35を制御する際
0
の目標波面となる。
[0144] 全体制御部 45は、差動出力信号 Sおよび Sに基づいてフォーカス制御信号 Foお
4 5
よびトラッキング制御信号 Trを生成し、対物レンズァクチユエータ 38へ出力する。ま た、全体制御部 45は、生成したトラッキング制御信号 Trに低域通過フィルタを通過さ せることにより、対物レンズ 36のレンズシフト量 Xを算出する。
0
[0145] 波面補正制御部 46は、レンズシフト補正演算部 44から φ (χ-χ , y)を示す信号を
0
受け取り、マイクロアクチユエータアレイ 35の各可動部 7の変位を制御するための制 御信号 Dを φ (X— X , y)に応じて生成する。
0
[0146] マイクロアクチユエータアレイ 35は、例えば 42 X 36個のマイクロアクチユエータ 10 を備える。この場合、マイクロアクチユエータ 10のそれぞれが 3つの固定電極 4a— 4c を備えているので、マイクロアクチユエータアレイ 35は、 42 X 36 X 3個の固定電極を 備えている。制御信号 Dは、 42 X 36 X 3個の固定電極のそれぞれに個別に与える それぞれの駆動電圧の大きさを示している。波面補正制御部 46は、制御信号 Dを受 け取る固定電極が可動部 7に及ぼす駆動力の作用点の目標変位量に応じて、その 固定電極に与える駆動電圧の大きさを設定する。また、波面補正制御部 46は、その 作用点が 3段階以上の多段階 (例えば 128段階 = 7bit)の変位をすることが可能なよ うに、駆動電圧の大きさを多段階に設定する。また、固定電極に与える駆動電圧と可 動部 7の変位とは一般的に非線形な関係があるので、制御信号 Dにより高い分解能( 例えば lObit)を持たせることで、リニアな変位が得られるような補正処理を行うことが できる。制御信号 Dは時系列に切り替えられる。
[0147] 可動部 7中の各作用点での目標変位量の段階を n段階としたとき、非対角性の大き さ δ,Ζ δ力 lZn以下であれば、波面補正制御部 46は、非対角性に起因する変位 の補正を全く行う必要がないため、極めて制御構成を簡単にすることができる。本発 明のマイクロアクチユエータ 10では非対角性の大きさ δ ' Ζ δが小さいので、固定電 極の数が大量 (例えば、 42 X 36 X 3個)であっても制御構成を簡単にすることができ る。従来のマイクロアクチユエータ 1000 (図 10)のように非対角性の大きさ δ ' Ζ δが 大きいと、非対角性に起因する変位の補正のための演算量が膨大になってしまい、 制御構成は複雑になり、著しいコストの増大を招くと共にマイクロアクチユエ一タの駆 動速度が低下してしまう。本発明によれば、非対角性に起因する変位の補正のため の演算量が非常に少なくて済むので、コストの削減およびマイクロアクチユエータの 駆動速度の高速ィ匕を実現することができる。本発明は多数のマイクロアクチユエータ を駆動する場合に特に有用である。
[0148] なお、非対角性に起因する変位の補正を行う場合は、可動電極 6の各点の目標変 位量に(式 13)の右辺にある行列の逆行列を掛ける操作を行い、固定電極 4a— 4c に発生させる駆動力を求め、求めた駆動力から駆動電圧を求めて制御信号 Dを生成 してもよい。この場合でも、個々のマイクロアクチユエータ 10の非対角性が従来に比 ベてそもそも低減されているので、高い補正精度が得られやすぐ個々のァクチユエ ータ特性のばらつきの影響による非線形補正の精度劣化も小さい。また、個々のマイ クロアクチユエータ 10が
