WO2005055378A1 - Fiber laser oscillating device - Google Patents

Fiber laser oscillating device Download PDF

Info

Publication number
WO2005055378A1
WO2005055378A1 PCT/JP2004/018080 JP2004018080W WO2005055378A1 WO 2005055378 A1 WO2005055378 A1 WO 2005055378A1 JP 2004018080 W JP2004018080 W JP 2004018080W WO 2005055378 A1 WO2005055378 A1 WO 2005055378A1
Authority
WO
WIPO (PCT)
Prior art keywords
face
clad
optical fiber
fiber
light
Prior art date
Application number
PCT/JP2004/018080
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromichi Ota
Original Assignee
Toyoda Koki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki Kabushiki Kaisha filed Critical Toyoda Koki Kabushiki Kaisha
Publication of WO2005055378A1 publication Critical patent/WO2005055378A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094007Cladding pumping, i.e. pump light propagating in a clad surrounding the active core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094011Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre with bidirectional pumping, i.e. with injection of the pump light from both two ends of the fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094019Side pumped fibre, whereby pump light is coupled laterally into the fibre via an optical component like a prism, or a grating, or via V-groove coupling

Definitions

  • the present invention relates to a fiber laser oscillating device that irradiates excitation light to an optical fiber having a core member containing a laser active substance therein and generates and amplifies laser light at a part of the core member.
  • an end-pumped fiber laser oscillator comprising an optical fiber 10 and condenser lenses 24 and 26 is known as shown in FIG. 6 (A).
  • the optical fiber 10 has, in the longitudinal direction, a core member 12 doped with a rare earth element such as neodymium (Nd), which is a laser active material, and the core member 12 is covered with a cladding member 14.
  • the clad member 14 is further covered with the second clad member 16.
  • the diameter of the core member 12 and the refractive indices of the core member 12 the cladding member 14 and the second cladding member 16 appropriately, relatively high efficiency and high quality laser light is generated.
  • a possible fiber laser oscillation device can be realized relatively easily (in this case, the refractive index of the core member 12 is n 1, the refractive index of the clad member 14 is n 2, and the refractive index of the second clad member 16 is Is n3, the relationship is set to nl>n2> n3).
  • the refractive index of the core member 12 is n 1
  • the refractive index of the clad member 14 is n 2
  • the refractive index of the second clad member 16 is Is n3
  • the relationship is set to nl>n2> n3
  • the core member 12 In the excited core member 12, laser oscillation occurs, and only laser light Lout that can totally reflect the core member 12 ⁇ ⁇ remains from the generated light and propagates in the core member 12. Therefore, by using the core member 12 having a small NA (numerical aperture) and a small diameter, a very high-quality laser light Lout can be obtained. It is expressed as the product of the half-angle of the angle. The smaller this product is, the higher the beam quality is.) Then, the laser light Lout emitted from the end face Tb is condensed by the condensing lens 26, and the condensed laser light Lout is used for various purposes.
  • the core members 12 are arranged in a plane and further arranged.
  • the prisms 4a and 4b are arranged on the upper surface, and the pumping light Lin is incident from a larger area via the prisms 4a and 4b (the pumping light is incident not from the end face of the optical fiber but from the side face).
  • a laser light generator for increasing the output of the generated laser light has been proposed.
  • the incident excitation light Lin is reflected at the boundary between the cladding member 14 and the glass plate 17 to generate the excitation light Lin.
  • the incident angle of the excitation light Lin, the refractive index of the prism 4a, and the like are adjusted so as to be confined in the clad member 14.
  • the diameter of the clad member 14 is several 100 to 100 [ ⁇ ].
  • the fiber laser oscillation device becomes relatively expensive.
  • the pumping light L in is incident not from the end face of the optical fiber but from the side surface.When the pumping light is incident, the pumping light L in must be incident at a predetermined angle with respect to the optical fiber axis direction.
  • the excitation light L in cannot be confined within the member 14, so that high accuracy is required for the incident angle, and the excitation light L in needs to be incident as parallel light. For this reason, it is very difficult to use a semiconductor laser having relatively poor light condensing properties for the excitation light L in.
  • the present invention has been made in view of such a point, and provides a fiber laser oscillation device capable of injecting more excitation light and obtaining a higher output laser light. That is the task. Disclosure of the invention
  • a first invention is a fiber laser oscillation device that has a core member containing a laser active substance in a longitudinal direction and emits pump light to an optical fiber in which the core member is covered with a clad member to generate laser light. Wherein at an arbitrary position in the longitudinal direction of the optical fiber, at least a clad-removed portion leaving the core member, and excitation light are incident from a clad end face formed by the clad-removed portion. There is a fiber laser oscillator.
  • the excitation light is incident from the end face of the optical fiber. Instead, the excitation light can be incident from the cladding end face provided at an arbitrary position in the longitudinal direction of the optical fiber. For this reason, more pump light can be incident, and a higher output laser beam can be obtained.
  • the area of the clad end face can be made larger and more excitation light can be incident from the clad end face.
  • a second invention is the fiber laser oscillation device according to the first invention, wherein a core member is shifted from a center to a predetermined position in a cross section perpendicular to the longitudinal direction of the optical fiber. .
  • the core member is located at a position deviated from the center at the cladding end face and the fiber end face where the excitation light is incident, it is easy to enter the excitation light without being blocked by the core member.
  • the efficiency can be further improved and a laser beam with a higher output can be obtained.
  • a third invention is a fiber laser oscillation device according to the first invention or the second invention, wherein a plurality of fiber laser end faces and at least one of the clad end faces formed at arbitrary positions are provided from a plurality of end faces. It is characterized in that excitation light is incident.
  • a plurality of pump lights are incident from at least one of the optical fiber end face and the clad end face, so that a higher output laser beam can be obtained.
  • a fourth invention is the fiber laser oscillation device according to any one of the first to third inventions, wherein the cladding removing portion and the cladding end face are formed at an appropriate interval in one optical fiber. , Multiple clad end faces assembled It is characterized in that a collecting end face is formed and excitation light is incident from the collecting end face.
  • the optical fiber end face and the clad end face are collected at the location of the pump light, instead of the pump light being incident from the optical fiber end face and the clad end face. For this reason, even when it is difficult to converge the diameter of the excitation light to the diameter of one optical fiber or less, the excitation light can be efficiently incident, and a higher output laser beam can be obtained. Can be.
  • a fifth invention is the fiber laser oscillation device according to the fourth invention, wherein the end face of the clad and the Z or the end face of the optical fiber are formed in a polygonal shape.
  • the shape of the end face is polygonal (triangle, square, hexagon, etc.) so that the clad end face and the optical fiber end face are arranged as closely as possible on the collective end face. For this reason, the excitation light can be efficiently incident, and a higher output laser beam can be obtained.
  • FIG. 1 is a schematic configuration diagram (first embodiment) of one embodiment of a fiber laser oscillation device 1 of the present invention.
  • FIG. 2 is a diagram illustrating the structure of an optical fiber 10 according to the second embodiment.
  • FIG. 3 is a diagram illustrating an example in which a plurality of excitation lights Lin are incident from one end face in the second embodiment.
  • FIG. 4 is a diagram for explaining a third embodiment.
  • FIG. 5 is a diagram for explaining a fourth embodiment.
  • FIG. 6 is a diagram illustrating a conventional fiber laser oscillation device. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a schematic configuration diagram of one embodiment of a fiber laser oscillation device 1 of the present invention.
  • a clad removing portion 10 R in which at least the core member 12 is removed and the clad member 14 is removed is formed to form the longitudinal direction.
  • a feature is that a cladding end face S perpendicular to the direction is formed, and the excitation light Lin is also incident from the cladding end face S.
  • the optical fiber 10 has a core member 12 containing a laser active substance (a rare earth element such as Nd) in the longitudinal direction, and the core member 12 is also a clad member 14 having a low refractive index. It is covered with.
  • a laser active substance a rare earth element such as Nd
  • the cladding member 14 is removed at any two places (cladding removing portion 10R) in one optical fiber 10 to form the clad end face S.
  • the cladding removal portion 10R may be formed in any number of places.
  • FIG. 1 (B) shows the vicinity of the clad removing portion 10R.
  • the clad end face S is perpendicular to the longitudinal direction of the optical fiber 10, and two opposing clad end faces S are formed by one clad removing portion 10R.
  • the optical fiber 10 used in this embodiment has a core member 12 doped with a rare-earth element Nd (neodymium) as a laser active material, and a semiconductor laser having a wavelength of 800 nm is used. When used for excitation light, it generates laser light with a wavelength of 1064 [nm].
  • the diameter ⁇ core of the core member 12 is about 10 to 100.m]
  • the diameter ⁇ clad of the cladding member 14 is about 100 to L 0 00 [m].
  • the cladding removal part 10 The diameter ⁇ of the core member 12 is formed to be about 0 to several 10 [ ⁇ ] larger than the diameter of the core member 12.
  • the refractive index of the core member 12 is appropriately set so that “refractive index of the core member 12> refractive index of air”, the laser generated inside the core member 12 can be formed. Since the light can be totally reflected inside the core member 12 and confined, it is sufficient that at least the core member 12 is left.
  • the clad member 14 having a predetermined thickness may be left.
  • FIG. 1 (C) shows a cross section perpendicular to the longitudinal direction of a general optical fiber 10 used for a fiber laser oscillation device.
  • the outer periphery of the core member 12 fluoride glass doped with a rare earth element, etc.
  • a cladding member 14 glass fluoride, etc.
  • the outer periphery of the lad member 14 is covered with a second clad member 16 (UV resin or the like) (refractive index of the clad member 14> refractive index of the second clad member 16), and the
  • the outer periphery is covered with a covering member 19 (such as a covering resin).
  • the optical fiber 10 is used.
  • the present invention is not limited to the optical fiber 10 having this configuration.
  • the purpose of the pump light L in is not to propagate it, but to confine it in the clad member 14 and apply it to the core member 12.Therefore, a covering member 19 that totally reflects the pump light L in is selected. May be.
  • FIG. 1 (A) the components in the present embodiment and The functions of the components will be described.
  • the pumping light injector 2 OA is arranged at a position facing one end face Ta of the optical fiber 10, and the pumping light injector 20 B is arranged at a position facing the other end face Tb of the optical fiber 10. .
  • the pumping light incidence device 20C is disposed at a position substantially facing each of the cladding end surfaces S.
  • the pumping light incidence device 20 C includes pumping light emitting means 20 (such as a semiconductor laser array), a collimating lens 22 that converts the emitted pumping light Lin into parallel light, and a pumping light converted into parallel light. It is composed of a condenser lens 24 that collects Lin. It should be noted that the lens group including the collimating lens 22 and the condensing lens 24 may have various other configurations.
  • the cladding removing section 10R is curved so that each of the excitation light incident devices 20C can be arranged at a position facing each of the cladding end faces S of the cladding removing section 10R. Then, the excitation light Lin emitted from the excitation light incident device 20C is incident on the cladding end surface S facing the excitation light incident device 20C.
  • the pumping light injector 2 OA is a mirror 30 a (a dichroic mirror) that transmits the pumping light Lin and reflects the laser light Lout generated inside the core member 12 with respect to the pumping light injector 20 C. Etc.) have been added.
  • the mirror 30a is arranged in parallel with the end face Ta of the optical fiber 10.
  • the collimating lens 22 and the condensing lens 24 are similar to the excitation light incidence device 20C in that they convert the excitation light Lin emitted from the excitation light emission means 20 into parallel light and condense it. However, the laser beam L out generated in the core member 12 is emitted from the core member 12 on the end surface Ta of the optical fiber 10 to the excitation light incident device 20 A.
  • the laser light L out emitted from the core member 12 on the end face Ta of the optical fiber 10 is converted into parallel light by the condenser lens 24 (the condenser lens 24 serves as a collimating lens).
  • the light is reflected by the mirror 30a.
  • the laser light L out reflected as parallel light is condensed by the condenser lens 2 4 (back to the core member 1 2 of the end face T a) which is incident on the core member 1 2 of the end face T a.
  • the excitation light incident device 20B is a mirror 30b (dichroic) that transmits the excitation light Lin and reflects the laser light Lout generated inside the core member 12 with respect to the excitation light incident device 20C. mirrors, etc.), and the output laser focusing lens 2 6 have been added.
  • the mirror 30b is arranged so as to have an angle of about 45 ° with the end face T1> of the optical fiber 10.
  • the collimating lens 22 and the condensing lens 24 convert and condense the excitation light emitted from the excitation light emitting means 20 into parallel light, and are similar to the excitation light incidence device 20C. However, the laser light L out force S generated in the core member 12 and the excitation light incident device 20 B are emitted from the core member 12 on the end face Tb of the optical fiber 10.
  • the laser light L out emitted from the core member 12 of the end face T b of the optical fiber 10 is converted into parallel light by the condenser lens 24 (the condenser lens 24 functions as a collimating lens).
  • the light is reflected by the mirror 30b in the direction of the output laser condenser lens 26 (taken out of the output laser condenser lens 26).
  • the laser light L out reflected in a parallel light state is condensed by the output laser condensing lens 26 and can be used for various purposes.
  • an arbitrary number of cladding end faces S can be formed on a conventional end-pumped fiber laser oscillator to allow more pump light to enter.
  • Fig. 1 (A) four pumping light injectors 20C are added to the conventional pumping light injectors 2OA and 20B, so that the pumping light is about three times as large. L in can be incident, and a higher output laser beam L out can be obtained.
  • the second embodiment differs from the first embodiment in the structure of the optical fiber 10.
  • the optical fiber 10 is positioned such that the position of the core member 12 is shifted from the center P of the cross section by a predetermined distance D. The difference is that they are formed. Thereby, the excitation light Lin can be more easily incident from the cladding end face S.
  • the core member 12 When the core member 12 is located at a position substantially at the center P of the clad end surface S, a part of the excitation light L in impinges on the core member 12 which is curved at the clad removing portion 10 R and is reflected or the like. As a result, there is a possibility that the cladding edge S may not be properly reached.
  • the vicinity of the center of the clad end surface S is a flat surface, and the core member 12 does not interfere, so that more excitation light Lin can be incident from the clad end surface S.
  • a plurality of pumping light injection devices 20C are arranged at positions corresponding to the cladding end surface S (or the end surface Ta or Tb of the optical fiber 10) and at an appropriate incident angle. And a plurality of excitation lights L in can be incident from one end face.
  • the beam quality is slightly inferior (the error in the condensing diameter is slightly large, the converging diameter itself is slightly large, etc.). Is shifted from the center P of the end face T a or T b), so that more pumping light L in can be incident from the cladding end face S (or the end face T a or T b of the optical fiber 10).
  • the third embodiment is different from the first embodiment in the method of bending the clad removing portion 10R.
  • the optical fiber 10 is folded by 180 ° at the cladding removing portion 10R, and the cladding end face S (and the end face of the optical fiber 10) is folded. 1
  • the shape of the cross section perpendicular to the longitudinal direction of the optical fibers 10 is preferably a polygonal shape that can be arranged as closely as possible.
  • the cross section into a triangular shape, or by forming a square or hexagon as shown in FIGS. 4 (B) and 4 (C), the assembly end face SS can be formed without gaps.
  • the core member 12 is pulled out from both ends of the optical fiber 10 and the laser beam Lout output from one end face of the core member 12 is collected by the condenser lens 24.
  • the condenser lens 24 functions as a collimating lens
  • the light is reflected by the mirror 30a, further condensed by the condensing lens 24, and returned to the core member 12.
  • the laser light Lout is further condensed with the output laser condensing lens 26 and taken out.
  • the pumping light incident device excitation light incident device not including the mirrors 30a and 30b having the same configuration as the pumping light incident device 20C is used. Lin is incident.
  • the output of the excitation light Lin is large, it is possible to use an excitation light injection device in which it is difficult to make the condensing diameter smaller than the diameter of the cladding member 14 of the optical fiber 10 ( ⁇ clad or less).
  • the output laser light Lout can be obtained.
  • the excitation light incidence device 20C is arranged at a position facing the cladding end surface S of the plurality of cladding removing portions 1OR without using the mirrors 30a and 30b.
  • This is an example of a fiber laser oscillation device having a simple configuration.
  • the number of the cladding end face S and the number of the pumping light incidence devices 20C may be selected so that a target output laser light Lout can be obtained.
  • the pump light L in can be incident from a plurality of locations of one optical fiber 10, so that the total pump light L in can be increased, and a higher output laser beam L out can be obtained.
  • a device for inputting from the side surface of the optical fiber 10 and an adjustment for confining the incident pumping light Lin (for the pumping light).
  • various cost increase factors and error factors such as the angle of incidence on the prism
  • the beam quality of the excitation light are included.
  • the excitation from the end face of the optical fiber 10 is performed. With a simpler configuration for entering the light Lin, the cost can be reduced and the error factor can be reduced.
  • the fiber laser oscillation device 1 of the present invention has the shape described in the present embodiment,
  • the present invention is not limited to the configuration, the structure, and the like, and various changes, additions, and deletions can be made without changing the gist of the present invention.
  • a semiconductor laser is used for the excitation light Lin, but the present invention is not limited to this.
  • the fiber laser oscillation device of the present invention can be applied to various devices using laser light, such as a laser processing device.