2 ≤ R2-kz/krx
2 ≤ R2'kz,kry
を満たしている場合は、例えば上記の逆行列演算を行っても、駆動力は正(吸引方 向)の値の範囲内に解が求められ、静電力のような吸引方向にし力発生しない駆動 力を用いる場合でも、波面補正制御部 46は非対角性に起因する変位の補正を容易 に行うことができる。
[0149] 次に、図 8A—図 9Bを参照して、波面近似精度が向上する可動部 7中の作用点の 座標位置について説明を行う。可動部 7中の作用点 A— Bのそれぞれは、固定電極 4a— 4cのうちの対応する固定電極の駆動力が発生する領域の中心を通りその固定 電極に垂直な軸を通る点である。ある 1つの固定電極の駆動力が発生する領域の中 心は、例えばその固定電極の中心と一致する。
[0150] マイクロアクチユエータ 10は 2軸の傾動と 1軸の垂直変位が可能である。説明の順 序として、まず 1軸の傾動と 1軸の垂直変位を行う 1次元モデルを説明し、次いで 2軸 の傾動と 1軸の垂直変位を行う 2次元モデルを説明する。
[0151] 図 8A—図 8Bは、可動部 7中の作用点の座標位置と波面近似精度との関係を示す 1次元モデルの説明図である。
[0152] まず、図 8Aを参照して一般的な波面の折れ線近似方法を説明する。
[0153] 図 8Aにおいて、横軸はマイクロアクチユエータ 10の X方向の座標位置であり、縦軸 は波面の位相である。補正目標となる位相関数 φが 2点鎖線で示されている。位相 関数 Φは既に説明したように座標位置 Xの関数で与えられている。ミラー部 6bは、基 台 1に対する変位と傾きとが制御可能であるから、この位相関数 φを折れ線近似で 再現することになる。隣接するミラー部 6b間のピッチを Pとする。ピッチ P毎に座標点 X
(jは整数)をとり、隣接する 2つの座標点 x、 X に対する位相関数 φの値 φ (χ)、 φ ( j i j+i i x )を結ぶことでミラー部 6bの変位と傾きを求めることができる。この近似折れ線 φ, j+i
を実線で示す。この方法は演算量が少なく高速な計算処理が可能であるが、波面誤 差が大きい。
[0154] 別の折れ線近似方法として、区間 [x、 X ]毎に、位相関数 φ力 の誤差を最小に j j+i
する変位と傾きとを最小自乗法で求めることが可能である。この方法によれば、波面 誤差を小さくできるが、演算量が多くなる。
[0155] 図 8Bを参照して、少ない演算量で補正精度を向上させることのできる波面の折れ 線近似方法を説明する。ここでは、区間 [x、x ]内に 2点の座標点 X 、x をとる。座 標点 x 、 x は可動部 7の中央部 Oを基準として対称の位置にあり、どちらも中央部 O
J,a J,b J
jから距離 Lだけ離れた位置にある。この距離 Lの値を適切な値に設定し、光反射面を 座標 (X 、 φ (X ) )と (X 、 φ (X ;) )との 2点を通る線分として規定することを考える。
J,a J,a j,り J,b
[0156] 図 8Cは、区間 [x、 x ]における位相関数 φの曲率半径 pと、波面誤差を極小に
j j+i
する距離 Lの値との関係をプロットした図である。ミラー部 6bの長さをピッチ Pとほぼ等 しいとする。無次元化した曲率半径 p ZPを横軸にとり、波面誤差を極小にする無次 元化した距離 LZPを縦軸にとっている。波面誤差は長さ Pのミラー内における誤差 の自乗の定積分値 ί ( φ - φ ' ) 2dxの平方根として定義される。位相関数 φの曲率 半径 Pは任意の値をとり得るが、図 8Cから、波面誤差を極小にする無次元距離 LZ Pは、ほとんど無次元曲率半径 p ZPに依存せず、約 0. 29と一定の値をとることがわ かる。従って、距離 L=0. 29Pと設定した座標点 X 、 X を可動部 7中の作用点の座
J,a J,b
標位置と一致させ、各駆動点の変位目標値を Φ (X
J,a )、 Φ (X )
j,D とすることにより、最小 自乗法を用いた方法と同程度に波面誤差を極小化することができる。また、さらに可 動部 7中の作用点の変位目標値を位相関数 φから直接計算できるために、演算量を 極めて低減させることができる。
[0157] 上記の少な 、演算量で補正精度を向上させることのできる波面の折れ線近似方法 を 2次元モデルに適用した場合を、図 9を参照しながら説明する。図 9は、可動部 7中 の作用点の座標位置と波面近似精度との関係を示す 2次元モデルの説明図である。
[0158] 図 9Aは、マイクロアクチユエータアレイ 35を模式的に示す平面図である。互いに隣 接するミラー部 6b同士のピッチは Pである。ここでは、ミラー部 6bの 1辺の長さ Qは(P /1?>)に等しいと近似し、隣接するミラー部 6bとの間のギャップを無視している。
[0159] 図 9Bは、ミラー部 6b内における位相関数 φの曲率半径 pと、波面誤差を極小に する距離 Rの値との関係をプロットした図である。
[0160] 図 9Bの横軸には無次元化した曲率半径 ZPをとり、縦軸には波面誤差を極小に する無次元化した無次元距離 RZPをとつている。波面誤差は正六角形ミラー面内に おける誤差の自乗の定積分値 ί ί ( φ— ' )2dXdyの平方根として定義される。
[0161] 位相関数 φが球面を表す場合の結果を実線で示す。波面誤差を極小にする無次 元距離 RZPは、ほとんど無次元曲率半径/ o ZPに依存せず、約 0. 37と一定の値を とることがわかる。また、上述の 1次元モデルでの結果を点線で併記している。この結 果は、位相関数 φ力 X方向にのみ曲率を持ち y方向に曲率を持たない円筒面を表 す場合にほぼ相当する力 既に説明したように無次元距離 RZPは約 0. 29である。 位相関数 Φが球面を表す場合を扁平率 0、位相関数 φが円筒面を表す場合を扁平 率 1とすれば、通常の波面はこの中間の扁平率を持つ。従って、図の斜線部で示し たように、無次元距離 RZPの範囲を 0. 29以上 0. 37以下とすれば良いことが判る。
[0162] このように、距離 Rと、ピッチ Pとが、
0. 29 ≤ R/P ≤ 0. 37
の関係を満たすことにより、波面誤差の近似精度を高めることができる。
[0163] 本実施形態では Κ=37 /ζ πι、 Ρ= 110 mとしているため、 RZPの値は 0. 336で あり、
0. 29 ≤ R/P ≤ 0. 37
の関係を満たしている。各構成要素がこのような配置関係をとるために、作用点 A— Cの変位目標値は、位相関数 φに各作用点の座標位置 (X, y)を入力して直接計算 するだけで求まり、波面補正制御部 46が行う演算量を極めて少なくすることができる 産業上の利用可能性
[0164] 本発明のマイクロアクチユエータ、およびマイクロアクチユエータを備えた装置は、 収差補正、光走査、分光等を行う光デバイス及び光ディスク装置の分野で好適に用 いられる。また、チューナブルキャパシタ等の高周波回路や、可変流路等の流体制 御デバイス、バイオテクノロジー等の分野でも好適に用いられる。