Abstract

A fiber laser oscillating device able to receive more exciting lights and provide a larger-output laser beam. Exciting lights are input via a clad removed portion (10R) where at least a core member (12) remains and clad end faces formed by the clad removed portion at an arbitrary position in the longitudinal direction of an optical fiber (10). In addition, a plurality of exciting lights are input via the end faces of an optical fiber and at least one end face of clad end faces formed at an arbitrary position on a section vertical to the longitudinal direction of the optical fiber, with the optical fiber formed so that the core member deviates to a specified position from the center. Furthermore, clad removed portions and clad end faces are formed at proper intervals on one optical fiber to form an assembly end face formed by assembling a plurality of clad end faces, and an exciting light is input via that assembly end face.

Description

明細書 ファイバレーザ発振装置 技術分野  Description Fiber laser oscillator Technical field
本発明は、 レーザ活性物質を含むコア部材を内部に有している光ファ ィパに励起光を入射し、 コア部材の內部でレーザ光を発生及び増幅する ファイバレーザ発振装置に関する。 背景技術  The present invention relates to a fiber laser oscillating device that irradiates excitation light to an optical fiber having a core member containing a laser active substance therein and generates and amplifies laser light at a part of the core member. Background art
従来より、 比較的ビーム品質の劣る励起光を用いて非常に高品質のレ 一ザ光を高効率で得ることができる種々のファイバレーザ発振装置が提 案されている。  Conventionally, various fiber laser oscillators have been proposed that can obtain very high-quality laser light with high efficiency by using pump light having relatively poor beam quality.
従来のファイバレーザ発振装置として、 第 6図 (A) に示すように、 光ファイバ 1 0と集光レンズ 24及び 2 6にて構成された端面励起型フ アイバレーザ発振装置が知られている。 光ファイバ 1 0は、 レーザ活性 物質であるネオジゥム (Nd) 等の希土類元素をドープしたコア部材 1 2 を長手方向に有しており、 コア部材 1 2をクラッ ド部材 1 4で覆ってい る。 第 6図 (A) に示す例では、 クラッド部材 1 4を更に第 2クラッド 部材 1 6で覆っている。 ここで、 コア部材 1 2の径、 コア部材 1 2とク ラッド部材 1 4と第 2クラッド部材 1 6の屈折率を適切に設定すること で、 比較的高効率で高品質のレーザ光が発生可能なファイバレーザ発振 装置を比較的容易に実現することができる (この場合、 コア部材 1 2の 屈折率を n 1、 クラッド部材 14の屈折率を n 2、 第 2クラッド部材 1 6の屈折率を n 3とすると、 n l > n 2 > n 3の関係に設定されている)。 この光ファイバ 1 0の一方の端面 T aから集光レンズ 24を介して励 起光 Lin (半導体レーザ等) を入射すると、 励起光 Linは光ファイバ 1 0のクラッド部材 1 4內で全反射を繰り返して伝播しながらコア部材 1 2を励起する。 励起されたコア部材 1 2内では、 レーザ発振が発生し、 発生した光の中からコア部材 1 2內を全反射できるレーザ光 Lout のみ が残ってコア部材 1 2内を伝播する。従って、 N A (開口数) が小さく、 且つ径の小さいコア部材 1 2を用いることで、 非常に高品質のレーザ光 Lout を得ることができる (レーザ光のビーム品質は、 出射光の半径と 出射角度の半角の積で表され、 この積が小さい程ビーム品質が高い)。 そ して端面 T bから出射されたレーザ光 Lout を集光レンズ 2 6を用いて 集光し、 集光したレーザ光 Loutを種々の用途に用いている。 As a conventional fiber laser oscillator, an end-pumped fiber laser oscillator comprising an optical fiber 10 and condenser lenses 24 and 26 is known as shown in FIG. 6 (A). The optical fiber 10 has, in the longitudinal direction, a core member 12 doped with a rare earth element such as neodymium (Nd), which is a laser active material, and the core member 12 is covered with a cladding member 14. In the example shown in FIG. 6 (A), the clad member 14 is further covered with the second clad member 16. Here, by setting the diameter of the core member 12 and the refractive indices of the core member 12, the cladding member 14 and the second cladding member 16 appropriately, relatively high efficiency and high quality laser light is generated. A possible fiber laser oscillation device can be realized relatively easily (in this case, the refractive index of the core member 12 is n 1, the refractive index of the clad member 14 is n 2, and the refractive index of the second clad member 16 is Is n3, the relationship is set to nl>n2> n3). Excitation from one end face Ta of this optical fiber 10 through the condenser lens 24 When the light emitting Lin (semiconductor laser or the like) is incident, the pumping light Lin excites the core member 12 while propagating through the cladding member 14 內 of the optical fiber 10 while repeating total reflection. In the excited core member 12, laser oscillation occurs, and only laser light Lout that can totally reflect the core member 12 残 っ remains from the generated light and propagates in the core member 12. Therefore, by using the core member 12 having a small NA (numerical aperture) and a small diameter, a very high-quality laser light Lout can be obtained. It is expressed as the product of the half-angle of the angle. The smaller this product is, the higher the beam quality is.) Then, the laser light Lout emitted from the end face Tb is condensed by the condensing lens 26, and the condensed laser light Lout is used for various purposes.
しかし、 第 6図 (A) の例に示す端面励起型ファイバレーザ発振装置 では、 入射する励起光 Linを増加させることが困難であるため (1本の 光ファイバ 1 0の端面 T aの面積は非常に小さいため)、比較的大出力の レーザ光 Loutを発生させることは非常に困難である。  However, in the end-pumped fiber laser oscillator shown in the example of FIG. 6 (A), it is difficult to increase the amount of incident pump light Lin (the area of the end face Ta of one optical fiber 10 is Therefore, it is very difficult to generate a laser beam Lout having a relatively large output.
そこで、 特開 20 0 1— 1 5 8 3 5号公報に示す従来技術では、 第 6 図 (B) 及ぴ (C) に示すように、 コア部材 1 2を平面状に並べて配置 し、 更に上面にプリズム 4 a及び 4 bを配置して、 当該プリズム 4 a及 ぴ 4 bを介して、 より大きな面積から励起光 Linを入射 (光ファイバの 端面からでなく側面から励起光を入射) するようにして、 発生させるレ 一ザ光を大出力化するレーザ光発生装置が提案されている。 なお、 特開 200 1 - 1 5 8 3 5号公報に示す従来技術では、 入射された励起光 L inを、 クラッド部材 1 4とガラス平板 1 7との境界で反射させて、 励起 光 Linをクラッド部材 1 4に閉じ込めるように、 励起光 Linの入射角、 プリズム 4 aの屈折率等を調整している。  Therefore, in the prior art disclosed in Japanese Patent Application Laid-Open No. 2001-158535, as shown in FIGS. 6 (B) and 6 (C), the core members 12 are arranged in a plane and further arranged. The prisms 4a and 4b are arranged on the upper surface, and the pumping light Lin is incident from a larger area via the prisms 4a and 4b (the pumping light is incident not from the end face of the optical fiber but from the side face). In this way, a laser light generator for increasing the output of the generated laser light has been proposed. In the prior art disclosed in Japanese Patent Application Laid-Open No. 2001-158535, the incident excitation light Lin is reflected at the boundary between the cladding member 14 and the glass plate 17 to generate the excitation light Lin. The incident angle of the excitation light Lin, the refractive index of the prism 4a, and the like are adjusted so as to be confined in the clad member 14.
一般的にファイバレーザ発振装置に用いる光ファイバ 1 0において、 クラッド部材 1 4の直径は数 1 0 0〜 1 0 0 0 [μ ΐη] である。 従来の 端面励起型ファイバレーザ発振装置の励起光 L in に半導体レーザを用 いた場合、 比較的大きな出力の励起光をファイバ端面 T aに集光するこ とは困難である (半導体レーザは一般的にビーム品質が悪く集光性が比 較的悪いため)。 Generally, in the optical fiber 10 used for the fiber laser oscillation device, the diameter of the clad member 14 is several 100 to 100 [μΐη]. Traditional When a semiconductor laser is used as the pump light L in of the end-pumped fiber laser oscillation device, it is difficult to focus the pump light having a relatively large output on the fiber end face Ta. Poor quality and relatively poor light collection).
また、 特開 2 0 0 1— 1 5 8 3 5号公報に記載の従来技術では、 プリ ズム 4 a及ぴ 4 bを用意しなければならないため、 'ファイバレーザ発振 装置が比較的高価になる。 また励起光 L inを光ファイバの端面からでな く側面から入射しており、 励起光の入射の際、 励起光 L inを光ファイバ の軸線方向に対して所定の角度で入射しなければクラッド部材 1 4内に 励起光 L inを閉じ込めておくことができず、入射角度に高い精度が要求 されるとともに、励起光 L inを平行光で入射する必要がある。このため、 比較的集光性が悪い半導体レーザを励起光 L in に用いることは非常に 困難である。  In addition, in the conventional technique described in Japanese Patent Application Laid-Open No. 2000-158535, since the prisms 4a and 4b must be prepared, the fiber laser oscillation device becomes relatively expensive. . In addition, the pumping light L in is incident not from the end face of the optical fiber but from the side surface.When the pumping light is incident, the pumping light L in must be incident at a predetermined angle with respect to the optical fiber axis direction. The excitation light L in cannot be confined within the member 14, so that high accuracy is required for the incident angle, and the excitation light L in needs to be incident as parallel light. For this reason, it is very difficult to use a semiconductor laser having relatively poor light condensing properties for the excitation light L in.
本発明は、 このような点に鑑みて創案されたものであり、 より多くの 励起光を入射することが可能であり、 より大出力のレーザ光を得ること ができるファイバレーザ発振装置を提供することを課題とする。 発明の開示  The present invention has been made in view of such a point, and provides a fiber laser oscillation device capable of injecting more excitation light and obtaining a higher output laser light. That is the task. Disclosure of the invention
第 1の発明は、 レーザ活性物質を含むコア部材を長手方向に有すると ともに当該コア部材をクラッド部材で覆った光ファイバに、 励起光を入 射することでレーザ光を発生させるファイバレーザ発振装置であって、 光ファイバの長手方向における任意の位置にて、 少なく ともコア部材を 残したクラッド除去部と、 当該クラッド除去部により形成されたクラッ ド端面から励起光を入射することを特徴とするファイバレーザ発振装置 ある。  A first invention is a fiber laser oscillation device that has a core member containing a laser active substance in a longitudinal direction and emits pump light to an optical fiber in which the core member is covered with a clad member to generate laser light. Wherein at an arbitrary position in the longitudinal direction of the optical fiber, at least a clad-removed portion leaving the core member, and excitation light are incident from a clad end face formed by the clad-removed portion. There is a fiber laser oscillator.
第 1の発明によれば、 光ファイバの端面から励起光を入射するのみで なく、 光ファイバの長手方向における任意の位置に設けたクラッド端面 からも励起光を入射することができる。 このため、 より多くの励起光を 入射することができるので、より大出力のレーザ光を得ることができる。 According to the first invention, only the excitation light is incident from the end face of the optical fiber. Instead, the excitation light can be incident from the cladding end face provided at an arbitrary position in the longitudinal direction of the optical fiber. For this reason, more pump light can be incident, and a higher output laser beam can be obtained.
クラッド部材を取り除く際、 コア部材のみを残すように取り除けば、 クラッド端面の面積をより大きくすることができ、 より多くの励起光を クラッド端面から入射可能となる。  When removing the clad member so that only the core member is left, the area of the clad end face can be made larger and more excitation light can be incident from the clad end face.
また、 クラッド部材を取り除く際、 コア部材の外周に所定厚さのクラ ッド部材を残すように取り除けば、 コア部材の損傷及びダス トの付着等 による損失 (伝播光の乱反射等) を抑制することができる。  In addition, when removing the clad member so as to leave the clad member of a predetermined thickness around the outer periphery of the core member, loss due to damage to the core member and adhesion of dust (diffuse reflection of propagating light, etc.) is suppressed. be able to.
第 2の発明は、 第 1の発明に係るファイバレーザ発振装置であって、 光ファイバの長手方向に垂直な断面において、 コア部材が中心から所定 位置にずれていることを特徴とするものである。  A second invention is the fiber laser oscillation device according to the first invention, wherein a core member is shifted from a center to a predetermined position in a cross section perpendicular to the longitudinal direction of the optical fiber. .
第 2の発明によれば、 励起光を入射するクラッド端面及びファイバ端 面において、 コア部材が中心からずれた位置にあるため、 コア部材に遮 られることを避けて励起光を入射することが容易であり、 効率をより向 上させ、 より大出力のレーザ光を得ることができる。  According to the second aspect, since the core member is located at a position deviated from the center at the cladding end face and the fiber end face where the excitation light is incident, it is easy to enter the excitation light without being blocked by the core member. Thus, the efficiency can be further improved and a laser beam with a higher output can be obtained.
第 3の発明は、 第 1の発明または第 2の発明に係るフアイバレーザ発 振装置であって、 光ファイバ端面及ぴ任意の位置に形成したクラッ ド端 面の少なく とも 1つの端面から複数の励起光を入射することを特徴とす るものである。  A third invention is a fiber laser oscillation device according to the first invention or the second invention, wherein a plurality of fiber laser end faces and at least one of the clad end faces formed at arbitrary positions are provided from a plurality of end faces. It is characterized in that excitation light is incident.
第 3の発明によれば、 光ファイバ端面及びクラッド端面の少なく とも 1つの端面から複数の励起光を入射するため、 より大出力のレーザ光を 得ることができる。  According to the third aspect of the present invention, a plurality of pump lights are incident from at least one of the optical fiber end face and the clad end face, so that a higher output laser beam can be obtained.
また、 第 4の発明は、 第 1〜第 3の発明のいずれかに係るファイバレ 一ザ発振装置であって、 一本の光ファイバにおいて適宜の間隔でクラッ ド除去部及ぴクラッド端面を形成し、 複数のクラッド端面を集合させた 集合端面を形成し、 当該集合端面から励起光を入射することを特徴とす るものである。 A fourth invention is the fiber laser oscillation device according to any one of the first to third inventions, wherein the cladding removing portion and the cladding end face are formed at an appropriate interval in one optical fiber. , Multiple clad end faces assembled It is characterized in that a collecting end face is formed and excitation light is incident from the collecting end face.
第 4の発明によれば、 光ファイバ端面及びクラッド端面の各端面から 励起光を入射するのでなく、 励起光の場所に光ファイバ端面及びクラッ ド端面を集める。 このため、 励起光の径を 1本の光ファイバの径以下に 集光することが困難な場合であっても、 効率よく励起光を入射すること ができ、 より大出力のレーザ光を得ることができる。  According to the fourth aspect, the optical fiber end face and the clad end face are collected at the location of the pump light, instead of the pump light being incident from the optical fiber end face and the clad end face. For this reason, even when it is difficult to converge the diameter of the excitation light to the diameter of one optical fiber or less, the excitation light can be efficiently incident, and a higher output laser beam can be obtained. Can be.
また、 第 5の発明は、 第 4の発明に係るファイバレーザ発振装置であ つて、 クラッド端面及び Zまたは光ファイバ端面を多角形に形成するこ とを特徴とするものである。  A fifth invention is the fiber laser oscillation device according to the fourth invention, wherein the end face of the clad and the Z or the end face of the optical fiber are formed in a polygonal shape.
第 5の発明によれば、 集合端面に、 クラッド端面及び光ファイバ端面 ができるだけ隙間なく並ぶように、 端面の 状を多角形 (三角形、 四角 形、 六角形等) にしている。 このため、 効率よく励起光を入射すること ができ、 より大出力のレーザ光を得ることができる。 図面の簡単な説明  According to the fifth aspect, the shape of the end face is polygonal (triangle, square, hexagon, etc.) so that the clad end face and the optical fiber end face are arranged as closely as possible on the collective end face. For this reason, the excitation light can be efficiently incident, and a higher output laser beam can be obtained. Brief Description of Drawings
第 1図は、 本発明のファイバレーザ発振装置 1の一実施の形態の概略 構成図 (第 1の実施の形態) である。 第 2図は、 第 2の実施の形態にお ける光ファイバ 1 0の構造を説明する図である。 第 3図は、 第 2の実施 の形態において、複数の励起光 L inを 1つの端面から入射する例を説明 する図である。 第 4図は、 第 3の実施の形態を説明する図である。 第 5 図は、 第 4の実施の形態を説明する図である。 第 6図は、 従来のフアイ バレーザ発振装置を説明する図である。 発明を実施するための最良の形態  FIG. 1 is a schematic configuration diagram (first embodiment) of one embodiment of a fiber laser oscillation device 1 of the present invention. FIG. 2 is a diagram illustrating the structure of an optical fiber 10 according to the second embodiment. FIG. 3 is a diagram illustrating an example in which a plurality of excitation lights Lin are incident from one end face in the second embodiment. FIG. 4 is a diagram for explaining a third embodiment. FIG. 5 is a diagram for explaining a fourth embodiment. FIG. 6 is a diagram illustrating a conventional fiber laser oscillation device. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明を実施するための最良の形態を図面を用いて説明する。 第 1図は、 本発明のファイバレーザ発振装置 1の一実施の形態の概略構 成図を示している。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration diagram of one embodiment of a fiber laser oscillation device 1 of the present invention.