Claims

請求の範囲
[1] 基台と、
前記基台に対して変位可能な可動部と、
前記可動部の前記基台に対する垂直方向の変位、および前記基台に対する傾動 が可能となるように前記可動部を支持する弾性支持部と、
前記基台に対して前記可動部を変位させる複数の駆動部と
を備え、
前記複数の駆動部は、第 1の駆動部と第 2の駆動部とを含み、
前記第 1の駆動部が前記可動部に及ぼす第 1の駆動力の第 1の作用点と、前記第 2の駆動部が前記可動部に及ぼす第 2の駆動力の第 2の作用点との間の位置で、前 記弾性支持部は前記可動部を支持しており、
前記可動部の前記基台に対する垂直方向への変位に応じて前記弾性支持部に生 じる復元力のパネ定数を kz (N/m)、
前記可動部の前記基台に対する傾動角度に応じて前記弾性支持部に生じる復元 トルクのパネ定数を kr (Nm/rad)、
前記第 1の作用点と前記第 2の作用点との間の距離を 2L (m)とするときに、 肯 U己 kzと ij記 krと刖記 Lとが、
0. 5 ≤L2-kz/kr ≤ 2
の関係を満たす、マイクロアクチユエータ。
[2] 基台と、
前記基台に対して変位可能な可動部と、
前記可動部の前記基台に対する垂直方向の変位、および前記基台に対する 2軸 の傾動が可能となるように前記可動部を支持する弾性支持部と、
前記基台に対して前記可動部を変位させる複数の駆動部と
を備え、
前記複数の駆動部が前記可動部に及ぼす駆動力が作用する複数の作用点で囲ま れた位置で、前記弾性支持部は前記可動部を支持しており、
前記可動部の前記基台に対する垂直方向への変位に応じて前記弾性支持部に生 じる復元力のパネ定数を kz (N/m)、
前記可動電極の前記 2軸の傾動における傾動角度に応じて前記弾性支持部に生 じる復元トルクのパネ定数を krx (Nm/rad)および kry (Nm/rad)、
前記複数の作用点のそれぞれと前記弾性支持部が前記可動部を支持している前 記位置との間の距離を R (m)としたときに、
肯 己 kzと食 i〗記 krxと目 υ記 kryと目 υ記 Rとが、
1 ≤ R2-kz/krx ≤ 5、
1 ≤ R2-kz/kry ≤ 5、
0. 67 ≤ krx/kry ≤ 1. 5
の関係を満たす、マイクロアクチユエータ。
[3] 前記弾性支持部は、前記可動部の概ね中央部を支持している、請求項 1または 2 に記載のマイクロアクチユエータ。
[4] 前記可動部の少なくとも一部は導電性を有し、
前記複数の駆動部のそれぞれは前記可動部と対向する電極を備え、
前記複数の駆動部のそれぞれは、前記可動部と前記電極との間に生じる静電力に より前記可動部を駆動する、請求項 1または 2に記載のマイクロアクチユエータ。
[5] 前記複数の駆動部は、前記弾性支持部が前記可動部を支持して!/、る位置を通り 前記基台に垂直な軸を中心に概ね対称に配置されて!、る、請求項 1または 2に記載 のマイクロアクチユエータ。
[6] 前記弾性支持部は、前記基台に接続された第 1端部と、前記可動部に接続された 第 2端部とを備え、
前記第 1端部と前記第 2端部との間の距離を Hとしたときに、
肯 U '己 Hと言 ij己 Rとが、
0. 8 ≤ H/R ≤ 1. 6
の関係を満たす、請求項 2に記載のマイクロアクチユエータ。
[7] 前記第 1端部と前記可動部の中央部との間の距離は、前記第 2端部と前記可動部 の中央部との間の距離よりも長い、請求項 6に記載のマイクロアクチユエータ。
[8] 前記弾性支持部は梁部を備え、 前記梁部は、前記梁部の延びる方向が反転している折り返し部を備える、請求項 1 または 2に記載のマイクロアクチユエータ。
[9] 前記折り返し部と前記可動部の中央部との間の距離は、前記弾性支持部の前記基 台に接続された位置と前記可動部の中央部との間の距離よりも長い、請求項 8に記 載のマイクロアクチユエータ。
[10] 前記複数の駆動部のうちの 1つが前記可動部を駆動して前記可動部の一端が前 記基台に近づく方向に変位した場合に、前記可動部の他端は前記基台から離れる 方向に変位する、請求項 1または 2に記載のマイクロアクチユエータ。
[11] 肯 U '己 kzと ij記 krと 記 Lとが、
1 ≤ L2-kz/kr
の関係を満たす、請求項 1に記載のマイクロアクチユエータ。
[12] fij 己 kzと食 ij記 krxと目 υ記 kryと目 υ記 Rとが、
2 ≤ R2 'kzZkrx、
2 ≤ R2'kz,kry
の関係を満たす、請求項 2に記載のマイクロアクチユエータ。
[13] 請求項 1または 2に記載のマイクロアクチユエータを複数個備え、
前記複数のマイクロアクチユエータは、前記基台を互いに共有している、装置。
[14] 請求項 2に記載のマイクロアクチユエータを複数個備え、
前記複数のマイクロアクチユエータは、前記基台を互いに共有しており、 前記複数のマイクロアクチユエータのうちの互いに隣接するマイクロアクチユエータ 同士のピッチを P (m)としたときに、
前記 Pと前記 Rとが、
0. 29 ≤ R/P ≤ 0. 37
の関係を満たす、装置。
[15] 前記複数の駆動部に制御信号を出力して、前記可動部の変位を制御する制御部 をさらに備える、請求項 13に記載の装置。
[16] 前記制御部は、前記可動部を 3段階以上に変位可能である、請求項 15に記載の 装置。
[17] 前記制御部は、前記複数の駆動部のうちの前記制御信号を受け取る駆動部が前 記可動部に及ぼす駆動力の作用点の目標変位量に応じた前記制御信号を出力す る、請求項 15に記載の装置。
[18] 前記可動部は光反射面を備える、請求項 13に記載の装置。
[19] 光を発生する光源をさらに備える、請求項 13に記載の装置。
[20] 前記光反射面を通った光を受け取り、前記光の波面状態を示す波面情報を生成 する波面情報生成部をさらに備え、
前記制御部は、前記波面情報に応じて前記可動部を変位させる、請求項 18に記 載の装置。
PCT/JP2005/003533 2004-03-08 2005-03-02 マイクロアクチュエータ、およびマイクロアクチュエータを備えた装置 WO2005085125A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/597,784 US7859167B2 (en) 2004-03-08 2005-03-02 Micro actuator having tilt and vertical displacement and device having such micro actuator
JP2006519387A JPWO2005085125A1 (ja) 2004-03-08 2005-03-02 マイクロアクチュエータ、およびマイクロアクチュエータを備えた装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-063518 2004-03-08
JP2004063518 2004-03-08