[第 1の実施の形態 (第 1図)]  [First Embodiment (Fig. 1)]
第 1の実施の形態では、光ファイバ 1 0の長手方向の任意の位置にて、 少なく ともコア部材 1 2を残してクラッド部材 1 4を取り除いたクラッ ド除去部 1 0 Rを形成して長手方向に垂直なクラッド端面 Sを形成し、 当該クラッド端面 Sからも励起光 Linを入射する点が特徴である。 これ により、 従来の端面励起型ファイバレーザ発振薛置よりもより多くの励 起光を入射することができ、 より大出力のレーザ光を発生させることが できる。  In the first embodiment, at an arbitrary position in the longitudinal direction of the optical fiber 10, a clad removing portion 10 R in which at least the core member 12 is removed and the clad member 14 is removed is formed to form the longitudinal direction. A feature is that a cladding end face S perpendicular to the direction is formed, and the excitation light Lin is also incident from the cladding end face S. Thus, more excitation light can be incident than in the conventional end-pumped fiber laser oscillation device, and a higher output laser beam can be generated.
光ファイバ 1 0は、 レーザ活性物質 (Nd等の希土類元素) を含むコア 部材 1 2を長手方向に有しており、 当該コア部材 1 2をコア部材ょりも 屈折率の低いクラッド部材 1 4で覆っている。  The optical fiber 10 has a core member 12 containing a laser active substance (a rare earth element such as Nd) in the longitudinal direction, and the core member 12 is also a clad member 14 having a low refractive index. It is covered with.
第 1図 (A) に示す例では、 1本の光ファイバ 1 0における任意の 2 個所 (クラッド除去部 1 0 R) にて、 クラッド部材 1 4を取り除いてク ラッド端面 Sを形成している。 なお、 クラッド除去部 1 0 Rは、 何個所 形成してもよい。  In the example shown in FIG. 1 (A), the cladding member 14 is removed at any two places (cladding removing portion 10R) in one optical fiber 10 to form the clad end face S. . Note that the cladding removal portion 10R may be formed in any number of places.
第 1図 (B) は、 クラッド除去部 1 0 R近傍を示している。 クラッド 端面 Sは光ファイバ 1 0の長手方向に垂直であり、 1つのクラッド除去 部 1 0 Rで対向する 2個のクラッド端面 Sが形成される。  FIG. 1 (B) shows the vicinity of the clad removing portion 10R. The clad end face S is perpendicular to the longitudinal direction of the optical fiber 10, and two opposing clad end faces S are formed by one clad removing portion 10R.
なお、 本実施の形態に用いた光ファイバ 1 0は、 レーザ活性物質とし てコア部材 1 2には希土類元素 Nd (ネオジゥム) がドープされており、 8 0 0 [nm] の波長の半導体レーザを励起光に用いた場合、 1 0 6 4 [nm]の波長のレーザ光を発生する。また、コア部材 1 2の直径 φ core は約 1 0 ~ 1 0 0. m] であり、 クラッド部材 1 4の直径 φ cladは 約数 1 0 0〜; L 0 0 0 [ m] である。 また、 クラッド除去部 1 0 に おける直径 Φ Γは、 コア部材 1 2の直径に対し、 0〜数 1 0 [ μ πι ] 程 度大きく形成している。 The optical fiber 10 used in this embodiment has a core member 12 doped with a rare-earth element Nd (neodymium) as a laser active material, and a semiconductor laser having a wavelength of 800 nm is used. When used for excitation light, it generates laser light with a wavelength of 1064 [nm]. The diameter φ core of the core member 12 is about 10 to 100.m], and the diameter φ clad of the cladding member 14 is about 100 to L 0 00 [m]. Also, the cladding removal part 10 The diameter ΦΓ of the core member 12 is formed to be about 0 to several 10 [μπι] larger than the diameter of the core member 12.
クラッド除去部 1 0 Rは、 「コア部材 1 2の屈折率 >空気の屈折率」と なるようにコア部材 1 2の屈折率を適切に設定すれば、 コア部材 1 2の 内部で発生したレーザ光をコア部材 1 2の内部で全反射させて閉じ込め ることができるので、 少なく ともコア部材 1 2を残しておけばよい。 も ちろん、 所定の厚さのクラッド部材 1 4を残しておいてもよい。  If the refractive index of the core member 12 is appropriately set so that “refractive index of the core member 12> refractive index of air”, the laser generated inside the core member 12 can be formed. Since the light can be totally reflected inside the core member 12 and confined, it is sufficient that at least the core member 12 is left. Of course, the clad member 14 having a predetermined thickness may be left.
また、 第 1図 (C ) にファイバレーザ発振装置に用いる一般的な光フ アイバ 1 0の長手方向に垂直な断面を示す。 コア部材 1 2 (希土類元素 をドープしたフッ化ガラス等) の外周をクラッド部材 1 4 (フッ化ガラ ス等) で覆い (コア部材 1 2の屈折率 >クラッド部材 1 4の屈折率)、 ク ラッド部材 1 4の外周を第 2クラッド部材 1 6 ( U V樹脂等)で覆い(ク ラッド部材 1 4の屈折率 >第 2クラッド部材 1 6の屈折率)、更に第 2ク ラッド部材 1 6の外周を被覆部材 1 9 (被覆樹脂等) で覆っている。 本 実施の形態では、 当該光ファイバ 1 0を用いているが、 この構成の光フ アイバ 1 0に限定されるものではない。  FIG. 1 (C) shows a cross section perpendicular to the longitudinal direction of a general optical fiber 10 used for a fiber laser oscillation device. The outer periphery of the core member 12 (fluoride glass doped with a rare earth element, etc.) is covered with a cladding member 14 (glass fluoride, etc.) (refractive index of the core member 12> refractive index of the cladding member 14). The outer periphery of the lad member 14 is covered with a second clad member 16 (UV resin or the like) (refractive index of the clad member 14> refractive index of the second clad member 16), and the The outer periphery is covered with a covering member 19 (such as a covering resin). In the present embodiment, the optical fiber 10 is used. However, the present invention is not limited to the optical fiber 10 having this configuration.
なお励起光 L inは、 伝播させることが目的でなく、 クラッド部材 1 4 内に閉じ込めてコア部材 1 2に当てることが目的であるため、 励起光 L inを全反射させる被覆部材 1 9を選定してもよい。  Note that the purpose of the pump light L in is not to propagate it, but to confine it in the clad member 14 and apply it to the core member 12.Therefore, a covering member 19 that totally reflects the pump light L in is selected. May be.
また、 光ファイバ 1 0の端面 T a (または T b ) 〜クラッ ド端面 Sま での光ファイバ 1 0の長さ、 クラッド除去部 1 0 R〜クラッド除去部 1 O Rまでの光ファイバ 1 0の長さは、 約 5〜 1 0 [ m ] としている。 こ の長さが適切でないと、入射した励起光 L i nがコア部材 1 2を励起する 前に端面 S (または端面 T a、 T b ) に到達してしまい、 クラッド部材 1 4から出射されてしまう。  In addition, the length of the optical fiber 10 from the end face T a (or T b) of the optical fiber 10 to the cladding end face S, and the length of the optical fiber 10 from the cladding removal part 10 R to the cladding removal part 1 OR The length is about 5 to 10 [m]. If this length is not appropriate, the incident excitation light Lin reaches the end face S (or the end faces Ta and Tb) before exciting the core member 12 and is emitted from the clad member 14. I will.
次に、 第 1図 (A ) を用いて、 本実施の形態における構成要素と、 各 構成要素の機能について説明する。 Next, referring to FIG. 1 (A), the components in the present embodiment and The functions of the components will be described.
励起光入射装置 2 O Aを光ファイバ 1 0の一方の端面 T aに対向する 位置に配置し、 励起光入射装置 2 0 Bを光ファイバ 1 0の他方の端面 T bに対向する位置に配置する。 また、 励起光入射装置 2 0 Cを各クラッ ド端面 Sとほぼ対向する位置に配置する。  The pumping light injector 2 OA is arranged at a position facing one end face Ta of the optical fiber 10, and the pumping light injector 20 B is arranged at a position facing the other end face Tb of the optical fiber 10. . In addition, the pumping light incidence device 20C is disposed at a position substantially facing each of the cladding end surfaces S.
励起光入射装置 2 0 Cは、 励起光出射手段 2 0 (半導体レーザアレイ 等) と、 出射された励起光 L inを平行光に変換するコリメートレンズ 2 2と、平行光に変換された励起光 L inを集光する集光レンズ 2 4とで構 成されている。 なお、 コリメートレンズ 2 2及び集光レンズ 2 4で構成 するレンズ群は、 他にも種々の構成が考えられる。 そして、 クラッド除 去部 1 0 Rの各クラッド端面 Sの対向する位置に励起光入射装置 2 0 C の各々を配置できるように、 クラッド除去部 1 0 Rを湾曲させる。 そし て、励起光入射装置 2 0 Cから出射される励起光 L inを当該励起光入射 装置 2 0 Cに対向するクラッド端面 Sに入射する。  The pumping light incidence device 20 C includes pumping light emitting means 20 (such as a semiconductor laser array), a collimating lens 22 that converts the emitted pumping light Lin into parallel light, and a pumping light converted into parallel light. It is composed of a condenser lens 24 that collects Lin. It should be noted that the lens group including the collimating lens 22 and the condensing lens 24 may have various other configurations. Then, the cladding removing section 10R is curved so that each of the excitation light incident devices 20C can be arranged at a position facing each of the cladding end faces S of the cladding removing section 10R. Then, the excitation light Lin emitted from the excitation light incident device 20C is incident on the cladding end surface S facing the excitation light incident device 20C.
励起光入射装置 2 O Aは、 励起光入射装置 2 0 Cに対して、 励起光 L inを透過させてコア部材 1 2内部で発生したレーザ光 L outを反射する ミラー 3 0 a (ダイクロイツクミラー等) が追加されている。 そして、 ミラー 3 0 aは光ファイバ 1 0の端面 T aと平行に配置される。  The pumping light injector 2 OA is a mirror 30 a (a dichroic mirror) that transmits the pumping light Lin and reflects the laser light Lout generated inside the core member 12 with respect to the pumping light injector 20 C. Etc.) have been added. The mirror 30a is arranged in parallel with the end face Ta of the optical fiber 10.
コリメートレンズ 2 2と集光レンズ 2 4は、 励起光出射手段 2 0から 出射された励起光 L in を平行光に変換及び集光する点は励起光入射装 置 2 0 Cと同様である。 しかし、 励起光入射装置 2 0 Aには、 コア部材 1 2内で発生したレーザ光 L out 力^ 光ファイバ 1 0の端面 T aのコア 部材 1 2から出射されてくる。  The collimating lens 22 and the condensing lens 24 are similar to the excitation light incidence device 20C in that they convert the excitation light Lin emitted from the excitation light emission means 20 into parallel light and condense it. However, the laser beam L out generated in the core member 12 is emitted from the core member 12 on the end surface Ta of the optical fiber 10 to the excitation light incident device 20 A.
光ファイバ 1 0の端面 T aのコア部材 1 2から出射されるレーザ光 L out は、 集光レンズ 2 4で平行光に変換されて (集光レンズ 2 4がコリ メートレンズの役目を果たす)、 ミラー 3 0 aにて反射される。 そして、 平行光の状態で反射されたレーザ光 L out は集光レンズ 2 4で集光され、 端面 T aのコア部材 1 2に入射される (端面 T aのコア部材 1 2に戻さ れる)。 The laser light L out emitted from the core member 12 on the end face Ta of the optical fiber 10 is converted into parallel light by the condenser lens 24 (the condenser lens 24 serves as a collimating lens). The light is reflected by the mirror 30a. And The laser light L out reflected as parallel light is condensed by the condenser lens 2 4 (back to the core member 1 2 of the end face T a) which is incident on the core member 1 2 of the end face T a.
励起光入射装置 2 0 Bは、 励起光入射装置 2 0 Cに対して、 励起光 L inを透過させてコア部材 1 2内部で発生したレーザ光 L outを反射する ミラー 3 0 b (ダイクロイツクミラー等)、及び出力レーザ集光レンズ2 6が追加されている。 そして、 ミラー 3 0 bは光ファイバ 1 0の端面 T 1>と約4 5 ° の角度を持たせて配置される。 The excitation light incident device 20B is a mirror 30b (dichroic) that transmits the excitation light Lin and reflects the laser light Lout generated inside the core member 12 with respect to the excitation light incident device 20C. mirrors, etc.), and the output laser focusing lens 2 6 have been added. The mirror 30b is arranged so as to have an angle of about 45 ° with the end face T1> of the optical fiber 10.
コリメートレンズ 2 2と集光レンズ 2 4は、 励起光出射手段 2 0から 出射された励起光を平行光に変換及び集光する点は励起光入射装置 2 0 Cと同様である。 しかし、 励起光入射装置 2 0 Bには、 コア部材 1 2内 で発生したレーザ光 L out 力 S、 光ファイバ 1 0の端面 T bのコア部材 1 2から出射されてくる。  The collimating lens 22 and the condensing lens 24 convert and condense the excitation light emitted from the excitation light emitting means 20 into parallel light, and are similar to the excitation light incidence device 20C. However, the laser light L out force S generated in the core member 12 and the excitation light incident device 20 B are emitted from the core member 12 on the end face Tb of the optical fiber 10.
光ファイバ 1 0の端面 T bのコア部材 1 2から出射されるレーザ光 L out は、 集光レンズ 2 4で平行光に変換されて (集光レンズ 2 4がコリ メー トレンズの役目を果たす)、ミ ラー 3 0 bにて出力レーザ集光レンズ 2 6の方向に反射される (出力レーザ集光レンズ 2 6の方向に取り出さ れる)。 そして、 平行光の状態で反射されたレーザ光 L outは、 出力レー ザ集光レンズ 2 6で集光され、 種々の用途に用いることができる。  The laser light L out emitted from the core member 12 of the end face T b of the optical fiber 10 is converted into parallel light by the condenser lens 24 (the condenser lens 24 functions as a collimating lens). The light is reflected by the mirror 30b in the direction of the output laser condenser lens 26 (taken out of the output laser condenser lens 26). The laser light L out reflected in a parallel light state is condensed by the output laser condensing lens 26 and can be used for various purposes.
本実施の形態では、 従来の端面励起型フアイバレーザ発振装置に対し て、 任意の数のクラッド端面 Sを形成してより多くの励起光を入射でき る。 第 1図 (A ) に示す例では、 従来の励起光入射装置 2 O A及び 2 0 Bに対して、 4個の励起光入射装置 2 0 Cを追加しているので、 約 3倍 の励起光 L inを入射でき、 より大出力のレーザ光 L outを得ることがで さる。  In the present embodiment, an arbitrary number of cladding end faces S can be formed on a conventional end-pumped fiber laser oscillator to allow more pump light to enter. In the example shown in Fig. 1 (A), four pumping light injectors 20C are added to the conventional pumping light injectors 2OA and 20B, so that the pumping light is about three times as large. L in can be incident, and a higher output laser beam L out can be obtained.
[第 2の実施の形態 (第 2図、 第 3図)] 第 2の実施の形態では、 第 1の実施の形態に対して光ファイバ 1 0の 構造が異なる。 [Second embodiment (Figs. 2 and 3)] The second embodiment differs from the first embodiment in the structure of the optical fiber 10.
第 2図に示すように、 光ファイバ 1 0の長手方向に垂直な断面におい て、 コア部材 1 2の位置が断面の中心 Pから所定距離 Dだけずれた位置 になるように光ファイバ 1 0を形成している点が異なる。 これにより、 クラッド端面 Sから励起光 L inをより容易に入射できる。  As shown in FIG. 2, in a cross section perpendicular to the longitudinal direction of the optical fiber 10, the optical fiber 10 is positioned such that the position of the core member 12 is shifted from the center P of the cross section by a predetermined distance D. The difference is that they are formed. Thereby, the excitation light Lin can be more easily incident from the cladding end face S.
クラッド端面 Sのほぼ中心 Pの位置にコア部材 1 2が位置していると、 励起光 L inの一部が、クラッド除去部 1 0 Rで湾曲しているコア部材 1 2に当たって反射等してしまい、 適切にクラッド端面 Sに到達しない可 能性がある。 しかし、 本実施の形態によれば、 クラッド端面 Sの中央近 傍が平面であり、 コア部材 1 2が邪魔にならないので、 より多くの励起 光 L inをクラッド端面 Sから入射することができる。  When the core member 12 is located at a position substantially at the center P of the clad end surface S, a part of the excitation light L in impinges on the core member 12 which is curved at the clad removing portion 10 R and is reflected or the like. As a result, there is a possibility that the cladding edge S may not be properly reached. However, according to the present embodiment, the vicinity of the center of the clad end surface S is a flat surface, and the core member 12 does not interfere, so that more excitation light Lin can be incident from the clad end surface S.
また、 第 3図に示すように、 クラッド端面 S (または光ファイバ 1 0 の端面 T aまたは T b ) に対応する位置、 且つ適切な入射角となるよう に複数の励起光入射装置 2 0 Cを配置して、 1つの端面から複数の励起 光 L inを入射することもできる。 この場合、 ビーム品質がやや劣る (集 光径の誤差がやや大きい、 集光径そのものがやや大きい等) 励起光 L in を用いても、 コア部材 1 2がクラッド端面 S (または光ファイバ 1 0の 端面 T aまたは T b ) の中心 Pからずれているので、 より多くの励起光 L inをクラッド端面 S (または光ファイバ 1 0の端面 T aまたは T b ) から入射することができる。  Further, as shown in FIG. 3, a plurality of pumping light injection devices 20C are arranged at positions corresponding to the cladding end surface S (or the end surface Ta or Tb of the optical fiber 10) and at an appropriate incident angle. And a plurality of excitation lights L in can be incident from one end face. In this case, the beam quality is slightly inferior (the error in the condensing diameter is slightly large, the converging diameter itself is slightly large, etc.). Is shifted from the center P of the end face T a or T b), so that more pumping light L in can be incident from the cladding end face S (or the end face T a or T b of the optical fiber 10).
[第 3の実施の形態 (第 4図)]  [Third embodiment (Fig. 4)]
第 3の実施の形態は、 第 1の実施の形態に対して、 クラッド除去部 1 0 Rの湾曲方法が異なる。  The third embodiment is different from the first embodiment in the method of bending the clad removing portion 10R.