Publications (1)

Publication Number Publication Date
WO2005085125A1 true WO2005085125A1 (ja) 2005-09-15

Family

ID=34918158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003533 WO2005085125A1 (ja) 2004-03-08 2005-03-02 マイクロアクチュエータ、およびマイクロアクチュエータを備えた装置

Country Status (4)

Country Link
US (1) US7859167B2 (ja)
JP (1) JPWO2005085125A1 (ja)
CN (1) CN100528735C (ja)
WO (1) WO2005085125A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008500585A (ja) * 2004-05-27 2008-01-10 ステレオ ディスプレイ,インコーポレイテッド 可変焦点距離レンズ
JP2009503590A (ja) * 2005-07-28 2009-01-29 ステレオ ディスプレイ,インコーポレイテッド 自由表面を持つマイクロミラー・アレイレンズ
US7872952B2 (en) 2004-10-07 2011-01-18 Panasonic Corporation Optical disc drive
US8031578B2 (en) 2005-08-26 2011-10-04 Panasonic Corporation Microarray with actuators inside and outside of light-irradiated region, and optical head device and optical information device incorporating the same
JP2012505533A (ja) * 2008-10-08 2012-03-01 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロミラーを駆動する方法及びデバイス
US8264758B2 (en) 2005-12-26 2012-09-11 Nippon Telegraph And Telephone Corporation Spring, mirror device, mirror array, and optical switch