第 4図 (A ) に示すように、 クラッド除去部 1 0 Rにて光ファイバ 1 0を 1 8 0 ° 折りたたみ、 クラッド端面 S (及ぴ光ファイバ 1 0の端面 1 As shown in FIG. 4 (A), the optical fiber 10 is folded by 180 ° at the cladding removing portion 10R, and the cladding end face S (and the end face of the optical fiber 10) is folded. 1
丁 &または丁 1>) を束ねた集合端面 s sを形成する。 そして、 クラッド 端面 Sよりも充分広い集合端面 S Sから、 クラッド端面 Sの径ょり大き な径の大出力の励 光 Linを入射することで、 より大出力のレーザ光 L outを得ることができる。 Form a bundle end face s s bunched together with the cottage & or 1>). By injecting a high-power excitation Lin having a diameter larger than that of the cladding end surface S from the gathering end surface SS which is sufficiently wider than the cladding end surface S, it is possible to obtain a laser beam L out having a higher output. .
また、 光ファイバ 1 0の長手方向に垂直な断面の形状は、 できるだけ 隙間なく並べることができる多角形の形状が好ましい。 例えば断面の形 状を三角形に形成したり、 第 4図 (B) 及び (C) に示すように四角形 または六角形とすることで、 集合端面 S Sを隙間無く形成することがで きる。  Further, the shape of the cross section perpendicular to the longitudinal direction of the optical fibers 10 is preferably a polygonal shape that can be arranged as closely as possible. For example, by forming the cross section into a triangular shape, or by forming a square or hexagon as shown in FIGS. 4 (B) and 4 (C), the assembly end face SS can be formed without gaps.
また、 第 4図 (B) 及び (C) は、 光ファイバ 1 0の両端からコア部 材 1 2を引き出し、 コア部材 1 2の一方の端面から出力されるレーザ光 Lout を集光レンズ 24で平行光に変換した後 (集光レンズ 24がコリ メートレンズの役目を果たす)、 ミラー 3 0 aで反射し、更に集光レンズ 24で集光してコア部材 1 2に戻している。 また、 コア部材 1 2の他方 の端面から出力されるレーザ光 Lout をコリメートレンズ 2 2で平行光 に変換した後、更に出力レーザ集光レンズ 2 6で集光してレーザ光 L out を取り出している。 この場合、 集合端面 S Sからは、 励起光入射装置 2 0 Cと同様の構成の励起光入射装置 (ミラー 3 0 a、 3 O bを含まない 励起光入射装置) から、 より大出力の励起光 Linを入射する。  4 (B) and 4 (C) show that the core member 12 is pulled out from both ends of the optical fiber 10 and the laser beam Lout output from one end face of the core member 12 is collected by the condenser lens 24. After being converted into parallel light (the condensing lens 24 functions as a collimating lens), the light is reflected by the mirror 30a, further condensed by the condensing lens 24, and returned to the core member 12. After converting the laser light Lout output from the other end face of the core member 12 into parallel light with the collimating lens 22, the laser light Lout is further condensed with the output laser condensing lens 26 and taken out. I have. In this case, from the collective end face SS, the pumping light incident device (excitation light incident device not including the mirrors 30a and 30b) having the same configuration as the pumping light incident device 20C is used. Lin is incident.
これにより、 励起光 Linの出力は大きいが、 集光径を光ファイバ 1 0 のクラッド部材 1 4の直径 (^clad 以下にすることが困難な励起光入射 装置を利用することができ、 より大出力のレーザ光 Lout を得ることが できる。  As a result, although the output of the excitation light Lin is large, it is possible to use an excitation light injection device in which it is difficult to make the condensing diameter smaller than the diameter of the cladding member 14 of the optical fiber 10 (^ clad or less). The output laser light Lout can be obtained.
また、 集合端面 S Sに対応する位置に複数の励起光入射装置を配置し て、 より多くの励起光を入射するように構成することも容易である。  Further, it is easy to arrange a plurality of excitation light incidence devices at positions corresponding to the collecting end face S S so that more excitation light is incident.
[第 4の実施の形態 (第 5図)] 第 4の実施の形態は、 ミラー 3 0 a及び 3 0 bを用いず、 複数のクラ ッド除去部 1 O Rのクラッド端面 Sに対向する位置に励起光入射装置 2 0 Cを配置した、 最もシンプルな構成のファイバレーザ発振装置の例で ある。 [Fourth embodiment (Fig. 5)] In the fourth embodiment, the excitation light incidence device 20C is arranged at a position facing the cladding end surface S of the plurality of cladding removing portions 1OR without using the mirrors 30a and 30b. This is an example of a fiber laser oscillation device having a simple configuration.
第 4の実施の形態の構成では、 目標とする出力のレーザ光 L out を得 ることができるように、 クラッド端面 S及び励起光入射装置 2 0 Cの数 を選定すればよい。  In the configuration of the fourth embodiment, the number of the cladding end face S and the number of the pumping light incidence devices 20C may be selected so that a target output laser light Lout can be obtained.
以上に説明したように、 本実施の形態におけるファイバレーザ発振装 置 1を用いれば、励起光 L inを 1本の光ファイバ 1 0の複数個所から入 射することができるため、 トータルの励起光 L inを増大させることがで き、 より大出力のレーザ光 L outを得ることができる。  As described above, if the fiber laser oscillation device 1 of the present embodiment is used, the pump light L in can be incident from a plurality of locations of one optical fiber 10, so that the total pump light L in can be increased, and a higher output laser beam L out can be obtained.
また、 励起光 L in を増大させるためにクラッド部材 1 4の径 <) Clad を大きくすると、 クラッド部材 1 4の断面積に対するコア部材 1 2の断 面積の相対的な比率が小さくなり、 クラッド部材 1 4内で全反射しなが らコア部材 1 2に当たって励起する確率が低くなり、 発振効率が低下し てしまう。しかし、本実施の形態に示すファイバレーザ発振装置 1では、 クラッド部材 1 4の径 <i> cladを大きくする必要がないため、高い発振効 率を維持することができる。 The diameter of the clad member 1 4 to increase the excitation light L in <) when C l a d a is increased, the relative proportions of the cross-sectional area of the core member 1 2 to the cross-sectional area of the cladding member 1 4 is reduced However, the probability of excitation while hitting the core member 12 while being totally reflected within the cladding member 14 is reduced, and the oscillation efficiency is reduced. However, in the fiber laser oscillation device 1 shown in the present embodiment, it is not necessary to increase the diameter <i> clad of the cladding member 14, so that high oscillation efficiency can be maintained.
また、従来の側面から励起光を入射するファイバレーザ発振装置では、 光ファイバ 1 0の側面から入射するための装置(プリズム等)、及び入射 した励起光 L inの閉じ込めるための調整(励起光のプリズムへの入射角 度等)、励起光のビーム品質等、種々のコストアップ要因及び誤差要因が 含まれていると推定されるが、 本実施の形態では、 光ファイバ 1 0の端 面から励起光 L inを入射するより単純な構成にて、 より安価、 且つ誤差 要因を低減することができる。  Further, in the conventional fiber laser oscillating device in which pumping light is incident from the side surface, a device (prism or the like) for inputting from the side surface of the optical fiber 10 and an adjustment for confining the incident pumping light Lin (for the pumping light). It is presumed that various cost increase factors and error factors, such as the angle of incidence on the prism) and the beam quality of the excitation light, are included. In the present embodiment, the excitation from the end face of the optical fiber 10 is performed. With a simpler configuration for entering the light Lin, the cost can be reduced and the error factor can be reduced.
本発明のファイバレーザ発振装置 1は、本実施の形態で説明した形状、 構成、 構造等に限定されず、 本発明の要旨を変更しない範囲で種々の変 更、 追加、 削除が可能である。 The fiber laser oscillation device 1 of the present invention has the shape described in the present embodiment, The present invention is not limited to the configuration, the structure, and the like, and various changes, additions, and deletions can be made without changing the gist of the present invention.
本実施の形態の説明に用いた数値は一例であり、 この数値に限定され るものではない。  The numerical values used in the description of the present embodiment are examples, and the present invention is not limited to these numerical values.
本実施の形態では、 励起光 L inに半導体レーザを用いたが、 これに限 定されるものではない。 産業上の利用可能性  In the present embodiment, a semiconductor laser is used for the excitation light Lin, but the present invention is not limited to this. Industrial applicability
本発明のファイバレーザ発振装置は、 レーザ加工装置等、 レーザ光を 用いた種々の装置に適用できる。  The fiber laser oscillation device of the present invention can be applied to various devices using laser light, such as a laser processing device.