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005085125A1 (ja) * 2004-03-08 2007-12-06 松下電器産業株式会社 マイクロアクチュエータ、およびマイクロアクチュエータを備えた装置
KR100743315B1 (ko) * 2005-08-26 2007-07-26 엘지전자 주식회사 마이크로 미러 디바이스 및 이를 이용한 마이크로 미러디바이스 어레이
KR100723416B1 (ko) * 2005-12-19 2007-05-30 삼성전자주식회사 선형 대변위 거동이 가능한 수직 콤전극 구조
US8362673B2 (en) * 2009-04-06 2013-01-29 ISC8 Inc. Micro-image acquisition and transmission system
JP5363394B2 (ja) * 2010-03-30 2013-12-11 オリンパス株式会社 可変分光素子
DE102010062591A1 (de) * 2010-12-08 2012-06-14 Robert Bosch Gmbh Magnetischer Aktor
DE102011089514B4 (de) * 2011-12-22 2022-09-01 Robert Bosch Gmbh Mikrospiegel und 2-Spiegelsystem
JP6190253B2 (ja) * 2013-11-29 2017-08-30 東京パーツ工業株式会社 振動発生装置
JP6950444B2 (ja) * 2017-10-18 2021-10-13 セイコーエプソン株式会社 物理量センサー、電子機器、および移動体
JP7207151B2 (ja) * 2019-05-16 2023-01-18 セイコーエプソン株式会社 光学デバイス、光学デバイスの制御方法、および画像表示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003005102A (ja) * 2001-04-19 2003-01-08 Nikon Corp 薄膜弾性構造体及びその製造方法並びにこれを用いたミラーデバイス及び光スイッチ
JP2003035874A (ja) * 2001-07-23 2003-02-07 Nikon Corp 薄膜スライド接続機構及びその製造方法並びにこれを用いたミラーデバイス及び光スイッチ
JP2003057575A (ja) * 2000-10-10 2003-02-26 Nippon Telegr & Teleph Corp <Ntt> マイクロミラー装置およびその製造方法
JP2004102249A (ja) * 2002-07-19 2004-04-02 Canon Inc マイクロ可動体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000338430A (ja) * 1999-05-28 2000-12-08 Mitsubishi Electric Corp ミラー傾動機構
US6545385B2 (en) * 2000-04-11 2003-04-08 Sandia Corporation Microelectromechanical apparatus for elevating and tilting a platform
US6963679B1 (en) * 2000-05-24 2005-11-08 Active Optical Networks, Inc. Micro-opto-electro-mechanical switching system
US6466356B1 (en) * 2000-09-28 2002-10-15 Xerox Corporation Structure for an optical switch on a silicon substrate
US6431714B1 (en) * 2000-10-10 2002-08-13 Nippon Telegraph And Telephone Corporation Micro-mirror apparatus and production method therefor
US6512625B2 (en) * 2000-11-22 2003-01-28 Ball Semiconductor, Inc. Light modulation device and system
US20020149834A1 (en) * 2000-12-22 2002-10-17 Ball Semiconductor, Inc. Light modulation device and system
CN100504496C (zh) * 2001-01-30 2009-06-24 松下电器产业株式会社 可形变镜子和备有该可形变镜子的信息装置
US6690850B1 (en) * 2001-06-05 2004-02-10 Agere Systems Inc. Article comprising a reflection-type spectral equalizer/optical switch
JP2003075738A (ja) 2001-08-31 2003-03-12 Hitachi Ltd 光スイッチ
US6856446B2 (en) * 2001-12-12 2005-02-15 Texas Instruments Incorporated Digital micromirror device having mirror-attached spring tips
KR100431581B1 (ko) * 2002-05-28 2004-05-17 한국과학기술원 미소거울 구동기
US6906848B2 (en) * 2003-02-24 2005-06-14 Exajoule, Llc Micromirror systems with concealed multi-piece hinge structures
JPWO2005085125A1 (ja) * 2004-03-08 2007-12-06 松下電器産業株式会社 マイクロアクチュエータ、およびマイクロアクチュエータを備えた装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057575A (ja) * 2000-10-10 2003-02-26 Nippon Telegr & Teleph Corp <Ntt> マイクロミラー装置およびその製造方法
JP2003005102A (ja) * 2001-04-19 2003-01-08 Nikon Corp 薄膜弾性構造体及びその製造方法並びにこれを用いたミラーデバイス及び光スイッチ
JP2003035874A (ja) * 2001-07-23 2003-02-07 Nikon Corp 薄膜スライド接続機構及びその製造方法並びにこれを用いたミラーデバイス及び光スイッチ
JP2004102249A (ja) * 2002-07-19 2004-04-02 Canon Inc マイクロ可動体

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008500585A (ja) * 2004-05-27 2008-01-10 ステレオ ディスプレイ,インコーポレイテッド 可変焦点距離レンズ
US7872952B2 (en) 2004-10-07 2011-01-18 Panasonic Corporation Optical disc drive
JP2009503590A (ja) * 2005-07-28 2009-01-29 ステレオ ディスプレイ,インコーポレイテッド 自由表面を持つマイクロミラー・アレイレンズ
US8031578B2 (en) 2005-08-26 2011-10-04 Panasonic Corporation Microarray with actuators inside and outside of light-irradiated region, and optical head device and optical information device incorporating the same
US8264758B2 (en) 2005-12-26 2012-09-11 Nippon Telegraph And Telephone Corporation Spring, mirror device, mirror array, and optical switch
JP2012505533A (ja) * 2008-10-08 2012-03-01 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロミラーを駆動する方法及びデバイス
US8345224B2 (en) 2008-10-08 2013-01-01 Carl Zeiss Smt Gmbh Methods and devices for driving micromirrors
US10061202B2 (en) 2008-10-08 2018-08-28 Carl Zeiss Smt Gmbh Methods and devices for driving micromirrors

Also Published As

Publication number Publication date
CN1910110A (zh) 2007-02-07
JPWO2005085125A1 (ja) 2007-12-06
US20070159025A1 (en) 2007-07-12
CN100528735C (zh) 2009-08-19
US7859167B2 (en) 2010-12-28

Similar Documents

Publication Publication Date Title
WO2005085125A1 (ja) マイクロアクチュエータ、およびマイクロアクチュエータを備えた装置
KR101073175B1 (ko) 가변형 미러, 및 당해 가변형 미러를 구비한 광 제어 장치
US6800988B1 (en) Voltage and light induced strains in porous crystalline materials and uses thereof
Perreault et al. Adaptive optic correction using microelectromechanical deformable mirrors
US7699296B1 (en) Method and apparatus for an actuator having an intermediate frame
Motamedi et al. Micro-opto-electro-mechanical devices and on-chip optical processing
US8570632B2 (en) Microactuator, optical device and exposure apparatus, and device manufacturing method
Roggemann et al. Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results
US8570637B2 (en) Micromechanical element
Vdovin et al. Technology and applications of micromachined adaptive mirrors
US7742219B2 (en) Micromachine structure
US20050111119A1 (en) Double hidden flexure microactuator for phase mirror array
Cowan et al. Surface micromachined segmented mirrors for adaptive optics
Mali et al. Development of microelectromechanical deformable mirrors for phase modulation of light
JP4432839B2 (ja) 形状可変ミラー及びそれを備えた光ピックアップ装置
JP2006302389A (ja) 形状可変ミラー及びそれを備えた光ピックアップ装置
WO2007023940A1 (ja) アクチュエータ、光ヘッド装置および光情報装置
JP5374860B2 (ja) マイクロアクチュエータ及びその製造方法、マイクロアクチュエータアレー、マイクロアクチュエータ装置、光学デバイス、表示装置、露光装置、並びにデバイス製造方法
Cornelissen et al. Development of a 4096 element MEMS continuous membrane deformable mirror for high contrast astronomical imaging
Helmbrecht et al. Segmented MEMS deformable-mirror for wavefront correction
JP3970098B2 (ja) 収差補正装置
EP1515462A2 (en) Movable mirror device and dispersion compensator
US11754799B2 (en) Photothermally actuated self-tuning optical light valve
Kubby Wavefront correctors
JP2004061534A (ja) 形状可変鏡及び光ディスク情報入出力装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001648.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006519387

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007159025

Country of ref document: US

Ref document number: 10597784

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10597784

Country of ref document: US