Claims

請 求 の 範 囲 The scope of the claims
1 . レーザ活性物質を含むコア部材を長手方向に有するとともに当該コ ァ部材をクラッド部材で覆った光ファイバに、 励起光を入射することで レーザ光を発生させるファイバレーザ発振装置であって、 1. A fiber laser oscillating device that has a core member containing a laser active substance in a longitudinal direction and emits a laser beam by injecting excitation light into an optical fiber in which the core member is covered with a cladding member,
光ファイバの長手方向における任意の位置にて、 少なく ともゴァ部材 を残したクラッド除去部と、 当該クラッド除去部により形成されたクラ ッド端面から励起光を入射する、 ことを特徴とするファイバレーザ発振 装置。  A fiber, characterized in that at an arbitrary position in the longitudinal direction of the optical fiber, at least a clad-removed portion leaving a gore member, and excitation light is incident from a clad end face formed by the clad-removed portion. Laser oscillation device.
2 . 請求項 1に記載のファイバレーザ発振装置であって、  2. The fiber laser oscillation device according to claim 1, wherein
光ファイバの長手方向に垂直な断面において、 コア部材が中心から所 定位置にずれている、 ことを特徴とするファイバレーザ発振装置。  A fiber laser oscillation device, wherein a core member is shifted from a center to a predetermined position in a cross section perpendicular to the longitudinal direction of the optical fiber.
3 . 請求項 1に記載のファイバレーザ発振装置であって、  3. The fiber laser oscillator according to claim 1, wherein
光-ファイバ端面及び任意の位置に形成した前記クラッド端面の少なく とも 1つの端面から複数の励起光を入射する、 ことを特徴とするフアイ バレーザ発振装置。  A fiber laser oscillation device, wherein a plurality of excitation lights are incident from at least one end face of an optical-fiber end face and the clad end face formed at an arbitrary position.
4 . 請求項 1に記載のファイバレーザ発振装置であって、 4. The fiber laser oscillator according to claim 1, wherein
一本の光ファイバにおいて適宜の間隔で前記クラッド除去部及ぴ前記 クラッド端面を形成し、 複数のクラッド端面を集合させた集合端面を形 成し、 当該集合端面から励起光を入射する、 ことを特徴とするファイバ レーザ発振装置。  Forming the clad removing portion and the clad end face at appropriate intervals in one optical fiber to form a collective end face in which a plurality of clad end faces are collected, and exciting light is incident from the collective end face. Characteristic fiber laser oscillator.
5 . 請求項 4に記載のファイバレーザ発振装置であって、  5. The fiber laser oscillation device according to claim 4, wherein
前記クラッド端面及び Zまたは光ファイバ端面を多角形に形成する、 ことを特徴とするファイバレーザ発振装置。 図 A fiber laser oscillation device, wherein the end face of the clad and the Z or the end face of the optical fiber are formed in a polygonal shape. Figure
( (
3/6 第 3図3/6 Fig. 3
4/6 第 4図4/6 Fig. 4
,/vD/ O 0808Ϊ0さ oifcId 8/SS0S00iAV , / vD / O 0808Ϊ0sa oifcId 8 / SS0S00iAV
_1戰9 _1 war 9
3 巔 3 巔
* * * *
ϋ  ϋ
PCT/JP2004/018080 2003-12-03 2004-11-29 Fiber laser oscillating device WO2005055378A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-404808 2003-12-03
JP2003404808A JP3941063B2 (en) 2003-12-03 2003-12-03 Fiber laser oscillator

Publications (1)

Publication Number Publication Date
WO2005055378A1 true WO2005055378A1 (en) 2005-06-16

Family

ID=34650148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018080 WO2005055378A1 (en) 2003-12-03 2004-11-29 Fiber laser oscillating device

Country Status (2)

Country Link
JP (1) JP3941063B2 (en)
WO (1) WO2005055378A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318248A (en) * 2017-01-16 2018-07-24 舍弗勒技术股份两合公司 Bearing state on-line monitoring system based on optical fiber vibration sensing and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258523A (en) * 2007-04-09 2008-10-23 Jtekt Corp Fiber laser oscillator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4815079A (en) * 1987-12-17 1989-03-21 Polaroid Corporation Optical fiber lasers and amplifiers
WO2001067559A2 (en) * 2000-03-03 2001-09-13 Hrl Laboratories, Llc. Method and apparatus for pumping optical fibers
US20020001320A1 (en) * 2000-06-30 2002-01-03 Hoya Corporation Laser device and light signal amplifying device using the same
WO2003010579A1 (en) * 2001-07-24 2003-02-06 The Government Of The United States Of America As Represented By The Secretary Of The Navy Method for coupling light into cladding-pumped fiber sources using an embedded mirror

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4815079A (en) * 1987-12-17 1989-03-21 Polaroid Corporation Optical fiber lasers and amplifiers
WO2001067559A2 (en) * 2000-03-03 2001-09-13 Hrl Laboratories, Llc. Method and apparatus for pumping optical fibers
US20020001320A1 (en) * 2000-06-30 2002-01-03 Hoya Corporation Laser device and light signal amplifying device using the same
WO2003010579A1 (en) * 2001-07-24 2003-02-06 The Government Of The United States Of America As Represented By The Secretary Of The Navy Method for coupling light into cladding-pumped fiber sources using an embedded mirror

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318248A (en) * 2017-01-16 2018-07-24 舍弗勒技术股份两合公司 Bearing state on-line monitoring system based on optical fiber vibration sensing and method
CN108318248B (en) * 2017-01-16 2021-09-28 舍弗勒技术股份两合公司 Optical fiber vibration sensing-based bearing state online monitoring system

Also Published As

Publication number Publication date
JP3941063B2 (en) 2007-07-04
JP2005167015A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP4226482B2 (en) Laser beam multiplexer
JP3375213B2 (en) Fiber with lens
JP3098200B2 (en) Laser beam correction method and apparatus
JP2657117B2 (en) Optical coupling device and optical fiber laser
JP5621318B2 (en) Semiconductor laser module and fiber laser using the same
US7983313B2 (en) System and method for coupling multiple beams to an active fiber
US20030021529A1 (en) Method for coupling light into cladding-pumped fiber sources using an embedded mirror
TW200947002A (en) Gratings at optical fiber side and coupling apparatus using the same
JP7211235B2 (en) optical connection structure
US20060209909A1 (en) Fiber laser oscillator
JPH09199774A (en) Laser-diode-excited solid-state laser device
US7046879B2 (en) Optical via for three dimensional interconnection
WO2005069453A1 (en) Optical fiber and method for manufacturing same
JP4471522B2 (en) Condensing component and light source module, laser device and optical signal amplification device using the same
US9020007B2 (en) Laser device
JP2007214431A (en) Optical fiber laser
WO2005055378A1 (en) Fiber laser oscillating device
TWI237429B (en) Laser light coupler device
US10651355B1 (en) High-power laser diode package implemented with meniscus slow axis collimator for reduced diode package footprint or improved laser output brightness
JP2008203598A (en) Laser beam condensing unit
JPH08146250A (en) Condenser lens and its production
JP4850591B2 (en) Optical coupling device, solid-state laser device, and fiber laser device
JP2009168846A (en) Light condensing device and light condensing method
JP2007071950A (en) Double clad holey fiber, fiber amplifier, and fiber laser
JP2000150987A (en) Optical fiber laser, laser device, and optical fiber amplifier

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase